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by

Theodore Golfinopoulos

Submitted to the Department of Electrical Engineering and Computer Science
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requirements for the degree of
Doctor of Science

Abstract

The “Shoelace” antenna is a unique device built to induce short-wavelength fluctua-
tions in the edge plasma of the Alcator C-Mod tokamak, at a wave number and in the
frequency range associated with the Quasi-Coherent Mode (QCM). The QCM is a
continuous, drift-mode-like fluctuation, restricted to the low-field side of the tokamak
in a 3 mm region around the last closed flux surface, and spanning both open and
closed field lines. The study presented here is motivated by the fact that the QCM
plays a crucial role in regulating particle transport across the plasma boundary in the
Enhanced Dα (EDA) H-mode. It is this transport channel which sustains the EDA
H-mode, flushing impurities from the plasma without the appearance of bursting
Edge Localized Modes (ELMs). Because of the damage they cause to first-wall com-
ponents, large-amplitude ELMs do not extrapolate to a full-size, steady state fusion
reactor, and so it is of critical importance for the worldwide fusion research endeavor
to identify, understand, and exploit ELM-free mechanisms of impurity flushing. It is
in this context that the antenna’s mission is defined.

The Shoelace antenna is wound with field-aligned rungs spaced to produce a per-
pendicular wave number, k⊥ = 1.5 ± 0.1 cm−1, that precisely matches the QCM
spatial structure, while the power system, with custom matching network, provides
up to 2 kW of radio-frequency source power at any frequency in the band, 45 < f <
300 kHz. Initial experiments show that when the antenna is energized into L-mode
plasmas, it produces a steady response in poloidal magnetic field, only. However, after
transition to H-mode, the antenna drives both field and electron density fluctuations
that are aligned with, and guided by, the background equilibrium field, propagate
in the electron diamagnetic drift direction in the laboratory frame, have amplitude
comparable to that of the intrinsic QCM, and display a weakly-damped resonance
(γ/ω ∼ 5−10%). In EDA H-mode, the resonance is centered on the QCM frequency,
but in ELM-free H-mode, it persists in the same frequency range, even in the absence
of a QCM. This result is significant, offering the possibility that externally-driven
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modes might be used to enhance particle transport. However, additional measure-
ments are required before a definitive statement can be made regarding transport
resulting from the antenna-driven mode, as well as the driven mode’s relationship
with the QCM. This work has been scheduled for the 2014 Alcator C-Mod exper-
imental campaign as part of a broader exploration of the plasma response to the
Shoelace antenna.

Thesis Supervisor: Ronald R. Parker
Title: Professor

Thesis Supervisor: Brian LaBombard
Title: Senior Research Scientist

Thesis Supervisor: Luca Daniel
Title: Associate Professor
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to sift the light through their fingers
that it may spread gently over your sleep

and ample the cicadas
which you will feel no more
than you feel the pulse inside your wrist

but scarce the water
so that you hold it a god and understand the meaning of its voice

and the tree alone
no flock beneath it
so that you take it for a friend
and know its precious name

sparse the earth beneath your feet
so that you have no room to spread your roots
and keep reaching down in depth

and broad the sky above
so that you read the infinite on your own”

THIS WORLD
this small world the great!

———

On Living by Nazim Hikmet
translated by Randy Blasing and Mutlu Konuk
from “Poems of Nazim Hikmet.” Copyright © 1994, 2002 by Randy Blasing and Mutlu Konuk.

Reprinted with the permission of The Permissions Company, Inc., on behalf of Persea Books, Inc
(New York), www.perseabooks.com [3]

I.
Living is no laughing matter:

you must live with great seriousness
like a squirrel, for example–

I mean without looking for something beyond and above living,
I mean living must be your whole occupation.

Living is no laughing matter:
you must take it seriously,

so much so and to such a degree
that, for example, your hands tied behind your back,

your back to the wall,
or else in a laboratory
in your white coat and safety glasses,
you can die for people–
even for people whose faces you’ve never seen,
even though you know living
is the most real, most beautiful thing.

I mean, you must take living so seriously
that even at seventy, for example, you’ll plant olive trees–
and not for your children, either,
but because although you fear death you don’t believe it,
because living, I mean, weighs heavier.

II.
Let’s say we’re seriously ill, need surgery–
which is to say we might not get up

from the white table.
Even though it’s impossible not to feel sad

about going a little too soon,
we’ll still laugh at the jokes being told,
we’ll look out the window to see if it’s raining,
or still wait anxiously

for the latest newscast...
Let’s say we’re at the front–

for something worth fighting for, say,
There, in the first offensive, on that very day,

we might fall on our face, dead.
We’ll know this with a curious anger,

but we’ll still worry ourselves to death
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about the outcome of the war, which could last years.
Let’s say we’re in prison
and close to fifty,
and we have eighteen more years, say,

before the iron doors will open.
We’ll still live with the outside,
with its people and animals, struggle and wind–

I mean with the outside beyond the walls.
I mean, however and wherever we are,

we must live as if we will never die.

III.
This earth will grow cold,
a star among stars

and one of the smallest,
a gilded mote on blue velvet–

I mean this, our great earth.
This earth will grow cold one day,
not like a block of ice
or a dead cloud even
but like an empty walnut it will roll along

in pitch-black space...

You must grieve for this right now
–you have to feel the sorrow now–
for the world must be loved this much

if you’re going to say “I’ve lived”...
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Chapter 1

Introduction

...while the alternatives in achieving sustainability are technological, the social direc-

tions served by their use and the criteria for what is acceptable will always remain

social. Thus, sustainable energy must be concerned not only with energy and envi-

ronmental technologies, but also with the economic, social, and political factors that

impact human lifestyles.

–J. Tester et al., Sustainable Energy [1, p. 5-6]

At its most basic level, a tokamak is a fireplace (Fig. 1-1). Fuel goes in and

is “burned,” releasing energy. The energy must be safely and efficiently conducted

toward a useful purpose, while the containing structure must be sufficiently robust so

as not to be degraded by the harsh conditions created by this process.

Within the fireplace, we track the flow of both thermal and material exhaust. We

desire the escape of heat to be small - this helps keep the “fire” sufficiently hot to

continue burning. But the material exhaust - the particles exiting the fire - must

be sufficiently high such that impurities do not build up within the fire. Since the

processes that transport heat are typically coupled to those that transport particles,

it is a challenge to regulate the two flows independently, keeping one sufficiently low

and the other sufficiently high.

Clearly, the analogy of a domestic wood-burning fireplace to a tokamak fusion re-

actor is limited, as the specifics of the processes of energy transformation and material
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Figure 1-1: Fusion: the greatest invention since fire. Reproduced with permission
from the author, Z. Weinersmith [4].

and thermal transport are quite different (chemical versus fusion reaction, ∼ 1000°C

versus ∼100 000 000°C temperatures, a brick enclosure versus magnetic confinement,

etc.). Nonetheless, the image helps to motivate the discussion that follows.

And the motivating question for this discussion is this: can we mimic the naturally-

occurring process that regulates material flow such that we may control it indepen-

dently of the thermal flow? In answering this question, there are intermediate issues

that need also be addressed: which naturally-occurring processes should we try to

mimic (there are several)? What is the nature of these processes? (How) can we

mimic them? Are there other useful (or deleterious) results that come from this

process?

With regard to “how,” the nature of the fusion plasma restricts which engineering

solutions may be attempted. Within the fusion context, edge (outer plasma) tem-

peratures are measured in electronvolts (1 eV= kB/e ≈10 000°C), while core (inner

plasma) temperatures are quoted in thousands of eV (keV). Material structures that

will survive in a steady state must therefore be placed outside the plasma.

In this work, I describe the construction of a unique antenna - the “Shoelace”
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antenna - which sits just outside of the plasma, and induces filamentary surface

electric currents in the plasma matching, as closely as possible, those associated with

the transport-regulating fluctuation - the Quasi-Coherent Mode (QCM) - associated

with a favorable, steady-state operational regime called the Enhanced Dα H-mode.

This study represents the first-ever attempt to couple to this fluctuation directly using

an inductive structure.

In the remainder of this chapter, this study’s contribution is placed within the

wider context of regulating transport in high-performance, steady-state tokamak op-

erational scenarios (Section 1.1). The design goals of the antenna built to investigate

active transport control are then described (Section 1.2). And finally, the outline of

the thesis is presented (Section 1.3). The goal of this chapter is to provide a high-level

discussion of these topics. A detailed and thorough account of the material follows

in the subsequent chapters.

1.1 A Zoo of Modes: Confinement Regimes in

Tokamaks and their Associated Fluctuations

A plethora of “modes” exist in the terminology of tokamak physics. This situation

is exacerbated by the fact that the word serves a dual purpose, referring both to

operational modes and eigenmodes (particular varieties of fluctuations). As a re-

sult, we speak of, for example, EDA H-modes with a Quasi-Coherent Mode as being

quite distinct from (Edge-Localized Mode)y H-mode. This section points out which

modes are important for the present study. The reader may find the key to abbrevi-

ations included in Appendix A (Table A.2) helpful to keep track of the overlapping

nomenclature. Moreover, a capital M is sometimes used to refer to the names of

particular modes in the context of fluctuations, while a lower-case m is always used

when referring to confinement regimes.

Painting a simplified picture, we can think of tokamaks as having access to different

confinement regimes. These may be classified according their thermal conductivity,
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Table 1.1: Confinement Regimes: A Simplified Picture

High χ (low τE) Low χ (high τE)
High D (low τn) L-mode I-mode
Low D (high τn) (undesirable) H-mode

χ, and particle diffusivity, D; higher energy confinement corresponds to smaller χ,

and higher particle confinement to smaller D. We will also speak of particle confine-

ment time, τn, and energy confinement time, τE; these are the equilibration e-folding

times for density and stored energy. The names associated with the different relative

combinations of these quantities are shown in Table 1.1. Higher energy confinement is

“good” - it means that heat is retained such that the fusion reaction can be sustained1.

But higher particle confinement results in a build-up of impurities (typically heavy

ions coming from wall components). These impurities radiate energy more efficiently

than the lighter, typically hydrogenic main ion species, producing greater line and

continuum emission. The plasma is then rapidly cooled, resulting in a thermal insta-

bility that leads, in the best case, to transition to a lower confinement regime, and in

the worst case, to a sudden collapse of the plasma. As such, high particle confinement

is not sustainable without some additional impurity-flushing mechanism.

The Improved Energy Confinement Regime, or I-mode [5, 6], offers an example

of the desired combination of confinement properties. This operation scenario has

high energy confinement, but low particle confinement. Chronologically, I-mode is

the most recently-discovered regime, but it is a helpful example against which to

compare the other confinement regimes discussed below.

A state characterized by both low thermal and particle confinement is often as-

sociated with the L-mode regime (though a careful definition narrows the set of cir-

cumstances under which the label applies). Transport in L-mode is dominated by

turbulent fluctuations covering many spatial and temporal scales2. This offers stable

1It is also important for the heat exhaust to be distributed over a wide surface area to avoid
damaging plasma-facing components (PFCs) from excessive loading.

2More specifically, the turbulence results from nonlinear coupling between individual unstable
eigenmodes, collectively conspiring to cascade energy from larger-scale disturbances, which access
the free energy in gradients of equilibrium quantities, to smaller-scale disturbances, in which the
energy is dissipated.
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tokamak operation, but the lower energy confinement means that a commercial reac-

tor must be very large (and therefore expensive) – only then will it have enough heat

capacity (“thermal mass”) to hold on to the heat needed to sustain the fusion burn3.

Historically, the “low” confinement of L-mode was defined relative to ohmic con-

finement. “Ohmic,” in turn, refers to the operating scenario in which (non-fusion)

heating power to the plasma is supplied primarily by Joule heating resulting from

the current driven in the plasma. Since plasma collisionality, and hence resistivity,

decreases with increasing temperature, ohmic heating must be supplemented with

auxiliary heating power (typically via radio frequency (RF) waves or energetic neu-

tral beam injection (NBI)). Initial experiments showed that the use of auxiliary heat-

ing tended to degrade confinement times from ohmic levels. This is a frustrating

situation: it means that the more you add heat, the faster you lose it.

However, in 1982, members of the ASDEX team found that, above a sufficient

threshold heating power, the higher confinement times associated with ohmic opera-

tion could be recovered thanks to the appearance of a transport barrier [9] producing

a region of sharply increasing density and temperature (the density and temperature

“pedestals”) at the edge. This mode of operation was termed H-mode, for higher

confinement time relative to L-mode (by roughly a factor of two).

But energy and particle transport are typically correlated. This means that the

higher confinement associated with H-mode cannot be sustained, due to the build-up

of impurities and subsequent thermal collapse discussed above.

The build-up of particles, and the attendant evolution of sharp pressure gradi-

ents, can also lead to periodic, bursting instabilities. These are localized to the edge,

motivating the name, Edge Localized Modes (ELMs). ELMs play the role of a pres-

sure relief valve, relaxing the strong pressure gradients and expelling particles. This

flushes impurities from the plasma while still retaining relatively high energy con-

finement, allowing for continuous operation of small, pulsed experimental tokamaks.

3This requirement is expressed via a threshold value of the product of total pressure and energy
confinement time, pτE ≈ 8 atm·s [7], in order to achieve power balance (ignition), under which
condition the heat produced by the fusion reaction, itself, is sufficient to sustain the reaction. The
earliest treatment of the issue of power balance in a fusion reaction is due to Lawson [8], who specified
a constraint on the product, nτE .
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Figure 1-2: Tantalus, forced to endure an eternal punishment. [10].

Unfortunately, large, violent (“Type I”) ELMs, which are associated with the most

readily-accessible operating scenario on most of the world’s large tokamaks4, do not

scale to a steady-state, reactor-sized experiment, since the small fraction of total

plasma energy expelled by each ELM event is nonetheless large enough to destroy

material surfaces inside the tokamak in a fairly short amount of time.

The many difficulties encountered in the quest for improved tokamak performance

are demoralizing, and conjure images of an ever-receding finish line, with the objective

always just out of reach (see Figure 1-2).

Fortunately, a variety of steady-state operating scenarios have been discovered

which provide a gentler mechanism of impurity exhaust. Finding such scenarios

typically requires careful adjustment of plasma control parameters to produce the

impurity-flushing mechanism. The motivation of the present work derives from a

desire to be able to reproduce such a mechanism via an external actuator, thereby

providing the capability to control particle transport independently of energy transport,

and allowing plasma control parameters to be optimized for other ends. But a related

and intermediate goal is to improve the understanding of this flushing mechanism.

4Alcator C-Mod is an exception to this trend - Type I elements do not readily appear on this
high-field device.
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1.2 Mimicking Nature: Building an Antenna to

Reproduce and Exploit Favorable Edge Modes

A unifying observation across virtually all steady-state, high-confinement fusion plasma

regimes is the critical role played by edge fluctuations in regulating transport across

the plasma boundary (see, e.g., [11, Sec. 6],[12, Sec. 2.4.7]). This may not be

surprising given that fluctuations5 of one variety or another are known to dominate

transport in every tokamak regime of operation (see, e.g., [13, Chap. 2, Table 1]). It

is significant that the fluctuations are typically localized to the edge of the plasma,

near the boundary between open and closed field lines6 – the last closed flux surface

(LCFS). It is also significant that, in steady-state regimes, many of the relevant edge

fluctuations are coherent, narrow-band structures. This is distinct from the kinds of

turbulent, broadband instabilities which dominate transport in L-mode.

It was a desire to exploit this state of affairs that inspired the present work. If

the same coherent fluctuation responsible for flushing impurities from the plasma

could driven externally, it was conjectured, then perhaps particle transport could be

actively controlled through this channel.

To proceed along this line of inquiry, we need some concept of the nature of these

fluctuations. Many such fluctuations are field-aligned, propagating roughly perpen-

dicular to, and often with current filaments traveling along, the helical magnetic field

lines immersed in the plasma. Dramatic images of this are provided by the filamen-

tary structures found in ELMs7, as illustrated by Figure 1-3, which shows an image

of such a structure on the MAST spherical tokamak.

In designing an antenna to produce the desired effect on particle transport, we

imitated the naturally-occurring pattern of current filaments of a specific plasma

instability – the Quasi Coherent Mode (QCM), associated with the Enhanced Dα

(EDA) H-mode – by creating a field-aligned array of wires, producing image currents

5Here, the term, “fluctuation,” is meant in a broad sense as any oscillation in the plasma.
6“Closed field lines” refer to magnetic field lines which never intersect a material surface, as

compared with “open field lines,” which do.
7It should be noted that the target mode in this study - the Quasi Coherent Mode - is not the

same as the Edge Localized Mode.
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Figure 1-3: An ELM crash on the Mega Amp Spherical Tokamak in Culham, UK.
Used with permission from, and photo credit to, Culham Centre for Fusion Energy,
http://www.ccfe.ac.uk/, [14].

with the same spatial pattern and frequency as the intrinsic modes. The result – the

“Shoelace” antenna – is shown in Figure 1-4.

The idea of triggering confinement transitions by an external actuator is not new.

For example, feedback stabilization of broadband turbulence via electrostatic probes

was attempted on the TEXT and KT-5C tokamaks [15, 16, 17]. The CCT and

TEXTOR teams achieved an “electric H-mode” by polarizing the edge plasma with

electrostatic probes [18, 19]. Other related examples will be discussed in the next

chapter.

Moreover, while the specific design of the Shoelace antenna is unique, RF antennas

which match wave number and frequency to a plasma mode to maximize coupling

are also common in plasma physics.

The approach followed in the present work departs from other investigations in

several respects. Firstly, to the author’s knowledge, there have been no previous

attempts to couple directly8 and inductively to the edge modes that determine the

confinement regime9.

8i.e. at the same wave number and frequency
9The closest relevant work on a tokamak uses coils with constant currents to produce a “Resonant

Magnetic Perturbation” (RMP) to stochasticize (i.e. make field lines volume-filling instead of surface-
filling) the edge background field in order to suppress unacceptably-large Edge Localized Modes [20].
This approach uses an inductive actuator with a much different configuration, and couples indirectly
to a different kind of edge fluctuation.
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Figure 1-4: The Shoelace antenna inside the Alcator C-Mod tokamak vacuum vessel.

Secondly, previous work in the community concerned with coupling to transport-

driving edge modes has focused on suppressing or otherwise controlling extant fluctua-

tions, usually with the goal of reducing energy transport in the pursuit of ever-higher

tokamak performance. The goal of the present work is rather to increase particle

transport, so as to flush impurities, and thereby make sustainable, a regime with

otherwise good energy confinement.

Lastly, the Shoelace antenna faces special challenges in coupling inductively to

short-wavelength modes, which tend to produce a magnetic field perturbation that

falls off rapidly through the quasi-vacuum outside the main plasma, requiring the

exciting structure to be extremely close to the plasma. The solutions employed by

the Shoelace antenna for achieving this coupling while surviving the high heat flux

exiting the plasma, as well as for maximizing power throughput at arbitrary frequency

and phase into the low-resistance, inductive load presented by the antenna, are novel,

at least in the category of Active MHD antennas under which the Shoelace antenna

might be classified, and may prove useful tools for future investigations.
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The initial round of Shoelace antenna experiments showed that the antenna suc-

cessfully drives a field-aligned fluctuation at the QCM wave number and propagation

direction, with a weakly-damped (γ/ω ∼ 5− 10%) resonance at the QCM frequency,

and with amplitude comparable to the intrinsic fluctuation. These results are promis-

ing, but as yet, it is unknown whether the antenna is able to directly drive particle

transport. It is hoped that the answer to this question will be obtained from experi-

ments that are being planned concurrently with the writing of this thesis.

1.3 Outline of this Thesis

The remainder of this thesis is organized as follows: in Chapter 2, a more topical and

detailed context for the creation and operation of the Shoelace antenna is given, iden-

tifying the niche filled by the antenna within the fusion research community. Chapter

3 provides a simplified theoretical description of some of the linear instabilities that

give rise to the (typically non-linear) fluctuations associated with various confinement

regimes, with special attention payed to drift waves due to their relation to the Quasi

Coherent Mode. Chapter 4 discusses the design and construction of the Shoelace

antenna and its power system, while Chapter 5 describes the results obtained from

the initial campaign of experiments with the antenna, as well as their interpretation.

Finally, the work is summarized in Chapter 6, with the direction of future work in-

dicated. Detailed information regarding mathematical derivations, the experimental

setup, and other topics, together with a glossary of abbreviations, symbols, and terms,

are provided in the appendix.
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Chapter 2

Background

Dr. Peter Venkman: So what, I guess they just don’t make them like they used

too, huh?

Dr. Ray Stantz: No! Nobody ever made them like this! I mean, the architect had

to be a certified genius or an authentic wacko.

Dr. Peter Venkman: Ray, for a moment, pretend like I don’t know anything about

metallurgy, engineering, or physics and just tell me what the hell is going on.

Dr. Ray Stantz: You never studied.

–From the film, Ghostbusters, written by Harold Ramis and Dan Aykroyd, © Columbia Pictures

Industries, Inc. (1984)

The purpose of this chapter is to provide the context for the present work, de-

scribing how this study fits into developments recorded in the existing literature. It

introduces the Alcator C-Mod tokamak, summarizing the research program on this

device. It then surveys steady-state, high-performance tokamak confinement regimes,

emphasizing the edge fluctuations which define them, and focusing in particular on

the Enhanced Dα (EDA) H-mode and the associated Quasi-Coherent Mode (QCM).

A discussion of experimental and theoretical inquiry into the behavior and origin

of the QCM follows. Finally, a review is given of other relevant experiments, per-

formed both at C-Mod and elsewhere, which have attempted to couple actively to

low frequency modes.
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2.1 The Alcator C-Mod Tokamak

Alcator C-Mod is a compact, all-metal-wall device which, at a maximum of better

than 8 T on-axis, boasts the highest magnetic field of any current tokamak in the

world[21, 22]. Its operating parameters are summarized in Table 2.1. Figure 2-1

shows photographs of the interior of the vacuum vessel, as well as a CAD model of

the device and its superstructure.

The Alcator C-Mod research program has made significant contributions in the

fields of plasma-material interaction, RF heating and current drive, divertor design,

and edge physics, and its uniquely high field and density improve the robustness

of extrapolations from empirical scaling models based on cross-machine studies. C-

Mod has also discovered steady-state, ELM-free confinement regimes, EDA H-mode

(discussed in detail below) and I-mode (which may extrapolate favorably to a reactor-

scale device). A February, 2012, proposal had scheduled to terminate the Alcator

C-Mod program, and experiments ceased in October of that year. However, funding

to the project was restored in January, 2014, after a successful campaign to save the

device, and experiments recommenced shortly thereafter. Major upgrades planned for

the machine include an advanced heated outer divertor; a second field-aligned, four-

strap ICRF antenna; and a second lower-hybrid antenna. Pending funding decisions,

several or all of these new systems may be built and installed in 2015.

Additional information on the diagnostic systems available on Alcator C-Mod will

be provided in Chapter 4 in the discussion of the experimental design.

2.2 Coherent Edge Fluctuations in the Context of

Tokamak Performance

High performance tokamak confinement regimes are typically accompanied, and per-

haps defined, by an associated edge fluctuation which regulates transport through

the plasma boundary. These instabilities are often coherent. This is distinct from

low-confinement regimes, which are characterized by broadband turbulent edge fluc-
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Table 2.1: Alcator C-Mod by the Numbers

In operation since 1991
Magnetic Field (on-axis), BT 2-8.19 T
Plasma Current, Ip 0.24-2 MA
Pulse Flattop 1 s (typical)
Major Radius, R0 0.68 m (typical)
Minor Radius, a 0.22 m (typical)
Max. Electron Temp, Te ∼9 keV (∼ 100000000°C)
Max. Ion Temp, Ti ∼6 keV
Avg. Pressure, p0 < 1.8 atm
Plasma Density 0.2− 8× 1020 m−3

Aux. Heating Power . 6 MW (ICRF H minority, ∼ 80 MHz)
Cur. Drive Power . 1 MW (LH, 4.6 GHz)
Energy confinement time, τE 20-50 ms
Plasma Volume ∼1 m3

Wall material molybdenum (PFCs)
Magnet material copper (cryo. cooled)
Divertor Config. Vertical target on bottom; flat target on top

(a) (b) (c)

(d)

Figure 2-1: (a) Alcator C-Mod vacuum vessel. (b) A person (the author) in a clean-
room suit, sitting in the C-Mod vacuum vessel (to demonstrate scale). (c) CAD model
of Alcator C-Mod; plasma shape is orange torus filling interior space. (d) Unwrapped
view of the tokamak. (Credit: 2-1a, 2-1d Robert Mumgaard 2013; 2-1b Theodore
Golfinopoulos 2012.)
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tuations, predominantly drift-wave-like in character for a low- to moderate-β edge

plasma1, and interchange/ballooning-like for a moderate- to high-β edge [23, 24].

On the Alcator C-Mod tokamak, two instances of high-performance regimes sus-

tained by steady, coherent edge fluctuations are offered by the Enhanced Dα (EDA)

H-mode [25, 26] - which features a Quasi-Coherent Mode (QCM, f = 50− 150 kHz,

k⊥ = 1.5 cm−1) - and the Improved Energy Confinement Regime (I-Mode) [5, 6] - as-

sociated with the Weakly Coherent Mode (WCM, f = 100−500 kHz, k⊥ = 1.5 cm−1).

Examples from other devices include an improved L-mode on ASDEX-Upgrade [27],

as well as the Quiescent H-mode first observed on the DIII-D tokamak [28], the High

Recycling Steady (HRS) H-mode seen on the JFT-2M tokamak [29, 30], and the High-

Density H-mode (HDH) found on the W7-AS stellarator [31], the latter two sharing

some characteristics with C-Mod’s EDA H-mode. The Quiescent H-mode features the

Edge Harmonic Oscillation, while the HRS H-mode displays Low- and High-Frequency

quasi-coherent modes, and the HDH is accompanied by its own quasi-coherent mode.

Table 2.2 compiles a number of properties associated with each of these fluctua-

tions, as well as of the Type II ELMs. (See also Table 1 in Oyama et al. [11, Sec. 6],

which describes a subset of these modes.)

In the next section, experimental and theoretical investigations of the EDA H-

mode and QCM are described in greater detail, since the QCM was chosen as the

primary target fluctuation to which the Shoelace antenna was designed to couple.

The design parameters of the Shoelace antenna also overlap with the WCM of the

I-mode; interaction between the antenna and this mode is not the subject of this

thesis, but will be explored during the 2014 C-Mod campaign.

1where β ≡ 2µ0p/B
2 is the ratio of plasma to field pressure
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Table 2.2: Steady State Regimes and Associated Edge Fluctuations

Regime Edge
Fluct.

Freq.
[kHz]

Mode/Wave
Number

Meas.
Fluct.
Quanti-
ties

Phase
Vel.
Dir.
(Lab
Frame)

Experiment
[ref.]

Enhanced
Dα (EDA)

Quasi-
Coherent
Mode
(QCM)

50-150 k⊥ ∼ 1.5 cm−1

(k⊥ ≫ k‖)
B̃θ, ñe,
T̃e, Φ̃

EDD
C-Mod [32,
26, 33, 34, 35,
36, 37, 38, 39]

Improved
Energy
Confine-
ment
Regime
(I-mode)

Weakly
Coher-
ent Mode
(WCM)

100-500 k⊥ ∼ 1.5 − 2.1
cm−1 (k⊥ ≫ k‖)

B̃θ, ñe,
T̃e

EDD
C-Mod [5, 6,
40, 41]; pos-
sibly ASDEX-
Upgrade [27],
EAST [42]

High Re-
cycling
Steady
(HRS)
H-mode

Low freq.
(LF);
High freq.
(HF)

LF: 10-
100;
HF: 200-
450

LF: n = 1, m ∼
4 ± 1; HF: n ∼
7± 1

B̃θ, Ĩsat
(e.g. ñe,
T̃e)

JFT-2M
[29, 30, 43]

Type II
ELMy
H-mode

Small,
broadband
ELMs

30-50 n = 3 − 4
(AUG), n = 8
(JET), kθ ≈ 0.4
cm−1 (AUG)

B̃θ, ñe,
T̃e

IDD
[44] or
EDD
[45]

AUG, JET,
DIII-D, C-
Mod, MAST,
NSTX, etc.
[46, 44, 11, 45]

Quiescent
H-mode
(QH)

Edge Har-
monic
Oscillation
(EHO)

5-15
(funda-
mental)

multiharmonic,
n = 1 − 11,
with n = 2, 3
dominant on
DIII-D; DIII-D:
m = 5, AUG:
m = 6; FA

B̃θ, ñe,
T̃e

co-NBI DIII-D, AUG,
JET, JT-60U
[28, 47, 48, 49,
50]

High-
Density
H-mode
(HDH)

Quasi-
Coherent
Mode
(QCM)

50-150 rapid fall-off of
B̃θ ⇒ high-k⊥)

B̃θ W7-AS (stel-
larator) [31]
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2.3 The Enhanced Dα Regime and the Quasi Co-

herent Mode

The Enhanced Dα (EDA) H-mode [25, 51, 52, 26, 33, 35, 38, 32] is a steady-state, high-

confinement regime without ELMs that is readily produced on the Alcator C-Mod

tokamak[21] (R=0.68 m, Bt ≤ 8 T, n̄e . 4× 1020 m−3). It features a continuous edge

fluctuation, the Quasi-Coherent Mode (QCM), which is responsible for exhausting

particles through the plasma boundary, regulating the pedestal. The reduction in

particle confinement relative to ELM-free H-mode is accompanied by an increase in

Dα emission, motivating the name of the regime. However, the energy confinement

time is only slightly reduced, and is comparable to the level achieved in ELMy H-

mode.

Figure 2-2 shows representative spectrograms from the phase contrast imaging

(PCI) diagnostic sensitive to line-averaged electron density fluctuations, ˜̄ne, as well

as a Mirnov coil measuring B̃θ, from a discharge with an EDA H-mode. Several pa-

rameter traces are also shown. Early in the discharge, the confinement transitions

from L-mode to ELM-free H-mode, but the reduction in particle transport is accom-

panied by a build-up of impurities, indicated by a strongly-increasing radiated power

signal. This leads to a back-transition to L-Mode. Shortly afterward, the plasma

again transitions to H-mode, but now, a continuous fluctuation develops - the QCM

- visible in the PCI spectrogram as the narrow feature sweeping down in frequency

before modulating around a stable average value. The rise of both radiated power

and density is arrested, while the Dα light increases, indicating an increase in particle

transport that provides a defining characteristic of the EDA regime.

Several experimental characterizations of the QCM [33, 34, 53, 35, 37, 38, 54, 32],

including the most recent, have described a narrow edge mode having a stable fre-

quency 50 . f . 150 kHz (after a 30-60 ms transient phase with frequency sweeping

down from an onset between 150 < f0 < 250 kHz) and k⊥ ∼ 1.5 cm−1 at the midplane,

with lab-frame propagation in the electron diamagnetic drift direction, approximately

field-aligned with k⊥ ≫ k‖, absent from the high-field side, and with large amplitude
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Figure 2-2: Spectrograms of phase contrast imaging (PCI, ˜̄ne) and Mirnov coil (B̃θ)
fluctuation signals, together with line-averaged density (n̄e), Dα, and radiated power
(Prad) traces, from a discharge exhibiting both ELM-free and EDA H-modes. The
reduced particle confinement of the EDA H-mode relative to the prior ELM-free H-
mode is indicated both by the slower density rise and increased Dα light.
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Table 2.3: Comparison of QCM Characterizations

kθ (midplane) r − rLCFS ∆r (FWHM) ∆u/u (peak-
to-peak)

Phase
Vel.
Dir.
(Plasma
Frame)

Diagnostic [ref.]

1.5 [cm−1] 0± 1 [mm] 3 [mm] ∆ne

n̄e
∼30%,

∆Te

T̄e
∼ 40%,

e∆Φ

T̄e
∼ 40%,

B̃r/Bθ ∼
0.1%

EDD
MLP [32]

1.8 [cm−1] -7 to -10 [mm] 7.5 [mm] ∆ne

n̄e
= 35%

IDD
GPI [54, App. A]

1± 0.5 [mm] 1± 0.4 [mm] ∆ne

n̄e
= 60% Reflectometry [34,

P. 93, Sec. 5.3.2]

1 to 2 [cm−1] -1 to -2 [mm] < 9 [mm] ∆ne

n̄e
> 15% BES [37, p.102-6,

Sec. 5.2.2-3]
∼1.5-2 [cm−1]
∼ 0.04/ρs

PCI [53, p. 95,
p.97,100]

1.5 [cm−1] ∆ne

n̄e
= 30% Scanning Langmuir

probe & Mirnov
coil, PCI [33]

1.0 [cm−1] 2 peaks,
1± 2 mm and
−9± 2 mm

5 mm GPI [38]

fluctuations. Table 2.3 compares the varying characterizations of the QCM from dif-

ferent diagnostics. The mode frequency is omitted from the comparison since it is

essentially identical between diagnostics. In comparing the parameters in the table,

it should be noted that measurements from a particular diagnostic are often reported

for a small set of discharges which are typically designed to optimize the quality of

data from that diagnostic. As such, some of the spread in values is accounted for by

the variability of the QCM, itself, across these different plasma conditions.

The most important discrepancies between the different characterizations of the

QCM are the location of the mode layer, as well as its width. The spread in radial

locations is about 1 cm, about 5% of the plasma major radius. However, due to the

high degree of spatial inhomogeneity in the edge plasma, the inferred propagation

direction of the mode in the plasma frame2 can be inverted between differing char-

2that which is rotating at the E×B velocity
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acterizations of the mode. Since the propagation direction is a major discriminant

in determining the physical origins of the mode (in particular, drift wave (EDD) ver-

sus ballooning mode (stationary), this uncertainty has led to widely varying physical

interpretations of the mode.

The most recent and detailed measurements of the mode [32], performed with

a reciprocating Mirror Langmuir Probe (MLP) that scans through the mode layer,

have revealed the overall character of the QCM to be primarily that of an electron

drift wave that further displays both interchange and electromagnetic physics, spans

the last closed flux surface in a narrow (∼3 mm) layer, and shows strong fluctuation

amplitudes, with ∆ne/n̄e ∼30% and ∆Te/T̄e ∼ e∆Φ̃/Te ∼ 40%, and (extrapolating

to the mode layer from scanning Mirnov coil data) B̃r/Bθ ∼ 0.1%. Here, ∆u/ū

refers to the peak-to-peak amplitude of the fluctuating quantity normalized by the

time-average of the quantity. Moreover, measurements of the particle flux driven

by the QCM corroborate earlier investigations that ascribe to the QCM the role of

exhausting particles from the plasma in the EDA regime. The importance of drift

waves and drift-Alfvénic turbulence[55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 23, 24]

in controlling the C-Mod edge plasma state had already been revealed [67], but their

association with the QCM is only recently established.

The MLP technique is the most robust of the methods used to characterize the

QCM for the crucial reason that it provides a simultaneous, co-located measurement of

both the background profile and the fluctuation. This is critical because it decouples

the characterization of the mode from uncertainties in the magnetic reconstruction

of the plasma. Characterization with Mirnov coils, reflectometry, gas puff imaging

(GPI), beam emission spectroscopy (BES), and phase contrast imaging (PCI) rely

on flux-surface mapping to dedicated diagnostics measuring background profiles and

flows (e.g. charge exchange recombination spectroscopy (CXRS), Thomson scatter-

ing, etc.) in order to locate the mode and understand the plasma conditions in its

local environment. Biased uncertainties in these reconstructions of ∼ 5 mm – which

are typical – combined with the coarse radial resolution of the diagnostics just listed,

are sufficient to explain the differences in the location of the mode layer between the
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varying characterizations of the QCM. As such, in the present work, the data and

interpretation afforded by the MLP results are taken to be the most accurate.

Nonetheless, the MLP technique is limited by the depth to which the scanning

probe can be plunged into the plasma before melt damage becomes unacceptable

and/or too perturbative to the plasma. It is possible that there are additional impor-

tant dynamics further up the pedestal (see [38], which suggests the possibility of two

peaks in the fluctuation measurement, separated radially by ∼ 1 cm). Synchronizing

the measurements between these differing diagnostic methods is an active research

activity.

Experiments in 2012 showed that the lower hybrid antenna can have a profound

effect on the QCM and the edge, tending to reduce the QCM frequency and spectral

width [68]. This is likely through an effect on the radial electric field – this will be

explored experimentally during the 2014 C-Mod experimental campaign.

2.3.1 Toward Finding a Theory for the QCM

There have been several attempts at modeling the QCM, but as yet, none have sat-

isfactorily captured the experimentally observed behavior of the mode. The starting

point for these approaches is to use a fluid closure appropriate for a collisional plasma,

named for Braginskĭi after his authoritative exposition on the subject [69]. This ap-

proach is justified when the electron-ion collisional mean free path along a field-line,

λmfp, is shorter than the parallel wavelength (typically on the order of twice the

connection length, Lc ≈ πqR), and the collision frequency is faster than the mode

dynamics in question. For the edge parameters in the C-Mod discharges belonging

to this study, near the last-closed flux surface (LCFS), Te ∼ 50 − 100 eV⇒ vth,e =

4−6×106 m/s, and the electron-ion collision time is τei = 75−210×10−9 s. Then the

electron parallel mean free path is λmfp ≈ vth,eτei ≈ 0.3− 1.3 m, while the connection

length is Lc ≈ 6 − 11 m, and the frequency of the QCM is on the order of 100 kHz,

with (ωτei)
−1 ≈ 20. As such, the dynamics around the LCFS on the QCM time and

length scales can be considered collisional.

The free energy sources for the instabilities in such models are the inhomogeneities
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in the plasma pressure and the magnetic field. Instabilities driven primarily by the

former source include ideal drift waves; for the latter case, interchange modes, which

become “ballooning” modes in a toroidal geometry. By contrast, shear in background

(especially E ×B) flows and in the magnetic field tends to stabilize the modes, and

the usual notions of “good” and “bad” curvature apply3. Broadband turbulence

observed in the edge of magnetically-confined, toroidal plasmas is usually dominated

by fluctuations of one or both of the drift and interchange varieties, with E × B

advection giving rise to the nonlinear coupling in saturated turbulent states [65,

23, 24]. Additional complications arise from the treatment of high magnetic shear

(especially near X-points) [72, 73], strong E × B shear and diamagnetic flows [74]

[65, Chap. 9-11], heavy ion impurities [75], electromagnetic effects at higher β [23,

Sec. 5.IX], effects of electron and ion temperature [65, Chap. 12-13] [76, Chap. 14],

etc. The edge plasmas that give rise to the QCM tend to suffer from all of these

complexities.

The theory behind drift waves, ballooning modes, and other instabilities will be

summarized in the next chapter. The following outlines the results from the literature

pertinent to the QCM.

Initial work by Mazurenko et al. and Myra and D’Ippolito using the original BOUT

simulation package suggested that the resistive X-point mode is unstable in EDA H-

mode plasmas[35, 73]. The modeled instability matched the wave number of the QCM

and some aspects of access to the EDA regime, but could not recover the QCM plasma-

frame phase velocity, which was measured to be oriented in the electron diamagnetic

drift direction[32]. Unfortunately, the same is true of the description offered by Coppi

and Zhou [75], which sought to develop a unified analytical theory for the fluctuations

behind high-performance, steady-state tokamak confinement regimes. More recent

3“Good” curvature corresponds to a topology where the field bends away from the plasma (i.e.
the radius of curvature, which points toward the center of the arc’s circle, points away from the
plasma), such that a prominence in the plasma pushes against an increasingly strong field, which
tends to restore the initial state. “Bad” curvature refers to the opposite situation. In a tokamak,
the inner half (in major radius; also, called the “high field side”) tends to have good curvature, and
the outer half (low field side), bad curvature (see Figure 3-3). For an authoritative description of
these terms, the reader is directed to a text on ideal magnetohydrodynamics (ideal MHD), e.g. [70]
or [71].
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work using the flexible BOUT++ fluid simulation framework did isolate a mode traveling

in the electron diamagnetic drift direction in the lab frame, but the calculated phase

relationship between density and potential (∼ 90°) [77] was ballooning-mode-like, as

opposed to the smaller, drift-mode like difference measured in experiment (∼ 10°)

[32].

Having identified the stabilizing effects on ideal ballooning modes of ion dia-

magnetic drift and the strong radial localization of the pedestal, Rogers and Drake

[74] explored “surface” waves, which depend only on the pressure drop across the

pedestal. These arise when E × B and ion diamagnetic flows balance, and when

the normalized ion diamagnetic flow exceeds the ballooning growth rate; under these

conditions, ideal ballooning modes are stabilized. While the QCM was not explic-

itly examined by those authors, subsequent reports used the results of this study

to explain QCM phenomenology [34, Sec. 5.2.2], [35]. Under the plasma condi-

tions relevant to the present thesis, the surface wave has a poloidal wave number,

kθ ∼ 1/δR = (ρ2sR)
−1/3 ≈ 1.7 − 1.9 cm−1, and a frequency, ω ∼ cs/

√
δRR =

cs/(ρsR
2)1/3 ≪ ω∗i = k⊥ρ

2
iΩci/Lpi = ρ2iΩci/Lpi/(ρ

2
sR)

1/3 = 2π(100−130) kHz, match-

ing closely the QCM wave number and (lab-frame) frequency. However, the derivation

of this mode relies on the E×B and ion diamagnetic drifts precisely counterbalancing,

where the directions of these two drifts align at the location of the mode.

In addition to their effect on resistive ballooning modes, Myra et al. also examined

the effect of X-point geometry on electromagnetic drift waves [72], finding that the

X-point geometry tends to destabilize the electromagnetic drift wave. In numerical

work, they found an interesting coherent feature reminiscent of the QCM (see Fig.

3 of [72] and corresponding discussion), and explain the observed selectivity in the

toroidal mode number, n, by a competition between the destabilizing skin effect4

and the stabilizing polarization drift. However, in obtaining this result, the authors

neglected curvature-driven modes in order to focus on the drift wave physics, where it

would be preferable to understand how coherent modes develop when the drift wave

and interchange physics are combined, especially since measurements indicate that

4deriving from the electron inertia term in Ohm’s law - see Eq. 5.73, [65, Sec. 5.IX]
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both are important [32]. Indeed, as of the preparation of this thesis, this is the task

of current studies using the BOUT++ framework [77].

In short, despite over a decade of literature on the subject, modeling the QCM

remains an active area of research. All that is certain is that an adequate theoretical

description of the QCM demands a fairly complex model that incorporates the physics

of ballooning and drift waves under realistic geometries and profiles, and with realistic

E×B and diamagnetic flows.

2.4 External Coupling to Low-Frequency (ω ≪ Ωi)

Plasma Oscillations

The field of RF wave interactions with plasmas is rich and well-developed, spanning

far beyond the domain of magnetically-confined fusion plasma research[76]. Within

the fusion context, wave-launching structures have been developed to excite waves

across the full range of frequencies, from much less than the ion cyclotron frequency,

ω ≪ Ωi ∼ 40 MHz on the magnetic axis of Alcator C-Mod (for the main ion species),

to much greater than the electron cyclotron frequency, ω ≫ Ωe ∼ 150 GHz on C-Mod.

The goals of such structures include heating, diagnosing, and driving current in the

plasma.

The interest in the present context is in coupling to low-frequency plasma oscil-

lations, with ω ≪ Ωi. Perhaps the most fundamental plasma wave in this frequency

range is the shear Alfvén wave, and an extensive body of literature exists recording

attempts to interact with this mode. However, other low frequency modes have also

been explored from a wave coupling perspective. This section gives a brief overview

of the literature on this subject.

The approaches of the different coupling experiments are distinguished by the type

of excitation structure (typically an inductive coil or an electrostatic probe), whether

the modes are excited directly (i.e. the exciter is driven at the target mode frequency)

or parametrically (one or more exciters are driven at different, typically higher fre-
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quencies than the target mode, relying on nonlinear coupling), whether the target

modes are stable (common for “Active MHD” experiments) or unstable (common in

control experiments) in the background plasma, whether the excitation structure (for

example, a single, small dipole loop) couples to a broad set of wave numbers or is very

selective. Experiments may also be classified by their goals: whether the intention

is to perturb or gently diagnose the background plasma, whether the target mode is

to be promoted or suppressed. In the literature reported below, nearly all of these

permutations are explored.

The importance of edge fluctuations in controlling edge transport has prompted

a number of experiments attempting to interact with these modes. Uckan et al. em-

ployed electrostatic launching probes on the Texas Experimental Tokamak (TEXT),

together with a feedback system, and found that they were able to suppress or pro-

mote broadband edge turbulence depending on the phase delay in the feedback circuit

[15]. Similar results were found by Zhai et al. on the KT-5C tokamak after repro-

ducing the experimental setup from TEXT, with the additional observation that,

for a particular phase delay, a quasi-coherent mode accompanied the suppression of

broadband turbulence[16, 17]. Work on linear devices by Schröder et al. [78] and

Brandt et al. [79, 80] employed a set of eight probes arranged azimuthally around the

plasma column. They demonstrated open loop control resulting in both suppression

of broadband drift wave turbulence, with decreased turbulence-driven transport, and

nonlinear interaction with coherent drift waves. They also found that a mode- and

frequency-selective (spatiotemporal) excitation structure was essential to coupling to

drift waves, as was driving parallel currents with the same spatial structure as the

intrinsic mode. Interestingly, these works also showed that promoting a coherent

fluctuation with an external actuator could reduce the overall fluctuation energy of

both the background turbulent and driven modes.

In addition to probes, inductive structures have also been used to stimulate edge

activity, as in the study by Borg et al. on the TORTUS tokamak [81]. There, a

single-winding dipole antenna was employed with the goal of driving shear Alfvén

modes in the plasma edge. The antenna winding could be rotated arbitrarily with
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respect to the equilibrium magnetic field; it was found that the maximum response

was achieved when the winding was exactly aligned with the background field, and

also that the driven mode was strongly guided by the field lines. Brandt et al. also

complemented their electrostatic probe exciter with an inductive setup using eight

saddle coils, arranged azimuthally around, and external to, the plasma [80]. The

saddle coils reproduced the same open-loop control of drift waves as the electrostatic

probes.

There have also been many attempts to excite specific, stable plasma modes -

typically Alfvénic - in order to diagnose the background plasma in which they appear.

Such work falls under the category of Active MHD (AMHD) spectroscopy. Early

work in this area was performed on the TCA and PETULA tokamaks by Collins et

al. [82, 83]. The TCA team employed an unshielded “bar” antenna meant to drive

low-power discrete Alfvén waves (DAWs). This was driven with between 1 and 5 A of

current at variable frequency between 2.5 and 11 MHz (where Ωi/(2π) = 21 MHz on-

axis) with the help of a broadband, low-Q matching network. Frequency was either

scanned in a sawtooth ramp across the DAW band, mapping out the spectrum, or

pinned to a particular DAW using a phase-locked loop (PLL) in order to closely track

how varying plasma parameters affected the mode’s frequency.

The methodology of this approach was placed on firmer theoretical ground by

Goedbloed et al., who coined the term, Active MHD. Subsequently, extensive work

in this area was carried out at the Joint European Torus (JET) [84, 85, 86, 87, 88].

These experiments sought to couple to toroidal Alfvén eigenmodes (TAEs) both by

direct inductive and nonlinear parametric means. In the former case, multiple saddle

coils were arranged to selectively excite stable TAEs of low- and intermediate-range

toroidal mode numbers. These were energized at frequencies in the TAE band, with

the frequency scanned to reveal the poles in the spectrum. In the latter case, the

frequency of two ICRF heating antennas was modulated so that their beat frequency

scanned across the TAE band. The nonlinear coupling between the ICRF antennas,

driven at 10’s of MHz with megawatts of power, is ultimately limited by the Manley-

Rowe relations, which restrict the power that may be coupled to the driven mode by

47



the ratio of frequencies between it and the pump wave [89].

Similar AMHD experiments were performed on Alcator C-Mod[90, 91, 92, 93],

finding broadly comparable results. The bulk of these experiments utilized a pair of

dedicated coils, placed in the same toroidal plane and mirrored about the midplane.

However, parametric drive was also explored via amplitude modulating a single ICRF

antenna at the TAE frequency, achieving the same effect as the beat experiment on

JET – a unique approach, to the author’s knowledge. This work was not published,

but the experimental design may be reviewed from the relevant proposals [94, 95],

and results reviewed from the Alcator C-Mod Logbook [96].

Bootstrapping on this work, experiments on Alcator C-Mod in 2011 attempted to

use the ICRF amplitude modulation technique to couple to the QCM parametrically.

The proposal for this work is publicly available [97]. However, only five discharges

discharges on C-Mod were run under this experiment in 2011, and the project was

abandoned after a lack of positive results. Nonetheless, this was the first attempt to

actively couple to the QCM.

A different approach toward controlling edge fluctuations, and in particular, ELMs,

is to setup a static, resonant magnetic perturbation field in the edge of the plasma.

This results in field lines near the plasma edge being randomly scattered across a

volumetric region, rather than lying on a surface. This “stochasticization” of the

edge plasma has been shown to suppress large ELMs without significantly degrading

H-mode confinement [20]. In this way, the target fluctuation is affected by changing

the magnetic topology of the background plasma in which the mode appears, rather

than by directly or parametrically coupling to the mode.

For comparison, Figure 2-3 shows several of the excitation structures employed in

these experiments, alongside the new Shoelace antenna.

2.5 The Shoelace Antenna: Mission and Context

The Shoelace antenna project is a union of two areas of interest and expertise at

Alcator C-Mod: studying coherent, transport-inducing edge modes, as well as Active
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Figure 2-3: (a) Experimental setup of experiments by Borg et al. - reproduced from
Figure 5 from [81], doi:10.1088/0741-3335/29/6/001; (b) Antenna from Active MHD
experiment by Sears – reproduced from Figure 3.5.c of [92], photo credit to Jason
Sears. (c) Experimental setup of experiments by Brandt et al. - reproduced from
Figure 3 of [80], doi:10.1088/0741-3335/52/5/055009. (d) Photograph of Shoelace
antenna mounted in vessel. Photo credit B. LaBombard. Permission granted for all
figures by the authors. (a) and (c): © IOP Publishing. Reproduced by permission
of IOP Publishing. All rights reserved.
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MHD spectroscopy. The technical experience in the latter helped in the design and

construction of the Shoelace antenna, particularly in developing its new power system.

The former provided the motivation for the experiment: to better understand how

continuous, coherent edge fluctuations regulate transport across the edge plasma, and

to determine whether these fluctuations might be excited actively to achieve the same

control via an external actuator.

Alcator C-Mod provides two such edge fluctuations, the QCM and the WCM,

which happen to have similar wave numbers. The QCM was selected as a primary

target, partly because its narrower frequency spectrum appeared easier to mimic, and

partly because the “recipe” for low-power, ohmic EDA H-mode discharges – necessary

to reduce the gap between the plasma and antenna as much as possible (maximizing

coupling) without damaging the antenna – had already been developed. But the

antenna and power system were designed to couple to either fluctuation.

Since the formal inception of the Shoelace project5, new insights into the QCM

have been obtained thanks to the Mirror Langmuir Probe [32], which revealed the

mode’s drift-wave-like nature. This created a new and exciting link between the

Shoelace study and the work on linear devices by Schröder and Brandt [78, 79, 80],

which showed that it is possible to couple to drift waves inductively provided frequency

and selective wave number matching are respected, and that this coupling can affect

transport. However, the Shoelace antenna marks the first-ever attempt to interact

directly with a drift-like mode in a high-performance tokamak plasma, which displays

a richer set of physics, and which presents a more restrictive set of technical challenges.

Moreover, the goal of the project was to promote particle transport by a coherent

mode, rather than to reduce transport by broadband turbulence, reflecting the need to

obtain steady-state, high-performance tokamak confinement regimes without ELMs

in order to prepare the way for future, reactor-scale devices.

5on 11 June 2010
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Chapter 3

Theory

The analysis is based on simple assumptions; it is designed to illustrate the essential

features of the problem, and is neither rigorous nor complete. The assumptions made

are in all cases optimistic, so that the criteria established are certainly necessary, though

by no means sufficient, for the successful operation of a thermonuclear reactor.

–J.D. Lawson, in the paper introducing what would become known as the “Lawson criterion” [8]

3.1 Introduction

This chapter gives a brief introduction to the basic theory underlying drift waves,

interchange/ballooning modes, shear Alfvén waves, and electrostatic modes of homo-

geneous plasmas. The goal is to provide a sufficient level of detail to help the reader

interpret the experimental results obtained from operating the Shoelace antenna,

which is the subject of Chapter 5.

