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ABSTRACT

Deposition of molten microdroplets is fundamental to many emerging droplet-based manufacturing (DBM)
processes. Although the spreading behavior of ordinary liquid and molten droplets has been studied
extensively for years, some basic questions remain unanswered. Specifically, the fundamental mechanisms
of abnormal spreading behavior, such as splashing and bouncing, have yet to be satisfactorily addressed. An
understanding of these mechanisms is essential to determine the optimal deposition conditions for the DBM
process. This thesis investigates the fundamental, but poorly understood, behavior of liquid and molten
metal droplets upon impact on solid surfaces.

The splashing of liquid droplets is addressed first. A linear perturbation theory is developed for the
interface instabilities of a radially-expanding, liquid sheet in cylindrical geometries. The theory is then
applied to rapidly spreading droplets as the fundamental mechanism behind splashing. The effects of such
factors as the transient profile of the interface radius, the perturbation onset time, and the Weber number on
the analysis results are examined. The analysis shows that the wave number of maximum instability does
not remain constant but rather, changes during spreading because of time-dependent coefficients in the
amplitude equation. A large impact inertia, associated with a high Weber number, promotes interface
instability and prefers high wave number for maximum instability.

The next stage investigates the oscillations of liquid droplets upon collision with solid surfaces as a
prerequisite for understanding droplet bouncing. Experiments using a high speed video system show that
the droplets with higher impact inertia oscillate more vigorously upon collision. The oscillation is strongly
affected by the wetting between the liquid droplet and the solid surface, such that the oscillation is greatly
promoted in poor wetting conditions. In addition, this thesis develops approximate models based on the
variational principle, rather than the Navier-Stokes equation to simulate the droplet oscillation. The results
of the models are in good agreement with the experimental data. The analysis shows that the relative
magnitudes of surface energy and viscous dissipation play critical roles in determining droplet dynamics.

Following the oscillation study, the bouncing of molten metal droplets upon collision with
subcooled target surfaces is studied. To determine the conditions for bouncing and sticking, an empirical
regime map is constructed using an approximate model and extensive experimental data. A clear trend
develops, illustrating that bouncing occurs when solidification is slow compared to oscillation, when a
molten metal droplet collides with a nonwetting surface. It is also found that bouncing is prohibited by good
wetting between the droplet and the target, which suggests that the wetting be an additional parameter
affecting the bouncing behavior.

Thesis Supervisor: Dr. Jung-Hoon Chun
Title: Associate Professor of Mechanical Engineering
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CHAPTER 1

INTRODUCTION
1.1. General background

The deposition of molten metal droplets plays an important role in many emerging fields
of technology, such as spray forming, spray coating, rapid prototyping, and electronic
packaging. Deposition phenomena comprise the impact of individual droplets on
substrates, coalescence of adjacent splats after impact, bonding between droplets and
deposit, and microstructural evolution of a sprayed deposit. The impact and spreading
behavior of each droplet are crucial to the overall deposition process, for they govern the
subsequent processes. Accurate understanding and control of droplet deposition is
essential since it determines geometric definition, such as surface porosity and conformity
to the target shapes, and mechanical properties of deposit. Although extensive research
on the spreading behavior of molten metal droplets has been performed so far (Madejski
1976; McPherson 1981; Liu et al. 1995; Pasandideh-Fard et al. 1998; Xiong et al. 1998),
complicated physical phenomena involved in the subject have rendered serious
difficulties in understanding the problem. The difficulties mainly arise from the
inherently coupled nature of fluid motion and cooling.

Describing the motion of a spreading droplet requires solving the moving
boundary problem for the Navier-Stokes equation. Furthermore, the contact between a
liquid droplet and a solid surface demands consideration of the physics of wetting, of
which complete understanding is still beyond our ability (de Gennes 1985). The
spreading behavior of ordinary liquid droplets without solidification has been studied
extensively for many years (Worthington 1877a,b; Engel 1955; Bechtel et al. 1981; Stow
and Hadfield 1981; Chandra and Avedisian 1991; Pasandideh-Fard et al. 1996).
Regardless of the degree of solidification during spreading, fluid motion is fundamental
to understanding molten metal impact behavior. Moreover, at the limit at which
solidification is much slower than fluid motion, the treatment of molten metal droplets is
identical to that of ordinary liquid droplets (Trapaga and Szekely 1991; Bennett and
Poulikakos 1993).

Nonetheless, the description of dynamics of molten metal droplets deposited on
subcooled (colder than the melting point of the droplet material) target surfaces involves
solidification in addition to fluid motion. Madejski (1976) and Solonenko et al. (1994)
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have taken approximate but analytical approaches to the simultaneous effects of
solidification and fluid flow in spreading droplets. However, the majority of past
modeling efforts employed computational methods due to the complexity of the
phenomenon. The full Navier-Stokes equation and the Stefan problem of solidification
were simultaneously solved by Liu et al. (1993), San Marchi et al. (1993), and Liu et al.
(1994). Trapaga et al. (1992), Waldvogel and Poulikakos (1997), and Pasandideh-Fard et
al. (1998) solved the two-dimensional energy equation, instead of the Stefan problem,
with the Navier-Stokes equation. In addition to modeling, experimental studies were
carried out on the behavior of impacting molten droplets (Inada 1988; Watanabe et al.
1992; Inada and Yang 1994; Schiaffino 1996). The experiments showed that although
the effects of solidification are negligible in the initial stages of rapid spreading, in the
later stages, solidification arrests the fringe of the impacting droplet and interacts with the
droplet oscillations.

1.2. Scope of the present investigation

In most spray-deposition processes, it is desired to achieve the deposition of droplets in a
controlled and precise manner. Therefore, the mechanisms behind abnormal impact
behavior such as splashing and bouncing must be understood to produce high-quality
deposits. Splashing increases the bulk and surface porosity of a deposit and consequently
deteriorates its quality. A high degree of splashing degrades the sticking efficiency of the
spray-deposition process, decreasing process yield. It is highly likely that droplets which
tend to oscillate vigorously have poor contact with the substrate, which hinders rapid
solidification. In addition, the deposition of an individual molten microdroplet for the
electronic packaging demands a thorough understanding of droplet oscillations to both
prevent droplet bouncing and predict final bump shape.

We obtain the independent parameters which affect the spreading behavior of
droplets by dimensional analysis. In the case of isothermal deposition, neglecting gravity
effects, we find the following relevant scaling parameters: Weber number, Ohnesorge
number, and additional parameter(s) determined by the interfacial phenomena between
the droplet liquid and target solid. The Weber number, We, is the ratio of inertial to
surface tension forces at impact, and the Ohnesorge number, Oh, is the ratio of viscous to
surface tension forces. We assume that only the equilibrium contact angle, 6, plays the
dominant role as the interfacial parameter. The Weber number scales the driving force
for the droplet spreading, and the Ohnesorge number scales the force that resists the
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spreading (Schiaffino 1996). Schiaffino derived four different, asymptotic spreading
regimes given good wetting conditions.
Most spray-deposition applications operate in the regime of inviscid, impact-

driven spreading, where We >> 1 and Oh << We"?

. The regime is characterized by rapid
initial spreading followed by well-pronounced oscillations. We can subdivide this regime
based on the strength of the spreading and the oscillations. When the driving force of the
spreading is very strong, the droplet develops an unstable spreading front which leads to
splashing. When the oscillations are very strong, the droplet may disengage from the
target surface, which is referred to as bouncing, or disintegrate, which is called necking,
during recoiling.

This thesis investigates the droplet dynamics in the regime of inviscid, impact-
driven spreading. We study the initial spreading stages that possess excessive driving
force to understand the splashing phenomenon. We then investigate the subsequent
oscillation phenomena. In this study, the effects of the contact angle as well as Weber
number and Ohnesorge number are investigated since wetting plays an important role in
the oscillation stages. After describing the oscillation dynamics, we study the bouncing
of molten metal droplets as an extremely violent form of droplet oscillation. We include
the effects of solidification in the study to explain the strong dependency of bouncing and
sticking behavior on thermal conditions.

1.3. Organization of thesis

The present chapter describes the background and scope of the thesis. Chapter 2 studies
the splashing phenomena of liquid droplets. Although splashing of liquid droplets upon
collision with solid surfaces is frequently observed in a variety of situations, its
fundamental mechanism is still not fully understood. The linear perturbation theory is
developed to model the unstable spreading front of a radially expanding liquid sheet
which emerges from a droplet upon collision with a solid surface. Chapter 3 describes
the oscillation dynamics of various liquid droplets on different solid surfaces. We
experimentally identify the effects of impact and surface conditions on spreading and
subsequent oscillations. The experimental data are compared with approximate models.
The bouncing of molten metal droplets upon colliding with subcooled targets is
investigated in Chapter 4. The regime map for the bouncing and sticking of molten metal
droplets is constructed based on experimental results and modeling. Chapter 5 offers the

conclusions of this thesis.
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CHAPTER 2

SPLASHING OF LIQUID DROPLETS UPON
COLLISION WITH SOLID SURFACES

2.1. Introduction

A droplet with large inertia frequently spreads with fingers extending from the edge when
it impinges on a solid surface. Although the behavior of a spreading droplet after
colliding with a target plane has been the subject of intense study for many years
(Worthington 1877a,b; Engel 1955; Harlow and Shannon 1967; Bowden and Field 1964;
Chandra and Avedisian 1991; Fukai et al. 1995), comparatively less work has been done
on a splashing droplet — a droplet that develops an unstable periphery. Levin and Hobbs
(1971) observed the formation of a crown, i.e., the detachment of a watersheet from a
target surface, when a water drop impinges on a copper hemisphere. Stow and Hadfield
(1981) photographed the early development of a watersheet emerging from the
drop/target contact area, and were able to distinguish splashing droplets from non-
splashing ones by the release of an unstable watersheet in the very early stages of
spreading. Mundo et al. (1995) characterized the size and velocity of the secondary
droplets produced from a droplet colliding with a rotating disc at an angle. Thoroddsen
and Sakakibara (1998) first performed a systematic study on the evolution of the fingers
developing from a droplet interface spreading on a flat glass substrate. Furthermore,
recent experiments (Thoroddsen and Sakakibara 1998; Marmanis and Thoroddsen 1996)
showed that the unstable azimuthal undulation is a characteristic feature of splashing. For
this reason, we consider splashing to be the unstable expansion of the spreading front in
colliding droplets, including crown formation as an extreme case of splashing.

