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Abstract

Three dimensional pupils are investigated in both diffractive and subwavelength
regimes and in various applications to shape the flow of light. In diffractive regime,
volume holograms are good candidates for pupils of optical imaging systems thanks to
their three–dimensional structure, which provides richer design flexibility compared to
conventional two–dimensional pupils. In this thesis, I will propose the system design
as well as the optimization of depth selectivity for enhancing the signal–to–noise ratio
of ground–based imaging system for the detection of artificial satellites. In addition,
deformations of volume hologram pupils promise additional opportunities to design
further, more sophisticated point spread functions which are potentially useful for
many imaging purposes. Deformations using multiple point indenters will be investi-
gated in terms of both forward and inverse problems. Bulk transformation is a more
general approach for pupil design. The physical relationship between transformation
and resulting point spread function will be discussed by deriving the correspond-
ing analytical expressions. In subwavelength regime, I will explore the realization of
key materials properties including inhomogeneity and anisotropy. Anisotropy can be
implemented by elliptical rod lattices; and with anisotropy, cloaking and accommo-
dation of different components of an optical device become possible. Inhomogeneity
is discussed in the context of gradient–index media. The additional thin–film wave
guidance effect along the third dimension due to fabrication constraints is investigat-
ed in detail with the proposal of an all–analytical solution.
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6.3 Anisotropic guidance correction . . . . . . . . . . . . . . . . . . . . . 129

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Conclusions and future work 137

9



THIS PAGE INTENTIONALLY LEFT BLANK

10



List of Figures

1-1 (Left) Setup for volume hologram recording process. (Right) Example

of recorded permittivity distribution on the hologram when θs = −θf .

Color shading denotes the value of permittivity (see Eq. 1.4). . . . . . 24

1-2 Setup for probing of recorded volume holograms. . . . . . . . . . . . . 25

1-3 Two types of subwavelength metamaterial lattices. Black dots are rods

of certain material, e.g. silicon, and white ambient is other material,

e.g. air. Red dashed lines highlight the corresponding unit cell of the

lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1-4 (a) Structure of designed subwavelength aperiodic nanostructured Lüneburg
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Chapter 1

Introduction

Three dimensional (3D) optical pupils offer richer opportunities for shaping the prop-

agation of light comparing with conventional two dimensional (2D) elements. The

addition of the third dimension enables many novel system characteristics to be inves-

tigated, in the contexts of imaging, communications, etc. Often placed in the pupil

plane (i.e. at the Fourier plane of a 4F system), these pupils are able to manipulate

the resulting point spread functions (PSFs) of imaging systems with more design free-

dom. Typically, 3D pupils, especially in diffractive regime, result in a shift–variant

system (a system where a shift/translation of the input along the lateral plane does

not result in the same shift of the output), further enhancing the design flexibility.

Generally, 3D optical pupils function in two main regimes, diffractive and sub-

wavelength. In diffractive regime, the operating wavelength is comparable or smaller

than the feature of grating/lattice structures of the pupil. Diffractive elements typ-

ically operate by means of interference and diffraction in order to generate desired

light distributions (in both amplitude and phase), or to aid the design of optical

systems. While for subwavelength regime, the feature of elements is assumed to be

much smaller than the wavelength of the light (thus “sub–wavelength”). As a result,

light propagating through these devices only “sees” the effective ambient material

properties, e.g. permittivity, permeability and (possibly) absorption. Complex three

dimensional material distributions including inhomogeneity, anisotropy as well as dis-

persion can be realized by fine–tuning the structure of each subwavelength cell. These
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optical pupils control the light in a fashion which is desired by the system.

In this thesis we will design and optimize some different 3D pupils, explore with

various applications in both diffractive and subwavelength regimes. The main inves-

tigations can be classified into the following three categories:

• 3D diffractive pupils for cases when shift variance is desirable, e.g. detecting

artificial satellites in daytime (Chapter 2).

• Transformation 3D diffractive pupils when shift variance and PSF manipulation

are both desirable, e.g. transformational volume holography (Chapter 3 & 4).

• Subwavelength transformation pupils for cases when shift variance is not desir-

able but the PSF needs to be manipulated, e.g. anisotropic cloaks and Lüneburg

lenses (Chapter 5 & 6).

1.1 Volume holograms – 3D diffractive pupils

Volume holograms (VHs) are 3D holograms where the thickness along the optical

axis is not negligible so the Raman–Nath approximation does not hold. Instead, dif-

fraction is said to occur “in the Bragg regime”. VHs have been utilized in various

applications, including signal processing [88, 109, 110], communication [28, 85], infor-

mation storage [65, 66, 71, 87], and imaging [8, 120, 121, 122, 123, 133, 135]. Contrary

to a conventional hologram, whose thickness is assumed to be negligible, typical VH

thickness is in the order of millimeters.

VH is usually recorded by the interference of two plane waves: signal and reference

beams with a certain angle, resulting in a periodic refractive index distribution [82].

A typical setup for the recording process is shown in Fig. 1-1. A signal point source

is located at position xs (xs < 0). After the lens, this source beam becomes a plane

wave of angle θs = −xs/f1 where f1 is the focal length of the lens. The signal field

illuminated on the hologram is

Es(x
′′, z′′) = exp

[
− i

2π

λ

(
xs

f1
x′′
)]

exp

[
+ i

2π

λ
z′′
(
1− 1

2

x2
s

f 2
1

)]
, (1.1)
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where x′′ and z′′ are the coordinates centered at the hologram. Note that contributions

from “y” components are ignored, since hologram setups are invariant along y′′ axis

in most of the following calculations. An exception is the twisting transformation

discussed in Chapter 4, where the “y” components are necessary and thus included.

Similarly, the reference field is

Ef (x
′′, z′′) = exp

[
− i

2π

λ

(
xf

f1
x′′
)]

exp

[
+ i

2π

λ
z′′
(
1− 1

2

x2
f

f 2
1

)]
. (1.2)

After the exposure, the permittivity of the holographic material is modulated accord-

ing to the following relationship

|Es + Ef |2 = |Es|2 + |Ef |2 + E∗
fEs + EfE

∗
s . (1.3)

Only the third term of the above expression is relevant to the read–out process.

Therefore, by neglecting the other three terms, the permittivity recorded on the VH

can be expressed as

ϵ(x′′, z′′) = E∗
fEs = exp

[
i
2π

λ

(
− x′′xs − xf

f1
+ z′′

x2
f − x2

s

2f 2
1

)]
. (1.4)

This permittivity distribution has been illustrated in Fig. 1-1 in the case that θs =

−θf . Note that the permittivity is modulated by the real part (cosine) of the interfer-

ence pattern; but we write the permittivity distribution in analytic form to simplify

subsequent calculations.

After the recording, this hologram is then probed with a probe beam (see Fig. 1-2).

The optical field probing on the hologram is

Ep(x
′′, z′′) = exp

[
− i

2π

λ

(
xp

f1
x′′
)]

exp

[
+ i

2π

λ
z′′
(
1− 1

2

x2
p

f 2
1

)]
. (1.5)

Here we assume that the hologram is weakly diffracting, which is valid for most of the

holograms we have been using. Thus, instead of the rigorous coupled wave theory [83],

we can apply the first–order Born approximation; that is, the modulated material of
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Figure 1-1: (Left) Setup for volume hologram recording process. (Right) Example of
recorded permittivity distribution on the hologram when θs = −θf . Color shading
denotes the value of permittivity (see Eq. 1.4).

the hologram responds to the probe beam illumination as a coherent superposition

of secondary point sources of

g(x′′, z′′) = Ep(x
′′, z′′)× ϵ(x′′, z′′) (1.6)

at each (x′′, z′′) inside the hologram. The diffracted field is then collected by the

second lens (also referred as collecting lens) of focal length f2 and focused on the

detector located at a distance of f2 away. Barbastathis et al [8] and Sinha et al [124]

have shown that the optical field on the detector can be calculated as

q(x′) =

∫∫
Ep(x

′′, z′′)ϵ(x′′, z′′)s(x′′, z′′) exp

(
− i2π

x′x′′

λf2

)
· exp

[
− i2π

(
1− x′2

2f 2
2

)
z′′

λ

]
dx′′dz′′ (1.7)

where s(x′′, z′′) is the hologram shape function and x′ & z′ are coordinates centered

at the detector (see Fig. 1-2). Here we assume a rectangular volume hologram so

s(x′′, z′′) = rect

(
x′′

Lx

)
rect

(
z′′

L

)
, (1.8)

where Lx and L are the lengths of the hologram along x and z axes, respectively.
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When the hologram is probed by a probe beam which is exactly the same as the

previous reference beam, VH is Bragg matched and the identical signal beam will be

read–out. Setting xp = xf , we can calculate the final field at the detector by solving

Eq. 1.7:

q(x′) = Lx · L · sinc
[
Lx

λ

(
xs

f1
+

x′

f2

)]
sinc

[
L

2λ

(
x2
s

f 2
1

− x′2

f 2
2

)]
. (1.9)

Physically, the first sinc term corresponds to the finite lateral aperture of the holo-

gram, and the second sinc term is a result of the non–negligible thickness of the

hologram. The second term only appears when the pupil’s thickness should be con-

sidered. This result also clearly indicates that volume holographic imaging systems

are shift–variant.

Figure 1-2: Setup for probing of recorded volume holograms.

However, when probed by beams different than the reference beam, VH is no

longer matched thus the diffracted efficiency is reduced. Therefore, only those objects

located very close to the objective plane have large enough diffraction after the VH;

any objects at different depths experience minimal diffraction and thus are absent

from the final image [11, 124]. This is the depth selectivity property, which is very

useful especially in microscopy and other medical/biological imaging applications [7,
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96, 97]. VH systems provide images of a sample at different depths simultaneously,

thus depth scanning is not required any more.

VH is usually inserted into the pupil plane of an optical system to achieve desired

system performance [103]. Pupil engineering in this scenario becomes VH engineering.

By changing the VH, e.g. applying deformation, different system properties can be

realized. Potentially if the VH can be adjusted in vivo, targets can be probed by

different types of beams without changing system setup.

In addition, VH located at optical system’s pupil plane can be deformed to achieve

numerous point spread functions (PSFs). These PSFs are potentially useful for differ-

ent applications, e.g. super–resolution imaging [107] and optical memory storage [87].

Possible deformations include point indenters, rotation, compression, bending, etc.

This thesis aims at finding the relationship between the transformation of VH and

the resulting PSF, especially in terms of analytical expressions.

Note that in this thesis we assume that the volume hologram has been recorded

by two planes, and we do not focus on the detailed recording process of the hologram,

including choice of hologram materials, possible wavelength responses, typical ranges

of recorded permittivity, and robustness of the material in terms of multiple recording

and reading processes. Detailed discussions on these topics have been covered in

literature (for example, [96, 124]).

1.1.1 VH for satellite detection in daytime

For a ground–based optical telescope system operating in daytime, the majority of the

background noise comes from sunlight scattered by the atmosphere within 30 kilome-

ters (km) of the sensor [5, 74]. Our targets of interest, satellites, are a minimum of 200

km from the sensor. A volume hologram can be inserted into the observation system

as a 3D pupil to provide the ability to selectively modify incoming light based on the

range to the source, thanks to the depth selectivity property of VHs discussed above.

We developed a design for the filter to use for suppression of daylight sky background,

and modeled its performance against all the important design parameters.

Now the signal beam is from an object at the altitude of satellites. The recorded
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VH is then probed to obtain an image. If the probe beam is from the object at the

same altitude, VH is Bragg matched and provides the maximum diffraction efficiency.

Otherwise, for atmospheric scatterers, i.e. at daylight, the beam after the objective

lens is no longer a plane wave; thus, the hologram is Bragg mis–matched, resulting in

a reduction of diffracted intensity. In this way, VH provides depth selectivity based

on the distance of the probe source, and the daylight is then mitigated with reduced

intensity.

However, because both the satellite and atmospheric scatterers are far away from

the detector, the wavefronts illuminating on the system for both cases have no sig-

nificant difference (i.e. far–away enough objects result into wavefronts close to plane

waves). Therefore, satellite and daylight scatterers are indistinguishable in such a

simple system. In this thesis, we present that a telephoto objective [15] should be

used in this filter system to effectively reduce the front focal length, thus enhanc-

ing the depth selectivity at the orbit of the satellite target. A simulation method

combining MATLAB R⃝and ZEMAX R⃝to perform the wave propagation and imaging

is used to calculate the diffraction efficiency for objects at different altitudes [140].

Also, a method is presented to include the effects of the spectra of both sunlight and

daylight; this approach is considered in the final calculation of signal–to–noise ratio

(SNR) enhancement.

In this volume hologram filter system, six parameters have significant influence on

the final system performance, including aperture radius, hologram thickness, record-

ing angle, hologram refractive index, wavelength, and effective focal length. These

parameters were optimized based on physically motivated system restrictions to max-

imize the SNR enhancement. In this process, the diffraction efficiency of atmospheric

scatterers should be minimized, at a minimal cost of satellite efficiency reduction.

The field of view of the total system will also be discussed, as well as the advantages

of using multi–pixel detectors, which will further enhance the SNR and provide ad-

ditional information on the types of satellites. Furthermore, aberrations as well as

atmospheric turbulence will be investigated. Both of them result into a deformed

wavefront on top of the existing system, and their amount and type determine their
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effects on the final image quality. Kolmogorov model including Zernike polynomials

will be used to model atmospheric turbulence [19].

1.1.2 PSF design: multiple point indenters

Volume holograms are inherently shift–variant and are able to provide richer oppor-

tunities for PSF design. In the previous satellite imaging case, VH is only inserted

into the pupil plane of an imaging system. Because the interference pattern recorded

on the hologram by two plane waves is of limited flexibility, the full 3D structure of

the hologram is definitely not fully utilized. To achieve more flexibility, we present

“3D pupil engineering”, an analysis and design procedure for engineering the PSF

by deforming exterior of a hologram. In this sense, both shift variance and PSF

manipulation are desirable.

Here we propose to use multiple point indenters. Each point indenter applied

on the exterior of the hologram induces a deformation of the fringes (permittivity

distributions); the deformations from a combination of indenters can be used to design

the desired PSF of an imaging system. Both the forward and inverse problems will

be discussed. “Forward problem” provides the combination of point indenters, and

we calculate the resulting PSF. A more interesting version is the ‘inverse problem”:

given the required PSF, we calculate the possible superposition of point indenters.

Starting from a single point indenter, the elastic displacement inside the volume

can be calculated [79, 134]. By analyzing the redistribution of refractive index pat-

tern, final PSF is achieved through a 3D integration of the diffracted field. Based on

this single indenter case, it is easy to extend this method to multiple point indenters

at different positions. Each indenter results into an elastic displacement; the total

deformation is approximately the superposition of the individual deformations (lin-

ear/elastic approximation). Here we assume that every point deformation is small

enough that it can be treated as an independent perturbation. This analysis approach

can be potentially applied to continuous forces as long as the continuous force can

be well approximated in terms of multiple point indenters. In this way, continuous

forces could be investigated with the same procedure.
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For “inverse problem”, a robust approach is “nonlinear least squares method”.

The difference between current–realized PSF and desired PSF can be minimized us-

ing least squares method to locate the best combination of point indenters. In this

thesis, I will also discuss key points related to this approach which require special

attention. We could decide a proper initial condition by utilizing the “forward prob-

lem” approach mentioned above. Note that although all the discussions are assuming

a 2D system setup along x− z plane, this problem is readily to be generalized to 3D.

This thesis will present some interesting and potentially useful design examples.

1.1.3 PSF design: transformational volume holography

Not all PSFs are achievable by multiple point indenters. Fortunately, there are also

more mechanical deformations besides point load, including compression, shearing,

bending, twisting, etc. These choices of deformations provide richer opportunities for

more general and sophisticated VH design. By transforming the volume hologram,

i.e. the pupil of the imaging system, the system performance can be tuned to fit a

design criterion such as spectral composition of the PSF, anisotropic behavior, etc.

This general approach is called transformational volume holography.

Numerically, it is straightforward to compute the resulting PSF given a certain

type of transformation. This is similar to the “forward problem” mentioned above

using point deformations. However, these computations require integrations where

the corresponding integrands are usually highly oscillatory. Thus, excessive sampling

is required, especially in 3D, posing unattainable demands on extensive memory and

CPU cost. In addition, a physically intuitive relationship between transformation of

the VH and final PSF is not easy to find.

Therefore, in this part of the thesis, I will focus on finding quasi–analytical ex-

pressions for the relationship between transformation and resulting PSF. Analytical

equations are always much easier to compute, and give better physical intuitions. For

some of the transformations, especially affine transformations, analytical expressions

are straightforward to derive and the relationship to the transformation itself can be

observed clearly in the final expression. These transformations include compression
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and extension, rotating, shearing, etc. However, for many non–affine transformation-

s, e.g. bending and twisting, exact analytical solutions are not possible; instead we

employ approximations.

We present the stationary phase method [16, 25, 30] to be a good solution for

the approximation. Bulk transformation results in a Bragg–mismatched diffraction.

This means that the expression inside the integral is fast oscillating in most of the

hologram region except a few stationary points where the first–order derivative is

zero. This satisfies the condition to apply stationary phase method. A simple and

intuitive analytical solution can be derived in this case. Transformations including

bending and twisting have been investigated.

1.2 Subwavelength metamaterials

For diffractive 3D pupils like volume holograms, the operating wavelength is com-

parable or smaller than the feature of grating/lattice structures. Here we will also

discuss another important type of 3D pupils, subwavelength metamaterials, function-

ing in subwavelength regime, where the wavelength of light is significantly larger than

the size of the lattice element. Unlike the diffractive case, here shift variance is not

desirable but the system should have full capacity of manipulating light propagation.