The models developed below suffer from a number of handicaps, including the

facts that they (a) are linearized versions of the equations, ignoring nonlinearities

which change the character and stability of the fluctuations, (b) apply to simplified

geometries, where it is well-known that X-points and other aspects of real tokamak

magnetic topologies may have a profound effect on instabilities [72, 73], (c) examine

different kinds of dynamics in isolation (e.g. exploring the effects of either resistivity or
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curvature, but not both), where the real plasma does not selectively neglect a term and

thereby “turn off” the associated physics, and (d) ignore kinetic effects outside of the

fluid scope. The models’ simplicity is useful for developing a conceptual understanding

of the underlying plasma dynamics. But we should not become too distracted by the

pursuit of applying a linearized label to a complex, nonlinear phenomenon, nor should

we expect any such label to completely capture the physics of an instability appearing

in a real tokamak edge. Realistic models of such instabilities are extremely complex,

requiring delicate numerical treatment [65, 98, 77].

Example calculations performed throughout the chapter use the parameters, Te =

50 eV, B = 2.27 T, n̄e = 1020 m−3, and Lp = |(∇pe)/pe| = 3.6 mm, roughly cor-

responding to conditions at the last-closed flux surface for the low-field, deuterium

plasma discharges typical of the Shoelace antenna experiments.

3.2 Drift Waves

3.2.1 An Overview

Drift waves can appear in magnetized plasmas wherever there are density or temper-

ature gradients, and, in their nonlinear turbulent steady-state, serve as a relaxation

mechanism of those gradients. They are destabilized by parallel currents arising from

collisional resistivity, or from collisionless mechanisms fulfilling the same role, while

magnetic and flow shear provide stabilization, as do ion-ion collisions. Since gradi-

ents are always present in real plasmas, and since drift waves are readily destabilized,

drift waves are omnipresent. They are sometimes called the “universal instability”

([56, 58],[62, p. 182]) owing to the fact that their linear growth rate is always positive

in certain idealized circumstances.

There is an extensive literature on drift waves. The earliest theoretical treatment,

to the author’s knowledge, dates to 1957, when Tserkovnikov [99] examined waves

with a pure-flute character, k‖ = 0, with phase velocities near the drift velocity.

Rosenbluth and Simon [59] applied powerful variational methods to the k‖=0 case,
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extending the understanding of mode stability in this limit. Moiseev and Sagdeev

offered a link between the Bohm diffusion coefficient and the collisionally-unstable

drift wave in 1963 [57]; this may be the first suggestion that drift waves provide

a mechanism for “anomalous” (i.e. greater than neoclassical) transport in plasma

confinement devices. Roberts and Taylor gave an early treatment of the gyroviscous

cancellation in 1962 [55], vital to the theoretical foundation of the drift wave model;

this was extended in a thorough treatment by Hinton and Horton in 1971 [63]. Though

the slab model with collisions indicated a drift wave which was always unstable [56,

58], in 1966 and 1967, Coppi et al. [60] and Kitao [61] demonstrated that magnetic

shear provides stabilization. After several other contributions, Krall provided an

excellent review in 1968 [62]; another review by Cap in 1976 also compiled many

early results on drift waves [100].

Subsequent theoretical investigations have probed nonlinear effects, showing that

a self-sustained, nonlinear, drift wave turbulent steady state can arise even in the

presence of damping from magnetic shear [101, 64]. The effects of local magnetic shear

[66] and X-points [73] have also been studied. A contemporary area of inquiry involves

modeling the transition between closed field lines in the “edge” region just inside the

last closed flux surface (LCFS) and open field lines1 outside the “scrape-off layer”

(SOL) region. To correctly model this problem, it is necessary to capture the interplay

between drift-wave turbulence (expected in the “edge” region) and interchange-like

resistive ballooning mode (RBM) turbulence (expected in the SOL) in setting cross-

field transport and profiles at the plasma boundary [65, 102, 103].

Recent textbooks by Bellan [104], Hazeltine and Meiss [105], and Stix [76] provide

descriptions of drift waves, while a very thorough and cogent treatise on drift waves,

and indeed the broad range of physics accessed by the two-fluid2 model under drift

ordering3, was prepared by Scott in 2001 [65].

1Open field lines are those which terminate on a material surface, typically a limiter or divertor
tile.

2ions and electrons
3which assumes k⊥ ≫ k‖, ρs/L⊥ ∼ v∗/cs ≪ 1, and βe = µ0pe/B

2 = c2s/v
2
A ≪ 1 [65, p. 3.2]; all

of these inequalities are satisfied by an order of magnitude or more in the edge plasmas used during
the Shoelace antenna experiments.
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Experimental studies have also demonstrated the importance of electromagnetic

drift turbulence in setting transport at the boundary [67].

Drift waves can be viewed as a branch of the acoustic wave system which develops

in the presence of gradients [65, p. 5.10-11]. Despite this, drift waves exist outside of

the magnetohydrodynamic (MHD) treatment. This is because an essential ingredient

to the drift wave description is the difference in physical response between electrons

– in particular, their Boltzmann-like response – and the much more massive ions.

Because the MHD model does not account for this two-fluid effect, it excludes drift

waves.

While drift waves arise in an electrostatic treatment, electromagnetic effects can be

important. A basic criterion for the importance of these effects is β = 2µ0p/B
2 > µ ≡

m/M ≈ 2.7× 10−4 [62, p. 155], though this neglects other relevant factors, including

collisionality [65, Chap. 5]. In these experiments, the edge plasma displays β ∼ µ.

Moreover, waves in uniform plasmas (MHD waves) are modified in the presence of

gradients. This suggests the importance of kinetic shear Alfvén effects, from which

we might expect that ω ∼ k‖vA, where vA is the Alfvén velocity ([62, p. 155], [65, p.

3.2]).

3.2.2 Fluid Model

At the most basic level, drift waves correspond to the perturbed E×B advection of

the density gradient. A near-Boltzmann electron response locks together Φ̃ and ñe

perturbations, causing the potential perturbation to follow the density perturbation,

creating a wave-like motion within the flux surface.

A cartoon description of the drift wave is offered by Figure 3-1. In the presence of

a potential perturbation, a perturbed E×B drift develops, with vortices surrounding

the peaks and troughs of Φ̃ (Figure 3-1a). When this is superimposed on the back-

ground density profile, it results in radial advection and a density perturbation, ñe

(Figure 3-1b) – the surfaces of constant pressure are pushed or pulled depending on

the direction of the perturbed E × B flow, as low-density plasma is carried inward

and high-density plasma, outward. This, in turn, produces a pressure perturbation,
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Figure 3-1: Cartoon summarizing the physics of a drift wave, with wave and
profile parameters roughly matching those of the QCM. (a) Plot of perturbation,
Φ̃ ∝ e−x

2/∆x2 cos (k⊥y), ∆x = 3 mm, k⊥ = 1.5 cm−1, x = R − RLCFS, with direction
of background field (out of the page) and E × B drift indicated. (b) E × B drift
superimposed on background density, ne ∝ tanh (−x/Lp) with Lp = 3.6 mm, and/or
pressure profile (taking Te to be a uniform constant). (c) Electron pressure profile
with perturbation superimposed, and E×B drift also reprised in the xy plane.

p̃e – in the present case, p̃e = ñeTe, with Te assumed a uniform constant for simplicity.

Now, the near-Boltzmann-like response of the electrons enforces that eΦ̃/Te ≈
p̃e/pe = ñe/ne. If the perturbations in Φ̃ and p̃e align in phase, then the tendency of

the E ×B flow is to push up the density just ahead of a peak in p̃e, and to depress

it behind. But this would tend to misalign p̃e with respect to Φ̃. The only solution

which locks these two perturbations together is a traveling one which moves at the

speed and in the direction of the electron diamagnetic drift velocity, v∗ (Figure 3-1c)

– the wave is constantly “falling forward,” like a child tipping forward and walking

in the same direction in order to maintain balance. The fact that the perturbation of

moves at v∗ is potentially confusing - it suggests that diamagnetic physics provide the

key to the drift wave. But we have seen that no diamagnetic behavior need be invoked

to arrive at a drift wave response, a point cleverly noted by Stix in his derivation of

the drift wave dispersion relation with the zero perpendicular temperature, T⊥ = 0,

effectively turning off plasma diamagnetism [76, Sec. 3.8].

Before discussing a model that leads to drift waves, it will be useful to catalog

several of the fluid drifts, which are readily retrieved by applying the drift operator

[65, p. 3.3], B
B
×, to the momentum equations, balancing the terms at equilibrium
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with an appropriate drift, u, through the Lorentz force, ∝ u × B. The momentum

equations are

mene
deve
dt

= −nee (E+ ve ×B)−∇pe −∇ · ¯̄Πe +mene ¯̄νe · (ui − ve) (3.1)

for the electrons, and

Mini
diui
dt

= Znie (E+ ui ×B)−∇pi −∇ · ¯̄Πi −mene ¯̄νe (ui − ve) , (3.2)

for the ions, where deve

dt
= ∂ve

∂t
+ve ·∇ve is the total derivative4 of the electron velocity

field, and likewise for diue

dt
. ¯̄ν is an effective collisionality tensor (which will later be

assumed diagonal, with differing parallel and perpendicular frequencies), such that

Rei = −Rie = mene ¯̄νe · (ui − ve) is the resistive friction force. The quantities, ¯̄Πi and

¯̄Πe, are the anisotropic parts of the ion and electron pressure tensors (or “momen-

tum flux”), ¯̄Πσ ≡ nσmσ〈wσwσ〉σ − pσ ¯̄I, for each species, σ, where pσ is the isotropic

pressure, wσ ≡ u − 〈u〉σ is the velocity relative to the bulk, mean flow, and 〈Q〉σ
represents the ensemble average of a quantity, Q, over the distribution function of

species, σ [70, p. 14]. The divergences of these quantities fold in dissipation due

to viscosity; they also lead to the cancellation of flux advected by the diamagnetic

drift velocity5. Strictly speaking, at least the diamagnetic component, ¯̄Π∗, of the mo-

mentum flux should be included to make this cancellation; it will be tacitly assumed

that this has been done, and terms involving ¯̄Π will suppressed in the analysis that

follows, which has the limited goal of presenting a basic description of drift waves.

Retaining these terms is important for more detailed analyses of the drift-ordered

system, particularly where sound waves are excited.

Let d
dt
→ 0; this corresponds to the equilibrium case, ∂

∂t
→ 0, where the back-

4This quantity is known by several other labels, including the material or convective derivatives;
it accounts for time variation in, for example, a volume fluid element which is advected (or convected
in the case of a vector quantity) along with the background flow of the fluid.

5the famous “diamagnetic cancellation” [65, p. 2.37 and p. 3.4]
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ground flow is negligible, as are nonlinear combinations of perturbed quantities. The

E×B drift is

vE = uE ≡
E×B

B2
. (3.3)

The diamagnetic drift comes about from the pressure gradient term. It is

v∗ =
∇pe ×B

neeB2
(3.4)

for the electrons and

u∗ =
B×∇pi
ZnieB2

(3.5)

for the ions.

The polarization drift is the first-order correction to the zeroth-order approxima-

tion, in the parameter, ω/Ωs, of neglecting the inertial contribution (the left-hand

side) of the momentum equations. It is

up =
B

B
× Mi

ZeB

dE
dt

(

E×B

B2
+

B×∇pi
niZeB2

)

=
1

Ωi

dE
dt

(

E⊥
B
− ∇⊥pi
niZeB

)

(3.6)

for the ions and

vp = −
B

B
× me

eB

dE
dt

(

E×B

B2
− B×∇pe

neeB2

)

= − 1

Ωe

dE
dt

(

E⊥
B

+
∇⊥pe
neeB

)

(3.7)

for the electrons, with |up|
|vp| ∼

Mi

me
= µ−1 ≈ 3646 for the main ion species in these

experiments, deuterium.

Henceforth, we will take Z = 1, which also applies to deuterium.

The parallel Ohm’s law is formed by subtracting the parallel component of Eq.

3.1 from µ times the parallel component of Eq. 3.2 and dividing through by nee:

1

ǫ0ω2
pe

∂J‖
∂t

= E‖ +
1

nee
∇‖pe − η‖J‖ (3.8)

57



where ∇‖ ≡ b̂ · ∇

The electron or ion continuity equations will also prove useful. They are,

∂ne
∂t

+∇ · (neve) = 0 (3.9)

and
∂ni
∂t

+∇ · (niui) = 0. (3.10)

We also approximate the plasma as isothermal6, with7

pe = neTe, (3.11)

and moreover, temperature is assumed constant8. The continuity equation, together

with the zeroth-order drifts (vE and v∗), is used to eliminate the fluctuating part of ne

from the parallel Ohm’s law. Within the electron continuity equation, the advection

of the density gradient by the perturbed E × B velocity, ṽE · ∇ne, deserves special

attention. Using the identity, A × B ·C = B · C ×A, and assuming an isothermal

plasma with uniform temperature and electrostatic perpendicular field, we have

ṽE · ∇ne = −
nee

Te
E · v∗ = −i

nee

Te
v∗k⊥φ̃ = −ineω∗

eφ̃

Te
. (3.12)

where ω∗ ≡ k⊥v∗, and v∗ is the component of v∗ that is perpendicular to the back-

ground field, but inside the equilibrium flux surface9.

The simplest drift wave dispersion relation follows immediately from the continuity

equation when only advection by the perturbed E×B flow is included. In this case,

making use of Eq. 3.12,

6This is appropriate when ω/(k‖vth,e) ≪ 1 [76, pp. 58-59, 62]. In the present circumstances,
ω/(k‖vth,e) ≈ 2fLc

√
µ/cs ≈ 0.6, which only marginally satisfies the inequality, and suggests Landau

damping need be included.
7It is common in the plasma physics literature to quote temperatures in units of energy, absorbing

the Boltzmann constant, kB , into T . This is done here.
8It should be noted that the temperature is not constant for the QCM, with ∆Te/Te ≈ 45%

(peak-to-peak). Accounting for a fluctuating temperature within a more complete drift-ordered
model is treated in [65, Chap. 13].

9Mathematically, we can write this as the ∇ne

|∇ne| × b̂ = ŷ-component.
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∂ñe
∂t

= −ṽE · ∇ne =
nee

Te
E · v∗, (3.13)

which, after Fourier decomposition and slight rearranging, is

ω
ñe
ne

= ω∗
eφ̃

Te
. (3.14)

Finally, taking ñe/ne = p̃e/pe when Te is constant, and applying the Boltzmann

response,

ω = ω∗ = k⊥ · v∗ . (3.15)

As discussed previously, this dispersion relation gives precisely the perpendicular

phase velocity, ω/k⊥ = v∗, which satisfies the two constraints that the potential

perturbation (1) always overlays in phase with the density perturbation, while (2)

still advecting the background density profile, thereby producing the correct density

perturbation at the next instant of time.

Note also that the dispersion relation is not quadratic; the wave propagates uni-

directionally.

Alternatively, the dispersion relation may be determined by treating the plasma as

a refractive medium, finding the b̂b̂· component of the susceptibility, ¯̄χ, and setting

it to zero.

In this isothermal case, and with Te constant, the electron diamagnetic drift ve-

locity may also be expressed as

v∗ = cs
ρs
Lp

(3.16)

where cs =
√

Te/Mi ≈ 50 km/s is the sound speed, and Lp =
∣

∣

∣

1
pe
∇pe

∣

∣

∣

−1

≈ 3.6 mm

is the pressure gradient length scale, using typical parameters at the LCFS in these

experiments. ρs ≡ cs
Ωi
≈ 0.4 mm is the drift wave dispersion length scale [65, p. 5.7],

which plays a similar role as the ion Larmor radius, but replaces the ion with the

electron temperature. Using these same typical parameter values, v∗ ≈ 6 km/s. With

the nominal QCM wave number, k⊥ ≈ 150 m−1, this gives ω∗/(2π) ≈ 150 kHz, which
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is near the observed plasma-frame frequency of the mode.

The dispersion relation in Eq. 3.15 neglects both ion and electron inertia. Ac-

counting for ion inertia to the next order requires including the polarization current,

discussed previously, which is generally proportional to ω/Ωi ≈ 6×10−3 (the electron

polarization current is proportional to ω/Ωe ≈ 2× 10−6, and may still be neglected).

The polarization current is important because it satisfies the quasineutrality con-

dition, encapsulated by

∇ · J = µ0
∂ρc
∂t
≈ 0, (3.17)

where ρc ≡ Zeni− ene is the charge density, and the middle equality follows from the

divergence of Ampère’s law (including Maxwell’s displacement current contribution).

This is a differential expression of Kirchoff’s current law, and states that charges

cannot accumulate over time in any location.

The parallel component of the current is carried almost entirely by electrons, which

move rapidly in response to the parallel electric field. But consider the case when there

is a parallel gradient in the electric field (k‖ 6= 0). This is the fundamental pathway

by which drift waves become unstable, as described below. Electron forcing then

becomes uneven along a field line, and a cross-field current is required to prevent the

accumulation of charge. The ion polarization drift is the most accessible mechanism

for this perpendicular current, due to the relatively large ion mass, and it discharges

any built-up charge.

Including the polarization current in the fluid model results in a correction to the

drift wave dispersion relation10,

ω =
k⊥v∗

1 + k2⊥ρ
2
s

. (3.18)

The dispersion hinted at in the name of ρs is now apparent.

In the present case, k2⊥ρ
2
s ≈ 5 × 10−3 ≪ 1, and so the correction to the simple

drift wave dispersion relation is slight.

10cf. Eq. 5.16 in [65]
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Unfortunately, the basic dispersion relation, alone, is not sufficient to discern one

mode from another, particularly when comparing interchange (ballooning) modes and

drift waves. This is so because the time scales for different instabilities may overlap,

because k‖ is difficult to measure, and because it is difficult to explore a wide enough

parameter range so that unambiguous trends between k and ω can be identified. As

such, other “diagnostics” are needed to illuminate the differences between the modes

[65, Chap. 11].

One such diagnostic is the phase difference between the density and potential [65,

Fig. 11.3, p. 259]. The parallel Ohm’s law illustrates this with slight modification,

η‖J‖ = ik‖
Te
e

(

−eΦ̃
Te

+
ñe
ne

)

. (3.19)

When the resistive term on the left-hand-side is small, as is often assumed in idealized

models, the phases of the fluctuating electrostatic potential, Φ̃, and the fluctuating

density, ñe, are locked to be close to one another, resulting in a near-Boltzmann

response. This is quite distinct from the case for interchange modes; we will see

below that the phase difference between Φ̃ and ñe for these modes is near π
2
radians.

For the QCM, Φ̃ was measured as lagging ñe by ∼ 16° [32]. This indication, as well as

the fact that the mode travels in the electron diamagnetic drift direction in the plasma

(co-rotating) frame, robustly identifies the dynamics of the QCM as predominantly

drift-wave-like.

The linear growth rate of the drift wave in this model is (see Eq. D.49 of Section

D.2 in the appendix)

γ = ǫ0ηs
c2s
L2
p

k2⊥
k2‖

k2⊥c
2
sω

2
pi

Ω4
i

= ηsω
2
piǫ0

k2⊥
k2‖

ω2
∗

Ω2
i





1

1− ω2∗
ω2
A



 (3.20)

where ηs = η‖ = 0.51 me

nee2τei
≈ 2 × 10−6 Ω · m is the Spitzer resistivity, which is the

same as the Braginskĭi parallel resistivity.

Using parameters from experiment applying to the QCM and Shoelace antenna,

γ/ω ≈ 6%. However, it is not the numerical value of the linear growth rate that is of
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interest, since we have excluded damping mechanisms – particularly flow shear and

magnetic shear – from the analysis, as well as the destabilizing contributions entering

from the nonlinear treatment of the problem11, which give rise to self-sustaining

turbulence. Rather, it is the qualitative information that is of value here.

The linear growth rate conveniently summarizes two important points. Firstly,

electron-ion collisions, through resistivity, destabilize the drift wave, with the growth

rate increasing linearly as the Spitzer (or parallel) resistivity. Secondly, while the

growth rate is stronger for smaller k‖, it is not defined for k‖ → 0; when k‖ → 0, the

mode is metastable, neither growing nor dissipating. This is generally true for the

simple drift wave model, although there are situations where purely fluted (k‖ → 0)

drift wave instabilities exist [59, 100].

The physical origin for this behavior is seen in the parallel Ohm’s law, Eq. 3.19.

When η‖ > 0, a nonzero phase difference must exist between eΦ̃/Te and p̃e/pe in order

to balance the resistive potential drop resulting from the parallel current. The result

is that the potential and density wavefronts are not aligned. This makes it possible

for outward E×B advection to be weighted to the location where density is increased,

while inward E×B advection is weighted to positions where the pressure perturbation

depletes the local density, as shown in Figure 3-2. The result is a net outward radial

transport of particles. Not only does this begin to describe a mechanism by which

fluctuations may drive the particle flux which sustains high-performance H-modes,

but it also demonstrates how the drift wave can access the free energy manifest in

the strong density gradient at the plasma edge. Coupling to this free energy source

ultimately leads to destabilization of the mode.

Collisionless processes, including Landau damping, can also fulfill the role of re-

sistivity in producing a non-zero phase difference between eΦ̃/Te and p̃e/pe [76, 104].

11the most important of which being the nonlinear E × B advection of the vorticity, vE ·
∇
(

∇⊥eΦ̃/Te
)

[65, Sec. 8.V]
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Figure 3-2: Conceptual illustration of (a) potential, Φ̃, and (b) density, ñe, pertur-
bations. The contours in both plots correspond to level sets of Φ̃. When a phase
difference develops such that ñe leads Φ̃ slightly, the outward radial E×B advection
is weighted on the positive ñe disturbance, and the inward on the negative, resulting
in net outward flow, down the density gradient.

3.3 Ballooning Modes

Ballooning modes are the toroidal version of the interchange mode. Their name

derives from their shape; they are localized to the “bad-curvature” (low-field) side of

the plasma, making them appear to “balloon” outward.

Interchange modes are understood conceptually from the linear z-pinch picture

[70, pp. 267-269]. In this configuration, the mode is also known as the “sausage” in-

stability. The cylindrical plasma column has purely axial current, and the magnetic

field circulates azimuthally around the axis of the column. Impose a perturbation on

the plasma of the form, cos (k⊥z), where k⊥ = 2πn/L is the wave number perpendic-

ular to the purely azimuthal (θ̂-oriented) field. In this case, two bundles of field-lines

(flux tubes) change places. One links vacuum. The other, adjacent tube links plasma.

The plasma flux tube shifts to form the volume where the column bulges. The vacuum

flux tube comprises the void left by the shifted plasma flux tube. The field strength

follows |Bθ| ∝ 1/r. Where the plasma column is constricted, the field increases, and

the magnetic pressure increases as the square of the field. Meanwhile, the plasma

has now been displaced axially to a region of expanded radius; there, the magnetic
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pressure is reduced. The tension in the field lines offers some restoring force against

the bulge in the plasma, but also promotes the constriction in the necked region. The

overall competition is between unfavorable curvature and compression of the plasma,

with a relatively shallow threshold to instability.

The toroidal geometry of the tokamak modifies this situation. The most unstable

modes are still approximately field-aligned (fluted along magnetic field lines, like an

architectural column), with k⊥ ≫ k‖. However, curvature changes from being “good”

to “bad” along a field line due to its helical trajectory (i.e. due to the rotational

transform). In a tokamak, the field lines are bent around the axis of symmetry,

with Bφ ≫ Bθ, such that the radius of curvature points primarily outward with the

major radial coordinate, R. By contrast, the plasma pressure points outward along

the minor radial coordinate, r. On the inside (high-field) half of the plasma, R̂ and

r̂ are opposite one another - this is the “good-curvature” side of the plasma. On

the outer half of the cross-section (the “low-field” side), R̂ and r̂ align. This is the

“bad-curvature” side of the plasma.

One way to to elucidate “good” from “bad” curvature is to realize that |B| falls
primarily as 1/R in the tokamak case. This is seen by enforcing Ampère’s law in

cylindrical geometry with axisymmetry, noting that the vertical component of J will

be small. On the inside half of the plasma, the plasma pressure pushes in the direction

of increasing field strength, so that a bulge outward faces increasing magnetic pressure,

tending to restore equilibrium. However, on the outside half, the plasma pressure

pushes in the direction of weakening field strength, such that a bulge will encounter a

decreasing restoring force, tending toward instability. The rotational transform means

that the same field line will wrap through both good and bad curvature regions. The

flux-surface-averaged curvature tends to be good, with field-line-bending also having

a stabilizing effect, as well as shear in the magnetic field (the case when field lines on

adjacent surfaces follow trajectories that are not parallel).

The net effect of the toroidal geometry on the interchange mode is to restrict the

instability to the “bad” curvature side. The instability then “balloons” out on the

outer half of the plasma. In order to localize the mode in this way, high perpendicular
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Figure 3-3: Cartoon of ballooning instability, using magnetic geometry from an EFIT
reconstruction of one of the C-Mod plasma discharges used in these experiments. The
left-most figure shows field-lines on the 99.5% flux surface, as well as several interior
flux surfaces. The perturbation on the bad-curvature side meets decreasing magnetic
pressure as it bows outward, while expansion on the high-field side encounters higher
magnetic pressure, tending to restore equilibrium. Perturbations become localized
to the bad-curvature side, a requirement which selects for higher mode numbers, as
shown in the right-most panel.
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wave numbers are favored. The limit of infinite wave number leads to the Mercier

stability criterion, which, in the large-aspect-ratio limit with βθ ∼ 1, is approximated

by

(

rq′

q

)

+ 4rβ′(1− q2) > 0, (3.21)

with β = 2µ0p
B2 the normalized pressure and q the safety factor12. Shear in the magnetic

field leads to greater stability (through q′ = dq/dr), as does a higher safety factor and

a gentler pressure profile. The Mercier criterion cannot capture the full picture of the

diverted tokamak plasma far beyond these qualitative statements, however, and we

must resort to more involved, typically numerical analyses to make progress.

It is well-known that the QCM has a ballooning shape [38], and the high perpen-

dicular wave number, k⊥ ≫
(

k‖, 2π/a
)

, is also consistent with the ballooning picture.

However, in analyses using the ELITE MHD code applied to carefully-measured edge

profiles, Mossessian et al. and Hughes et al. found that the C-Mod edge plasma in

EDA H-mode is stable to peeling-ballooning modes [36, 39]. Nonetheless, important

corrections to this picture arise from the inclusion of X-points in the magnetic topol-

ogy, as indicated in works examining the resistive X-point mode in the EDA context

[73, 35]. Again, a more precise fingerprint is needed to identify the prevailing physics

of the QCM, and it is provided by the phase difference between ñe and Φ̃.

To arrive at a basic model for interchange modes, we start with the quasineutrality

(also called “vorticity”) and the electron continuity equations in the electrostatic limit,

with the quasineutral result, ñi = ñe, and also taking ni = ne. These are

0 = ∇ · J = e∇ · (niui − neve) (3.22)

and
∂ne
∂t

+∇ · neve = 0 (3.23)

which, zeroing the ion temperature but taking ni = ne, can be rewritten as (see

12In the “straight” tokamak, where the torus is unwrapped into a cylindrical column, q =
rBφ

RBθ
.

66



Section C.7 in the Appendix)

−∇ ·
[

ǫ0
ω2
pi

Ω2
i

dE
dt

(

∇⊥Φ̃
)

]

= B∇‖

(

J̃‖
B

)

+K (p̃e) (3.24)

and (Section C.8)

dEñe
dt

= neK
(

Φ̃
)

− 1

e
K (p̃e)− ṽE · ∇ne +

B

e
∇‖

(

J̃‖
B

)

−B∇‖

(

neũ‖
B

)

(3.25)

where the diamagnetic divergence operator, K(u) ≡ −∇ ·
(

B
B2 ×∇u

)

= −
(

∇× B
B2

)

·
∇u, is as described in Section C.6 of the appendix. These equations include the

contributions from the ion polarization drift.

The terms that lead to the interchange modes are those relating to inhomogeneity

in B. B can change both along and perpendicular to field lines; the former case

implies shear and is stabilizing. We focus on the the latter case, which corresponds,

for example, to the 1/R variation in |B| in a tokamak. Assume a model field of the

form [65, cf. Eq. 10.4],

B = B0

(

1− x

LB

)

ẑ. (3.26)

If x is the distance outside the LCFS, then the corresponding toroidal field is

Bφ ≈ BL
Rc

R
≈ BL

(

1− x

Rc

)

(3.27)

where BL & 2 T is the typical toroidal field, and Rc ≈ 0.9 m the major radius, of the

LCFS at the outer midplane in the Shoelace experiments. Then LB = Rc ≈ 0.9 m

corresponds to the major radius at the edge.

Now

∇×
(

B

B2

)

=
1

B0

∇×
(

ẑ
1

1− x
LB

)

= − 1

LBB0

ŷ

(

1− x

LB

)−2

, (3.28)
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and so

K(u) = 1

LBB0

1
(

1− x
LB

)2

∂u

∂y
= ωB

e

Tek⊥

∂u

∂y
= iωB

e

Te
u (3.29)

where

ωB ≡
Te
e

k⊥
LBB0

1
(

1− x
LB

)2 (3.30)

absorbs the length scale over which the magnetic field changes, LB. In the present

circumstances, at the edge, ωB = 50 eV · 1
0.9 [m]·2 [T]

· 150m−1 ≈ 4200 s−1.

Reprising the quasineutrality and electron continuity equations, 3.24 and 3.25,

after making the substitution for the diamagnetic divergence operator using Eq. 3.29,

and moreover taking dE
dt
→ −iω (ignoring nonlinear advection), ∇2

⊥ → −k2⊥, ∇‖ → 0,

and x→ 0,

ǫ0
ω2
pi

Ω2
i

k2⊥ωΦ̃ = −ωB
ep̃e
Te

(3.31)

and

ω
p̃e
pe

= −ωB
eΦ̃

Te
+ ωB

p̃e
pe

+ ω∗
eΦ̃

Te
(3.32)

after dividing through by ñe and letting Te be uniform. The drift wave frequency,

ω∗ ≡ v∗k⊥, appears again, and we have taken ∂
∂y

= ik⊥. (Compare with Eqs. 10.9

and 10.10 in [65].)

Rearranging Eq. 3.32 gives

p̃e
pe

=

(

ω∗ − ωB
ω − ωB

)

eΦ̃

Te
(3.33)

which, when inserted into Eq. 3.31, yields

ǫ0
ω2
pi

Ω2
i

k2⊥ω = −ωB
epe
Te

(

ω∗ − ωB
ω − ωB

)

e

Te
(3.34)

68



The eigenfrequency is then estimated as

ω2 = − 1

k2⊥
ω∗ωB

e2ne
Te

Ω2
i

ω2
piǫ0

= − 1

k2⊥
ω∗ωB

1

Te

e2B2

Mi

= − c2s
LpLB

, (3.35)

giving the ideal linear growth rate,

γB = ℑ{ω} = cs
√

LpLB
=

√

Te
MiLpLB

(3.36)

after noting that |ω| ∼ |ω∗| ≫ |ωB|. This matches Eq. 10.22 in [65]. Using parameters

from the experiment, γB ≈ 8.6× 105 s−1 = 2π · 140× 103 s−1.

Note that the real part of the frequency is zero. This means that the mode is

stationary in the plasma frame (its phase velocity is zero), and will typically appear

to rotate at the E×B velocity in the laboratory frame (see Section 3.5).

Let us take this result and reexamine the relationship between φ̃ and p̃e, Eq. 3.33.

With |ω| ∼ |ω∗| ≫ |ωB|, this relation becomes

p̃e
pe
≈ −i ω∗

γB

eΦ̃

Te
. (3.37)

p̃e leads Φ̃ by a phase angle of 90°. This result is preserved even in the steady-state

turbulent case, when many eigenmodes oscillating at different wave numbers (distinct

from the QCM, with its narrow spread in frequency and k) interact with one another

nonlinearly13, although the nonlinear interactions tend to broaden the range of phase

angles between p̃e and Φ̃ [65, Chap. 10].

To summarize, ballooning modes are ideal MHD modes resulting from an inter-

change process in a toroidal geometry. They occur when a volume of plasma at higher

field is interchanged with a volume of vacuum at lower field. They are unstable when

the curvature drive defeats the resistance to the motion presented by compressing

the plasma. Because tokamaks have good curvature, on average, on a flux surface,

the interchange mode changes character in these devices, becoming localized on the

low-field, bad-curvature side of the plasma, and favoring a high wave number.

13See Figure 10.7 in [65], and note that ñe and p̃e have the same phase angle in this model since
Te is assumed constant.
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Several properties of ballooning modes – a high k⊥ relative to 1/a ≈ 5 m−1 (on

C-Mod), a fluted character (k⊥ ≫ k‖), and localization to the bad-curvature side –

are displayed by the QCM. Moreover, the laboratory-frame frequencies of the drift

wave and ballooning modes can be similar, depending on the radial location of the

mode (see Sec. 3.5), though the interchange model we examined produced a purely

imaginary eigenfrequency14. A clear difference between the two modes, which appears

in both linear and nonlinear, turbulent characterizations, is that for ballooning modes,

the phase difference between p̃e and Φ̃ is ∼ 90°, where it is close to zero for drift

waves. Measurements of this parameter are consistent with a drift wave, rather than

ballooning mode, label for the QCM.

3.4 Waves of the Cold, Homogeneous Plasma

The dielectric description of a cold, homogeneous plasma permits two waves – the

“fast” and “slow” waves – each corresponding to a pair of roots in the full, biquadratic

dispersion relation. In the low-frequency limit relevant to the present discussion, these

waves form the pair of compressional and shear (or torsional) Alfvén waves. The

former, with dispersion relation, ω2 = k2v2A ∼ (2π · 80 MHz)2, has a frequency range

far in excess of the band around 100 kHz associated with the QCM and excited by

the Shoelace antenna, and so it is not expected to play a role in the antenna response.

However, the shear Alfvén wave continuum, characterized by ω2 = k2‖v
2
A, can access

such low frequencies by merit of the fact that k‖ ≪ k⊥.

The electrostatic approximation neglects the induced electric field (taking the

electric field to be curl-free); its application to the cold plasma dielectric problem

leads to a major simplification of the dispersion relation. However, we will see that

its application in the present circumstance results in modes that are (a) in the wrong

frequency range and (b) very strongly damped by electron-ion collisions.

Let us briefly introduce the plasma dielectric framework. The permittivity tensor

14This is a general result from ideal MHD theory - ω2 is purely real, so that eigenfrequencies are
either purely real or purely imaginary.
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of the cold, homogeneous plasma medium is

ǫ = ǫ0











S iD 0

−iD S 0

0 0 P











, (3.38)

where S ≡ 1 −∑s

ω2
ps

ω2−Ω2
s
, D ≡ ∑s

ω2
ps

ω

[

Ωs

ω2−Ω2
s

]

, and P ≡ 1 −∑s

ω2
ps

ω2 , with the sum-

mations ranging over all species, s, of charged particles, and treating Ωs as algebraic

(carrying the sign of the charge of species, s) [76, p. 7, Eqs. 1.18-1.22]. The coordi-

nate system in use here is Cartesian, with ẑ aligned with the background magnetic

field, and taking the wave to propagate only in the (y, z)-plane.

The dispersion relation is obtained from requiring non-trivial solutions to the wave

equation15:

ω2

c2

∣

∣

∣

∣

∣

∣

∣

∣

∣

S − n2 iD 0

−iD S − n2
z nynz

0 nzny P − n2
y

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

=
(

S − n2
) [(

S − n2
z

) (

P − n2
y

)

− n2
yn

2
z

]

−D2
(

P − n2
y

)

= Sn4
⊥ +

[(

n2
‖ − S

)

(P + S) +D2
]

n2
⊥ + P

[

(

S − n2
‖
)2 −D2

]

= 0

(3.39)

where ny = n⊥ = kyc

ω
is the y-component of the index of refraction, and nz = n‖ =

k‖c
ω

the z-component, with n2 = n2
y + n2

z, and c ≡ 1√
µ0ǫ0

is the vacuum speed of light.

In the low-frequency limit when D ≈ 0,

0 = Sn4
⊥ +

(

n2
‖ − S

)

(P + S)n2
⊥ + P

(

S − n2
‖
)2

(3.40)

leading to

n2 = S ← Compressional Alfvén wave (3.41)

15In component form, the wave equation is
(

kikj − k2δij + ω2µ0ǫ
i
j

)

Bj = 0.
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and

n2
⊥ = P

(

1−
n2
‖
S

)

←



















Shear Alfvén wave when

∣

∣

∣

∣

n2
⊥
P

∣

∣

∣

∣

≪ 1

Electrostatic wave when 1≪
∣

∣

∣

∣

∣

n2
‖
S

∣

∣

∣

∣

∣

(3.42)

where

S ≈ 1 +
ω2
pi

Ω2
i

=
c2

v2A
. (3.43)

In the following, we will analyze the results of the general dispersion relation in

the context of particular waves.

3.4.1 The Shear Alfvén Wave

The shear Alfvén wave is among the most intensely studied oscillations in plasma

physics [106]. Its special prominence owes partly to the fact that it is the first trans-

verse wave identified for a magnetized plasma, illustrating a clearly distinct behavior

from neutral gases, which support only longitudinal (sound) waves. But it is also

ubiquitous in real plasmas, both in the astrophysical and laboratory settings, as well

as in theoretical descriptions. Ideal MHD theory describes a single shear Alfvén wave

[70]. The mode also appears as the “slow” wave when modeling a cold, homoge-

neous plasma as a dielectric medium [76, Chap. 2]. And in the drift-ordered plasma

model, there are two shear Alfvén waves – the kinetic Alfvén waves [65, Chap. 4] –

which display behavior not accounted for in the ideal MHD or cold plasma dielectric

descriptions, including a coupling between pressure disturbances and the wave16.

Conceptually, the shear Alfvén wave conjures the analogy of a vibration on a guitar

string. The magnetic field provides the “tension” in the string, while the plasma,

which is tied to the field line, provides the mass. The perturbed component of B is

perpendicular to the background field. The wave can have any k⊥ to complement

its (nonzero) k‖; however, the group velocity is always aligned with the background

16See also Section D.2 in the appendix for an investigation of the shear Alfvén waves in the
drift-ordered system.
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magnetic field.

The shear Alfvén wave arises from Eq. 3.42 when the root is approximated using

|n2
⊥/P | ≪ 1. When P ≈ −ω2

pe/ω
2, |n2

⊥/P | = c2k2⊥/ω
2
pe ∼ 10−2 ≪ 1, and so the

approximation is reasonable. In this case, Eq. 3.42 reduces to n2
‖ = S, or

ω2 =
c2k2‖

1 +
ω2
pi

Ω2
i

= k2‖v
2
A, (3.44)

where

vA =
c

√

1 +
ω2
pi

Ω2
i

=
1

√
µ0ǫ0

√

1 + niMi

ǫ0B2

≈ B√
µ0niMi

=
B√
µ0ρ

(3.45)

is the Alfvén speed, approximately 3.5 × 106 m/s ∼ c
100

near the LCFS in these

experiments. When the parallel wave number is estimated using the connection length

as k‖ ≈ π/Lc ≈ 0.35 m−1, the Alfvén wave dispersion relation gives ω ≈ 2π · 200 kHz.

The most noteworthy result of this dispersion relation is that the frequency de-

pends only on k‖, and is completely independent of the perpendicular wave number.

This is exactly the opposite situation from the drift wave. An additional implication

of this is that the group velocity, vg = ∂ω
∂k
, is also parallel to the background field

lines, as mentioned earlier: the wave energy is guided by the background magnetic

field.

The compressional Alfvén wave is the branch with root, ω2 = k2v2A, since n = ck
ω
.

This is the “fast” wave. With k2 = k2⊥ + k2‖ ≈ k2⊥, this dispersion relation gives

|ω| = kvA ≈ k⊥vA ≈ 80 MHz, well above the antenna frequency range.

The Alfvén wave is damped by resistivity, in contrast to the drift wave, which is

destabilized by it. The most straightforward way to arrive at this result is to con-

sider only parallel resistivity; the perpendicular resistivity will enter in the diagonal

elements of ¯̄ǫ as ω
ΩiΩeτei

≪ 1, while the parallel resistivity enters as a modification

to P as ∼ 0.51/(ωτei) ∼ 10. Physically, this approach is reasonable since the par-

allel current is expected to be much larger than the perpendicular current, which is

dominated in this case by the ion polarization contribution, and so resistivity should

appear more prominently in the susceptibility component linking the parallel electric
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field and current.

To derive a damping rate, start again from17 Eq. 3.42,

n2
⊥ = P

(

1−
n2
‖
S

)

. (3.46)

Include the parallel resistivity through the term, P ≈ −ω2
pe

ω2
1

1+i 1
ωτ ′

ei

≈ i
ω2
peτ

′
ei

ω
, with

τ ′ei ≡ τei/0.51. Assume also that the damping is small such that ℑ{ω} = ωi ≪
ℜ{ω} = ωr, and that ωr = k‖vA clears the term, 1 +

ω2
pi

Ω2
i
− n2

‖, and note that S ≈
1 +

ω2
pi

Ω2
i
= c2/v2A. Then

n2
⊥
P

= − n2
⊥

ω2
pe

ω2
1

1+i 1
ωτ ′

ei

≈
(

1−
k2‖v

2
A

ω2

)

≈ ω2
(

ω2
r + 2iωrωi − ω2

i − k2‖ω2
)

≈ ω2 (2iωrωi)

(3.47)

or

− n2
⊥

ω2
pe

1
1+i 1

ωτ ′
ei

≈ −i n2
⊥

ω2
peωτ

′
ei

≈ 2iωrωi (3.48)

so

−
ω2
pe

ω2

1
(

1 + i 1
ωτ ′ei

)

(

2i
ωiωr
v2A

)

≈ −2ωi
ω2
peτ

′
ei

v2A
≈ k2⊥

c2

v2A

⇒ ωi = −γ ≈ −k2⊥
c2

2τ ′eiω
2
pe

= −ηsk
2
⊥

2µ0

,

(3.49)

where γ is the damping rate. Using typical parameters from experiment, the damping

rate is approximated as |γ/ωr| ∼ 3%.

It is interesting that, when k‖ is assumed to follow the shear Alfvén wave disper-

sion relation (Eq. 3.44) while ω still satisfies the drift-wave dispersion relation (Eq.

3.15), k‖ = ω∗/vA, then the drift-wave growth rate in Eq. 3.20 is simply twice the

17cf. [106, Eq. 1.17], ω2 −
(

v2A + iωη
µ0

)

k2 = 0, which applies to compressional Alfvén waves, and

yields the same damping rate as for the shear Alfvén waves when k⊥ ≫ k‖. The damping rate for

the kinetic shear Alfvén wave reported by Scott [65, p. 4.13] is 0.51µ∆−2

⊥ /(βeτei) = ηs/(µ0∆
2

⊥ρ
2
s),

in the ρs-normalized perpendicular length scale, ∆⊥, which is identical to the damping rate given

here when ∆2

⊥ρ
2
s = 2/k2⊥ ⇒ ∆⊥ =

√
2

k⊥ρs
= λ⊥√

2πρs
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damping rate of the shear Alfvén wave (for which there are two roots) in Eq. 3.49.

We will see in Section D.2 that the same Alfvén dispersion relation arises from the

drift-ordered model for the real part of ω, but the damping rate is modified by the

multiplicative factor, 1
1∓ω∗/ωA

, introducing a singularity at ω∗ = ωA for one root. For

the homogeneous plasma studied in this section, however, ω∗ ∝ ∇pe = 0.

These results apply to a homogeneous plasma of infinite extent. Within the

tokamak context, the spatial dependence on vA through variation in B and ρ has

a profound impact on the Alfvén spectrum, producing a continuum of modes that is

strongly damped due to phase mixing, with decay ∝ 1
t
[106, 107]. Gaps in the Alfvén

wave continuum develop, for example, by the coupling between different eigenmodes

that results from the toroidal tokamak geometry. Discrete modes like the toroidicity-

induced Alfvén eigenmode, or TAE, appear in the continuum gaps [107, 108]. Such

gap modes suffer reduced continuum damping, and can be destabilized by energetic

particles [108] – a point of concern for burning plasma devices, and the impetus for

much active MHD research on this topic. A variety of mechanisms contribute to

the damping of the Alfvén gap modes, including collisional (e.g. through collisions

of trapped electrons), collisionless (e.g. through ion and electron Landau damping),

and continuum coupling (albeit reduced) processes [92, Sec. 2.2.7].

In light of this complexity, we should not expect the damping rate expression

in Eq. 3.49 to be useful for quantitative comparison with experiment. Rather, its

utility is in demonstrating how resistivity affects the Alfvén wave, and in providing

a point of comparison with the other simplified models of plasma waves discussed in

this section.

In both the cold-plasma dielectric and ideal MHD formulations of the shear Alfvén

wave in a homogeneous plasma, no pressure response accompanies the disturbance in

field quantities, and vice versa. The coupling between p̃e and the shear Alfvén wave

is recovered in the two-fluid drift-wave-ordered model, and when k⊥ρs ≪ 1, a similar

Boltzmann (adiabatic) relation between potential and pressure, eΦ̃/Te ∼ p̃e/pe, is

expected as for drift waves [65, Sec. 4.5].
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3.4.2 Electrostatic Modes

Many treatments of waves in plasmas ignore the displacement current in Ampère’s

law, ∇ × B = J + ∂D
∂t
≈ J. When the induced electric field in Faraday’s law is

also ignored (∇ × E = −∂(∇×A)
∂t

= −∂B
∂t

= 0), then E = −∇Φ. This is called

the electrostatic approximation; it is justified for short wavelength modes for which

the longitudinal component of E is much larger than the transverse component,

|E · k/k| ≫ |k× (k× E) /k2|. Section C.2 in the appendix applies a check on the

applicability of the approximation, finding that it is robustly valid for the cold, ho-

mogeneous plasmas studied in this section.

The electrostatic approximation greatly simplifies the analysis of waves in plas-

mas, while still accessing a broad class of wave phenomena. Indeed, the drift wave

dispersion relation – both as Eq. 3.15 and Eq. 3.18 – is most often derived taking

E = −∇Φ. The focus of this section, however, is on only those modes permitted

by the uniform and stationary electrostatic plasma medium, which excludes the drift

wave.

The electrostatic dispersion relation under these conditions is contained within

Eq. 3.42, which can be expressed as

n2
⊥
P

= 1−
n2
‖
S

= 1− ω2
A

ω2
. (3.50)

For frequencies low relative to that of the shear Alfvén wave, ω2
A/ω

2 ≫ 1, the unity

term may be neglected, yielding

n2
⊥S + n2

‖P = 0, (3.51)

which is the desired electrostatic dispersion relation.

This result may also be derived directly from Gauss’ law for the electric field,

∇ · ¯̄ǫ · E+ ¯̄ǫ · ∇E = ∂i
(

ǫijE
j
)

= (∂iǫ
i
j)E

j + ǫij∂iE
j = 0, (3.52)

where the middle expressions are in component form.
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Fourier analyzing in space, ∂i → iki, and taking Ej = −ikjΦ,

(∂iǫ
i
j)E

j + ǫijkik
jΦ = 0. (3.53)

When ¯̄ǫ is homogeneous in space18, then, making use of the cold plasma dielectric

tensor in Eq. 3.38,

k · ¯̄ǫ · k = ǫijkik
j = k · [x̂ (Skx + iDky) + ŷ (−iDkx + Sky) + ẑPkz]

= S
(

k2x + k2y
)

+ Pk2z = Sk2⊥ + Pk2‖ = 0,
(3.54)

which is the same as Eq. 3.51 after scaling by c2/ω2.

Now, S = 1 −∑s

ω2
ps

ω2−Ω2
s
≈ 1 +

ω2
pi

Ω2
i
and P = 1 −∑s

ω2
ps

ω2 ≈ −ω2
pe

ω2 , where the

approximations are made in the low-frequency limit, ω ≪ Ωi ≪ ωpi ≪ Ωe < ωpe. In

this case19, the requirement, Sk2⊥ = −Pk2‖ becomes

k2⊥

(

1 +
ω2
pi

Ω2
i

)

= k2‖
ω2
pe

ω2

⇒ ω2 =
k2‖
k2⊥

ω2
pe

1 +
ω2
pi

Ω2
i

≈ Ω2
i

ω2
pe

ω2
pi

k2‖
k2⊥

⇒ ω = ±
√

ΩiΩe

k‖
k⊥

,

(3.55)

revealing a hybrid electrostatic mode. For typical plasma parameters, and with k⊥ ≈
150 m−1 and k‖ ≈ 0.35 m−1 (corresponding to λ‖ ≈ 2Lc), |ω| ≈ 2π · 2.4 MHz.

On the other hand, we have already seen that collisions cannot be ignored in the

relatively-cold edge plasmas of interest here. This effect may be explored in the same

18which is certainly not true in the edge plasma, where strong gradients are expected; relaxing
this assumption leads to drift waves, among other phenomena

19Using typical outer edge parameters for the discharges in the Shoelace experiments, ne ∼
1020 m−3 and B = 2.3 T (with deuterium as the main ion species), Ωi = eB

Mi
∼ 2π · 20 MHz,

ωpi =
√

nee2

ǫ0Mi
∼ 2π · 1.5 GHz, Ωe =

eB
me
∼ 2π · 60 GHz, and ωpe =

√

nee2

ǫ0me
∼ 2π · 90 GHz.

77



manner as for the shear Alfvén wave20 by considering parallel electron-ion collisions

through

P ≡ 1−
∑

s

ω2
ps

ω2
≈ −

ω2
pe

ω2
→ −

ω2
pe

ω2

1

1 + i
ν′ei
ω

≈ i
ω2
pe

ν ′eiω
, (3.56)

since

ν ′ei
ω

=
1

ωτ ′ei
∼ 10 (3.57)

when ω ∼ 2π · 100 kHz and τ ′ei is estimated from parameters measured at the LCFS

in these experiments. Then Eq. 3.54 becomes

ω

(

1− i ω
ν ′ei

)

= ω0 ≡ −i
ω2
pe

ν ′ei

ω2
A

c2k2⊥
= −i

k2‖
k2⊥

ΩiΩe

ν ′ei
, (3.58)

the roots of which are given by

ω =
ν ′ei
2

(

−i±
√

4i
ω0

ν ′ei
− 1

)

, (3.59)

noting that for these electrostatic modes, |ω| ∼ ν ′ei ≈ 5×106, while ω0 ≈ −i5×107 s−1.

These roots correspond to strongly-damped modes21, with the damping rate on the

order of or larger than the real part of the frequency.

This somewhat heuristic treatment of electron-ion collisions is complemented by

an investigation of finite, non-zero temperature effects after assuming Maxwellian

distribution functions for ions and electrons. Such an analysis introduces impor-

tant corrections to the electrostatic dispersion relation, Eq. 3.55 [109]. Figure 3-4

illustrates this point – here, one of four roots of the low-frequency, warm plasma,

electrostatic dispersion relation are plotted for a mode oscillating at 170 kHz for five

different electron temperatures between 0 and 100 eV (the dispersion relation is such

that the full plot is symmetric about the k‖ axis). The darkest blue line in the figure,

with Te = 0.05 eV, overlays the cold plasma result of Eq. 3.55, which is shown as a

20In general, this corresponds to using an effective electron mass, me,eff ← me

(

1 + i 1

ωτ ′

ei

)

.
21These are sometimes called “quasimodes.”
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Figure 3-4: Relation between k‖ and k⊥ for one of the roots of the low-frequency
electrostatic dispersion relation at f = 170 kHz for a warm, uniform, stationary
Maxwellian plasma, as in Eqs. 1-5 of [109], where collisions are neglected; color of
each line maps to the electron temperature. The Shoelace antenna perpendicular wave
number is shown as a black dash-dotted line. The dispersion relation is symmetric
reflected about the k‖ axis.

thick dashed line. But at higher temperatures, a cutoff in k‖ appears below which the

electrostatic mode cannot propagate; with the electron temperature at the LCFS of

Te ∼ 50 eV, the Shoelace antenna experiments reflect this situation. Not shown are

the additional modes permitted by the warm plasma dispersion relation; these are

at |k⊥| > 1000 m−1. For reference, the perpendicular wavenumber of the Shoelace

antenna is shown as a horizontal dash-dotted line.