Significant experimental observations of splashing droplets are summarized as the
following: (1) Splashing manifests itself in the very early stages of spreading. (Stow and
Hadfield 1981; Thoroddsen and Sakakibara 1998) (2) Splashing occurs when the
impacting droplet has significant kinetic energy as compared to surface energy and it is
promoted by rough target surfaces (Stow and Hadfield 1981; Mundo et al. 1995) A
crown even develops under severe destabilizing conditions. (3) Increasing the impact
inertia increases the number of fingers (Marmanis and Thoroddsen 1996), and this
number does not change significantly during spreading (Thoroddsen and Sakakibara
1998).
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A few articles (Allen 1975; Mundo et al. 1995; Thoroddsen and Sakakibara 1998)
have addressed the origin of splashing, but the basic mechanism of splashing is still far
from clear. Allen (1975) suggested that a radially decelerating interface of a spreading
droplet be Rayleigh-Taylor unstable and calculated the most dangerous wavelength based
on the average deceleration required to bring the spreading to a halt. He modeled the
radially extending flow into one-directional plane motion and assumed that the
deceleration was due to viscous damping. However, his model overlooks the effects of a
changing interface length during spreading and the effect of curvature on the instabilities.
In addition, the selection of the representative deceleration is somewhat arbitrary. Mundo
et al. (1995) suggested that the crown develop when the total energy of a droplet prior to
impact exceeds the amount of energy dissipated by viscosity during spreading. On the
other hand, Thoroddsen and Sakakibara (1998) contended that the fingering is due to the
Rayleigh-Taylor instability of the decelerating fluid ring at the droplet bottom before
hitting a target.

To elucidate the fundamental mechanism behind splashing we note that the
behavior of a liquid sheet released upon impact is crucial in understanding splashing. In
the present work, we study the Rayleigh-Taylor instability of a radially expanding sheet,
in "cylindrical" geometry, as a major mechanism of splashing. Figure 2.1 shows a sheet
that is typically released during impact-driven spreading.

Although the Rayleigh-Taylor instability has been extensively studied for many
years, most of effort has been focused on the plane (Taylor 1950; Menikoff et al. 1978;
Tryggvason 1988; Berning and Rubenchik 1998) and spherical geometries (Plesset 1954;
Plesset and Mitchell 1956; Birkhoff 1956; Baker et al. 1984). Especially, interests in
cavitation bubbles, pulsations of underwater explosion bubbles, and sonoluminescence
(Hilgenfeldt et al. 1998) have brought attention to the dynamics of spherical bubbles.
Behavior of a gas bubble in an incompressible liquid under adiabatic or isothermal
conditions is described by the Rayleigh-Plesset (RP) equation (Plesset and Prosperetti
1977; Feng and Leal 1997). The distortion amplitude of the spherical interface is
governed by an equation whose coefficients are time-dependent as ruled by the RP
equation. When the amplitude of the radial oscillation is small, the governing equations
for the shape modes are reduced to Mathieu’s equation. On the other hand, Brenner et al.
(1995) examined both the Rayleigh-Taylor and the parametric instability mechanisms for
a large amplitude case. Generally, numerical methods are required to understand such a
case.

In the present work, we investigate the instabilities of a radially-expanding
circular interface in cylindrical geometries. While the bubble dynamics are governed by
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the RP equation, the motion of the liquid sheet of our interest is ruled by the dynamics of
droplet spreading. Since the details of initial droplet spreading stages are not precisely
known, we build a simple model on the expansion of a liquid sheet upon impact. It is
assumed that the deceleration of the sheet interface is due to a mass-conservation
controlled flow characteristic rather than viscous damping. An equation governing the
azimuthal instability of an expanding sheet is obtained using domain perturbation
methods. The dynamic conditions of a droplet prior to impact are represented by the
Weber number in our analysis. Numerical simulation investigates the sensitivity of the
instability analysis to the modeling assumptions and the role of impact conditions.

2.2. Derivation of the amplitude equation

Consider a radially-expanding liquid sheet whose expansion rate, i.e., radial velocity as a
function of time, is known a priori. Stability of the edge of the two-dimensional, liquid
sheet subjected to an azimuthal disturbance is investigated. Without disturbance, its
shape is given only by time, and the velocity is determined merely by time and radial
distance. However, under the azimuthal disturbance the location of the periphery is
dependent upon an azimuthal angle 8 as well as time as shown in Figure 2.2.

We nondimensionalize the flow parameters based on the characteristic radius R;,
and the characteristic velocity U~. In the case of rapidly spreading liquid droplets, R;,
and U" correspond to the original droplet radius before impact and the impact velocity,
respectively. The characteristic time scale 7 is given by 7° = R}, /U" , and the velocity
potential is scaled by R,U". The following quantities are all nondimensionalized based
on, R,,U", 1", and R,U", and their forms are shown in Appendix A. »

The velocity potential of the liquid ¢ is defined such that the radial velocity v,
and the azimuthal velocity v, satisfy, respectively,

d¢
=" 2.1
v, 3 2.1
and
10¢
=—— 2.2
ve r 06 (2.2)

It is supposed that the velocity potential and the outer radius of the fluid R are slightly
disturbed, so that they are expressed as
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¢ =¢0(t,r)+¢l(t,r,6), (2.3)

and
R=R,(t)+R 6), (2.4)

where ¢, and R, denote the base or axisymmetric spreading solutions and ¢, and R, are
small perturbations. We neglect the effect of viscosity, hence the governing equation for
incompressible and irrotational flow is

V2% =0. 2.5)

We model the axisymmetric liquid expansion by a line source at the center, giving the
base flow solution as

¢ =M(t)Inr, (2.6)

where M is the strength of the source. Then the base solution of the radial velocity is

expressed as

¢, M
— T e—— , 2‘
or r 2.7

The kinematic boundary condition (KBC) at the edge of the expanding fluid is

39 R 1 ¢ 3R
99 _o%, 2000 28
o o 7206096 28)

Using Eqgs. (2.3) and (2.4), we rewrite KBC as

a4d, + 99, _ dR, + dR, 4 1 9¢, oR, . 2.9)
or or ot ot r’ 06 96
It is noted that KBC is imposed on a moving interface at r = R, + R, , whose location is
not known a priori. Therefore, the domain perturbation method is applied to find a
boundary condition which is to be imposed on an unperturbed interface. From the Taylor
series expansion, we obtain the following expressions which are correct to the first order:
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99, 94, 9’9,
' ~—20 R , )
ar )":Ro"‘kl ar r=Ry * 1 ar2 r=R, (2 10)

% 9%
or )r:Ro +R, or r=R, ' @10

Hence KBC to be imposed on r = R, (t), for the zeroth order, is

a9, R,
_—=—, 2.12
or ot 2.12)
and KBC of the first order is, using Eq. (2.6),
R
9 R g M 2.13)

o o R}
In addition, combining Eqgs. (2.7) and (2.12) obtains the following expressions for M:
M =RR,, (2.14)
M =R R, +R,R,. (2.15)
The dynamic boundary condition (DBC) on a free surface at r = Rj + R, is

a¢ 1 2 K ’

—_— V +—= AP s 2. 16
ot 2I ¢ We ° (2.16)
where k denotes the curvature of the interface and AF, the pressure adjustment. The
Weber number We is given by We=p"U*R"?/c", p* and 6" being the density and the
surface tension of the liquid, respectively. The curvature k is expressed as, to the first
order,

1 1 d’R
za_}?_(z{, +—aa; ] (2.17)
0
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Domain perturbation is again applied to DBC to obtain a condition for the unperturbed
interface. DBC to be imposed on r = R, (t) for the first order is

M_M') 06 M4 L 1f, IR
R‘(Ro R ]+ o +R0 o WeR R'+862 =0. (2.18)

As a solution of the Laplace equation, ¢, is expressed as a superposition of

normal modes:
¢ =) A,[)r"cosmé, (2.19)
m=1

where only sinusoidal perturbations are considered. Choosing a potential which
corresponds to a disturbance decreasing away from the interface in the inward direction
(Plesset 1954) eliminates terms having r™ from the solution of the Laplace equation.
Consequently, the shape perturbation is given by

R = i £, ()cosm@ . | (2.20)

m=1

Substitution of Egs. (2.19) and (2.20) into Eq. (2.13) yields

mA R = f, +%fm- @221)
0

After substituting Egs. (2.19) and (2.20), Eq. (2.18) becomes,

M M (1)1 , .
—_—— + +R'A +mMR A =0. 2.22
fm[RO R(:)l We Ro ROAn m RO m ( )

Combining Egs. (2.21) and (2.22), we finally obtain an equation for the shape
perturbation amplitude f,,:

f, +a@)f, +b@)f, =0, (2.23)

where a and b are given as the following, by virtue of Egs. (2.14) and (2.15):
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at)= 2%, (2.24)

0

b(t)= (’"R:; 1)[’"(;”\/_; ), Rgiéo] . (2.25)

In a special case where R, is kept at unity throughout time, the frequency for the mth
mode perturbation, @,,, is given by

/
W’ = [—"1(”’2—"1)]1 2, (2.26)

" We

which is identical to Chandrasekhar’s result (1961). See Appendix B for details.

In short, Eq. (2.23) describes the development of a nonaxisymmetric perturbation
on a cylindrical spreading sheet. The coefficients are known if the spreading dynamics
are known. We note that Eq. (2.23) is a second order linear ordinary differential equation
with variable coefficients. This equation cannot be solved analytically, although stability
of the solution can be obtained for limit cases when the coefficients are periodic functions
of t.

2.3. Numerical simulation results

We begin to investigate the instability by obtaining the base flow solutions. According to
Bowden and Field’s model (1964), we expect a nearly immediate generation of a liquid
sheet on impact when the Mach number, Ma=U"/c*, U" being the impact velocity and
¢’ the sound speed in the liquid medium, is very small. However, due to a lack of
quantitative empirical data on the behavior of droplets immediately after impact, we
resort to simple models to obtain the base flow solutions.