Metamaterials [22, 27, 31, 37, 61] aim at design of artificial materials which pos-

sess properties not found in nature. Metamaterials are generally composed of periodic

or aperiodic structures or cells that are much smaller than the operating wavelength

of light. Metamaterials use small structures to mimick large effective macroscopic

behavior [32, 126, 127]. Metamaterials have attracted attention in many research

fields and applications. Interesting applications have been reported, including su-

perlens [21, 93], negative refraction and perfect lens [3, 33, 39, 75, 107, 125], cloak-

s [38, 42, 98, 99, 118, 137], antennas [141], surface plasmons [13, 63], polarized beam

generation [14], antireflection structures [81, 106], memory storage [35], as a number

of interesting and important examples.

In this thesis, we focus on subwavelength metamaterials made of dielectrics. Dif-
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ferent structures can be implemented to achieve various material properties including

inhomogeneity and anisotropy. The key thing here is to find a particular design of

cell unit in order to realize the required refractive index (or permittivity) distribution.

Note that even though the subwavelength designs in this thesis are not in the pupil

plane of a 4F system, these designs are steps in the direction of building 3D pupils

in the future. We here focus on light manipulation. These subwavelength metama-

terials discussed in this thesis typically do not have the shift–variant properties of a

diffractive 3D pupil.

1.2.1 Cloaking in subwavelength regime: anisotropy

An important application of subwavelength metamaterials is cloaking. Invisibility

cloaking device is a technology that can make objects invisible to an observer as if

these objects do not exist. For example, a plane wave passing through the cloaked

object is not scattered, but keeps the same plane wave fronts. Potentially, sub-

wavelength cloaking devices can find many application in optics–on–a–chip and other

integrated photonic devices. Invisibility cloaks have attracted a lot of research at-

tention after the original ideas were proposed by Leonhardt [86] and Pendry [108].

Many designs and experiments have been carried out to realize cloaks operating at

microwave [92, 118] and optical regimes [20, 38]. Implementations of these cloaks

include metamaterials [20, 38, 42, 92, 94, 118, 137], layered structures [111] and so

on. Recently, macroscopic cloaks operated at visible wavelengths have also been re-

alized with natural materials as simple as calcite crystal [24, 148]. One important

type of cloak is the ground–plane cloak, which is able to hide objects on a flat ground

plane under a “carpet” as if these objects do not exist [90]. Through a transforma-

tion between the “physical space” and “virtual space”, light illuminating the cloak

is reflected in the same way as if the light were reflected by a perfect mirror. Trans-

formations result in anisotropic material, which is generally considered difficult to

implement in subwavelength regime. To avoid anisotropy, quasiconformal mapping

was firstly applied to facilitate metamaterial fabrication of optical cloaks, resulting in

slowly–varying inhomogeneous (but isotropic) medium [90, 137]. However, this map-
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ping only minimizes (but does not eliminate) the anisotropy required; the omission of

anisotropy in fabrication still led to a lateral shift at the output which makes the cloak

detectable [147]. Also, the cloaking region designed using quasiconformal mapping

was limited in size to the order of one wavelength, and inhomogeneity complicated

the fabrication process.

In this thesis we discuss subwavelength nanostructured cloaking made of unifor-

m elliptical rod arrays. This method conquers the key difficulty in the realization of

cloak materials–anisotropy. Instead of trying to eliminate the anisotropy, our cloaking

scheme instead utilizes anisotropic media, implemented as periodic structures of sub-

wavelength elliptical rods. The proposed subwavelength structure consists of square

unit cells with elliptical silicon rods immersed in air, which exhibits different effective

refractive indices under illumination from different directions. This scheme greatly

facilitates the fabrication process [132].

As an application of cloaking, our designed elliptical rod lattices are used to ac-

commodate (i.e. cloaking) non–photonic components of an optical device with pho-

tonic components. A typical optical device is composed of the functioning photonic

components and those non–photonic components which are used for support and con-

nection of photonic parts. These two types of components usually have to be placed

far away enough in order to minimize the influence of non–photonic components on

the propagation of light, resulting into excessively large device sizes. Using our cloak-

ing architecture to accommodate these two components together, the size of optical

devices can be dramatically reduced without performance degradation.

1.2.2 Thin–film gradient index subwavelength metamaterial-

s: inhomogeneity

Now we turn to the implementation of inhomogeneity using subwavelength metama-

terials, in the context of gradient–index (GRIN) media [101]. Since at least Maxwell’s

time [130], GRIN media have been known to offer rich possibilities for light manip-

ulation. More recent significant examples are the Lüneburg lens [26, 34, 67, 91, 95],
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the Eaton lens [36], and the plethora of imaging and cloaking configurations devised

recently using conformal maps and transformation optics [86, 108, 119, 128, 137, 138].

GRIN optics are of course also commercially available, but the achievable refractive

index profiles n(r) are limited generally to parabolic in the lateral coordinates or to

axial without any lateral dependence [72]. There is an ongoing effort to achieve more

general distributions using stacking of photo–exposed polymers [1, 117].

For optics–on–a–chip or integrated optics applications, using the idea of subwave-

length lattice, it is possible to emulate an effective index distribution n(r) by pat-

terning a substrate with subwavelength structures. Because these structures are suf-

ficiently smaller than the wavelength, to a good approximation these subwavelength

structures can be thought of as a continuum where the effective index is determined

by the pattern geometry. In general there are two different ways to realize subwave-

length GRIN media: one can create a lattice of alternating dielectric–air with slowly

varying period and fixed duty cycle, or with fixed period but slowly varying duty cy-

cle [77, 114]. Examples have been illustrated in Fig. 1-3. For both lattices, rods can

be replaced by other geometries, e.g. rectangles; and materials can be interchanged

to make holes instead of rods.

Figure 1-3: Two types of subwavelength metamaterial lattices. Black dots are rods
of certain material, e.g. silicon, and white ambient is other material, e.g. air. Red
dashed lines highlight the corresponding unit cell of the lattice.

If the critical length of the variation is slow enough compared to the lattice con-

stant that the adiabatic approximation is valid, the lattice dispersion diagram can be

used to estimate the local effective index [77, 114]. Refractive indices computed using

a 2D approximation are valid for 2D adiabatically variant metamaterials where the

33



height in the third dimension is much larger than the wavelength so the assumption

of infinite height can be justified. Under this 2D approximation, the relationship be-

tween geometry inside a unit cell and the effective refractive index (or permittivity)

of the unit cell can be easily found. Two approaches can be applied here, one is a

full–numerical band solving method in 2D, and the other is a 2D analytical solution.

These approaches will be briefly discussed in Chapter 6.

According to the above assumption and analyzing approaches, we have designed a

subwavelength aperiodic nanostructured Lüneburg lens [131, 132]. Fig. 1-4 shows one

particular design and the corresponding verification using full–wave beam propagation

and ray tracing simulation. This lens mimics a GRIN element with refractive index

distribution n(ρ) = n0

√
2− (ρ/R)2 (0 < ρ < R), where n0 is the ambient index

outside the lens region, R is the radius of the lens region and ρ is the radial polar

coordinate with the lens region as origin. For the specific case of Fig. 1-4, optical

wavelength λ = 1550 nm, size of unit cell a0 = (1/8)λ, and radius of lens R = 30a0.

The Lüneburg lens focuses an incoming plane wave from any arbitrary direction to

a geometrically perfect focal point at the opposite edge of the lens [95, 136]. This is

also confirmed in Fig. 1-4(b).

However, for most fabricated subwavelength nanostructured devices, the height

of the lattice is even smaller than the operational wavelength. The structure is now

considered a thin–film waveguide and a large portion of the field exists outside of the

slab itself. Clearly for these cases the 2D approximation discussed above are no longer

valid, and the wave guidance effect should be taken into consideration when designing

thin–film GRIN devices. We will propose an all–analytical approach to include this

thin–film effect and re–design the subwavelength aperiodic Lüneburg lens.

1.3 Outline of the thesis

This thesis presents design and optimization of 3D imaging pupils in diffractive and

subwavelength regimes. For diffractive elements, volume holography will be discussed

in the application of daytime artificial satellite detection. Transformational volume
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(a) (b)

Figure 1-4: (a) Structure of designed subwavelength aperiodic nanostructured
Lüneburg lens under 2D assumption. (b) Finite–difference time–domain simulation
and ray tracing simulation results. Red circle outlines the edge of the Lüneburg lens
and blue curves are ray tracing results. Black dots are silicon rods of infinite height
(thus 2D assumption) immersed in air. Color shading denotes the field of the wave
propagating through this subwavelength lens.

holography is analyzed as a potential solution to the design of various PSFs by a

simple transformation of the hologram shape. For subwavelength structures, we focus

on the key realization of material inhomogeneity and anisotropy, in the contexts of

gradient–index optical elements and cloaking devices. Subwavelength thin–film slab

is analyzed in detail by introducing an all–analytical approach.

In Chapter 2, we present the design of a volume holographic filter system for the

detection of artificial satellites in daytime, by including a telephoto as an objective.

The parameters used in this system are optimized, including recording angle, size of

the VH, etc., to achieve the best signal–to–noise ratio (SNR) enhancement. Its perfor-

mance considering sunlight spectrum, optical aberrations and atmospheric turbulence

is investigated and discussed. A table–top experiment is performed to confirm this

design.

In Chapter 3, PSF design of volume holography systems using multiple point

indenters is presented in detail. Both forward and inverse problems are discussed. In

addition, we discuss the possible extension to a continuous force from multiple point
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indenters, and vice versa.

In Chapter 4, transformational volume holography is presented. For affine trans-

formation, an analytical solution for the resulting PSF is directly possible. However,

for non–affine transformation, it is not possible any more and we turn to an analytical

solution using the approximation of stationary phase method.

In Chapter 5, subwavelength elliptical rod lattices are discussed, which are used

as a cloaking device to accommodate non–photonic and photonic components, reduc-

ing the size of a nanophotonic device. Two types of non–photonic components are

accommodated: peripheral and internal.

In Chapter 6, in the context of GRIN lens, especially a subwavelength aperiodic

nanostructured Lüneburg lens, the effect of fabricated thin–film waveguide structure

has been evaluated. An all–analytical approach is presented and verified using rigor-

ous numerical solutions to include the wave guidance phenomenon.
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Chapter 2

Volume holographic filters for

mitigation of daytime sky

brightness in satellite detection

Observing solar–illuminated artificial satellites with ground–based telescopes in day-

time is challenging due to the usually bright sky background. The majority of the

background noise comes from sunlight Rayleigh–scattered by the atmosphere within

30 kilometers of the sensor [5, 41, 74]. The targets of interest, satellites, are a mini-

mum of 200 km from the sensor. Thus, to enhance the signal–to–noise ratio (SNR) of

satellite detection, our goal is to design a system which only images sources located

at least 200 km from the sensor, but eliminates the light from nearby atmospheric

scatterers. Volume hologram filters (VHF) provide the ability to selectively modify

incoming light based on the range to the source, which are good candidates for this

application. We built the mathematical models, optical models, and software neces-

sary to model the behavior of a system comprising a telescope, re–imaging optics, a

volume hologram filter, and a detector. In addition, we developed a candidate design

for a VHF to use for suppression of daylight sky background, and modeled its perfor-

mance as a functions of range to target, range to atmospheric scatterers, operating

wavelength and bandwidth, and key recording parameters [45, 53, 54]. Effects caused

by optical aberrations and atmospheric turbulence are also considered. A table–top
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scaled–down experiment has been performed to verify this design.

2.1 VHF system design

Our design of the VHF system is illustrated in Fig. 2-1. The signal beam is from

an object at the altitude of satellites, i.e. the sunlight reflected from the satellites,

and the reference beam is at an angle θs with respect to the signal beam. The

recorded hologram is then probed to produce an image. If the probe beam is from

the object at the same altitude, the hologram is Bragg–matched and provides the

maximum diffraction efficiency. Otherwise, for atmospheric scatterers, the beam after

the objective lens is no longer a plane wave and is Bragg mis–matched, resulting in

a reduction of diffraction intensity at the detector. In this way, the VHF provides

depth selectivity based on the distance of the probe source (longitudinal detuning),

and the intensity of the sky background is reduced.

Figure 2-1: VHF design architecture. As an example, this VHF is assumed to be used
for Iridium satellite detection. Inset: a typical diffraction efficiency plot with respect
to longitudinal defocus δ.

A theoretical equation for calculating the diffraction efficiency of a VHF at various

longitudinal defocus positions have been derived in [124]:

Id
I0

=
1

π

∫ 2π

0

dϕ

∫ 1

0

dρ ρ sinc2
(
aLθsδ

nλff 2
ρ sinϕ

)
, (2.1)

where a is the aperture radius, L is the thickness of the volume hologram, n is the
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refractive index of the hologram, λf is the recording wavelength, f is the focal length

of the front lens, and δ is the longitudinal defocus of the probe source along the

optical axis with respect to the position of recording signal source. The diffraction

efficiency has its peak value when no longitudinal defocus exists, i.e. in Bragg–

matched read–out. When the probe source point moves away from Bragg–matched

signal source position, read–out efficiency is reduced. From the above equation, we

could characterize the full–width at half–maximum (FWHM) of longitudinal defocus

as

∆zFWHM =
Gλf 2

aL
, (2.2)

where G is a certain constant. To better eliminate the daylight, its diffraction effi-

ciency should be minimized. This means that the defocus of daylight scatterers δ,

i.e. the distance between signal satellite and atmospheric scatters, should be at least

larger than ∆zFWHM. However, we noticed that ∆zFWHM increases proportional to

the square of lens focal length f . Since the satellites to be detected is at least 200 km

away from the first lens, the f 2 term results in a ∆zFWHM value much larger than the

longitudinal defocus (which is only comparable to f). In this way this simple VHF

system architecture will not function as expected.

2.2 Telephoto objective

In order for the VHF to function, we need to minimize ∆zFWHM by decreasing the lens

focal length f . However since the VHF has to be on the ground, and satellites have

fixed orbits, the imaging distance could only be “effectively” reduced. A telephoto

objective [15, 124] is a good candidate for this purpose.

A typical telephoto is comprised of two lenses, one positive and the other negative.

As can be seen from Fig. 2-2, telephoto effectively reduces the working distance from
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front focal length (FFL = f) to effective focal length (EFL), which satisfies

r

a
=

EFL

FFL
, (2.3)

where a is the aperture radius of the front lens, and r is the effective aperture radius,

as illustrated in Fig. 2-2. With such a telephoto as objective, the FWHM of the

longitudinal defocus becomes

∆zFWHM =
Gλ(EFL)2

rL
. (2.4)

Effectively ∆zFWHM has been reduced by a factor of EFL/FFL. For example, when

the focal lengths of these two lenses are chosen as 2.5 m and −2.5 mm, ∆zFWHM is

reduced to 1/1000 of its original value with only a single lens objective. Therefore,

longitudinal defocus of daylight scatterers can be larger than ∆zFWHM, effectively

mitigate the daylight noise on the detector.

Figure 2-2: (top) VHF system architecture using a telephoto as objective, and (bot-
tom) its effective configuration. PP1: first principal plane.
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2.3 Analysis methodology

To explicitly calculate the daylight rejection, three methods are used. The first one

is based on an analytical solution shown as in Eq. 2.1, which is similar to Equation

(40) of [124]. The second method uses MATLAB R⃝to calculate both the defocused

wavefronts and recording/probing of the volume hologram, while the third method

uses ZEMAX R⃝instead to calculate the wavefronts [140]. From now on, we refer

these three methods as “Analytical”, “MATLAB only”, and “MATLAB+ZEMAX”

method, respectively. It is obvious that “Analytical” method is the fastest but most

approximate, while “MATLAB+ZEMAX” method yields most accurate results but

is computationally most expensive.

In order to demonstrate that all three methods yield reasonable results, we first

applied them to a simple VHF system architecture with a single lens as objective,

which is similar to Fig. 17 of [124]. Results are shown in Fig. 2-3, where we used

the following parameters: λ = 488 nm, L = 1.0 mm, a = 1.5 mm, θs = 5o, and

f = 5.0 mm. It can be observed that all three methods yield similar results. The

discrepancy at large longitudinal defocus is mostly due to the finite size of detector

used and numerical errors.
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Figure 2-3: Comparison of three computational methods for a simple VHF system
architecture.
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2.4 Mitigation of daylight due to longitudinal de-

focus

Equipped with these three analysis methods, in this session we calculate the amount

of attenuation of daylight in the VHF system architecture for satellite detection with

telephoto objective. Without loss of generality, we aim at detecting Iridium satellites

which are located approximately at a height of 780 km. Again here we assume that

the majority of the daylight is scattered from atmosphere no higher than 30 km above

the ground [74].

Here all the parameters used in this VHF for Iridium satellite detection are listed as

follows: λ = 632.8 nm, L = 1.0 mm, a = 1.0 m, θs = 5o, f1 = 2.50 m, f2 = −2.5 mm,

FFL = 780 km, EFL = 780 m. The reason we chose these values is discussed later.

The reduction of daylight intensity is illustrated in Fig. 2-4, where we normalized

the diffraction efficiency to the Bragg–matched readout with a probe beam from

Iridium satellites. The results from two methods do not match but they both show

large attenuation. The noise level of daylight has been lowered to 0.17 of its original

value. The MATLAB+ZEMAX method even shows that 98% of the daylight has been

eliminated. Again the discrepancy is a result of finite detector size and numerical

errors.
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Figure 2-4: Diffraction efficiency of atmospheric scatterers for VHF system designed
for Iridium satellite detection, calculated used analytical method (left) and MAT-
LAB+ZEMAX method (right).