Resonance Cones

The group velocity for the electrostatic waves of Eq. 3.55 is

vg =
∂ω

∂k
= ±
√
ΩiΩe

k⊥

(

e‖ − e⊥
k‖
k⊥

)

. (3.60)

where e‖ and e⊥ are the parallel and perpendicular basis vectors. Forming the dot

product between vg and k yields the interesting result,
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vg · k = ±
√
ΩiΩe

k⊥

(

e‖ − e⊥
k‖
k⊥

)

·
(

e‖k‖ + e⊥k⊥
)

= ±
√
ΩiΩe

k⊥

(

k‖ − k‖
)

= 0, (3.61)

indicating that the group velocity is orthogonal to the direction of propagation. More-

over, Eq. 3.60 defines a cone of vectors which is coaxial with the background magnetic

field, at an angle from the field line, tan(θ) = k‖/k⊥. This is an example of resonance

cone behavior, which is associated with, but not exclusive to, electrostatic waves

[110, 111, 112, 109, 113, 76].

The group velocity of shear Alfvén waves is also parallel to the background field,

but this behavior does not represent a limit of the resonance cone, since vg · k 6= 0

for shear Alfvén waves.

3.5 Doppler Shift

It is important to note that the dispersion relations written above – Eqs. 3.15, 3.35,

3.44, and 3.55 – were derived in the plasma (co-rotating) frame. The frequency

measured in the laboratory frame deviates from that in the plasma frame by the

Doppler shift. If ωℓf is the laboratory-frame frequency and ωpf the plasma-frame

frequency (which applies to the dispersion relations derived above), then

ωpf = ωℓf − k · u, (3.62)

where u is the velocity of the background plasma.

As an example, in the case of Alfvén waves, with the plasma moving at the E×B

velocity, u = vE, (ωℓf − k · vE)2 = ω2
A = k2‖v

2
A.

The Doppler shift is important in the context of experiments with the Shoelace

antenna since k⊥ is large and vE is not only large, but rapidly varying with radial

location, as discussed in Section 2.3. For example, at the LCFS, vE = 3 km/s

in the IDD; with k⊥ = 150 m−1 in the EDD, this results in a frequency shift of

∆ω ≈ −2π · 70 kHz from the plasma-frame value to that measured in the laboratory
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frame – the Doppler shift is on the order of the QCM frequency, itself. 3 mm inside

the LCFS, vE ≈ 3 km/s in the EDD, so that the corresponding frequency shift is

∆ω ≈ +2π ·70 kHz. If the frequency measured in the laboratory frame is 70 kHz, this

means that the plasma-frame frequency resides somewhere between 0 and 140 kHz,

depending upon the radial location of the mode. This spans the range of frequencies

expected of ballooning modes, drift waves, and damped shear Alfvén waves, using the

simplified models presented in this chapter.

81



82



Chapter 4

Experimental Method

We should forget about small efficiencies, say about 97% of the time: premature

optimization is the root of all evil.

–Donald Knuth [114]

4.1 Introduction

This chapter seeks to describe the hardware employed in this study, as well as the

methods of data collection and analysis. The design, construction, and operation of

the antenna and its associated power system are discussed in detail, and the exper-

imental procedure is motivated; readers may also refer to [115] for a description of

the power system, and [116] for an outline of the experimental design. Signal pro-

cessing techniques for the purposes of discovering the effect of the antenna are also

introduced. Additional information on these topics appears in Appendices B and E.

4.2 Antenna Design

The basic constraints of the antenna design problem are to build a structure which

produces a magnetic field perturbation mimicking that of the intrinsic quasi coherent

mode, and which can survive the harsh conditions inside the tokamak vacuum vessel.

A more precise statement of “mimicking” requires that the antenna match the QCM’s
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spatial structure and frequency. The first of these two statements is perhaps the

defining feature of the Shoelace design. It is enormously restrictive, not only with

regard to which spatial structures are allowed for the antenna, but also how robust

the structure needs to be, and how much RF current must be driven to achieve a

noticeable perturbation in the plasma. The second statement on frequency pertains

to the RF power system, and will be covered in detail in Section 4.4.

The spatial structure of the QCM has been discussed in Chapter 2; to review, it is

an approximately field-aligned (k⊥ ≫ k‖) mode with a relatively large perpendicular

wave number, k⊥ ∼ 1.5 cm−1 (λ⊥ ∼ 4.2 cm), at the midplane, and localized to the

low-field (bad-curvature) side.

To provide wave number matching, the antenna must either exhibit a self-similar

structure, able to couple to a broad band in k, or reproduce the same spatial peri-

odicity as the mode. The latter of these two approaches is preferred here, since it is

desired to couple to a single wave number (that of the QCM) rather than many.

The fact that k⊥ is large deserves special attention, because it means that the

spatial decay of the mode across the semi-vacuum scrape-off-layer (SOL) is rapid. To

see this, it suffices to examine the constraints on the wave vector for a magnetostatic

field perturbation in a charge-free region. In a uniform Cartesian geometry selected

such that the wave vector has only ŷ (the slab proxy for the poloidal coordinate) and

x̂ (corresponding to radial) components, Gauss’ law gives

∇ ·B = 0→ i (kxBx + kyBy) = 0, (4.1)

and Ampère’s law,

∇×B = 0 = x̂ (∂yBz − ∂zBy)− ŷ (∂xBz − ∂zBx) + ẑ (∂xBy − ∂yBx)

→ i [x̂kyBz − ŷkxBz + ẑ (kxBy − kyBx)] = 0,
(4.2)

for the plane wave solution, resulting in the constraints that Bz = 0, Bx

By
= −ky

kx
,

and kxBy = kyBx = −By
k2y
kx
⇒ k2x = −k2y, or kx = ±iky. Rejecting the growing
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solution, this means that the perturbed field decays in x as B = B0e
ikyye−kyx, giving

an e-folding length of 1/k⊥ = λ⊥/(2π) = 0.67 cm, using the value of k⊥ for the QCM.

Since the antenna must share the same perpendicular wave number as the QCM if

it is to provide a good match, this means that the antenna must sit extremely close

to the plasma if it is to have any measurable effect. The proximity to the plasma

exposes the structure to high heat loads, while the rapid radial decay of the vacuum

field also requires that the power system maximize the current driven in the antenna

to offset this significant attenuation as much as possible.

The Shoelace antenna concept uses a wire to reproduce the filamentary structure

attributed to the QCM. The antenna is wound from a single length of 1.5 mm-

diameter lanthanum-doped molybdenum wire. The winding is in two layers, with

the wire criss-crossing its way up the ceramic tension wheels in 19 rungs, and then

retracing its path again on the top layer so as to reinforce the current from the bottom

layer. The wire path gives the impression of a shoelace, from which the antenna takes

its name. The interlayer spacing is 4.6 mm, close to the distance between the top

layer and the LCFS at the point of closest approach – this is significant given the

∼6.7 mm e-folding length of the field through the SOL.

Table 4.1 lists a number of the geometrical parameters defining the antenna.

Figure 4-1 shows an annotated photograph of the antenna mounted in the Alcator

C-Mod vacuum vessel, together with a plot of the approximate vacuum field, last

closed flux surface (LCFS) location, and nominal QCM B̃θ amplitude. Underneath

the photograph, in Figure 4-1d, a cartoon schematic illustrates how the current in

both layers of the antenna reinforce each other’s induced magnetic field.

The wires are field-aligned when the safety factor at the 95% flux surface, q95,

is 3, the same value used in the discharges of the earlier characterization of the

QCM by Snipes et al. [33] This, combined with the wire spacing, can be used to

estimate the antenna’s bandwidth in k⊥ and toroidal mode number, n, as shown

in Section B.2 of the appendix. The results of this analysis are summarized in the
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Figure 4-1: (a) Approximate radial vacuum field produced by the antenna; also shown
are the LCFS at closest possible approach, as well as the nominal B̃θ amplitude of the
QCM. (b) Photograph of the Shoelace antenna mounted inside the Alcator C-Mod
vacuum vessel. (c) Simplified schematic illustrating winding structure of Shoelace
antenna; (d) Simplified planar geometry for modeling vacuum field of antenna.
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Table 4.1: Shoelace Antenna Geometrical Parameters

Symbol Value Desc. [Units]
a 7.62×10−4 [m] Radius of wire
Ac 1.82× 10−6 [m2] Cross-sectional area of wire
b 0.0214 [m] perpendicular spacing between rungs, 2b = λ⊥
d 4.6× 10−3 [m] distance between layers of windings [m]
h 0.41 Vertical height of antenna [m]
ℓ ∼7 Total length of wire [m]
Nr 19 Number of rungs
Nc 18 Number of rectangular cells, or “turns”
V 1.29× 10−5 [m3] Total volume of wire
w 0.153 [m] length of horizontal wire segments
θp 14.5° Pitch angle of windings; field aligned at q95 ≈ 3
Ra 0.303 [m] Radius of curvature of wire centers
Ra,0, za,0 0.613,0 [m] Centroid of arc on which top-layer wire centers lie

following. The perpendicular spacing is ∆z⊥ = 2.1 cm, giving k⊥ = ±1.5± 0.1 cm−1,

with the spread corresponding to the full-width at half maximum (FWHM) of the

k⊥ spectrum calculated from the finite extent of the antenna in the perpendicular

direction (e.g. (19 rungs−1)×∆z⊥). Since the antenna wires are angled at θw =

14.5°, the Shoelace antenna’s toroidal mode number, n, spectrum is centered on

n0 = 2πR0/ [2∆z⊥/ tan(θw)] ≈ 35, where R0 = 0.916 m is the major radius of the top

layer Shoelace rung at the midplane. The bandwidth of the n spectrum is limited by

the width of the antenna, w = 15.3 cm; modeling the antenna as a tophat function

in toroidal angle, φ, with an arc length of w gives a factor of sinc
(

nw
2R

)

after a Fourier

transform, or a span of ∆n ≈ ±23 from n0 (FWHM). These values ensure a good

match to the QCM, which typically has [33] k⊥ = 1.5 cm−1 and n = 10 − 25 (at

higher safety factor), as well as to the WCM, which has a similar k⊥ and n spectrum

[5, 6]. It should be noted that the antenna has no preferred direction; it produces an

RF vacuum field which is a standing wave in the (φ, θ) directions and decays rapidly

in the radial dimension.

In a single poloidal cross section, the rungs of the antenna on the top layer fall

on a circle centered at R = 0.613 m, z = 0 m, with a radius of 0.303 m. At closest

approach, the rungs can be as little as 3 mm behind the main limiter. This proximity
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is required to maximize the induced perturbation in the plasma given its rapid radial

decay; however, it also risks damage to the antenna due to the large heat flux in the

C-Mod edge. As seen in Figure 4-1, the antenna is sandwiched between and in the

shadow of the main limiter as well as a smaller protection limiter. These provide a

degree of shielding. Nonetheless, careful experimental planning, as well as a robust

design of the Shoelace support structure, were needed to extend the longevity of the

antenna in the harsh C-Mod edge environment.

By collapsing the winding in a single layer onto a plane, and extending the wire

lengths such that they are of infinite extent, and assuming an infinite number of

rungs, we arrive at the simplified geometry shown in Figure 4-1c. This is suitable for

creating an analytical model of the perturbed vacuum field induced by the antenna.

This analysis is carried out in Appendix B, and gives a radial field component (out

of the plane of the antenna),

Bx(r) = −
µ0I0
2b

sinh (k⊥y) cos(k⊥x)

cosh2(k⊥y)− cos2(k⊥x)
= −µ0I0

2b

sinh (k⊥y) cos(k⊥x)

sinh2(k⊥y) + sin2(k⊥x)
(4.3)

and a poloidal component (across the rungs of the antenna),

By(r) =
µ0I0
2b

cosh(k⊥y) sin(k⊥x)

cosh2(k⊥y)− cos2(k⊥x)
=
µ0I0
2b

cosh(k⊥y) sin(k⊥x)

sinh2(k⊥y) + sin2(k⊥x)
. (4.4)

where k⊥ ≡ 2π
2b
, I0 is the current in the wire segment, and, of course, Bz = 0.

Figure 4-1a plots the total radial field, Eq. 4.3, summed from the upper and lower

windings, and evaluated at a poloidal location in between two wire segments, as a

function of distance from the top winding layer. A current of 80 A in each layer is

assumed; such amplitudes were regularly achieved during antenna operation. The

approximate location of the LCFS at closest approach is also shown.

Power is conducted to the antenna via a semi-rigid, vacuum-compatible coaxial

cable with SiO2 dielectric
1. It is coupled to the external power source through a vac-

10.270-in (6.86 mm) outer diameter, maximum withstanding voltage Vrms=3.3 kV (Times Mi-
crowave)
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uum feedthrough with a Threaded Neill-Concelman (TNC) connector. The antenna

connects to the power system through a TNC connector with 3.0 kV breakdown rat-

ing (Times Microwave). A short ML alloy lead on this connector is joined electrically

to the main antenna winding via a copper clamp housed in an alumina block. The

winding runs up the antenna, and then back down, terminating at a clamp which

grounds the wire to the antenna, and through the antenna, to the tokamak vacuum

vessel.

A thermal analysis is carried out in Section B.5 in the appendix. This and more

sophisticated analyses had indicated the antenna would survive the harsh environment

inside Alcator C-Mod. This was largely true, but eventually, the antenna wire did

fail due to excessive thermal loading, as discussed below in Section 4.3.

4.2.1 Antenna Pitch

The antenna pitch angle of 14.5° was chosen to match the field line pitch from an ohmic

EDA H-mode plasma used in Snipes’ earlier study of the QCM [33]. That the EDA

H-mode used in Shoelace antenna experiments should be ohmic (meaning that only

resistive heating is supplied to the plasma, and no auxiliary heating power is used)

again is a result of the need to reduce the gap between plasma and antenna as much

as possible, which requires the plasma to have lower heat exhaust in order to avoid

damaging the antenna. As ohmic EDA H-modes are not routinely run on Alcator C-

Mod, it was decided to design the antenna to match the field line pitch in the ohmic

EDA experiments by Snipes et al., for which the plasma was well-diagnosed, in order

to maximize the chance of successfully reproducing such a confinement regime. This

topic will be discussed in greater detail in the Experimental Design section, Section

4.5.3.

The effect of a mismatch between the antenna winding and the background mag-

netic field lines is investigated heuristically in Section B.4 of the appendix. This

analysis results in an expectation that the antenna is unlikely to effectively couple to

a QCM-like mode in the plasma beyond q95 > 5, while good coupling is expected in

the lower range between 2 < q95 < 4. Most C-Mod plasmas are run with q95 ∼ 5,
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which restricted the first round of experiments exploring the antenna’s influence on

the plasma to specialized discharges. However, future experiments with the Shoelace

antenna will utilize a different pitch angle, as described in Chapter 6, which will

increase the number of opportunities to make use of the structure.

4.2.2 Spring-Loaded Pulley System for Tensioning Antenna

Wire

An intricate system of pulleys and tensioner blocks accommodates the thermal ex-

pansion of the wire, an inevitability given the antenna’s proximity to the plasma.

Figure 4-2 shows the assembly of the static and movable winding posts. The pulleys

were fabricated by Ceramics Grinding Company from 99.8%-pure alumina. These are

capped by molybdenum shields, whose support stalks penetrate through the center

of the pulleys. Further information on these material selections is provided below.

A pretension of 50 lbs (220 N) is maintained across each wire segment. This is so

in order to keep the wire from becoming slack at any location, which would risk the

wire bowing inward toward the plasma, or becoming dislodged from the groove of the

pulley. The pretension is achieved by pushing the movable post – that shown in Figure

4-2b – outward, pulling the wire taught while simultaneously compressing a stack of

Belleville washers. As the wire expands in response to heating from the plasma,

the Belleville washers also expand and continue to provide loading. Based upon the

material properties of the ML wire, the temperature at which all 50 lbs of preload

are relaxed by thermal expansion2 is well above the recrystallization temperature of

the ML wire (approximately 1300°C [117]).

The thermal expansion of the wire, and corresponding need to maintain a preload,

makes it difficult to wind in more than two layers. The reason is that the top-most

layer of the winding, nearest the plasma, will receive a much greater heat load during

2This is calculated from ∆T = F0

wKbαE

(

1 + Kb

2K0

)

≈ F0

wKbαE
, where Kb ∼ 105 N/m is the spring

constant of the Belleville washer stack, and K0 = EAc/w ∼ 4 × 106 N/m is the spring constant of
the ML wire. With a 220 N preload, the approximate expression gives a temperature excursion of
∆T =2300°C before the preload is entirely relaxed by thermal expansion, while the more precise
expression gives ∆T = 2000.
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(a) (b)

Figure 4-2: CAD models of (a) fixed and (b) adjustable wire pulleys. Tensioning
is accomplished by tightening the bolt on the adjustable pulley, pushing the pulley
stand outward through a stack of Belleville washers, until ∼ 50 lbs (∼ 220 N) of
pretension has been applied. These and all other CAD drawings belonging to the
Shoelace project were prepared by R. Leccacorvi.

the ∼1 s plasma flattop than will the windings underneath – much too short a time for

the wire temperature to equilibrate. But the ML wire is also stiff – more like a bent

paper clip than a rubber band – and the excess length cannot be spread uniformly

throughout the structure. As a result, the top layer of winding will expand, but the

bottom will not, preventing the adjustable posts from relaxing outward to maintain

tension on the top layer. In the Shoelace design, however, with only two layers in the

winding, each adjustable post maintains tension on either a pair of wire segments in

the top or bottom layer, and so the two layers are adjusted independently.

More complicated designs decoupling the pretension in multiple layers may be

imagined, but adding additional layers is of marginal benefit, since the added depth

below the top layer means that the field contribution from these lower layers will be

severely attenuated.

4.2.3 Material Selection

Table 4.2 provides a list of the materials used in the antenna construction. To limit

the species of impurities in the plasma, it is standard practice on Alcator C-Mod that
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all plasma-facing components be fabricated from molybdenum alloys, and this was

followed here. The ML molybdenum alloy has good ductility and is suitable for wire

drawing, motivating its selection for the antenna wire. Properties of the ML wire

are listed in Table 4.3. The TZM molybdenum alloy, chosen for the pulley caps and

Shoelace protection limiter tiles, is the material normally used for fabricating C-Mod

limiters.

Alumina was selected for the pulley material due to its relatively high thermal

conductivity, a requirement in order for the heat absorbed by the winding to be

dissipated into the base structure (the pulley must, of course, be electrically insulating

so as not to short out the winding). The pulley supports are fabricated from Inconel

due to its high strength and stability under thermal loading; this material had also

been planned originally for the Shoelace base structure, but examination of loading

scenarios indicated that stainless steel would provide adequate strength, while being

simpler to machine than Inconel.

The copper clamp connecting the wire to the TNC lead is sufficiently recessed

from the plasma, and moreover insulated by an alumina shell, such that it is not at

risk of damage from the plasma, but need only provide excellent electrical contact

between the external power source and the antenna winding.

4.2.4 Construction

The Shoelace antenna components were machined at a number of external contractors.

The Shoelace frame was cut from the stainless stock at Essex Engineering (Lynn,

MA). BB&B Machine, Inc. (Wareham, MA) provided the molybdenum limiter tiles

and wire termination block components (excluding the ceramic pieces), while Plus

One Corporation (Peabody, MA) manufactured the supports and caps for the wire

pulleys.

The alumina pulleys were machined by Ceramics Grinding Co., Inc. (Maynard,

MA), as were inserts isolating the left and right halves of the base structure, and the

92



Table 4.2: List of Materials

Part Material
Wire ML (0.3% La by mass [117]) molybdenum alloy
Pulley alumina, AL-998 (99.8%-pure Al2O3)
Shoelace limiter tiles TZM (0.5% Ti, 0.08% Zr, 0.01-0.04% C by mass

[117]) molybdenum alloy
Pulley Cap TZM molybdenum alloy
Pulley Base Inconel
Frame (housing) 304L stainless steel
Bolt, nut, washer hard-
ware

304L stainless steel

Belleville washers 302L stainless steel
Plating material for some
threaded surfaces

silver

Wire termination block copper clamp, AL-998 insulator

Table 4.3: Material Properties of Molybdenum ML04 - See [117]

Property Value Desc.
E 320 Young’s modulus (at 20 °C), [GPA]
σ 1.79 × 107 ≈

σCu/3.3
Electrical conductivity [S/m]

ρ 1.038× 104 Density [kg/m3]
Cp 250.8 Specific heat capacity [J/(kg·K)]
k 138 Thermal Conductivity [W/(m·K)]
α 5.30× 10−5 Thermal diffusivity, α = k/(ρCp) [m

2/s]
αE 5.2× 10−6 Coefficient of thermal expansion (at 20 °C), [m/(m K)]
TR 1300°C Recrystallization temperature
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insulating shell around the copper termination block. This company also supplied

the alumina for these parts.

The stainless steel stock was sourced from Alliant Metals (Hampstead, NH), while

the Inconel was purchased from High Temp Metals (Sylmar, CA).

4.3 Antenna Damage

The Shoelace antenna was installed in August, 2011, and prior to the submission

of this thesis, it completed two full C-Mod experimental campaigns. It survived

the first without incident. However, the second campaign saw a number of high-

performance discharges in the lead-up to an extended shutdown of Alcator C-Mod.

In August of 2012, 34 days before the end of the second campaign, the antenna

was severely damaged, with wire melting and breaking, as shown in Figure 4-3a.

Incredibly, after this incident, the wire between the two layers reattached and melted

together, effectively providing a current path for the lower half of the antenna. The

antenna was operated in this state at normal current levels for all of the reverse-field

discharges discussed in the next chapter. Eventually, even this self-patch failed, and

a second fault developed, pictured in Figure 4-3b.

The fact that the antenna wire remained trapped on the device, rather than

unwinding, is significant, and speaks to the efficacy of the winding posts’ design to

lock the windings from falling inward in this way. Were this not the case, operation

on C-Mod would have been halted to allow for a manned access to remove the wire –

a multi-week repair that would have canceled most of the run campaign subsequent

to the antenna fault.

4.4 RF Power System

This section introduces the radio-frequency (RF) power system built to drive the an-

tenna. The three original high-level design constraints of this system were as follows:

1. the antenna is characterized electrically as an inductor, L ≈ 6 µH, with a small
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Shoelace

antenna

(a) (b)

Figure 4-3: (a) Image of antenna suffering a major fault, obtained from a
550.6 nm light imaging system [118]; the bright spot next to the antenna is the GH
(main) limiter, which also experienced melt damage. (b) Close-up image of damaged
antenna taken after the conclusion of the antenna’s second campaign. The wire has
melted through in two places near the midplane; the greater material removal on the
upper fault suggests that it occurred first.

but variable resistance, 0.4 . R . 0.8 Ω,

2. the power system must provide high and relatively constant current amplitude,

& 60 A across a wide (50 < f < 300 kHz) frequency range, and moreover be

able to adjust the frequency rapidly (slew rate ∼ 1 MHz/s or better) in real

time, and

3. the RF power source should be provided by commercial 50-Ω amplifiers.

The design suggested by these constraints requires an agile matching network able

to interface the commercial 50 Ω amplifiers to the inductive short presented by the

antenna, and rapidly adjust in response to a variable frequency. This was, indeed, the

approach followed for the Shoelace antenna, and it is described in detail below. In

Sections 4.4.1, 4.4.2, and 4.4.4, the design and construction of the matching network,

source, and phase lock systems are described in turn, while Section 4.4.3 gives an

overview of the matching network calibration procedure. Finally, in Section 4.4.5,

the overall performance is discussed. The reader is also referred to [115].

In general, the system met or exceeded design goals, and routinely provided& 80 A

of current in the lower-half of the frequency band, 50 < f < 150 kHz, though current
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availability tapered to 40 A at the 300 kHz level due to increased reflected power.

The system also proved flexible, able to adapt to a major fault in the antenna which

effectively halved its impedance, as described above. As this thesis is being prepared,

the available power of the system is being expanded from 2 to ≥ 8 kW, nearing

the upper threshold of allowed voltages and currents in the system. This upgrade is

facilitated by the use of standard 50 Ω amplifiers which can essentially be swapped

out in exchange for higher-power units.

4.4.1 Matching Network

Design

The low-frequency matching problem with inductive and resistive load is solved by

the L-match configuration [119, Chap. 10]. This network makes use of two reactive

elements, chosen to map the two components of an arbitrary complex load impedance

to a particular source resistance. Collins et al. also employed an L-match network

[82, 83] in their single-dipole antenna system, built for exciting shear Alfvén waves in

a tokamak edge, though in that instance, the matching network had a low-Q and was

broadband in the traditional sense (allowing all frequencies simultaneously through

a wide passband), as opposed to the high-Q, narrow-but-rapidly-moveable passband

approach pursued here. The low-loss requirement of the present context is necessary

in order to maximize current throughput in the antenna, given the very rapid spatial

decay of the antenna-driven vacuum field.

There are eight configurations of the L network, encompassing the combinations

of the series leg being on the source- or load-sides of the parallel leg, and whether

each leg is capacitive or inductive [119, Chap. 10]. Since the load presented by the

antenna is mostly inductive, the L networks which provide a match over the largest

frequency range are those with purely capacitive elements.

Figure 4-4 illustrates the L network implemented in the present work. This is

combined with a two-input, single-output RF combiner built from two transformer

cores, which completes the impedance match. In the discussion that follows, ZLI
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Figure 4-4: Schematic of antenna load, source power, and matching network interface
used in this study. L and R are the antenna load inductance and resistance; Cs and
Cp are the (discretely variable) series and parallel capacitors.

refers to the impedance looking in to the matching network at the source capacitor,

on the load-side of the transformer/combiner. The desired values of the capacitors,

Cs and Cp, are calculated from the constraint that ZLI should match the transmission

line characteristic impedance, Z0, divided by the square of the effective transformer

ratio, T , so that ℜ{ZLI} = Z0/T
2 and ℑ{ZLI} = 0. Representing the load by

ZL = R + jX, with X = ωL, and denoting the parallel combination of Cp and the

load as Z1 =
[

jωCp + (R + jX)−1]−1
, the matching constraints are

ℜ{ZLI} =
Z0

T 2
= ℜ

{

1

jωCs
+ Z1

}

= ℜ{Z1}

=
R

(1− ωXCp)2 + (ωRCp)
2

⇒ Cp =
X ±

√

(R2 +X2) RT
2

Z0
−R2

ω (R2 +X2)

ℑ{ZLI} = 0 = ℑ
{

1

jωCs
+ Z1

}

⇒ Cs =
1

ωℑ{Z1}
=

(1− ωXCp)2 + (ωRCp)
2

ω [X (1− ωXCp)− ωR2Cp]

=
Cp

Z0

RT 2 (1− ωXCp)− 1

(4.5)

In this application, the negative root for Cp is selected; otherwise, Cs must be replaced

with an inductor.
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Figure 4-5: Matching network schematic showing capacitor switching boards, Master
Control Board, and RF combiner.

An RF combiner accommodates multiple RF sources, as shown in Figures 4-4

and 4-5, and also further adjusts the look-in impedance of the L network to the line-

matched value. Assuming the combiner consists of M = 2 identical transformers,

each with individual winding ratio, Np/Ns = Ti = 4, the effective winding ratio

for the combiner is T =
√
MTi ≈ 5.7, such that the effective transformer ratio in

Eq. 4.5 is T 2 = MT 2
i = 32. A more precise matching condition may be further

rendered by characterizing the transformers using a T equivalent network. Doing so,

and neglecting the magnetizing and core losses, requires replacing Z0 with Z0−Zshort,
where Zshort is the short-circuit impedance presented by the transformer looking in

from the high-voltage (source) side. The required function of the L-match network is

then to map the antenna load impedance to ZLI = (Z0 − Zshort) /(MT 2
i ).
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=

Figure 4-6: Schematic of capacitor with MOSFET switch. The input to the push-pull
driver circuit is a 5 V, 500 kHz logic signal generated in a CPLD; the gate voltage
to the MOSFETs is turned on and off via amplitude modulation of the logic signal,
with modulation frequency typically not exceeding ∼ 12 kHz. The inverted square
wave is actually produced directly by the CPLD, rather than by using an inverting
buffer as shown in the figure.

Choosing Discrete Capacitor Levels

Because the power system must operate over a wide frequency range from 50-300

kHz, and the Q of the antenna is fairly high (ωL/R ∼ 5− 15), the matching network

capacitors must be variable, and set dynamically according to the RF frequency. To

achieve this, a large number of discrete capacitor levels are arranged in parallel and

switched into the network as needed to match the impedance at a particular frequency.

In particular, 81 discrete capacitor levels for each of the series and parallel legs of the

L network were chosen in the ranges, 3.3 ≤ Cp ≤ 694 nF and 48.5 ≤ Cs ≤ 1385 nF,

according to a power law, with Cs,n+1 ≈ 1.043Cs,n and Cp,n+1 = 1.069Cp,n. This

scheme provides current sharing between the discretized capacitors, so that no single

capacitor channel carries more than ∼ 5% of the total current running through the

series or parallel pathway. This selection, in combination with the current limitation

through the solid state switching, ultimately provides an upper bound on current

that may be coupled to the antenna load; the design target for this bound was 200 A,

based on heating considerations of the antenna winding.

An alternative distribution was considered which would have attempted to place

the various resonant characteristics of each switching combination so as to minimize

the reflection coefficient across the entire frequency band (see Figure 4-10). In prac-
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tice, however, the antenna impedance is not static enough to merit such a high degree

of optimization, and a more flexible capacitor distribution also allows more indepen-

dent development of the matching network from other components in the system.

Implementation

The conceptual design described above is realized by the system outlined schemati-

cally in Figure 4-5. The completed system comprises 80 dynamically-switched, as well

as one static “base load,” discrete capacitance levels for each of the series and parallel

matching legs. Solid state switching is used to add or subtract the appropriate ca-

pacitance to achieve a match. The static series and parallel capacitors are always in

place. The capacitors are laid out on custom circuit boards; a photograph of one such

board appears in Figure 4-7. The boards are 6U high (Eurocard dimension, 23.335

cm) and 22 cm deep. Each board provides four series and four parallel capacitors,

as well as associated solid-state switching and control circuitry, so that a total of 20

boards provide all of the dynamically-switched capacitor channels. The static base

load makes use of five additional boards, as described below.

Robust capacitors are needed to survive the high voltages (up to 1 kV) and cur-

rents (200 A maximum design target) produced within the power system. The compo-

nents selected to meet these requirements were AVX Hi-Q, AVX High-Voltage (HV),

and Kemet C-series multilayer ceramic (MLC) capacitors, all of which are ceramic,

C0G (lowest thermal coefficient), low-equivalent-series-resistance capacitors. The in-

ventory of capacitance values was 0.22, 0.39, 0.47, 0.68, 1.0, 4.7, and 8.2 nF; in all,

839 capacitors were used. Breakdown voltages ranged between 1 kV for the larger

capacitance components and 3 kV for the smallest. All capacitors fit the surface

mount 2225-case (0.22-in×0.25-in, 5763 metric) footprint.

Multiple capacitors are combined in parallel to produce the capacitance increment

for a particular level. In the dynamic-switching boards, the capacitors were allotted in

each discrete level according to the constraints that (a) no capacitor could account for

more than 1/3 the total capacitance in the level while (b) no more than 11 capacitors

were allowed in a level (leaving one spare solder pad in the channel), and (c) target
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capacitance values were achieved to within half the smallest allowed capacitor for

each level3.

Each capacitor switch utilizes two ST Microelectronics STW13NK100Z power

MOSFETs, connected drain-to-source so that the MOSFET body diodes do not short

out the switch. These transistors were selected in part because of their high voltage

rating (1 kV drain-to-source). The antenna sinks current from both the series and

parallel branches; this, in conjunction with the 5% increment in the capacitor distri-

butions, means that the 13 A rating of these FET’s comfortably exceeds the 200 A

antenna current design target. The 0.56-Ω drain-to-source on resistance is adequately

low given the high-degree of current sharing, while intrinsic parasitic capacitance is

low when the devices are fully in saturation [120], though not negligible (see Section

4.4.3).

Figure 4-6 shows the MOSFET driver circuit. A 500 kHz logic signal is generated

on a compact programmable logic device (CPLD), divided down from a 4 MHz clock.

This is driven by two buffers, exciting CoilCraft S5499-DL 1:5 transformers in a push-

pull configuration. The stepped-up voltage undergoes full-wave rectification with a

100-µs RC filter and drives the MOSFET across the gate and source terminals. To

turn the switch on and off, the 500 kHz control signal is amplitude-modulated by

the CPLD, either at the full-amplitude (“on”) state or the zero-voltage (“off”) state.

The actual driver circuit produces gate-source voltages of ∼14 V from the 5 V square

wave input, fully turning on the MOSFET switches with sub-millisecond transition

times.

Since the source terminals may float at RF voltages, the transformers in the driver

circuit must also provide isolation between the logic circuitry and the RF power. The

1500 Vrms isolation afforded by the transformers selected for this role surpasses the

design requirement [121].

Base level series and parallel channels replace dynamic switches with wire shorts

to provide a static, minimum capacitance for each pathway, as seen in Figure 4-8.

3Due to inventory constraints and base load requirements, 0.22 and 0.39 nF capacitors were
reserved for the smallest capacitance levels.
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Figure 4-7: Photograph of a single dynamically-switched capacitor board, one of
twenty in the system. (Left) The top and (right) bottom of the board are shown.

When all switched levels are disengaged, the base capacitor set must be able to carry

the entirety of current running through the matching network, so its construction

needs to be very robust. To satisfy this constraint, the current load is divided across

many capacitors and board channels. The idealized design, based on the capacitance

values given by Eq. 4.5 and neglecting all leakage capacitance, called for distributing

the base capacitor components roughly uniformly across five circuit boards, using

a total of 15 components for the Cp branch and 49 for the Cs. However, leakage

capacitance through the boards and MOSFETs provides some base level capacitance,

albeit amplitude-dependent in the case of the MOSFET contribution. The base

boards, themselves, have no switching capability, and so in order to adjust for the

leakage capacitance, only three of the original five boards were used in the final

matching network, trimming the total static contribution to Cp and Cs to the correct

values.

Diagnostics

High-voltage, high-current, low-loss probes are required both to monitor the power

system performance and record antenna voltage and (crucially) current waveforms for

referencing against plasma diagnostics. Moreover, the diagnostics must be compati-

102



Figure 4-8: Photograph of top of base capacitor board, which replaces MOSFET
switches with wire shorts, and spreads base capacitance over a number of circuit
boards.

ble with the ∼ 10 kΩ input impedance presented by the D-tAcq ACQ216 digitizers

available for data collection on Alcator C-Mod.

To address these needs, several current/voltage (I/V) probe units were constructed.

These employ custom-built capacitive voltage dividers, nominally providing division

of 200:1, as well as Pearson Model 101 current monitors with peak amplitude, 200 A,

and an operational band from 0.25 Hz to 4 MHz [122]. The lower frequency bound

of the voltage divider is determined by the resonance between the low-voltage leg

capacitance and the magnetizing inductance of the isolation transformer, while the

upper frequency bound results from the need to keep the impedance of the probe

much larger than that of the antenna, which is in parallel. The circuit parameters

were selected such that the phase shift in the voltage measurement resulting from the

low-frequency resonance would be ≤ 5° at 50 kHz, while the reflection coefficient, Γ,

of the matching network would be increased by no more than 5% due to the modifi-

cation of the load impedance by the voltage divider. Actual performance meets and

exceeds these constraints.

Photographs of the voltage and current probes are shown in Appendix G (see

Figures G-3 and G-4).

The voltage and current probes are housed in Compac SRF RF-shielded boxes.
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These provide insulation against the noisy environment of the Alcator C-Mod exper-

imental area, while also protecting against possible leakage of high-frequency signals

which can be accidentally coupled from other antenna systems within the tokamak.

The capacitive voltage dividers are calibrated against 100:1 oscilloscope probes,

using a high-input-impedance (∼ 1 MΩ) digital oscilloscope to record the waveforms.

The oscilloscope probes, themselves, were not suitable for typical operation because

they require higher input impedance than that presented by the digitizers available

during experiments (∼ 10 kΩ). The Pearson current monitor’s 100 A:1 V factory

calibration is generally acceptable for interpreting current data. In fact, long cable

lengths (∼ 15 m) result in a phase drift in the current measurement from 1° to 5°,

increasing with frequency across the system’s operational band. Since we are typically

interested in ∼ 180° phase shifts in transfer functions between the antenna current

and plasma diagnostic signals, and over a fraction of the whole band, these phase

errors are negligible in interpreting physics results. However, because the antenna

resistance is so much smaller than its reactance, a careful accounting of this effect is

required to extract the antenna impedance from current and voltage waveforms.

The antenna, itself, can also be used as a k⊥-specific receiver to diagnose plasma

fluctuations, as discussed in Section 5.2. In this operational mode, the power system

is disengaged, and the voltage induced in the antenna by oscillations in plasma radial

flux is coupled to a digitizer channel via an isolation transformer and a discretely-

variable voltage divider. The antenna also picks up the 500 kHz beat frequency

between two ICRF heating antennas, which operate at 78 and 78.5 MHz. The pickup

is of sufficient amplitude that it can saturate the digitizer channel if left unmitigated.

As such, it is suppressed with a simple LC notch filter. The digitized voltage is

calibrated based on a characterization of the isolation transformer, divider, and filter

to yield the voltage induced across the antenna.

Matching Network Control System

The matching network adjusts its tuning state according to the Sync signal, an output

from the RF Generator Board described in Section 4.4.2 and Figures 4-5 and 4-9.
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The period of this signal is measured in the Master Control Board (MCB), and this

quantity is then mapped to two independent tuning numbers – one each for the

series and parallel capacitor branches – using a lookup table. These two states are

communicated to all dynamically-switched capacitor boards, which adjust their states

accordingly to produce the desired total series and parallel capacitances.

The logic used to control the dynamic boards was programmed onto Altera

EPM7128SLC84-15 CPLDs; a version of the Verilog code used for programming is

available from GitHub[123]. A different CPLD, the Altera EPM2210F256C5, was

used to accommodate the more complicated logic of the Master Control Board. The

Verilog code used to program this device is also publicly available[124].

In the following, the logic flow is described briefly (see also Figure 4-5). The MCB’s

CPLD implements a period counter [125] to measure the Sync signal. The period is

averaged overM = 25 Sync cycles at an fclk = 8 MHz clock rate4, resulting in a worst-

case quantization error in frequency resolution of ≈ 2f 2
sync,max/(Mfclk) = 900 Hz.

The minimum response time is M/fsync,min = 500 µs, which occurs when the drive

frequency is at the 50 kHz lower bound of the operational band.

Separate series and parallel capacitor lookup tables are programmed onto the

MCB CPLD. The two lookup tables specify the bounds of each particular tuning

state in terms of the Sync period, measured in clock counts. The period, rather than

the frequency, is used in the bounds to avoid a division operation on the CPLD.

The state of the system is encoded in two independent, seven-bit binary numbers,

one for the series capacitors and one for the parallel. These are broadcast from the

MCB on a custom backplane feeding all capacitor boards, together with two separate

enable bits to indicate changes in either the series or parallel states. These two

states, together with the measured signal period, are also encoded in three serial

bit streams which update on every change; these diagnostic outputs are recorded

on digitizers during typical operation in order to monitor proper functioning of the

matching network during experiments.

The capacitor boards’ responses to the global tuning state are determined from

4In initial experiments, a 4 MHz clock averaging over 50 Sync cycles was used – see Sec. 4.4.4.
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Figure 4-9: Source schematic illustrating generation of input signal to RF amplifiers.

each board’s six-bit address number, which is parsed from a set of reconfigurable dip

switches. State changes on the capacitor boards are triggered by the enable bits, with

the series and parallel states controlled independently and in parallel.

4.4.2 Source and Control System

RF power is provided by two T&C AG1010 50-Ω, Class B amplifiers which provide

600 W continuous power and 1 kW pulsed power in the band from 20 kHz to 1 MHz

[126]. Typical operation of the Shoelace antenna system is limited to 1 s with several

minutes between pulses, so it is the 1 kW power limit that is relevant. The output

from both amplifiers is combined in the matching network.

Figure 4-9 illustrates schematically the basic construction of the function generator

which feeds the RF amplifiers, as well as its control system. The amplitude of the

function generator output follows an open-loop program with a single analog control
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signal, while the frequency and phase follow either open- or closed-loop (feedback)

control. In the open-loop case, an analog input provides a control signal for the

frequency of the output. In the closed-loop case, the function generator output is

synchronized, with variable phase delay, to a real-time plasma density fluctuation

signal via a phase-locked loop (PLL), as described in Section 4.4.4. The selection

between the two frequency control pathways is carried out automatically by an enable

bit which is set when the cross-power between the PLL output and plasma fluctuation

signals is sufficiently high, with an auxiliary manual remote switch to disable phase

locking. All analog control signals are generated on a remotely-programmable BiRa

Systems, Inc., Model H910 function generator, which is part of Alcator C-Mod’s

CAMAC-based data acquisition system.

Besides the two RF power outputs, the source also provides an additional 5 V

square wave – the “Sync” signal – that is generated with and synchronized to the

sinusoidal input to the RF amplifiers. It is this signal that provides control of the

matching network tuning state.

4.4.3 Calibration

The problem of assigning frequency ranges to discrete capacitance levels is manifested

in Figure 4-10. Here, the fraction of power transmitted to the matching network is

shown against frequency for many different combinations of discrete series and parallel

capacitance levels. At a given frequency, a good calibration picks a capacitance

configuration with a resonant curve whose power transmission is near 100%. However,

it is infeasible to characterize all of the available resonance curves, not only due to

the large number (812) of such curves and their variability with plasma conditions

and power level, but also because mapping out the full curve at high power is not

possible, since the RF sources will trip as reflected power increases off-resonance.

Instead, calibrating the lookup tables requires careful characterization of the antenna

load, the effective series and parallel capacitance, and the transformer, resolved across

the entire frequency range of interest. These quantities are then integrated into the

idealized models of Section 4.4.1 to synthesize initial tables, which are then optimized
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manually with additional trials.

The most reliable technique for these operations is to excite the system under RF

power, sweeping the frequency across the operational band and digitizing voltage and

current waveforms across the components on an oscilloscope. The impedance over

each component is then computed by processing the recorded signals; this frequency-

dependent impedance data can be used directly, or parameterized in circuit models.

Figure 4-11 compares the antenna impedance obtained with this procedure (at room

temperature) against estimates provided by simple analytical models for resistance

[127] and inductance. These models are derived in Section B.3 of the appendix.

The transmission lines and vacuum feedthrough connecting the power system to the

antenna contribute a non-negligible amount of impedance, and are included in load

characterization.

In fact, the antenna impedance is not static; it varies with plasma conditions as

heating from the plasma reduces the winding conductivity, and as antenna/plasma

coupling changes. Fortunately, it is not necessary to retune the matching network be-

tween plasma discharges. Instead, characterizing the antenna impedance once under

realistic conditions is sufficient, barring major faults developing in the antenna, and

adequate results can also be obtained by assuming an unchanged inductance from

the value with no plasma present, since antenna/plasma coupling has only a minimal

effect, and a resistance increase commensurate with an estimated temperature rise of

the antenna winding (in this case, R increases by approximately 50% during a plasma

discharge).

With regard to characterizing the matching network’s discrete capacitor levels,

there are two non-ideal effects to consider. The first is the inclusion of stray capac-

itance between traces on the circuit boards. In each board, the static stray series

and parallel capacitances are ∆Cs ≈ 16 and ∆Cp ≈ 18 pF. Totaling over the 20

dynamically-switched boards and five base level boards gives total static stray capac-

itances of ∆Cs ≈ 400 and ∆Cp ≈ 450 pF, both negligible values.

Leakage also occurs across the MOSFET switches. This is a nonlinear effect, as the

drain-to-source parasitic capacitance drops off rapidly with increasing drain-to-source
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voltage. Since the range of parasitic capacitance in these transistors spans hundreds

to thousands of pF per device [120], this effect cannot be neglected, particularly

for the higher frequencies, which require smaller capacitance values. This causes

a complication in calibrating lookup tables. Initially, low power must be used to

characterize the effective capacitances and load; otherwise, an abundance of reflected

power will result in a trip at the RF sources. However, at higher powers, the nonlinear

capacitance changes, detuning the system and again leading to high reflected power

and trips at the source. As such, an iterative procedure is required, stepping the

power up gradually while retuning the system after every step. In practice, three to

four steps are adequate for the full frequency range.

Figure 4-12 shows one of the finished pairs of lookup tables used in the first round

of antenna experiments.

4.4.4 Phase Locking to Real Time Fluctuation Measurement

The desire to explore feedback stabilization or destabilization of plasma oscillations

motivated the development of a phase lock system. Figure 4-9 provides a simplified

schematic of this system’s operation. A phase-locked loop generates a square wave

that follows a real-time analog output from the Phase Contrast Imaging (PCI) di-

agnostic [53], which resolves line-integrated plasma density fluctuations. When the

cross-power between the diagnostic input and the locked square wave passes a thresh-

old level, an enable bit is set to indicate a successful lock. If a second remote switch

is also set, frequency control for the power system is changed from a pre-programmed

evolution to the live lock.

The phase relationship between the locked square wave and the plasma signal can

be adjusted in two ways: either via hardware switches to produce a 0, 90°, 180°, or

270° lag, or a separate phase delay circuit board. In the separate phase delay unit,

the square wave is sampled at 16 MHz and stored in a cache. The input signal period

(typically ∼ 6− 20µs) is also measured by counting the number of clock cycles, Nclk,

between rising edges – an M = 1 period counter. From this measurement, a delay is

calculated. The output of the phase delay board is the state of the input square wave
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delayed by this amount, as retrieved from the cache. An Altera EPM2210F256C5

CPLD implements the required logic. The Verilog code used to program the CPLD

has been made publicly available [128].

The challenges of locking to a plasma mode in this way are suggested by Figure

5-15, which shows actual performance of the locking system. The rapid evolution

of the QCM – the fluctuation to which the power system must lock – is apparent

from the PCI spectrogram in the top of the figure, where the time-evolving peak

in the short-time spectra is due to the QCM. Building a phase-locked loop to track

such a variable signal requires a careful balance between stability and response time.

Moreover, rapid state changes in the matching network are required to provide a good

impedance match over the duration of the antenna pulse. Indeed, the initial response

time of the matching network state changes – 1 ms – was found to be too slow, such

that the MCB clock rate was doubled to 8 MHz, and the period count halved to

M = 25, in order to reduce the upper bound on the response time to a faster 500 µs.

4.4.5 Performance

Figure 4-13 summarizes the capability demonstrated by the Shoelace power system.

The top frame shows the power fraction transmitted to the matching network across

the entire frequency band during an actual plasma discharge, the middle frame shows

the current amplitude in the antenna for the same discharge, while the bottom frame

shows the total power output from the RF sources. At least 85% of source power

reaches the antenna across the entire frequency band from 50-300 kHz, with better

efficiency in the lower band from 50-150 kHz, which was of primary interest in ex-

periments. Currents in excess of 80 A were achieved routinely in the lower frequency

band, and the system operated reliably for hundreds of pulses. These performance

characteristics exceed the design goals set forth at the project’s inception.

Figure 4-14 shows results from a typical antenna experiment [129]. The top pane

is a spectrogram of a PCI signal – it shows the evolution of the spectral content in

line-averaged plasma density fluctuations. The distinctive, somewhat broad feature

setting in at around 0.98 s and spinning down in frequency indicates the presence of
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a quasi-coherent mode. The antenna-driven perturbation is visible as a triangle wave

following the pre-programmed frequency waveform; it appears in the spectrogram

just prior to the onset of the QCM. The antenna frequency is compared with the

frequency of maximum spectral content in the middle pane of Figure 4-14, and the

bottom pane shows the current driven in the antenna. The current varies between

68 and 83 A in this discharge; it tracks the antenna frequency, falling slightly with

increasing frequency as the skin effect raises the antenna resistance. A slow droop

in current over the duration of the pulse follows from the increase in the antenna

temperature, and hence resistance.

Figure 5-15 shows the operation of the antenna with the phase-locked loop en-

gaged. The format of the data is as in Figure 4-14. Initially, the source frequency

remains at a stationary, pre-programmed value. At 1.128 s, the lock enable bit goes

high, indicating that the cross power between the locked waveform and the real-time

plasma signal from the PCI diagnostic has crossed a threshold value. Subsequently,

control passes to the phase lock system, which successfully tracks the QCM frequency

until the mode coherence drops around 1.4 s. However, more careful analysis shows

that the phase lag between the antenna current and plasma signal is not fixed; this

is lost when the function generator tries to lock to the output from the phase de-

lay board. The square-wave envelope of the antenna current shows the amplitude

modulation employed to help discern the antenna’s effect on the fluctuation signal.

Several very short trips at the RF source are visible, but the nominal current level

stays constant despite the rapidly-varying frequency.

Phase-locked operation is discussed in Section 5.7.1.

It should be noted that the matching network calibration is adaptable. As noted

above, at one point in the experimental campaign, a fault developed in the antenna:

half of the windings were shorted out. This required a new calibration for the capacitor

look-up table. Despite operating at roughly half the normal impedance, the system

was still able to drive up to ∼ 80 A in the antenna, albeit in a reduced band from 80

to 150 kHz.
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4.5 Experimental Setup

4.5.1 Discharge Development

Discharge parameters from the Shoelace experimental campaign approximated those

used in the earlier examination of the QCM by Snipes et al. [33], since the Shoelace

antenna was designed based upon the characterization of the QCM provided by this

study. This choice was additionally motivated by the need to reduce the gap between

plasma and antenna, as described above. The lack of auxiliary heating in these

ohmic EDA H-modes achieved in these target discharges helps to avoid damaging the

winding given its proximity to the plasma.

Departures from this base plasma equilibrium were made to increase the antenna

response by minimizing antenna/plasma separation, survey the effect of different

plasma parameters on the response, and attempt to map other diagnostics to the

antenna. Details are described in Alcator C-Mod Mini Proposals 697 [130] and 719

[116].
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together with the outline of the Alcator C-Mod vacuum vessel, limiter, and divertor
tiles. The outer strike point hits the “slot” – the lower-right corner of the divertor.

Traces from a typical discharge are shown in Figure 4-15. Transition to H-mode

was facilitated by ramping down the toroidal field to reduce the threshold heating

power. Since EDA H-modes tend to favor higher q95 [26], it was expected that this

parameter would have to be subsequently ramped up after the transition to ELM-free

H-mode; in practice, this was not necessary, and q95 was maintained near the value

that optimized the alignment between the Shoelace winding and the equilibrium field.

However, creating an equilibrium field in which the outer strike point intersected the

wall in outer corner of the divertor – the “slot” – proved to be particularly helpful

in accessing the ohmic EDA H-mode. The LCFS and strike points from such an

equilibrium are shown in Figure 4-16. In reverse-field discharges, the strike points

intersect the upper divertor, which has no such recessed space, and so this technique

was not available. Instead, ∼ 30 ms ICRF pulses were used to help trigger transition

to H-mode, though robust ohmic EDA H-modes proved difficult to produce5.

The edge region of several ohmic EDA H-modes used in Shoelace antenna exper-

iments was well-diagnosed by the Mirror Langmuir Probe (MLP), and its properties

are discussed in detail elsewhere[32]. The MLP revealed that the LCFS in these dis-

5One was obtained on Discharge 1120926003.
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Figure 4-17: Plan view (R, φ) of Alcator C-Mod tokamak indicating locations of
Shoelace antenna and fluctuation diagnostic measurements on the LCFS. Also plotted
are magnetic field lines on the LCFS which map to rungs on the Shoelace antenna.
Adjacent field lines alternate in color between blue and orange. The 10 equispaced
horizontal ports are labeled A-K (skipping the letter, I).

charges is typified by Te ≈ 50 eV and ne ≈ 1.5× 1020 m−3, so that τei ≈ 100 ns and

τii ≈ 5 µs, with k⊥ρs ≈ 0.07 for the antenna-imposed wave number.

4.5.2 Diagnostic Setup

Figure 4-17 shows a plan view (R, φ) of Alcator C-Mod, and indicates the placement

of the Shoelace antenna relative to a number of fluctuation diagnostics; a (φ, z) view is

shown in Figure 4-18, together with several poloidal cross sections of key diagnostics.