To obtain the base flow solution, i.e., the expansion rate of the liquid sheet or
contact area, consider the following limiting case. Suppose that the descending speed of
a droplet after impact is invariant from its original speed, which is often observed in the
early stages of spreading (Stow and Hadfield 1981, Thoroddsen and Sakakibara 1998).
As shown in Figure 2.3 (a), we assume that the bottom of the spherical droplet is
displaced to the periphery of the droplet spreading on the surface, resulting in a shape of

20



truncated-sphere-on-cylinder. Using volume conservation, the radius of the cylinder or
contact radius is calculated to be

V2 :
fo|3 90 1Bl 27, oo S 227)
171278 T2l160 2 ’ '

where s=1—t (0<t<1/3). For t<<1, & =2t'*. It is interesting to note that if the
droplet continues to travel after hitting the surface as if it did not exist (See
Figure 2.3 (b)), the radius of intersecting area is expressed as &, = (2t —tzy 2 , Which is
approximated to be &, = (Zt)/ ? for t<<1. We suppose that the expanding liquid sheet
exhibits the same tendency as & ’s modeled above, then we write

R, = A"?, (2.28)

where the coefficient A is to be determined empirically for each impact situation.
Figure 2.4 shows radius and deceleration profiles depending on the value of A.

In the context of the Rayleigh-Taylor instability, when the expanding liquid
decelerates with respect to a lighter atmospheric gas, the liquid tends to.be destabilized
while the surface tension has a stabilizing effect. It is also possible to approximately
predict stability by observing the behavior of the coefficients a and b. Figure 2.5 shows a
and b as functions of time based on Eq. (2.28). In general, positive a, as shown in
Figure 2.5 (a), corresponds to the positive energy dissipation, thus it has stabilizing effect.
On the other hand, b, the restoring term, is negative at small ¢ for all wave numbers
shown in Figure 2.5 (b), thus destabilizing the interface. As the wave number increases,
b becomes positive during spreading due to the presence of surface tension, thus
stabilizing the corresponding perturbation.

However, only numerical simulation can exactly predict the most dangerous wave
number and the rate of growth for the shape perturbation because of the time dependent
coefficients of Eq. (2.23). Based on the base solutions, we numerically solve Eq. (2.23)
under given initial conditions such as f, =1 and f,=0,and f,=0 and f, =1. The
modified Euler method has been employed to solve the initial value problem (Nakamura
1991).

Factors which determine the magnitude of deceleration of a liquid interface, i.e.,
the driving mechanism of the Rayleigh-Taylor instability, include the initiation time of
perturbation as well as the coefficient A. Mathematical singularity occurs as t — 0 when
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both the velocity and the deceleration of the sheet reach infinity. The sheet emerges from
a finite initial radius which corresponds to a finite nonzero initiation time. Since there are
no conclusive experimental data on exactly when the liquid sheet emerges, we examine
the sensitivity of the perturbation analysis to the perturbation onset time ¢,. On the other
hand, effects of impact inertia and surface tension are manifested through the Weber
number in our analysis. The presence of surface tension that stabilizes the interface leads
to the mode of maximum instability. In the following we present the numerical
simulation results including the roles of such parameters as described above.

Figure 2.6 shows the temporal evolution of shape perturbations for different wave
numbers. For a computation time range, we use the limit to which Eq. (2.27) holds, i.e.,
t=1/3. Perturbations of different wave numbers compete with one another and the mode
number of maximum instability varies with time, unlike time-independent coefficient
systems. In addition, neither the growth rate of the perturbation nor the cutoff wave
number is easily defined. As predicted in Figure 2.5, the perturbations of high wave
numbers are stabilized as ¢ increases although the instants when the amplitudes alter their
slopes do not exactly coincide with those at which the b’s change sign.

Figure 2.7 (a) shows that there exists a wave number which maximizes the
amplitude perturbation at every moment during spreading. Furthermore, the number
tends to decrease during spreading (Figure 2.7 (b)). More studies are required to
understand how fingers merge during spreading and which wave number manifests itself
in the competition of many modes during spreading. Such questions can be answered by
considering nonlinear effects of finite amplitude perturbations, which are beyond the
scope of the present work. However, it is clear that high wave numbers excited in earlier
stages are overwhelmed by lower wave numbers in the course of spreading as
deceleration gradually comes to a stop. It is also noted that disturbances of very high
wave numbers are rapidly stabilized by surface tension. Figure 2.8 shows the growth of
azimuthal disturbances at the modes of maximum instability based on the simulation
results. A droplet with a higher Weber number (Figure 2.8 (b)) develops more unstable
spreading front than one with a lower Weber number (Figure 2.8 (a)).

Effects of the coefficient A, or the expansion rate of the liquid sheet, on instability
are shown in Figure 2.9. We note that when the sheet radius is given by Eq. (2.28), a
high expansion rate due to large A results in a high magnitude of deceleration, which
eventually promotes the instability of higher wave numbers. Figure 2.10 illustrates the
effect of perturbation onset time on instability. Perturbations initiated earlier exhibit
larger deceleration thus promoting instability of higher wave number. However, it is
noteworthy that the analysis results are rather insensitive to #;. Figure 2.11 presents the
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role of the Weber number on the instability. As Weber number increases, that is, when
the effect of surface tension is weakened and that of inertia strengthened, the higher wave
numbers are more excited. This is consistent with Thoroddsen and Sakakibara’s (1998)
observation that higher impact speed results in greater finger numbers. Appendix C
shows a relevant experimental evidence. '

2.4. Conclusions

We developed a linear perturbation theory of interface instabilities of a radially-
expanding, liquid sheet in cylindrical geometries. The theory was applied to an
expanding sheet under a spreading droplet to elucidate the origin of splashing. The base
flow solutions were estimated by using mass conservation. It was shown that significant
deceleration occurs in the early stages of spreading, which triggers the Rayleigh-Taylor
instability. The model supposes that the main factor inducing deceleration is not
viscosity but the continuity of flow around the impact region. The theory was able to
predict the most rapidly growing mode of azimuthal disturbance and its growth rate at
each instant during spreading. It was found that the mode number of maximum
instability changes because of time-dependent coefficients in the amplitude equation. We
examined effects of several parameters on the analysis results including the transient
profile of an interface radius, i.e. the coefficient A, the perturbation onset time, ¢,, and
Weber number.

It is noted that the parameters examined above, A, t,, and We, are interrelated
with each other in reality: the impact inertia and surface energy not only affect the Weber
number but also determine the collapsing dynamics of the droplet and sheet expansion
characteristics: A and ¢,. In addition, it is known that substrate roughness plays a
significant role in splashing (Stow and Hadfield 1981). The roughness may affect the
values of A and ¢, and change the mode of the maximum instability as well as destabilize
the perturbation of a given wave number. On the other hand, the effects of thermal
conditions of the target surface are to be considered especially when a droplet hits a
surface as hot as its boiling temperature (Chandra and Avedisian 1991) or when a molten
droplet impinges on a subcooled target (Pasandideh-Fard 1998). Understanding these
topics calls for more studies in the future.

In conclusion, we find that the rapidly expanding liquid sheet released upon
droplet collision with a solid target is subjected to Rayleigh-Taylor instability.
Numerical computations of the transient evolution of shape perturbations are able to
determine the most rapidly growing wave number and the growth rate of perturbation
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amplitudes. Our analysis reveals that larger impact inertia associated with higher We,
and thus presumably higher A, promotes interface instability and prefers higher wave
number for maximum instability. However, further analysis is required to accurately
determine the correlation between the sheet expansion profile and impact conditions. We
relate this instability with the fundamental mechanism of splashing from the viewpoint
that the inherent feature of splashing is an unstable expansion of the spreading front of
droplets.
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FIGURE 2.1.  Release of a liquid sheet upon droplet collision with a solid target.

Atmospheric
gas

FIGURE 2.2.  Disturbed liquid sheet which expands radially.
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FIGURE 2.3.
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(b)

Limiting cases of droplet spreading. The original droplet radius and
velocity are both unity after nondimensionalization. (a) Volume V, is

displaced to V, while the droplet descends with the speed of unity. The
cylinder radius £, is expressed as Eq. (23). (b) £, is the intersection

radius of the target surface and the droplet traveling with no

deformation.
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FIGURE 2.4. (a) Transient radius profiles of an expanding liquid sheet expressed as Ry = At'/2. (b) Cor-
responding deceleration. Note that the significant deceleration is experienced by the interface immediately

after impact, which drives the Rayleigh-Taylor instability.
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FIGURE 2.5. The coefficients of Eq. (2.23) when Ry = 2t'/2 and We = 500. (a) The coefficient a is given

by a = 1/t. (b) The coefficient b vs. time for various wave numbers.
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FIGURE 2.6. (a) Temporal evolution of the shape amplitudes of various wave numbers until ¢ = 0.1. (b)
Temporal evolution of the shape amplitudes until ¢ = 1/3. Initial conditions at ¢t = ¢; are f,, = 1 and
fm = 0. The computation was performed for Ry = 2t1/2, t; = 0.01, and We = 500. Perturbations of m = 40
and 50 are exceeded by that of m = 36 during spreading. Perturbations of m = 50,55, and 56 decay after
initially growing period. The perturbation amplitude of m = 56 even decays to the value less than the
initially assigned one before t reaches 1/3. We define a wave number, which is less than the so-found wave

number by one, as a pseudo-cutoff wave number - in this case, it is 55.
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FIGURE 2.7. (a) Perturbation amplitude vs. wave numbers for different time. Initial conditions for solid
lines are f, = 1 and fn, = 0. Initial conditions for a dotted line are f,, = 0 and fm = 100. The computation
was performed for Ry = 2t'/2, t; = 0.01, and We = 500. (b) Changes of a mode number of maximum
instability and a pseudo-cutoff wave number with time. Computation conditions are those of the solid lines

in (a).
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FIGURE 2.8. Growth of azimuthal disturbances during spreading at the modes of maximum instability.
Initial conditions are f,, = 1 x 10™* and f,, = 0. The computation was performed for Ry = 2t1/2 and
t; = 0.01. (a) Shape evolutions when We = 50. From the innermost corrugated circle, ¢t = 0.06 (m = 15),
0.12 (m = 14), 0.24 (m = 12), and 1/3 (m = 12). (b) Shape evolutions when We = 500. From the innermost
corrugated circle, t = 0.06 (m = 47), 0.12 (m = 42), 0.24 (m = 38), and 1/3 (m = 36).
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FIGURE 2.9. Effect of the coefficient A on instability. (a) Wave number of maximum instability vs. A.