42



The same design architecture can be applied to the detection of other types of

artificial satellites located at different orbits. Here for illustration purpose we show

another case with Geosynchronous satellites whose orbit has a height of about 35,786

km, much larger than that of Iridium satellites. Diffraction efficiency results for

atmospheric scatterers are plotted in Fig. 2-5, where again a dominant attenuation

can be seen, and 98% of the noise has been eliminated. Therefore, our system can

potentially increase the SNR of satellite detection by dramatically reduce the intensity

of noise from daylight.
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Figure 2-5: Diffraction efficiency of atmospheric scatterers for Geosynchronous de-
tection VHF system architecture, calculated used analytical method (left) and MAT-
LAB+ZEMAX method (right).

2.5 Multispectral issue and performance analysis

Besides depth selectivity, volume holograms also perform wavelength selectivity, where

the diffraction efficiency decreases when the wavelength of probe beam is different to

the recording wavelength [11]. In our system, the hologram is recorded by a single

wavelength; however, the sunlight reflected from the satellites and the daylight are

both broadband, ranging at least from ultra-violet (UV) to infrared (IR). Among all

the probe wavelengths, only certain combinations of probe angles and wavelengths

are Bragg matched, resulting in reduced diffraction efficiency.
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To characterize the relationship between diffraction efficiency and probe wave-

length, we again use the three methods mentioned above, except that now we are

scanning through wavelength instead of longitudinal defocus, and the equation used

for analytical method should be derived as

Id
I0

=
1

π

∫ 2π

0

dϕ

∫ 1

0

dρ ρ sinc2
(
Lθs
nλf

[(
µ

2
− 1

2

)
θs

])
, (2.5)

where µ = λ/λf , the ratio between probe and recording wavelengths. Again we

applied these three approaches to a simple VHF system architecture in the previous

session and their results are in agreement. The multispectral performance of VHF

system architecture for Iridium satellite detection has also been calculated, with the

following parameters: λ = 632.8 nm, L = 1.0 mm, a = 1.0 m, θs = 12o, f1 = 2.5 m,

f2 = −2.5 mm, FFL = 780 km, EFL = 780 m. The FWHM of bandwidth around

the recording wavelength λf is only 0.03λf , which means that majority of probe

wavelengths are Bragg–mismatched thus the read–out efficiency of signal probe beam

is very low. Therefore, multispectral performance should be seriously considered in

our design in order to achieve a satisfactory performance.

To calculate the overall SNR enhancement of our VHF system, we need to calculate

first the diffraction efficiency of both signal (satellite) and noise (daylight) probe

beams. Here, without loss of generality, we assume that the detector has uniform

sensitivity and is only sensitive along the visible spectrum. In terms of detectors

with other sensitivity performance, the only modification we need is to multiply the

sensitivity function during all the integrations below.

The multispectral performance of the VHF system, qsatellite(λ), can be centered

at the working wavelength of 632.8 nm. The actual spectrum of satellite is similar

to the spectrum of sunlight since satellite directly reflects the light from the sun.

The sunlight spectrum is plotted in Fig. 2-6, which we denote as psun(λ). Daylight

spectrum calculated by MODTRAN is also plotted as a comparison. It can be clearly

seen that daylight has larger radiance around blue lights, confirming that the sky
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appears blue. The overall diffraction efficiency for signal (satellite) is calculated as

ηs =

∫
visible

qsatellite(λ) · psun(λ) dλ∫
visible

psun(λ) dλ
. (2.6)
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Figure 2-6: (a) Radiance of daylight scattering at different altitudes, (b) spectral
radiance of the sky background at ground level, and (c) solar spectral irradiance. All
figures are calculated using MODTRAN 4 [113] assuming 23 km ground visibility and
rural extinction haze model. The angle was 10 degrees east of zenith at 3:00 PM local
time on June 21 at 45 degrees latitude (mid–latitude summer atmospheric model).

Calculation of the efficiency of daylight noise is more complicated. First of all,

because daylight is defocused longitudinally, the multispectral performance is different

than un–defocused case. To illustrate this, we again have applied our three methods

to the case with λ = 632.8 nm, L = 1.0 mm, a = 1 m, θs = 5o, f1 = 2.5 m,

f2 = −2.5 mm, FFL = 780 km, and EFL = 780 m. It can be observed from Fig. 2-7

that the bandwidth is larger for larger longitudinal defocus. This figure also shows the

multispectral performance of our Iridium satellite VHF system. Interestingly, since

the longitudinal defocus for the daylight is so large, the daylight diffraction spectrum

is almost flat (and low). Therefore, it makes sense to think that the multispectral

issue of VH does not contribute to the daylight attenuation, leaving only longitudinal

defocus to consider.

Another interesting phenomenon to be considered is the non-uniform daylight

irradiance from scatterers at different altitudes, denoted as rdaylight(z). As illustrated

in Fig. 2-6(a), the irradiance decays exponentially for increasing scatterer altitudes,
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Figure 2-7: Multispectral performance of the VHF system for probe source at dif-
ferent altitudes, calculated using (a) analytical method and (b) MATLAB+ZEMAX
method.

where the contribution of scatterers higher than 30 km should be negligible. The

overall diffraction efficiency for noise (daylight) is then calculated as

ηn =

∫ 30km

0
qdaylight(z) · rdaylight(z) dz∫ 30km

0
rdaylight(z) dz

. (2.7)

To be more precise, we should remove the assumption of constant spectral perfor-

mance for noise; and the overall diffraction efficiency becomes

ηn =

∫ 30km

0

∫
visible

qdaylight(λ, z)pdaylight(λ)dλ · rdaylight(z) dz∫ 30km

0

∫
visible

pdaylight(λ)dλ · rdaylight(z) dz
. (2.8)

2.6 The SNR and design parameters

As has been discussed above, the multispectral bandwidth problem is perfectly fine

for daylight attenuation; however this also reduces the read–out efficiency of satellite

probe signal.

The SNR enhancement is the metric we use to characterize the performance of

the overall VHF system. Assuming that all other noises, such as electric noises, are
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negligible comparing with the daylight, without the VHF system, the SNR is

SNR(λ) =

√
λ

hc

Ssatellite
0 (λ)√
Ndaylight

0 (λ)
, (2.9)

where h is the Planck constant and c is the light velocity. With the VHF system,

the satellite probe signal and daylight noise have diffraction efficiency of ηs and ηn,

respectively. The daylight noise hitting the detector is generally modeled by Poisson

noise, whose standard deviations is a square–root of the expectation value. Therefore,

although the amount of noise photons has been reduced to ηn of its original value,

the noise level for detection purpose, after subtracting its expectation value, is only

reduced to
√
ηn. That is to say, with the VHF system, the new SNR becomes

SNR(λ) =

√
λ

hc

ηs√
ηn

Ssatellite
0 (λ)√
Ndaylight

0 (λ)
. (2.10)

Therefore, read–out efficiency of daylight noise ηn has to be larger than η2s in order

to make the VHF system perform at least better than the original system. In this

sense, the efficiency reduction of probe signal due to multispectral behavior of holo-

gram becomes unbearable. We thus need to design a VHF system with the largest

bandwidth possible.

The key design parameters for our system have been listed in Table 2.1, together

with their relationship to our two main performance considerations, daylight attenu-

ation and multispectral bandwidth. This relationship was derived from the analytical

equations shown above, and has also been verified with numerical calculations from

MATLAB only and MATLAB+ZEMAX methods.

It can be seen from Table 2.1 that two parameters, aperture radius and EFL, are

unrelated with the bandwidth. And the other four parameters have exactly opposite

influence on daylight attenuation and bandwidth. Therefore we need to find a balance

depending on our design requirements. Since for daylight attenuation we have two

more parameters to play with, we here first optimize the bandwidth. As have been
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Table 2.1: Requirements on design parameters for better system performance.

Design parameters More daylight attenuation Larger bandwidth
Aperture radius (a or r) larger unrelated
Hologram thickness (L) larger smaller
Recording angle (θs) larger smaller
Hologram refractive index (n) smaller larger
Wavelength (λf ) smaller larger
Effective focal length (EFL) smaller unrelated

discussed previously, signal probe beam read–out should be as large as possible, thus

we aim at a larger bandwidth.

(a) Wavelength and hologram refractive index

These two parameters are limited by the availability of laser sources and materi-

als, and thus are actually not free to adjust. The sky background light in daytime

is bluer than the solar spectrum reflected from satellites. In order to achieve bet-

ter daylight mitigation, the VHF should be operated at longer wavelengths. Thus,

we use red light with wavelength λ = 632.8 nm. As for the selection of hologram

material, the hologram should not be erasable at readout wavelength so here we use

phenanthrenquinone–doped poly(methylmethacrylate) (PQ–PMMA), a material that

is particularly sensitive to wavelengths between 450 nm and 500 nm [97, 115]. A two–

lambda approach can be used to record the hologram at 488 nm but actually designed

for readout at 632.8 nm [10, 96, 97]. At readout wavelength, the refractive index of

PQ–PMMA is 1.49.

(b) Aperture radius and EFL

These two parameters are unrelated to the multispectral performance to achieve

better daylight attenuation. From Table 2.1, a larger aperture radius and smaller

EFL are needed. Smaller EFL means a smaller r/a value since the FFL, i.e. altitude

of satellites, is fixed. Thus, considering practical implementation, we chose the follow-

ing parameters a = 1.0 m, r = 1.0 mm, f1 = 2.5 m, f2 = −2.5 mm, FFL = 780 km,

EFL = 780 m, where the working distance has been increased 1000 times without

deteriorating the depth selectivity.
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(c) Hologram thickness and recording angle

These two parameters should be optimized to achieve a large system SNR. Using

above equation derived, diffraction efficiency of signal and noise, as well as the overall

system SNR enhancement have been calculated with respect to different hologram

thickness and recording angle, illustrated in Fig. 2-8. Results show that θs should be

small enough for large SNR. On the other hand, it should be large enough for easy

system assembly. We here choose θs = 5o. At this recording angle, the largest overall

SNR is realized when hologram thickness is L = 0.5 mm. For this optimized system

architecture, ηs = 0.74, ηn = 0.11, and resulting overall system SNR enhancement is

2.2.

(a) (b) (c)

Figure 2-8: (a) Signal diffraction efficiency, (b) noise diffraction efficiency, and (c)
total system SNR enhancement with respect to hologram thicknesses and recording
angles.

The above SNR enhancement assumes that the detector is infinitely large. If we

assume that the size of the detector is 1 mm–by–1 mm, using MATLAB+ZEMAX

approach, we now have ηs = 0.74, ηn = 0.0097 and total SNR enhancement ηs/
√
ηn =

7.5. This value can be potentially increased by implementing multi–pixel cameras.

2.7 Discussion of multi–pixel cameras

All the above discussion assumes that the detector is a simple single–element power

meter, where only the readout intensity or power (i.e. a number) is measured. How-
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ever, an area detector with multiple pixels, such as a CCD, could be used to better

facilitate our judgment of whether a true signal or a false alarm has been detected,

and to estimate the distance to the satellite. The number of pixels used per detector is

based on many practical issues, such as size of CCD, average power hitting each pixel,

detector noise, etc. In this section, we discuss two advantages of using multi–pixel

cameras.

(a) Increased SNR

When the volume hologram is probed by a signal beam from a satellite, the majori-

ty of the irradiance covers several adjacent pixels (see bottom right plot of Fig. 2-9(b))

of the multi–pixel camera; when probed by daylight, the diffracted intensity is more

uniformly distributed on all the pixels. From fundamental statistics, the variance

of a sum of independent random variables is the sum of their individual variances.

Therefore, the noise variance of a measurement over a group of pixels increases ap-

proximately linearly with the number of pixels, and for each pixel, the individual

noise level should be divided by the number of pixels. In this application the signal

levels are high enough that CCD readout noise should always be negligible. There-

fore, for the measurement of small signal and background levels the SNR is assumed

to increase by the square root of the number of pixels. Thus the actual noise is much

reduced compared with a single power meter detector. In this way better SNR is

achieved.

(b) Estimating the distance to the target satellite

The VHF system is designed, without loss of generality, for detection of Iridium

satellites located in orbit with altitude of 780 km. The exact same system architecture

can also be used for detecting other satellites at other altitudes. The diffraction

efficiency with respect to satellites at different orbit heights has been plotted in Fig 2-

9(a). It can be observed that for satellites higher than Iridium, especially those in

medium earth orbit (MEO) and high earth orbit (HEO), the readout efficiency can be

more than 98%. However, for low earth orbit (LEO) satellites, the readout efficiency

is not satisfactory. But in these cases, multi–pixel cameras can help. Multi–pixel
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cameras produce an image of the defocused VHF readout rather than just a simple

readout intensity. Satellites from different orbits produce patterns with different sizes

and shapes. In Fig. 2-9(b), we have plotted the diffraction patterns for four different

satellite distances. From the different defocus images, the distance to the satellite

can be estimated, by template–matching, for example.

(a) (b)

Figure 2-9: (a) Diffraction efficiency for satellites at different altitudes, when the sys-
tem is solely designed for detection of Iridium satellites. Diffraction efficiency (Id/I0)
is normalized to the readout intensity when the hologram is probed by Iridium satel-
lites. (b) Turbulence–free point spread functions at multi–pixel cameras for satellites
at different orbit heights. From left to right, top to bottom: Sputnik-1 (215 km), In-
ternational Space Station (340 km), Hubble Space Telescope (595 km), and Iridium
(780 km). Color shading denotes the normalized intensity. Note that different axes
are used for these four pattern plots.

2.8 Field of view (FOV)

To detect artificial satellites over the entire sky, scanning is required. In this way,

concept of FOV is crucial. In this session FOV is discussed along two directions,

x and y. The VH is invariant along y direction thus degenerated [124]. That is to

say, no matter what the angle is for the probe beam, VH is always Bragg–matched.

Therefore the FOV is determined by the actual system architecture shown in Fig. 2-

10(a). This system will no longer work when the probe plane wave fails to hit either
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the second lens of telephoto or the VH. That is to say

αy
∼=

min(r2, rVH)

s
. (2.11)

Along x direction, another effect should be considered: angle detuning [124]. Angle

detuning is similar to longitudinal defocus, where a probe beam illuminating the VH

at different angles will no longer be Bragg–matched. For our VHF system architec-

ture, the diffraction efficiency for different probe angles with respect to the original

signal recording beam is illustrated in Fig. 2-10(b), where we observe a FWHM of

0.63 degrees. Therefore, along x direction, the FOV is determined by the smaller

value between FWHM/2 of the angle detuning and αx.
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Figure 2-10: (a) Illustration of FOV along y direction; (b) Angle detuning along x
direction.

2.9 Aberrations

There are five main types of optical aberrations: spherical, astigmatism, curvature

of field, distortion, and comma [15]. These aberrations are referred to as “Seidel” or

(synonymously) “3rd order.” There are other higher order aberrations which are not

important for the small numerical apertures we are dealing with here. The optical

phase profiles introduced by these different types of aberrations are shown in Fig. 2-

11. We could observe that spherical, astigmatism and curvature of field provide

“quadratic–like” phase changes, though not exact. Among them, both spherical and

curvature of field give circular phase profile while astigmatism gives phase changes
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only along one particular direction. On the other hand, distortion and coma introduce

“linear–like” phase changes.

Figure 2-11: Profiles of phase introduced by five main types of aberrations.

In order to demonstrate how each type of aberration affects the final system

performance, we first apply them to a simple VHF system architecture with a single

lens as objective, which is similar to Fig. 17 of [124]. The parameters are set as follows:

λ = 632 nm, L = 1.0 mm, a = 1.5 mm, f = 5.0 mm, n = 1.50, θs = 5o. Diffraction

efficiency at different longitudinal defocus for each type of aberration is show in Fig. 2-

12. It can be observed that for the first three aberrations the peak of curve shifts

to a different longitudinal position. This is because these three aberrations, as have

been mentioned above, introduce “quadratic–like” phase profiles which are similar to

a spherical wave. These phase profiles are able to partially “cancel out” the phase

profile of a spherical wave introduced by longitudinal defocus. Thus the peak shifts.

Also, this additional phase change cannot exactly match that of the spherical wave,

meaning that the introduction of aberration will not allow for the volume hologram

to be probed under a Bragg matched condition; thus the peak value of diffraction

efficient is lowered in all three cases. As for distortion and coma, the introduction

of “linear–like” phase profiles have no impact on the longitudinal defocus, except an

53



introduction of Bragg mismatch especially when defocus is zero. So the peak does

not move along different defocus positions, but the value of it decreases.

Figure 2-12: Diffraction efficiency at different longitudinal defocus for each type of
aberration. Red curves are cases without aberration and blue curves are with aber-
ration. The following values are used for the coefficient of each aberration: spherical
aberration B = 100, astigmatism C = 2 × 103, curvature of field D = 5 × 103,
distortion E = 1× 104, and comma F = 50.

Now we proceed to our VHF system. Again we assume that we are aiming at the

detection of Iridium satellites. The parameters used are the same as those in Fig. 2-7.

Two types of aberration are taken as examples here and the total system performance

is plotted Fig. 2-13. It can be observed that the diffraction efficiency of the noise is

mostly invariant with and without aberration; this matches our discussions above.

And the signal efficiency, i.e. Iridium satellites at 780 km for this case, is lowered.