Shown also are field lines along the last closed flux surface; these connect to the

positions on the LCFS to which the antenna rungs project along rays to the antenna

arc center. The mapping scheme is illustrated in Figure 4-19. The discussion in

Chapter 5 reveals that, in fact, the antenna-driven fluctuation is guided by field lines,

such that diagnostics which do not map to the antenna on a field line near the LCFS do

not observe the driven mode. The diagnostics which are almost always mapped to the

antenna include phase contrast imaging [53] (PCI), measuring line averaged density

fluctuations, ˜̄ne, with 32 vertical chords in a poloidal cross section uniformly spaced in

major radius, ∆R =2.7 mm; three polarimetry [131] chords, sensitive to both density
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360° (toroidal). Breakout plots underneath are (R, z) cross-sections; units on axes are
in meters.
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and magnetic field fluctuations (though in the present work, the contribution from

B̃ is negligible); and wall-mounted Mirnov coils [92], measuring dBθ/dt and sampled

at fs =2.5 MHz. The reflectometer [34], scanning Mirror Langmuir Probe [132], and

gas puff imaging diagnostics [133] do not map to the antenna.

The reader is directed to the text on plasma diagnostics by Hutchinson for an

overview on the operating principles of these and other measurement apparatus [134],

as well as the references listed above for information specific to their implementation

on Alcator C-Mod.

All fluctuation signals are recorded on Model ACQ216 digitizers manufactured

by D-tAcq Solutions, Ltd. [135] The input impedance for these digitizers varies

slightly, as the digitizers are customized for specific applications, but is typically

around 10±2 kΩ. The analog signals of the Mirnov coils are sampled at fs=2.5 MHz,

while those of the PCI chords are sampled at fs = 5 MHz. The polarimetry chords

are oversampled at 20 MHz, and then processed onto a lower 4 MHz rate.

Ensuring that the timebases of different fluctuation diagnostics are aligned is

crucial for cross-phase analysis, as explained in Section E.1 in the appendix. The

synchronization procedure is described in [136]. However, faults in the synchroniza-

tion hardware meant that this system was disabled for the PCI diagnostic during the

Shoelace antenna experiments. Fortunately, the discrepancies between the PCI and

global timebases are sufficiently small and repeatable that they can be calibrated out

to adequate accuracy for the ∼100 kHz signals of interest. This procedure is described
in Section E.2 of the appendix.

4.5.3 Shoelace Operation

As discussed above, open-loop amplitude control, as well as both closed- and open-

loop frequency control, are available to the Shoelace antenna power system. In ex-

periments, the Shoelace antenna amplitude was modulated in two ways: (1) a 100%

gating, effectively turning the antenna on and off in order to discern its effect on the

plasma from the intrinsic fluctuations, and (2) a smooth tapering of the amplitude

at higher frequencies, especially > 200 kHz, to reduce the likelihood of a fault at the
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power source due to increased reflected power.

Open-loop frequency modulation involved scanning the frequency linearly in a

triangle wave, occasionally in a wide range from 45-300 kHz, but more typically in a

narrower, 50 kHz scan, often between 85 and 135 kHz. The slew rate of these scans

was typically limited to ∆f/∆t = 1 MHz/s, which represents the lower bound on how

fast the matching network can transition between every state in the lookup table. In

fact, the matching network transition rate is usually faster than this, and when this

limit does apply, it simply means that the matching network will skip over tuning

configurations during the scan; it would still provide an adequate match at lower

frequencies, for which the tuning configurations are spaced more closely together.

However, the slew rate is also limited by the frequency resolution desired in the scan.

As an example, with a 1 MHz/s slew rate and a nominal antenna drive frequency of

100 kHz, the frequency varies by approximately (∆f/∆t)/f = 1 MHz/s/100 kHz=

10 Hz over the course of a single period of the drive. Typically, a large number of

cycles is desired to improve the statistical quality of the various estimates of spectral

quantities being measured at a particular drive frequency. If 50 cycles is deemed an

adequate number, then, with the same parameters, the antenna drive frequency scans

through ∼500 Hz as these 50 cycles are recorded, putting an additional limit on the

frequency resolution obtainable in spectral estimates.

A square wave frequency modulation envelope was also utilized in early experi-

ments as a means to investigate exciting the plasma “on” and “off” resonance, though

these plasmas were not in H-mode, had a larger spatial gap from the antenna, and ex-

hibited a larger mismatch between field and winding pitch, so that no density response

was achieved.

The antenna was operated under closed-loop frequency control for a limited num-

ber of discharges, as discussed in Sections 4.4.4 and 5.7.1.
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4.6 Overview of Signal Processing Methods Em-

ployed in Data Analysis

The fluctuation diagnostics listed above provide digitally-sampled representations of

analog signals. The analog signals are direct measurements of plasma fluctuations.

Fluctuations in plasmas are typically “nonstationary,” varying in both time and fre-

quency. Because the underlying processes producing the oscillations are often either

not well understood, chaotic, or both, the fluctuations are typically analyzed as ran-

dom signals, and the associated suite of spectral analysis techniques for such signals

are applied to extract information, including wave or mode numbers; the location,

height, and width of spectral peaks; and the degree of coherence. What follows is a

brief introduction to the particular analysis methods used in the following chapter,

as well as some of the appendices. The emphasis is on explaining how the tools are

used, rather than how they are crafted. For a comprehensive and standard resource

on discrete time signal processing, the reader is referred to [137].

Despite the fact that all signal processing operations described below are applied

to discrete signals, introducing them on continuous systems aids in their conceptual-

ization. The cross power spectral density (shortened to cross power in the discussion

below), Pxy, for continuous, stationary, and real signals, x(t) and y(t), is defined as

Pxy(jω) =

∫ ∞

−∞
dτ e−jωτ

∫ ∞

−∞
dt x(t)y(t+ τ), (4.6)

which is identified as the Fourier transform of the cross-correlation of two signals. The

cross-correlation is closely related to the convolution operation, differing only in the

fact that signal, y, is not flipped in time as it is slid past signal x, since the definition

of this operation is motivated by a desire to characterize how far into the future a

signal remains coherent, rather than summing the impulse response from prior input

in order to retrieve the signal’s present value. This, together with the convolution

theorem, indicates that Pxy(jω) = Y (jω)X∗(jω), where Y (jω) and X(jω) are the

Fourier transforms of y and x, and the asterisk denotes complex conjugation. The
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phase angle of Pxy is then the difference between the phases of Y and X, ∠Pxy(jω) =

∠Y (jω)− ∠X(jω) = ∠{Y (jω)X∗(jω)}.
The auto power spectrum, or spectral density, Pxx(jω), of signal, x(t), simply

replaces y(t) with x(t) in Eq. 4.6.

The cross coherence spectral density estimate is given here by

Cxy(jω) =
Pxy(jω)

√

Pxx(jω)Pyy(jω)
. (4.7)

Cxy is normalized such that 0 ≤ |Cxy| ≤ 1, and provides a measure of the correlation

between two signals. Signal processing literature sometimes refers to the square of

this quantity as the cross coherence spectral density, but the form in Eq. 4.7 is used

here in order to make the phase of Cxy less ambiguous, since in this representation,

∠Cxy(jω) = ∠Pxy(jω) = ∠Y (jω) − ∠X(jω), and especially, to simplify unwrapping

of complex phases across multiple diagnostics. The magnitude squared coherence,

|Cxy|2, is labeled as such in the next chapter.

Similarly, the transfer function, or frequency response, is given by

Hxy(jω) =
Pxy(jω)

Pxx(jω)
. (4.8)

The transfer function, H(jω), can be thought of as the coherent output registered in

the signal, y (e.g. output from a PCI chord or a Mirnov coil), caused by, and related

linearly to, the input signal, x (the antenna current waveform). It is helpful in distin-

guishing peaks in the frequency response from excursions of the “input” amplitude.

These peaks can then be characterized by their center frequency (corresponding to the

natural resonant frequency of the mode), bandwidth (corresponding to the damping

rate), and overall magnitude. Again, the phase is the difference of the phases of Y

and X, ∠Hxy = ∠Cxy = ∠Pxy = ∠Y (jω)− ∠X(jω).

Examining the plasma response to the antenna through the transfer function is a

commonly employed analysis technique in the Active MHD literature [84, 90, 88, 92,

93]. There, the quantity is often calculated via “synchronous detection,” appropriate

to situations with a single peak in the spectrum. This time-domain method beats
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(multiplies) the output signal with the input signal and its quadrature, low-pass

filters the product, and then normalizes by the low-pass-filtered square of the input.

Its operation in the time domain makes it amenable to real-time processing using

analog, digital, or mixed-signal circuitry, while digital post-processing is also carried

out with the aid of the Hilbert transform to provide the quadrature to the input.

Synchronous detection analysis is not used in the following chapter, but was employed

in some of the initial analysis of Shoelace antenna data.

Because the plasma fluctuation signals vary in both time and frequency, short-

time spectral analysis is employed, not only for the spectral densities of individual

signals, but for the pairwise estimates of the cross power, cross coherence, and trans-

fer function, as well. In this case, the data is divided into short segments, or bins, and

spectral analysis is performed within each segment. The Hamming window6 [137, Eq.

5.17 and 7.60d] is used to select segments of the data; this is a moderately-tapered

window that does not vanish at the endpoints, and provides reasonable spectral res-

olution and dynamic range.

The pairwise signal analysis performed here involves computing an estimate of the

auto- and complex cross power using the Welch’s modified7 periodogram8; at a high

level, this method divides a segment of data of length Q, into windowed subsequences

of length, M , computes the spectral quantity in each subsequence, and then averages

the result over all subsequences [137, Sec. 10.5.3].

All pairwise signal processing operations (e.g. calculations of cross coherence or

cross power) are done at the slowest sampling rate – that of the Mirnov coils and

Shoelace antenna voltage and current measurements (fs = 2.5 MHz). The PCI and

polarimetry diagnostics (with sampling frequencies, 5 and 4 MHz) are downsampled

onto the 2.5 MHz rate. Since the polarimetry sampling rate is a non-integer multiple

of this lowest rate, an interpolation step is required. The window length is chosen

to be M = 210 (∼ 0.41 ms), while the bin over which spectra are averaged has

6w[n] = 0.54− 0.46 cos
(

2πn
M

)

, 0 ≤ n ≤M , and 0 otherwise.
7The designation, “modified,” follows from the use of a non-rectangular window function.
8In this context, the periodogram refers to the method of estimating the spectral density, and

cross spectral density, by direct discrete Fourier analysis of the signals, rather than on the cross- or
autocorrelation functions.
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Q = 213 samples (∼ 3.3 ms). Hamming windows are applied both to the subsequence

of length, M , and the larger bin of length, Q. The set of spectra that are averaged

overlap by 50%; as such, 2Q
M
−1 = 15 spectra are computed and averaged in each bin.

Likewise, the bins of length, Q, are also overlapped by 50%. Then, for a typical 1 s

data sequence, with N = 2.5× 106 samples, there are 609 ≃ 2N
Q
− 1 pairwise spectral

estimates, each corresponding to a bin Q = 213 samples (∼3.3 ms) long, and with

frequency resolution, fs/M ≈ 2.4 kHz.

The pairwise coherence and transfer function calculations presented in the next

chapter and the appendices are most typically computed between a fluctuation signal

and the digitized antenna current measurement, though other analyses between pairs

of fluctuation signals are also presented.

Spectrograms of individual signals are computed using short-time Fourier analysis

over segments of length, Q = 212 samples, for the Mirnov coil signals sampled at

fs = 2.5 MHz, and Q = 213 samples for the polarimetry (fs = 4 MHz) and PCI

(fs = 5 MHz) signals. Hamming windows are also applied to these segments, and

a 50% overlap is used. In the case of the Mirnov coil and PCI signals, this results

in spectrograms with 1220 ≈ 2N
Q
− 1 temporal points and fs/M ≈ 610 Hz frequency

resolution. For the polarimetry signals, there are 976 temporal points and ∼ 488 Hz

frequency resolution.

All signal processing operations presented in this text were carried out in the

Matlab ® environment with access to the Signal Processing Toolbox, though the

Python-based scipy suite was employed during the course of the experiments. The

results of the cross coherence, transfer function, and cross power calculations, along

with several other pertinent signal processing quantities, are stored in the Alcator

C-Mod MDSplus database in the Magnetics tree of the relevant discharges, under the

Shoelace subtree.
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Chapter 5

Results and Discussion

We have to learn again that science without contact with experiments is an enterprise

which is likely to go completely astray into imaginary conjecture.

–Hannes Alfvén

5.1 Introduction

This chapter presents data from the initial round of Shoelace antenna experiments,

which were carried out between June and October of 2012. Use of the antenna as

a fluctuation diagnostic is reviewed in Section 5.2 before the main results of active

operation are discussed. Section 5.3 describes the Shoelace signature as observed on a

number of fluctuation diagnostics, revealing that a strong field-aligned response is ob-

served in ñe and B̃θ during H-mode, but only a B̃θ is apparent in L-mode. Section 5.4

analyzes the relative phase between fluctuation measurements to estimate the wave

number of the driven mode; as expected, the driven mode retains the precise mode

number of the antenna winding, but while the antenna has no preferred perpendic-

ular launch direction, the driven mode selects the electron diamagnetic drift (EDD)

direction (in the laboratory frame). The transfer function between the antenna and

fluctuation diagnostics is analyzed in Section 5.5, and is found to be well-described

by the functional form of a simple pole with a damping rate, γ/ω ∼ 5 − 10%. The

field-line-guided behavior is revisited in Section 5.6 as part of the broader discus-
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sion on the physical origin of the driven mode. Finally, efforts at examining possible

interaction with the intrinsic QCM are examined in Section 5.7 from both a closed-

loop (feedback) and open-loop perspective, though it is found that such interaction is

marginal, at best, and further experimentation, especially at higher power, is needed

before drawing conclusions on this topic.

The reader is also directed to reference [129], which covers much of the same

material, as well as to [32] for a characterization of the intrinsic QCM from the set

of discharges presented here.

5.2 Shoelace Antenna as a Receiver

Before discussing the results obtained from energizing the antenna, it is interesting

to examine the voltage induced across the antenna by the fluctuating radial magnetic

field associated with the QCM. Figure 5-1 shows a spectrogram of the short-time

magnitude squared coherence between this induced voltage, measuring B̃r, and the

signal from a PCI chord, measuring ˜̄ne; the high degree of coherence illustrates that

the antenna, when used as a receiver highly selective in k⊥, is sensitive to the QCM.

The presence of a strong induced signal across the eighteen dipole loops of the antenna

also indicates that the QCM has a long poloidal correlation length in this particular

discharge.

Low-frequency, broadband turbulence may also be interrogated by the Shoelace

antenna when it is used as a receiver. Figure 5-2 shows a spectrogram of the induced

voltage over the antenna during a limited, L-mode discharge. This is compared with

a spectrogram from a Mirnov coil, sensitive to Ḃθ. The antenna’s selectivity in k⊥

isolates a narrow slice of the broadband spectrum. The activity in this k⊥ range is

situated mostly between 200-400 kHz (the same frequency range typically associated

with the WCM) in this discharge, and is modulated in frequency with the sawtooth

crash.

It should be noted that the 500 kHz beat from the ICRF antennas1 would have

1the D-port and E-port antennas, in particular, operating at 80.5 and 80 MHz
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Figure 5-1: Short-time (∼ 3.3 ms bins) magnitude squared coherence spectra between
voltage induced over Shoelace antenna and PCI fluctuation signal showing that the
Shoelace antenna can pick up the QCM fluctuation.

caused the Shoelace induced voltage to saturate the digitizer were it not for a notch

filter employed to the suppress this signal. The filter’s transfer characteristic was

calibrated and removed from the signal analyzed in Figure 5-2.

It should also be mentioned that the antenna had developed a short across its

winding before this discharge, effectively eliminating the antenna’s upper half (see

Section 4.3). Nonetheless, the antenna still measured plasma fluctuations, providing

good selectivity in k⊥ (though with a somewhat broader full-width-at-half-maximum

by approximately a factor of two).

5.3 Antenna-Driven Edge Plasma Response

Figure 5-3a shows spectrograms from a PCI chord, a polarimeter chord, and a Mirnov

coil, as well as n̄e and Dα traces, from a discharge in which the Shoelace antenna was

energized. Additional traces from this discharge are shown in Figure 4-15. A dashed

line indicates the transition between ohmic L- and ohmic H-mode. A brief ELM-free
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Figure 5-2: Spectrograms (here, logarithm of autopower) of (a) voltage induced over
Shoelace antenna when used as a receiver, characterizing a narrow slice in k⊥ of the
broadband turbulence spectrum in B̃r, and (b) a Mirnov coil showing full broadband
turbulence spectrum. The subplot in both figures is of the edge temperature, as
provided by the electron cyclotron emission diagnostic, showing the characteristic
inverse sawtooth crash.

H-mode gives way to an EDA H-mode, with a QCM visible in the spectra of all three

diagnostics, and, after a short delay, an accompanying rise in Dα, consistent with a

reduction in particle confinement.

Also visible in the spectrograms of all three diagnostics is a triangular waveform

which precisely tracks the Shoelace antenna drive frequency. Several observations are

noteworthy: (a) a B̃θ perturbation at the antenna frequency is visible in both ohmic L-

and H-mode, while the driven ñe fluctuation only appears in H-mode; (b) the driven

fluctuation appears strongest near the QCM center frequency, but is also present away

from this frequency; (c) the driven ñe appears early in the ELM-free H-mode phase,

slightly preceding the QCM. These remarks are true in general for the perturbation

driven by the Shoelace antenna.

A clearer view of the driven perturbation is offered by examining the magnitude

squared coherence between the antenna current signal, Ia, and the fluctuation diag-

nostic signals, u, |PIau/
√

PIaIaPuu|2, computed over a short, running time window

that spans about 3.3 ms. This short-time magnitude squared coherence is shown
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Figure 5-3: (a) Spectrograms of fluctuation signals from a PCI chord, a polarime-
ter chord, and a Mirnov coil during a discharge in which the Shoelace antenna was
energized, together with density and Dα traces. The Shoelace response is seen in
the triangle-wave feature in the spectrograms, which tracks the drive frequency and
appears on top of the intrinsic QCM fluctuation. The spectral amplitudes are raised
by an exponent to aid in visualizing the Shoelace response. The [deg] abbreviation in
the polarimetry panel refers to degrees of Faraday rotation. The Mirnov coil measure-
ment is given at the coil. The vertical dashed line marks the transition between L-
and H-mode. (b) Short-time (∼ 3.3 ms bins) magnitude squared coherence between
the antenna current and PCI, Mirnov coil, and polarimeter fluctuation signals. The
n̄e and Dα traces are reproduced.
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Figure 5-4: (a) Cross section showing location of two Mirnov coils, mounted on
standoffs from the vacuum vessel, the LCFS (solid black line), and field lines (×’s and
•’s) mapping Shoelace rungs on LCFS. (b) Short-time magnitude squared coherence
for each coil; there is a strong coherent response on bottom coil, while there is almost
none on top.

for the same three fluctuation signals in Figure 5-3b. We see now that the coherent

perturbation in the PCI signal appears immediately after the transition to ELM-free

H-mode, while a coherent B̃θ signal is present throughout the entire Shoelace pulse.

Another feature of the driven perturbation is that it is not global. Rather, it is

guided by field lines which map to antenna rungs. Figure 5-4 illustrates this point.

Here, a poloidal cross section is shown which contains two Mirnov coils sitting on

extensions from the vacuum vessel wall. The LCFS is also reproduced, together with

the Shoelace antenna rung positions projected onto the LCFS and mapped to this

toroidal location on field lines. Both coils pick up the QCM. However, while the

bottom coil, which does map to the Shoelace antenna, shows strong cross coherence

with the antenna current throughout the duration of the discharge, the top coil, which

does not map to the antenna, has very little cross-coherence.

It should be pointed out that the Mirnov coils do not provide a point-localized
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Figure 5-5: (a) Poloidal cross section containing PCI chords, as well as mapped
locations of antenna rungs. While the PCI chords intersect the LCFS at two points,
only the intersection below the midplane maps to the antenna. (b) The magnitude
squared coherence at the antenna frequency is plotted in the color axis against major
radius and time. This produces a one-dimensional image of the magnitude squared
coherence across the major radial direction, which evolves as the discharge progresses.
Overplotted in blue and orange lines are the antenna rung locations mapped on the
LCFS to the plane containing the PCI chords. The subplots are n̄e and Dα traces
and a spectrogram from a single PCI chord.
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measurement, and neither do the PCI or polarimetry chords. This complicates the

mapping analysis, and also leads to uncertainty in the mode location. It has been

assumed here and elsewhere in this work that the driven mode is localized to a narrow

layer around the LCFS. This assumption is inspired by the recent measurements

made with the Mirror Langmuir Probe (MLP) [32] described earlier, which show that

the QCM, itself, is localized within a ∼ 3 mm layer spanning the LCFS. Moreover,

the rapid-fall-off of the antenna vacuum field, and the experimental requirement of

minimizing the gap between antenna and plasma in order to observe a strong driven

response, limits the radial extent in which we expect to find the driven mode to

the edge plasma. Nonetheless, at present, precise measurements of where the mode

envelope is localized radially are not available; an experiment using the MLP to

make these measurements has been planned, and will be run in the months following

the completion of this thesis. However, because the field-line mapping between the

antenna and these diagnostics remains sufficiently far from the single X-point, so that

magnetic shear is low on the field line path, the results shown below pertaining to

field-line mapping are robust against this uncertainty in the mode flux surface. This

topic will be addressed again in the discussion of wave number estimates, Sec. 5.4.

Figure 5-5 provides a stronger indication of field-line guidance. The cross-section

containing the PCI chords is shown, again with an illustration of the LCFS and the

mapped Shoelace rung locations. In Figure 5-5b, a time-evolving, one-dimensional

image of the induced perturbation is produced by stacking top-to-bottom the magni-

tude squared coherence at the antenna frequency for each PCI chord, and assembling

all such images from each time slice, left-to-right. Overlaid on these images are the

evolving locations of the Shoelace rungs mapped to the PCI cross section. The coher-

ent signal is bounded in major radius by the extent reached by the Shoelace antenna

rungs. Indeed, the four rungs that map to the smallest major radii mostly do not

overlay with a perturbation, perhaps because of the increased gap between the plasma

and the rungs at the lower portion of the antenna. Moreover, in the later part of the

discharge, PCI seems to resolve very narrow lines of perturbation tracking closely

the mapped rung locations. It should be noted that the electron diamagnetic drift
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direction points toward the outward major radial direction (toward the top of the

plot, as shown in the figure) at the location on the LCFS where the antenna maps to

the PCI chords. One might conjecture that the lack of a driven fluctuation below the

lowest rungs of the antenna in Figure 5-5 might be because the driven perturbation

cannot propagate into this region. However, in reverse-field discharges, for which

the electron diamagnetic drift velocity points in the opposite direction, the driven

response is still restricted to mapped field lines, and the inner-most chords still do

not observe a coherent response.

In fact, the field-line mapping criterion predicts accurately which diagnostics do

and do not observe the driven perturbation. Figures 4-17 and 4-18 show top-down

(R,φ) and unwrapped side-on (φ, z) views of the mapped field lines, together with

the locations of a number of fluctuation diagnostics. Only the fluctuation diagnostics

which map to the Shoelace antenna – namely, the PCI chords, one to three polarimeter

chords, and a subset of Mirnov coils – ever observe a signal coherent with the antenna

current.

Section 5.6 revisits the topic of the driven mode’s field-line-guided nature in the

context of identifying the physical origin of the observed plasma response to the

antenna.

5.4 Driven Mode Wave Number and Propagation

Direction

Thus far, the analysis has focused on the magnitude of the driven fluctuation. By

examining its phase across several diagnostics, we may extract mode and wave num-

bers. Doing so shows that the driven mode has k⊥ = 1.5 cm−1 at the midplane,

precisely the same value as imposed by the antenna winding structure; is approxi-

mately field-aligned; and has a phase velocity in the laboratory frame pointing in the

same direction as the electron diamagnetic drift velocity, v∗ = ∇pe ×B/(neeB
2).

The PCI diagnostic provides a measurement of the major radial wave number, kR,
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of the line-integrated density fluctuations. To derive wave numbers resolved within a

flux surface, it is necessary to make an assumption about how the mode is localized.

It is usually assumed [53, 33] that the mode exists in a narrow layer around a single

flux surface, and that the PCI measurement, itself, can be localized to the point(s)

where the chord intersects the mode’s flux surface. Typically, the chords pass through

a flux surface at an upper and lower point; however, only the lower intersection maps

to the antenna on a field line, and so this ambiguity is removed. In the following,

we first take the driven mode to lie nominally on the LCFS, and later explore what

happens when this assumed mode layer is varied across other, nearby flux surfaces.

To aid in the calculation of wave numbers, we employ the ballooning coordinate

system described by Dudson et al. [98] The coordinate2, ζ, associated with a test

point corresponds to the toroidal angle, φ, of the location at the outer midplane,

θ = 0, which maps on a field line to the test point. ξ is the poloidal angle, θ, of the

test point; when ζ is held constant, varying ξ results in advancing along a field line.

Here, the test points correspond to the intersections between the PCI chords and the

2This is denoted by z in the nomenclature of Dudson et al., but ζ is used here to avoid confusion
with the vertical component of the cylindrical coordinate system.
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mode surface.

Figure 5-6 motivates a procedure for extracting a perpendicular wave number. The

parallel direction corresponds to ξ, and the perpendicular direction to ζ. We relate

the phase angle of the fluctuation signals, α, to the ξ and ζ coordinates associated

with the PCI chords through the expression, −αℓ = nζℓ +mξℓ + α0, for each chord,

ℓ. The negative sign in front of α appears because α is derived from the phaser

representation, y(t) = ℜ
{

|A| ej(ωt+α)
}

, while the mode number corresponds to the

traveling wave, ei(nφ−ωt) = ej(ωt−nφ) (taking j = −i). n = −∂α
∂ζ

is just the toroidal

mode number. The corresponding wave number is kφ = n/R. Approximating the

mode as field-aligned, k = k⊥ê⊥, and −αℓ = nζℓ+α0. To obtain k⊥ given n, we take

kφ to be the projection of k onto the êφ direction holding ξ = θ constant, such that

k⊥ =
n

sin (χ)R
(5.1)

where tan(χ) ≡
√
B2−B2

φ

Bφ
= 1/ν, with Bφ = B · êφ the toroidal field strength, ν ≡ B·∇φ

B·∇θ

the local field-line pitch [98], and χ and R are evaluated at the outer midplane.

The quality of the fit under the field-aligned approximation is apparent from

Figure 5-7, which plots the phase angle, α, of each chord against the ζ coordinate,

together with the least-squares fit to −αℓ = nζℓ+α0 from the outer 21 chords3, using

spectral analysis over a ∼ 3 ms time slice. Note that α is “unwrapped” - differences

between the phases of adjacent chords greater than or equal to π are eliminated

by adding multiples of ±2π. The field-aligned approximation captures the phase

progression across the PCI chords extremely well. As such, it may be concluded that

taking k⊥ ≫ k‖ introduces a negligible error in the estimate for k⊥.

It is also difficult to measure k‖ using the PCI diagnostic. This is because the

intersections between the chords and the lower LCFS span a poloidal range of θ32 −
θ1 ≈ 15°. By contrast, the range of ζ spans & 60°. These ranges, combined with the

3The outer 21 chords are selected from the full set of 32 because they reliably show a strong
coherent signal with the antenna across a number of discharges. Not all of the inner PCI chords
map to the antenna, as shown, for example, in Figure 5-5, and also the inner chords suffer greater
attenuation in coherent signal because they map to points with increased gap between the antenna
and the LCFS.
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expectation (derived from the QCM) that k⊥ ≫ k‖, means that the PCI diagnostic

cannot provide a good measurement for k‖, since most of the phase difference across

the chords is due to the phase progression in the perpendicular direction. Diagnostic

sets which cover a longer span along a field line, including the Mirnov coils, provide

estimates for k‖ which suffer from the fact that a small mapping error in ζ leads to

a large discrepancy in phase, again a result of the fact that k⊥/k‖ ≫ 1. As such, a

measurement of this quantity is not reported here. Instead, where an approximate

value is needed, it is supplied as in Chapter 3 by assuming a parallel wavelength equal

to twice the connection length, Lc ≈ 9 m∼ q95πR, which connects a point near the

lower (upper) X-point to the top (bottom) of the plasma on a field line spanning the

bad curvature region. Under this assumption, k‖ ∼ π/Lc = 0.0035 cm−1 ≪ k⊥ =

1.5 cm−1.
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Figure 5-8: (a) Calculation of k⊥ using the phase progression of the cross-power
between the antenna current and the PCI chords from each time slice of the coherence
spectrogram; a spectrogram from a PCI chord appears underneath, showing both the
QCM and the Shoelace-driven perturbation. The sign of k⊥ indicates propagation in
the laboratory frame in the same direction as the electron diamagnetic drift velocity.
(b) In this reversed field discharge, the value of k⊥ for the driven fluctuation changes
sign, consistent with the inversion of the electron diamagnetic drift direction. H-
mode is lost just after 0.8 s, after which time the antenna produces no coherent
density response.
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Figure 5-8 shows the result of performing the calculation for k⊥ using PCI data.

Prior to the onset of H-mode, there is no coherent signal in the density fluctuation,

and so the calculated value for k⊥ varies randomly and rapidly. However, immediately

after the H-mode transition, k⊥ of the coherent signal locks to the value imposed by

the antenna winding structure, namely, 1.5 cm−1. Moreover, the sign corresponds to

propagation in the laboratory frame in the same direction as the electron diamagnetic

drift velocity.

Figure 5-8b reports data from a reverse-field discharge which had an early ELM-

free H-mode (not EDA H-mode, and without an apparent QCM), followed by a back-

transition to Ohmic L-mode, and finally terminating in a disruption. For reference,

a spectrogram from this discharge of a single PCI chord is reproduced in Figure

5-10, accompanied by density and Dα traces. Here, again, during H-mode, k⊥ settles

precisely on the magnitude imposed by the antenna winding. However, now, the sign

is negative, following the reversal of the field and electron diamagnetic drift directions.

It is prudent to examine how the assumption that the driven mode is localized to

the LCFS affects the estimate for k⊥. Figure 5-9a shows the result of repeating the

k⊥ calculation after assuming the mode is localized on each of 21 uniformly-spaced

flux surfaces between 0.95 ≤ ψ̄ = (ψ−ψ0)/(ψLCFS−ψ0) ≤ 1.05; at the midplane, this

corresponds to a range from ∼ 8 mm inside to ∼ 8 mm outside the LCFS. The field-

aligned approximation is still employed. The inset shows the value of k⊥ obtained

for each flux surface for a particular ∼ 3 ms time slice around 1.20 s. The dashed

lines highlight the FWHM band, k⊥ = 1.5 ± 0.1 cm−1, expected for the antenna’s

winding structure. The estimate for k⊥ is robust against uncertainty in the identity

of the flux surface to which the mode is localized. This is because the field lines that

map the PCI chords to the midplane over this range of flux surfaces do not pass close

enough to the X-point to experience significant magnetic shear. In fact, we might

attempt to use this procedure to localize the driven fluctuation based on k⊥-matching

considerations; doing so would suggest that the driven mode sits in a layer between

0.98 . ψ̄ . 1.048 (−3 . Rmid − Rmid,LCFS . 7.5 mm). However, this estimate is

subject to error from the EFIT reconstruction. Nonetheless, it is consistent with the
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expectation that the mode is localized in the edge, near the LCFS and overlapping

with the QCM layer.

The phase information may also be reported directly as the toroidal mode number,

n. This is done in Figure 5-9b. Here, the toroidal mode number obtained from

the outer 21 chords of the PCI diagnostic is compared with that from two Mirnov

coils spaced 4.8 toroidal degrees apart. Note that the field-aligned approximation

is not applied to the analysis of the Mirnov coils, since they are displaced only in

the toroidal angle. The values obtained from the two diagnostics are comparable,

though there is a discrepancy between the stable value from PCI (between 31 and

34) and the Mirnov-supplied value prior to H-mode (during which time there is not

a coherent ñe fluctuation), and in the later part of the discharge. The lines labeled

“antenna” correspond to the toroidal mode number for a field-aligned perturbation

with k⊥ = 1.5 cm−1; the positive line closely matches the measured toroidal mode

number. Because the antenna drives a coherent B̃θ response for the entire discharge,

the Mirnov coils provide a measurement of n for the induced fluctuations prior to the

onset of H-mode.

The fact that the toroidal mode numbers calculated from PCI (giving measure-

ments of the driven mode below the midplane, and determined assuming k‖ = 0)

and Mirnov coils (placed at a different poloidal angle above the midplane, and calcu-

lated without any assumption about k‖) gives further confidence in approximating the

driven mode as field-aligned, k⊥ ≫ k‖. This is consistent with a drift wave response,

which tends to select the longest parallel wavelength, leading to the approximation

using the connection length described above, k‖ ∼ π/Lc = 0.0035 cm−1 ≪ k⊥ =

1.5 cm−1.

The role of E × B flow also needs to be considered, as alluded to in Section

3.5. Recent measurements with the MLP [32] for ohmic EDA H-mode discharges

like the ones discussed here have shown that in the QCM mode layer, the radial

electric field points outward, so that the E×B and electron diamagnetic flows oppose

one another (independent of the background field direction). As such, the QCM

propagates in the electron diamagnetic drift direction in both the laboratory and
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Figure 5-9: (a) Calculation of k⊥ under field-aligned approximation, but taking the
driven mode to be localized on any of 21 uniformly-spaced flux surfaces between
0.95 ≤ ψ̄ = (ψ − ψ0)/(ψLCFS − ψ0) ≤ 1.05, as depicted by the line color; at the
midplane, this corresponds to a range from ∼ 8 mm inside to ∼ 8 mm outside the
LCFS. Inset: the value of k⊥ obtained for each flux surface during a ∼ 3 ms time slice
around 1.20 s. The dashed lines highlight the FWHM band, k⊥ = 1.5 ± 0.1 cm−1,
expected for the antenna’s winding structure. (b) Toroidal mode number derived
from Mirnov coils, as well as PCI measurements, from a different discharge. The
Mirnov coils pick up a coherent response in B̃θ for the entire antenna pulse, allowing
a measurement of n for the driven fluctuations prior to the onset of H-mode. Also
included is the antenna toroidal mode number corresponding to k⊥ = ±1.5 cm−1 for
a field-aligned perturbation. The subplot shows a spectrogram from a single PCI
chord.
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Figure 5-10: Spectrogram of reverse-field discharge in which a resonant response to
the antenna appears on the diagnostic signals, but where there is no apparent intrinsic
QCM.

plasma frames. But∼ 1 mm inward from the LCFS, the E×B flow changes directions,

with vE = v∗ at ∼ 2 mm inside the LCFS. If the antenna-driven mode is confined to

the same narrow radial layer as the QCM, as assumed above, then it also rotates in

the electron diamagnetic drift direction in both the plasma as well as the laboratory

frame. However, a precise measurement of the driven mode layer is necessary in order

to make this statement with certainty; at present, this measurement is not available.
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Figure 5-11: Magnitude of coherent response, x|Pxy/Pxx|, where x is the antenna
current and y is the fluctuation signal, for (a,b,c) a forward-field shot with an intrinsic
QCM and (d,e,f) a reverse-field shot with no prominent intrinsic QCM. The responses
are from (a,d) a PCI chord and (b,e) a Mirnov coil. The bottom subplots (c,f) show
the antenna drive frequency (blue solid line), together with the peak frequencies in
the PCI (black solid) and Mirnov coil (green dashed) spectra. Orange vertical dashed
lines highlight peaks in the coherent response.

5.5 Transfer Function Analysis

Up until now, we have focused on the coherence of fluctuations in short (∼3 ms)

time slices. It is also instructive to examine the response across an entire frequency

scan, typically covering ∼40 kHz, through the lens of the transfer function, a quantity

introduced in Eq. 4.8 and the associated discussion.

Indeed, analysis of the transfer function reveals that the frequency response of

the Shoelace antenna is strongly peaked in H-mode, but not in L-mode. Figure 5-11

illustrates this point. It shows an estimate for the absolute amplitude of the coherent

response obtained by scaling the transfer function by the antenna current amplitude,

|H · Ia|. Both the line integrated density fluctuation, ˜̄ne, from a PCI chord and the

poloidal field fluctuation, B̃θ, measured at a Mirnov coil are shown4. For comparison,

the amplitude of the maximum spectral component of the fluctuation signal in the

band from 40 to 200 kHz is overplotted. The frequency of the maximum component for

4Extrapolating B̃θ to the LCFS requires scaling by a factor ∼ 102 that is very sensitive to the
spacing between the LCFS and the wall-mounted coil.
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each fluctuation signal is included in a subplot, together with the antenna frequency.

The data on the left-hand side (Figure 5-11a-c) are from the same discharge as that

shown in Figure 5-3, which had a fully-developed EDA H-mode with a QCM. The

data on the right-hand side (Figure 5-11d-f) correspond to the discharge in Figure

5-10, which had a short-lived ELM-free H-mode and no prominent QCM.

Each time the antenna frequency crosses the peak in the PCI spectrum – a proxy

for the QCM center frequency – there is a sharp peak in the coherent response, such

that the amplitude of the coherent fluctuation matches the peak amplitude in the

spectrum. This is true for both ˜̄ne and B̃θ measurements. We may wonder whether

the antenna is driving a fluctuation of this amplitude, or is locking the intrinsic mode

to its own phase. The second possibility might seem more plausible given that the

total peak fluctuation amplitude increases only slightly when the antenna crosses the

QCM frequency.

However, in experiments examining nonlinear interaction between a driven mode

and a coherent drift wave structure on a linear device, Brandt et al. [80] observed

frequency pulling and the appearance of sidebands in the fluctuation spectra. These

features are, at best, hard to discern from the fluctuation spectra obtained during

Shoelace antenna operation given the rapid variability of the intrinsic QCM, as evi-

denced by the analysis in Sections 5.7.2 and 5.7.3, though higher antenna power may

be needed to access this behavior.

Appendix F investigates the possibility that the apparent peaks in the transfer

function are simply the result of an artifact in the transfer function signal processing

techniques causing the intrinsic peak in the QCM to appear as a driven feature.

The analysis finds that while such erroneous peaks in the response can be generated,

the driven peaks observed in this section are larger in magnitude by a factor of

three to four, and are also characterized by a phase progression which reproduces the

wave number and propagation direction observed above, a property that the smaller,

erroneous peaks do not share.

In addition, in the case where there is no apparent QCM, the response is still

peaked around a particular frequency, as shown in the data in Figure 5-11d-f, sug-
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gesting a resonance. During the ELM-free H-mode, the coherent response dominates

the PCI spectrum most of the time, and the Mirnov coil response all of the time. The

peaks in the density response are shallower than, but still comparable to, those in

the EDA case in 5-11a-c. This is a significant result, and suggests that, on mapped

field lines, the antenna might be able to drive a fluctuation close to the level of an

intrinsic QCM, even when no such intrinsic mode is present. Given the QCM’s role

in regulating the pedestal, we might also speculate that the antenna drives transport

on mapped field lines similar to the intrinsic mode; future experiments have been

planned to investigate this exciting possibility.

Before proceeding, it is important to point out that when the field pitch angle

evolves during the discharge, it is necessary to remove a phase offset. This was not

necessary in the calculation of mode numbers using the short-time spectral analysis

because the time slices were on the order of ∼3 ms, and the pitch angle evolves

on a longer time scale, as evidenced by the mapped rung locations overplotted on

the time-evolving 1D coherence image in Figure 5-5. However, over the course of

a complete frequency scan, lasting 50 ms in these experiments, the pitch angle can

change appreciably. This effect may be accounted for in the transfer function as

Hc(jω) = H(jω)e−j∆α = H(jω)ejn∆ζ , where the subscript, c, denotes calibration,

and ∆ζ = ζ(t) − ζ0 the change in the toroidal angle mapped to the outer midplane

after an elapsed time, t.

Figure 5-12 shows the transfer function magnitude and phase over a single fre-

quency scan from three mapped diagnostics: a PCI chord, a Mirnov coil, and a

polarimeter chord. The data are from the same forward-field discharge described

in Figure 5-11a-c. The magnitudes are normalized by the maximum value over the

scan so that data from different diagnostics can be compared, while the phase is ad-

justed according to the discussion above. The peak frequency, FWHM, and relative

phase transition match across the three diagnostics. The relative change in phase of

180° over the frequency scan further suggests that the response may be modeled as a
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simple pole using an expansion of the form,

Hc(jω) = H0 +
A

γ + j(ω − ω0)
+

A∗

γ + j(ω + ω0)
(5.2)

where H0 is a real constant offset, A is the complex residue, A∗ its complex conju-

gate, γ the damping rate, ω0 the resonant angular frequency, and the property that

H(−jω) = H∗(jω) ensures a purely real output signal. The residue, damping rate,

and resonant frequency may then be used to characterize the peak.

Figure 5-13 examines the transfer function for a forward-field shot with a strong

QCM (Figure 5-13a,b), as well as a reversed-field shot with no apparent QCM (Figure

5-13c,d). In both cases, the plot of the transfer function in the complex plane (the

Nyquist plot), shown with a blue solid line, executes a circular trajectory, rotating in

the clockwise direction for increasing frequency. The green solid line plots Eq. 5.2

with parameters fit to the same peak; this functional form always appears as a circle

in the complex plane, circulating in the clockwise direction when γ > 0 (implying a

damped response).

The phases, α, of the pole residues, A, used to fit the transfer function are also

tracked and unwrapped, again revealing a major radial wave number, kR, that (a)

matches the antenna k⊥ after assuming a field-aligned structure and mapping to the

midplane, and (b) points in the direction of the electron diamagnetic drift direction,

flipping sign between the forward- and reverse-field cases.

Having closely analyzed the phase of the residue, we may investigate the other fit

parameters of Eq. 5.2. Figure 5-14a plots the resonant frequency, f0 = ω0/(2π), for

each frequency scan, along with the peak in the PCI spectrum (black solid line) and

the antenna drive frequency (black dashed line). f0 is reproduced with little scatter

across multiple PCI chords (blue solid lines), Mirnov coils (green solid lines), and

polarimeter chords (red solid lines). Moreover, it tracks very closely the frequencies

at which the antenna drive crosses the peak PCI frequency, recovering the result

mentioned earlier that the peak frequency matches the QCM frequency when there

is a QCM present.
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Figure 5-13: (a) Plot in complex plane of transfer function, H, for the eight outer-
most PCI chords (blue solid line), together with parameterized fit using Eq. 5.2
(green solid line). Arrows indicate phase angle of residue, A. The fact that circular
trajectories of H are advancing in the clockwise direction for increasing frequency is
indicative of a damped resonance. (b) Plot of −1 multiplied by the unwrapped phase
angle of each pole residue from each chord versus corresponding chord major radius.
The slope gives the major radial wave number, kR. An inset shows Shoelace mapping
on the LCFS in the PCI plane, as well as the Bφ and electron diamagnetic drift
directions. (c,d) Here, the data is from a discharge with reversed field. Again, the
sign of kR is flipped, following the inversion of the electron diamagnetic drift direction.
No QCM was present in this discharge, but the antenna response still appears to be
a weakly-damped resonance.
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Figure 5-14b shows the damping rate, γ, normalized by 2π for comparison with

the resonant frequency. The error bars correspond to the standard deviation across

independent measurements of an individual diagnostic. A damping rate of γ/ω ≈∼5%
appears across all diagnostics. The damping rate in the reversed field discharge

shown in Figure 5-11d-f is higher - around 10% - and displays more scatter across the

diagnostics. The range, γ/ω0 = 5 − 10%, is typical of these experiments, indicating

that the driven mode is only weakly damped.

The measured damping rate is discussed further in Appendix H in light of com-

plications introduced by strong edge gradients and magnetic shear.

5.6 An Interpretation of the Field-Line-Guided Be-

havior

Now that the plasma response to the Shoelace antenna has been more fully described,

let us return to the topic of the field-line-guided response of the Shoelace-induced

perturbation. This observation is particularly interesting, since it is distinct from

the QCM, which is global on the low-field side, and since it would otherwise be

expected that the perturbation should propagate across field lines in the EDD if the

mode is, indeed, of drift wave origin, like the QCM. A response strongly guided by

magnetic field lines is reminiscent of resonance cones [110, 111, 112, 109, 113, 76]. This

phenomenon was discussed in Section 3.4.2 in the context of electrostatic modes of a

cold, homogeneous plasma, for which the wave energy was found to spread from the

field line at an angle of tan(θ) = k‖/k⊥, a very small ratio in the present context. But

such electrostatic modes were found to be strongly damped by electron-ion collisions.

Moreover, accounting for warm plasma effects revealed the electrostatic modes with

wave numbers in the vicinity of those expected of the driven mode to be in cutoff (see

the Te = 50 eV line of Figure 3-4, which corresponds to the temperature, density,

field and approximate plasma-frame frequency of the driven mode at the LCFS). As

such, resonance cones are not expected to play a role in the antenna response.
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Section 3.4 showed that the group velocity of the shear Alfvén wave also runs

parallel to the background field. Recall that a field-guided response was observed

by Borg et al. in experiments on the TORTUS tokamak using a single dipole antenna

driven below the ion cyclotron frequency and intended to excite shear Alfvén waves

[81]. That dipole antenna essentially constitutes a single field-aligned rung on the

Shoelace antenna. However, a shear Alfvén wave explanation for the antenna-driven

mode does not, by itself, capture the observed resonance at the QCM frequency.

The simple interchange modes examined in Section 3.3 were found to have a purely

imaginary frequency; since these are ideal MHD modes, ω2 must be a real number, so

we might presume that the modes do propagate when they are stable. However, the

interchange mode analysis was carried out assuming ∇‖ → 0, and ballooning modes,

the extension of the interchange mode to the tokamak topology, also share this fluted

character. As such, k‖ does not appear in the simplest descriptions of these modes,

and it is not expected that their group velocity should be parallel to the background

field, even using more advanced models.

Likewise, the group velocity of the drift wave is in the perpendicular direction,

vg = ∂ω/∂k = e⊥v∗, which seems in conflict with the observed field-line-guided

behavior. Does the fact that the driven response is limited only to the flux bundle

that maps directly to the Shoelace antenna on the LCFS sufficient to reject the

drift wave hypothesis for the driven mode, or can we conjecture a scenario which is

consistent with the driven mode having a drift wave character, while still displaying

the field-line-guided behavior?

In formulating such a scenario, it should be noted that the antenna only over-

laps with a short section of the field line on the LCFS, on the order of w/Lc ≈
0.15m/9m ≃ 1.7% of the connection length – nearly describing an impulse along

the field line coordinate. While we expect an induced drift wave to propagate in

the perpendicular direction, the fluted character of drift waves (k⊥ ≫ k‖) also im-

plies parallel dynamics tend to rapidly equilibrate disturbances along a field line. We

should look to shear Alfvén waves in attempting to understand the parallel dynam-

ics to the narrow (along the field line) disturbance driven by the antenna, since the
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coupling between a perturbation in pressure and the kinetic shear Alfvén wave is so

closely associated with drift wave physics [65, p. 4.12]. This may then recover the

field-guided response.

One possible interpretation is as follows: the antenna launches a drift wave in

the plasma in the immediate vicinity in front of the winding, where the vacuum field

perturbation is strong. This wave couples to a kinetic shear Alfvén wave5, which then

propagates in the parallel direction, signaling the presence of the antenna-driven drift

wave on mapped diagnostics. The resonance around the QCM frequency belongs to

the drift wave, and not the Alfvén wave, but the Alfvén wave response nonetheless

traces out the peak, since its amplitude is tied to that of the drift wave, and is

essentially in phase as measured on fluctuation diagnostics, since ∆ℓ/vA . 1 µs≪
1/fQCM , where ∆ℓ is the distance along a field line on the LCFS between the antenna

and a diagnostic. The density response measured by PCI and polarimetry would not

be consistent with the ideal MHD picture of the shear Alfvén wave in a homogeneous

plasma, but it is consistent with the kinetic shear Alfvén wave.

But if the pressure disturbance of the drift wave induced directly in front of the

antenna launches kinetic shear Alfvén waves in the parallel direction, so, too, should

any wave fronts which propagate off the antenna rungs in the perpendicular direction.

Why don’t these wave fronts, too, launch shear Alfvén waves along field lines, carrying

the perturbation signal to fluctuation diagnostics not mapped to the antenna?

This may be reasoned as follows: the small amount of energy that is coupled

to the drift wave spreads out almost instantaneously along the low-field side as a

shear Alfvén wave, launched by the drift wave, transiently equilibrates the field line

in response to the pressure disturbance in front of the antenna. On field lines which

map to the antenna, the diagnostics intercept the disturbance as it is spread across

the entire field line, “catching” the disturbance as it passes. On field lines beyond

those which map to the antenna, the disturbance has already equilibrated over the

whole field line and is too weak to measure.

5The reference to the “kinetic” shear Alfvén wave here is used capture the result from the drift-
ordered model that pressure disturbances can excite shear Alfvénic activity, even in a plasma with
a homogeneous background field and pressure [65, p. 4.6-4.7, 4.11-4.12].
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Here, we are treating this system as though there were a single resonance to which

the antenna couples, with the damping rate measured above of 5-10%. It is assumed

that the wave actually propagates in the perpendicular direction for a number (∼10-
20) of wavelengths before it is appreciably damped, but the wave energy is spread

out too thinly to be measured. If this is the case, we should, in principle, be able

to show a proportionally weaker driven mode signal as the distance along a field line

is advanced. However, due to both mapping errors and limited diagnostic access, it

is difficult to make such aligned measurements along a field line. Driving the mode

harder such that the fully-equilibrated field line still contains a sufficient disturbance

to be measurable might be another way to justify this interpretation. Such higher-

power experiments are being planned as of the preparation of this thesis (see Section

6).

However, another possibility is that all of the wave energy is damped at the

upper and/or lower bounds of the plasma, especially at the X-point, where significant

magnetic shear is strongly stabilizing for a drift wave. But if this is the case, then we

would expect that the driven mode should be strongly, rather than weakly, damped,

with a damping rate closer to γ/ω ∼100% (strong damping over a single perpendicular

wavelength) than 5-10%. It is conceivable that spatial dependence of the driven mode

dispersion relation, in addition to shear in the magnetic topology, might lead to a

discrepancy between the actual damping rate and the value of 5-10% reported above.

This issue is explored in Appendix H, where it is shown that the measured damping

rate is not likely to be suffering from these kinds of errors.

Unfortunately, without a measurement of the phase difference between the in-

duced ñe and Φ̃ fluctuations, it is not possible to conclusively identify the driven

mode as having a drift wave character; the discussion in this section merely addresses

whether such a physical origin is consistent with the observed plasma response to the

antenna. It is expected that this data will become available in the months following

the submission of this thesis.
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5.7 Does the Shoelace Antenna Interact with the

Intrinsic Mode?

In their study of open-loop control of drift waves by internal and external actuators,

Brandt et al. and Schröder et al. observe two signs of nonlinear interaction between

the exciter and the intrinsic coherent mode: (a) a sideband structure developing at

the sum and difference frequencies between the exciter and intrinsic mode when the

exciter is driven off-peak, and (b) locking (synchronization) and frequency pulling

between the drive and the intrinsic mode [78, 79, 80]. They also differentiate between

density perturbations driven by the exciter, but not constituting a drift wave, and

driven perturbations which couple to a coherent drift wave. The phase difference

between the density and potential perturbations provides the distinguishing feature

between the two cases, as alluded to in Chapter 3. In the former case, where the

driven fluctuations do not couple to a drift wave, the phase difference between ñe and

Φ̃ is π/2. When coupling to a drift wave is achieved, the phase difference is nearly 0,

as expected.

The ideal tool on Alcator C-Mod to measure the phase difference between ñe and

Φ̃ is the mirror Langmuir probe, which performed this very characterization of the

intrinsic QCM [32]. However, because this diagnostic did not map to the Shoelace

antenna, such measurements were not possible for the driven mode.

Spectral analysis comparing fluctuations measured on field lines which do map to

the antenna with measurements on those that do not may determine whether these

sideband or locking phenomena occur. Two elements of this analysis are shown below:

a comparison of power spectra over a narrow time range (Section 5.7.2), and compar-

ison of the peak frequency in the spectra over the duration of the H-mode (Section

5.7.3). Broadly speaking, while there are hints that sidebands and frequency locking

do occur, it is hard to clearly identify either behavior, as the apparent observations of

this nonlinear interaction might simply be an imagined interpretation of the natural

variability in spectral structure, as well as the frequency modulation, of the intrinsic

mode.
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In addition to this open-loop approach, the antenna power system was built to

explore closed-loop, feedback control of the intrinsic mode. However, only preliminary

work was carried out using this functionality. This topic is discussed below in Section

5.7.1.