(b) Perturbation amplitude of those numbers vs. A.
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FIGURE 2.10. Effect of the perturbation onset time ¢; on instability. (a) Wave number of maximum

instability vs. ¢;. (b) Perturbation amplitude of those numbers vs. ¢;.
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FIGURE 2.11. Effect of Weber number on instability. (a) Wave number of maximum instability vs. We.

(b) Perturbation amplitude of those numbers vs. We.
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CHAPTER 3

THE OSCILLATION OF LIQUID DROPLETS UPON
COLLISION WITH SOLID SURFACES

3.1. Introduction

This chapter investigates the oscillations of liquid droplets upon collision with solid
surfaces which depend on various dynamic and wetting conditions. The post-impact
oscillations of a liquid droplet consist of the initial spreading of the droplet until it
reaches its maximum base diameter and subsequent oscillatory motions of recoiling and
re-spreading. Dynamics of liquid droplets colliding with solid surfaces have been
extensively studied for more than a century (Worthington 1877a,b). However, the
majority of this effort has been focused on the initial spreading process, i.e. from the
moment of impact to the moment when the droplet reaches its maximum base diameter
(Engel 1955; Harlow and Shannon 1967; Stow and Hadfield 1981; Tsurutani et al. 1990;
Trapaga and Szekely 1991; Shi and Dear 1992). As a result, it appears to be only recent
that the post-impact oscillations gained the full interests of the scientific communities.
Fukai et al. (1995) conducted a theoretical study on the spreading and recoiling of
a liquid droplet upon colliding with a solid surface. In the study, the numerical
simulation results were compared with experimental data that used water droplets and
Pyrex glasses of different surface roughness and a wax coating as the target materials. To
account for the effects of wetting, different values for the advancing and receding contact
angles, measured while allowing droplets to slide down an inclined test surface, were
adopted per target material. Their model is based on solving the full Navier-Stokes
equation by utilizing deforming finite elements and allowing the contact line to slip.
Their prediction was generally in good agreement with experimental measurements.
Pasandideh-Fard et al. (1996) performed a similar study by numerically solving the full
Navier-Stokes equation using a modified SOLA-VOF method and a no-slip boundary
condition. In the experiments, droplets of water with different surfactant concentrations
were deposited on polished, stainless steel surfaces. Dynamic contact angles were
measured from photographs and the values were used as a boundary condition for the
numerical model. Their model accurately predicted experimental measurements taken
during the initial spreading stages. However, a discrepancy was found during the
recoiling stages. Zhang and Basaran (1997) performed an experimental study using
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distilled water and aqueous surfactant solutions as the droplet material and glass as the
target surface. They measured the long-time behavior, i.e., oscillation, of a liquid droplet
using high speed video. They found that the decrease of surface tension due to the
presence of a surfactant enhanced the spreading while Marangoni stresses induced by
non-uniform surfactant distribution inhibited the spreading.

Studies of the oscillation dynamics of sessile and pendant drops began only
recently. The reader is referred to an extensive review on the subject by Wilkes and
Basaran (1997). Since the studies concern the motion of supported droplets, i.e., drops
placed on solid supports a priori., the effect of impingement with the solids on the
droplet dynamics is beyond the scope of the studies. Schiaffino and Sonin (1997)
discussed the oscillations of a droplet’s centerline elevation after its footprint is arrested
by freezing on a subcooled target of its own kind. They found that the oscillation
damping time of deposited water droplets is in good agreement with the damping time of
a negligibly viscous, liquid drop which oscillates freely.

Our theoretical study is motivated by an approach, originated by Kendall and
Rohsenow (1978) and Bechtel et al. (1981), to the dynamics of the droplet impact. The
approach is based on the variational principle rather than on the Navier-Stokes equation
which requires significant computational efforts. Its advantage is that by assuming the
geometry of the deforming droplet, a very simple differential equation is obtained to
describe the droplet dynamics. From the experimental aspect, the current study aims to
investigate the spreading and subsequent oscillations of various liquid droplets upon
collision with different solid surfaces. Although similar experimental studies have been
performed by previously mentioned authors (Fukai et al.; Pasandideh-Fard et al.; and
Zhang and Basaran), this study not only examines a broad spectrum of dynamic impact
conditions such as Weber number and Reynolds number, but also investigates the wetting
effects caused by various combinations of liquid droplets and solid targets. In this
chapter, we compare the modeling results and the experimental measurements to show
the capability of our model to predict the complicated phenomena of the droplet
spreading.

3.2. Modeling

We model the oscillations of a droplet by adopting the variational principle instead of
solving the Navier-Stokes equation with moving boundaries. We assume two different
droplet shapes in performing the variational method, i.e., a cylinder and a truncated
sphere. We derive the cylinder model in a similar manner to Kendall and Rosehnow’s
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model (1978). Our model extends theirs to include the wetting properties of the liquid
droplet with a solid surface and the frictional dissipation. In addition, the initial
conditions are determined to satisfy the energy conservation exactly. A variational
method using a truncated sphere was derived by Bechtel et al. (1981), and we briefly
introduce their results as well with further modifications.

3.2.1 Formulation of the problem using a cylinder model

The variational principle can be written as (Crandall et al. 1968):

tj(a’r* —6V* +6W; )dr* =0, 3.1)

4

where T* denotes the kinetic coenergy, V"~ the potential energy, and #* the time. The
frictional work 6W; is expressed as

W, =-F'&", 32)

where F* denotes the frictional force and y” the displacement of the frictional motion.
In a case where the frictional force is due to the wall shear stress, we write Eq. (3.1) as

T{J(T*—V*)— [rosaar |dr =0, (3.3)

h

4

where 7° is the shear stress at the base of the droplet, 4 the radial displacement, and A;
the base area. Each term in the integrand can be evaluated when the shape of the
deforming droplet and the velocity profile are known. The initial velocity and the
diameter of the original droplet before collision are U" and D, respectively. The
droplet has the density p°, the surface tension ¢, and the viscosity #". We choose D",
(p*D* [o* ) and U" as the characteristic length, time and velocity scales, respectively.
The following quantities are nondimensionalized based on those scales unless noted
otherwise, and their forms are summarized in Appendix D.

We model the oscillating droplet on a solid surface as a cylinder whose base
diameter and height are D, and A, respectively, as shown in Figure 3.1. The volume of
the cylinder is the same as that of the droplet, thus
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Dh =§ (3.4)

is satisfied for any ¢. If either D, or h is specified in time, the other is known
straightforwardly by Eq. (3.4). Therefore, it is enough to simulate the temporal evolution
of either D, or h to fully describe the dynamics of the oscillating cylinder. We derive
the equation for % in the following.

Assuming axisymmetric motion, the nondimensional kinetic coenergy is written
as

T =[(?+v?)avol, (3.5)
v

where v, and v, denote the axial and radial velocity of the flow inside the cylinder,
respectively, and Vol is the volume. For the energy and volume scales, we choose
mp*D*U* /12 and D™ /6, which correspond to the original kinetic coenergy and the
volume of the colliding droplet, respectively. We relate the axial velocity v, with k as

1 zdh

V, = ———,
¢ We hdr

(3.6)

where We is the Weber number defined as We = p'U*2D*/c" . The radial velocity v, is

given by continuity as

y =i 1 _rdh 3.7)

where r is the nondimensional radius. The flow field given by Eq. (3.6) and (3.7) is that
of the potential flow which satisfies the Laplace equation. Substituting Eqgs. (3.6) and
(3.7) into Eq. (3.5) and performing integration over the volume of the cylinder, we obtain

2
r=Ll L{dnY(}, 13\. (3.8)
3weldr, | 1607,
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In evaluating the potential energy we do not include gravity since we are mainly
interested in the oscillation due to interfacial phenomenon. Hence the potential energy V

is written as

3 4h
1% =VCDZ[F[J+ (1—cos9)}, (3.9)

where ¢ is the equilibrium contact angle between the liquid droplet and the solid surface.
By using Eq. (3.4), we express the potential energy as

_ 2 /2 (l—cose)]
V—We[2(6h)' . (3.10)

The dissipative work is estimated in the same manner as Bechtel et al. (1981). Since the
potential flow field we obtained does not afford the viscous effects, we estimate the
external viscous stress, 7°, based on that of the oscillating stagnation flow with the
period ¢*. Defining the characteristic hydrodynamic boundary layer thickness J, as

(1 we)!
=D'| — , 3.11
# [7[2 Re2} ( )
we write
T=F,~, (3.12)
Oy

where F, is the dissipation factor. We choose u'U*/D" as the characteristic stress
scale. Substitution of Eq. (3.7) into Eq. (3.12) yields

F, rdh

T= . 3.13
26, We'” h dt G-13)
The radial displacement A, is written, in the present nondimensionalization, as:
4 =" [v.ar. (3.14)
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Substituting Eq.(3.7) into Eq. (3.14) we obtain

4 = ——%rlnh, (3.15)

where we arbitrarily set the integration constant to zero since dA, is of our interest.
Performing the variation of the kinetic coenergy with respect to 4 and using
integration by parts, we get

b 1%, dh(,, 1) 3(dnY1
STdt = - 2—| 1+ ——|— | — | ohdr. 3.16
,J: 3Wej[ dtz( 16h3) 16[dt] h“} G10)

4

By a similar procedure, we obtain

oV =2 [6"h" — (1-cosO W Ih, 3.17)
We
and
1 F, 1(dn
=& 3.18
! 24 5,ReWe" h“(dt) G19)

On substituting Egs. (3.16), (3.17), and (3.18) into Eq. (3.3), we require that the
coefficient of ok should be zero for the variational formula to be satisfied. After
arrangement, we obtain an equation to describe the temporal evolution of A:

h—BRW? + C(hh+D(R)=0, (3.19)

where the dot denotes the first derivative with respect to the time and the double dots the
second derivative. The coefficients are given by

-1
B(h)=-3——h" el (3.20)
32 16
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2 We?
Clh)==B(h s .
(n) 3 ()5;1@ (3.21)

and
D(r)=21B()6"*n"* - (1 - cos 2. (3.22)

The initial conditions, i.e., & and hoatt= 0, should be specified to solve Eq.
(3.19). Since the original droplet and a cylinder have a substantial difference in shape,
we seek initial conditions which ensure that the initial kinetic coenergy and potential
energy of the cylinder are the same as those of the original droplet. In addition, the
volume must be conserved as stated in Eq. (3.4). The equality of initial potential energies
of the original droplet and a cylinder yields the following relation:

1 (1-cosé6)
D,0) 4

h(0)= D,(0). (3.23)

Further arrangement of Eq. (3.23) is made by using Eq. (3.4):

(=cos6) o)L p )+ L 0. (3.24)
8 2 3

Therefore, Egs. (3.24) and (3.4) determine the initial diameter and height of the cylinder.