Therefore, the overall SNR enhancement is reduced with the existence of aberration.

Note that for positive aberration coefficient, the peak value is not at 780 km but near

230 km. This is because the phase profile of the aberration partially cancels out the

phase introduced by the longitudinal defocus, as been illustrated in Fig. 2-12.

Overall, for our VHF system, aberration has a negative impact on the overall

system performance. The amount of reduction relies on the amount of aberration
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Figure 2-13: (Top) Diffraction efficiency of objects at various altitudes for our VHF
system considering spherical aberration (left) and astigmatism (right). Blue curves
are without aberration, red and black curves are with aberration of different signs.
(Bottom) Zoomed–in view of top row for objects with height below 30 km. Spher-
ical aberration coefficients are chosen as B = 10 and B = −10, and astigmatism
coefficients are chosen as C = 4× 102 and C = −4× 102.
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and its contribution to the signal’s diffraction efficiency. Aberration has little effect

on the diffraction efficiency of the daylight noise.

2.10 Atmospheric turbulence

Now we proceed to discuss a key factor in astronomy imaging–atmospheric turbulence,

and how it affects the overall performance of our VHF system for the detection of

artificial satellites. First, we need to model the atmospheric turbulence, which is in

fact a stochastic process of phase shift (phase mask).

Optical beams wander randomly due to atmospheric turbulence, causing fluc-

tuations in light intensity, resulting in a reduction of imaging quality. In principle,

atmospheric turbulence can be modeled with a constantly changing phase mask. And

like aberration, this phase change has some impact on the final system performance.

According to [19], the phase of atmospheric turbulence can be written in terms of

Zernike polynomials:

ϕ(ρ, θ) =
∞∑
n=0

n∑
m=0

Anm

√
2(n+ 1)Rm

n (ρ) cos(mθ), (2.12)

where Rm
n (ρ) is radial polynomial and Anm is certain coefficient. The polynomial

coefficients are random numbers which follow a normal distribution governed by Kol-

mogorov model. Different choices of coefficients result into different phase profiles.

An example is show in Fig. 2-14.

Figure 2-14: Typical Zernike polynomials. When they are weighted by certain coef-
ficients for each polynomial term, their summation gives the phase profile of atmos-
pheric turbulence.

One key parameter for modeling atmospheric turbulence is the turbulence co-
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herence length r0, or Fried’s scale parameter. Physically, it represents the effective

aperture diameter governed by the atmospheric turbulence. r0 can be expressed as

r0 = 1.68(C2
nLk)

−3/5, (2.13)

where L is the path length through the atmosphere turbulence, Cn is atmospheric

structure constant and k is wave vector. A physical imaging system has an aperture

size, or diameter of aperture D, governed by the physical architecture of the system.

In our system, the diameter of the aperture D = 2 mm, which is determined by the

physical size of the second lens of the telephoto. Note that here we assume the lateral

size of the volume hologram is larger than 2 mm. If not, the aperture size is governed

by the size of the volume hologram. If the physical diameter of aperture D is smaller

than the turbulence coherence length r0, the system’s resolution is determined by D;

otherwise, the resolution is determined by r0. By some calculation, the FWHM of

long exposure averaging atmospheric point spread function (PSF), or “seeing”, is

FWHM =
0.98λ

r0
. (2.14)

In radians (arc seconds), FWHM can be expressed as

FWHM =
202140λ

r0
(arc seconds). (2.15)

Normally, at high altitudes with clear sky, FWHM of seeing is on the order of 1 arc

second, which corresponds to r0 = 0.1268 m. This is much larger than our aperture

diameter of D = 2 mm. Therefore, the resolution of our system is mainly determined

by the diameter of aperture. To put it in another way, when D/r0 = 1, FWHM of

seeing is 63.5 arc seconds; this corresponds to a very large atmospheric turbulence for

astronomy.

As examples, phase profiles and point spread functions (PSFs) at various astro-

nomical seeings are plotted in Fig. 2-15 and Fig. 2-16. We notice that even when

D/r0 = 1, the PSF is still a good dot; and the PSF only spreads out and becomes
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irregular when D > r0. This again confirms that in normal seeing condition, atmos-

pheric turbulence has negligible effect on the VHF system.

Figure 2-15: Examples of phase profiles for atmospheric turbulence at different values
of FWHM of astronomical seeings.

We again incorporate the phase profile of atmospheric turbulence into our VHF

system, and the diffraction efficiency for objects at different altitudes is plotted in

Fig. 2-17. The parameters used for our VHF system are the same as those in Fig. 2-

13. We notice that the diffraction efficiency of Iridium satellites keeps constant when

D/r0 ≤ 1. The efficiency only decreases when the turbulence is very large. As for

daylight scatterers, atmospheric turbulence has no significant influence, no matter

how large the turbulence is. This makes sense and can be compared with the cases

discussed in the above session regarding aberrations. For daylight scatterers, the

Bragg mismatch is so large that adding additional phase change does not contribute.

From all discussions above, we can conclude that in our current design, we do not

need to consider the influence of atmospheric turbulence; however, if the physical

aperture increases, turbulence should be taken into account.
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Figure 2-16: Examples of point spread functions at the detector when probed by signal
beams without defocus, for atmospheric turbulence at different values of FWHM of
astronomical seeings.
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Figure 2-17: Diffraction efficiency of objects at various altitudes for our VHF system
considering atmospheric turbulence at different values of astronomical seeings. Left
figure shows the entire range from 0 to 780 km, right figure is a zoomed–in at the
altitudes of atmospheric scatterers from 0 to 30 km.
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2.11 Experiment

To verify that our VHF system design is able to eliminate the daylight scattering and

enhance the SNR in the detection of artificial satellites, we aim at designing a model

system in the lab. Note that since our actual target (satellites) and scattering noises

(atmosphere scatterers) are far away from the VHF, this system has to be “scaled

down” in order to fit in the size limitation of our lab. In this way, a new design to

mimic our previous design is necessary.

2.11.1 Experimental geometry

Figure 2-18: Scale down experimental geometry. BS: Beamsplitter, L1: Positive lens,
L2: Negative lens, VH: volume hologram, TL: Tube lens.

A scale down design used for lab experiment is shown in Fig. 2-18. We use an

object illuminated by either a laser (single wavelength) or an LED (broad band) to

model the artificial satellite. The distance between the object and the first lens of our

imaging system is 5 meters, reduced from hundreds of kilometers for a satellite, to

fit in our lab; but 5 meters is still assumed to be a large enough distance for a good

model. Besides, background source illuminates from 1 meter away and combines with

the signal light using a beam splitter. Since the distance ratio between the object

and scatterers has been decreased during the down scaling, the telephoto design can

be loosened in order to use simple lab optical lenses. We have scaled the ratio of the

focal lengths of the first and second lenses from the original 1000, which is impossible

to achieve in the lab, to 10. Nevertheless, larger ratio is always desired. Therefore, we
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chose the focal length of the second lens to be as small as possible, -25 mm. And the

focal length of the first lens should be long enough, but still commercially available.

We chose 250 mm. As for the aperture sizes of these two lenses, the first lens sets

the limit. For a positive lens with focal length of 250 mm, commercially available

diameters are mostly 2 inches, with a possibility to 3 inches. We chose 2 inches to

be safe. The diameter of the second lens is not a problem as long as it is larger than

1/10 of 2 inches, i.e. 0.2 inches, which is easy to satisfy. The distance between two

lenses is 238 mm.

The hologram we use here is made of PQ–PMMA, and pre–recorded by two plane

waves at an angle of 34o. The imaging part after the telephoto is a standard VH

imaging experimental geometry with a volume hologram, a tube lens, and a camera

(Camera 1). In order to compare with the conventional imaging system case without

the VHF, we integrated another optical path in this experimental geometry. When

the hologram is removed, the undiffracted light enters directly through the tube lens

into Camera 2. This part is our “control group”.

2.11.2 Result: Case I

From now on, for easy discussion, we refer the optical source used to mimic the satellite

as “satellite”, and the one used to mimic atmospheric scatterers as “daylight”.

In our first experimental case, we use both lasers as point sources for satellite and

daylight, operating at wavelength λ = 488 nm. They are of equal output power. For

the conventional system, we measured the power at the detector from each source in-

dependently; and this procedure is repeated for the VHF system. We then calculated

the ratio of satellite power over daylight power for both systems. For conventional

system, is ratio is merely 0.0836, because satellite is located 5 times further away

then the daylight; given the same source power, light from satellite travels longer and

spreads wider. However, for our VHF system, the power ratio is 139, significantly

larger than 0.0836. It is clear that daylight has been attenuated to minimal value as

a result of Bragg–mismatch.
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2.11.3 Result: Case II

For the second experiment, we changed the daylight from a laser into a diffuser

illuminated with an LED source (Thorlab LED4D201), which is broad band ranging

from 430 nm to 650 nm. Under the illumination from both satellite and daylight,

images were taken and shown in Fig. 2-19.
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Figure 2-19: (Left) Images from the conventional system (top, Camera 1) and the
VHF system (bottom, Camera 2), with illumination from both satellite (monochro-
matic) and daylight (broadband). (Right) Line profile across the signal spot for both
images.

It is clearly observed that for conventional system, the daylight is so high that

the signal has been washed out and buried. It is impossible to tell from Fig. 2-19(a)

whether a signal exists or where it is. However, for our VHF system, daylight noises
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have been significantly attenuated, leaving only the clear signal spot.

2.11.4 Result: Case III

In practice, both satellites and daylight are broadband. Therefore, in our third case,

we used a USAF resolution target illuminated by a green LED (Thorlab LED4D201)

as our satellite source, and a diffuser illuminated with a lamp as our daylight noise.

We took images at the detector, and calculated the contrast ratio of targets of different

feature sizes. Results are illustrated in Fig. 2-20. The added daylight deteriorates

the imaging quality of the conventional system, making the patterns indecipherable.

For our VHF system, the contrast ratio also decreases, but definitely less severely

as the conventional system. It is clear from this experiment that the VHF system

attenuates the daylight and enhances the overall SNR (see Fig. 2-20(c), where the

rate of contrast decrease is plotted). This is also confirmed by camera images shown

as examples in Fig. 2-20(d). The line width of the target pattern shown is 500 µm.

2.12 Conclusion

In this Chapter, we present volume hologram filter designs to mitigate the daytime

sky background noise in artificial satellites’ detection and imaging, by utilizing the

longitudinal depth selectivity of volume holograms. We use a telephoto objective to

enhance the working distance, adapting this system for observing objects at distances

on the order of hundreds of kilometers. Key design parameters have been optimized,

with larger daylight attenuation and wider spectral bandwidth. A scale down lab

experiment is also implemented as a proof of this design.
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Figure 2-20: (a) Contrast ratio comparison of the conventional and VHF systems with
only satellite. (b) Contrast ratio comparison of the conventional and VHF system
with both satellite and daylight. (c) Rate of contrast decrease after introducing
daylight. (d) Images at detectors for the conventional (i) and VHF (ii) system with
only satellite, as well as the conventional (iii) and VHF (iv) system with both satellite
and daylight.
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Chapter 3

Design of volume holographic point

spread functions using point

deformations

Depth selectivity of 3D volume holographic pupils has been widely used in many

applications. Besides this, volume holograms are also good candidates for imple-

menting various point spread functions (PSFs) for different imaging purposes, due

to their three–dimensional nature. The design of PSFs, often referred to as “PSF

engineering” or pupil engineering, is one of the cornerstones of optical engineering.

However, in most optical systems the pupil functions are limited in two dimensions;

the designs are either deliberately shift–invariant or any desired shift invariance is lim-

ited by the available pupil functions. Volume holograms, on the other hand, are thick

holograms where the thickness along optical axis is important and non–negligible.

VHs are inherently strongly shift variant [8, 102, 129] and, thus, afford richer oppor-

tunities; we refer to it as “3D pupil engineering” because of the volumetric nature of

the holographic pupils.

However, for most volume holograms, their structure, i.e. refractive index distri-

bution, is still quite regular and its 3D nature is not well exploited. In this chapter, we

discuss the particular case of adding one more degree of freedom in 3D pupil engineer-

ing by mechanically deforming a volume holographic pupil. This can be accomplished,
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for example, by a superposition of point indenters at the hologram exterior. Simple

forward analysis of such a problem has been discussed for the first time in [134] as a

means to characterize the 3D deformation in the optical material’s interior as result

of the indentation. Here, we first extend this forward problem with multiple point

indenters [44]; this offers more flexibility to the design of PSFs. Then we focus on

the “inverse problem”, where multiple point deformations, or even continuous forces

are designed to achieve the desired shift–variant PSF [46].

3.1 From single to multiple point deformations

A single point load on one side of the hologram is able to change the resulting PSF.

This has been discussed in [134] using a perturbation approach. Here we start from

this single indenter case and propose a general approach to analyze this system and

calculate the PSF given a combination of point indenters. This is the “forward prob-

lem”.

Without loss of generality, we choose a Fourier geometry volume holographic

imaging (VHI) setup shown in Fig. 3-1(a). The volume hologram is recorded by

two plane waves (signal and reference beams), resulting in a dielectric modulation

of ∆ϵ(r) = ϵ1 exp(iKg · r), where ϵ1 is the amplitude of the spatial modulation, and

Kg = ks − kf is the Bragg wave vector of the grating. The hologram is then illumi-

nated by a probe beam Ep(r). The diffracted field at the detector plane becomes [134]

Ed(r
′′) =

∫∫∫
Ep(r)∆ϵ(r)V (r) exp

(
− i

2π

λ

xx′′ + yy′′

f

)
· exp

[
− i

2π

λ

(
1− x′′2 + y′′2

2f 2

)
z

]
d3r, (3.1)

where V (r) is the hologram shape function which has value 1 inside the lens and 0

outside, and f is the focal length of the Fourier lens. For coordinate systems, we use

x, y, and z to denote the axes at the hologram, and x′′, y′′, and z′′ to denote the axes

at the detector. Eq. 3.1 is the 3D Fourier transform of Ep(r)∆ϵ(r)V (r) at spatial
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frequency

x′′

λf
,
y′′

λf
,
1

λ

[
1− x′′2 + y′′2

2f 2

]
. (3.2)

From Eq. 3.1 it is obvious that this imaging system is not shift–invariant. This

property provides an extra way of controlling the impulse response [124]. However,

this 3D VHI system does not provide fully three degrees of design freedom because

the PSF is a 2D manifold in the 3D Fourier space of the volume hologram [6].
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Figure 3-1: (a) Fourier geometry of reflection volume hologram. (b) PSF of geometry
(a) with and without the point load.

It has been demonstrated [134] that a single point indenter, as a perturbation, can

change the spatial material distribution ∆ϵ(r). When a point load of force F is exerted

along the z direction vertically to the hologram surface, the elastic displacement inside

the volume hologram is given by [79]

ux =
F

4πG

[
xz

ρ3
− (1− 2ν)

x

ρ(ρ+ z)

]
, (3.3)

uy =
F

4πG

[
yz

ρ3
− (1− 2ν)

y

ρ(ρ+ z)

]
, (3.4)

uz =
F

4πG

[
z2

ρ3
+

2(1− ν)

ρ

]
, (3.5)

where ρ =
√

x2 + y2 + z2 is the distance to the loading position, G is the shear

modulus and ν is the Poisson ratio. From the equation above it can be seen that

instead of a constant Kg throughout the hologram, the grating wave vector now
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becomes a function of position in the volume hologram axis Kg = Kg(r), modifying

the PSF at the image plane. The position dependence of grating wave vector offers

rich opportunities to achieve a wealth of different PSFs.

(a) (b)

Figure 3-2: (a) Imaging system geometry utilizing a reflection volume hologram. (b)
Illustration of VH deformations with multiple point indenters.

Generalizing from the single point load case, it is straightforward to use multiple

point indenters at different positions, each exerting a different force, to obtain more

variety on Kg(r). Fig. 3-2 shows how these point indenters are exerted on the holo-

gram and how this hologram is deformed accordingly. If one indenter tip is mounted

at position xi, the correspondent material displacement is ui[δ(x − xi), Fi], where u

is the elastic shift {ux, uy, uz} specified in Eq. 3.5, F is the force, and δ denotes the

point indenter. For N such point loads at different positions, the total displacement

can be written as

N∑
i=1

ui[δ(x− xi), Fi]. (3.6)

Here we assume that every point deformation is small enough that it can be thought

as an independent perturbation and the superposition principle applies. Therefore,

the relationship between point deformations and the resulting PSF becomes

Ed(r
′′) =

∫∫∫
Ep(r)∆ϵ

(
r−

N∑
i=1

ui[δ(x− xi), Fi]

)
V (r)

· exp
(
− i

2π

λ

xx′′ + yy′′

f

)
exp

[
− i

2π

λ

(
1− x′′2 + y′′2

2f 2

)
z

]
d3r. (3.7)

68



The advantage of using multiple point indenters is that now the pattern (or di-

electric distribution) of the volume hologram can be much more irregular than the

undeformed case, providing more flexibility for designing PSFs. More specifically, we

now have three design freedoms: number of point indenters N , force of each indenter

Fi, and the position of each indenter xi. For a specific desired PSF, the expression

above allows us to determine the corresponding N , Fi, and xi. This can be done, for

example, by decomposing the desired PSF into fundamental modes, each created by

a single point indenter. It is also beneficial to first create a PSF look–up table for

all the possible single point indenter, i.e. Fi and xi, then determine which ones to

select in order to create a certain PSF. In this way we are also able to judge whether

a certain PSF is achievable or not by multiple point deformations. An optimization

method for this “inverse problem” will be discussed later.