5.7.1 Antenna Operation with Phase Lock to QCM

As described in Section 4.4.4, the Shoelace antenna power system has the capability

to lock in real-time to an analog fluctuation diagnostic signal with a coherent feature

in the QCM band, 50-150 kHz, adding a phase delay tunable in 64 steps between 0

and 360 degrees. The phase lock system was built to explore whether the antenna

may feedback stabilize, or further destabilize, the intrinsic QCM, and whether it may

also impart a torque to the plasma, in an analogous manner to an AC motor, where

the antenna plays the role of the stator and the current filaments of the QCM, the

rotor. However, as of the preparation of this thesis, only four useful discharges were

executed under this line of inquiry. Further experiments are needed to determine the

efficacy of this closed-loop control.

Nonetheless, the functionality of the phase lock system was successfully demon-

strated in initial experiments, as shown in Figure 5-15. Here, a spectrogram of a PCI

signal is accompanied by traces of the PCI peak (blue solid line) and antenna drive

(green solid line) frequencies, as well as the antenna current. The antenna frequency

closely tracks the rapidly-varying PCI peak frequency, while the antenna current re-

mains near 80 A throughout the discharge as the matching network continually adjusts

its tuning following the changing frequency. Pre-programmed amplitude modulation

was applied to the current to help distinguish the antenna-driven fluctuation from

the intrinsic QCM.

Figure I-10 in the appendix shows additional data obtained during operation of

the phase lock system.
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Figure 5-15: Demonstration of phase lock. (Top) Spectrogram of PCI diagnostic; thin
dashed black line highlights peak frequency in PCI spectrum, thick black dashed line
indicates transition from open- to closed-loop control. (Middle) PCI peak frequency
(fmax,pci, blue) overplotted with antenna frequency (fant, green). The cross-power
between the phase-locked-loop-generated signal and the PCI diagnostic signal sur-
mounts a logic threshold at 1.128 s, so that control is automatically switched from
a pre-programmed (open-loop) constant frequency to the locked signal, whereupon
fant closely tracks fpeak. (c) Antenna current remains high, despite rapid frequency
modulation. The current is intentionally amplitude-modulated at 9.5 Hz.
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5.7.2 Comparing Mapped and Unmapped Power Spectra

To understand whether the antenna affects the intrinsic QCM, it is useful to make

a comparison between perturbed and unperturbed fluctuations. Fluctuation spectra

measured on field lines which are far from being mapped to the antenna may provide a

good reference for the “unperturbed,” background spectrum. These may be compared

against “perturbed” spectra measured on field lines that do map to the antenna.

This analysis is carried out below, where power spectra are presented for three pairs

of “mapped” and “unmapped” Mirnov coils, as well as one pair of mapped and

unmapped polarimeter chords.

The locations of the Mirnov coils and polarimeter chords used in this compar-

ison are shown in Figure 5-16. Note that the vertical component of the electron

diamagnetic drift velocity points upward in these figures for this forward-field dis-

charge. The two Mirnov coils in each pair are essentially displaced only toroidally;

axisymmetry implies that such pairings ought to have a good parity in the back-

ground spectrum. On the other hand, all available polarimeter chords intersect the

plasma in a single toroidal section, and so the measurements for this diagnostic are

displaced only poloidally. The unmapped Mirnov coils are far from field lines which

map to the Shoelace antenna, while the lower polarimeter chord is only displaced from

the bundle of mapped field lines by a small perpendicular distance. Nonetheless, for

both the Mirnov coil and polarimeter chord pairs, only the fluctuation measurements

which map to the antenna show a strong coherent response, as seen in the magnitude

squared coherence spectrograms of Figure 5-17.

The power spectra shown below are computed over 3 ms bins6, and have roughly

500 Hz frequency resolution. The magnitudes of these spectra are then smoothed with

a ∼3 kHz (six-point) moving average, normalized again by the peak in the frequency

range between 50 and 150 kHz, so the spectra between different coils and chords may

6the signal sampling rate is fs =2.5 MHz for the Mirnov coils, and 4 MHz for the polarimeter
chords, and the size of the Hamming window used in the discrete spectral analysis is nw = 212

samples for the Mirnov coils and 213 for the polarimeter chords, so the spacing between frequency
points in the spectra is fs/nw ≈ 610 Hz for the Mirnov coils, and ∼ 490 Hz for the polarimeter
chords.
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Figure 5-16: Location of diagnostics used in comparison of power spectra, together
with magnetic reconstruction of plasma at 1.100 s on the same discharge. (a) Un-
wrapped view of φ, z plane, showing field lines mapping to antenna rungs on LCFS,
together with the positions of three pairs of Mirnov coils and the pair of polarimeter
chords, projected onto the LCFS as discussed in Section 4.5.2. Pairs of coils have
the same shape and color; the red X’s correspond to the polarimeter chords, while
the other markers signify the Mirnov coils. The toroidal angle is indicated by the
port label, with each port separated by 36° toroidally. The wall and diagnostics are
wrapped across the vertical black dashed lines. (b) Locations of diagnostics collapsed
onto a single R, z cross section, superimposed on the outline of the vacuum vessel,
as well as the limiter and divertor tiles. Colors and shapes are as in (a) (the full po-
larimeter chord paths are drawn here, rather than their intersections with the LCFS
as in (a)). Outlines of the Mirnov coils, themselves, are also drawn, together with
supporting hardware. The LCFS is drawn (thick blue line), together with the 100.2%
flux surface (thin blue line) to indicate the strike points.
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Figure 5-17: Magnitude squared coherence between the fluctuation signals and the
Shoelace antenna current for pairs of (a) Mirnov coils corresponding to blue circles,
(b) green diamonds, and (c) orange squares, as well as (d) polarimeter chords corre-
sponding to red X’s, in Figure 5-16. Only the mapped coils have strong coherence
with the antenna.
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be more readily compared, and plotted on a linear scale. The complex spectra of

the Mirnov coils are first normalized by jω so that they correspond to the poloidal

magnetic field fluctuation, rather than its derivative. The antenna frequency scans

through 3 kHz over the 3 ms time segment of each bin; the initial, middle, and final

frequencies in this scan are depicted in Figures 5-18 and 5-19 by vertical dashed black

lines.

In the first time bin, Figures 5-18a, d, g, and j, it appears that there are two

primary peaks in the background spectrum (though the higher-frequency peak is

much more prominent in the polarimetry data in the bottom row), and the antenna

drive frequency misses them both. Interestingly, the spectra of the mapped Mirnov

coils and polarimeter chord are quite different from those of the unmapped coils and

chord. Indeed, the peak in the mapped spectra at the antenna frequency is dominant

in Figures 5-18d and j; the similarity between these two particular spectra might be

expected since the measurements almost map to each other on a field line (see the

green diamond around G port and the upper red X around K port in Figure 5-16a).

In the case of the Mirnov data set, axisymmetry would suggest that the background

spectra of the paired coils, which have the same poloidal angle, should have a similar

structure. Is the antenna responsible for this difference, and is it responsible for the

sidebands in the mapped spectra? Is the background mode not axisymmetric? It

should be noted that, over the 3 ms bin size over which these spectra are calculated,

the plasma normally executes several complete toroidal transits due to its intrinsic

rotation.

In the second time bin, the peak in the mapped spectra aligns precisely with the

antenna frequency; the peak is also quite narrow and with minimal appearance of

sidebands. In the Mirnov coil data, there appear to be two peaks in the background

spectra, one below the antenna frequency, and one above. The lower peak is more

prominent in the background spectra of Figures 5-18b and h, while the upper peak

is more prominent in 5-18e. But there is only one peak in the mapped spectrum.

Does this alignment of peak, suppression of a secondary peak, and disappearance of

sidebands indicate that the antenna has locked to the QCM?
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Figure 5-18: Comparison of power spectra, normalized to the maximum spectral
power for each signal, of pairs of diagnostics, with one mapped (thick green line) and
one unmapped (thin blue line) diagnostic in each pair. The frames from the top row,
(a)-(c), correspond to the Mirnov coils represented by the large blue circles in Figure
5-16, (d)-(f) to the green diamonds, and (g)-(i) to the orange squares. The bottom
row, (j)-(l), shows spectra from two polarimeter chords, the red X’s in Figure 5-16.
The 3 ms time bin is the same down a column, with start times for each column,
1.088 (a,d,g,j), 1.091 (b,e,h,k), and 1.094 s (c,f,i,l). The vertical dashed lines show
the antenna frequency at the beginning, middle, and end of the time bin.
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Figure 5-19: The start times for each column are 1.097 (a,d,g,j), 1.100 (b,e,h,k), and
1.103 s (c,f,i,l), and the width of each bin is 3 ms.
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Moreover, the spectrum from the unmapped polarimeter chord in Figure 5-18k

has three peaks arranged symmetrically about the driven peak. Is this the shape

of the intrinsic spectrum, or is the chord only marginally “unmapped” – is it close

enough to mapping to the antenna such that side bands are induced on the field line

it samples? There is no indication of a coherent response from the antenna in the

fluctuation measurement of this chord.

In the next frame, the alignment between the antenna drive and peak in the the

mapped measurements persists. Now, however, the spectra on the unmapped coils

and chord align fairly closely to those of the mapped signals, apart from a small shift

between the peaks of the unmapped and mapped spectra in Figure 5-18i, and a more

prominent sideband structure on the mapped coil, as well. Does this contact between

the mapped and unmapped spectra mean that the antenna has locked the mode

globally, or is it simply a coincident synchronization due to the natural variability

of the background spectrum? Certainly, the signals in the mapped and unmapped

spectra are not strongly coherent at any time in the discharge, as evidenced by the

cross coherence spectrograms in Figure 5-20 (see also Figure I-10 in the appendix)

– only the antenna organizes a fluctuation over perpendicular distances larger than

several λ⊥. This might be expected, since the coherence time7 of ∼ 13 µs ∼ 1/f

implies that the mode dephases over a few perpendicular wavelengths8.

In the subsequent frame, the peak in the unmapped spectra jumps upward, off of

the antenna frequency. Interestingly, for the Mirnov coils, the peak in the mapped

spectrum jumps further by approximately the difference in frequency between the

antenna drive and the unmapped peak. In the following frame, both the unmapped

and mapped spectra appear “locked” in Figure 5-19e. In Figure 5-19b, however,

the unmapped spectrum appears more “locked” than the mapped spectrum, whose

dominant peak is at a higher frequency. If the background spectra in the unmapped

and mapped measurements are different – the QCM is not axisymmetric – then it

7This is determined here from the e-folding envelope of the autocorrelation function from a Mirnov
coil, BP6T ABK, that did not map to the Shoelace antenna.

8The coherence time of the QCM can be larger, on the order of 10 periods – see Mirnov coil
data from Alcator C-Mod discharge 1110201023, for example, for which the autocorrelation function
e-folds on a time scale of 155 µs, while the QCM has a mean frequency around 86 kHz.
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Figure 5-20: Magnitude squared coherence between (a) two coils which map to the
antenna, but not to one another (corresponding to the mapped blue circle and mapped
green diamond in Figure 5-16), and (b) a pair of coils, one of which maps to the
antenna, and one which does not (the green diamonds in Figure 5-16). The discharge
is the same as that analyzed throughout this section. The subplot is the antenna
current.

is possible that the antenna is driven “off-resonance” on this field line, creating the

sideband around 100 kHz. Of course, in this case, comparing spectra between these

pairs of diagnostics is of dubious usefulness. The “unmapped” polarimeter chord again

displays what appear to be sidebands appearing symmetrically about the driven peak,

while the mapped spectrum is dominated by the component at the antenna frequency.

In the final frame, the peak in both the mapped and unmapped spectra jumps

again, and is far from the antenna frequency. A small peak at the antenna frequency

appears in Figures 5-19f, i, and l; there are multiple peaks in Figure 5-19f and l, where

there are not in 5-19c.

The pair of Mirnov coils whose spectra appear in the third-from-the-top rows

of Figures 5-18 and 5-19 have the largest gap between coil and plasma by about

1 cm. These coils correspond to the orange boxes in Figure 5-16. This increased

distance acts as a low-pass filter in k⊥, since the field perturbation in the minor

radial direction is attenuated roughly as e−k⊥r, such that longer wavelength modes

suffer less attenuation. As a result, the QCM feature in these spectra is less dominant.
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It is also interesting that the antenna peak is usually more prominent on the mapped

coil of this pair than it is on the others; this could suggest that there are significant

currents driven by the antenna further out radially into the SOL from the intrinsic

mode.

Examining these data, it is clear that the spectrum of the QCM evolves rapidly.

The frames are separated by only 3 ms, but the peak in the spectrum can jump by

∼ 20 kHz in this short span of time. It also seems that the structure of spectra on

different field lines can differ from one another, even if the measurements are made

at the same poloidal angle, and that there can be multiple peaks around the QCM

frequency in a single 3 ms background spectrum. Given this intrinsic variability, it is

hard to determine whether the behavior on mapped field lines constitutes locking or

displays sidebands resulting from the Shoelace antenna.

Figures I-1-I-7 in Section I.1 of the appendix show additional frames of power

spectra. Section I.3 compares cross coherence calculated between pairs of Mirnov

coils which both map to the Shoelace antenna (but not to each other) during a

discharge in which the antenna current was amplitude modulated.

5.7.3 Comparing the Peak Frequency in Mapped and Un-

mapped Spectra

Let us reexamine Figure 5-14, which shows the peak in the PCI spectrum super-

imposed with the antenna and resonant frequencies during an H-mode. When the

antenna frequency approaches the peak in the PCI spectrum, the PCI peak seems

to track the drive briefly. To explore whether this constitutes frequency pulling, we

might track the peak in spectra in pairs of mapped and unmapped measurements.

If, when the antenna frequency crosses that of the QCM, the trajectory of the

peak from the mapped diagnostic follows the antenna, while that on the unmapped

diagnostic does not, it might suggest that the QCM on the flux bundle tied to the

antenna exhibits frequency pulling. Again, with a coherence time on this discharge of

∼13 µs, or about 1.3 QCM periods (with a mean QCM frequency around 98 kHz), and
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given that the induced perturbation is only seen on mapped field lines, this scenario

is plausible. However, in fact, it is hard to distinguish any such locking from the rapid

(∼ 60 Hz), natural variability of the background spectral peak locations, as will be

seen shortly.

Figure 5-21 shows the peak spectral frequencies for the pair of Mirnov coils corre-

sponding to the green diamonds in Figure 5-16, and the middle row of Figures 5-18

and 5-19, one which maps to the antenna (the thick green line), and one which does

not (the thin blue line). Also shown are the evolving spectral peaks of two polarimetry

chords, one which maps to the antenna (thick green), and one which does not (thin

blue) – these correspond to the red X’s in Figure 5-16, and the bottom row of Figures

5-18 and 5-19. The plasma discharge is the same as that analyzed in the last section.

The spectral peak of the mapped Mirnov coil in Figure 5-21a is similar to that of

the unmapped coil for most of the discharge. The Shoelace frequency crosses that

of the intrinsic QCM (on the unmapped diagnostic) six times during the 0.5 s time

segment shown (discounting the last crossing, which is marginal). The QCM peak

evolves in time, and the antenna frequency also varies following its pre-programmed

sweep. During most of the instances where the QCM peak and antenna frequencies

cross, the trend of the evolving QCM frequency follows that of the scanning antenna

frequency, but this tracking does not last for longer than half a period of the QCM fre-

quency modulation, nor does this period seem to be affected by the antenna. Around

1.09 s (the nominal time of the power spectra shown in Section 5.7.2), the QCM peak

first moves in the opposite direction as the Shoelace frequency scan, before reversing

direction shortly afterward, and then following the peak in the mapped spectrum.

The spectral peaks of the mapped and unmapped polarimetry chords also follow

one another closely, and deviate only slightly from one another at instances when the

Shoelace antenna frequency nears that of the intrinsic QCM. The largest deviations

occur during the first and second frequency crossings around 1.02 s and 1.09 s, at

which times the mapped chord hugs the Shoelace frequency slightly longer than the

unmapped peak.

Note also that for these discharges, the sawtooth crash cycle does not synchronize
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Figure 5-21: Peak frequency in spectrum for (a) two Mirnov coils, one which connects
on a field line to the antenna (thick green line) and one which does not (thin blue
line), and (b) two polarimeter chords, one which maps to the antenna (the top-most
chord; thick green line) and one which does not (the bottom-most chord; thin blue
line). The black dashed triangle wave is the antenna drive frequency. The vertical
black dashed lines point out frequency crossings between the antenna and background
QCM frequencies. The subplot of (a) is the plasma current, while that of (b) is the
temperature as measured by the ECE diagnostic.

with the frequency modulation of the intrinsic mode, where it has been observed to

do so elsewhere [53, p. 104]. This fact may be observed in Figure I-9a. The plasma

current has an amplitude modulation at ∼60 Hz which is nearer the modulation

frequency of the QCM peak, as shown in Figure I-9b, though even this does not align

perfectly with the peak’s movement.

The temperature trace carries the caveat that a non-stationary and relatively low

(for Alcator C-Mod) nominal field, meant that it was difficult to calibrate the electron

cyclotron emission (ECE) diagnostic providing temperature data on these discharges.

Nonetheless, the observation still holds that the sawtooth cycle, at a frequency of

∼ 135 Hz, is much more rapid than the frequency, ∼ 60 Hz, of QCM frequency

modulation.
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Figure 5-22: Peak spectral frequency of the bottom (unmapped) polarimeter chord
referred to in Figure 5-21, plotted together with (a) the electron temperature from an
ECE chord and (b) the plasma current. Note that the ECE diagnostic, which provided
the temperature measurement, faced difficulties from a low and rapidly varying field.
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Chapter 6

Conclusions and Future Work

Am I happy, or sad?

–The canonical question from Professor Jeffrey Freidberg to students of the PSFC at the end of

their seminars

6.1 Summary

A new “Shoelace” antenna was used for the first time to drive fluctuations in the

Alcator C-Mod tokamak edge. The field-aligned antenna winding imposes a particular

k⊥ = ±1.5 ± 0.1 cm−1, with toroidal mode number, n = ±35 ± 23, while a custom-

built wide-band matching network allows operation in a broad frequency range from

45-300 kHz. These wave number and frequency ranges were chosen primarily to cover

the parameters normally observed for the quasi-coherent mode, which regulates the

pedestal in the ELM-free, steady-state EDA H-mode regime. However, they also cover

part of the parameter range of the WCM, which accompanies the I-mode regime. In

this initial round of experiments, 2 kW of RF power were provided by two commercial

50 Ω amplifiers.

The antenna was energized during a number of ohmic L- and H-mode plasmas.

In H-mode plasmas, the antenna drove density and magnetic field perturbations in

the edge, while in L-mode plasmas, only magnetic field perturbations were induced.

The driven mode always propagated in the electron diamagnetic drift direction in the
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laboratory frame in both forward- and reverse-field operation, and was approximately

field-aligned, with k⊥ and n matching the values imposed by the antenna winding.

The driven fluctuations were also guided by field lines.

Moreover, the driven response was strongly peaked around a specific frequency in

H-mode, but not in L-mode. In EDA H-mode discharges with an intrinsic QCM, the

resonance fell precisely on the QCM center frequency. However, even in ELM-free

H-mode discharges without a prominent QCM, the antenna response was still peaked.

In both cases, the damping rate was weak, with γ/ω0 ≈ 5− 10%, with the lower end

of the range corresponding to EDA H-mode discharges. At the resonant frequency,

a large fraction of the total ñe and B̃θ fluctuation was strongly coherent with the

antenna current. In discharges with a QCM, it is possible that the antenna locked

the intrinsic mode phase to its own. However, if this occurred, it only did so for short

(∼3-6 ms) periods, and a comparison between spectra on diagnostics which do and

do not map to the antenna does not indicate prolonged frequency locking or sideband

generation. In discharges without a strong QCM, the antenna-induced fluctuation

seemed to dominate the QCM range of the ñe and B̃θ spectra. This is significant,

causing us to ask the question: does the driven mode induce transport in a similar

fashion to, but in the absence of, the intrinsic QCM?

The antenna-driven mode shares the same k⊥, frequency, and laboratory-frame

propagation direction as the QCM, with k⊥ ≫ k‖, is localized to the edge, only

exhibits a density fluctuation after the development of steep edge gradients in H-mode,

and is guided by field lines. The guided behavior is reminiscent of resonance cones

predicted for low-frequency electrostatic waves, as well as shear Alfvén waves, but

these scenarios, alone, are not consistent with the high collisionality (τ−1
ei /ω ≈ 20≫ 1)

of the edge, nor the driven resonance around the QCM.

Experiments in linear devices have shown that exciting mode-selective parallel

currents is the essential ingredient for coupling to drift waves, and that this may

be done inductively [79, 80]. As such, it is tempting to associate the driven mode

with the QCM, which has been identified as an electron drift wave with additional

interchange and electromagnetic character [32]. The field-line guided property of
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the driven response may then be a result of the disturbance spreading along a field

line via a kinetic shear Alfvén wave launched by the pressure disturbance of the

drift wave. Since the antenna is much narrower than the connection length, roughly

delimiting the parallel extent of the drift wave, we may conjecture that the disturbance

is greatly attenuated after it has spread over the field line, and so any cross-field

propagation beyond the last rung of the antenna cannot be detected. However, at

present, we do not have the same detailed diagnostic information of the driven mode as

is available for the intrinsic QCM – in particular, simultaneous, co-located fluctuations

measurements and background profiles of plasma potential, electron density, and

electron temperature – and so it is difficult to conclusively verify this scenario.

From another perspective, we might also ask: what implication does the existence

of a weakly-damped resonance at the QCM frequency have on the globally-unstable

intrinsic QCM? What makes the intrinsic mode unstable? One possibility is that,

further up the pedestal, an interchange-driven process releases free energy from the

pressure gradient, and then couples this to, or becomes manifested as, a drift wave

further down the pedestal. In this description, the interchange mode is then an

internal analog to the Shoelace antenna (or vice versa): both release free energy into

a drift wave, in which it is slowly damped while driving transport across the LCFS.

This suggests the need to extend measurements of the QCM deeper into the plasma,

where its dynamics may change (as might be registered by a changing relative phase

angle between Φ̃ and ne). It also implies that, while the intrinsic QCM is limited

to the LFS by ballooning mode dynamics, the Shoelace antenna might excite a drift

wave either on the high- or low-field sides. However, once again, without additional

experiments are needed before this picture of the QCM system can be either validated,

clarified, or rejected.

6.2 Shoelace Rewind, Upgrades, and Future Work

It is clear that a better experimental characterization of the mode driven by the

Shoelace antenna is needed before its nature is understood, as well as its relationship
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(a) (b)

Figure 6-1: Photographs of the Shoelace antenna, rewound at a shallower pitch angle
and without the four middle rungs (the 9th-12th rungs). (a) Benchtop view, (b)
image of the rewound Shoelace antenna mounted in-vessel. (Photo credits: (a) T.
Golfinopoulos; (b) R. Mumgaard)

to the QCM. The Mirror Langmuir Probe (MLP) has been identified as the diagnostic

best-suited for this purpose. But it did not yield data for the Shoelace antenna for

the experiments presented in this thesis due to the fact that it was not mapped to

the antenna along a field line on the LCFS.

To change this situation, the pitch angle of the Shoelace antenna winding was

modified by shifting the adjustable wire posts (those on the right-hand side when

facing the antenna wires) downward on a new set of bolt holes. Moreover, the four

central rungs – the 9th through the 12th counting from the bottom – have been

skipped in the new winding, since this region receives the highest heat load from the

plasma, and failed in two places during the initial round of experiments. The new

configuration is shown in Figure 6-1.

The new, shallower pitch angle is aligned to the background field lines when q95 ∼
4, and is reasonably matched over the range, 3 ≤ q95 ≤ 5. This allows the original

equilibrium conditions used in the study of the Shoelace antenna to be revisited, but

also, crucially, at the upper end of this q95 range, the antenna maps to the MLP, as

demonstrated in Figure 6-2.

Examining the driven mode using the MLP will (a) identify the degree of spatial
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Figure 6-2: (a) Benchtop view of rewound antenna and (b) field lines on LCFS that
map to projections of Shoelace rungs onto this surface, calculated from an EFIT
equilibrium field reconstruction for a discharge with q95 = 4.90. The lower rungs of
the antenna map to the MLP.

overlap between the intrinsic QC and driven modes, (b) determine the phase differ-

ence between the different fluctuation quantities (especially electron pressure, p̃e, and

potential, Φ̃) to characterize the driven mode physics, (c) examine via local measure-

ments whether the antenna affects the amplitude, phase, or stability of the intrinsic

mode, (d) determine whether the antenna imparts torque to the plasma, and (e) learn

whether the antenna-induced mode independently drives transport.

In addition, the recent purchase of two Tomco Technologies BT04000-AlphaA

Class AB amplifiers will expand the available Shoelace RF power supply from 2 kW

to better than 8 kW, approaching the breakdown voltage design limit of the matching

network. This upgrade, combined with the slightly-lower resistance of the antenna,

will more than double the driven current, though, of course, the flux coupled to the

plasma is proportionately reduced by the loss of four rungs.

Since any interaction between the antenna and the intrinsic QCM – particularly

frequency pulling, sideband generation, and feedback stabilization/destabilization – is

more apparent with a larger driven excitation, the power upgrade will help to identify

whether such behavior appears in the plasma response, especially when the power is

175



scanned over many levels. In addition, the increased power means that the antenna

will be able to impart a detectable perturbation to the plasma with a greater standoff

than is presently possible (currently, the gap between the plasma and the antenna

is restricted to 0 < Rgap . 5 mm in order to observe a strong driven perturbation).

This will make it possible to run useful Shoelace antenna experiments in most C-Mod

discharges, including those with high RF heating and current drive input (i.e. I-mode

discharges, QCM discharges with the lower hybrid antenna operating, etc.). Lastly,

increasing the antenna power maximizes the likelihood of detecting antenna-driven

transport, as well as effects on the global confinement regime resulting from antenna

operation.

The power system upgrade is expected to be completed in June, 2014, in time for

use during the summer Alcator C-Mod experimental campaign. Experiments during

the 2014 campaign will target ELM-free H-modes, in addition to EDA H-modes. In

this way, the plasma response to the antenna may be investigated in the absence, as

well as the presence, of an intrinsic QCM. The antenna will also be energized into

I-mode plasmas to determine whether it may induce a response in the lower portion

of the frequency band, 200 < f < 500 kHz, belonging to the Weakly Coherent Mode

(WCM), which plays a similar role in I-mode as the QCM in H-mode.

Complementing the experimental effort is an attempt to model the antenna/plasma

interaction using BOUT++, a highly-adaptable framework for performing plasma fluid

simulations in arbitrary, three-dimensional, curvilinear coordinate systems [98]. Ini-

tial work has utilized a three-field slab model evolving pressure (pe), parallel vorticity,

ω̄ = b·∇×ũ, and parallel ion velocity, u‖, and incorporating magnetic and flow shear;

however, the model will be expanded to include electromagnetic and curvature effects.

A plasma dielectric description has also been prepared for use in the COMSOL ® fi-

nite element package, offering an alternative route to exploring the antenna-plasma

interaction numerically. Appendix D discusses the initial work carried out in BOUT++,

while Appendix C derives a permittivity tensor appropriate to simulations in COMSOL.

It should be pointed out that, as of the preparation of this thesis, simulation of the

QCM using BOUT++ remains an active area of research [77], and the precise behavior
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measured in experiment has not yet been fully captured in the model.

6.3 Am I Happy or Sad?

A few words are in order to address Professor Freidberg’s wise and pithy question. The

high-level goal which inspired the Shoelace antenna was to learn whether confinement

regimes like the QCM can be conjured at will via the use of an external actuator. The

results of Shoelace antenna experiments satisfy conditions that might be considered

“necessary” for this to be true: the antenna did, indeed, drive a fluctuation similar to,

and resonant at the frequency of, the QCM, insofar as this could be verified by the set

of diagnostics which registered a response. However, the results are not a sufficient

proof of concept for the approach of controlling edge transport by active stimulation

of edge modes, as no direct measurements of antenna-driven transport were available,

beyond the fact that the antenna is not thought to have changed the confinement

regime globally in the discharges in which it operated. A set of experiments and

theoretical investigations have been outlined above which will help to provide a more

definitive answer to this question.

However, even assuming a positive result for this additional work, the Shoelace

antenna, itself, is still not a viable approach for a real reactor. The reason is evident

already from Figure 4-3. The high wave number of the QCM requires an inductive

structure to be very close to the plasma at the precise location where the greatest

fluxes of heat and particles “come out” – the outer midplane. Alcator C-Mod already

produces the highest heat fluxes of any of the world’s tokamak devices, and a real

reactor’s heat flux will be somewhat greater, still. As such, it is unlikely that an

antenna like the Shoelace would survive for continuous operation in a power-producing

tokamak.

Instead, the driven current filaments must be produced a different way. An exam-

ple of such a different approach is to employ radio-frequency current drive to reproduce

the filamentary currents associated with the QCM. Here, a phased array on a lower

hybrid (LH, f ∼several GHz) “grill” or set of electron cyclotron range of frequency
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(ECRF, f ∼100 GHz) horn antennas might be envisaged as the “carrier” waves which

drive a drift-wave-like mode through a nonlinear, indirect, and likely low-efficiency

mechanism1, but one whose excitation structures can be placed far from the plasma.

At the same time, work should be done to investigate whether the plasma may be

excited at a longer perpendicular wavelength, such that an inductive, “flux-coupling”

antenna like the Shoelace may be further recessed behind a limiter, while still achiev-

ing a desired transport response. Likewise, the antenna might be moved to a safer

location (for example, the high-field side) with a reduced heat flux, where perhaps

it could coax particles out of the plasma without increasing local heat output. This

approach faces the obvious difficulty of trying to excite a transport-regulating fluctu-

ation where it does not normally occur (following up on the same example, due to the

stabilizing effect of good curvature on the high-field side, though note that exciting

a drift wave on the HFS may still be possible).

As is typically the case in fusion research, and applied science, generally, we are

part happy and part sad, and there’s lots more work to do, but at the least, we are

further along than we were before.

1The Manley-Rowe relations constrain a three-wave coupling process to transfer power from the
high-frequency pump to the low-frequency target mode as the ratio of the frequencies[89], ordering
down the transfer by six orders of magnitude from the ECRF to the QCM frequencies, and four
from LH to QCM; however, the three-wave process may not be the relevant transfer mechanism in
this case.
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Appendix A

Key of Symbols and Abbreviations

Table A.1: List of Symbols

Symbol Name Description

β Normalized pressure Plasma pressure normalized by magnetic pressure, β ≡ 2µ0p/B2.

Unitless.

γ Damping or growth rate Depending on the context, γ is the linear damping or growth rate

of a mode. In all analysis of the Shoelace antenna data, γ is a

damping rate. Units: [1/s]

¯̄ǫ Electric permittivity Electric permittivity dyadic tensor in the plasma medium. Units:

[F/m]

ǫ0 Electric permittivity of vac-

uum

Electric permittivity of vacuum, ǫ0 ≈ 8.854× 10−12 [F/m].

ζ Toroidal angle mapped to

outer midplane

ζ is a coordinate in the field-aligned coordinate system employed

in this thesis. It is the toroidal angle of the location on the outer

midplane which maps to the test point along a field line; the angle

is referenced to the toroidal location of the Shoelace antenna (-

240° from Port A in the cylindrical coordinate system). Units:

[degrees] or [radians].

η Resistivity Plasma resistivity. Can appear as dyadic tensor, ¯̄η, components

of this tensor, Spitzer resistivity, ηs = 0.51 me

nee2τei
, etc. Units:

[Ω·m]

θ Poloidal angle Poloidal angle of a point; tan(θ) = (z − z0)/(R − R0) for a test

point at R, z, where R0 and z0 specify the R, z location of the

magnetic axis. The Mirnov coils primarily measure the fluctu-

ating field component in the θ̂ direction. Units: [degrees] or

[radians].

µ0 Magnetic permeability of vac-

uum

Magnetic permeability of vacuum, µ0 = 4π × 10−7 [H/m]≈
1.257× 10−6 [H/m]
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List of Symbols

Symbol Name Description

µe Mass ratio Ratio of electron mass to main ion species mass, µe ≡ me/Mi ≈
2.724× 10−4 for these deuterium plasmas.

ξ Field-aligned coord. along

field line

ξ is equal to the poloidal angle, θ, of a test point, but is used

to refer to the location along a field line. In the field-aligned

coordinate system, when the flux surface, ψ, and the field line

label, ζ, are held constant, advancing ξ slides a test point along

a field line. Units: [degrees] or [radians]

ρ Mass density Mass density, given by ρ = niMi+neme ≈ niMi. Units: [kg/m3]

ρc Charge density Charge density, given by ρc ≡ Zeni − ene. Units: [C/m3]

ρs Drift wave dispersion length

scale

Drift wave dispersion length scale, ρs ≡ cs/Ωi ≈ 4.5× 10−4 [m]

at the LCFS in the present experiments. Plays similar role as ion

gyro radius, replacing ion thermal speed with sound speed.

φ Toroidal angle Toroidal angle coordinate. Note the lower case. Units: [radians],

[degrees].

Φ Potential Electrostatic potential, related to the electric field through E =

− ∂A
∂t

−∇Φ. Note the upper case. Units: [V]

¯̄χ Susceptibility Tensor quantity defined through J = ∂ ¯̄χ·E
∂t

, such that ∇ × H =

∂(¯̄ǫ·E)
∂t

, where ¯̄ǫ = ǫ0 (1 + ¯̄χ). Unitless.

ω Angular frequency Angular frequency, ω = 2πf . Units: [rad/s]

ωps Plasma frequency Plasma frequency of species, s, where s = i (ions) or e (electrons).

Given by ω2
ps = nsZ2

s e
2/(msǫ0).

Ωs Cyclotron (gyro) frequency Cyclotron (gyro) frequency of species, s, where s = i (ions) or e

(electrons). Given by Ωs = ZseB/ms. Units: [radians/s]

A Vector magnetic potential Vector magnetic potential, related to the electric field through

E = − ∂A
∂t

− ∇Φ, and the magnetic field through B = ∇ × A.

Units: [V·s/m]=[T·m]

B Magnetic flux density Magnetic flux density, B = µ0H = ∇×A. Units: [T]

c Vacuum speed of light Speed of light in vacuum, c = 1/
√
µ0ǫ0 ≈ 2.998× 108 [m/s].

cs Sound speed Sound speed in plasma, cs =
√

Te
Mi

≈ 49 km/s at the LCFS in

the present experiments. Units: [m/s]

Cxy Cross coherence The cross coherence is the cross power of two signals normalized

by the square root of the product of their auto powers, Cxy(jω) =

Pxy(jω)/
√

Pxx(jω)Pyy(jω). It is sometimes define as the square

of this ratio. The quantity gives an indication of whether two

signals are linearly correlated and is normalized such that 0 ≤
|Cxy | ≤. The magnitude squared value, |Cxy |2, and the phase of

Cxy , are used extensively in analysis in this work.

e Electron charge Fundamental electron charge, e ≈ 1.602× 10−19 C.
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List of Symbols

Symbol Name Description

Hxy Transfer function, frequency

response

The transfer function (or frequency response) of a system relates

the output, y, obtained as a linear operation on the input x. It

is defined through Hxy(jω) = Pxy(jω)/Pxx(jω), such that the

phase is ∠Y (jω)− ∠X(jω) = ∠(Y (jω)X∗(jω). It is used in this

work to look for poles in the plasma response to the antenna.

J Current density Electric current density. Units: [A/m2]

k Wave vector Wave vector. The perpendicular wave number is k⊥, and is the

component of k perpendicular to the magnetic field. The com-

ponent parallel to the magnetic field is denoted k‖. Units: [radi-

ans/m], [radians/cm].

Lc Connection length The distance traveled along a magnetic field line in order to con-

nect the upper and lower limits of a flux surface (typically the

LCFS) across the bad-curvature side. This can be used to esti-

mate the longest-possible, and most typical, parallel wavelength,

λ‖ ≈ 2Lc ⇒ k‖ ≈ π/Lc. In the straight-tokamak approxima-

tion, Lc ≈ 2πRq/2 = πRq, since only half a poloidal transit is

completed on the field line path. For typical Shoelace experi-

ments, q ≈ 3; using a mean value between R0 ≈ 0.68 m and

R0 + a ≈ 0.9 m on C-Mod, Lc ≈ 7.5 m. EFIT reconstructions

give a somewhat larger value, nominally Lc ≈ 9 m.

Lp Pressure gradient length scale Pressure gradient length scale Lp = |∇p/p|−1. Units: [m]

me Electron mass Electron mass, me ≈ 9.109× 10−31 kg.

Mi Ion mass Mass of main ion species. In the experiments described in

this work, this is deuterium, with Mi ≈ 2.014 amu = 3.344 ×
10−27 [kg].

n Index of refraction Index of refraction, n = ck/ω. Unitless.

ne Electron density Total electron density; occasionally meant in the sense of the

equilibrium density, 〈ne〉. Units: [m−3]

pe Electron pressure Electron pressure, typically related to temperature from

isotherm, pe = neTe. Units: [Pa], [atm]

Pxy Cross power spectral density Cross power spectral density (shortened to cross power) between

two signals, x and y, where the phase angle of Pxy(jω) is the

difference between the phase angle of the Fourier transforms of y

and x, ∠Pxy(jω) = ∠F{y(t)}−∠F{x(t)} = ∠Y (jω)−∠X(jω) =

∠(Y (jω)X∗(jω)). The cross power is the Fourier transform of

the cross correlation between y(t) and x(t), and is used in the

definitions of the cross coherence and transfer functions.

q Safety factor Safety factor, describing the number of toroidal revolutions re-

quired to execute one poloidal revolution when following a mag-

netic field line. In the “straight-cylinder” tokamak, q =
rBφ

RBθ
.

Unitless.
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List of Symbols

Symbol Name Description

R Major radial coordinate Major radial coordinate in the cylindrical coordinate system,

measured from the axis of symmetry to a point along the hori-

zontal. R0 is the major radius of the the plasma at the magnetic

axis; for Alcator C-Mod, R0 ≈ 0.68 m. Units: [m]

Te Electron temperature Electron temperature. When no additional subscripts are used,

assumed isotropic. Otherwise, components of a dyadic tensor.

Units: Boltzmann constant is absorbed, so units are energy: [J],

[eV].

u Ion velocity Ion velocity. Units: [m/s]

u∗ Ion diamagnetic drift velocity Ion diamagnetic drift velocity, u∗ = B×∇pi/(niZieB
2). Runs in

opposite direction to electron diamagnetic drift velocity. Units:

[m/s]

v Electron velocity Electron velocity. Units: [m/s]

vE E×B velocity E×B drift velocity, vE = E×B/B2. Magnitude of several km/s

in the Alcator C-Mod edge plasma. Units: [m/s]

v∗ Electron diamagnetic drift

velocity

Electron diamagnetic drift velocity, v∗ = ∇pe×B/(neeB2), with

|v∗| = csρs/Lp for the isothermal case. In the present experi-

ments, v∗ ≈ 6.1 km/s at the LCFS. Units: [m/s]

vA Alfvén speed Alfvén speed, vA = c

1+
ω2
pi

Ω2
i

= 1
√
µ0ǫ0

(

1+
niMi
ǫ0B2

) ≈ B√
µ0niMi

=

B√
µ0ρ

≈ 2.9×106 [m/s] at LCFS in the present experiments. Im-

plicated in dispersion relation of shear and compressional Alfvén

waves. Units: [m/s]

vth,e Electron thermal velocity Electron thermal velocity; when the temperature is isotropic,

3
2
mev2th,e = Te. When there are different parallel and perpen-

dicular temperatures, 1
2
mev2th,e,‖ = Te,‖ and mev2th,e,⊥ = Te,⊥.

Units: [m/s]

z Vertical coordinate Typically refers to the vertical coordinate in the cylindrical co-

ordinate system. In a slab (Cartesian) geometry, it also typically

refers to the coordinate pointing along the field line. Units: [m]

Z Atomic number, charge num-

ber

Atomic number, which is also the charge number or state for the

fully-ionized species in the fusion plasmas of the present exper-

iments. In this case, with deuterium as the main ion species,

Z = 1.

Table A.2: List of Abbreviations

Abbrev. Expanded Description
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List of Abbreviations

Abbrev. Expanded Description

Alcator High-field torus (Latin: ALto

CAmpus TORus)

The name of a series of tokamaks operated at MIT’s plasma Sci-

ence and Fusion Center, comprising Alcator A (1973-1979), Al-

cator C (1978-1987), and the current iteration, Alcator C-Mod

(1991-present). As of the preparation of this thesis, Alcator C-

Mod is the highest-field tokamak in the world, reaching a maxi-

mum on-axis field of about 8 T.

ASDEX Axially Symmetric Divertor

EXperiment

Tokamak that operated in Garching, Germany, from 1980-1990;

succeeded by ASDEX-Upgrade. Pioneer of the use of a divertor,

and discoverer of the H-mode.

AUG ASDEX-Upgrade Tokamak research facility located in Garching, Germany. Oper-

ating since 1991, and succeeding the original ASDEX experiment

(1980-1990)

EDA Enhanced Dα Steady-state, high-confinement, usually ELM-free operating

regime routinely used at Alcator C-Mod

EDD Electron Diamagnetic Drift The electron diamagnetic drift velocity is given by v∗ = ∇pe ×
B/(neeB). It corresponds to the electron contribution to the

diamagnetic current, which provides MHD force balance in the

presence of a pressure gradient. It points in the opposite sense

as the ion diamagnetic drift (IDD) direction.

EHO Edge Harmonic Oscillation The continuous, low-to-intermediate-n, 6 − 15 kHz edge fluctu-

ation associated with the QH mode which performs the role of

ELMs in this steady-state, ELM-free operating regime.

ELM Edge-Localized Mode Periodic, bursting instabilities, typically peeling-ballooning in na-

ture, which relax the edge pressure gradient in H-mode, expelling

impurities.

FA Field-Aligned Property of a fluctuation whereby the oscillation is uniform along

field lines, so that the wave vector is perpendicular to field lines.

This is a common feature of lower-frequency (ω ≪ Ωci) modes,

since Alfvénic dynamics along field lines tend to smooth out per-

turbations relatively rapidly. In a cylindrical device, this con-

strains the eigenmode to be located on the rational surface with

safety factor, q = m/n.

H-mode High-confinement mode Confinement regime of tokamaks and other toroidal magnetically-

confined plasmas, characterized by an internal transport barrier

which improves confinement over L-mode. Typically found in di-

verted experiments. First discovered on the ASDEX experiment.

Can be steady-state or transient.
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List of Abbreviations

Abbrev. Expanded Description

HFS High-field side The inner half (in major radius) of the toroidal plasma tends to

have a higher field strength than the outer half, since the field

falls as |B| ∝ 1
R

in a toroidal geometry. The high-field side refers

to this inner half. This is also the side with “good” curvature.

The plasma tends to be fairly quiescent on this side due to these

stabilizing properties.

ICRF Ion Cyclotron Range of Fre-

quency

Pertaining to RF waves in a plasma around the cyclotron fre-

quency, usually in the context of providing RF heating power to

the plasma.

IDD Ion diamagnetic drift The ion diamagnetic drift velocity is given by u∗ = B ×
∇pi/(ZnieB). It is the ion component of the diamagnetic cur-

rent, which provides MHD force balance in the presence of a

pressure gradient. It points in the opposite sense as the electron

diamagnetic drift (EDD) direction.

ITER (ITER is not an acronym) ITER is the name of a machine under construction (as of the

preparation of this thesis) by an international consortium of na-

tions, involving the US, EU, Russia, China, Japan, South Korea,

and India. At a major radius of ∼ 6 m, it would be the world’s

largest tokamak. It has been designed to achieve Q = 10 opera-

tion. ITER means “the way” in Latin.

JET Joint European Torus A tokamak located in Oxfordshire, UK, operating since 1984.

With a major radius of R = 2.96 m, it is the world’s largest

tokamak as of the preparation of this thesis.

LCFS Last-Closed Flux Surface The last closed flux surface is the outermost flux surface on which

field lines do not come into contact with a material surface. For

diverted plasmas with an x-point, this surface has a null in the

poloidal or toroidal field, and the safety factor, q, becomes sin-

gular. Field lines inside the LCFS are called “closed,” while field

lines outside are called “open.” Since closed field lines have sig-

nificantly better confinement, the LCFS defines the boundary of

the plasma, with density and temperature falling off very rapidly

across it.

LFS Low-field side The outer half (in major radius) of the toroidal plasma tends to

have a lower field strength than the inner half, since the field falls

as |B| ∝ 1
R

in a toroidal geometry. The low-field side refers to

this outer half. This is also the side with “bad” curvature. Heat

and particles tend to exit the plasma on this side.

LH Lower Hybrid A plasma oscillation whose dynamics involves both the ion

plasma (ω2
pi = niZ

2e2/(ǫ0mi)) and cyclotron (Ωi = ZeB/mi)

oscillations, hence the name, hybrid. LH waves are frequently

used on tokamaks to drive plasma current non-inductively.
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List of Abbreviations

Abbrev. Expanded Description

L-mode Low-confinement mode Steady-state tokamak confinement regime characterized by

poorer confinement (more rapid thermal, as well as particle, loss),

with transport increasing with auxiliary heating power. Trans-

port is dominated by broadband turbulence.

MAST Mega-Amp Spherical Toka-

mak

A large spherical tokamak operated in Culham, UK.

MHD Magneto Hydrodynamic A fundamental fluid theory used to describe plasmas. The most

typical model, “ideal MHD,” treats the plasma as a perfect,

single-fluid, current-carrying conductor. The displacement cur-

rent in Maxwell’s equations is neglected. A number of texts treat

this subject.

NBI Neutral Beam Injection Method for providing auxiliary heating to the confined plasma

whereby a beam of energetic neutral particles is injected, either

perpendicularly or tangentially, into the plasma. Less effective

in higher-density plasmas, in which beam does not penetrate as

deeply.

PLL Phase-Locked Loop A type of feedback circuit which adjusts the frequency of the out-

put signal to minimize the phase difference between the output

and input signals, as might be used, for example, to demodulate

an FM radio signal.

PFC Plasma Facing Components Machine components which are exposed directly to the plasma,

with no material structures placed in between. Examples include

limiters and divertors.

QCM Quasi-Coherent Mode Edge fluctuation with 50 . f . 150 kHz, k⊥ ∼ 1.5 cm−1, accom-

panying EDA H-mode and providing enhanced particle transport.

QH Quiescent H(-mode) A steady-state, ELM-free H-mode first found on DIII-D, with

similar regimes found on other tokamaks (AUG, JT-60U, JET);

characterized by a continuous EHO which flushes impurities from

the plasma.

SOL Scrape Off Layer The quasi-vacuum region in a plasma outside the LCFS whose

field lines are “open,” intersecting material surfaces. The region

is named because the field lines and flux surfaces appear to be

scraped off at the x-point from the LCFS.

tokamak toroidal chamber with

magnetic coils (Russian

transliteration: toroidal’naya

kamera s magnitnymi ka-

tushkami)

A device for confining fusion plasmas originating in Soviet Union

in the 1950’s. In this concept, an externally-applied axial mag-

netic field is combined with the poloidal field resulting from the

plasmas own axial current, producing the helical field which gives

the rotational transform required for stability. Additional verti-

cal field coils are also needed for stability and shaping.
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Appendix B

Analytical Calculations for

Antenna

B.1 Derivation of Antenna Vacuum Field Model

Figure 4-1 shows a photograph of the antenna, as well as the geometry used in the

model below.

The derivation of the vacuum field relations for the Shoelace antenna proceeds

as follows. First, flatten the geometry of the antenna onto a single plane. Next, let

the wires be of infinite extent in length, of alternating sign but equal magnitude in

current, I = ±I0, and with an infinite number of filaments in an equispaced array.

b represents the spacing between filaments. The radius of each filament is a, but for

the present, a is considered to be infinitesimally small, a→ 0.

The magnetostatic vacuum field produced by a single current filament may be

calculated by the Biot-Savart law,

B(r) =

∫

µ0

4π

Id~ℓ× r

|r|3
(B.1)

where r represents the position at which the field is to be evaluated, d~ℓ the infinites-

imal path length along the current-bearing interval, and the integral is over all such
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intervals on the filament.

Choose an orthonormal coordinate system such that the z coordinate is colinear

with a current element, the xz plane contains the current elements, and the y coor-

dinate extends away from the elements. In this case, z corresponds to the toroidal φ

coordinate, x corresponds to the poloidal angle, θ, and y to the minor radial or flux

surface coordinate.

Then the current density associated with the nth current filament is

J = (−1)nI0δ (y) δ (x− nb) (B.2)

where δ is the Dirac delta.

Applying the Biot-Savart law, Eq. B.1, to each filament produces a sum,

B(r) =
∞
∑

n=−∞
I0

∫

µ0

4π

(−1)nd~ℓ× rn

|rn|3
(B.3)

where rn = r − x̂nb = x̂(x − nb) + ŷy + ẑ(z − ℓ) is the vector between infinitesimal

interval on the nth current filament and the point, r, where the field is being evaluated.

This may be rewritten as

B(r) =
∞
∑

n=−∞
(−1)nµ0I0

4π

∫ ∞

−∞
dℓ

ẑ× [x̂(x− nb) + ŷy + ẑ(z − ℓ)]
|(x− nb)2 + y2 + (z − ℓ)2|3/2

=
∞
∑

n=−∞
(−1)nµ0I0

4π

∫ ∞

−∞
dℓ

ŷ(x− nb)− x̂y

|(x− nb)2 + y2 + (z − ℓ)2|3/2

=
∞
∑

n=−∞
(−1)nµ0I0

4π
[ŷ(x− nb)− x̂y]

∫ ∞

−∞
dℓ

1

|r2⊥ + (ℓ− z)2|3/2

(B.4)

where r2⊥ ≡ (x − nb)2 + y2 is the distance in the xy plane between the infinitesimal

current element and the test point, r. To evaluate the integral, substitute ζ2 ≡ (z−ℓ)2,
with dζ = dℓ, and with the same limits of integration. Then

∫ ∞

−∞
dζ

1

(r2⊥ + ζ2)
3/2

=
2

r2⊥
(B.5)
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and

B(r) =
µ0I0
2π

∞
∑

n=−∞
(−1)n ŷ(x− nb)− x̂y

(x− nb)2 + y2
(B.6)

The x̂-component of B is

Bx(r̄) = −
µ0I0ȳ

2πb

∞
∑

n=−∞
(−1)n 1

(x̄− n)2 + ȳ2
(B.7)

while the ŷ-component is

By(r̄) =
µ0I0
2πb

∞
∑

n=−∞
(−1)n (x̄− n)

(x̄− n)2 + ȳ2
(B.8)

where x̄ ≡ x/b, ȳ ≡ y/b, and r̄ = r/b.