The initial % is given by the equality of the kinetic coenergies:

3 32| K(0)

212
h(o):—We‘/Z{Li[l—)'@] } : (3.25)

We note that the initial diameter and height of the cylinder depends solely on the contact
angle 6, and Figure 3.2 shows D,(0) and & versus 6.

Summarizing our problem formulation, the second order nonlinear differential
equation, Eq. (3.19), completely describes the dynamics of a liquid cylinder oscillating on
a solid surface. The initial value problem can be solved numerically with the initial
conditions specified by Eqgs. (3.23), (3.24), and (3.25).

41



3.2.2. Formulation of the problem using a truncated sphere model

We briefly present Bechtel et al.’s truncated sphere model in this section with the
estimation of the frictional term modified. The geometry of a truncated sphere is shown
in Figure 3.3. They assumed the same velocity profiles as we did in the cylinder model
above, and the equation for the temporal evolution of 4 is given by

24— C(m* + DR+ E(R)=0, | (3.26)

where the coefficients are given by

M@l(13 5 11, 1
Ah)= W+ h"+—h" |, 2
) [M(h)] (180 144 72 G.27)
M(h):%(2h+h4), (3.28)
4 -2 3 4\
c)=[13  1n w2 Y1 20\
36 72 723 3 |3 6
5 2 -1 3
P /0N U - (3.29)
9 72 36 |3 3
4 32 4\3
. 2h2 ﬁ+_;_l__ — l+& . _]:l_.|..i.l___
376 (3 3 36
D(R)=VIS(* —2h+ 1) L+28° (o, n ) (3.30)
3 3 3.6/ '
and
E(n)=2l4n-n2 - sT@T +17)| (3.31)

The parameters ST and VIS are given, in the present nondimensionalization, by

ST =—cos6 (3.32)
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and

12
vis = £ We
12 Re

) (3.33)

where C is related to the boundary layer thickness of an oscillating flow with the period
¢ and Re denotes the Reynolds number defined as Re=pU*D*/u’; p* being the
viscosity. We modify Bechtel et al.’s model to include the dissipation factor, F), in the
estimation. Thus, C is given by

F
C==-%, (3.34)
Oy
where ¢, is given by Eq. (3.11). The base diameter is related to & by
1 12 :
D, = 2[-3- (' —n? )] : (3.35)

Since the initial droplet shape assumed by this model accurately represents the real
spherical shape, the initial conditions are obtained straightforwardly. The initial height is
set equal to the original diameter of the droplet and the initial velocity is set equal to the
velocity of the droplet prior to collision. After nondimensionalization, we write

n0)=1, (3.36)
and
h(0)=-We"?. (3.37)

However, we note that while the exact value of the initial kinetic coenergy is
mp* DU /12, its value given by this model is 137p"D*U** /120 due to the assumed

velocity profile.
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3.3. Description of the experimental apparatus

The experimental apparatus is illustrated in Figure 3.4. It consists of a pipette which
gently ejects a liquid droplet, a flat target on which the droplet falls, a high-speed video
system, and a stroboscope which is synchronized with the video system. As the
experimental liquids, deionized water, ink, and silicone oil (Dow Corning 704 diffusion
pump oil) are used. Table 3.1 shows the physical properties of the liquids. To examine
various collision conditions, the velocity prior to impact is varied by changing the
distance between the pipette and the target. In addition, two different sizes of pipettes are
used to vary the original droplet diameter. Acrylic and silicone oxide (SiO;) are used as
the target surfaces. The equilibrium contact angles between the liquids and the surfaces
are measured to evaluate the wetting characteristics The measurement procedure and the
values are presented in Appendix E.

A high speed video system (Kodak Ektapro EM, Model 1012) records the
spreading and subsequent oscillation of a droplet on a solid surface at a rate of 1000
frames per second. An image stored in the system consists of 192 X 239 pixels. The
illumination is provided by a stroboscope, which is synchronized with the camera; thus,
very sharp images are captured. The images stored in the digital memory are downloaded
onto a video tape using a S-VHS video tape recorder, and analyzed by an image analysis
software which is capable of measuring the dimensions of objects by the number of
pixels. An object of a known size (8 mm in diameter) is recorded by the same video
setup and used for calibration. In addition, to obtain the highly accurate conditions of the
droplet impact, the weight of the droplet is measured during each experiment. The
diameter deduced by the weight-measurement method is compared with that obtained by
the image calibration. The values are in very close agreement in all cases, with less than
2% discrepancy. Using the image analysis software, we measure the base diameter of the
droplet at each frame to determine the temporal evolution of droplet oscillations.

3.4. Experimental and modeling results

In this section, we present experimental observations on the oscillations of different
liquid droplets on different target surfaces. In addition, we compare our measurement
results with the predictions of the models discussed above. Figure 3.5 shows the
dynamics of a water droplet colliding with an acrylic surface. Two very different kinds
of dynamic impact behavior are shown in the figure. The oscillating droplet of Figure 3.5
(b) exhibits a much smaller base diameter and thus, higher centerline elevation than that
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of (a). The droplet motion after the first oscillation period, i.e., after the first recoiling is
completed, is much more vigorous in (b) than (a), as well. It is well known that high
impact inertia associated with high Weber number and Reynolds number results in a
greater spread factor . The spread factor is defined as the ratio of the maximum base
diameter during spreading to the original droplet diameter: f =D, . / D". A high
Weber number also induces an unstable spreading front as observed by other researchers
(Allen 1975, Thoroddsen and Sakakibara 1998). In addition, our figures show that high
impact inertia, i.e., high We and Re, results in vigorous post-impact oscillations relative
to those generated by low inertia impact.

The temporal evolution of the base diameter of the oscillating droplet was
measured and the results are shown in Figure 3.6. The vigorous oscillations of the
droplet with high impact inertia are clearly observed as well as the increased spread factor
in the initial stages of the spreading. Next, we compare the predictions of the models
with the experimental data, in Figure 3.7. We present the results of two different models,
the cylinder model and the truncated sphere model. Dissipation factors are empirically
determined to best fit the experimental data in general. In the low impact inertia case as
shown in Figure 3.7 (a), both the cylinder model and the truncated sphere model show
qualitatively good agreement with the experimental measurements. Figure 3.7 (b) shows
that the cylinder model closely predicts the experimental measurements. However, the
truncated sphere model deviates significantly from the experimental data. Figure 3.7 (c),
the high impact inertia case, also shows that the cylinder model predicts the experimental
results well.

In general, we observe that the cylinder model better predicts the experiments
than the truncated sphere model. This is explained by investigating the images in Figure
3.5, which reveals that the recoiling droplet resembles a cylinder more closely than a
truncated sphere. Nevertheless, we note that the truncated sphere model succeeds in
predicting the initial spreading stage before the droplet reaches the maximum base
diameter in all the cases. This is because the truncated sphere represents the shape of the
collapsing droplet in the initial stages with sufficient accuracy.

Next, we examine the effect of the target solids on the droplet dynamics. Figures
3.8 (a) and (b) compare the base diameters of water and ink droplets, respectively, on
different target surfaces, acrylic and silicon oxide. We note that water and ink commonly
wet the silicon oxide surface better than the acrylic surface. Under similar impact
conditions, the base diameters in the initial spreading stage are essentially alike.
However, in the recoiling stage, the droplet deposited onto the acrylic (poor wetting
surface) retracts its base diameter faster than the droplet on the silicon oxide (good
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wetting surface). We use the cylinder model to simulate the dynamics of the water
droplets and the truncated sphere model for the ink droplets. The images in Figure 3.9
confirm the validity of the truncated sphere model rather than the cylinder model, for ink
droplets. The agreement between the predictions and the experimental data is very strong
in each case. _

Figure 3.10 illustrates the dynamic behavior exhibited by droplets of different
liquids colliding with the same target surface. Although the Weber numbers of the
impacting droplets are similar, the variation in the liquid properties causes a significant
difference in the Reynolds number and the contact angle. We observe that the decrease in
the Reynolds number reduces the spread factor in both Figure 3.10 (a) and (b).
Furthermore, the recoiling is less pronounced when wetting is improved (see the
equilibrium contact angles in Appendix E). In all cases, the models predict the
experimental results very closely. Images of a silicone oil droplet colliding with an
acrylic surface are shown in Figure 3.11. After the silicone oil droplet recoils to form a
relatively tall truncated sphere, it spreads to a very thin film since its equilibrium contact
angle with the acrylic is very small.

Having investigated the effects of impact conditions on the post-impact
oscillations, we examine the individual effect of impact conditions such as the Weber
number, the Reynolds number, and the contact angle on the droplet dynamics, through
theoretical modeling. Figures 3.12 (a) and (b) show the effects of the Weber number and
the Reynolds number, respectively, on the temporal evolution of the base diameter. These
graphs use the contact angle between a water droplet and acrylic surface. We use the
cylinder model which has been proven to best fit the experimental data for water droplets
on acrylic. Although a higher Weber number and a higher Reynolds number both
increase the spread factor, the recoiling processes show different features. With the same
Reynolds number, droplets with a low Weber number recoil faster and require less time
to return to the equilibrium base diameter (Figure 3.12 (a)). On the other hand, when the
Weber number remains constant, droplets with a higher Reynolds number recoil faster
than those with low Reynolds number (Figure 3.12 (b)). Figure 3.12 (a) is explained as
follows. A low Weber number implies that the relative magnitude of the surface energy
to the initial impact energy is greater than high Weber number, and thus, this contributes
to the faster recoiling which is a surface-energy dominated phenomenon. Furthermore,
the increase in the degree of spreading due to the high Weber number, causes more
viscous dissipation even at the same Reynolds number. This is because as the base area
increases, more friction is experienced by the droplet on the target surface. The events
depicted in Figure 3.12 (b) are explained as follows. Droplets with a high Reynolds
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number experience less viscous dissipation. Therefore, droplets with higher Reynolds
numbers recoil faster when the relative magnitude of the surface energy to the initial
impact energy is the same. |

The effect of contact angle on droplet oscillations is illustrated in Figure 3.13.
We show the temporal evolution of the base diameter dependent upon the contact angle
while keeping the Weber number and Reynolds number constant. As the contact angle
decreases, the spread factor increases owing to the improved wetting. The recoiling
process is fairly sensitive to the contact angle so that the droplets with higher contact
angle (poor wetting) retract much faster than those with lower contact angle.