3.2 Continuous force

The way we analyze multiple point deformations also potentially applies to continuous

forces exerted on the hologram. A continuous force F (x) can be approximated in

terms of multiple point indenters as F (x) =
∑N

i=1 F (xi)δ(x−xi), provided that these

discrete loads are close enough to each other. As illustrated in Fig. 3-3, for close–

enough point loads (blue spikes), they could be approximated by a continuous force

(red curve). Alternatively, a continuous force can be mimicked by discrete point

loads as well. Therefore we are able to analyze or determine continuous forces with

the same procedure.

Figure 3-3: Approximation of a continuous force using discrete point indenters, or
vice versa.
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3.3 Multiple point deformations: examples

To illustrate this forward analysis problem, we designed several PSFs using multiple

point indenters. Our setup is the same as Fig. 3-1(a). This is a reflective volume

hologram Fourier geometry with indenter tips at the left surface of the hologram. We

choose a rectangular volume hologram of size 6.0mm× 6.0mm× 1.5mm, recorded by

two plane waves with angles θs = 8◦ and θf = 172◦ for signal and reference beams,

respectively. The free space wavelength is 632 nm. Shear modulus and Poisson ratio

are chosen as G = 44 GPa and ν = 0.22 which are for the Ondax material as used

in [134].

Fig. 3-4 illustrates three designed VHI PSFs: (a) a single peak, shifted with respect

to the undeformed position; (b) a double peak response; (c) a five peak response. The

determined point loads exerted on the volume hologram to realize these PSFs are

also shown. It is observed that different PSFs are related to different grating wave

vector Kg(r) distributions and different amounts of shift variance, while combinations

of point loads result into the desired Kg(r). For example, two asymmetric point

loads in Fig. 3-4(d) create a tilted fringe pattern which changes the undeformed

Kg into a tilted K′
g. As a result, the main lobe is shifted to a new Bragg matched

position in the detector plane. The third row of Fig. 3-4 illustrates the angle detuning

Bragg mismatched PSFs. It can be clearly seen that for different probe beam angles

(horizontal axis), the PSFs (vertical slices) are different. This confirms that VHI

system is indeed shift–variant. Note that Fig. 3-4(f) contains equally– and closely–

spaced point indenters, which can also be approximated as a continuous point load

F (x).

3.4 Inverse problem: optimization

Above we discussed the “forward problem”, i.e. given the combination of point in-

denters, how to analyze and calculate the resulting PSF. In this section we aim to

find a combination of point deformations or continuous force which result into a de-
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Figure 3-4: (a)(b)(c) Three different kinds of desired PSFs normalized to the peak
intensity of the PSF without deformation at Bragg matched probe beam θp = 172◦.
(d)(e)(f) Combination of point loads to achieve the above PSFs, and the correspond-
ing fringe patterns. Red dashed lines and blue solid lines denote the pattern before
and after the deformation, respectively. (g)(h)(i) Angle detuning Bragg mismatched
PSFs. The brightness plotted is the normalized intensity.
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sired PSF. More generally, for a forward problem, we are given the illumination on

a certain optical system and are required to calculate the output of the system. For

an inverse problem, the illumination and the output field or intensity are provided

and we are required to design the optical system. With respect to optical imaging,

the design of PSFs requires the design of an optical system (here it is a combination

of point indenters to deform the volume holographic pupil) given a point source as

input and a desired output.

We use the same Fourier geometry volume holographic imaging setup as illustrated

in Fig. 3-1(a). The diffracted field at the detector has been expressed in Eq. 3.7. It

is not straight–forward to solve for Fi to realize the desired PSF. Here we propose to

use nonlinear least squares method to locate the best point indenter combination, by

minimizing the error between our desired PSF and the PSF achieved by Fi, i.e.

∣∣∣|Edesired(r
′′)|2 − |Ed(r

′′)|2
∣∣∣. (3.8)

If we only consider a two–dimensional system along x–z plane, the error function to

minimize can be expressed as:

M∑
j=1

∣∣∣|Edesired(x
′′
j )|2 − |Ed(x

′′
j )|2

∣∣∣. (3.9)

where the CCD plane has been discretized into M points: x′′
j . This problem can be

easily generalized to three–dimensional.

Note that the method of nonlinear least squares only finds local minima and is

very sensitive to the initial condition. Certain global search methods can be used to

find a global minimum. In order to quickly find the desired solution, we could utilize

the PSF look–up table for different single point indenters, i.e. Fi and δ(x − xi),

mentioned in Section 3.1, to first roughly select a reasonable initial combination of

indenters. Nonlinear least squares can then be applied to realize the PSF in need.
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3.5 Inverse problem: examples

In this section we discuss some optimization examples for the design of various PSFs.

Without loss of generality, the same set of system parameters as the one in Section 3.3,

including hologram size and material, is considered here.

Fig. 3-5 illustrates the optimized design to achieve a shifted PSF. This example

should be compared with the case of first column of Fig. 3-4. A similar set of forces

has been calculated.
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Figure 3-5: (Left) Designed PSFs, (middle) combinations of point loads, and (right)
the corresponding fringe patterns for a shifted PSF. For fringe pattern plots, red
dashed lines and blue solid lines denote the pattern before and after the deformation,
respectively.

Fig. 3-6 demonstrates the optimized results for realizing “box”–shaped PSFs with

different widths. We notice that “Gibbs phenomenon” appears in the optimized

rectangular PSFs, because a perfect “box” PSF is not achievable. Starting from

different initial guesses, different PSFs can be realized (see the top two rows of Fig. 3-

6). The target PSF–the red dashed “box”–is the same but the optimized results

are quite different. The top result has more oscillations in the passband, but has a

narrower “roll–off” zone; on the contrary, the middle result has almost flat passband

but definitely a wider “roll–off”. This shows that there is always a balance between

these two factors. The choice of which depends on the the requirements of certain

optical systems.

Fig. 3-7 shows two optimized results for realizing narrower mainlobe and sup-

pressed sidelobes, respectively. From the first row, narrowing the mainlobe boosts up

the sidelobes; and from the second row, the suppression of sidelobes has to widen the

mainlobe. This is another trade–off: between mainlobe width and sidelobe strengths.
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Figure 3-6: (Left) Designed PSFs, (middle) combinations of point loads, and (right)
the corresponding fringe patterns for: (from top to bottom) wide rectangular PSF
(Case I), wide rectangular PSF (Case II), narrow rectangular PSF. For fringe pattern
plots, red dashed lines and blue solid lines denote the pattern before and after the
deformation, respectively.
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Suppression of both of them is not possible, and the choice of which depends on

the system requirements. These PSFs can be potentially applied to various imaging

applications which require, for example, super–resolution or reduced crosstalk. Note

that these closely–spaced point indenters can also be approximated as a continuous

point load F (x).
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Figure 3-7: (Left) Designed PSFs, (middle) combinations of point loads, and (right)
the corresponding fringe patterns for (top) PSF with narrowed main lobe, and (bot-
tom) PSF with suppressed side lobes. For fringe pattern plots, red dashed lines and
blue solid lines denote the pattern before and after the deformation, respectively.

3.6 Conclusion

We have demonstrated how to design VHI PSFs using multiple point indenters. Both

forward and inverse problems have been explored. The best combination of point

indenters could be located using optimization. It should be noted that not all PSFs

are achievable by multiple point deformations. Nevertheless, there are also more

mechanical deformations besides point load. A more general and sophisticated VHI

inverse problem might involve a combination of multiple point deformations, linear

deformations, shearing, bending, twisting, etc. These bulk transformations will be

discussed in the following chapter.
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Chapter 4

Transformational volume

holography

In the previous chapter we have investigated the exterior deformations of the VH

pupils using a superposition of point indenters. However, not all PSFs are achievable

by multiple point indenters. Here we propose bulk mechanical deformations besides

point load, including compression, shearing, bending, twisting, etc. These deforma-

tions offer more general and sophisticated PSF designs for various microscopic imaging

applications. Through transformation, the system performance can be tuned to fit

more design criteria such as spectral composition of the PSF, anisotropic behavior,

etc. This general approach is called transformational volume holography. It allows

for in vivo adjustment of an optical system, e.g. a microscope, for different imaging

purposes. One can simply change the mechanical deformations applied on the VHs

to achieve various PSFs, without having to replace the pupils.

Numerically, it is straightforward to compute the final PSF given a certain type of

transformation. However, these computations require 3D integrations; and normally

the corresponding integrands are highly oscillatory and, hence, excessive sampling is

required, especially in 3D. This poses unattainable demands on extensive CPU and

memory cost. Furthermore, a physically intuitive relationship between the transfor-

mation of the VH pupils and the resulting PSFs is lost. In this chapter, we focus on

finding quasi–analytical expressions for calculating the PSFs, since analytical equa-
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tions are always much easier to compute, and give better physical intuitions.

4.1 Volume holographic imaging systems

In this chapter, without loss of generality, we use a transmissive geometry of volume

holographic imaging system discussed in Chapter 1. The hologram is recorded by

two plane waves at opposite angles. After recording, it is probed by another plane

wave which is exactly the same as the reference beam used for recording. In this case

the hologram is perfectly Bragg–matched and the final optical field collected by the

detector can be calculated as (see also Eq. 1.7)

q(x′) =

∫∫
Ep(x

′′, z′′)ϵ(x′′, z′′)s(x′′, z′′) exp

(
− i2π

x′x′′

λf2

)
· exp

[
− i2π

(
1− x′2

2f 2
2

)
z′′

λ

]
dx′′dz′′. (4.1)

We are able to analytically perform the integral and the final result is

q(x′) = Lx · L · sinc
[
Lx

λ

(
xs

f1
+

x′

f2

)]
sinc

[
L

2λ

(
x2
s

f 2
1

− x′2

f 2
2

)]
. (4.2)

It is composed of two “sinc” terms. Physically, the first sinc term corresponds to the

finite lateral aperture of the hologram, and the second sinc term is a result of the

non–negligible thickness of the hologram. The second term only appears when the

pupil’s thickness should be considered.

More generally, Eq. 4.1 can be written as

q(x′, y′) =

∫∫∫
Ep(x

′′)ϵ(x′′)s(x′′) exp

[
− i2π

(
x′

f2
,
y′

f2
, 1− x′2 + y′2

2f 2
2

)
· x′′

]
dx′′, (4.3)

where we denote (x′′, y′′, z′′) as a vector x′′, including the previously neglected y

component. It is actually a 3D Fourier transform [8].
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4.2 Transformation analysis

Bulk mechanical deformations apply transformations on the VH, and the coordinates

are changed accordingly [86, 108]. Originally the coordinates centered at the hologram

are (x′′, y′′, z′′). After the deformations, the axes become

x′′
(2) = fx′′

(2)
(x′′, y′′, z′′),

y′′(2) = fy′′
(2)
(x′′, y′′, z′′), (4.4)

z′′(2) = fz′′
(2)
(x′′, y′′, z′′).

This corresponds to a transformation matrix of

T =


∂fx(2)
∂x

∂fx(2)
∂y

∂fx(2)
∂z

∂fy(2)
∂x

∂fy(2)
∂y

∂fy(2)
∂z

∂fz(2)
∂x

∂fz(2)
∂y

∂fz(2)
∂z

 . (4.5)

There are two approaches to include this coordinate transformation in the VH

analysis. The first method, as shown in Fig. 4-1(a), uses the coordinates after the

transformation for integration. That is to say, the coordinates used for probe beam

and the Fourier transform should be transformed. In addition, the area (or volume)

of each integration grid changes (see Fig. 4-1(a)). Therefore, as a compensation, the

Jacobian of the transformation matrix should be applied on dx′′, since mathemati-

cally, the Jacobian denotes the scaling of grid area (or volume). Using x′′
(2) = T · x′′,

this approach yields

q(x′, y′) =

∫∫∫
Ep(T · x′′)ϵ(x′′)s(x′′)

· exp
[
− i2π

(
x′

f2
,
y′

f2
, 1− x′2 + y′2

2f 2
2

)
· (T · x′′)

]
|T|dx′′. (4.6)

The second method is the opposite of the first one. It utilizes the same coordinates

without transformation for integration (see Fig. 4-1(b)). The coordinates of per-

mittivity distributions and hologram shape functions should be mapped back to the
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original coordinates (x′′, y′′, z′′) through

x′′ = f−1
x′′ (x

′′
(2), y

′′
(2), z

′′
(2)),

y′′ = f−1
y′′ (x

′′
(2), y

′′
(2), z

′′
(2)), (4.7)

z′′ = f−1
z′′ (x

′′
(2), y

′′
(2), z

′′
(2)).

And due to the change of hologram shape function, the integration boundaries should

be modified accordingly. In total, the integral now becomes

q(x′, y′) =

∫
x′′
(2)

∫
y′′
(2)

∫
z′′
(2)

Ep(x
′′
(2))ϵ(x

′′)s(x′′)

· exp
[
− i2π

(
x′

f2
,
y′

f2
, 1− x′2 + y′2

2f 2
2

)
· (x′′

(2))

]
dx′′

(2). (4.8)

(a) (b)

Figure 4-1: Two analysis approaches for including bulk transformations in volume
holographic imaging systems. For each case, left and right figures show coordinates
used for calculating the integrals without and with the transformation, respectively.

Numerically these two methods do not make much difference. However, since

in this chapter we aim at locating analytical solutions, we prefer the first approach

because the complication of integral limits in the second method makes it a difficult
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job to find an analytical solution.

Note that we assume all transformations are small enough so that only material

(permittivity or refractive index) re–distribution is considered. For large transfor-

mations, anisotropy [108] becomes non–negligible and should be included. Howev-

er, in transformational volume holography, small transformation assumption suffices

because most large transformations result into significant Bragg–mismatch with the

incoming probe beam so that the diffracted field becomes minimal; this is not suitable

for imaging applications.

4.3 Affine transformations

We first discuss some common affine transformations where exact analytical solutions

are possible. Note that in this section, all transformations, as well as the VH itself,

are assumed to be invariant along y′′ axis thus we only calculate along x′′–z′′ plane.

Without loss of generality, for all the examples and discussions below, the following

parameters are used for the volume holographic imaging system: wavelength λ =

632 nm, angle of signal beam θs = −8o, angle of reference beam θf = 8o and size of

hologram Lx = 3 mm, L = 0.3 mm.

4.3.1 Hologram shrinkage

First we consider uniform hologram shrinkage [9, 43, 70, 139], and assume that the

shrinkage occurs only along z′′ axis (see Fig. 4-2(a)). The transformation can be

expressed as

x′′
(2) = x′′,

z′′(2) = (1− δ)z′′, (4.9)
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where δ is the compression ratio. The corresponding transformation matrix is

T =

 1 0

0 1− δ

 , (4.10)

with |T| = 1 − δ. Substitute Eq. 4.10 into Eq. 4.6 and we can derive an analytical

equation for the final field to be

q(x′) = Lx · (1− δ)L · sinc
[
Lx

λ

(
xs

f1
+

x′

f2

)]
sinc

[
L

2λ

(
x2
s

f 2
1

− x′2

f 2
2

)]
. (4.11)

This result matches with the results presented in [134] using a perturbation theory

approach. Note that interestingly the resulting PSF is simply a reduction of intensity

comparing with the undeformed case. This makes sense since shrinkage along z′′

does not change the grating vector of the hologram, which is along x′′ direction. The

hologram is still perfectly Bragg–matched. The lowered intensity is due to the reduced

hologram area as a result of shrinkage. An example of final PSF is demonstrated in

Fig. 4-2(b), which is a scaled sinc function. Note that we are plotting the intensity,

which is proportional to |q(x′)|2.

We then consider hologram shrinkage only along x′′ axis (see Fig. 4-2(c)). Similar

to the previous case, now the transformation matrix becomes

T =

 1− δ 0

0 1

 , (4.12)

with |T| = 1− δ. The final analytical equation of the output field is

q(x′) = (1− δ)Lx · L · sinc
[
Lx

λ

(
(1 + δ)xs

f1
+

(1− δ)x′

f2

)]
sinc

[
L

2λ

(
x2
s

f 2
1

− x′2

f 2
2

)]
.(4.13)

In this case the hologram is no longer Bragg–matched. The shrinkage does not contri-

bution to the second “sinc” term because hologram thickness is unchanged. Shrinkage

along x′′ changes the lateral size as well as the grating vector of the hologram, thus δ

shows up in the first “sinc” term. An example of the resulting PSF is shown in Fig. 4-
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2(d). The mainlobe is shifted, because the shrinkage increases the grating vector of

the hologram along x′′ so that in order to make the best Bragg match, the diffracted

beam should be at a different angle.
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Figure 4-2: (Left) Shrinkage of the VH along (a) z′′ and (c) x′′ directions. (Right) The
resulting PSFs when the compression ratio (b) δ = 0.1 & (d) δ = 0.02, respectively.

4.3.2 Compression

We consider compression along z′′ axis, which tends to extend the hologram along x′′

axis. The transformation matrix is

T =

 1 + νδ 0

0 1− δ

 , (4.14)
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with |T| = (1− δ)(1 + νδ), where ν is the Poisson’s ratio. The calculated analytical

equation of the resulting field is

q(x′) = (1 + νδ)Lx · (1− δ)L

·sinc
[
Lx

λ

(
(1− νδ)xs

f1
+

(1 + νδ)x′

f2

)]
sinc

[
L

2λ

(
x2
s

f 2
1

− x′2

f 2
2

)]
. (4.15)

This clearly confirms that compression is a combined case of hologram shrinkages

discussed above.