Now,

∞
∑

n=−∞

1

(x̄− n)2 + ȳ2
=

π cosh (πȳ) sinh (πȳ)

ȳ
[

cosh2(πȳ)− cos2(πx̄)
] (B.9)

and

∞
∑

n=−∞
(−1)n 1

(x̄− n)2 + ȳ2
=

∞
∑

n=−∞

1

(x̄− 2n)2 + ȳ2
−

∞
∑

n=−∞

1

[x̄− (2n+ 1)]2 + ȳ2

=
1

4

∞
∑

n=−∞

1

( x̄
2
− n)2 +

(

ȳ
2

)2 −
1

4

∞
∑

n=−∞

1
(

x̄−1
2
− n

)2
+
(

ȳ
2

)2

=
1

4

[

π cosh
(

π ȳ
2

)

sinh
(

π ȳ
2

)

ȳ
2

[

cosh2(π ȳ
2
)− cos2(π x̄

2
)
] − π cosh

(

π ȳ
2

)

sinh
(

π ȳ
2

)

ȳ
2

[

cosh2(π ȳ
2
)− cos2(π x̄−1

2
)
]

]

=
π cosh

(

π ȳ
2

)

sinh
(

π ȳ
2

)

2ȳ

[

1

cosh2(π ȳ
2
)− cos2(π x̄

2
)
− 1

cosh2(π ȳ
2
)− sin2(π x̄

2
)

]

=
π cosh

(

π ȳ
2

)

sinh
(

π ȳ
2

)

2ȳ

[

cos2(π x̄
2
)− sin2(π x̄

2
)

[

cosh2(π ȳ
2
)− cos2(π x̄

2
)
] [

cosh2(π ȳ
2
)− sin2(π x̄

2
)
]

]

=
π cosh

(

π ȳ
2

)

sinh
(

π ȳ
2

)

2ȳ

[

cos(πx̄)

cosh4(π ȳ
2
)− cosh2(π ȳ

2
) + cos2(π x̄

2
) sin2(π x̄

2
)

]

=
π cosh

(

π ȳ
2

)

sinh
(

π ȳ
2

)

2ȳ

[

cos(πx̄)

cosh4(π ȳ
2
)− cosh2(π ȳ

2
) + 1

4
sin2(πx̄))

]

(B.10)
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noting that cos(π x̄−1
2
) = cos(πx̄

2
−π

2
) = sin(πx̄

2
). But cosh4(x)−cosh2(x) =

[

cosh(2x)+1
2

]2

− cosh(2x)+1
2

= 1
4

[

cosh2(2x) + 2 cosh(2x) + 1
]

− 1
2
[cosh(2x) + 1] = 1

4

(

cosh2(2x)− 1
)

,

so the sum is

∞
∑

n=−∞
(−1)n 1

(x̄− n)2 + ȳ2
=

2π sinh
(

π ȳ
2

)

cosh
(

π ȳ
2

)

ȳ

[

cos(πx̄)

cosh2(πȳ) + sin2(πx̄)− 1)

]

=
π sinh (πȳ)

ȳ

[

cos(πx̄)

cosh2(πȳ)− cos2(πx̄))

]

(B.11)

and

Bx(r̄) = −
µ0I0ȳ

2πb

∞
∑

n=−∞
(−1)n 1

(x̄− n)2 + ȳ2
= −µ0I0

2b

sinh (πȳ) cos(πx̄)

cosh2(πȳ)− cos2(πx̄))
(B.12)

or

Bx(r) = −
µ0I0
2b

sinh (k⊥y) cos(k⊥x)

cosh2(k⊥y)− cos2(k⊥x))
= −µ0I0

2b

sinh (k⊥y) cos(k⊥x)

sinh2(k⊥y) + sin2(k⊥x))
(B.13)

where k⊥ ≡ 2π
2b
.

But in a vacuum region with no currents, and neglecting displacement current,

Ampère’s law becomes

∇×B = ẑ

(

∂By

∂x
− ∂Bx

∂y

)

= 0⇒ By =

∫

dx
∂Bx

∂y
(B.14)

after noting that Bz = 0 and the field is uniform in z by symmetry. Performing this

calculation leads to

By(r) =
µ0I0
2b

cosh(k⊥y) sin(k⊥x)

cosh2(k⊥y)− cos2(k⊥x)
=
µ0I0
2b

cosh(k⊥y) sin(k⊥x)

sinh2(k⊥y) + sin2(k⊥x)
. (B.15)
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B.2 Antenna Bandwidth in k-Space

The k-space bandwidth of the vacuum field induced by the antenna is the same as the

bandwidth for vacuum perturbations to which the antenna is sensitive when operating

as a receiver. Consider the flux linked by the antenna by a vacuum-field perturbation,

Φ =

∫∫

B · dA =

∫∫

B · ~̂νdA =

∫∫

dxdy Bxν̂ (B.16)

where the unit normal, ν̂, of the differential surface area is given by

ν̂(y, z) = sgn [cos(kay)] [ u(y + h/2)− u(y − h/2)] [ u(z + w/2)− u(z − w/2)] ,
(B.17)

with ka the perpendicular wavenumber of the antenna (∼ 1.5 cm−1), w the width

of antenna (∼ 15.3 cm, in the z direction), h ≈ 39 cm the height of the antenna,

sgn(x) the signum function, and u(x) the Heaviside step function. x̂ is the direction

normal to the plane of the antenna; y varies crossing the rungs of the antenna (the

long windings), and z varies moving along the rungs. Here, the width of the antenna

wire is neglected, since it is much smaller than h.

In the Fourier domain,

Φ =

(

1

2π

)2 ∫∫

dkydkze
i(kyy+kzz)B̃x ∗ ˜̂ν (B.18)

where Ã ≡
∫∫

dydz e−i(kyy+kzz)A is the Fourier transform of the quantity, A, and ∗ is
the convolution operator,

(

Ã ∗ B̃
)∣

∣

∣

u
=
∫

dvA(v)B(u− v).

The Fourier transform of ν̂ in k is
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˜̂ν =

∫∫

dydz e−i(kyy+kzz) sgn [cos(kay)]

[

u(y +
h

2
)− u(y − h

2
)

]

[

u(z +
w

2
)− u(z − w

2

]

=

(∫

dze−ikzz
[

u(z +
w

2
)− u(z − w

2
)
]

)

(∫

dy e−ikyy sgn [cos(kay)] ∗
∫

dy e−ikyy
[

u(y +
h

2
)− u(y − h

2
)

])

(B.19)

The first term is

∫ ∞

−∞
dz e−ikzz [ u(y + h/2)− u(y − h/2)] = − 1

ikz
e−ikzz

∣

∣

∣

∣

w/2

−w/2

= − 1

ikz
(e−ikzw/2 − eikzw/2) = 2

sin(kzw/2)

kz

w/2

w/2
= w sinc

(

kzw

2

)

(B.20)

and similarly,

∫

dy e−ikyy [ u(y + w/2)− u(y − w/2)] = h sinc(
kyh

2
) (B.21)

Also,

∫

dy e−ikyy sgn [cos(kay)] =
∞
∑

µ=−∞
δ(ky − µka)

4 sin(µπ/2)

µ
− 1, (B.22)

since the Fourier series of the square wave is
∑∞

µ=−∞ cµe
i2πµy/λa , with λa = 2π/ka and
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cµ =
1

λa

∫ λa/2

−λ/2
dy e−iµ2πy/λa sgn [cos(2πy/λa)]

= − 1

λa

∫ −λa/4

−λ/2
dy e−iµ2πy/λa +

1

2π

∫ λa/4

−λ/4
dy e−iµ2πy/λa − 1

2π

∫ λa/2

λa/4

dy e−iµ2πy/λa

= − 1

λa

λa
i2πµ

(

−e−iµ2π(λ/2)/λ + e−iµ2π/4 + e−iµ2π/4 − eiµ2π/4 − eiµ2π/4 + eiµ2π/2
)

=− 1

i2πµ

[

−(e−iµ2π(λ/2)/λ − e−iµ2π(λ/4)/λ) + (e−iµ2π(λ/4)/λ − eiµ2π(λ/4)/λ)

−(eiµ2π(λ/4)/λ − eiµ2π(λ/2)/λ)
]

= − 1

i2πµ

(

−e−iµπ + e−iµπ/2 + e−iµπ/2 − eiµπ/2 − eiµπ/2 + eiµπ
)

= − 1

i2πµ
(2i sin(µπ)− 4i sin(µπ/2))

=
2 sin(µπ/2)

πµ
,

(B.23)

µ 6= 0, and c0 = 0, and noting for a periodic function, f(y), with period, λa = 2π/ka,

f(y) =
1

2π

∫

dkye
ikyyf̃(ky) =

∑

cµe
i2πµy/λa ⇒ f̃(ky) = 2π

∞
∑

µ=−∞
δ(ky − µka)cµ

(B.24)

Then

˜̂ν(ky, kz) =

[

w sinc

(

kzw

2

)]

[

h sinc

(

kyh

2

)

∗
( ∞
∑

µ=−∞
δ(ky − µka)

4 sin(µπ/2)

µ
− 1

)]

(B.25)

To estimate the full width at half maximum in ky for the first harmonic, look for

sinc

(

k∗yh

2

)

= 2
sin(k∗yh/2)

k∗yh
==

1

2
⇒ sin(k∗yh/2) = kyh/4, (B.26)

or ky ≈ 3.7910
h

. We may also expand the sinc function for small argument, giving
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1−
(k∗yh/2)

2

6
≈= 1

2
⇒ k∗y ≈

2
√
3

h
≈ 3.46/h (B.27)

As such, the primary ky band of the antenna is ≈ ka ± 2
√
3

h
≈ 1.5 ± 0.05 cm−1.

Similarly, the band in kz space is 0± 0.2475 cm−1.

Since the antenna wires are angled at θw = 14.5° from the toroidal direction,

the Shoelace antenna’s toroidal mode number, n, spectrum is centered on n0 =

2πR0/ [2∆z⊥/ tan(θw)] ≈ 35, where R0 = 0.916 m is the major radius of the top

layer Shoelace rung at the midplane. The bandwidth of the n spectrum is limited by

the width of the antenna in the toroidal direction, wφ = 15.3 cos(14.5°) cm. Modeling

the antenna as a tophat function in toroidal angle, φ, with an arc length of wφ gives

a factor of sinc
(nwφ

2R

)

in the transform, or a span of ∆n ≈ ±23 from n0 (FWHM).

B.3 Lumped Element Circuit Parameters of An-

tenna

B.3.1 Resistance

The DC resistance of the wire is

Rdc =
ℓ

σAc
= 0.206Ω (B.28)

The skin depth – the e-folding length of the attenuation for a plane wave incident

upon a planar slab of a conducting material – is, for a good conductor1,

δ =

√

2

ωσµ0

(B.29)

For the ML molybdenum alloy, at 100 kHz, δ = 376 µm, smaller than the wire

radius of 762 µm. As such, the skin effect must be considered when calculating

1This follows simply from ∇ × B = µ0J = µ0σE ⇒ ∇×∇×B = −µ0σ
∂B
∂t → Bk2 = iωµ0σB

after Fourier decomposition, so k =
√
iωµ0σ = (1 + i)

√

ωµ0σ
2

, the imaginary part of which defines

the decay through the conductor with an e-folding length, 1/ℑ{k} =
√

2

ωµ0σ
.
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the resistance. Neher and McGrath provide the following framework for wires of

cylindrical cross section [127]: take the ratio of the AC resistance to that of the DC

resistance for a bare, solid, uninsulated cylindrical wire to be

Rac/Rdc = 1 + Yc. (B.30)

Yc is divided into two components - one due to the skin effect in a single conductor,

and one due to the proximity effect when multiple conductors are present. In the

present case, only the single conductor model is needed. The loss due to the skin

effect is given by Ycs = F (xs). Here, F (x) is a tabulated skin effect function, and

xs = 1.585
√

fks/R′
dc, where f is the frequency, ks = 1 is a geometric factor equal

to unity for a conductor of solid circular section, and R′
dc is the DC resistance per

unit length2 in units of Ω/m. Rdc = 1/(σAc) = 0.0306 for the ML wire used on the

Shoelace antenna. Then xs = 2.86, and Ycs = F (x) = 0.275.

The result of the resistance calculated in this way is shown in 4-11.

B.3.2 Self Inductance

In order to visualize how to perform the inductance calculation, it is helpful to imagine

stretching the rectangular-cell antenna into a continuous linkage of figure-eights, as

shown in B-1. Here, it is plainly seen that the total magnetic flux linked by the

antenna is equal to the number of cells multiplied by the flux linked in each cell3. In

the planar model introduced in Section B.1, symmetry implies that the flux linked

by each cell is identical.

If the field distribution from the antenna is known, the self inductance may be

calculated by direct integration. Using the planar model results, Eqs. B.13 and

B.15, for the field, and integrating in the plane of the wires, x = 0, between the

wire segments (limiting the integration at the outer radius, a, of the wire) yields the

2in [127], the formula is provided as Ycs = 0.875
√

fks/R′
dc, with R

′
dc in µΩ/foot.

3Similarly, the EMF voltage resulting from the line integral of ∇ × E in Faraday’s law may
be carried out by integrating around cell in separately and adding all of the results, rather than
integrating along the entire meandering path.

195



Figure B-1: Conceptual cartoon stretching the antenna winding from rectangular to
circular cells. The actual antenna wire does not follow this path, but has the same
topology, and the flux linked by the antenna is simpler to visualize in this picture
since the wires do not lie one on top of the other.

enclosed flux per unit length along the wire (in the z coordinate),

Φ1

w
=

∫ 1−a
b

a
b

Bx(ȳ, x = 0)dȳ =
µ0Im
2

∫ 1−a
b

a
b

sin(πȳ)

1− cos2(πȳ)
dȳ =

µ0Im
2

∫ 1−a
b

a
b

1

sin(πȳ)
dȳ

=
µ0Im
2π

{

ln
[

1 + cos(π
a

b
)
]

− ln
[

1− cos(π
a

b
)
]}

,

(B.31)

with Φ1 representing the total flux linked by a single cell and ȳ = y/b. Then the self

inductance is4

L = PNcw
Φ1

Iaw
= P2Ncw

µ0

π

{

ln
[

1 + cos(π
a

b
)
]

− ln
[

1− cos(π
a

b
)
]}

(B.32)

where we have evaluated Im/Ia = 2P , and Nc = 18 is the number of cells, equal to

one less than the number of wire segments. P is the number of round-trip passes

made by the winding (bottom to top and back). For the Shoelace antenna, P = 1.

4A similar calculation gives an expression for the mutual inductance between two such filamentary
arrays displaced only vertically, as for for the antenna and its mirror currents, M12 =

Vemf,21

dI1/dt
=

dNcΦ21/dt
dI1/dt

= jωNcΦ21

jωI1
= µ0Ncw

2π [ln(cosh(k⊥∆x) + 1)− ln(cosh(k⊥∆x)− 1)], where ∆x is the distance

between the arrays.
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Notice the logarithmic singularity when a
b
→ 0.

End effects tend to reduce the inductance; this is especially true when b ∼ w.

To account for end effects in the ẑ direction, an effective width, we = w − b, might

be used in Equation B.32. Moreover, the vertical separation (in x) between the two

layers of the winding tends to reduce the flux enclosed in the antenna windings. This

effect might be approximated by evaluating Bx at a height, x = d/2, intermediate

between the layers of wrappings, instead of x = 0, as in B.31, where d is the distance

between the winding layers. These two approximations give

L ≈ P2Ncwe
µ0

π

{

ln

[

cosh(
πd

2
) + cos(π

a

b
)

]

− ln

[

cosh(
πd

2
)− cos(π

a

b
)

]}

. (B.33)

When d/b≪ 1, this reduces the simple calculation for L by an amount,

P µ0
2π

π cos(πa/b)
1−cos2(πa/b)

d2

4b2
.

Equation B.31 gives L ≈ 6.3 µH, while Equation B.33 gives L ≈ 5.4 µH.

B.4 Matching Antenna Pitch to Background Field

Lines

Since the QCM is field-aligned, it is expected that the perturbation induced by the

antenna will be greatest when it is also field-aligned; indeed, experience in experiment

confirmed this expectation. The effect of mismatch on the antenna response may be

heuristically quantified by a simplified geometric model, as illustrated in Figure B-2.

First, assume two planes containing current filaments - one modeling the antenna,

and one the plasma. Within each plane are current filaments that are parallel but

of alternating direction. The planes share the same normal vector, but the current

filaments in one plane are rotated relative to those in the other plane. The horizontal

extent of the planes is limited to the width of the antenna. Our goal is to estimate the

net flux enclosed by the field lines that is produced by the windings. If we assume that

the flux produced by the windings is all directed out of the plane, then the integral of
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Lc

α

w

b

LR

(a) (b)

Δα

Figure B-2: Illustration of simplified geometry for quantifying pitch mismatch for (a)
small angle mismatch and (b) large angle mismatch. The case in (a) is more typical of
the actual situation. The annotations in (b) correspond to Eq. B.34 below. Horizontal
black lines represent antenna windings; angled blue and orange lines represent field
lines. Shaded regions are subject to complete flux cancellation, and the formula in
Eq. B.34 gives the ratio of unshaded to total area.
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the flux may be determined by geometric considerations, alone. Noting that the flux

alternates direction into and out of the page across alternating antenna rungs, the

net flux may be determined by subtracting from the total area those regions which

sample equal regions of opposite flux, such that they are completely canceled. These

regions are shaded in Figure B-2.

The effective fractional antenna coupling is then determined by the geometric

ratio, R, of coupled flux area to the total flux area of the antenna, which is the same

as the ratio of unshaded to total area in Figure B-2. This is calculated as

R =

[

1− LR
b

tan(∆α)

]

(−1)N (B.34)

where ∆α is the angle between the antenna and plasma lines, LR = w −NLc is the
effective width of the antenna after fully canceled regions are removed, Lc = b/ tan(α)

is the length along the antenna wire between points where the angled “plasma” line

intersects the “flat” antenna line, and N = floor(Lc/w) is the number of intersections

that occur over the length of the antenna (i.e. the number of fully canceled flux

regions, each of width, Lc).

For ∆α < tan−1(b/w) such that N = 0, Lc > w, and LR = w, R = 1 −
w tan(∆α)/b. At ∆α = tan−1(b/w) = tan−1(2.1/14.6) = 8°, R = 0; at ∆α =

tan−1[b/(2w)] = tan−1(2.1/29.2) = 4°, R = 1/2.

Several operational examples may serve to gauge the effectiveness of the chosen

winding pitch angle, 14.5°, in aligning to background field. In a plasma from an

antenna experiment, with q95 ≈ 3.2, the field line pitch was about 13° at the midplane

and 13.5°at the bottom of the antenna, corresponding to 0.8 < R < 0.9. For a q95 ≈
4.0 plasma, these angles were both approximately 10.7°, corresponding to R ≈ 0.55.

At q95 ≈ 5.0, they are about 8.9°, with R ≈ 0.33. As such, the range of q95 over which

the antenna was effectively matched to the pitch of the plasma was5 q95 < 5, with

best match at q95 ≈ 3.

5the lower bound of q95 from the perspective of the acceptable range of R is irrelevant, as it is
MHD unstable
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B.5 Thermal Loading

The ML wire alloy used for the Shoelace winding recrystallizes at 1300 °C. Since the

wire is the component exposed to the greatest heat flux, and has a low thermal mass,

it is the component most likely to fail due to thermal loading (as, indeed, occurred –

see Section 4.3), and so analysis of such loading should concentrate on the wire.

The relevant partial differential equation is parabolic,

∂T

∂t
= α∇2T + q/(Cpρ) (B.35)

where T is the wire temperature, α is the wire thermal diffusivity, and q is the heat

input source per unit volume, ([W/m3]). It is convenient to work in terms of the heat

input per unit length; this quantity is denoted by Q′, and may be used by substituting

q = Q′/Ac in Equation B.35.

The two primary sources of thermal loading are (1) the incident power flux from

the plasma and the Joule (resistive) heating of the wire during an antenna pulse. In

both cases, it is adequate to assume the heat flux to be uniform over the length of

the wire; however, the resistive heating in the wire is not radially uniform as a result

of the skin effect. Moreover, the heat flux due to the plasma is highly variable from

experiment to experiment. The antenna must survive a range of conditions even

when not used actively in experiments, since access to the interior of the vacuum

vessel occurs infrequently, with several months of experimental run days occurring

during the intervening periods.

There are two problems of interest: the transient heat rise during an experiment,

and the transient cooling during the roughly ten-minute period between shots, during

which time there is neither plasma nor resistive heating of the wire. Several simplifi-

cations of the problem geometry arise from the following considerations. Firstly, the

decay constant for Fourier harmonics of the solution to the one-dimensional version of

Equation B.35 is τn = λ2/(αn2π2), where λ is the length of wire between the boundary

points. If there is no heat-flow across the turning points in the wire path, then λ = ℓ,

and the longest-lived harmonic (n = 1) has τ1 = 4.12/(5.3×10−5 ·π2) = 32×103 s ≈ 9
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hours. If, on the other hand, the turning points provide a good contact to thermal

ground, then the pertinent length is λ = w, and τ1 ≈ 45 s.

As such, heat is expected to be dissipated from the wire through the ceramic

pulleys to the posts. Moreover, over the course of the 1 s plasma flattop, there will be

little thermal diffusion along the length of the wire, while the wire is sufficiently thin

such that the temperature equilibrates across the wire radius, even for nonuniform

resistive heating in light of the skin effect. As such, the transient cooling problem

can be viewed as one-dimensional across the length of the wire (though complications

arise in accounting for cooling through the ceramic pulley), while the heat loading

can be approximated as a zero-dimensional problem.

The temperature evolution of the hottest point along the wire is then given by

∆T =
Q′w

CpρwAc
t =

Q′

CpρAc
t, (B.36)

with t the duration of the experimental shot and ∆T the change from the initial

temperature.

The heat input per unit length may be then be modeled simply as

Q′ = (2awSp + I2Rw/ℓ)/w = 2aSp + I2R/ℓ, (B.37)

where Sp is the incident heat flux due to the plasma, and I is the antenna current. In

design work, Sp was approximated at 1 MW/m2; a nominal current value of 150 A was

selected for calculating the contribution from resistive heating; this amplitude was

never achieved in the experiments presented in this thesis, but an ongoing upgrade

to the power system is expected to produce outputs of this magnitude.

With these heating levels, Q′ = 1.5× 103 + 0.88× 103 = 3.1× 103 [W/m], where

∆T ≈ 500[K
s
]× t. For a two-second pulse, this would result in a temperature rise of

1000 K, pushing the antenna wire near its recrystallization temperature. In practice,

however, the antenna is never pulsed for more than 1 s, and the plasma flattop is

typically 1 s (though occasionally longer), with plasma current ramp-up and ramp-

down involving lower-power plasmas.

201



In the cooling problem, the critical figure of interest is the amount of time, τ ,

necessary for the hottest point on the wire to cool sufficiently so that it will not ratchet

up, from one discharge to the next, past the recrystallization temperature over the

course of an experimental run day. The interval between discharges is typically about

ten minutes: τ < 600 s.

Modeling the thermal diffusion in one-dimensional,

∂T

∂t
= α

∂2

∂y2
T (B.38)

with boundary conditions, T (0) = T (w) = T∞, and the solution is

T = T∞ +
n→∞
∑

n=1

cne
−t/τn sin

(nπy

w

)

(B.39)

where T0 ≡ T (y, t = 0) is the uniform initial temperature on the wire,

cn =











0 when n is even

4(T0 − T∞)

πn
when n is odd

, (B.40)

and

τn =
L2

n2π2α
. (B.41)

The hottest point on the wire is in the middle, y = w/2, where the sine term is

±1. Its decay is shown by the black dashed line in Figure B-3 using molybdenum ML

wire parameters and T0 = 1300 °C, T∞ = 400 °C. The cooling is 99% complete after

τ99 ≈ 220 s (3 min 40 s).

The actual transient will decay more slowly because of the ceramic insulation at

the endpoints of the wire. To analyze this, a simplified model may be introduced as

follows:

� Simplify the geometry of the heat conduction problem in the ceramic tension

wheel to a toroidal disc of rectangular cross with imposed temperature on the

curved boundaries and a no-flux condition on the flat surfaces.
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� Examine the timescale of the decay time for the transient solution in the tem-

perature profile in the ceramic.

� If the transient in the ceramic may be ignored, use the steady-state solution to

derive an imposed-flux boundary condition for the thermal diffusion problem in

the wire. This boundary condition will depend on the instantaneous boundary

temperature.

� Solve the one-dimensional heat diffusion problem in the wire numerically.

The thermal diffusion problem in the ceramic is written in cylindrical coordinates

as
∂T

∂t
= α∇2T = α

[

1

r

∂

∂r

(

r
∂T

∂r

)

+
1

r2
∂2T

∂θ2
+
∂2T

∂z2

]

. (B.42)

For simple boundary conditions, separation of variables suggests a trial solution (en-

forcing temperature decay),

T (r, θ, z; t) = R(r)Θ(θ)Z(z)e−ωt. (B.43)

Substitution of B.43 into B.42 yields

Zn(z) = cos

(

nπ

hc
z

)

Θm(θ) = Ame
imθ + Bme

−imθ

Rmn(r) = Ym

(
√

ωmn
α
− n2π2

h2c
r

)

−
Ym

(√

ωmn

α
− n2π2

h2c
ri

)

Jm

(√

ωmn

α
− n2π2

h2c
ri

) Jm

(
√

ωmn
α
− n2π2

h2c
r

)

Tt(r, θ, z; t) =
∞
∑

m=0

∞
∑

n=0

Rmn(r)Θm(θ)Zn(z)e
−ωmnt

T (r, θ, z; t) = Tss(r, θ, z) + Tt(r, θ, z; t),

(B.44)

where Jm is the mth-order Bessel function of the first kind, and Ym of the second

kind; ri is the inner radius of the ceramic tension wheel, ro the outer radius, and hc
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is the height of the part. Tss is the steady-state solution which will be determined

shortly, and Tt is the transient solution. The boundary conditions,

Tt(r = ri) = 0 provides constant factor in Rmn

Tt(r = ro) = 0 specifies ωmn

∂T

∂z

∣

∣

∣

∣

z=0

= 0 eliminates quadrature component in Zn(z)

∂T

∂z

∣

∣

∣

∣

z=hc

= 0 specifies eigenvalue,
nπ

hc
,

(B.45)

and the initial conditions,

Tt(r, θ, z; t = 0) = T0 − Tss(r, θ, z), (B.46)

determine the constants, Amn and Bmn, through the orthogonality relation,

Amn =

∫ z=hc
z=0

dz cos(nπ
hc
z)
∫ 2π

0
dθ eimθ

∫ ro
0

dr rRmn(r)[T (r, θ, z; t = 0)− Tss(r, θ, z)]
πhc

∫ ro
0

dr rR2
mn(r)

Bmn =

∫ z=hc
z=0

dz cos(nπ
hc
z)
∫ 2π

0
dθ e−imθ

∫ ro
0

dr rRmn(r)[T (r, θ, z; t = 0)− Tss(r, θ, z)]
πhc

∫ ro
0

dr rR2
mn(r)

(B.47)

hc requires further comment: the geometry of this simplified problem corresponds

to a uniform boundary condition at r = ro (the second condition in B.45). In the

real geometry, the contact between the wire and the ceramic is much smaller than

the total height of the tension wheel. hc in this simplified problem is therefore not on

the scale of the height of the ceramic as much as the diameter of the wire. However,

making hc ∽ a greatly increases the thermal resistance in the simplified problem from

that of the real problem. As such, the simplified problem has been posed in such a

way as to be very conservative (more than compensating for the fact that the contact

between wire and wheel is made only between 0 < θ < π, rather than 2π, as implied

by the axisymmetry of the boundary conditions).
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Table B.1: Transient decay times, τmn, for ceramic pulley cooling [s]

n \ m 0 1 2 3
0 1.4866 1.1027 0.6667 0.4347
1 0.3040 0.4344 0.6002 1.5007
2 0.0898 0.0985 0.1051 0.1174
3 0.0413 0.0430 0.0442 0.0463

The eigenvalues, ωmn, are the quantity of interest from this analysis. If it is shown

that maxmn(τmn) ≡ 1/minm,n(ωmn) ≪ τdecay > 100 s, then it is safe to assume that

steady-state heat-conduction through the ceramic pulley is sufficiently accurate in

modeling the boundary conditions of the wire.

Numerical determination of the first several values of ωmn with ri = 1.3 mm,

ro = 10 mm, hc = 6a = 4.6 mm, and αAl2O3 = 5.54× 10−6 m2/s yields the entries in

Table B.1.

The longest-lived mode is τ00 ≈ 1.5 s≪ τwire decay > 100 s. As such, it is, indeed,

justifiable to approximate the temperature across the ceramic pulley as instanta-

neously at equilibrium.

The axisymmetric steady-state solution for the temperature profile across the

ceramic pulley is

Tss(r) = a0 ln(r) + a1

a0 =
To − Ti
ln(ro/ri)

a1 = Ti − a0 ln(ri)

(B.48)

where Ti is the fixed disc temperature at the inner radius and To at the outer radius.

This solution is used to specify one of the two boundary conditions for the wire cooling

problem posed in B.38,

∂Twire
∂y

∣

∣

∣

∣

y=endpoint

= − κa
κm

T (yend; t)− Ti
ro ln(ro/rm)

, (B.49)
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Figure B-3: Evolution of wire temperature at the hottest point of the wire (the
midpoint) for the case with boundary conditions provided by the steady-state ceramic
pulley model (blue solid line) and a fixed endpoint temperature (black dashed line).
The initial temperature was set at 1300�, and the temperature at the inner radius
of the ceramic was fixed at 400�.

where κa ≈ 18 W/(m·K) is the thermal conductivity of the alumina tension wheel

and κm ≈ 138 W/(m·K) is the thermal conductivity of the ML wire.

The numerical solutions to B.38 with the boundary conditions in B.49 as well as

with the original boundary conditions are shown in Figure B-3. The wire takes longer

to cool using this model of the ceramic, but is still about 99% equilibrated just at

the ten-minute mark. Again, the actual geometry of the ceramic tension wheel is not

captured here; the additional thermal mass and contact area with the wheel’s inner

heat sink would likely reduce the cooling time.

Prior to the construction of the antenna, more precise thermal calculations were

carried out with roughly the same heat loading parameters, finding similar, and

slightly more favorable, results. Despite this, the experimental reality proved harsher

than what were thought to be conservative design estimates, and the antenna wire

still failed under thermal loading (see Section 4.3).
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Appendix C

Low-Frequency Waves in

Inhomogeneous Plasmas from the

Plasma Dielectric Perspective

The cold, homogeneous plasma model does not give rise to a drift wave. However, with

the inclusion of a finite, non-zero parallel electron temperature, as well as a density

gradient, the drift wave branch appears with the familiar dispersion relation. This

will be shown in the following. Moreover, several derivations useful for interpreting

theory shown in the main body of the text are also included.

C.1 Introducing the Dielectric Tensor

First, we will describe the dielectric formalism in which the plasma response is sub-

sumed into the dielectric tensor, ¯̄ǫ. Starting with Maxwell’s equations (in SI units),
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∇ ·D = ρ

∇× E = −∂B
∂t

∇ ·B = 0

∇×H = J+
∂D

∂t
.

(C.1)

To proceed, we make use of the constitutive relation between the electric displace-

ment and field intensity quantities. In vacuum, this is

D = ǫ0E. (C.2)

and in a general medium, it is

D = ¯̄ǫ · E = ǫ0
(¯̄1 + ¯̄χ

)

E, (C.3)

introducing ¯̄χ as the electric susceptibility1.

The plasma may be viewed as a dielectric medium by absorbing the current into

the dielectric tensor’s action on E in Ampère’s law,

J = ǫ0
∂

∂t
( ¯̄χ · E) , (C.4)

so that

∇×H =
∂

∂t
(¯̄ǫ · E) = ǫ0

∂

∂t

[(¯̄1 + ¯̄χ
)

· E
]

= J+ ǫ0
∂E

∂t
. (C.5)

With

B = µ0H (C.6)

Maxwell’s equations may then be expressed as

1The notation adopted here represents vectors with boldface, u, and dyadics (second order ten-
sors) with two overbars, ¯̄u.
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∇ · (¯̄ǫ · E) = 0

∇× E = −∂B
∂t

∇ ·B = 0

∇×B = µ0
∂ (¯̄ǫ · E)
∂t

.

(C.7)

C.2 Electrostatic Approximation

The electrostatic approximation results from taking the electric field to be curl-free,

so that the inductive contribution to the field is negligible. In this case, E = −∇Φ̃ =

−ikΦ̃. This means that E is purely longitudinal, since the displacement in this quan-

tity is exactly parallel to k. Labeling the longitudinal and transverse components

of E, relative to k, as Eℓ and Et, then it is clear that for the electrostatic approxi-

mation is valid when Eℓ ≫ Et. A sufficient condition for this to be the case is that

|n|2 =
∣

∣

(

ck
ω

)∣

∣

2 ≫
∣

∣

∣

ǫij
ǫ0

∣

∣

∣
[76, Sec. 3.4]. Now, assuming a homogeneous cold plasma, and

restricting the analysis to low frequencies,

¯̄ǫ = ǫ0











S 0 0

0 S 0

0 0 P











(C.8)

Using the free parameters from these experiments, n2 = c2k2

ω2 ≈ c2k2⊥
ω2 ∼ (105)

2
, while

S ≈ c2

v2A
∼ (102)

2
. Neglecting collisions, P ≈ −ω2

pe

ω2 ∼ − (106)
2
, but when (ωτ ′ei)

−1 ≫
1, P ≈ i

ω2
peτ

′
ei

ω
∼ i (3× 105)

2
. This means that n2 is much larger than all of the

components of ¯̄ǫ except ǫ‖,‖.

However, the ratio of Et and Eℓ is rendered more precisely as [76, Eq. 3.34]

Et
Eℓ

=
t̂ · ¯̄ǫ · n̂

n2 − t̂ · ¯̄ǫ · t̂
≈ −S

k⊥k‖
k2

+ P
k⊥k‖
k2

n2 −
(

k2‖S+k
2
⊥P

k2

) ≈
k‖
k⊥
P

n2 − P ≤
k‖
k⊥
≪ 1, (C.9)
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where the transverse unit vector, t̂, is defined through

− k× (k× E)

k2
= t̂Et. (C.10)

As such, the electrostatic approximation is robustly valid for the cold, homoge-

neous plasma which shares the density, field, and frequency range from the experi-

ments discussed here.

We have seen in Section 3.4.2 that the electrostatic modes of the cold, homoge-

neous plasma are strongly damped by electron-ion collisions, and are not likely to

appear in the frequency range driven by the Shoelace antenna. However, introducing

an inhomogeneity in the plasma density opens a new branch – the drift wave. In the

following, drift waves will be analyzed from the plasma dielectric perspective, first

under electrostatic conditions, and then relaxing the electrostatic approximation.

C.3 Fluid Model

To obtain expressions for the components of ¯̄χ, we must model the plasma current

response to a disturbance in E. In the present study, we are interested in low fre-

quencies (∼ 100 kHz≪ Ωci/(2π)), with electron collision frequencies νe ∼ 107. Fluid

models are successful in this parameter range, and we will use one here. The model

will treat electrons and ions (deuterons, in particular) as separate fluids, but quasineu-

trality will ensure that ñe = ñi. The species’ temperatures are assumed equal and

homogeneous. However, the density profile is taken to be inhomogeneous, varying

slowly in the x coordinate2. This gives rise to drift waves, which appear as a result of

the perturbed E × B velocity advecting the density gradient. The resulting density

perturbations travel at the electron diamagnetic drift velocity because the forms of

the E×B and electron diamagnetic drift velocities are similar.

2The coordinate system is that of the Cartesian slab, with x corresponding to the radial (or flux)
coordinate, y to the perpendicular direction in a flux surface (roughly the “poloidal” coordinate),
and the z direction aligned with the equilibrium magnetic field (roughly the “toroidal” coordinate).
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The electron momentum equation is written as

mene
∂ve
∂t

= −ene (E+ ve ×B)−∇pe +meneν
′
e (ui − ve) (C.11)

and the ion momentum equation is

mini
∂ui
∂t

= eni (E+ ui ×B)−∇pi −meneν
′
e (ui − ve) . (C.12)

The parameter, ν ′e ≡ 0.51
τei

, is the electron collisionality that appears in the Spitzer

resistivity as ηs = meν′e
nee2

= ν′e
ǫ0ω2

pe
, which is equal to the parallel resistivity in the

Braginskĭi model.

To construct Ohm’s law, we multiply the ion momentum equation by µe ≡ me/mi

and subtract from this the electron momentum equation. Assuming ni = ne and

pi = pe, and neglecting terms of order µe, this gives

mene
∂

∂t
(ui − ve) = ene (E+ ve ×B) +∇pe −meneν

′
e (ui − ve) . (C.13)

Multiplying by e/me and permuting factors of ne with differentials at will when

multiplying a dynamic quantity gives

∂J

∂t
=
e2ne
me

(E+ ve ×B) +
e

me

∇pe − ν ′eJ. (C.14)

Clearing the coefficient of (E+ ve ×B) gives Ohm’s Law,

me

e2ne

∂J

∂t
= (E+ ve ×B) +

1

nee
∇pe −

meν
′
e

e2ne
J. (C.15)

With ω2
pe ≡ e2ne

ǫ0me
and generalizing ηs =

meν′e
e2ne

to a diagonal tensor,

1

ǫ0ω2
pe

∂J

∂t
= (E+ ve ×B) +

1

nee
∇pe − ¯̄η · J. (C.16)

The parallel component of this equation is
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1

ǫ0ω2
pe

∂J‖
∂t

= E‖ +
1

nee
∇‖pe − η‖J‖ (C.17)

where ∇‖ ≡ b̂ · ∇.

To retrieve a susceptibility from the parallel Ohm’s law, it is necessary to elim-

inate pe and express the parallel pressure drive in terms of the current and electric

field components. This may be accomplished with the aid of the electron continuity

condition,

∂ne
∂t

+∇ · neve = 0 . (C.18)

The contributions to the electron velocity vector, ve, are from parallel motion and

drifts,

ve = b̂v‖ + v∗ + vE, (C.19)

where v∗ = ∇pe×B

neeB2 is the electron diamagnetic drift velocity and vE = E×B
B2 is the

E×B drift velocity.

Expanding the terms for ve in Eq. C.18,

∂ne
∂t

+∇ ·
(

nev‖b̂
)

+∇ · (nev∗) +∇ · (nevE) = 0 (C.20)

Next, we make use of the diamagnetic divergence operator, also known as the

magnetic curvature operator, K, according to [65]. This operator is discussed in

Section C.6.

The diamagnetic drift flux can be expressed with K as

∇ · (nev∗) = ∇ ·
(

ne
∇pe ×B

neeB2

)

= −1

e
∇ ·
(

1

B2
B×∇pe

)

=
1

e
K (pe) (C.21)

Using the electrostatic approximation for E in the perpendicular direction,

∇ · vE = ∇ ·
(

E×B

B2

)

= ∇ ·
(−∇Φ×B

B2

)

= ∇ ·
(

1

B2
B×∇Φ

)

= −K (Φ) (C.22)
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so that

∇ · (nevE) = ne∇ · vE + vE · ∇ne = −neK (Φ) + vE · ∇ne. (C.23)

Returning to Eq. C.20, and making use of the diamagnetic divergence operator, we

have

∂ne
∂t

+∇ ·
(

nev‖b̂
)

+ vE · ∇ne +
1

e
K (pe)− neK (Φ) = 0 (C.24)

This equation is accurate to all orders under the electrostatic approximation.

Let us now turn our attention to E×B advection of the density gradient. Using

the identity, A · (B×C) = (A×B) ·C = B · (C×A),

vE · ∇ne = ∇ne · vE = ∇ne ·
E×B

B2
= E · B×∇ne

B2
= −nee

Te
E · Te∇ne ×B

neeB2

= −nee
Te

E · v∗

(C.25)

where the last equality holds when Te is homogeneous and so can be commuted inside

the gradient of ne, using the isotherm, pe = neTe. It is this result, in fact, which gives

drift waves a phase velocity equal to the electron diamagnetic drift velocity, even

though no diamagnetic drift physics need be invoked, as we shall see.

Let us next (a) neglect the terms bearing K and (b) carry out an ordered expansion

of ne and ve, ne = ne,0 + ñe and ve = ve,0 + ṽ, with ∂
∂t
→ 0 for equilibrium quantities

(those with a “0” subscript),

∇ · (ne,0ve,0) = 0

∂ñe
∂t

+∇ · (ñeve,0 + ne,0ṽe) = 0.
(C.26)

The gradient of the background density profile is assumed to vary only in one direc-

tion, ∇ne,0 = ∂ne

∂x
, x̂ ≡ −∇ne/ |∇ne|, which is orthogonal to the background magnetic

field, B · x̂ = 0.

We can approximate the O {1} equation as
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∂ñe
∂t

+ ne,0∇‖v‖ + ṽE · ∇ne,0 + vE,0 · ∇ñe = 0. (C.27)

The diamagnetic velocity has disappeared3 since we have taken K → 0. Having

already ignored the curvature operator, K, ∇·
(

nev‖b̂
)

≈ b̂ ·∇
(

nev‖
)

= ∇‖
(

nev‖
)

=

v‖∇‖ne+ne∇‖v‖ ≈ v‖,0∇‖ñe+ne,0∇‖ṽ‖, since the equilibrium quantities are assumed

uniform along field lines. Then

dEñe
dt

+ v‖,0∇‖ñe + ne,0∇‖ṽ‖ + ṽE · ∇ne,0 = 0, (C.28)

using the convective derivative, dEU
dt

= ∂U
∂t

+ vE · ∇U for an arbitrary scalar field, U .

Now, in light of Eq. C.25,

ṽE · ∇ne,0 = −
ne,0e

Te
Ẽ · v∗ (C.29)

As such, again taking Te to be homogeneous in space4,

(

dE
dt

+ v‖,0∇‖

)

ñe = −ne,0∇‖ṽ‖ − ṽE · ∇ne,0 = −ne,0∇‖ṽ‖ +
ne,0e

Te
Ẽ · v∗ (C.30)

ñe =

(

dE
dt

+ v‖,0∇‖

)−1(

−ne,0∇‖ṽ‖ +
ne,0e

Te
Ẽ⊥ · v∗

)

(C.31)

and E · v∗ = E⊥ · v∗, since b̂ · v∗ = 0.

ñe =

(

dE
dt

+ v‖,0∇‖

)−1(

−ne,0∇‖ṽ‖ +
ne,0e

Te
E⊥ · v∗

)

(C.32)

Because ne,0 is at equilibrium, and ∇ne,0 is orthogonal to vE and b̂, ne,0 may be

3Independently, advection by the diamagnetic velocity is canceled by the diamagnetic momentum
flux – this is the diamagnetic cancellation.

4although this is not the case for the QCM; ultimately, we must involve additional energy con-
servation equations to account for temperature fluctuations, though this is not done here.
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factored out of the quantities under the inverted operator,

ñe = ne,0

(

dE
dt

+ v‖,0∇‖

)−1(

−∇‖ṽ‖ +
e

Te
E⊥ · v∗

)

. (C.33)

Fourier transforming and neglecting vE advection in the convective derivative5, dE
dt
→

∂
∂t
, and taking E⊥ = −∇⊥Φ

ñe = ne,0
1

iω

(

ik‖ṽ‖ + i
e

Te

k‖
k‖
k⊥Φ̃v∗

)

(C.34)

where k⊥ = ky and v∗ = êy · v∗ (and so v∗ can be positive or negative). Now, making

use of the electrostatic approximation, E⊥ = −ik‖
k‖
k⊥Φ = k⊥

k‖
E‖, and so

ñe = −ine,0
k‖
ω

(

iṽ‖ −
e

Te

k⊥v∗
k2‖

Ẽ‖

)

. (C.35)

Using the same isotherm for the electron pressure, pe = neTe, Eq. C.33 can be

used to eliminate pe from the parallel Ohm’s law, Eq. C.17, reprised below

1

ǫ0ω2
pe

∂J̃‖
∂t

= Ẽ‖ +
1

nee
∇‖p̃e − η‖J̃‖. (C.36)

Again, we will assume that the temperature is spatially homogeneous. Then

p̃e = ñeTe, and

1

ǫ0ω2
pe

∂J̃‖
∂t

=Ẽ‖ +
Te
e
∇‖

[

(

dE
dt

+ v‖,0∇‖

)−1(
1

nee
∇‖J̃‖ −∇‖u‖ +

e

Te
E⊥ · v∗

)

]

− η‖J̃‖
(C.37)

after commuting the equilibrium density outside of the parallel gradient operator and

taking ne,0/ne ≈ 1.

To derive the simplest drift wave dispersion relation, (a) Fourier transform in

time and space using plane waves, ei(k·r−ωt), (b) assume no equilibrium flows, v‖,0 =

5Compare this equation with Eq. C.52 for the result from the ion continuity equation.
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vE,0 = 0 and (c) no parallel ion velocity perturbation, ũ‖ = 0, and (d) use the

electrostatic approximation in both the parallel and perpendicular directions, such

that Ẽ‖ = −ik‖Φ̃ and Ey = −ikyΦ̃ = −iky k‖k‖ Φ̃ = ky
k‖
Ẽ‖. Then Eq. C.37 becomes

− iω 1

ǫ0ω2
pe

J̃‖ = Ẽ‖ + i
Te
e
k‖

[

1

−iω

(

ik‖
1

nee
J̃‖ +

e

Te

k⊥
k‖
Ẽ‖v∗

)]

− η‖J̃‖ (C.38)

and, solving for J̃‖

J̃‖ =
ǫ0ω

2
pe

−iω

(

1− k⊥v∗
ω

)

(

1− k2‖ Te
meω2 + iν

′
e

ω

)Ẽ‖ (C.39)

noting that η‖ =
ν′e

ǫ0ω2
pe

= 0.51
ǫ0ω2

peτei
(the Spitzer resistivity).

Referring to Eq. C.4, we identify the component of the susceptibility tensor, χzz,

as

χzz = −
ω2
pe

ω2

(

1− k⊥v∗
ω

)

(

1− k2‖ Te
meω2 + iν

′
e

ω

) (C.40)

where χzz = ¯̄χ · êz · êz.

The electrostatic dispersion relation for a homogeneous plasma (which this is not)

is given by k · ¯̄ǫ · k = 0, but since ǫzz = 1 + χzz ≈ χzz, and this is the largest element

of ¯̄ǫ, the dispersion relation may be well-approximated by χzz = 0, leading to

ω = k⊥v∗ . (C.41)

The effect of the pressure gradient on the cold plasma model is to modify P = 1− ω2
pe

ω2 .

This opens a new branch in the dispersion relation: the drift wave (cf. Eq. 3.15).

As seen in Eq. C.25, the appearance of the diamagnetic drift velocity, v∗, is a result

of E×B advection of the density gradient, combined with the fact that density and

potential perturbations track each other closely, eΦ̃
Te
∼ ñe

ne
, as suggested by the parallel

Ohm’s law, treating resistive (η‖J‖), electron inertial ( me

nee2
∂J̃‖
∂t

), and electromagnetic
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(−∂A‖
∂t

) contributions are small corrections.

The physical interpretation of the drift wave is described in Section 3.2.2.

Note that diamagnetic drift physics need not be invoked for this velocity to appear

– indeed, we took ∇ · (nev∗) = 1
e
K (pe) → 0 in a homogeneous field6. Even with a

purely parallel thermal velocity, for which there is no diamagnetic drift, the same

drift wave dispersion relation appears [76].

The denominator of χzz hints at Landau damping [76], since, if ν ′e → 0, causality

implies a deviation of the pole in χzz to the positive imaginary half-plane.

C.4 Polarization Drift and Dispersion

The polarization drift was defined in Eqs. 3.6 and 3.7, and its importance was ex-

plained in the context of quasineutrality in the discussion around Eq. 3.17. Let us

briefly revisit the quasineutrality approximation. The divergence of Ampère’s law,

∇×B = µ0J+ µ0
∂D
∂t
, is

0 = ∇ · J+ µ0
∂∇ ·D
∂t

= ∇ · J+ µ0
∂ρs
∂t

(C.42)

after permuting spatial and temporal derivatives. The quasineutral approximation7,

appropriate at low frequencies, sets ∂ρ
∂t
→ 0, such that

∇ · J ≈ 0 . (C.43)

Under this approximation, static space charge is permitted, giving rise to background

flows, but it is not permitted to accumulate or diminish over time.

The polarization drift is proportional to the species mass through up,s ∝ ω
Ωcs

. The

small electron inertia obviates the need to include the electron polarization drift at

low frequencies. However, the ion inertia is sufficient to produce a non-negligible ion

6Of course, if there is a pressure gradient, then the equilibrium field cannot truly be homogeneous,
but must also have a spatial dependence, though small in magnitude in the present case. This is
seen from MHD equilibrium, which holds that ∇(pe + pi) = J∗ × B, where J∗ is the diamagnetic
current and implies a non-zero curl in B.

7Note that this is the same approximation that leads to Kirchoff’s current law.
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polarization drift which balances the parallel gradient in the parallel current,

∇ · J = 0 = ∇ ·
(

−neev‖b̂+ neeup + nee (v∗ + u∗)
)

= ∇ ·
(

−neev‖b̂+ neeup

)

+K (pe + pi)
(C.44)

with ne = ni. Neglecting the contribution to the divergence from the diamagnetic

drifts, K → 0, we can identify that v‖ = up.

The most straightforward way to include the effect of the polarization current into

the drift-wave dispersion relation is to use the ion continuity equation, rather than

the electron, in the elimination of ∇‖ñe from the parallel Ohm’s law. This is possible

since quasineutrality ensures that ñe = ñi. The ion continuity equation is

∂ni
∂t

+∇ · (niu) = 0 =
∂ni
∂t

+∇ · [ni (vE + u∗ + up)]

=
∂ñi
∂t

+∇ · [ni (vE + u∗)] +∇ ·
[

ni
1

Ωci

B

B
× dE

dt
(vE + u∗)

] (C.45)

noting that the E×B velocity is the same for both species, uE = vE. Now,

∂ñi
∂t

+∇ · [ni (vE + u∗)] =
dEni
dt
− niK (Φ) +

1

e
K (pi) (C.46)

as before, with the electrostatic approximation used in the perpendicular direction,

E⊥ = −∇⊥Φ. However,

∇ · (niup) = ∇ ·
[

ni
1

Ωci

B

B
× dE

dt
(vE + u∗)

]

≈ ∇ ·
[

ni
1

Ωci

dE
dt

[

B

B
× (vE + u∗)

]]

= ∇ ·
[

ni
1

Ωci

dE
dt

(

E⊥
B
− ∇⊥pi
neeB

)]

= −∇ ·
[

1

Ωci

ni
B

dE
dt

(

∇⊥Φ +
∇⊥pi
nee

)]

(C.47)

where ∇⊥u = ∇u− b̂ · ∇u. Then the ion continuity equation (neglecting parallel ion

218



flow) becomes

dEni
dt
− niK (Φ) +

1

e
K (pi)−∇ ·

[

1

Ωci

ni
B

dE
dt

(

∇⊥Φ +
∇⊥pi
nee

)]

= 0. (C.48)

Letting K → 0 (by taking B to homogeneous), keeping only first-order terms,

ignoring the contribution of diamagnetic flows in the divergence of the polarization

current, and lastly ignoring background advection by vE,0,

∂ni
∂t

+ ṽE · ∇ni,0 −
1

Ωci

ni,0
B

∂

∂t

(

∇2
⊥Φ̃
)

= 0. (C.49)

Again making use of Eq. C.25,

∂ni
∂t

+
ni,0e

Ti
E · u∗ −

1

Ωci

ni,0
B

∂

∂t

(

∇2
⊥Φ̃
)

= 0. (C.50)

Fourier transforming,

− iωñi +
ni,0e

Ti

k⊥
k‖
Ẽ‖u∗ − ik2⊥ω

1

Ωci

ni,0
B

Φ̃ = 0. (C.51)

Then, solving for ñi = ñe,

ñi = −i
ni,0
ω

e

Ti

k⊥u∗
k‖

(

1 +
k⊥ω

u∗
ρ2s

)

Ẽ‖ (C.52)

where, as before, u∗ = u∗ · êy is the y component (where ŷ is perpendicular to the flux

surface and the background field) of the diamagnetic flow (this time, for the ions),

and u∗ =
B×∇pi
neeB2 is the ion diamagnetic velocity, which runs in the opposite direction

as v∗. We have also introduced the parameter,

ρs ≡
cs
Ωi

, (C.53)

the drift dispersion scale length, so named because it controls the degree of dispersion

in the drift wave phase velocity, as will become apparent shortly. This parameter is

similar to the ion gyro radius, with the sound speed, cs =
√

Te/Mi, replacing the ion
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thermal speed.

Eq. C.52 may be compared with Eq. C.35 describing electron continuity.

Using Eq. C.52 to eliminate ñe from the parallel Ohm’s law, Eq. C.17,

− iω 1

ǫ0ω2
pe

J̃‖ = Ẽ‖ + ik‖
Te
nee

[

−ini,0
ω

e

Ti

k⊥u∗
k‖

(

1 + k⊥ω
ρ2s
u∗

)

Ẽ‖

]

− η‖J̃‖. (C.54)

Taking Ti = Te and ne,0 = ni,0, so that u∗ = −v∗,

J̃‖ = i
ǫ0ω

2
pe

ω

[

1− k⊥v∗
ω

(

1− k⊥ω ρ2s
v∗

)]

(

1 + iν
′
e

ω

) Ẽ‖, (C.55)

so that

χzz = −
ω2
pe

ω2

[

1− k⊥v∗
ω

(

1− k⊥ω ρ2s
v∗

)]

(

1 + iν
′
e

ω

) (C.56)

which may be compared to Eq. C.40. The new drift wave dispersion relation obtained

from setting χzz = 0 is

1− k⊥v∗
ω

(

1− k⊥ω
ρ2s
v∗

)

= 0. (C.57)

But we expect the dispersive correction to the basic drift wave dispersion relation,

Eq. C.41, to be small. Then k⊥ω
ρ2s
v∗
≈ k⊥ωd

ρ2s
v∗

= k2⊥ρ
2
s ≪ 1, ωd ≡ k⊥v∗, resulting in

the dispersion relation8,

ω =
k⊥v∗

1 + k2⊥ρ
2
s

. (C.58)

For the case of interest here, ρs ≡ cs
Ωci

=
√

Te
Mi

1
Ωci

=
√

Te,eV
BΩci

≈
√

50
2·2π20×106

=

5×
√

1
2π20×106

≈ 0.45 mm, where B ≈ 2 T at the outer edge for the B0 ≈ 3 T, while

Te ≈ 50 eV at the LCFS, so k2⊥ρ
2
s ≈ 0.0045 in the discharges of interest (low field for

Alcator C-Mod). As such, the dispersion in the phase velocity is mild.