3.5. Discussions and conclusions

We have investigated the spreading and subsequent oscillations of various liquid droplets
upon collision with different solid surfaces. In our experiments, sequential images of the
impacting droplets are captured by a high speed video system. We analyze the images to
obtain the temporal evolution of the base diameter of the droplet. To understand the
physical phenomena, we develop a model based on the variational principle, assuming the
droplet shape to be cylindrical. We also modify an existing variational model which
assumes the droplet to be a truncated sphere.

Our experiments show that droplets with high impact inertia, associated with high
We and Re, oscillate more vigorously upon collision with the solid surface. The
oscillation is greatly affected by the wetting between the liquid droplet and the solid
surface. Good wetting weakens and slows down the recoiling process. Moreover,
experiments using droplets of different liquids and the same target solid show the strong
effects of liquid properties and wetting behavior on the oscillation phenomena. Modeling
results are in good agreement with the experimental data, demonstrating the capability of
our models to predict the complicated phenomena of the droplet spreading and recoiling.
In addition, the individual effects of parameters such as We, Re, and the contact angle are
examined by using our model. The analysis shows that surface energy and viscous
dissipation play critical roles in determining droplet dynamics. It is also shown through
the model that the droplet dynamics are strongly affected by the contact angle, thus, poor
wetting greatly promotes the recoiling.

When the recoiling of the liquid droplet is vigorous, we may even observe a
necking of the liquid column moving upward, as shown in Figure 3.14. Similar
phenomena were observed by Wachters and Westerling (1966) and Chandra and
Avedisian (1991). Their observations were made on liquid drops impacting heated
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targets above the boiling temperature of the liquid. It is also interesting to note that
Chandra and Avedisian observed a very different recoiling process for different target
temperatures. According to their measurement, the contact angle strongly depends on the
target temperature. Therefore, the droplets hitting hot surfaces with a large contact angle
recoil very vigorously while the droplets do not exhibit such recoiling on cold surfaces
with small contact angle. This is consistent with our experimental observations.

In both the cylinder and the truncated sphere models, it is necessary to determine
the dissipation factor, F,. We have determined the values such that the modeling results
best fit the experimental data. Although the method is purely empirical, we find that the
values are constant for each liquid and for each model regardless of the target material.
Table 3.2 summarizes the values of F, used in our simulation.

Our models using the variational principle predict the experimental data
surprisingly well, considering their approximate nature. A significant computational
effort is saved by solving a single second-order, nonlinear differential equation instead of
solving the full Navier-Stokes equation with the moving boundary. Furthermore, our
study shows that by using the equilibrium contact angle, the experimental measurements
can be predicted very closely. However, we find room where the dynamic contact angles
may improve the prediction accuracy. The effect of the dynamic contact angles is well
pronounced especially in water droplets on acrylic. The measurements show that the base
diameter remains for a finite time around the maximum spread diameter while our
cylinder model predicts an immediate recoiling. In reality, the droplet spends more time
than the model predicts before the recoiling starts due to the contact angle hysteresis.
While the droplet reverses its direction of motion, the dynamic contact angle should
change from the advancing angle to the receding angle. That is, the recoiling is delayed
in reality since the contact line may stay at rest within a range of contact angles (contact

angle hysteresis).
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TABLE 3.1.

Physical properties of the liquids used in the experiments.

Liquid Density (kg / m’) | Surface tension (N/m) Viscosity
(kg/(m-s))
Water 996 0.0717 8.67x107*
Ink 1052 0.055 2.6x107°
Silicone oil 1064 0.0373 3.63x1072
TABLE 3.2. Dissipation factors.
Liquid Assumed shape in model Fy
Water Cylinder 15
Water Truncated sphere 53
Ink Truncated sphere 3.2
Silicone oil Truncated sphere 3.2
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FIGURE 3.2. Initial diameter and height of the cylinder versus contact angle as given by
Eq. (3.24) and (3.4).
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FIGURE 3.4.  Experimental apparatus for the high speed imaging of droplet oscillations.
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continued from the previous page

FIGURE 3.5. Images of a water droplet colliding with acrylic surface. (a) Original
droplet diameter = 3.6 mm, Impact velocity = 0.77 m/s, We = 30, Re =
3214. (b) Original droplet diameter = 3.5 mm, Impact velocity = 3.47
m/s, We = 582, Re = 13850.
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FIGURE 3.6.

Nondimensional base diameter

0 0.5 1 1.5 2 25 3 3.5 4
Nondimensional time

The temporal evolution of the base diameter of water droplets colliding
with acrylic surface. The impact conditions for triangles and squares are
the same as the Figure 3.5 (a) and (b), respectively. The impact
conditions for circles: Original droplet diameter = 3.7 mm, Impact
velocity = 1.63 m/s, We = 137, Re = 6950.
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FIGURE 3.7.  Predictions of the models and the experimental measurements for water
droplets on acrylic surface. Modeling results using the cylinder model
(solid line) and the truncated sphere model (broken line) are both
presented. (a) We = 30, Re = 3210. (b) We = 137, Re = 6950, (c) We =
207, Re = 7850.
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FIGURE 3.8.
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(b)

Effect of target surfaces on droplet dynamics. (a) Water droplet on acrylic
(triangles and solid line: We = 150, Re = 7142) and silicon oxide (circles
and broken line: We = 166, Re = 6938). (b) Ink droplet on acrylic
(triangles and solid line: We = 190, Re = 2296) and silicon oxide (circles
and broken line: We = 170, Re = 2127).
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FIGURE 3.9.  Images of an ink droplet colliding with acrylic surface. Original droplet
diameter = 3.2 mm, Impact velocity = 1.75 m/s, We = 190, Re = 2296.
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FIGURE 3.10.
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(a) Dynamic behavior of water (circles and solid line: We=207, Re =
7850), ink (squares and broken line: We =190, Re = 2296), and silicone
oil (diamonds and dotted line: We =166, Re = 118) droplets colliding with
the acrylic surface. (b) Dynamic behavior of water (circles and solid line:
We = 166, Re = 6938) and ink (squares and broken line: We = 170, Re =
2127) droplets colliding with the silicon oxide surface.
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FIGURE 3.11. Images of a silicone oil droplet colliding with acrylic surface. Original
droplet diameter = 2.8 mm, Impact velocity = 1.44 m/s, We = 166, Re = 118.
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FIGURE 3.12. Effect of (a) the Weber number and (b) the Reynolds number on the
dynamics of water droplets on the acrylic. The simulations are based on
the cylinder model. (a) Re is fixed at 3000. (b) We is fixed at 200.
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FIGURE 3.13. Effect of the contact angle on the droplet dynamics. The simulations are
based on the cylinder model. (a) We = 30 and Re = 3000. (b) We = 150
and Re = 7000.

64



FIGURE 3.14. Necking of a rising water column during a recoiling process. Original
droplet diameter = 2.9 mm, Impact velocity = 3.57 m/s, We = 516, Re =
11890.
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CHAPTER 4

BOUNCING OF MOLTEN METAL DROPLETS UPON
COLLISION WITH SOLID SURFACES

4.1. Introduction

The spreading behavior of molten droplets has been the subject of intense study recently.
Those studies mainly focus on the mechanism which arrests the motion of a droplet
spreading on a subcooled target. However, our current study investigates a rather strange
behavior of molten metal droplets. Under certain conditions, metal droplets do not stick
to target surfaces but rather, they bounce off. Spreading and the subsequent arrest by
solidification of molten droplets can occur only when bouncing is absent or prevented.
Understanding of the bouncing phenomenon is especially important in electronic
packaging where an individual solder droplet is deposited and its shape is critical for the
quality of the connection (Waldvogel and Poulikakos 1997). In addition, since bouncing
induces poor physical contact between the droplet and its target, the quality of spray-
formed deposits is greatly affected by the phenomenon as well (Matson et al. 1998).

In this chapter, we examine the basic physics of the bouncing of molten metal
droplets. We investigate the effects of both the dynamic and thermal conditions of the
droplet impact on the bouncing. High speed imaging reveals that bouncing is a very
violent form of droplet oscillation upon its collision with a solid surface. It is also
observed that the bouncing is prevented when the base of the droplet freezes faster than
recoiling can take place. Based on the observations, we develop a simple model leading
to a regime map which divides the bouncing and sticking regions based on thermal and

dynamic conditions.
4.2. Description of the experimental apparatus

Pure tin is used as the droplet material. We employ two different methods to investigate
the bouncing of molten tin droplets. The first method is illustrated in Figure 4.1. Tin is
melted in a stainless steel crucible. A thermocouple inserted in the crucible and a band
heater wrapped around the crucible are connected to a controller to maintain a constant
melt temperature. Molten material is ejected through an orifice, 100 ym in diameter, by
the introduction of high pressure nitrogen gas into the crucible. When initiating the
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ejection of molten material, a certain pressure difference needs to be established and a jet
is always formed instead of drops. After establishing the jet, we rapidly relieve the
pressure inside the crucible to produce molten material in the form of a droplet. The
diameter range of the droplets generated by such means, is from approximately 1.3 mm to
2.7 mm. The molten droplet falls onto a solid target surface located 0.43 m below the
orifice. As the target solids, pure copper, 6061 aluminum alloy, pure tin, silicon bronze,
304 stainless steel, and plane glass are used. All the surfaces are polished with a 1-pym
diamond paste except the glass surface. The surface is heated underneath by an
aluminum block in which a cartridge heater is inserted. The surface temperature is
measured by a miniature thermocouple tightly pressed onto the surface. The temperature
varies from room temperature to near the melting temperature of the droplet material
(232°C for pure tin). Droplets are generated and deposited in a chamber which is
constantly flushed with positive gauge pressure (34 kPa) of nitrogen gas to prevent
oxidation.