4.3.3 Rotation

Rotation is another type of affine transformation. Assuming that the hologram has

been rotated counter–clockwise by θ (see Fig. 4-3(a)), the coordinate transformation

can be written as

x′′
(2) = x′′ cos θ + z′′ sin θ,

z′′(2) = −x′′ sin θ + z′′ cos θ. (4.16)

This corresponds to a transformation matrix of

T =

 cos θ sin θ

− sin θ cos θ

 , (4.17)

with |T| = 1. This result makes sense because rotation does not induce any area

change. Substitute into Eq. 4.6 and we will have the resulting PSF to be

q(x′) = Lx · L · sinc
[
Lx

λ

(
2xs

f1
+ cos θ

(
x′

f2
− xs

f1

)
− sin θ

(
x2
s

2f 2
1

− x′2

2f 2
2

))]
· sinc

[
L

λ

(
sin θ

(
x′

f2
− xs

f1

)
+ cos θ

(
x2
s

2f 2
1

− x′2

2f 2
2

))]
. (4.18)

It is straightforward to see that rotation mixes the lateral and axial “sinc” terms

discussed above, just like what rotation does to the VH system. It partially changes

lateral structures into axial direction, and vice versa. Investigating rotation’s influence
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on the resulting PSF can be clearly done by looking into cos θ and sin θ that appear

in Eq. 4.18. A PSF example is illustrated in Fig. 4-3(b).
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Figure 4-3: (a) Rotation of the VH and (b) the resulting PSF when the rotation angle
θ = 2o calculated using both derived analytical equations and direct full numerical
solution.

4.3.4 Shearing

We first analyze a shearing of hologram along x′′ direction (Fig. 4-4(a)). Coordinate

transform is

x′′
(2) = x′′ + αz′′,

z′′(2) = z′′, (4.19)

where α is defined as the shearing ratio. The resulting transformation matrix is

T =

 1 α

0 1

 . (4.20)
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Again we have |T| = 1 because shearing, like rotation, does not change the grid area.

Final PSF after this shearing is

q(x′) = Lx · L · sinc
[
Lx

λ

(
x′

f2
+

xs

f1

)]
·sinc

[
L

λ

((
x2
s

2f 2
1

− x′2

2f 2
2

)
− α

(
xs

f1
− x′

f2

))]
. (4.21)

It is observed that the expression inside the first “sinc” term also appears in the

second term with a coefficient of α. This is because shearing mixes part of the

contributions from x′′ axis into z′′ direction. An example of the resulting PSF is

shown in Fig. 4-4(b).
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Figure 4-4: (a) Shearing of the VH along x′′ direction and (b) the resulting PSF when
the shearing ratio α = −0.04.

The same analysis applies to a shearing along z′′ axis; and the results show mixture

of the quadratic term from axial thickness into the lateral “sinc” term. Detailed

calculations are straightforward and not duplicated here.

It is clear from the above affine deformation examples that analytical solutions

provide detailed physical intuitions and explanations on how the deformations in-

fluence the system and shape the final PSF. This information is not possible using

numerical approaches. The analysis approach mentioned in this section potentially

applies to all types of affine deformations.
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4.4 Non–affine transformations

While for affine transformations it is possible to derive an elegant analytical solution

for the resulting PSF on the detector, it is usually not possible to directly solve

the integral and arrive at a straightforward equation for the PSF in the non–affine

transformation case. In this section we will present this problem and propose that the

approximation of stationary phase method can be used to find an analytical solution.

4.4.1 Bending

As a first example of non–affine deformation, we consider bending as shown in Fig. 4-

5(a). Bending creates a curve along the hologram [62], and the radius of this curve is

defined here as the bending radius R. Note that by the convention used in the thesis,

a bending curved to the left (see Fig. 4-5(a)) results into a negative R since the radius

extends to the left of the hologram. Radius R is positive when the bending curves

to the right. We define “bending ratio” γ = L/(2R) as a convenient measure of the

amount of bending exerted on the hologram.
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Figure 4-5: (a) Bending of the VH. (b) Resulting PSFs at different bending ratios.

The transformation matrix of bending deformation can be expressed as

|T| =

 R−z′′

R
cos x′′

|R| − |R|
R

sin x′′

|R|
R−z′′

|R| sin x′′

|R| cos x′′

|R|

 , (4.22)
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where |T| = − z′′−R
R

. The PSF at the detector is the result of the following double

integral

q(x′) =

∫∫
dx′′dz′′rect(

x′′

Lx

)rect(
z′′

L
)

(
z′′ −R

−R

)
exp

(
− i

2π

λ

2xsx
′′

f1

)
· exp

[
− i

2π

λ

(
x′

f2
− xs

f1

)(
|R|R− z′′

R
sin

x′′

|R|

)]
· exp

[
− i

2π

λ

(
x2
s

2f 2
1

− x′2

2f 2
2

)(
R + (z′′ −R) cos

x′′

R

)]
. (4.23)

It can be observed that both integration variables x′′ and z′′ appear in the same

exponential terms, making a direct integral solution impossible to obtain. Examples

of resulting PSFs are illustrated in Fig. 4-5(b). It can be seen that for larger bending

ratios, the PSF widens and flattens, and its peak also decreases.

Fortunately, the integral along z′′ can be analytically performed without any ap-

proximation and this reduces Eq. 4.23 into a single integral along x′′

q(x′) =

∫
dx′′rect(

x′′

Lx

)

[
sin(πLA)

πA
+

L cos(πLA)

iπRA
+

i sin(πLA)

2π2RA2

]
exp

(
− i

2π

λ

2xsx
′′

f1

)
· exp

[
− i

2π

λ

(
x′

f2
− xs

f1

)
|R| sin x′′

|R|

]
· exp

[
− i

2π

λ

(
x2
s

2f 2
1

− x′2

2f 2
2

)
R

(
1− cos

x′′

R

)]
, (4.24)

where

A = −1

λ

(
x′

f2
− xs

f1

)
|R|
R

sin
x′′

|R|
+

1

λ

(
x2
s

2f 2
1

− x′2

2f 2
2

)
cos

x′′

R
. (4.25)

Eq. 4.24 can no longer be reduced analytically. Stationary phase method should be

used as an approximation to find an analytical solution.
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4.4.2 Stationary phase method

The stationary phase method [16, 25, 30] in the one–dimensional case is an approxi-

mation procedure for evaluating the following integrals

I =

∫
C

f(x) exp(iΛϕ(x))dx, (4.26)

where Λ is a large constant parameter (Λ ≫ 1), C is certain domain of integration,

ϕ(x) is a fast–varying function over most of range C, and f(x) is a slowly–varying

function comparing with f(x). For most of the integral regions, ϕ(x) is rapid–varying

therefore the integral result I is approximated zero over these ranges. Main contri-

butions are from some critical points where this assumption fails. One significant

contribution is from the point of stationary phase x0, where ϕ′(x0) = 0. At x = x0,

ϕ(x) is no longer fast–oscillating and the contribution can be calculated by expanding

ϕ(x) in a Taylor series asymptotically to the second order derivative and substituting

back into Eq. 4.26 [16, 25]

I = exp(iΛϕ(x0))
1√
Λ

√
2π

|ϕ′′(x0)|
exp

(
i
sign(ϕ′′(x0)) · π

4

)
f(x0). (4.27)

Many other types of critical points will be discussed later. Final I is a sum of

contributions from all critical points along the integral domain.

This stationary phase method has been widely used in electromagnetic scattering,

diffraction and radiation problems as a standard approach to solve the diffraction

integrals [17, 29, 76]. In this section, we propose that similar approximation can

be used to facilitate the integral of calculating PSFs of VH imaging systems under

non–affine deformations, and help reach a quasi–analytical solution.
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Integration boundaries and poles

We first note that for integral of Eq. 4.24, the corresponding f(x) is a summation of

three terms

sin(πLA)

πA
+

L cos(πLA)

iπRA
+

i sin(πLA)

2π2RA2
. (4.28)

It is beneficial to separate them and write Eq. 4.24 as a sum of three integrals. We

refer to these three integrals as Part 1, Part 2, and Part 3. The following discussion

focuses on Part 1, while Part 2 & 3 can be analyzed similarly. The comparison of

contributions from all three components will also be illustrated later. Furthermore,

the term sin(πLA) is not slowly–varying but it can be written as

exp(iπLA)− exp(−iπLA)

2i
. (4.29)

Comparing with the standard expression of stationary phase method shown in Eq. 4.26,

Part 1 can be re–written as

f(x) =
1

2iπA
, (4.30)

exp(iΛϕ(x′′)) = [exp(iπLA)− exp(−iπLA)] exp

(
− i

2π

λ

2xsx
′′

f1

)
· exp

[
− i

2π

λ

(
x′

f2
− xs

f1

)
|R| sin x′′

|R|

]
· exp

[
− i

2π

λ

(
x2
s

2f 2
1

− x′2

2f 2
2

)
R

(
1− cos

x′′

R

)]
, (4.31)

where Λ is defined here as 2π/λ, which satisfies Λ ≫ 1.

Now we are able to solve Part 1. We first realized that the term A expressed in

Eq. 4.25 can be zero within the integral range, resulting in a pole (one type of critical

points), denoted as xp. Beside, rect( x
′′

Lx
) introduces two integration boundaries at

a = −Lx/2 and b = Lx/2. At these boundaries, oscillations from exponential terms

stop abruptly; thus the contributions from these points should be considered since

fast–varying expression does not cancel out with these sharp changes. An example
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is illustrated in Fig. 4-7(a)–(c). Considering these two types of critical points (poles

and integration boundaries) together, final result is [16]

I =
ejΛϕ(a)

ϕ′(a)

j

Λ
f(a)− ejΛϕ(b)

ϕ′(b)

j

Λ
f(b)

 +icπ exp(iΛϕ(xp)) if ϕ′(xp) > 0

−icπ exp(iΛϕ(xp)) if ϕ′(xp) < 0
, (4.32)

where c = 1/{[1/f(x)]′|xp}. As an example, we choose bending ratio γ = 0.030,

and results are shown in Fig. 4-6. It is interesting to see that the contributions

from the poles outline the envelope of the PSF; and the boundaries add oscillations.

Note that kinks are observed in both roll–off areas near x′ = −3.2 × 10−4 m and

x′ = 3.5×10−4 m. It is obvious that in these regions contributions from other factors

should be included.
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Figure 4-6: PSFs calculated using Eq. 4.32 by including the contributions (a) only
poles and (b) both poles & boundaries, compared with full numerical solution.

Close stationary points

We plotted f(x) and exp(iΛϕ(x)) for integral at different detector positions in Fig. 4-

7. At roll–off region, e.g. x′ = −3.2×10−4 m (Fig. 4-7(d)–(f)), it can be observed that

two stationary points appear within the integral range where ϕ′(x) = 0. Furthermore,

these two stationary points are close to each other (within a few cycles of exponential

oscillations), and they are also both close enough to the pole of f(x). That is to say,

the contribution from each critical point should not be added independently, instead,
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Figure 4-7: Expressions of f(x) (left), Λϕ(x) (middle) and real(exp(iΛϕ(x)))(right)
for one dimensional integral of Eq. 4.24 at detector positions of x′ = 0 (top), x′ =
−3.2× 10−4 m (middle), and x′ = −3.1× 10−4 m (bottom) (see Fig. 4-6). Note that
only part of the integral range is shown.
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all critical points need to be combined in order to find the total contribution. For

detailed quantitative analysis on how close two critical points should be so that their

individual contributions are not independent any more, see [29].

Now we have in total five critical points, including one pole, two stationary points,

and two integration boundaries. The following identical relationship can be used here

to get rid of one integration boundary

∫ b

a

f(x) exp (iΛϕ(x))dx =

∫ +∞

a

f(x) exp (iΛϕ(x))dx

−
∫ +∞

b

f(x) exp (iΛϕ(x))dx, (4.33)

resulting into four critical points.

According to [16], the combined contributions from these four critical points can

be expressed as

I = exp (iΛϕ0){−2πif(xp)Af in(−Λ2/3ξ,Λ1/3β,Λ1/3q)

+πA0Λ
−1/3Φ(−Λ2/3ξ,Λ1/3q)− πB0iΛ

−2/3Φ′(−Λ2/3ξ,Λ1/3q)}, (4.34)

where

Af in(p, β, q) =
i

2π

∫ ∞

q

ei(t
3/3+tp) dt

t− β
(4.35)

is the incomplete Airy–Fresnel integral,

Φ(p, q) =
1

2π

∫ ∞

q

ei(t
3/3+tp)dt (4.36)

is the incomplete Airy function,

Φ′(p, q) =
1

2π

∫ ∞

q

it ei(t
3/3+tp)dt (4.37)

is the incomplete Airy function’s derivative, ξ = [(3/4) · (ϕ(x1) − ϕ(x2))]
2/3 is a

representation of two stationary points at x1 & x2, β is a solution of ϕ(xp) = ϕ0 +

93



β3/3−ξβ which is an indication of the pole at xp, q is a solution of ϕ(a) = ϕ0+q3/3−ξq

which represents the position of the integral boundary at x = a, and

A0 = ξ1/4
[

f(x2)

x2 − xp

√
2

|ϕ′′(x2)|
+

f(x1)

x1 − xp

√
2

|ϕ′′(x1)|

]
− 2βf(xp)

ξ − β2
, (4.38)

B0 = ξ−1/4

[
f(x2)

x2 − xp

√
2

|ϕ′′(x2)|
− f(x1)

x1 − xp

√
2

|ϕ′′(x1)|

]
− 2f(xp)

ξ − β2
. (4.39)

Close quasi–stationary points

In other positions of the roll–off region, e.g. x′ = −3.1 × 10−4 m (see Fig. 4-7(g)–

(i)), first derivative of ϕ(x) does not go zero, meaning there are no stationary points.

However, in this case, another type of critical points, quasi–stationary points, is

important, when these two points are close to each other. Quasi–stationary points

are virtual stationary points at “imaginary” positions xq1 and xq2 where ϕ′(x) = 0.

For example, if ϕ(x) = x3 + 3x, it has quasi–stationary points at xq1 = −1i and

xq2 = 1i.

In this case, we have four critical points, one pole, two quasi–stationary points

and on integration boundary. The total contributions can be expressed as [16]

I = exp (iΛϕ0){−2πif(x0)Af in(−Λ2/3(2/ϕ′′′)1/3α,Λ1/3β,Λ1/3q)

+2π(2/ϕ′′′)1/3f0Λ
−1/3Φ(−Λ2/3(2/ϕ′′′)1/3α,Λ1/3q)

−2πi(2/ϕ′′′)2/3f1Λ
−2/3Φ′(−Λ2/3(2/ϕ′′′)1/3α,Λ1/3q)}, (4.40)

where α = min(ϕ′(x)) is an indication of two quasi–stationary points, f0 = f(0), and

f1 = f ′(0).

We apply Eq. 4.34 and Eq. 4.40 at both roll–off regions and the resulting PSF

is shown in Fig. 4-8. The kinks shown in Fig. 4-6(b) have disappeared, and the

analytical result matches that of full numerical solution.

Now that we have found a quasi–analytical solution of Part 1. Similar analysis

applies to Part 2 and Part 3. The total PSF, as well as the separate contributions

from these three parts are plotted in Fig. 4-9. We notice that the major contribution
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Figure 4-8: PSF at the detector for a bent hologram calculated using stationary phase
approximation combining four critical points, compared with full numerical solution.

to the final PSF is from Part 1. This is because we assume a small bending so that

|R|/L ≫ 1 and |R ·A| ≫ 1 (see Eq. 4.24). Calculation of Part 1 suffices if the required

accuracy is not high.

4.4.3 Twisting

As another example of non–affine deformation, we consider twisting. Twisting, d-

ifferent from all cases discussed above, does not have an invariant axis therefore all

three coordinate axes should be considered. In this section we consider twisting defor-

mation along the optical axis (z′′ axis), and instead of a rectangular–shaped volume

hologram, we here use a volume hologram shaped as a cylinder (with the cylinder axis

coincident with both the optical axis of propagation and the direction of the torque

vector). Cylindrical hologram allows for easy application of uniform twisting torque

on the hologram.

For twisting, the rotating angles at different z′′ planes are [62]

θ(z′′) =
z′′

L/2
θm, (4.41)

where θm is the maximum twisting angle on each side. Typical PSFs at different θm

values are plotted in Fig. 4-10. It can be observed that with the increasing of θm, the

PSF extends along y′ axis, and its peak reduces. This can be intuitively explained as
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Figure 4-9: (a) PSFs calculated from Part 1–3 and combined. (b)–(d) Contributions
from Part 1–3 separately.
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shown in Fig. 4-11. The probe beam was diffracted by platelets located at different

z′′ positions with grating vectors rotated at different angles, each contributing to a

spot at different position of the detector. Adding the contributions from all platelets

result into the extended PSF.
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Figure 4-10: PSFs for twisting at different maximum twisting angles: (a) θm = 0o

(without deformation), (b) θm = 0.5o, and (c) θm = 1o. Note that in order to
show sidelobes clearly,

√
q(x′, y′) is plotted instead of the actual intensity, which is

proportional to |q(x′, y′)|2.