8cf. Eq. 5.16 in [65]
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In the following section, we will explore what happens when the electrostatic

approximation is relaxed. However, before doing so, it is instructive to examine the

cold plasma model, modifying ǫzz = P → P ′ to incorporate the susceptibility in Eq.

C.56. This is appropriate to the case where there exists only a parallel temperature

[76]. The cold plasma dielectric tensor under these conditions is

¯̄ǫ = ǫ0











S iD 0

−iD S 0

0 0 P ′











(C.59)

where

S =
1

2
(R + L)

D =
1

2
(R− L)

P ′ = 1 + χzz ≈ 1−
ω2
pe

ω2

1− 1
ω

k⊥v∗
1+k2⊥ρ

2
s

1 + iν
′
e

ω

(C.60)

where, again, the k2⊥ρ
2
s term arises from approximating ω ≈ k⊥v∗ in k⊥ρ

2
sω/v∗. The

R and L parameters are given by

R = 1−
∑

s

ω2
ps

ω (ω + Ωs)

L = 1−
∑

s

ω2
ps

ω (ω − Ωs)
.

(C.61)

In the case under study9, with ω ∼ 2π × (100 kHz), ω ≪ Ωi, and ω resides firmly

in the low-frequency limit, where

9Ωi =
eB
Mi
∼ 2π × (17MHz), ωpi =

√

nee2

ǫ0Mi
≈ 2π (1.5GHz), Ωe = − eB

me
≈ −2π (63GHz), ωpe =

√

nee2

ǫ0me
≈ 2π (90GHz) for a deuterium main ion species with B = 2.27 T and ne = 1020 m−3.
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S =
1

2

(

2−
∑

s

ω2
ps

ω

[

1

(ω + Ωs)
+

1

(ω − Ωs)

]

)

= 1−
∑

s

ω2
ps

ω2 − Ω2
s

≈ 1 +
ω2
pi

Ω2
i

D =
1

2

(

∑

s

ω2
ps

ω

[

2Ωs

ω2 − Ω2
s

]

)

≈ −
∑

s

ω2
ps

ωΩs

.

(C.62)

But note that in this representation, Ωs carries the sign of the charge of species, s,

D ≈ −
∑

s

ω2
ps

ωΩs

= −
(

− nee
2

ǫ0me

me

ωeB
+
nie

2

ǫ0mi

mi

ωeB

)

= − e2

ǫ0ωeB
(−ne + ni) = 0,

(C.63)

where the last equality follows from setting ni = ne. The modified low-frequency cold

plasma dielectric tensor is then

¯̄ǫ = ǫ0











1 +
ω2
pi

Ω2
i

0 0

0 1 +
ω2
pi

Ω2
i

0

0 0 P ′











(C.64)

where P ′ is given in Eq. C.60.

If we näıvely take ¯̄ǫ to be homogeneous (which, at this point, would be unjustified),

then we arrive at a wave equation in component form,
(

kikj − k2δij + ω2µ0¯̄ǫ
)

Bj = 0.

Setting the determinant of the coefficient of Bj gives a dispersion relation. If we take

modes to propagate only in the y and z directions, then

ω2

c2

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 +
ω2
pi

Ω2
i
− n2 0 0

0 1 +
ω2
pi

Ω2
i
− n2

z nynz

0 nzny P ′ − n2
y

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

=
ω2

c2

(

1 +
ω2
pi

Ω2
i

− n2

)[

(P ′ − n2
y)

(

1 +
ω2
pi

Ω2
i

− n2
z

)

− n2
yn

2
z

]

(C.65)

where ny = kyc

ω
is the y-component of the index of refraction, and likewise for nz,
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with n2 = n2
y + n2

z, and, as per the usual notation, c ≡ 1√
µ0ǫ0

is the vacuum speed

of light. This dispersion relation supports compressional Alfvén waves in the root,

1 +
ω2
pi

Ω2
i
− n2 = 0, as well as shear Alfvén waves through 1 +

ω2
pi

Ω2
i
− n2

z = 0 when

P ′ ≫ n2
y

(

1 + ω2
pi/Ω

2
i

)

, which will typically occur at frequencies well above ωd =

kyv∗. However, if P ′ becomes much larger than the other terms, then forcing it,

and in particular, χzz, to vanish independently also gives an approximate root to the

dispersion relation, and it is this scenario that gives rise to the drift wave.

C.5 Relaxing the Electrostatic Approximation

In the preceding two sections, we derived the drift wave dispersion relation under

the electrostatic approximation. However, since the focus of this study is to examine

how an antenna external to the plasma may couple inductively to a drift wave, we

expect that we will have to relax the electrostatic approximation to understand how

this coupling might take place. This is done below.

We start again from the momentum balance equations. The electron momentum

equation is, after Fourier transforming in time,

iB
ω

Ωce

ve = (E+ ve ×B) +
1

nee
∇pe − ¯̄η · J. (C.66)

Likewise, the ion momentum equation is

iB
ω

Ωci

ui = − (E+ ve ×B) +
1

nie
∇pi + ¯̄η · J. (C.67)

The ve × B and ui × B terms on the right-hand sides of Eq.’s C.66-C.67 clear

the perpendicular components of the momentum equations up to terms of order of

the polarization current, proportional to ω
Ωci
∼ 6× 10−3 for ions and ω

Ωce
∼ 2× 10−6

for electrons. We retain the polarization current per the discussion of quasineutrality

above, and write the perpendicular components of J directly from the diamagnetic

and polarization drifts.

To proceed, we treat the parallel dynamics as before, forming the parallel Ohm’s
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law by subtracting the parallel component of Eq. C.66 from µe ≡ me

Mi
times the

parallel component of Eq. C.67 and dividing through by nee:

mene
nee

∂

∂t

(

u‖ − v‖
)

=
1

ǫ0ω2
pe

∂J‖
∂t

= E‖ +
1

nee
∇‖pe − η‖jJ j + µe

[

ni
ne
E‖ −

1

nee
∇‖pi − η‖jJ j

]

≈ E‖ +
1

nee
∇‖pe − η‖J‖

(C.68)

neglecting terms of order, µe, and taking ¯̄η to be diagonal.

However, the perpendicular components of J are written directly from the polar-

ization and diamagnetic currents. Including these two contributions,

J⊥ = Jp + J∗. (C.69)

For the ions, qi = +e, and

up ≈
1

ΩiB

∂

∂t

(

E⊥ −
∇⊥pi
nie

)

. (C.70)

up is larger than the electron polarization velocity, vp, by the inverse mass ratio,

Mi/me, so Jp = nee(up − vp) ≈ neeup.

The diamagnetic current is

J∗ =
B×∇ (pi + pe)

B2
(C.71)

For simplicity, we assume that Ti = Te and pi = pe. Also, let ~α be defined through

ñe = ~α · E. (C.72)

The perpendicular components of J⊥ are then
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J⊥ = Jp + J∗ ≈
nee

ΩiB

∂

∂t

(

E⊥ −
∇⊥pi
nie

)

+
B×∇⊥ (pi + pe)

B2

= ǫ0
ω2
pi

Ω2
i

∂

∂t

(

E⊥ −
∇⊥pi
nie

)

− ∇⊥ (pi + pe)×B

B2
.

(C.73)

In component form,

J j⊥ = ǫ0
ω2
pi

Ω2
ci

∂

∂t

(

δijE
j − Te

∂i (αjE
j)

nie

)

− εikℓ∂k (pi + pe)B
ℓ

B2

= ǫ0
ω2
pi

Ω2
ci

∂

∂t

(

δijE
j − Te

nie

(

Ej∂iαj + αj∂iE
j
)

)

− 2Te
B
εikz

(

Ej∂kαj + αj∂kE
j
)

=

[

ǫ0
ω2
pi

Ω2
ci

∂

∂t

(

δij −
Te
nie

(∂iαj + αj∂i)

)

− 2Te
B
εikz (∂kαj + αj∂k)

]

Ej

(C.74)

choosing B = Bêz and with

εikz =





0 1

−1 0



 . (C.75)

Fourier transforming with plane waves, ei(k·r−ωt), we replace ∂i with iki when

acting on Ej, and ∂t with −iω everywhere, so that

J j⊥ =

[

−iωǫ0
ω2
pi

Ω2
ci

(

δij −
Te
nie

(∂iαj + iαjki)

)

− 2Te
B
εikz (∂kαj + iαjkk)

]

Ej (C.76)

or

J j⊥ =







−iωǫ0
ω2
pi

Ω2
ci









1 0

0 1



− Te
nie









∂xαx ∂xαy

∂yαx ∂yαy



+ i





αxkx αykx

αxky αyky













−2Te
B









∂yαx ∂yαy

−∂xαx −∂xαy



+ i





αxky αyky

−αxkx −αykx















Ej.

(C.77)
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When ~α has only a y-component and depends only on x,

J j⊥ =







−iωǫ0
ω2
pi

Ω2
ci









1 0

0 1



− Te
nie









0 ∂xαy

0 0



+ i





0 αykx

0 αyky













−2Te
B









0 0

0 −∂xαy



+ i





0 αyky

0 −αykx















Ej.

(C.78)

This provides the four “perpendicular” components (xx, xy, yx, and yy) of the

susceptibility, ¯̄χ. The remaining components derive from C.68, noting that χxz =

χyz = 0 under the assumptions made so far. This gives

(

1

ǫ0ω2
pe

∂

∂t
+ η‖

)

J‖ = E‖ +
1

nee
∇‖pe. (C.79)

Fourier transforming in time and space for evolving quantities and using ne = ~α·E,
with pe = neTe and Te constant,

J‖ =
ǫ0ω

2
pe

−iω
E‖ +

1
nee
∇‖ (~α · E)

1 + i
ν′
e,‖
ω

=
ǫ0ω

2
pe

−iω

(

b̂+ ik‖
Te
nee
~α
)

1 + i
ν′
e,‖
ω

· E
(C.80)

after taking ∇‖α→ 0, since this ought to be an equilibrium quantity which is unlikely

to have non-uniformities along a field line in the case with no curvature and with

sufficiently simple boundary conditions.

Using the ion continuity equation, Eq. C.50,

ñi = i
1

ω

ni,0e

Ti

(

v∗ − ρ2sk⊥ω
)

· E. (C.81)

after taking u∗ = −v∗. If ω ≈ k · v∗ = k⊥ · v∗,
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ñi ≈ i
1

ω

ni,0e

Ti

(

1− k2⊥ρ2s
)

v∗ · E ≈ i
1

ω

ni,0e

Ti

1

1 + k2⊥ρ
2
s

v∗ · E (C.82)

so that

αj = i
1

ω

ni,0e

Ti

1

1 + k2⊥ρ
2
s

v∗,j . (C.83)

Taking v∗ = v∗êy and ∇αy = ∂αy

∂x
êx,

αy = i
1

ω

ni,0e

Ti

1

1 + k2⊥ρ
2
s

v∗ . (C.84)

We may now rewrite Eq.’s C.85 and C.80 as

J j⊥ =− iωǫ0
ω2
pi

Ω2
ci











1 0

0 1



− 1

1 + k2⊥ρ
2
s



i
∂xv∗
ω





0 1

0 0



− v∗
ω





0 kx

0 ky









+2
Ωci

ω

1

1 + k2⊥ρ
2
s





∂xv∗
ω





0 0

0 −1



+ i
v∗
ω





0 ky

0 −kx















Ej

(C.85)

and

J‖ =
ǫ0ω

2
pe

−iω

(

b̂− k‖v∗

ω(1+k2⊥ρ2s)

)

1 + i
ν′
e,‖
ω

· E (C.86)

so that

¯̄χ =
ω2
pi

Ω2
ci














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
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1 0 0

0 1 0
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i
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0 1 0

0 −2iΩci

ω
0

0 0 0
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




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ω
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


















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


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
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
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






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0 0 0

0 0 0

0 − k‖v∗

ω(1+k2⊥ρ2s)
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









.

(C.87)
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When the density has an exponential profile, ne = ne,0e
−x/Ln , the term, ∂xv∗ = 0,

so

¯̄χ =
ω2
pi

Ω2
ci





















1 0 0

0 1 0
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





+
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ω (1 + k2⊥ρ
2
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



0 0 0

0 0 0
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









(C.88)

and the dielectric tensor is ¯̄ǫ = ǫ0
(¯̄1 + ¯̄χ

)

.

It is instructive to compute the electrostatic dispersion relation for comparison

with the previous section. Neglecting the spatial dependence of ¯̄ǫ, this is accomplished

by

0 = k ·
(¯̄1 + ¯̄χ

)

· k = k2 + (k · ¯̄χ · k)

= k2 + k ·






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




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
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0 1 0
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
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


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ω






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








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




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
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pi

Ω2
ci

(

1 +
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ω (1 + k2⊥ρ
2
s)

)

−
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pe
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1 + i
ν′
e,‖
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1− kyv∗
ω (1 + k2⊥ρ

2
s)

)
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(C.89)

At the low frequencies (f ∼ 100 kHz) of interest, the last term is expected to

dominate, since
k2‖
k2⊥

ω2
pe

ω2

Ω2
ci

ω2
pi

ω
ν′
e,‖
∼ 55 (noting

∣

∣

∣
iν ′e,‖/ω

∣

∣

∣
≈ |i11| ≫ 1). Keeping only this

term results in
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0 ≈
ω2
pe

ω2

k2‖

1 + i
ν′
e,‖
ω

(

1− kyv∗
ω (1 + k2⊥ρ

2
s)

)

(C.90)

which is exactly the same dispersion relation as found from setting χzz in Eq. C.56

to zero, with a real part of the frequency given by Eq. C.58.

Let us examine the first-order correction to ω. Let ω0 ≡ kyv∗
1+k2⊥ρ

2
s
≈ kyv∗. Also,

let ω = ω0 + ω1, with
ω1

ω0
≪ 1. Then the dispersion relation from Eq. C.89 can be

rewritten as

0 = k2 + k2⊥
ω2
pi

Ω2
ci

(

1 +
ω0

ω0 + ω1

)

−
ω2
pe

ω2

k2‖

1 + i
ν′
e,‖
ω

(

1− ω0

ω0 + ω1

)

≈ 2k2⊥
ω2
pi

Ω2
ci

−
ω2
pe

ω2

k2‖

1 + i
ν′
e,‖
ω

(

ω1

ω0

)

⇒ ω1

ω0

≈ 2
k2⊥
k2‖

ω2
pi

Ω2
ci

ω2

ω2
pe

(

1 + i
ν ′e,‖
ω

)

.

(C.91)

With ν ′e =
0.51
τe

= 0.51
√
2nee4 ln(Λ)

12π3/2ǫ20
√
meT

3/2
e

≈ 6.8 × 106 s−1, ν ′e/ω ≈ 11, and the factor,

k2⊥
k2‖

ω2
pi

Ω2
ci

ω2

ω2
pe
≈ 1.7× 10−3, ω1 ≪ ω0.

C.6 Diamagnetic Divergence, or Magnetic Curva-

ture, Operator

The diamagnetic divergence operator [65, p. 3.11], also called the magnetic curvature

operator [65, p. 11.4], is defined as [65, p. 3.11, p. 11.4]

K(u) = −∇ ·
(

1

B2
B×∇u

)

= −
(

∇× B

B2

)

· ∇u (C.92)

which applies the drift operator, B
B2×, to the gradient of a scalar, u, followed by

applying the divergence operator to the result, and negating this quantity. The second

equality in Eq. C.92 follows from the identity,∇·(A×B) = (∇×B)·A+(∇×A)·B,
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with A ← B/B2 and B ← ∇u, and the additional identity, ∇ × ∇u = 0. On a

homogeneous background field, the diamagnetic divergence operator vanishes, K → 0.

Let us examine the factor,
(

∇× B
B2

)

:

∇×
(

B

B2

)

=
1

B2
∇×B−B×∇(B ·B)−1 =

1

B2

(

∇×B+
1

B2
B×∇ (B ·B)

)

(C.93)

The first term is approximated as

1

B2
∇×B =

µ0

B2

(

J+
∂D

∂t

)

≈ µ0J

B2
, (C.94)

while the second term inside the parentheses is manipulated as

1

B2
B×∇ (B ·B) =

2

B2
B× [B× (∇×B) + (B · ∇)B]

=
2

B2
B× [(B · ∇)B]

= 2b̂×
[(

b̂ · ∇
)(

b̂B
)]

= 2B×
[(

b̂ · ∇
)

b̂
]

+ 2b̂×
[

b̂
(

b̂ · ∇
)

B
]

= 2B×
[(

b̂ · ∇
)

b̂
]

= 2B× ~κ

(C.95)

where ~κ ≡ b̂ · ∇b̂ is the curvature vector. Then

∇×
(

B

B2

)

=
1

B2
[∇×B+ 2B× ~κ] ≈ µ0J

B2
+

2

B
b× ~κ, (C.96)

so that the diamagnetic divergence operator acting on u is

K (u) =

[

µ0

B2

(

J+
∂D

∂t

)

+
2

B
b̂× ~κ

]

· ∇u ≈ µ0

B2

[

J+
2

µ0

B× ~κ
]

· ∇u. (C.97)

Typically [65, p. 11.4], it is the second term, proportional to the curvature, which is

relevant for flute-like modes in toroidal plasmas with small β.
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The diamagnetic divergence operator is expected to be small next to the other

terms. To rationalize this, consider K (pe). The curvature is small, while the remain-

ing term is small because it involves the multiplication of a pair of lower-order terms,

since ∇pe,0 is orthogonal to J, while ∇p̃e is largely perpendicular to J0. For the near-

adiabatic case expected of drift-like waves, T̃e ∼ eΦ̃, so that 1
e
K (pe) ∼ neK (Φ), where

pe = neTe. As such, both neK(Φ) and 1
e
K (pe) are expected to be small. However, the

ballooning nature of the QCM suggests that curvature plays an important role in the

relevant physics, and as such, a more complete model must include the diamagnetic

divergence terms, particularly near the X-point.

C.7 Quasineutrality Condition

The quasineutrality condition,

∇ · J = 0, (C.98)

may be rendered in a form useful for inclusion in the ballooning model as follows.

Firstly, split J into parallel and perpendicular components, J = b̂J‖ + J⊥; then,

applying Gauss’ law,

∇ · J = ∇ ·
(

b̂J‖

)

+∇ · J⊥ = ∇ ·
(

B

B
J‖

)

+∇ · J⊥ = B∇‖

(

J‖
B

)

+∇ · J⊥. (C.99)

Now,

J⊥ = eniu∗ − enev∗ + eniup, (C.100)

and

∇ · J⊥ = K (pi + pe) +∇ · eniup (C.101)

where K(u) = −∇ ·
(

B×∇u
B2

)

is the diamagnetic divergence operator. Using the ion
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polarization drift from Eq. 3.6, the divergence of the perpendicular current is

∇ · J⊥ = ∇ · (eniup) +K (pi + pe)

= −∇ ·
(

ǫ0
ω2
pi

Ω2
i

dE
dt

(

∇⊥Φ +
∇⊥pi
nie

))

+K (pi + pe) .
(C.102)

Inserting this back into the quasineutrality condition,

∇ ·
[

ǫ0
ω2
pi

Ω2
i

dE
dt

(

∇⊥Φ +
∇⊥pi
nie

)]

= B∇‖

(

J‖
B

)

+K (pi + pe) . (C.103)

Following only the perturbed variables,

∇ ·
[

ǫ0
ω2
pi

Ω2
i

dE
dt

(

∇⊥Φ̃ +
∇⊥p̃i
nie

)]

= B∇‖

(

J̃‖
B

)

+K (p̃i + p̃e) . (C.104)

C.8 Electron Continuity Condition

The electron continuity equation is manipulated in a similar fashion to the quasineu-

trality condition:

0 =
∂ne
∂t

+∇ · neve =
∂ne
∂t

+∇ · (nevE) +∇ · (nev∗) + B∇‖

(

ne
v‖
B

)

=
dE
dt

(ne) + ṽE · ∇ne + B∇‖

(

ne
v‖
B

)

− neK (Φ) +
1

e
K (pe)

(C.105)

or

dEne
dt

= neK (Φ)− 1

e
K (pe)− ṽE · ∇ne +

B

e
∇‖

(

J‖
B

)

−B∇‖

(neu‖
B

)

(C.106)

Tracking the evolution of the perturbed quantity, ñe,
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dEñe
dt

= neK
(

Φ̃
)

− 1

e
K (p̃e)− ṽE · ∇ne +

B

e
∇‖

(

J̃‖
B

)

−B∇‖

(

neũ‖
B

)

, (C.107)

ignoring zeroth-order parallel ion flow.
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Appendix D

Framework for BOUT++

Simulations

D.1 Drift Waves in Slab Geometry with Homoge-

neous Field

The drift ordering is a simplification of the fluid plasma dynamic model for situations

where ω ≪ Ωi and k⊥ ≫ k‖, and orders perturbations on the scale, δ ≡ ρs/Lp ≪ 1

[65, Chap. 3]. The drift wave dispersion scale, ρs ≡ cs/Ωi =

√
Te/Mi

Ωi
, was introduced

in Chapter 3 in Section 3.2.2. It is similar to the ion Larmor (or gyro) radius, but

replaces Ti with Te. Lp ≡
∣

∣

∣

1
pe

dpe
ddx

∣

∣

∣

−1

is the pressure gradient length scale, and was

introduced in the discussion after Eq. 3.16. When ρs ≪ Lp, finite Larmor radius

effects may be neglected, as ions and electrons essentially sample a uniform plasma in

their gyro orbits; this greatly simplifies the analysis. Compressional dynamics (e.g.

compressional Alfvén waves) are eliminated, and parallel and perpendicular dynamics

largely decouple. The amplitudes of the perturbed quantities are further presumed

to scale as eΦ̃/Te ∼ ñe/ne ∼ ũ‖/cs ∼ B̃⊥/B ∼ δ.

A conceptual frame work for the drift wave was introduced in Section 3.2. Below,

a simple model is introduced appropriate to a slab geometry in a homogeneous field,

with uniform and equilibrated electron and ion temperatures, Ti = Te = constant.
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This is the starting point for the initial simulations conducted in BOUT++. The equa-

tions are a simplified version of Eqs. 5.19-23 in[65, p. 5.8].

The set is

∂

∂t
ρ2s∇2

⊥
eΦ̃

Te
= cs∇‖

J̃‖
necs

← ∇ · J = 0 (D.1)

∂

∂t

p̃e
pe

+
cs
Lp
ρs
∂

∂y

eΦ̃

Te
= Γcs∇‖

(

J̃‖
necs

− ũ‖
cs

)

← ne continuity (D.2)

βe
∂

∂t

Ã‖
Bρsβe

+ µe
∂

∂t

J̃‖
necs

= cs∇‖

(

p̃e
pe
− eΦ̃

Te

)

− cs
Lp
βeρs

∂

∂y

Ã‖
βeBρs

− 0.51µeνe
J̃‖
necs

← Ohm’s Law

(D.3)

∂

∂t

ũ‖
cs

= −cs∇‖
p̃e
pe

+
cs
Lp
βeρs

∂

∂y

Ã‖
βeBρs

+ µ‖∇2
‖
ũ‖
cs
← total mom. balance (D.4)

where J‖ is specified from Ampère’s law by J‖ = − 1
µ0
∇2

⊥A‖, and the ideal gas law,

pk = nkTk = neTe = neT , is used to relate the pressure and density. Γ is the ratio of

specific heats, 5/3 in a neutral gas, and is often taken as 1 in drift wave derivations.

In the above, we have separated the equilibrium from the perturbation quantities,

with the latter denoted by a tilde overbar. We have also applied ne = ni. The

slab coordinate system is the same as that used in the discussion around Figures 3-1

and 4-1c: x̂ points in the radial direction (across flux surfaces, and down the density

gradient), y points across field lines in the perpendicular direction, and ẑ points along

field lines in the parallel direction.

The curvature terms are neglected in this model. To see how, note that for any

vector field, f ,

∇ · f = ∇⊥ · f⊥ + B∇‖
f‖
B
. (D.5)

In Eqs. D.1-D.4, the contribution from B∇‖
f‖
B
is excluded. Including this term allows
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for interchange modes, as described in Section 3.3 in Chapter 3; these effects are also

treated in detail beginning in Chapters 10 and 11 in [65]. In the discussion below,

however, the focus is on drift waves, and this additional complexity is not considered.

Equations D.1, D.2, D.3, and D.4 specify a four-field model in {Ã‖, Φ̃, p̃e, ũ‖}.

These equations may be nondimensionalized to aid in their solution. For consis-

tency with the literature, we select the nondimensionalization employed by Scott [65],

with the following scalings

t̄ =
t

τ
, τ ≡ L⊥

cs
← time,

z̄ = zk‖, k‖ =
2π

L‖
← coordinate along field lines,

ȳ =
y

ρs
, ρs ≡

cs
Ωi

← ⊥ -coord. in diamag. drift direc.,

x̄ =
x

L⊥
, L⊥ = ω̄pLp, Lp ≡

∣

∣

∣

∣

1

pe

∂pe
∂x

∣

∣

∣

∣

−1

← ⊥ -coord. along pres. gradient direc.

(D.6)

where the variables with overbar superscripts have been normalized as indicated. The

factor,

ω̄p ≡
L⊥
Lp

(D.7)

allows the perpendicular length scale to be selected independently of the pressure

gradient length scale. Here, it is set to ω̄p = 1.

The differential operators then become

∂

∂t̄
← τ

∂

∂t
∂

∂ȳ
← ρs

∂

∂y

∇̄‖ ←
1

k‖
∇‖

∇̄⊥ ← ρs∇⊥

(D.8)
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Fourier transforming in the spatial coordinates, and Laplace transforming in the com-

plex frequency, s, for plane waves of the form, eik·r−st, these operators become

∂

∂t̄
= τ

∂

∂t
→ −τs = −τ(γ + iω) = −s̄ = −(γ̄ + iω̄)

∂

∂ȳ
= ρs

∂

∂y
→ ik⊥ρs = ik̄⊥

∇̄‖ =
1

k‖
∇‖ →

ik‖
k‖

= ik̄‖ = i

∇̄⊥ = ρs∇⊥ → ik⊥ρs = ik̄⊥

(D.9)

where γ̄ = γτ is the normalized damping rate.

A subtlety in this scheme of nondimensionalization is that the different spatial co-

ordinates are each normalized to a different length scale. This necessitates additional

nondimensional scale factors for each of the flux variables, accounting for the ratio

of length scales. This, together with the normalizations motivated by Equations D.1,

D.2, D.3, and D.4, results in the following scaled versions of the evolved quantities:

ˆ̃φ ≡ eΦ̃

Te
(D.10)

¯̃pe ≡
p̃e
pe

(D.11)

ˆ̃A‖ ≡
Ã‖

β̄Bρs
k‖L⊥ (D.12)

¯̃u‖ ≡
ũ‖
cs
k‖L⊥ (D.13)

ˆ̃J ≡ J̃‖
neecs

k‖L⊥, (D.14)

noting that k‖L⊥ = 2πL⊥
L‖

. These definitions arise naturally in the normalization of

Equations D.1, D.2, D.3, and D.4, which is accomplished by multiplying each equation

by a factor of τ = L⊥
cs
, and each ∇‖ operator by a unit factor of

k‖
k‖
. Then Eq. D.1
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becomes

→ ∂

∂t̄
∇̄2

⊥
ˆ̃φ =

∂ω̄

∂t
= ∇̄‖

¯̃J (D.15)

after transforming the differential operators and solving for ˆ̃φ in terms of ˆ̃J . ω̄ =

b · (∇× u) is the parallel component of the vorticity; here, only the electrostatic

E×B velocity is considered in the evaluation of ω̄.

Similarly, the continuity equation, D.2, is nondimensionalized as

→ ∂

∂t̄
ˆ̃pe + ω̄p

∂

∂ȳ
ˆ̃φ = Γ∇̄‖

(

ˆ̃J − ¯̃u‖

)

(D.16)

Ohm’s law is nondimensionalized as

→ β̄
∂

∂t̄
ˆ̃A‖ + µ̄

∂

∂t̄
ˆ̃J = ∇̄‖

(

ˆ̃pe − ˆ̃φ
)

− β̄ω̄p
∂

∂ȳ
ˆ̃A‖ − 0.51µ̄ν̄ ˆ̃J (D.17)

where

β̄ ≡ βe
(

k‖L⊥
)2 (D.18)

µ̄ ≡ µe
(

k‖L⊥
)2 (D.19)

ν̄ ≡ νeτ = νe
L⊥
cs

(D.20)

and βe = µ0p/B
2 ≈ is the dynamical beta.

Finally, the momentum balance equation is normalized as

→ ǭ
∂

∂t̄
¯̃u‖ = −∇̄‖ ˆ̃pe + ω̄pβ̄

∂

∂ȳ
ˆ̃A‖ + µ̄‖∇̄2

‖ ¯̃u‖ (D.21)

where

ǭ ≡
(

1

k‖L⊥

)2

(D.22)
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µ̄‖ ≡
µ‖τ

L2
⊥

(D.23)

with µ‖ the normalized parallel viscosity.

Ampère’s law may also be used to relate ˆ̃A‖ to ˆ̃J :

ˆ̃J = −∇̄2
⊥
ˆ̃A‖ (D.24)

Eqs. D.15, D.16, D.17, and D.21 are in a suitable form for numerical solution with

BOUT++.

Next, these equations are Fourier transformed in space and Laplace transformed

in time, per the normalized transform variables above:

s̄k̄2⊥
ˆ̃φ = ik‖

ˆ̃J (D.25)

− s̄ ˆ̃pe + iω̄pk̄⊥
ˆ̃φ = Γik̄‖

(

ˆ̃J − ¯̃u‖

)

(D.26)

− s̄
(

β̄ ˆ̃A‖ + µ̄ ˆ̃J
)

= ik̄‖

(

ˆ̃pe − ˆ̃φ
)

− iω̄pβ̄k̄⊥ ˆ̃A‖ − 0.51µ̄ν̄ ˆ̃J (D.27)

− ǭs̄¯̃u‖ = −ik̄‖ ˆ̃pe + iω̄pβ̄k̄⊥
ˆ̃A‖ − µ̄‖k̄

2
‖ ¯̃u‖ (D.28)

with Ampère’s law,

ˆ̃J = k̄2⊥
ˆ̃A‖. (D.29)
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D.2 Analytical Solution Using Simplified, Trans-

formed Slab Model

The fourth-order system described above has four roots for the complex frequency,

s̄ = γ̄ + iω̄. However, this level of detail is not always necessary. Specifically, if the

mode parallel phase velocity is much larger than the sound speed, v‖ = ω/k‖ ≫ cs,

then sound waves may be neglected, as the mode travels faster than the sound wave

disturbance may be propagated. In the case under study, with a deuterium plasma

at Te ≈ 50 eV, B0 ≈ 3 T, ωqcm ∼ 2π× (100 kHz), q95 ≈ 3, and k‖ ∼ 2π
2Lc

=

2π
2πRq95

≈ 0.35 m−1, v‖ ≈ 2000 km/s ≫ cs ≈ 50 km/s, the approximation is valid.

This is tantamount to neglecting the terms proportional to the parallel gradient of

the parallel velocity fluctuation, ∇̄‖ ¯̃u‖, k̄‖ ¯̃u‖ → 0. The order of the system is thereby

reduced from four to three.

ˆ̃φ and ˆ̃pe may be eliminated from Eq. D.28 using Eq.’s D.25 and D.26:

⇒
(

β̄

k̄2⊥
+ µ̄

)

s̄3 −
(

i
ω̄pβ̄

k̄⊥
+ 0.51µ̄ν̄

)

s̄2 + k̄2‖

(

1

k̄2⊥
+ Γ

)

s̄−
iω̄pk̄

2
‖

k̄⊥
= 0 (D.30)

having made use of Ampère’s law, D.24.

The following parameters correspond to Alcator C-Mod Discharge 1120814028 at

1.1964 s at the location of the Mirror Langmuir Probe tip. These parameters were

selected for ready comparison with the analysis in [32]. The parameters are evaluated
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from MLP and EFIT reconstruction data.

|B| ≈ 2.25T

ne ≈ 1.46× 1020 m−3

Te ≈ 48.6 eV

pe ≈ 1.15 kPa

Lp = L⊥ ≈ 3.96mm

k⊥ ≈ 150.00m−1

Lc ≈ 9.07m

k‖ ≈
π

Lc
≈ 0.35m−1 m

(D.31)

Ωi ≡
eB

Mi

≈ π

Lc
≈ 2π · 17.1MHz

ωpi ≡
√

nie2

ǫ0Mi

≈ 2π · 1789.7MHz

cs ≡
√

Te
Mi

≈ 48.3
km

s

vA ≡
c

√

1 +
ω2
pi

Ω2
i

≈ 2872
km

s

βe ≡
c2s
v2A
≈ 2.83× 10−4

ρs ≡
cs
Ωi

≈ 0.448mm

(D.32)
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ω̄p ≡
L⊥
Lp

= 1

ǭ ≡ 1
(

k‖L⊥
)2 ≈ 5.32× 105

β̄e ≡ βeǭ ≈ 150

µ̄ ≡ µeǭ ≈ 145

ν̄ ≡ L⊥/cs
τei

≈ 1.11

k̄⊥ ≡ k⊥ρs ≈ 0.067

k̄‖ ≡
k‖
k‖
≈ 1

(D.33)

Using the shorthand notation,

C3s̄
3 + C2s̄

2 + C1s̄+ C0 = 0, (D.34)

for Eq. D.30,

C3 ≡
β̄e
k̄2⊥
≈ 3.34× 104 ≫ µ̄ ∼ 150

C2 ≡ −
(

i
ω̄pβ̄e
k̄⊥

+ 0.51µ̄ν̄

)

≈ − (i2.24 + 0.082)× 103

C1 ≡ k̄2‖

(

1

k̄2⊥
+ Γ

)

≈ 223 ∼ 1

k̄2⊥

C0 ≡ −i
ω̄pk̄

2
‖

k̄⊥
≈ −i14.9

(D.35)

where we see that the electron inertia is ignorable, (µ→ 0), as is the ratio of specific

heats, Γ, though these terms are retained in the precise calculations for the roots.

While the roots of this dispersion relation may be calculated exactly, it is nonethe-

less informative to find approximations for these values. This facilitated by splitting

Eq. D.34 into its real and imaginary parts, and setting each component separately to

zero). Noting that ℑ{C3} = ℑ{C1} = ℜ{C0} = 0, and letting the subscripts, r and

i, correspond to real and imaginary values, Eq. D.34 becomes
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C3,r

(

s3r − 3srs
2
i

)

+ C2,r

(

s2r − s2i
)

− 2C2,isrsi + C1,rsr+

i
[

C3,r

(

3s2rsi − s3i
)

+ 2C2,rsrsi + C2,i

(

s2r − s2i
)

+ C1,rsi + C0,i

]

= 0
(D.36)

Under the assumption that the real frequency1, ω = si, is much larger than the

damping or growth rate, si ≫ sr, the imaginary part of Eq. D.36 simplifies to

− C3,rs
3
i − C2,is

2
i + C1,rsi + C0,i = 0, (D.37)

decoupling the solution of si from sr. It may appear that we have traded one third-

order polynomial for another. However, closer inspection of the coefficients reveals

that

C2,i

C3,r

=
−ω̄pβ̄e/k̄⊥
β̄e/k̄2⊥

= −ω̄pk̄⊥ (D.38)

and
C0,i

C1,r

= −
ω̄pk̄

2
‖/k̄⊥

k̄2‖

(

1
k̄⊥+Γ

) = − ω̄p/k̄⊥1
k̄⊥+Γ

≈ −ω̄pk̄⊥ =
C2,i

C3,r

, (D.39)

allowing the factorization,

(

−s2iC3,r + C1,r

)

(

si +
C0,i

C1,r

)

= 0 (D.40)

of Eq. D.37. The roots of this approximate dispersion relation are identified imme-

diately as

si ≈ −
C0,i

C1,r

,±
√

C1,r

C3,r

. (D.41)

The real part of Eq. D.36 may then be eliminated using sr as a free parameter, still

1Note that the real frequency corresponds to the imaginary component of s, ω = ℑ{s}, the
damping rate to ℜ{s}, and the growth rate to −ℜ{s}
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assuming sr ≪ si and so neglecting terms higher order in sr:

0 = C3,r

(

s3r − 3srs
2
i

)

+ C2,rs
2
r − C2,rs

2
i − 2C2,isrsi + C1,rsr

≈ −3C3,rs
2
i sr − C2,rs

2
i − 2C2,isisr + C1,rsr

= sr
(

−3C3,rs
2
i − 2C2,isi + C1,r

)

− C2,rs
2
i

⇒ sr ≈
C2,rs

2
i

C1,r − 3C3,rs2i − 2C2,isi
=
C2,r

C3,r

1
C1,r

C3,rs2i
− 3− 2

C2,i

C3,rsi

.

(D.42)

Using the parameters in Eq. D.35, these approximate roots of the dispersion

relation are calculated as

s̄ ≈ 10−2 × [−0.483 + i6.67, 0.067− i8.17, 0.676− i8.17] (D.43)

or, multiplying by 1/τ to recover the values in dimensional units,

s = 2π · [−9.38 + i129.4, 1.304− i158.5, 13.12 + i158.5] kHz. (D.44)

This may be compared with the exact solution for the roots,

s̄ = 10−2 × [0.560 + i8.35,−0.383 + i6.51, 0.067− i8.16] (D.45)

or, in dimensional units,

s = 2π · [−7.432 + i126.3, 1.304− i158.4, 10.87 + i162.0] kHz, (D.46)

showing the approximations to be accurate.

The physical origin behind the analytical forms of the approximate roots may now

be interpreted. The real frequency of the first root,

ω∗ = ℑ{s1} = −
C0,i

C1,r

1

τ
= ω̄pk̄⊥

1

τ
=
L⊥
Lp
k⊥ρs

cs
L⊥

= k⊥
csρs
Lp

= k⊥v∗ , (D.47)

corresponds precisely to the ideal drift wave examined in Section 3.2.2. The real part
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of this eigenvalue, corresponding to the negative inverse of the growth rate, is

−γ̄∗ = ℜ{s} =
1

−3C3,r

C2,r
− 2

si
+ C1,r

C2,rs2i

=
C2,r

C3,r

1

−3 + 2C2,r

C2,i
+ C1,rC3,r

C2
2,i

≈ C2,r

C3,r

1
C1,rC3,r

C2
2,i
− 3

(D.48)

after recalling that si,1 = −C0,i/C1,r ≈ −C2,i/C3,r, and noting that C2,r/C2,i ∼ 0.04≪
1. Substituting expressions from Eq. D.35, and dividing by τ = L⊥/cs to obtain a

rate in physical units,

γ∗ = −
ℜ{s}
τ

= ηsω
2
piǫ0

ω2
∗k

2
⊥

Ω2
i k

2
‖





1

1− ω2∗
ω2
A



 =
ηsk

2
⊥

µ0

ω2
∗

ω2
A





1

1− ω2∗
ω2
A



 , (D.49)

where ω2
A ≡ k2‖v

2
A corresponds to the ideal Alfvén continuum frequency, η‖ = ηs is

the Spitzer resistivity, which is the parallel resistivity in the Braginskĭi model, and

noting that ηsω
2
piǫ0 = 0.51µe/τei. This corresponds to Eqs. 5.47 and 5.49 in [65, p.

5.12, 5.14] when the terms proportional to Γ are neglected, except that in Eq. D.49,

there is an additional multiplicative factor,
(

1− ω2
∗

ω2
A

)−1

. Normally, it is expected that

ωA ≫ ω∗; however, in the present case, ω∗/ωA ≈ 0.82, and so this additional factor is

appreciably different from unity.

The remaining two roots have real frequencies,

ℑ{sA} = ±
√

C1,r

C3,r

, (D.50)

which, after using the expressions in Eq. D.35 and dividing by τ to obtain physical

units, can be rewritten as

ω2
A = ℑ{sA}2 = k2‖v

2
A , (D.51)

which is immediately identified as the ideal Alfvén wave dispersion relation. The

damping rate for these modes is obtained from Eq. D.42:
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γA = ℜ{sA} = ηsω
2
piǫ0

ω2
∗k

2
⊥

2Ω2
i k

2
‖

ω2
A

ω2
∗

(

1

1∓ ω∗
ωA

)

=
ηsk

2
⊥

2µ0

(

1

1∓ ω∗
ωA

)

, (D.52)

where the selection of the negative root in the damping rate corresponds to the

positive root in the Alfvén wave dispersion relation in Eq. D.51.

These damping rates show that the positive root of the Alfvén wave dispersion

relation is more strongly damped than the negative root when ω∗ is smaller than but

close to ωA. Indeed, the damping rate of this root exhibits a singularity at ωA = ω∗.

Here, with ω∗/ωA ≈ 0.82, γA,−/ωA,− ≈ 6.7%. The negative root, by contrast, has a

weaker damping rate, with γA,+/ωA,+ ≈ 0.82%. As such, both the drift and Alfvén

waves have a preferred direction, though the damping rates of both Alfvén waves in

this system are still modest.

As noted in Section 3.4.1, the damping rate of the two Alfvén waves is half the

growth rate of the drift wave when the multiplicative factors, (1− ω2
∗/ω

2
A)

−1
and

(1− ω∗/ωA)
−1, are ignored, but ωA ∼ ω∗, though these circumstances are contradic-

tory.

D.3 Slab Geometry

The simplest drift wave model treats the slab geometry, which involves a spatially flat

magnetic field (i.e. one with no curvature, b · ∇b = 0). This has been the starting

point for the drift wave model described in Sections D.1 and D.2. When there is no

shear, it is convenient to apply a Cartesian coordinate system, where traditionally, the

x axis labels the flux surface, the y axis is the direction in which the wave propagates

and is perpendicular to both the field lines and the pressure gradient, and the z axis

is the field-aligned direction. The metric tensor for this coordinate system is simply

the identity matrix.

It is especially convenient to align one axis with the equilibrium field direction.

This is because Alfvén dynamics tend to rapidly smooth out perturbations along field
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lines, with the consequence that there are a large number of eigenmodes that change

slowly along field lines, but rapidly across them. This gives rise to elongated structures

which resemble the fluting motif seen on classical-style architectural columns, hence

the name, “flute modes” [65, 98, 70]. It can be advantageous to exploit this property

in numerical simulation, since lower grid resolution is needed along the field line

direction than across.

However, once shear is introduced, the field changes orientation across flux sur-

faces. Without a more general curvilinear coordinate system, the slab model loses its

field-aligned coordinate, and the a finer discretized spatial grid is needed to achieve

adequate resolution. The solution is to transform the coordinates to a new field

aligned system [65, 98]. The penalty for the more efficient allocation of grid points is

a more complicated geometrical apparatus which makes calculating derivatives and

other operations more difficult, and also requires additional care in the application of

boundary conditions.

The following sections derive the coordinate system used for the slab geometry

along the transformation suggested by Scott [65, Chap. 8], but satisfying the criterion

for a Clebsch coordinate system, B = ∇z ×∇x, which enables the use of a number

of built-in methods in BOUT++ [98];

D.3.1 Coordinate System Transformation

Assume a sheared equilibrium magnetic field of the form,

B = B0(ẑ + ŷσθ
x

Ls
) (D.53)

written in a flat Cartesian coordinate system with unit basis vectors, x̂ and ŷ and ẑ.

Here, Ls represents the shear length scale, and is equal to the distance covered in the

x̂ direction when the field rotates 45° due to shear. σθ is the sign of the “poloidal”

field component. Note that the field strength, ‖B‖, is a function of x, so that there

is a well centered at x = 0.
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Before proceeding, let us introduce normalizations

x̄ =
x

ρs

ȳ =
y

ρs

z̄ = k‖z =
2πz

L‖

B̄ =
B

B0

= (ẑ + ŷσθ
x

Ls
)

(D.54)

where the perpendicular directions are normalized to the drift dispersion scale, ρs =

cs/Ωci, while the parallel direction is normalized against the parallel wave number,

which is taken to be the minimal possible value, k‖ = 2π/L‖, where L‖ is the parallel

length scale. Note that x is normalized differently than in Eq. D.6.

Next, introduce a dimensionless shear parameter,

s ≡ L‖
Ls

s̄ ≡ k‖L‖
Ls/ρs

= sk‖ρs

(D.55)

where normalization of this dimensionless parameter is necessitated by the differing

perpendicular and parallel length scales. Then we may write the normalized field as

B̄ = ẑ + ŷ
s̄x̄

2π
(D.56)

noting that 1/(Ls/ρs) = s̄/(2π).

A simple transformation from the flat Cartesian coordinates, {x, y, z}, to the field-
aligned Clebsch coordinates, {ψ, ξ, ζ}, is given by2

2note that in the BOUT++ literature, x, y, z refers to the field-aligned and generally non-orthogonal
coordinate system, while ψ, θ, ζ refers to an orthogonal toroidal coordinate system per the usual
convention. Because, in this slab case, the orthogonal coordinate system from which the field-aligned
system is derived is the Cartesian coordinate system, it is more natural to express the orthogonal
system using x, y, z, and so Greek letters are used for the field-aligned system.
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ψ = B̄0x̄ = x̄

ξ = z

ζ = −ȳ + σθ
s̄x̄z̄

2π

(D.57)

since B̄0 = B0/B0 = 1.

This gives rise to contravariant basis vectors,

eψ = ∇̄ψ =

(

∂

∂x̄
x̂+

∂

∂ȳ
ŷ +

∂

∂z̄
ẑ

)

ψ = B̄0x̂ = x̂

eξ = ∇̄ξ =
(

∂

∂x̄
x̂+

∂

∂ȳ
ŷ +

∂

∂z̄
ẑ

)

ξ = ẑ

eζ = ∇̄ζ =
(

∂

∂x̄
x̂+

∂

∂ȳ
ŷ +

∂

∂z̄
ẑ

)

ζ = −ŷ + σθ
s̄

2π
(x̂z̄ + ẑx̄)

(D.58)

where the factor of B̄0 = 1 is retained for clarity. To check that this is, indeed, a

Clebsch coordinate system, calculate the field directly from

B̄ = eζ × eψ =
[

−ŷ + σθ
s̄

2π
(x̂z̄ + ẑx̄)

]

× (B̄0x̂) = ẑB̄0 + ŷB̄0σθ
s̄x̄

2π

= B̄0

(

ẑ + σθŷ
x̄

L̄s

)

= ẑ + σθŷ
x̄

L̄s
,

(D.59)

which is the original normalized magnetic field. Note that this is also B = eξ/J ,
where J = 1/

√

det(gij) = 1/
√

B̄2
0 = 1/|B̄0| = 1 is the Jacobian. Direct calculation

gives the same result:

B̄ψ = B̄ · eψ = B̄0(ẑ + ŷσθs̄x̄/(2π)) · x̂B̄0 = 0

B̄ξ = B̄ · eξB̄0(ẑ + ŷσθs̄x̄/(2π)) · ẑ = B̄0 = 1

B̄ζ = B̄ · eξB̄0(ẑ + ŷσθs̄x̄/(2π)) · (−ŷ + σθ
s̄

2π
(x̂z + ẑx)) = 0

(D.60)

As desired, the magnetic field in this basis has only a single non-zero component,
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B̄ = Bξeξ.

To calculate the covariant basis vectors, it is convenient to record the normalized

Cartesian coordinates as functions of the transformed coordinates,

x̄ =
ψ

B̄0

ȳ = σθ
s̄ψξ

2πB̄0

− ζ

z̄ = ξ.

(D.61)

The covariant basis vectors are then found to be

eψ =
∂r̄

∂ψ
=

∂

∂ψ
[x̂x̄+ ŷȳ + ẑz̄] =

∂

∂ψ

[

x̂
ψ

B̄0

+ ŷ

(

σθ
s̄ψξ

2π
− ζ
)

+ ẑξ

]

=
1

B̄0

[

x̂+ ŷσθ
s̄ξ

2π

]

=
1

B̄0

[

x̂+ ŷσθ
s̄z̄

2π

]

eξ =
∂r̄

∂ξ
=

∂

∂ξ

[

x̂
ψ

B̄0

+ ŷ

(

σθ
s̄ψξ

2π
− ζ
)

+ ẑξ

]

= ŷσθ
s̄ψ

B̄02π
+ ẑ = ẑ + ŷσθ

s̄x̄

2π

eζ =
∂r̄

∂ζ
=

∂

∂ζ

[

x̂
ψ

B̄0

+ ŷ

(

σθ
s̄ψξ

2π
− ζ
)

+ ẑξ

]

= −ŷ

(D.62)

where r̄ is the normalized abstract position vector.

The contravariant components of the metric tensor (the inverse metric [139]) are

found from

gij = ei · ej (D.63)

to be
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g11 = eψ · eψ = B̄2
0 = 1

g22 = eξ · eξ = 1

g33 = eζ · eζ = 1 +
( s̄

2π

)2
(

x̄2 + z̄2
)

g12 = eψ · eξ = 0

g13 = eψ · eζ = σθ
s̄z̄B̄0

2π

g23 = eξ · eζ = σθ
s̄x̄

2π

(D.64)

with ¯̄g symmetric, gij = gji.

The covariant components of the metric tensor (the “metric” [139]) are

g11 = eψ · eψ =
1

B̄2
0

[

1 +
( s̄z̄

2π

)2
]

g22 = eξ · eξ = 1 +
( s̄x̄

2π

)2

g33 = eζ · eζ = 1

g12 = eψ · eξ =
( s̄

2π

)2 x̄z̄

B̄0

g13 = eψ · eζ = −σθ
s̄z̄

2πB̄0

g23 = eξ · eζ = −σθ
s̄x̄

2π

(D.65)

and symmetry requires gij = gji.

In the limit where s̄→ 0 (i.e. Ls →∞ and the shear vanishes from the magnetic

field), the metric and inverse metric both reduce to the identity matrix, after noting

that B̄0 = 1.

D.3.2 System of Equations in Field-Aligned Coordinates

Before writing the system of equations employed in the particular BOUT++ models

whose results are described in Section D.4, we introduce a way to cast advection by a
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background electric field, E0. Taking the background electric field to be electrostatic,

it is convenient to write the resulting advection using a Poisson bracket, 3. This

notation is common in the BOUT++ formulation of plasma fluid problems. To see its

application, examine the E×B advection for an arbitrary scalar field, u:

vE,0 · ∇u =
E0 ×B

B2
· ∇u =

B

B2
· (∇u× E0) =

B

B2
· (∇u× E0) =

B

B2
· (∇Φ0 ×∇u)

=
1

Bξ
eξ ·

(

εijk
∂Φ0

∂rj
∂u

∂rk
ei
)

=
1

Bξ
eξ ·

(

εijk
∂Φ0

∂rj
∂u

∂rk
ei
)

=
1

Bξ
ε2jk

∂Φ0

∂rj
∂u

∂rk

=
1

Bξ

(

∂Φ0

∂ζ

∂u

∂ψ
− ∂Φ

∂ψ

∂u

∂ζ

)

= − 1

Bξ

∂Φ0

∂ψ

∂u

∂ζ

(D.66)

where εijk = εijk is the third-order alternating tensor, and the identity, A×B ·C =

B · C × A, has been used. The last equality follows from the fact that Φ0 is only

allowed to depend upon ψ.

The Poisson bracket is written as

{f, g} =
N
∑

i=1

(

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)

(D.67)

for coordinates, q and p. Making the substitution, qi ↔ ζ and pi ↔ ψ,

v̄E · ∇̄u =
1

B̄ξ

{

Φ̄0, u
}

. (D.68)

BOUT++ makes available several routines for calculating bracketed quantities within

the mesh constraints. However, when the potential profile is simple enough so that

its derivative in ψ can be calculated explicitly, doing so may be preferable to avoid

3In this case, the potential becomes the stream function[65].
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another finite-differencing step.