A high speed video system (Kodak Ektapro EM, Model 1012) records the
dynamic behavior of a droplet upon colliding with a subcooled surface at a rate of 1000
frames per second. An image stored in the system consists of 192 X 239 pixels. The
illumination is provided by a stroboscope which is synchronized with the camera, thus,
very sharp images are captured. The images stored in the digital memory are downloaded
onto a video tape using a S-VHS video tape recorder, and analyzed by an image analysis
software which is capable of measuring the dimensions of objects by the number of
pixels. An object of a known size (8 mm in diameter) is recorded by the same video
setup and used for calibration.

While the above method produces millimeter-sized droplets, another method is
used to generate droplets with a diameter on the order of 100 um. The second method
utilizes the uniform droplet spray process to produce microdroplets of a uniform size,
velocity, and temperature. The description of the droplet generation process is presented
elsewhere (Yim et al. 1996). Because the currently available imaging system is unable to
capture a phenomenon as fast as the impact of microdroplets, we observe the final shapes
of splats collected on solid surfaces. The surfaces of the same materials used above, are
heated in the same manner as described in the first method. The experiments are also
performed in a nitrogen-flushed atmosphere. The schematic of the method is illustrated
in Figure 4.2.
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4.3. Results and discussion

4.3.1. Experimental observations

We first compare images of droplets colliding with solid surfaces of different thermal
states, as shown in Figure 4.3. The fringe of the droplet in Figure 4.3 (a) is arrested due
to solidification at approximately 2.9 ms after impact while the rest of ‘molten volume
recoils back to the center until it completely freezes. On the other hand, the droplet in
Figure 4.3 (b) shows a very vigorous oscillation upon colliding with the target, due to the
absence of solidification. The strong oscillation brings the droplet back to its original
spherical shape while lifting it into the air. In other words, an image in Figure 4.3 (b), at
17.6 ms after impact, looks like an elastic solid ball bouncing off a solid wall. Figure 4.3
(c) shows a transitional phenomenon between (a) and (b): although the recoiling of the
droplet is more pronounced and lasts longer than (a), the droplet fails to disengage from
the surface due to freezing.

Next, we investigate the effect of droplet size on bouncing, which is well
pronounced in the impact of microdroplets. The small droplet of Figure 4.4 (a) bounces
and creates a highly irregular splat, while the large droplet of Figure 4.4 (b) forms a
regular splat shape due to freezing before bouncing. This result indicates that the role of
droplet size should be considered in addition to the thermal aspects to fully describe
bouncing behavior.

Our experimental study showed that droplets bounce upon collision with hot
surfaces of all target materials except tin. Figure 4.5 shows the very different behavior of
molten tin droplets upon colliding with a tin target. Although the dynamic and thermal
states of the droplet and the target satisfy the conditions for bouncing (see below), the
droplet does not bounce off the target of its own material. We note that any liquid wets a
solid of the same material. Therefore, this result implies that good wetting between the
droplet and the target surface prevents bouncing.

The experimental observations described so far provide the basic features of the
bouncing of molten metal droplets. The following section develops an approximate
model which quantifies criteria to determine whether the droplet bounces off or sticks to
the target surface.
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4.3.2. An approximate model

As observed above, molten tin droplets tend to bounce off solid surfaces when oscillating
violently upon colliding with nonwetting surfaces in the absence of solidification. If the
heat loss to the subcooled target surface is significant, solidification arrests the recoiling
front of the droplet, preventing it from bouncing. In addition, under certain thermal
conditions, only small droplets, which have a short oscillation time, bounce while the
larger ones do not. Based on these experimental observations, we assume that the
bouncing of molten droplets is dependent upon the relative magnitudes of the oscillation
and solidification times in nonwetting conditions.

The period of the free oscillation of a liquid drop is used as the oscillation time

scale. Therefore, our oscillation time, ¢ __, is written as

osc ?

3 1/2
tm=[pD] . 4.1

o

We note that the kinetic energy of the impacting droplet affects the degree of bouncing.
Schiaffino and Sonin (1997) observed a mercury droplet colliding with glass fully
disengage from the surface when the Weber number exceeds 1.2. The Weber number is
defined as We = pU 2R/ o, where p denotes the density, U the impact velocity, R the
radius, and o the surface tension of the droplet. When the Weber number is smaller than
1.2, the droplet does not completely detach from the surface. We assume that the tin
droplets have a similar Weber number to that of mercury for the disengagement
threshold. Since the Weber number of the droplets used in our experiments is well above
unity, the bouncing always occurs in the nonwetting condition when solidification is
absent.

The solidification time is estimated by considering one dimensional heat
conduction from a molten droplet to a subcooled target solid. Carslaw and Jaeger (1959)
offered the analytical solution to the problem in which two semi-infinite bodies of
different temperature are in perfect contact while one of them undergoes solidification.
The solution considers the superheat of the molten state and is able to obtain the exact
thermal profile inside a solidifying layer. We apply this model to obtain the approximate
solidification time of a droplet on a solid surface: the schematic of the problem is
illustrated in Figure 4.6. In the following, subscripts / and 2 denote target solid and
droplet, respectively, and superscripts s and I denote solid and liquid phase, respectively.
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The thickness of a solidifying layer, s(¢) is given by

s@)=2£(st)”, 4.2)

where ¢, is the thermal diffusivity of the solid state of the droplet, and ¢ the time. A
parameter £ is determined from the solution of the following:

ep-8) Ky TP =T expl&loyfel) g

s s mm =T . (4.3)
ertf(§) k5 o T, - T, erfcl/;‘(a]S o )'/ZJ 23 (Tz _Tint)
Furthermore, the interface temperature T, is obtained by using the following:
— szb; + T;iblerf (5) , (44)

int b; +berf (£)

where the effusivity, b, is defined as b= (kpc)'/ 2, in which k, p, and ¢ are the thermal
conductivity, density, and specific heat, respectively. The solidification time is obtained
by Eq. (4.2) after specifying the solidifying layer thickness, s. Since we are interested in
solidification which hinders motion at the droplet fringe before bouncing, our
characteristic solidification thickness is assumed to scale as the hydrodynamic boundary
layer thickness. The boundary layer thickness, d,, , is estimated by modeling the flow as

one on an oscillating wall with the period ¢, . (Batchelor, 1967):

SC

23 1/4
5,,:[‘”) ] : 4.5)

Therefore, our solidification time, ¢, , is written as

1
tsal = {W_%Ii . (46)

/

We predict that when the solidification time is longer than the oscillation time, the droplet
will bounce before its bottom is arrested. In the reverse case, the droplet will freeze at its
bottom and so fail to disengage from the target.
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4.3.3. Regime map of droplet bouncing

In this section, we provide experimental data on bouncing behavior obtained by varying
the dynamic and thermal conditions of droplets and target surfaces. The data are
interpreted using the model presented above. We calculate the oscillation and
solidification times for each experimental condition and predict whether the droplets will
bounce or stick. It is noted that our primary goal is to identify a trend which can be
explained in the frame of our model.

Squares and circles in Figure 4.7 show the data collected by using nonwetting
target surfaces. As predicted, when the oscillation time is short compared to the
solidification time (lower right portion of the graph), the droplets bounce off the target
(squares). On the other hand, the droplets stick to the target when the oscillation time is
long compared to the solidification time (circles). Seeking an approximate threshold
which determines the bounce of a droplet, we draw a line to separate the bouncing and
sticking regions.

Pentagrams in Figure 4.7 shows the experimental results obtained by depositing
molten tin droplets on solid tin targets. The droplets stick to the target even when the
solidification time is much greater than the threshold value. This phenomenon is caused
by the strong wetting between the droplet and the target surface. Based on this
observation, we find that the wetting or contact angle is an additional parameter which
affects the bouncing and sticking behavior of molten droplets. It appears that we can
construct a regime map for bouncing and sticking using three independent parameters: the
solidification time, the oscillation time, and the contact angle. However, we do not
exclude the possibility that the contact angle should play only a minor role such that there
is a threshold value under which strong wetting arrests the recoiling (as tin droplet on tin
target in our study) and over which bouncing is not greatly affected. Further research to
quantitatively assess the effects of wetting is strongly recommended.
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4.4. Conclusions

In this chapter, the fundamentals of the bouncing behavior of molten metal droplets were
studied using experiments and an approximate model. Two experimental methods were
adopted. One uses molten tin droplets of millimeter size generated by slow ejection of
molten material. Images of droplets bouncing or sticking upon colliding with various
target conditions are recorded using a high speed video system. The other method
utilizes the uniform droplet spray process to generate microdroplets and observation of
the final splat shapes as collected on various target conditions, is carried out.

We interpret the experimental data based on the following assumption: whether
the droplet will bounce or stick is determined by the competition between the relative
magnitudes of the oscillation and solidification times. We scale the oscillation time to
the oscillation period of a free liquid droplet. The solidification time is assumed to be the
time it takes for the hydrodynamic boundary layer to solidify. The heat transfer from the
droplet to the target is modeled by the heat conduction between two semi-infinite bodies,
one of which undergoes solidification.

An empirical regime map is constructed based on the two time scales discussed
above. We find a clear trend that the bouncing occurs when the solidification is slow
compared to the oscillation, while the sticking occurs when the solidification is fast. Our
experimental data suggest that there exist a threshold which determines whether the
droplet will bounce or stick. We also find that bouncing is prohibited by good wetting
between the droplet and the target. In other words, when the droplet and the target are of
the same material, no bouncing is observed even when the solidification is fairly slow
compared to the oscillation. This finding suggests the possible existence of a third
independent parameter, wetting, that affects the bouncing behavior.
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FIGURE 4.1.  Experimental apparatus for the high speed imaging of millimeter-sized
droplet impact.
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FIGURE 4.3.

(©)

(a) Images of molten tin droplets arrested by solidification upon
colliding with the aluminum 6061 surface. Original droplet diameter

1.57 mm, Impact velocity = 3.04 m/s, Droplet temperature at impact
= 261°C, Target temperature = 30°C. (b) Images of molten tin
droplets bouncing off the stainless steel 304 surface. Original droplet
diameter = 1.67 mm, Impact velocity = 3.08 m/s, Droplet temperature
at impact = 263°C, Target temperature = 195°C. (c) Images of molten
tin droplets colliding with the stainless steel 304 surface, showing the
transitional behavior. Original droplet diameter = 1.40 mm, Impact
velocity = 2.91 m/s, Droplet temperature at impact = 257°C, Target
temperature = 183°C.
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(a) (b)

FIGURE 4.4. Micro tin droplets deposited on stainless steel targets. (a) Original
droplet diameter = 200 pum. (b) Original droplet diameter = 500 um.