In order to derive an analytical solution, we start with the transformation matrix

of twisting

T =


cos(2z

′′

L
θm) − sin(2z

′′

L
θm) 0

sin(2z
′′

L
θm) cos(2z

′′

L
θm) 0

0 0 1

 (4.42)

where |T| = 1, which is clear that twisting does not change the volume of each integral
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(a)

Figure 4-11: Intuitive explanation of the PSF shape after twisting.
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voxel. According to Eq. 4.6, the resulting PSF is

q(x′, y′) =

∫∫∫
dx′′dy′′dz′′circ

(√
x′′2 + y′′2

R

)
rect

(
z′′

L

)
· exp

[
j2π

xs(cos(
2z′′

L
θm)x

′′ − sin(2z
′′

L
θm)y

′′)

λf1

]
exp

[
− jπ

x2
sz

′′

λf 2
1

]
· exp

[
− j2π

2xsx
′′

λf1

]
exp

[
− j2π

x′(cos(2z
′′

L
θm)x

′′ − sin(2z
′′

L
θm)y

′′)

λf1

]
· exp

[
− j2π

y′(sin(2z
′′

L
θm)x

′′ + cos(2z
′′

L
θm)y

′′)

λf1

]
· exp

[
j2π

(x′2 + y′2)z′′

2f 2
2λ

]
, (4.43)

where R is the radius of the cylinder. Integration along x′′ and y′′ can be derived

exactly, reducing into

q(x′, y′) =

∫
dz′′rect

(
z′′

L

)
πR2jinc(R

√
u2 + v2)

· exp
[
− iπ

x2
sz

′′

λf 2
1

]
exp

[
i2π

x′2 + y′2

2f 2
2

z′′

λ

]
, (4.44)

where

u =
1

λ

[
−

xs cos(
2z′′

L
θm)

f1
+

2xs

f1
+

x′ cos(2z
′′

L
θm)

f2
+

y′ sin(2z
′′

L
θm)

f2

]
, (4.45)

v =
1

λ

[
+

xs sin(
2z′′

L
θm)

f1
−

x′ sin(2z
′′

L
θm)

f2
+

y′ cos(2z
′′

L
θm)

f2

]
, (4.46)

jinc(x) =
J1(2πx)

πx
, (4.47)

where J1 is the Bessel function of the first kind [64].

Without deformation, i.e. θm = 0o, the PSF can be calculated as

q(x′, y′) = πR2 · jinc
[
R

λ

√(
xs

f1
+

x′

f2

)2

+

(
y′

f2

)2]
·L · sinc

[
L

λ

(
x2
s

2f 2
1

− x′2 + y′2

2f 2
2

)]
. (4.48)
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This result matches with the PSF result show in Fig. 4-10(a). However, with twisting,

because the integral variable z′′ exists inside the jinc function, an exact analytical

solution for Eq. 4.44 is not possible. A similar procedure of incorporating stationary

phase method like the one used in the bending transformation above should be used.

First of all,
√
u2 + v2 can be re–written as

√
u2 + v2 =

1

λ

√(
xs

f1
+

x′

f2

)2

+

(
y′

f2

)2

+
1

λ

2xsy′

f1f2√(
xs

f1
+ x′

f2

)2
+
(
y′

f2

)2 2z′′L
θm (4.49)

assuming that (2z′′θm/L) ≪ 1. And the jinc function can be approximated as be-

low [2]

jinc(x) =

 cos(πx) if |x| < 0.3268√
1

π|πx|3 cos(|2πx| − 3π/4) if |x| ≥ 0.3268
. (4.50)

This approximation has been confirmed in Fig. 4-12.
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Figure 4-12: Approximation of jinc function (Eq. 4.50).

With Eq. 4.49 and Eq. 4.50, the original 1D integral (Eq. 4.44) has been reduced

and expressed in the standard form of stationary phase method (Eq. 4.26). Using the

same analysis discussed in Section 4.4.2, quasi–analytical solution can be derived. The

resulting PSF at the detector is illustrated in Fig. 4-13, together with the difference

to the result from full numerical approach. Analytical result is in agreement with the

numerical result.
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Figure 4-13: (a) PSF calculated using stationary phase method approximation, and
(b) its difference to the result calculated using full numerical result (Fig. 4-10(b)).
Maximum twisting angle is θm = 0.5o.

4.5 Conclusion

In this chapter, we proposed a quasi–analytical method for calculating the PSF in

transformational volume holography. Bulk deformations are applied on the hologram,

and for affine transformation, an analytical equation of the final PSF can be directly

derived. However, for non–affine transformations, straightforward solution for the

integral is not possible. The approximation of stationary phase method is used, and

we are able to find a quasi–analytical solution. Transformational volume holography

provide more design flexibility for imaging systems. And analytical solution not

only reduces the computing cost, but also enhances the physical intuition between

the deformation and resulting PSF. This approach proposed here is general and can

be potentially applied to other types of bulk transformations, or a combinations of

different types.
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Chapter 5

Subwavelength dielectric photonic

cloak

In all previous chapters we have been discussing diffractive optical elements, where the

wavelength of light is comparable or smaller than the fine structures of optical devices.

We now turn to the subwavelength regime, where the unit feature of a device is sig-

nificantly smaller than the operational optical wavelength. In subwavelength regime,

the light propagating along the device does not “see” the fine structure; instead,

an effective medium, i.e. an effective permittivity or refractive index, is observed.

Subwavelength devices provide rich opportunities for light manipulation because the

fine tuning of permittivity of dielectric materials, while not straightforward in bulk

devices, can be relatively more easily realized by using elements of different sizes in

the unit cell, creating an arbitrary refractive index in the desired region.

Subwavelength optical devices have found many applications [47, 48, 100, 104,

137], and are considered to be good candidates for the future of “optical circuits”.

In this chapter I will focus on the design of a photonic cloak using subwavelength

dielectric elliptical rod arrays, which are capable of accommodating mechanical and

optical components in integrated photonic devices [12, 55, 56]. These designs can

significantly reduce the size of photonic devices, and find lots of applications in next–

generation optical circuits.
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5.1 Motivation

Photonic devices need mechanical components to support, connect and stack func-

tional photonic components. Most previous device designs simply separate the me-

chanical components from the photonic components beyond a sufficient distance at

which the interference is negligible. With increasing demand for smaller device sizes,

it is desirable to integrate mechanical components into photonic components directly,

thus making photonic devices more compact with even potential extension to the

multilayered layout analogous to integrated circuits. Fig. 5-1 illustrates how mechan-

ical components should be combined with photonic components in order to reduce

the size of devices.

Figure 5-1: Illustration of accommodating mechanical components into photonic com-
ponents, reducing the size of optical elements.

We propose a cloaking method to embed mechanical connections inside photonic

components of integrated photonic devices. Different from previous cloak designs [20,

24, 38, 42, 86, 90, 92, 108, 111, 118, 137, 147, 148] generally aiming to make objects free

from external electromagnetic detection, here this idea is applied to accommodating

mechanical components into a photonic device in a more compact way. Our design

candidate is a photonic subwavelength cloak made of elliptical rod arrays. Similar

structures have been utilized in photonic crystals for both imaging [40] and nonlinear

second harmonic generation [89]. Our design consists of uniform square unit cells with

elliptical silicon rods immersed in air, which achieves anisotropy and homogeneity

simultaneously, and will greatly facilitate the fabrication process [132]. As examples
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of this cloaking design, cloaks that suppress the interference from the periphery and

the inner region of the waveguide are designed and numerically verified with the

finite–difference time–domain (FDTD) method. It is the first practical design for

accommodating non–photonic components in integrated photonic components, which

will provide more flexibility for designing future photonic devices.

For our design, a ground–plane cloak is located on a perfect electric conductor

(PEC) ground plane, operated in two–dimensional (2D) plane perpendicular to the

ground plane under transverse magnetic (TM) illumination (electric field lying in the

2D plane). An infinitely large cloaking region is created by transforming the space,

making the ground plane interface away from its original location. In this way, the

transformed medium remains homogeneous, but it has to be anisotropic in order

to let the ground plane appear at its original position after the transformation (see

Fig. 5-3). Elliptical rod arrays are used to achieve required anisotropy. The second

example is one–dimensional cloak which is able to hide objects in a diamond shape

region when illuminated by a plane wave (see Fig. 5-5). By proper tuning of the size

of the unit cell and choice of constitutive parameters for the bulk material used for

the rods, this cloak design works in any regime of the electromagnetic spectrum.

5.2 Implementation of anisotropy with elliptical

rods

We use elliptical rod arrays (see Fig. 5-2(a)) to implement the material anisotropy.

Fig. 5-2(c) shows the isofrequency curves from the dispersion diagram of a two di-

mensional (2D) unit cell with silicon elliptical rod (permittivity ϵ = 12) immersed in

air (ϵ = 1). The 2D assumption generally makes sense, but our recent research has

shown that exceptions do exist in extremely thin slabs [58]. A complete analysis of

finite thickness effects is in the next chapter. The free space wavelength is λ = 8a,

where a is the lattice constant; this operating wavelength is indicated as the bold

blue line in Fig. 5-2(c). The effective refractive index for a particular wave vector k is
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determined by neff = ck/ω based on the isofrequency diagram, where c is the velocity

of light in free space and ω is the frequency. From the isofrequency line, we determine

the effective index surface, which is approximately an ellipse with effective principal

indices nx = 1.30 and ny = 1.80. Note that this significant anisotropy exists only

for transverse magnetic (TM) illumination, whose polarization will be utilized in this

chapter. As a comparison, the isofrequency diagram of a lattice with circular rods of

radius r = 0.294a is illustrated in Fig. 5-2(d), where the effective index surface is a

sphere with effective index n0 = 1.30.

5.3 Cloaking and accommodating examples

5.3.1 Accommodation of peripheral non–photonic components

Now we proceed to design a cloak using the elliptical rod array for accommodating

more peripheral non–photonic components. We start with a uniform medium above

a perfect electric conductor (PEC) where the PEC is assumed to be the boundary

of the photonic functional region. It is worth mentioning that although we use PEC

to serve as a reflective surface for the sake of simplicity, this design also works for

total internal reflection at the boundary in absence of the PEC. We then reduce

the size of the medium immediately above the boundary along the y direction to

create an empty area for placing more peripheral mechanical components, as shown

in Fig. 5-3. The medium after transformation should be anisotropic in order for the

boundary to appear virtually at its original position [69, 147], thus maintaining the

photonic performance. Assuming that the size of the medium along y direction has

been reduced from unit size 1 to 1 − δ, the relative permittivity and permeability

tensors become [147]

¯̄ϵ = ¯̄µ =


1/(1− δ) 0 0

0 1− δ 0

0 0 1/(1− δ)

 . (5.1)
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In terms of practical implementation, it is preferable to use only non–magnetic ma-

terials. Thus, under TM illumination, while keeping the z component of ¯̄µ equal to

1, the permittivity tensor should be [147]

¯̄ϵ = ϵ0


1/(1− δ)2 0 0

0 1 0

0 0 1/(1− δ)2

 . (5.2)

Therefore, the squeezed medium exhibits anisotropy with nx = n0 and ny = γn0,

where γ = 1/ (1− δ).

Fig. 5-4(a) illustrates the original structure where a uniform photonic medium

is terminated by a PEC boundary. The uniform medium is implemented with an

array of circular silicon rods with radius r = 0.294a with isotropic effective refractive

index n0 = 1.30, as previously calculated in Fig. 5-2(b). The thickness of the rod

array and the PEC along y axis are 96a and 5a, respectively. To achieve more

space for peripheral mechanical components, the lower part of the uniform layer,

with thickness of 54a along y axis immediately above the PEC is transformed to

an anisotropic medium with thickness of 39a. The corresponding squeezing factor is

δ = 5/18 resulting in anisotropy with nx = 1.30 and ny = 1.80, as we previously

calculated from Fig. 5-2(a).

The resulting structure is shown in Fig. 5-4(b). From top to bottom, this structure

contains four layers: (1) circular rod arrays of thickness 42a along y axis, (2) elliptical

rod arrays of thickness 39a, (3) PEC layer with thickness 5a and (4) region for more

mechanical components with thickness 15a. FDTD results of both the structures are

illustrated and compared at Fig. 5-4(c)(d). It can be observed that the resulting

output beam profile is the same as that of the original circularly rod structure; hence

the photonic medium maintains its performance although its size is reduced and

more mechanical components can be accommodated around the periphery. Some

reflection appears at the boundary of the circular and elliptical rod arrays, but it can

be suppressed by using anti–reflection techniques (see Section 5.4 for more details). In

addition to accommodating mechanical components, this design can also be applied
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to the isolation layer between two neighboring photonic components for more compact

layout design in the future.

5.3.2 Accommodation of internal non–photonic components

As another example, we show how to use elliptical rod arrays for accommodating

non–photonic components inside a waveguide directly. Similar to peripheral case, we

first transform the space to create a parallelogram region. The non–photonic com-

ponents are placed in this region. The original isotropic media above and below the

parallelogram region are transformed, resulting in four triangular uniform anisotropic

regions. Under TM illumination, an illustration of the transformation and resulting

ray–tracing [4, 112] results are shown in Fig. 5-5.

The transformation from virtual coordinates (x, y) to physical coordinates (x′, y′)

is [24, 142, 148]

x′ = x; y′ = κy + τ(a− |x|), (5.3)

where κ = [tan(α+β)−tan β]/ tan(α+β) and τ = tan β. To make the materials non-

magnetic while maintaining the required refractive indices, the permittivity tensor in

the x− y plane becomes [142]

¯̄ϵ′ = ϵ0

 1/κ2 −τ/κ2

−τ/κ2 1 + τ 2/κ2

 . (5.4)

The corresponding optical axes are all aligned to the vertical axis with angle [148]

θ =
1

2
arctan

2τ

κ2 + τ 2 − 1
. (5.5)

Detailed design layout of the device is shown in Fig. 5-6. Here θ = 30◦ with effec-

tive refractive indices nx = 1.30 and ny = 1.80 as in the design of Fig. 5-2(a). The

ambient refractive index is 1.37 which corresponds to an array of circular rods with

radius r = 0.33a. This design was also verified with FDTD under TM plane wave
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illumination. The results are shown in Fig. 5-7. A plane wave with little distortion at

the output to the right of the cloak can be observed. Imperfections are mainly due to

scattering at the sharp edges and reflections at the boundaries between the isotropic

and anisotropic media. Since the reflection mainly occurs to the left of the parallel-

ogram region, the overall wave profile is preserved to a large degree, with negligible

energy loss. The amount of reflection at different cloaking angles (β) is plotted in

Fig. 5-8. The reflection can be further suppressed by using anti–reflection techniques

(see Section 5.4). Since the propagation of the wave avoids the parallelogram shape

region in the photonic device, the mechanical components can be accommodated in a

photonic waveguide directly while the performance is still preserved to a large extent.

A mechanical connector can penetrate through this waveguide, connect with other

parts of the device and stack a large number of layers of “photonic boards” analogous

to “printed circuit board” (PCB). Alternatively, through this empty region, an opti-

cal fiber can deliver optical signals across this waveguide along the third dimension

similar to the “jumper” in circuits. This application can be useful in future pho-

tonic industry, being able to provide more design flexibility in large scale photonic

integration.

5.4 Gradient–index antireflection layers

We notice from the above results, especially Fig. 5-4 and Fig. 5-7, that there are

reflections at isotropic/anisotropic interfaces due to impedance mismatch. While in

many applications these reflections are negligible, in some cases they are intolerable

and should be minimized. In this section we will discuss how to use gradually–varying

layers to achieve impedance–matching.

Antireflection coatings by impedance matching are commonly used in optical de-

vices. However, in real practice it is generally very challenging to impedance match

two regions with high contrast of optical properties. Recently, with the rise of meta-

material research, there have been many studies on the use of anisotropic structures

to manipulate the light propagation, especially at the nano–scale. This is one case
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where the mismatch is particularly strong, since the boundary is often between an

isotropic and an anisotropic material; perhaps for that reason, the topic of impedance

matching has rarely been discussed thoroughly.

We propose impedance–matching gradually–varying layers at isotropic/anisotropic

nanostructure boundaries to eliminate the reflection, and discuss the corresponding

design considerations. In the scenario discussed in this chapter, increasing the number

of antireflection layers, while decreasing the reflection, also degrades the performance

of the device by introducing lateral shift. Therefore the number of layers should be

chosen carefully to balance these two counter–acting effects. This antireflection layer

design is also applicable to other index–mismatched nanostructured boundaries, or

even the boundaries between nanostructures and a uniform medium [137]. In either

case, one should always emphasize the balance between transmission efficiency and

correct device performance.

Here we consider a boundary between isotropic and anisotropic periodic nanostruc-

tures in the photonic cloak discussed in Fig. 5-3 & Fig. 5-4.Due to the index–mismatch

between isotropic region (circular rod arrays) and anisotropic region (elliptical rod

arrays), reflection is prominent; hence, antireflection layers are needed.

The antireflection layer design we propose is illustrated in Fig. 5-9, where four

layers are used as an example. Our design transformed the corresponding four el-

liptical rod layers into gradually–varying elliptical rod layers. Their sizes are chosen

such that effective nx is fixed at 1.30 but ny changes at a linear increment of 0.10

from 1.30 to 1.80 for each antireflection layer from top to bottom. The reflection is

greatly reduced, which is evident as highlighted with dashed circles in Fig. 5-10. The

relationship between reflection coefficient and the number of gradient–index layers

is shown in Fig. 5-11(a). It is observed that reflection can be further reduced by

increasing the number of layers.

However, antireflection layers also bring undesirable side effects. These layers

deviate the profile of the cloak, i.e. the effective refractive index distributions, from

the desired original. Therefore, the beam no longer follows the desired trajectory

but has a lateral shift at the output (see Fig. 5-10(b)), similar to the one described
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in [147]. The lateral shift downgrades the performance of the photonic cloak, and

as shown in Fig. 5-11(b), larger number of antireflection layers results in larger shift.