This issue of the formulation clarified, the normalized set of equations now follows.

Quantities wearing a tilde (̃) are evolved in the simulation, while the overbar (̄) is a

reminder that the quantity underneath has been normalized. Ohm’s law is written as

d

dt̄

(

ˆ̃J +
β̂

µ̄
ˆ̃A‖

)

=
dÃ
dt̄

= ∇̄‖

(

ˆ̃pe − ˆ̃φ
)

− β̄ ∂
ˆ̃A‖
∂ȳ
− η̄ ˆ̃J − µ̄e

{

Φ̄0,
ˆ̃J
}

← Ohm’s law

(D.69)

where

Ã ≡ ˆ̃J +
β̄

µ̄
ˆ̃A‖ (D.70)

is a convenience quantity lumping together the time differentiation of both J‖ and

A‖. Recall that β̄ ≡ µ0pe
B2

(

1
k‖L⊥

)2

(Eq. D.18) and µ̄ ≡ µe/
(

k‖L⊥
)2

(Eq. D.19).

The electron continuity equation is

dˆ̃pe
dt̄

= −∂
ˆ̃φ

∂ȳ
+ ∇̄‖

ˆ̃J − ∇̄‖ ˜̄u‖ − {Φ̄0, ˆ̃pe} ← Elec. cont. eq. (D.71)

The total momentum equation is

d˜̄u‖
dt̄

=
(

k‖L⊥
)2
(

−∇̄‖ ˆ̃pe + µ̄‖∇̄2
‖ ˜̄u‖

)

− {Φ̄0, ˜̄u‖} ← Total mom. eq. (D.72)

where µ̄‖ =
1

csL⊥
µ‖ =

1
csL⊥

0.96eTe/(Miνii) is the normalized parallel viscosity.

Finally, the quasineutrality (or vorticity) equation is

d˜̄̂ω

dt̄
= ∇̄‖

ˆ̃J − {Φ̄0,
˜̄̂ω} ← Quasineutrality (vorticity) eq. (D.73)

The parallel current is evaluated from

ˆ̃J =
1

µ̄e

(

Ã − β̄ ˆ̃A‖

)

, (D.74)

while the potential is obtained from ω̄ through an inverse perpendicular Laplacian
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operation,

ˆ̃φ = ∇̄−2
⊥

˜̄̂ω. (D.75)

The normalized quantities are defined in Eqs. D.10-D.14, with some modifications:

the pressure is normalized by the maximum pressure value in the equilibrium profile,

ˆ̃pe =
p̃e

max{pe,0}
. (D.76)

The vorticity, not defined in Eqs. D.10-D.14, is normalized through

ˆ̄ω = ω̄τ. (D.77)

where the hat (̂, circumflex) is used here to indicate normalization, since the bar

already distinguishes ω̄ from ω.

The system of equations presented here have been linearized; extension to the non-

linear system can be readily achieved using the BOUT++ framework, but is nonetheless

a complex endeavor and is left to future work.

D.3.3 Boundary Conditions

Since we are ultimately motivated to study a toroidal geometry, it is appropriate to

apply periodic boundary conditions in the two dimensions within the flux surface,

identifying the ey direction with the poloidal direction, eθ, and ez with the toroidal

direction, eφ. If the spatial periods are Ly and Lz = L‖, then the periodic boundary

conditions are expressed as

u(x, y + Ly, z) = u(x, y, z)

u
(

x, y, z + L‖
)

= u(x, y, z).
(D.78)

The boundary conditions in ex direction cannot be periodic since the shear is

a secular function of x [65, p. 8.4]. Dirichlet conditions are used, such that the

perturbations are zeroed out at the boundaries,
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u(0, y, z) = u(Lx, y, z) = 0, (D.79)

where Lx is the size of the domain in the x dimension.

First, let us re-express these conditions in the normalized Cartesian coordinate

system, {x̄, ȳ, z̄} = {x/ρs, y/ρs, k‖z = 2πz/L‖}:

u(0, ȳ, z̄) = u(L̄x, ȳ, z̄) = 0

u(x̄, ȳ + L̄y, z̄) = u(x̄, ȳ, z̄)

u(x̄, ȳ, z̄ + L̄‖) = u(x̄, ȳ, z̄ + 2π) = u(x̄, ȳ, z̄)

(D.80)

where L̄x ≡ Lx/ρs, L̄y = Ly/ρs, and L̄‖ = 2πL‖/L‖ = 2π.

Next, let us transform the boundary conditions to the field-aligned, normalized

coordinate system {ψ, ξ, ζ}. Making use of Eq. D.57, we find that

u (0, ξ, ζ) = u

(

L̄x
B̄0

, ξ, ζ

)

= u(L̄x, ξ, ζ) = 0

u
(

ψ, ξ, ζ + L̄y
)

= u(ψ, ξ, ζ)

u

(

ψ, ξ + L̄‖, ζ + σθ
s̄ψL̄‖

2πB̄0

)

= u (ψ, ξ + 2π, ζ + σθs̄ψ) = u(ψ, ξ, ζ).

(D.81)

The form of the boundary conditions on x̂ and ŷ are preserved precisely in the

transformation as boundary conditions for ψ and ζ. However, the boundary condition

on ẑ does not appear exclusively as a constraint on the boundary values in ξ. Instead,

due to the magnetic shear, there is an additional shift in ζ,

∆ζ = σθ
s̄ψL̄‖

2πB̄0

= σθs̄ψ (D.82)

(L̄‖ = 2π and B̄0 = 1). As a matter of practicality, it is convenient to express this

shift in terms of unnormalized spatial values, which are more readily available as

input to a simulation:
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∆ζ = σθs̄ψ = σθ
2πL‖/L‖
Ls/ρs

B̄0x̄ = σθ
2πρs
Ls

x

ρs
= σθ2π

x

Ls
= σθsk‖x, (D.83)

recalling that s ≡ L‖/Ls, and s̄ = sk‖ρs.

D.3.4 Differential Operators

The field-aligning transformation results in modifications to the differential operators

from their Cartesian versions. These modifications are well-known and defined by the

metric tensor components, and are described in the BOUT++ literature (e.g. [140, 98]).

However, we repeat several here for completeness. Of fundamental interest to the

drift-wave model employed here (Bruce Scott’s “DALF3” model [65, Chap. 8]) are

the parallel gradient and perpendicular Laplacian operations. The first of these is

found in a straight forward fashion:

∇̄‖u ≡
B̄

|B̄| · ∇̄u =
eξ
|eξ|
·
(

eψ
∂

∂ψ
+ eξ

∂

∂ξ
+ eζ

∂

∂ζ

)

u =
1

|eξ|
∂

∂ξ
u

=
1

|JB|
∂

∂ξ
u =

1
[

1 +
(

s̄ψ
2πB̄0

)2
]1/2

∂

∂ξ
u

(D.84)

where u is an arbitrary scalar field.

In fact, in the present circumstance, it is the inverse of the perpendicular Laplacian

operation that is of interest. This is because the perpendicular Laplacian appears

in the evolution equation for the electrostatic potential operating on Φ̄ before it is

evolved (i.e. the equation specifies the evolution of the vorticity, ω̄ ≈ ∇2
⊥Φ̄, when it

is the electrostatic potential,Φ̄, which appears everywhere else in the model). BOUT++

provides a fast solver for the two-dimensional partial differential equation problem

presented by finding the inverse perpendicular Laplacian, using a Fourier expansion

in the ζ dimension and finite differencing in the ψ direction.
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D.3.5 Summary

In the above, we transformed the Cartesian coordinate system from the slab model

in two steps, first normalizing the spatial and field quantities, and then aligning the

coordinate system with the field direction. This was done to exploit the property

of many plasma fluid models that quantities vary more slowly along field lines than

across them, so that computational resources may be used more efficiently if fewer

grid nodes are placed along field lines. The penalty for this was a more unwieldy

apparatus for handling spatial coordinates and derivatives.

D.4 Early Results

D.4.1 Setup of Simulations

The following results pertain to the case with a flat temperature profile, Te = Ti =

50 eV, an exponential pressure profile with maximum value of 1.5 kPa and a pressure

gradient length scale, Lp = |∇pe,0/pe,0|−1 = 2 mm. The domain sizes, in SI Cartesian

coordinates, are Lx = 0.0196 m, Ly = 0.126 m, and Lz = 8.48 m. These sizes

correspond to half a parallel wavelength (i.e. approximately a connection length)

long in ξ, three perpendicular wavelengths high in ζ (making k⊥ = 1.5 cm−1), and

two pressure gradient length scales deep in ψ.

The grid resolution isNψ = 132, Nζ = 64, andNξ = 129. This includes two “guard

cells” – grid points used at the boundaries of the domain in, ξ and ψ to facilitate

the calculation of differentials on the boundaries of separate parallel subdomains.

Moreover, in BOUT++, the ζ direction treated through Fourier decomposition, and the

number of grid points in this dimension must satisfy 2n + 1, with n an integer, in

order to make use of fast Fourier transform algorithms. In these simulations, n = 7

is selected, making Nζ = 129.

Periodic boundary conditions are maintained in ζ̄ and ξ̄ in the manner described

above.

The domain and grid sizes are selected in order to verify the correct physical
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behavior of the drift wave model without overtaxing the limited processing capacity

afforded in the PSFC computing facility. Larger domain sizes and finer grid resolution

is envisaged for “production” simulations, to be carried out on computing facilities

elsewhere.

Numerical integration in time is carried out using the SUNDIALS solver pack-

age, which applies implicit time-integration methods using iterative, preconditioned

Krylov subspace methods to solve linear systems that arise in the implicit time step-

ping. It should be mentioned that BOUT++ makes available a number of other time-

integration solvers, both explicit and implicit and with a high degree of customization.

The timestep used in the simulations below is 200 ns.

Computation was performed on the MIT PSFC parallel AMD Opteron/Infiniband

cluster, Loki; each computation made use of a minimum of 16 processors on two

nodes. The domain was split in two in ψ, with half of the processors going to the left

side and the other half to the right.

D.4.2 Discussion of Initial Results

The results of initial simulations in the BOUT++ are shown below. Only the electro-

static case is investigated here, with Ã‖ → 0, so that the model only evolves three

quantities,
{

p̃e, Φ̃, ũ‖

}

. Moreover, the equilibrium background field is ignored (i.e.

the simulation is carried out in the plasma frame, and E×B shear is not included in

the model, a major shortcoming).

Figure D-1 shows several x, y cross sections (with spatial quantities transformed

back to physical units) for a slab case roughly approximating the temperature and

magnetic shear at the outer midplane under plasma conditions in which a QCM

might appear. The initial periodic perturbation spreads radially, as expected from

the presence of the perpendicular Laplacian appearing in the quasineutrality equation,

until it bounces off of the boundaries. Meanwhile, the overall propagation conforms

with drifting motion with the electron diamagnetic drift velocity. This is shown clearly

in Figure D-2, which illustrates the evolution of a single slice of the domain across the

Cartesian slab coordinate, y, holding x and z fixed in the middle of the simulation
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space. The black dashed line corresponds to a point propagating in y at the speed

and in the direction of electron diamagnetic drift, ω = k⊥v∗ (here, ω ≈ 2π200 kHz);

this tracks well with the motion of the peaks and troughs of the disturbance.

The mode is also seen to grow in these two figures. Even though there is magnetic

shear, it is too slight to rip apart the disturbance, and so the mode grows linearly

through the mechanism introduced by resistivity and parallel currents, as discussed

in Section 3.2.2. Similarly, parallel viscosity is also too small to damp the mode.

Indeed, the shear must be increased far beyond the level seen at the outer midplane

before its effect is observed. This point is made in Figure D-3, which shows the

results of artificially inflating the shear parameter to s = L‖/Ls = 104, three orders

of magnitude larger than the experimental value at the outer midplane. Here, the

initial disturbance does appear to shear apart as the simulation proceeds; the effect

is small for smaller orders of s, while the mode is efficiently de-phased and broken up

for s of larger order.

The simulations speak to the idea that the effect of magnetic shear is much larger

at the X-point, rather than the outer midplane, where the simulation parameters

apply. A much larger and more complex simulation domains (and computing power)

is needed to resolve this effect. Meanwhile, in the local environment of the outer mid-

plane, it is shear in the E×B and diamagnetic flows, vE and v∗, that is expected to be

more important; indeed, measurements with the mirror Langmuir probe [32] appear

to show the QCM localized to the layer where the quantity, vE + v∗, is stationary in

the flux coordinate, (in the relevant figures in [32], the flux label is the minor radius,

r, relative to the LCFS at the outer midplane).

Clearly, a great deal of work remains to examine the antenna-plasma response

by this approach. The antenna current and vacuum regions must be incorporated

into the model, and inductive effects retained. Moreover, we have seen that shear in

E ×B flow is a critical feature of the model that must be included, and that an X-

point (or two X-points to preserve periodic boundary conditions, at the expense of not

capturing the equilibria used in the initial Shoelace experiments) must be included if

the effect of magnetic shear is to be appropriately captured in the model. All of this
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Figure D-1: Four time frames from the three-field electrostatic model, {pe,Φ, u‖}, with
s = 10, Te = 50 eV, Lp = 2 mm, and a timestep, ∆t = 200 ns. The color axis here
encodes the normalized pressure perturbation in the range, −0.015 ≤ p̃e/pe,0 ≤ 0.015.
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Figure D-2: Plot showing evolution of line slice across ȳ, holding x̄ and z̄ fixed in
the middle of the domain, for the disturbance pictured in Figure D-1, illustrating
propagation and growth of initial perturbation. Dashed line shows phase velocity
expected by pure electrostatic resistively-unstable drift wave.
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Figure D-3: Same problem as in Figure D-1, but now, with shear parameter, s =
L‖/Ls = 104, where L‖ = 13 m and Ls = 0.0013 m≈ Lx/3.
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work is still limited to the slab model with no curvature, where curvature must be

added if the drift wave and interchange dynamics are to compete and interact with

one another. This initial work only demonstrates the utility of BOUT++ in solving

numerically the plasma fluid models appropriate to the Shoelace antenna experiments,

as well as the challenges associated with this endeavor.
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Appendix E

Timebase Error Analysis and

Calibration

E.1 Timebase Error Analysis

If the timebases of fluctuation signals, as well as the antenna waveform, are not

aligned, errors are produced in the analysis of these signals. These errors can result

in falsely identifying resonances in the frequency response, or interfere with the char-

acterization of actual resonances. The following discussion demonstrates this for two

kinds of timebase discrepancies: an offset in the start (trigger) time, and a difference

between the expected and actual sampling times.

To begin, write a signal, y(t), using the phaser formalism,

y(t) = ℜ{Ỹ ejωt}. (E.1)

Next, examine a discrete timebase used to sample y(t),

tn = nτs =
n

fs
, (E.2)

where τs is the sampling time and fs is the sampling frequency. Assume there is

an error in the sampling frequency, such that the actual rate, fs, departs from the
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nominal rate, f ∗
s , by a constant amount, δf

fs = f ∗
s − δf. (E.3)

Also, define a small temporal offset error, t0, so that, when the nominal (incorrect)

timebase registers as 0, the actual time is t0.

Then the discrete timebase may be rewritten as

tn =
n

fs
=
n∗ −∆n

f ∗
s − δf

∼ n∗ −∆n

f ∗
s

(1 + δ) = (t∗n − t0)(1 + δ) ∼ t∗n(1 + δ)− t0 (E.4)

when δ ≡ δf/fs ≪ 1, with t0 = ∆n/f ∗
s . The actual continuous time is expressed in

terms of the nominal continuous time, t∗, and error parameters as t = t∗(1 + δ)− t0.

The phaser representation of y(t) can also be recast in terms of the nominal

timebase and error parameters as

y(t) = ℜ
{

Ỹ ejω[t
∗(1+δ)−t0]

}

= ℜ
{

Ỹeffe
jωt∗
}

, (E.5)

where

Ỹeff ≡ Ỹ ejδωt
∗
e−jωt0 (E.6)

is the effective phaser that would appear if the incorrect, nominal timebase, t∗, is

used in calculating Y from y (i.e. yn is associated with the time, t∗n, instead of tn).

The effect of errors in the trigger time and sampling rate is that the phaser for the

sampled signal, and so also the transfer function, Heff , calculated using the incorrect

timebase is multiplied by the complex exponential, ejδωt
∗
e−jωt0 . The amplitude is

unaffected, but the phase has both an absolute offset and an offset linearly growing

in time.

If Ỹ can be represented by a single simple pole (neglecting the complex conjugate

pair due to the largeness of ω0),

266



Ỹ =
a

γ + j(ω − ω0)
, (E.7)

which may also be written as

Ỹ =
a

2γ

(

1 + ejθ
)

, (E.8)

where

θ ≡ −2∠{γ + j(ω − ω0)}, (E.9)

and a may be complex. Then

Ỹeff =
a

γ + j(ω − ω0)
e−jω(t0−δt

∗)

=
a

2γ

(

1 + ejθ
)

e−jω(t0−δt
∗)

=

[

− a

2γ
+

a

2γ

(

1 + eθa
)

]

+

[

− a

2γ
+

a

2γ

(

1 + eθb
)

]

(E.10)

where

θa ≡ −ω(t0 − δt∗)

θb ≡ θ + θa = −2∠{γ + j(ω − ω0)} − ω(t0 − δt∗).
(E.11)

We may neglect the effect of the timebase error if1 |θa| = |ω(t0 − δt∗)| ≪ π ∀ω. If

this is not the case, then the effect is equivalent to changing Ỹeff such that it appears

to be comprised of the sum of two shifted, non-ideal, pole-like terms, with equivalent

parameters,

1In general, the experiment is designed to vary ω sufficiently so that θ fills the range, −π . θ . π,
in order to reveal the pole.
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θa ≡ −ω(t0 − δt∗) = −2∠{γa + j(ω − ωa)}

θb ≡ −2∠{γ + j(ω − ω0)} − ω(t0 − δt∗) = −2 tan−1

(

ω − ω0

γ

)

− ω(t0 − δt∗)

= −2∠{γb + j(ω − ωb)}.

(E.12)

Strictly speaking, these poles could not be realized unless the equivalent parameters,

γi and ωi, were dependent on the frequency. Nonetheless, the locus of points in

the complex plane would still trace a circular pattern. This locus would circulate

in the counter-clockwise sense with increasing frequency, which would erroneously

indicate a negative damping rate (corresponding to a fictitious growing mode), when

(t0 − δt∗) < 0, (i.e. t0 < 0 and/or δ > 0).

If |δωt∗| & π, then the drift between the actual and nominal sampling rates is

appreciable in the θa term. Because t∗ increments over the course of the shot, this

error term tends to cause Ỹeff to rotate over the course of the shot, from one frequency

scan to the next.

Figure E-1 illustrates this behavior when there is only an error in the sampling

time. Here, synthetic data is run through a model pole. The data for the input and

output functions are resampled on different timebases with the indicated values of

δ, but the timebases are aligned at t = 0 (i.e. t0 = 0). A single chirping frequency

scan from 80 to 120 kHz over t∗max = 0.05 s is used as input, while the output pole

is assumed to have a resonant frequency of f0 = 100 kHz, with a damping rate,

γ/ω0 = 5%. For δω0t
∗
max & π, the effective transfer function appears to rotate in the

direction expected for a negative growth rate.

If ω(t0 − δt∗) . 1/γ, then the phase distortion competes with the phase angle

of the actual pole transfer function near resonance in θb. This provides the scale for

t0 < 0 over which the effective pole appears to rotate in the wrong direction.

Figure E-2 shows this situation. The setup is the same as in Figure E-1, but now,

δ = 0, while t0 is scanned from 0 to −1/γ. When t0 ∼ −1/γ, the effective transfer
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Figure E-1: Effect of sampling frequency offset on effective transfer function for
δω0t

∗
max = 0, 1, 3, 5, and 7. The lower endpoint of the frequency scan is indicated by

a diamond, while the upper endpoint is indicated by an ×. At δω0t
∗
max = 5 and 7,

fitting a simple pole to the effective transfer function yields negative damping rates
on the order of the true damping rate.
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Figure E-2: Effect of timebase offset on effective transfer function for t0 = 0, −1/ω0,
−10/ω0, and −1/γ. The lower endpoint of the frequency scan is indicated by a
diamond, while the upper endpoint is indicated by an ×. At t0 = −1/γ, the effective
transfer function seems to rotate in the opposite sense as a damped pole response.

function appears to be described by a distorted pole with a negative damping rate.

E.2 Timebase Calibration

The system employed to align and synchronize timebases of fluctuation diagnostics

on Alcator C-Mod is described in [136]. The approach is to broadcast an optical

signal throughout the C-Mod experimental cell on which the global time is encoded.

This signal is then transduced to an analog voltage and digitized on one channel in

every set of one or more digitizers which share a clock. The encoded global time is

then compared with the timebase of the digitizer set, and a linear fit retrieves the

trigger offset and sampling frequency error. This approach corrects timebase errors

in an average sense. While it does not address skipped samples, variations between

channels, and other ills, it provides sub-microsecond alignment of the timebases, which

is adequate for the 100 kHz signals of interest over the ∼ 1−4 s data collection times.

Unfortunately, the optical signal transducer was not operational on the PCI diag-
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nostic for a large span of discharges, including all of those presented here for studying

the Shoelace antenna. This meant that the PCI timebase error could not be charac-

terized on those particular discharges. Calculating relative phase differences between

PCI chords cancels the timebase phase error, leaving wave number estimates largely

immune to the timebase errors. But without accounting for the error, it would not

be possible to accurately characterize resonances using the PCI frequency response.

This is because the transfer function uses the antenna current waveform, digitized on

a separate digitizer with a separate, misaligned clock.

However, the trigger offset and sampling frequency errors are, in fact, fairly con-

stant, usually around a ∼20 µs offset for the trigger time, and 6-7 fs for the sampling

time. This is shown in Figure E-3, which plots histograms of the trigger and sampling

time errors for the 196 discharges for which timebase error information was available

prior to the end of the 2012 experimental campaign. The mean trigger offset error in

this range was a 20.1 µs delay from the nominal trigger time, -0.3 s, while the mean

sampling time error was 6.25 fs, added on to the nominal sampling time of 200 ns.

In a set of 21 tests conducted after the end of the Shoelace experimental campaign,

the mean trigger offset error for the PCI digitizers was 17.3 µs±0.11 µs, while the

mean sampling time error was 6.37± 0.016 fs, where the number after the ± symbol

is the standard deviation.

The timebase error had been characterized over a much wider range of shots for the

Shoelace antenna. Figure E-4 shows histograms of the timebase errors for each of the

three Mirnov coil (fast magnetics) digitizers from 2507 discharges over 100 run days.

For these digitizers, the nominal trigger time was -0.05 s, with a nominal sampling

time of 400 ns and no skipped samples. Figure E-5 plots the average timebase error

parameters over each of these 100 run days over the duration of the data collection

period. The data show that, while there is systemic variation in the timebase error

parameters which is larger than the variation over a single run day, this variability is

still much smaller (by a factor on the order of 10) than the magnitude of the error. As

such, the trigger and timebase errors can be removed by calibration for each digitizer

clock, resulting in a trigger time accurate to the ∼ 1 µs level, and to better than
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Figure E-3: Histograms of (top) trigger offset error, t0,error = (actual time data be-
gins to store)−(number of skipped samples)*(actual sampling time)−(nominal trigger
time), where the nominal trigger time is -0.3 s and 3.5×106 samples are skipped, and
(bottom) error in sampling time relative to actual sampling time, ts,actual − ts,nominal
(ts = 1/fs, ts,nom = 200 ns) as characterized by database alignment method, where
ts = 1/fs. The data are from the 196 discharges during which timebase error data
was available prior to the end of the 2012 experimental campaign.

1 fs accuracy for the sampling time. These levels are of adequate accuracy to align

the timebases of different fluctuation diagnostics for the analysis of signals around

100 kHz.
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Figure E-4: Histograms of timebase errors, as in Figure E-3, but for each of the
three Mirnov coil (fast magnetics) digitizers. The sampling time error is reported as
the fractional error of the nominal start time in parts per million; with the 400 ns
nominal sampling time, a 15 ppm error corresponds to a 6 fs absolute error. Similar
trigger offset and sampling time errors appear as for PCI, with a similar spread in
the error. The data are gathered from 2507 shots over 100 run days between 1120104
and 1120912.
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Figure E-5: Plots of (a) trigger and (b) sampling time errors in each of the three
Mirnov coil (fast magnetics) digitizers gathered from the same data set as shown in
E-4 (2507 shots over 100 run days between 1120104 and 1120912). Each data point
on the solid lines is the average error over the entire run day, while the dashed lines
represent the standard deviation from this mean determined from all of the data on
the available run day. The systematic shift in the timebase errors with time is larger
than the random variation over a run day, but is still small relative to the mean error.
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Appendix F

Are the Peaks in the Transfer

Function Genuine?

The analysis below addresses the question of whether the peaks observed in the trans-

fer function spectrum are genuine, or an artifact of performing the signal processing

operation in the presence of a strong background mode.

Figure 5-14a illustrates that the calculated resonant frequency of the pole in the

driven response closely tracks the frequency of the intrinsic QCM (as determined from

the time-evolving peak in the PCI spectrogram). While this result is not unreason-

able, it underscores the need for caution in assessing whether the signal processing

techniques employed in calculating the transfer function do, in fact, isolate the coher-

ent response driven by the antenna from the spectral peak in the background. One

way to test this is to apply the signal processing operations to a fictitious data set

where the current waveform (the “input”) does not correspond to the actual experi-

ment. This is accomplished below in two ways: (1) by time-shifting the true current

waveform so that it is advanced by 50 ms, and (2) by substituting the current wave-

form from a different discharge. The tests are applied to both the transfer function

and the magnitude squared coherence calculations.

Figure F-1 shows the magnitude squared coherence, evaluated at the antenna

frequency, between a PCI signal and the antenna current. The blue line shows the

result when the genuine, measured antenna current waveform is used, while the red
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Figure F-1: Comparison of magnitude squared coherence at the antenna frequency
between antenna current and PCI signal computed using actual data (blue line), and
computed after artificially advancing the current waveform by 50 ms while leaving the
PCI fluctuation signal unchanged (red line). The genuine coherence is high during
the EDA H-Mode, while the artificially-misaligned current waveform results in small
coherence. The subplot shows the antenna current waveform frequency in the genuine
and artificially time-shifted cases, together with the peak in the PCI spectrum (black
line).
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Figure F-2: Transfer function magnitude shown as time series data, calculated using
(a) the genuine current waveform data, and (b) the current waveform which has been
artificially advanced by 50 ms. The antenna frequency and peak frequency of the PCI
spectrogram are also shown.

line shows the result of performing the computation after taking the same current

waveform, but advancing it artificially by 50 ms, thereby inverting the direction of

the frequency scan. The coherence in the artificial case is near the noise floor.

Figure F-2 applies the same test to the transfer function calculation, again eval-

uated at the antenna frequency. The artificial case does, in fact, produce erroneous

peaks in the magnitude of the transfer function when the modified current waveform’s

frequency crosses through that of the intrinsic QCM, but they are smaller than the

peaks in the genuine case by a factor & 3.

Replacing the antenna current with a measured current waveform from an entirely

different discharge, but retaining the same PCI fluctuation data, we arrive at a similar

result, as shown in Figure F-3. Artificial peaks in the magnitude of the transfer

function still appear when the (unrelated) current trace crosses the peak in the PCI

spectrum, but they are again smaller than the genuine peaks seen in Figure F-2a by

a factor & 3.

It is also prudent to examine whether changing the number of samples used in

the time bins in which the spectra are evaluated affects the results. This is done in
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Figure F-3: Transfer function magnitude shown as a time series. Here, the transfer
function has been recalculated using the same PCI fluctuation signal as from the pre-
vious analysis, but now combined with the antenna current waveform from a different
discharge, altogether. Peaks still appear in the magnitude of the transfer function,
even though the current data does not correspond to this shot, but they are again
smaller than the genuine peaks in Figure F-2a.
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Figure F-4: Examining the effect of increasing the number of samples in the time bins
used to estimate the transfer function. The calculation is performed using the same
PCI fluctuation signal, and both the genuine and shifted-by-50-ms current waveforms.
The number of points used in the bin size of the signal processing operation is scanned
from 213 points (3.3 ms) to 214 points (6.6 ms) to 215 points (13 ms). The scan does
not change the qualitative results.
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Figure F-5: Plot of unwrapped phase angle from residues of simple poles fit to the
transfer function of a number of PCI chords using genuine data from the same dis-
charge analyzed throughout this section. (a) corresponds to the time range from 0.95
to 1.0 ms (downward frequency sweep), while (b) uses the time range from 1.0 to
1.05 ms (upward frequency sweep). The estimated value of kR ≈ 4 cm−1 (measured
at the lower intersection between the PCI chords and the LCFS) is the correct value
to reproduce the antenna-imposed k⊥ ≈ 1.5 cm−1 (at the outer midplane).

Figure F-4, which shows the transfer function using both the genuine data (blue line),

and the current waveform artificially advanced by 50 ms. The transfer function is

computed using three different bin sizes: 213 samples (the standard size used in most

of the analyses), 214 samples, and 215 samples. The scan in bin size does not change

the results observed earlier in Figure F-2 – the effect of increasing the bin size is only

to smooth the transfer function time series.

A simple pole may be fit to either set of peaks – genuine or artificial – using the

procedure described in Section 5.5 according to Eq. 5.2. If the phase angles from

the residues of these poles are used to fit a major radial wave number, kR, the poles

from the genuine data show a stationary (in time) value which is consistent with

the perpendicular wave number, k⊥ = 1.5 cm−1, imposed by the antenna winding,

as seen in Figure F-5. Figure F-6 shows the result of unwrapping the phases from

the fictitious poles found using the artificially-modified current waveform. There

is still a phase progression that could be incorrectly interpreted as a major radial

wave number, having the right order of magnitude, though missing the antenna wave
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Figure F-6: Plot of unwrapped phase angle from residues of simple poles fit to the
transfer function using the same fluctuation data from the same set of PCI chords as
in Figure F-5, but now, using the modified antenna current waveform that has been
artificially shifted forward by 50 ms. (a) corresponds to the time range from 0.95 to
1.0 ms (now an upward frequency sweep), while (b) uses the time range from 1.0 to
1.05 ms (now a downward frequency sweep). The measured values of kR have the
same order of magnitude and direction as those found using the genuine data, but
they are not consistent from one scan to the next, nor do they reproduce the antenna
k⊥.
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number by a factor of two or more. But the phase progression of these artificially-

generated residues is not stationary, and depends strongly upon whether the direction

of the frequency sweep is increasing or decreasing, clearly indicating the poles as

false positives. It should be remembered that the timebases of the modified current

waveform and genuine fluctuation data cannot be aligned, and that this can have an

effect on the transfer function (see Appendix E). However, the effects from timebase

misalignment should not matter for the wave number calculation, since it is the

relative phase difference between PCI chords that matters, and all chords suffer from

the same potential timebase error and phase offset.

A better indication, still, of the significance of the observed peaks in the transfer

function is found in the fact that resonances are still observed in reverse-field dis-

charges for which there was no prominent QCM. A spectrogram of one such discharge

is shown in Figure 5-10, while the peaks in the transfer function for this discharge

are analyzed in Figures 5-11 and 5-13.
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Appendix G

Images of Hardware

This appendix attempts to document the construction of several of the Shoelace

antenna components.
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Figure G-1: Sequence of winding the Shoelace antenna. The wire was first bent
into shape on a separate, flat, full-size winding fixture mock-up, then unwound from
this fixture and transferred to the real antenna. (Photo Credits: B. LaBombard, T.
Golfinopoulos)
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(a) (b)

Figure G-2: (a) Sequence of final assembly steps for capacitor boards: measuring
capacitance of each capacitor board channel, in-board and disconnected from tran-
sistors, and then soldering in “zero-ohm resistor” shorts to connect channel to tran-
sistors. (b) Finished board.

(a) (b)

Figure G-3: (a) Completed voltage and current probe box; (b) box with an early
iteration of a capacitive voltage divider board which developed a fault resulting in
the destruction of capacitors.
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Figure G-4: Repaired capacitive voltage divider board; the number of capacitor com-
ponents on the high-voltage leg was increased. This board survived the Shoelace
experimental campaign.

Figure G-5: Sequence of fabrication steps for the phase-locked loop board.
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(a) (b)

Figure G-6: (a) Construction of transformer combiner from two cores; these are placed
inside a COMPAC RF shielded box. (b) Photograph of transformer/combiner and
I/V probes mounted on the rear panels of the matching network.

287



(a) (b) (c)

(d) (e) (f)

Figure G-7: (a) Backplane of matching network; the silver-plated copper nut plate is
being affixed. (b) One of the two matching network modules, with one board fitted
on the left-hand side. (c) One of two matching network subracks with all capacitor
boards in place. LEDs indicate state of each board. (d) Both matching network
subracks with all boards in place. (e) RF shield covers placed over boards, with
Master Control Board outputs connected. (f) Finished matching network rack with
covers in place and shielded test load on top of rack. Person (the author) for scale.

Figure G-8: Photograph showing assembled, integrated matching network in rack,
together with the Master Control Board.
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Appendix H

Exploring the Damping Rate

Measurement

Let us examine whether the strong gradients in the edge region, which give a spatial

dependence to the parameters in the parameters affecting the driven mode’s dispersion

relation, alter the meaning of the measured damping rate.

A “toy” model exploring this effect might give a linear dependence to the real and

imaginary parts of the mode frequency through

ωr = ωr(x) = ω0 +
∆ω

∆x
x (H.1)

and

γ = γ(x) = γ0 +
∆γ

∆x
|x| . (H.2)

Let ν ≡ γ0 + j(ω − ω0), a ≡ j∆ω
∆x

−∆γ
∆x

ν
, and b =

j∆ω
∆x

+∆γ
∆x

ν
, and moreover, assume

that |aL| ≪ 1 and |bL| ≪ 1, where L is the radial scale of the mode. In this case,

the deviation from the complex frequency at the x = 0 mode layer is assumed to be

slight.

The transfer function of a nonlocal diagnostic like PCI effectively integrates over

a range of flux surfaces, x. If this integration is over an effective length, −L to L,

then the effective transfer function has terms like
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A′
∫ L

−L

1

ν + ∆γ
∆x
|x|+ j∆ω

∆x
x
=
A′

ν

(

1

b
ln(1 + bL)− 1

a
ln(1− aL)

)

∼2A′L

ν

(

1−
∆γ
∆x
L

2ν

)

∼ 2A′L

ν
(

1 +
∆γ
∆x

L

2ν

) ∼ 2A′L

j(ω − ω0) +
(

γ0 +
∆γ
∆x

L
2

)

(H.3)

where the units of A′ are proportional to 1/x. The approximations result from ex-

panding the natural logarithm around aL = bL = 0. This means that the effective

damping rate measured by a line-integrating diagnostic is γ0+
1
2
∆γ
∆x
L. Since the damp-

ing rate is expected to be larger than γ0 off the resonant layer, x = 0, ∆γ/∆x > 0, and

so the effective damping rate is larger than that at the resonant layer, γ0. This result

is reasonable, indicating that the effective damping rate averages over the spatially-

varying quantity, and implies that accounting for the change in the mode dispersion

relation continuously over the flux surfaces spanned by the driven mode, given a mea-

surement which integrates the phase across this entire region, is unlikely to artificially

deflate the measured damping rate from some true, larger value.

Another potential complication in the measurement of the damping rate is that

the driven mode dispersion relation is only satisfied in a very narrow layer, such that

as the frequency is scanned, so, too, is the flux surface which is excited by the antenna.

Then scanning the frequency would also entail scanning the flux surface. This means

that the mapping, and also the phase, between the antenna and a diagnostic would

vary with frequency. In this case, it is possible that scanning the drive frequency may

result in a phase variation that looks like a resonance, but is actually an artifact of

traversing spatially across a range of flux surfaces, sampling with a radially-narrow

layer in which the driven mode dispersion relation is satisfied.

We can explore this effect by examining how the field-aligned, field-line-label co-

ordinate, ζ, of a diagnostic changes with the flux surface on which the mapping

operation is carried out. The change in the driven mode phase registered on a di-

agnostic can then be estimated by scaling the shift, ∆ζ, resulting from transitioning

across flux surfaces by the toroidal mode number, n ∼ 35. This is done in Figure H-1
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Figure H-1: Estimate for the change in measured mode phase with flux label (here,
distance from the LCFS at the midplane) for a particular outer PCI chord, a Mirnov
coil, and a polarimetry chord, as measured by considering the change in the field-
aligned ζ coordinate multiplied by the mode number.

for an outer PCI chord (96° away toroidally from the Shoelace antenna), a Mirnov

coil (15.6° away toroidally from the antenna), and a polarimetry chord (-84° away

toroidally from the antenna). The PCI diagnostic is closer than the other two di-

agnostics to the X-point, and is further from the antenna, and so magnetic shear is

more noticeable. However, the mapped perpendicular coordinate of the Mirnov coil

and the polarimetry chord are affected only slightly as the flux surface is scanned.

Yet all three diagnostics give essentially the same estimate for the damping rate (see

Figure 5-12). Even for the PCI diagnostic, the spatial excursion required in order

to produce the apparent 180° rotation of a resonance, ∼ 6 mm, is also wider than

the 3 mm mode layer width measured for the QCM [32]. As such, it is unlikely that

the damping rate measurement is an artifact of a change in mapping accompanying

a frequency scan.
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Appendix I

Additional Spectral Analysis

I.1 Additional Power Spectra

Here, power spectra from a wider selection of time bins are presented, extending the

analysis of Section 5.7.2. The locations of the diagnostics are the same as in that

analysis, and are shown in Figure 5-16.

I.2 Comparing Spectral Peaks Across Multiple Di-

agnostics

Figure I-8 compares the peak frequency for all PCI chords with that of the un-

mapped polarimeter chord and an unmapped Mirnov coil (the upper coil in Figure

5-4); the diagnostics have essentially the same peak, except during the latter part of

the discharge, for which the Mirnov peak is higher. This may be reasonable since

the unmapped Mirnov coil samples a flux bundle separated by many perpendicular

wavelengths from the view of the polarimetry and PCI chords (see Figure 4-18).

Figure I-9 shows again the fact that the sawtooth crash cycle does not synchronize

with the frequency modulation of the QCM. The plasma current comes closer to doing

so, but its amplitude modulation still does not align precisely with the movement of

the QCM peak.

293



50 100 150
0

0.2

0.4

0.6

0.8

1

f [kHz]

ps
d/

ps
d m

ax

1120814021                                   
BP1T_GHK and BP1T_ABK                      
PSD, Welch avg. mod. per. method, nfft=212

1.0700−1.0730 s                              

 

 
Mapped

Unmapped

(a)

50 100 150
0

0.2

0.4

0.6

0.8

1

f [kHz]

ps
d/

ps
d m

ax

1120814021                                   
BP1T_GHK and BP1T_ABK                      
PSD, Welch avg. mod. per. method, nfft=212

1.0730−1.0760 s                              

 

 
Mapped

Unmapped

(b)

50 100 150
0

0.2

0.4

0.6

0.8

1

f [kHz]

ps
d/

ps
d m

ax

1120814021                                   
BP1T_GHK and BP1T_ABK                      
PSD, Welch avg. mod. per. method, nfft=212

1.0760−1.0790 s                              

 

 
Mapped

Unmapped

(c)

50 100 150
0

0.2

0.4

0.6

0.8

1

f [kHz]

ps
d/

ps
d m

ax

1120814021                                   
BP5T_GHK and BP5T_ABK                      
PSD, Welch avg. mod. per. method, nfft=212

1.0700−1.0730 s                              

 

 
Mapped

Unmapped

(d)

50 100 150
0

0.2

0.4

0.6

0.8

1

f [kHz]

ps
d/

ps
d m

ax

1120814021                                   
BP5T_GHK and BP5T_ABK                      
PSD, Welch avg. mod. per. method, nfft=212

1.0730−1.0760 s                              

 

 
Mapped

Unmapped

(e)

50 100 150
0

0.2

0.4

0.6

0.8

1

f [kHz]

ps
d/

ps
d m

ax

1120814021                                   
BP5T_GHK and BP5T_ABK                      
PSD, Welch avg. mod. per. method, nfft=212

1.0760−1.0790 s                              

 

 
Mapped

Unmapped

(f)

50 100 150
0

0.2

0.4

0.6

0.8

1

f [kHz]

ps
d/

ps
d m

ax

1120814021                                   
BP_EF_BOT and BP_BC_BOT                  
PSD, Welch avg. mod. per. method, nfft=212

1.0700−1.0730 s                              

 

 
Mapped

Unmapped

(g)

50 100 150
0

0.2

0.4

0.6

0.8

1

f [kHz]

ps
d/

ps
d m

ax

1120814021                                   
BP_EF_BOT and BP_BC_BOT                  
PSD, Welch avg. mod. per. method, nfft=212

1.0730−1.0760 s                              

 

 
Mapped

Unmapped

(h)

50 100 150
0

0.2

0.4

0.6

0.8

1

f [kHz]

ps
d/

ps
d m

ax

1120814021                                   
BP_EF_BOT and BP_BC_BOT                  
PSD, Welch avg. mod. per. method, nfft=212

1.0760−1.0790 s                              

 

 
Mapped

Unmapped

(i)

50 100 150
0

0.2

0.4

0.6

0.8

1

f [kHz]

ps
d/

ps
d m

ax

1120814021                                   
FROT_03 and FROT_01                        
PSD, Welch avg. mod. per. method, nfft=213

1.0700−1.0730 s                              

 

 
Mapped

Unmapped

(j)

50 100 150
0

0.2

0.4

0.6

0.8

1

f [kHz]

ps
d/

ps
d m

ax

1120814021                                   
FROT_03 and FROT_01                        
PSD, Welch avg. mod. per. method, nfft=213

1.0730−1.0760 s                              

 

 
Mapped

Unmapped

(k)

50 100 150
0

0.2

0.4

0.6

0.8

1

f [kHz]

ps
d/

ps
d m

ax

1120814021                                   
FROT_03 and FROT_01                        
PSD, Welch avg. mod. per. method, nfft=213

1.0760−1.0790 s                              

 

 
Mapped

Unmapped

(l)

Figure I-1: Comparison of power spectra, normalized to the maximum spectral power
for each signal, of pairs of diagnostics, with one mapped (thick green line) and one
unmapped (thin blue line) diagnostic in each pair. The frames from the top row,
(a)-(c), correspond to the Mirnov coils represented by the large blue circles in Figure
5-16, (d)-(f) to the green diamonds, and (g)-(i) to the orange squares. The bottom
row, (j)-(l), shows spectra from two polarimeter chords, the red X’s in Figure 5-16.
The start times for each column are 1.070 (a,d,g,j), 1.073 (b,e,h,k), and 1.076 s (c,f,i,l),
and the width of each bin is 3 ms.
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Figure I-2: The start times for each column are 1.079 (a,d,g,j), 1.082 (b,e,h,k), and
1.085 s (c,f,i,l), and the width of each bin is 3 ms.
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Figure I-3: The start times for each column are 1.088 (a,d,g,j), 1.091 (b,e,h,k), and
1.094 s (c,f,i,l), and the width of each bin is 3 ms. This figure reprises Figure 5-18.
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Figure I-4: The start times for each column are 1.097 (a,d,g,j), 1.100 (b,e,h,k), and
1.103 s (c,f,i,l), and the width of each bin is 3 ms. This figure reprises Figure 5-19
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Figure I-5: The start times for each column are 1.106 (a,d,g,j), 1.109 (b,e,h,k), and
1.112 s (c,f,i,l), and the width of each bin is 3 ms.
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Figure I-6: The start times for each column are 1.115 (a,d,g,j), 1.118 (b,e,h,k), and
1.121 s (c,f,i,l), and the width of each bin is 3 ms.
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Figure I-7: The start times for each column are 1.124 (a,d,g,j), 1.127 (b,e,h,k), and
1.130 s (c,f,i,l), and the width of each bin is 3 ms.
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Figure I-8: Spectral peak in all PCI chords, as well as one (unmapped) polarimetry
chord (thick dashed blue line) and one (unmapped) Mirnov coil (thick green dashed
line). The peak in the polarimetry chord follows that on the majority of the PCI
chords, while the Mirnov coil’s peak frequency departs from those of the other diag-
nostics shortly after 1.3 s.
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Figure I-9: Peak spectral frequency of the top (unmapped) Mirnov coil referred to in
Figure 5-21, plotted together with (a) the electron temperature from an ECE chord
and (b) the plasma current. The vertical black dashed lines again indicate crossings
between the intrinsic QCM and antenna frequencies. Note that the ECE diagnostic,
which provided the temperature measurement, faced calibration difficulties from a
low and rapidly varying field.
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I.3 Examining Cross Coherence Between Pairs of

Diagnostics

Figure I-10 shows the magnitude squared coherence between a pair coils which map

to the Shoelace antenna, but not to each other. Their locations are marked by the

blue circle and green diamond nearest the Shoelace antenna in Figure 5-16. The

signals between the coils are not strongly correlated except at the antenna frequency,

and only when the antenna is on. Data from two discharges are shown; in both,

amplitude modulation was applied to the antenna current. The phase-lock system

was also operating for these discharges, and locked to the QCM for a portion of both.

Figure 5-20a shows the magnitude squared coherence for the same pair of Mirnov

coils which both map to the antenna, while Figure 5-20b shows the same analysis for

a pair of coils in which one coil maps to the antenna, and one does not (the location

of this pair is indicated by the green diamonds in Figure 5-16). The discharge is the

same as that from the previous section, and examined in Sections 5.7.2 and 5.7.3.

Interestingly, in both datasets, the cross coherence between the pair of mapped

coils vanishes later in the discharge, well after the initial onset of the QCM.Weak cross

coherence prior to the onset of H-mode exists for frequencies at and above 110 kHz;

the strongest cross coherence appears just after the onset of H-mode, but prior to the

development of a robust QCM, during which time the edge is most quiescent.

The color scales in these figures are the same as in the other magnitude squared

coherence plots (for example, Figure 5-17).
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Figure I-10: Magnitude squared coherence between two coils which map to the
Shoelace antenna (but not to each other); their locations are marked by the blue
circle and green diamond nearest the Shoelace antenna in Figure 5-16. (a) and (b)
correspond to two different discharges for which the antenna was operated in phase
lock mode. The discharge in (a) is the same as that shown in Figure 5-15; the
Shoelace antenna current locks to the QCM around 1.28 s. In (b), showing a dif-
ferent discharge, the antenna locks only from 1.36-1.38 s, and otherwise follows its
fixed frequency program at 100 kHz. In both shots, the antenna current is amplitude
modulated at 9.5 Hz, with the rising and falling edges indicated by dashed, vertical
black lines.
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A. Stäbler, G.D. Conway, S. Hacquin, M. Kempenaars, P.J. Lomas, M.F.F.
Nave, R.A. Pitts, K.-D. Zastrow, the ASDEX Upgrade team, and contrib-
utors to the JET-EFDA workprogramme. Studies of the ’Quiescent H–
mode’ regime in ASDEX Upgrade and JET. Nuclear Fusion, 45(7):721, 2005.
doi:10.1088/0029-5515/45/7/021.

[50] N. Oyama, Y. Sakamoto, A. Isayama, M. Takechi, P. Gohil, L.L. Lao, P.B.
Snyder, T. Fujita, S. Ide, Y. Kamada, Y. Miura, T. Oikawa, T. Suzuki, H. Tak-
enaga, K. Toi, and the JT-60 Team. Energy loss for grassy ELMs and effects

310

http://dx.doi.org/http://dx.doi.org/10.1063/1.2169779
http://dx.doi.org/10.1088/0029-5515/51/6/063036
http://dx.doi.org/10.1088/0741-3335/53/8/085026
http://dx.doi.org/10.1088/0029-5515/30/8/003
http://dx.doi.org/http://dx.doi.org/10.1063/1.1894745
http://dx.doi.org/10.1088/0741-3335/45/8/302
http://dx.doi.org/10.1088/0029-5515/45/7/021


of plasma rotation on the ELM characteristics in JT-60U. Nuclear Fusion, 45
(8):871, 2005. doi:10.1088/0029-5515/45/8/014.

[51] M. Greenwald, R.L. Boivin, F. Bombarda, P.T. Bonoli, C.L. Fiore, D. Gar-
nier, J.A. Goetz, S.N. Golovato, M.A. Graf, R.S. Granetz, S. Horne, A. Hub-
bard, I.H. Hutchinson, J.H. Irby, B. LaBombard, B. Lipschultz, E.S. Marmar,
M.J. May, G.M. McCracken, P. O’Shea, J.E. Rice, J. Schachter, J.A. Snipes,
P.C. Stek, Y. Takase, J.L. Terry, Y. Wang, R. Watterson, B. Welch, and S.M.
Wolfe. H mode confinement in Alcator C-Mod. Nuclear Fusion, 37(6):793, 1997.
doi:10.1088/0029-5515/37/6/I07.

[52] M Greenwald, R Boivin, P Bonoli, C Fiore, J Goetz, R Granetz, A Hub-
bard, I Hutchinson, J Irby, Y Lin, E Marmar, A Mazurenko, D Mossessian,
T Sunn Pedersen, J Rice, J Snipes, G Schilling, G Taylor, M Greenwald,
R Boivin, P Bonoli, C Fiore, J Goetz, R Granetz, A Hubbard, I Hutchin-
son, J Irby, Y Lin, E Marmar, A Mazurenko, D Mossessian, T Sunn Ped-
ersen, J Rice, J Snipes, J Terry, S Wolfe, and S Wukitch. Studies of EDA
H–mode in Alcator C–Mod. Plasma Phys. Control. Fusion, 42(5A):A263, 2000.
doi:10.1088/0741-3335/42/5A/331.

[53] Alexander Mazurenko. Phase Contrast Imaging on the Alcator C-Mod
tokamak. PhD thesis, Massachusetts Institute of Technology, Sep 2001.
PSFC Report RR-01-2.

[54] Istvan Cziegler. Turbulence and transport phenomena in edge and scrape-off-
layer plasmas. PhD thesis, Masschusetts Institute of Technology, June 2011.

[55] K. V. Roberts and J. B. Taylor. Magnetohydrodynamic Equations for Finite
Larmor Radius. Phys. Rev. Lett., 8:197–198, Mar 1962.
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[69] S.I. Braginskĭi. Transport Processes in a Plasma. Rev. Plasma Phys., 1:205,
1965.

[70] Jeffrey P. Freidberg. Ideal Magnetohydrodynamics. Plenum Press, New York,
1987. ISBN 1475708386.

[71] J. P. Hans Goedbloed and Stefaan Poedts. Principles of Magnetohydrodynam-
ics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge
University Press, 2004. ISBN 0521626072.

[72] J. R. Myra, D. A. D’Ippolito, and X. Q. Xu. Drift wave instabil-
ity near a magnetic separatrix. Phys. Plasmas, 9(5):1637–1645, 2002.
doi:http://dx.doi.org/10.1063/1.1467929.

[73] J. R. Myra and D. A. D’Ippolito. Edge instability regimes with applications
to blob transport and the quasicoherent mode. Phys. Plasmas, 12(9):092511,
2005. doi:http://dx.doi.org/10.1063/1.2048847.

312

http://dx.doi.org/10.1088/0032-1028/9/5/303
http://dx.doi.org/10.1063/1.860215
http://dx.doi.org/10.1103/PhysRevLett.90.035006
http://dx.doi.org/10.1088/0029-5515/45/12/022
http://dx.doi.org/http://dx.doi.org/10.1063/1.1467929
http://dx.doi.org/http://dx.doi.org/10.1063/1.2048847


[74] B. N. Rogers and J. F. Drake. Diamagnetic stabilization of ideal ballooning
modes in the edge pedestal. Physics of Plasmas (1994-present), 6(7):2797–2801,
1999. doi:http://dx.doi.org/10.1063/1.873237.

[75] B. Coppi and T. Zhou. Plasma confinement regimes and collec-
tive modes characterizing them. Phys. Plasmas, 19(10):102509, 2012.
doi:http://dx.doi.org/10.1063/1.4757640.

[76] Thomas H. Stix. Waves in Plasmas. American Institute of Physics, 1997. ISBN
0883188597.

[77] E.M. Davis, M. Porkolab, J.W. Hughes, B. LaBombard, P.B. Snyder, and X.Q.
Xu. BOUT++ simulations of edge turbulence in Alcator C-Mod’s EDA H–
mode. APS DPP Meeting, Nov. 2013. Poster, PP8.00017.
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