- L -

FIGURE 4.5.  Micro tin droplets deposited on solid tin targets. The original diameter
of both the droplets is 180 um. (a) Target temperature = 30°C.
(b) Target temperature = 150°C.
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FIGURE 4.6.  Geometry and temperature profile of the solidification model.
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FIGURE 4.7.  Regime map of bouncing and sticking for molten tin droplets. Squares
and circles denote bouncing and sticking, respectively, of tin droplets
on nonwetting surfaces. Pentagrams denote tin droplets deposited on
the solid tin, which always stick to the target.
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CHAPTER 5

CONCLUSIONS

This thesis has investigated the fundamental behavior of liquid and molten metal droplets
upon collision with solid surfaces. Specifically, we have examined the physics behind
splashing, post-impact oscillations, and bouncing. The studies on these phenomena
expand our knowledge of the spreading behavior of liquid and molten droplets. In
addition, the results obtained in this work contribute to the identification of the optimal
process conditions for the droplet-based manufacturing process.

We first examined the fundamental mechanism that induces the splashing of
liquid droplets. In chapter 2, we developed a linear perturbation theory of interface
instabilities of a radially-expanding, liquid sheet in cylindrical geometries. The theory
was applied to the expanding sheet under a spreading droplet to elucidate the origin of
splashing. The base flow solutions were estimated by using mass conservation. It was
shown that significant deceleration occurs in the early stages of spreading, which triggers
the Rayleigh-Taylor instability. The model supposes that the main factor inducing the
deceleration is not viscosity but the continuity of flow around the impact region. The
theory was able to predict the most rapidly growing mode of azimuthal disturbance and
its growth rate at each instant during spreading. It was found that the mode number of
maximum instability changes because of time-dependent coefficients in the amplitude
equation. We examined the effects of several parameters on the analysis results,
including the transient profile of an interface radius, i.e., the coefficient A, the
perturbation onset time ¢;, and the Weber number. It was shown that larger impact inertia
associated with a higher We, and thus presumably higher A, promotes interface instability
and prefers higher wave number for maximum instability.

Chapter 3 investigated the oscillations of liquid droplets upon collision with solid
surfaces. Our experiments showed that the droplets with high impact inertia, associated
with high We and Re, more vigorously oscillate upon collision with the solid surface.
The oscillation is greatly affected by the wetting between the liquid droplet and the solid
surface. Good wetting weakened and slowed down the recoiling process. Moreover,
experiments using droplets of different liquids and the same target solid showed the
strong effects of liquid properties and wetting behavior on the oscillation phenomenon.
We developed a model based on the variational principle, assuming the droplet shape as a
cylinder. We also made modifications to the already existing variational model which

81



assumed the droplet shape as a truncated sphere. Modeling results were in good
agreement with experimental data, showing the capability of our models to predict the
complicated phenomena of droplet spreading and recoiling. In addition, the individual
effects of parameters such as We, Re, and the contact angle, were examined. The
analysis showed that the relative magnitudes of surface energy and viscous dissipation
play critical roles in determining droplet dynamics. It was also shown that droplet
dynamics are strongly affected by the contact angle, e.g., poor wetting greatly promotes
recoiling. A significant computational effort was saved by solving a single second order,
nonlinear differential equation instead of solving the full Navier-Stokes equation with the
moving boundary. Furthermore, our current study showed that use of the equilibrium
contact angle yields a prediction sufficiently close to the experimental measurements.

Chapter 4 studied the bouncing of the molten metal droplets upon collision with
subcooled target surfaces. Experiments were performed with various conditions to obtain
a fundamental understanding of the bouncing and sticking of molten droplets. We
interpreted the experimental data based on the following assumption: whether the droplet
will bounce or stick is determined by the competition between the relative magnitudes of
the oscillation and solidification times. An empirical regime map was constructed based
on these two time scales. We found a clear trend that bouncing occurs when
solidification is slow compared to oscillation, while sticking is observed when the
solidification is fast. Our experimental data suggest that there exist a threshold which
determines whether a droplet will bounce or stick. We also found that the bouncing is
prohibited by good wetting between the droplet and target, which suggests that wetting
has a measurable effect on bouncing behavior.

Based on the results of this study summarized in Table 5.1, one can determine the
process conditions required to obtain the desired deposition. Table 5.1 describes the
effects of each nondimensional parameter on the dynamics of droplet spreading. For
example, in order to get nicely spread droplets, high degree of spreading but low degree
of splashing, oscillation, and bouncing are desired. Therefore, it is necessary to keep
t./t.,, small and ¢ high. However, the Weber and Reynolds numbers should be
optimized both to increase the spread factor and to minimize splashing and oscillation.
The analytical methods in Chapter 2 and 3 select the optimal We and Re.

In conclusion, the spreading behavior of molten metal droplets in the inviscid,
inertia-driven impact regime are best explained by examining the effects of factors such
as We, Re, and contact angle. To determine the optimal process conditions for the
droplet-based manufacturing processes, it is necessary to understand the physical
mechanisms that lead to abnormal impact behavior such as splashing and bouncing. This
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thesis offers physical models and experimental data to better control and prevent such
phenomena.

TABLE 5.1 Effects of nondimensional parameters on the dynamics of droplet
spreading. The trends in droplet spreading are described as the values of
the parameters increase.

Parameter Degree of Degree of Degree of Degree of
spreading splashing oscillation bouncing
We Increase Increase Increase Increase
Re Increase Increase Increase Increase
0 Increase Increase
ose /e Decrease Decrease
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APPENDICES

APPENDIX A. NONDIMENSIONAL QUANTITIES OF CHAPTER 2

The following gives the definitions of the nondimensional quantities used in Chapter 2.
Note that all the asterisked symbols denote dimensional quantities, whereas non-
asterisked symbols are the corresponding nondimensional quantities.

AR

m U*
f, =1
RD
m=2
R,U
r*
r=-—
RD
R= R*
RD
Ri = Ri* (i=0’ 1)
RD
v,
vl’ = *
U
v*
v0 =U0*
t*
t=—
1
AP*
APO = * 0*2
pU
p=—2
R, U
9, .
=t i=0,1
9, R0 ( )
K =K"R},
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APPENDIX B. FREQUENCY OF PERTURBATIONS TO A CONSTANT
RADIUS LIQUID SHEET

In Chandrasekhar (1961), the frequency for the mth mode azimuthal perturbation on a
columnar liquid jet @,, is given by, in the present nondimensionalization,

2 1 XI’ (x) 2 2
= 2mt) -1),
“n = RoWe 1(x) 2 -1) (B1)

where x =kR,, k denoting the wave number in z-direction, and I, is the modified Bessel
function of the first kind, of order m. We show that for a two dimensional liquid sheet
whose unperturbed radius R, is kept unity, Eq. (B1) is reduced to Eq. (26). Using the
following identities (Hildebrand 1976):

LE)=1,,6+21,E) ®2
_ o 2y
)= 2 Gy ®3)
we find
kL, (k) _
lim I (k) =m. (B4)

Therefore, in the limit k — 0, Eq. (B1) is identical to Eq. (26).
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APPENDIX C. EXPERIMENTAL EVIDENCE OF CHAPTER 2

Figure C.1 shows a splat of a pure tin droplet deposited on a 304 stainless steel surface
polished with the 1-um diamond paste. Figure C.1 (b) clearly shows the development of
fingers owing to the rapid freezing of the droplet bottom. It shows that the fingers, which
remain until the spreading stops, have in fact been generated immediately after the
impact. Therefore, one can conclude that the behavior of the spreading front near the
moment of impact is critical in understanding the splashing phenomenon.

(b)

FIGURE C.1.  Splashed tin splat. (a) Top of the splat. (b) Bottom of the splat. The
impact conditions: impact velocity = 3.5 m/s, initial droplet diameter =
2.6 mm, droplet temperature at impact = 315°C, target temperature =
30°C, We =203, and Re = 17100.
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APPENDIX D. NONDIMENSIONAL QUANTITIES OF CHAPTER 3

The following gives the definitions of the nondimensional quantities used in Chapter 3.
Note that all the asterisked symbols denote dimensional quantities, whereas non-
asterisked symbols are the corresponding nondimensional quantities.

D*
D, = Di
h= h*
D
r*
r=—
D
t—-————t*
(p*D*/o_* )1/2
—— T*
7p*D U™ 12
v,
v, =—%
Z U*
v,
vr = *
U
— V*
np* DU [12
Vol*
Vol = ————
” =76
W, = W;
I mp* DU 12
7=———T*
ﬂ*U*/D*
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APPENDIX E. MEASUREMENT OF EQUILIBRIUM CONTACT
ANGLES

We use the sessile drop method to measure the equilibrium contact angles between
various liquids and solids. In this method, the contact angle of a small droplet placed on
a solid surface is deduced by measuring the base diameter and the height of the sessile
drop. Assuming that the sessile droplet takes a shape of a spherical cap, as shown in
Figure E.1, we obtain the following relation between the contact angle & and the height
and the base diameter D, of the droplet:

9=sin"[ x flz))bz/4 ] when 6 <7/2. (E.1)
b

To take into account a slight deformation of the sessile droplet of a finite volume due to
gravity, measurements are made with droplets of decreasing volumes. The equilibrium
value is obtained by extrapolating the data to zero volume (Schiaffino 1996). The
volume of the droplet V, is given by

_i(l—cosé)(2+cos6)
4724 sinO(1+cosh)

D} when 6 <n/2. (E.2)

Table E.1 presents the measurement results.
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FIGURE E.1.  Geometry of a sessile droplet of the spherical cap shape.

TABLEE.1.

Equilibrium contact angles.

Liquid Solid Contact angle
Deionized water Acrylic 87.4°
Deionized water Silicon oxide 58.6°

Ink Acrylic 70.9°
Ink Silicon oxide 51.5°
Silicone oil Acrylic 6.2°
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