Therefore, a trade–off always exists between the amount of reflection reduction and

preservation of device functionality.

5.5 Conclusion

In this chapter, we presented the first practical design for integrating mechanical

components into photonic devices. Elliptical rod arrays are used to realize anisotropic

materials. These elliptical rods are actually a general form of binary gratings, which

have been widely used to generate anisotropy (for example, see [144]). Designs that

can be used for accommodating mechanical components from the periphery and inner

region of a waveguide are designed and verified through the FDTD simulation. This

design can be an extension and supplement of current photonic designs and provide

more flexible design strategy for future photonic integration in a more compact form.

Furthermore, discussions on using gradually–varying layers to minimize the unwanted

reflection at interfaces and their influences on the cloaking performance have been

presented.
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(a) (b)

(c) (d)

Figure 5-2: Elliptical (a) and circular (b) silicon rod lattice structure. Isofrequency
diagrams of silicon elliptical (c) and circular (d) rod unit cells, where only the first
TM band is shown. The size of the unit cell is a × a. The long and short axes of
the elliptical rod in (a) are 0.95a and 0.5a, respectively; the radius of circular rod
in (b) was chosen as 0.294a to match the effective index of the isotropic circular rod
case with the effective value of the index along the x axis in the anisotropic elliptical
rod case. Labels on the lines denote the corresponding normalized frequency ωa/2πc.
The bold blue lines correspond to the free space wavelength λ = 8a used in this thesis.
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Figure 5-3: Space transformation of the first design example. More peripheral area
(green) for accommodating mechanical components is created by squeezing the uni-
form medium into an anisotropic medium. Blue arrows are ray trajectories, and red
lines illustrate wavefronts.
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Figure 5-4: (a)(b) Original structure and the structure of the first design example.
Blue boxes are the zoomed–in view of the lattices. Red lines denote the interfaces
between different media: PEC, isotropic and anisotropic medium. (c)(d) FDTD
results of original structure and accommodating design. Illumination is TM Gaussian
source with incident angle of 45◦. Black stripe is PEC and green stripe is area for
accommodating mechanical components. Color shading denotes the magnetic field
(Hz) distribution. Red is positive and blue is negative.
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Figure 5-5: Transformation of space to create a parallelogram for accommodating
internal mechanical components. Ray tracing results are illustrated. “Iso–” means
isotropic and “Aniso–” means anisotropic.

Figure 5-6: Structure of the second design example, composed of uniform elliptical
and circular silicon rod arrays. Grey parallelogram in the middle is region for mechan-
ical components and magenta arrows are the optical axes of the anisotropic media.
The dimensions are D = 50a = 6.25λ, α = 38.5◦ and β = 13.3◦. Note that this
implementation is for proof–of–concept and is definitely scalable.
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Figure 5-7: FDTD simulation results of this design illuminated by plane wave with
λ = 8a at time t = 6.25λ/c, 12.5λ/c, 18.75λ/c, 25λ/c, respectively. Color shading
denotes the magnetic field (Hz) distribution, where red is positive and blue is negative.
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Figure 5-8: Amount of reflection and scattering for diamond–shape cloak (Fig. 5-6)
at different cloaking sizes (β angles) in (a) linear and (b) logarithmic scale.

Figure 5-9: One example of gradient–index antireflection layers, where four layers are
used.

(a) (b)

Figure 5-10: FDTD simulation results and sampled ray tracing of the photonic cloak
without (a) and with (b) gradient–index antireflection layers. Ray trajectories for
(a) are duplicated (black arrows) in (b) as a comparison to the trajectories for (b)
(light blue arrows), illustrating the resulting lateral shift. Green lines illustrates the
boundary or antireflection layers between circular and elliptical rod lattices. Color
shading denotes the magnetic field [Hz] distribution.
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Figure 5-11: Reflection coefficient (a) and lateral shift (b) with respect to the number
of antireflection layers for different incident angles. Negative value for the lateral shift
means a shift to negative–x direction from the correct position.
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Chapter 6

Thin–film subwavelength Lüneburg

lens

In previous chapter we discussed the realization of anisotropic media using subwave-

length optical pupils. But the story of subwavelength elements is far from over. In this

chapter, we will explore subwavelength structures’ usage in realizing inhomogeneous

media in the context of thin–film gradient index (GRIN) media.

GRIN media offer rich possibilities for light manipulation. In integrated optics

applications, the required refractive index distribution can be emulated by patterning

a substrate with subwavelength structures. By either tuning the size of each unit cell,

or changing the size of the structure inside each unit cell, different effective indices

can be realized. Currently the operating wavelength is significantly larger than the

size of the unit cell so that these structures can be considered as effective media.

In most existing designs, refractive indices are computed using a 2D approxima-

tion, assuming that the height of the metamaterial in the third dimension is much

larger than the wavelength. While in some cases this approximation is true, most-

ly such adiabatically variant structures are fabricated by etching holes or rods on

a thin silicon film, where the height is actually even less than the optical wave-

length [42, 131, 132, 137, 146]. Therefore the calculated effective indices based on 2D

assumption are questionable. A 3D calculation approach is necessary. In this chap-

ter, an analytical approach for calculating the effective indices of thin–film photonic
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metamaterial devices is presented [57, 58, 59, 60].

In our group, we have designed and fabricated a subwavelength aperiodic nanos-

tructured Lüneburg lens [131, 132]. In our fabricated Lüneburg lens design, thin–film

problem is obvious where the experimental results show dislocated and aberrated

focal point [131, 132]. Here we re–designed the Lüneburg lens to include the finite

film thickness, improving the estimate of the expected focal point position. To de-

sign such a lens, first we need a method for estimating effective refractive index of

thin–film metamaterials. Several methods have been proposed in the literature. A

conventional numerical approach (we refer to it as Direct Band Diagram, DBD) in

photonic crystals derives a 3D lattice cell from the original 2D cell by surrounding a

finite–height rod with large spaces of air above and glass substrate below [78]. Anoth-

er method takes one unit cell and retrieves the refractive index by its reflection and

refraction properties [23]. These methods yield accurate results but require either

3D band or finite–difference calculations. More heuristic (but faster) effective–index

methods estimate a slab–waveguide effective index first and then use it to compute

a 2D band diagram or effective index [68]. These methods are generally suitable for

structures with etched substrates. In contrast, our proposal essentially reverses the

order of these steps: we compute an effective index from the 2D cross–section first,

and then incorporate it into a slab–waveguide mode. Our method is more suitable to

the metamaterial regime.

In particular, we propose the following all–analytical method for effective refrac-

tive index calculation. First, we replace the rods with a continuum of a certain

effective permittivity ϵ2Deff . We calculate ϵ2Deff from 2D lattice of infinite–height rods

using second–order effective medium theory, and then substitute ϵ2Deff as the permit-

tivity of a slab of finite thickness, acting as an effective guiding medium, sandwiched

between semi–infinite spaces of air above and glass below. The geometry then be-

comes one of a weakly–guiding waveguide due to the small height of the effective

guiding medium. This weakly–guiding effect modifies the real part of the horizontal

wave–vector component, and thus a new effective permittivity ϵ3Deff for the finite slab

of rods is derived from the waveguide dispersion relationship. We refer to this method
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as Effective Guiding Medium (EGM). Comparing with rigorous 3D calculations, our

method provides more physical insights, and is generally faster to compute.

To validate our method, we compare it with the DBD method. It is shown that

the results of both methods are in good agreement.

(a) (b)

Figure 6-1: (a) Finite height rod lattice structure. (b) 2D rod lattice structure as-
suming infinite height.

6.1 Analytical method for effective refractive in-

dex estimation

Without loss of generality, we investigate a silica glass slab covered by a square lattice

(lattice constant a = 258 nm) of silicon rods of finite height h = 320 nm, variable

radius r (0 < r < a/
√
2) and immersed in air, as illustrated in Fig. 6-1(a). The

free space wavelength of light is chosen as λ = 6a = 1550 nm. This choice of a

is small enough to insure that we remain in the metamaterial regime and in the

propagating regime of the band diagram; and large enough that the rods can be

accurately fabricated by nano–lithography [131, 132] and we do not reach the long–

wavelength cutoff regime for the asymmetric waveguide. The dielectric permittivity

constants for glass and silicon are ϵglass = 2.25 and ϵsilicon = 12.0, respectively. These

media are non–magnetic, so the relative permeability is taken as µ = 1. The glass
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slab height is assumed to be much larger than the height of the rods and the free

space wavelength of the light. The corresponding 2D structure with infinite height

rods and without glass substrate is shown in Fig. 6-1(b). We now proceed to describe

all–analytical method, EGM, for analyzing these two geometries.

6.1.1 Effective guiding medium (EGM) method

Figure 6-2: Effective guiding medium (EGM) approximation of 2D finite height rod
lattice structure.

The EGM method requires analysis of a three–layer structure: (I) air, (II) effective

medium waveguide and (III) glass, as shown in Fig. 6-2. The effective permittivity of

the guiding medium is calculated from the second–order effective medium theory in

2D which have been derived by various authors [18, 116]. This theory starts from the

effective refractive index of 1D subwavelength grating composed of air and dielectric

with index n. Under TE (electric field parallel to the grating) and TM (electric field

vertical to the grating) polarization incidence the effective index can be summarized,

respectively, as [18, 145]

n2
TE = n2

0TE +
π2

3

(
T

λ

)2

f 2(1− f)2(n2 − 1)2, (6.1)

n2
TM = n2

0TM +
π2

3

(
T

λ

)2

f 2(1− f)2n6
0TMn

2
0TE

(
1

n2
− 1

)2

, (6.2)

where

n2
0TE = fn2 + (1− f), n2

0TM = 1

/(
f

n2
+ (1− f)

)
(6.3)
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are the zeroth-order effective refractive indices, T is the period of the grating and f

is the filling factor of the dielectric grooves. The effective indices of corresponding

2D subwavelength structures are then estimated as a combination of 1D structures

[18, 145]

n2D−TE =
√

1− f + fn2
TE, (6.4)

n2D−TM =

(√
(1− f) + fn2

TM +

√
n2
TE

n2
TE(1− f) + f

)
/2 (6.5)

for both TE and TM polarizations. Note that TE and TM polarizations mentioned

here are an approximation since the fields are not purely polarized in 3D structures. A

more exact way to describe them is TE–like/TM–like, where electrical field is mostly

parallel/vertical to the grooves [78]. However, this notation is still an approximation

because the waveguide is asymmetric so there is no horizontal mirror symmetric plane.

The second–order terms used in Eq. (6.1) and (6.2) better approximate the effective

index in the case that the wavelength is not very large comparing with size of unit

cell, e.g. λ = 6a used in this thesis. Most current metamaterial device designs

are using the zeroth–order approximation only [137], even when the unit cell size

is not far smaller than the operational wavelength. This approach is fine for those

devices where high accuracy results are not important. However, for devices such

as Lüneburg lens, all waves are focusing to a single point so light manipulation is

more challenging. Therefore, more precise effective index prediction is needed and

second–order corrections are included.

The dispersion relation of the effective guiding medium, i.e. the relationship

between kz and ω, is governed by the guidance condition of an asymmetric dielectric

waveguide for both TE and TM polarizations [84]

(TE :) tan(kIIyh) =
ϵIIkIIy(ϵIII

√
k2
z − ϵIω2/c2 + ϵI

√
k2
z − ϵIIIω2/c2)

ϵIϵIIIk2
IIy − ϵ2II

√
k2
z − ϵIω2/c2

√
k2
z − ϵIIIω2/c2

≡ FTE(kIIyh), (6.6)
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(TM :) tan(kIIyh) =
kIIy(

√
k2
z − ϵIω2/c2 +

√
k2
z − ϵIIIω2/c2)

k2
IIy −

√
k2
z − ϵIω2/c2

√
k2
z − ϵIIIω2/c2

≡ FTM(kIIyh), (6.7)

where kz =
√

ϵIIω2/c2 − k2
IIy is the phase–matched propagation constant. These equa-

tions can be solved by a graphical method and an example is illustrated in Fig. 6-3. It

is observed that one and only one intersection is obtained for each frequency, mean-

ing that only one fundamental mode is supported. Full dispersion relations kz(ω) are

shown in the following section.
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Figure 6-3: Graphical solutions of wave guidance condition [Eq. (6.6) and (6.7)] for
TE (a) and TM (b) polarizations. Blue and red lines are the left and right hand
sides of these equations, respectively. Operating frequencies ω1 = 0.11 × 2πc/a,
ω2 = 0.16× 2πc/a, ω3 = 0.14× 2πc/a and ω4 = 0.18× 2πc/a. Rod radius r = 0.50a.

The EGMmethod described above is compared with the conventional DBDmethod.

To apply the DBD method, we need to calculate the band diagram of the 3D super

cell shown in Fig. 6-4(a). The supercell height is taken as large as H = 20a to bet-

ter emulate the real structure of Fig. 6-1(a), where the air and glass spaces tend to

infinity. In other words, we seek to minimize the interference between neighboring

unit cells along the vertical (y) direction. We used the MIT Photonic–Bands (MPB)

mode solver [80] to calculate the dispersion diagram. In Fig. 6-4(b–c) we show an ex-

ample MPB result for our chosen lattice and the specific value r = 0.5a, for temporal

frequency ω = 1/6×2πc/a. From Fig. 6-4(b) we observe that for the chosen values of
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r and ω, the isofrequency contour [78] is almost a circle, indicating that this unit cell

is isotropic. Therefore, when using DBD in this particular geometry, it is sufficient

to consider kz(ω) only. However, this is not generally true in other geometries as r

or ω increase.

Figure 6-4(c) shows the mode shape for the same geometry. It can be seen that the

field is effectively concentrated near the silicon rod portion of the cell. The relative

intensities at two horizontal cell boundaries y = ±H/2 were 5.6×10−6 and 3.8×10−6

at the top and bottom, respectively, compared to the peak value that occurred at

y = 159 nm from the rod base. This validates our choice of H as sufficiently large.

Comparing with the DBD method, the EGM method can provide deeper physical

insights with all–analytical solutions, and is generally faster since it avoids solving

numerical electromagnetic solutions in 3D.
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Figure 6-4: (a) The supercell used in the DBD method for the finite height rod
lattice structure. (b) Isofrequency contour of the supercell with r = 0.50a where the
first band only is shown. Labels on the lines denote the corresponding normalized
frequency ωa/2πc. The bold blue line corresponds to the wavelength λ = 6a used
in this chapter. (c) Field distribution of the waveguide slab at a particular x slice.
Color shading denotes magnetic field (Hy) distribution and black contours illustrate
silicon rods.
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6.1.2 Relationship between effective refractive index and rod

radius

In this section, the relationship between the effective refractive index and rod radius

is calculated. The results of EGM method are compared with the ones obtained from

DBD method.

Figure 6-5(a) shows the dispersion relation of the finite–height rod lattice calcu-

lated with both DBD and EGM methods, as well as with the 2D (infinite rod height)

assumption, for rod radius r = 0.5a. Based on the dispersion relation, effective re-

fractive indices for unit cells with different rod radii are calculated as neff = ckz/ω,

shown in Fig. 6-5(b). The results given by the DBD and EGM methods are in good

agreement with each other, with maximum percentage errors of 7.3% and 6.0% for

2D and 3D cases, respectively. It is observed that the effective refractive indices of

the finite–height rods are significantly different than those assuming infinite height.

This is to be expected due to weak guidance: as can been seen in Fig. 6-4(c), a large

portion of the field extends outside the rods to spaces of air and substrate. When the

rod radii are below certain values (0.17a for TE and 0.35a for TM), the propagation

modes are not guided so the effective indices are not shown. The discontinuities ob-

served in the 2D effective index curves for DBD method beyond certain values of rod

radii (0.40a for TE and 0.49a for TM) result from the emergence of a photonic crystal

bandgap at these values. At this frequency range, even though the 2D infinite–height

lattice is within the bandgap, the confined (slab waveguide) geometry is still propa-

gating; this is because the light is mostly outside the dielectric region, so propagation

takes place in the free space (hence the lower index). To calculate the propagation

constant in this regime, we still need an effective index value and EGM provides it

(it turns out to be large than 3, typically).

To further illustrate the influence of the height of rod lattice, calculated refractive

indices corresponding to different thin–film height values are plotted in Fig. 6-6.

Different polarizations and rod radii have been explored. It can be clearly observed

that the effective refractive index of a thin–film is significantly different than the index
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Figure 6-5: (a) Comparison between the dispersion relation for finite–height silicon
rod lattice [Fig. 6-1(a)] calculated from the EGM and DBD method, and the dis-
persion relation for infinite–height 2D rod lattice [Fig. 6-1(b)]. For each case, the
two lowest bands representing the TM and TE modes are shown. (b) Relationship
between effective refractive index and rod radius calculated from both methods, com-
pared with the relationship for infinite–height 2D rod lattice. Free space wavelength
of light is λ = 6a = 1550 nm.

of 2D assumption. With increasing rod height, the effective index converges into the

the value under 2D assumption. Note that for large enough rods, the effective index

does not exist for heights larger than certain value. This is an indication of reaching

the photonic crystal bandgap.
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Figure 6-6: Relationship between calculated effective refractive index and height of
the thin–film, at different polarizations and rod radii.
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6.2 Corrected design of the subwavelength Lüneburg

lens

We re–design and numerically verify the subwavelength Lüneburg lens [48, 95, 131,

132], which was previously designed under 2D assumption. Here, we still design

the Lüneburg lens as a structure consisting of finite–height rods with adiabatically

changing radius r across the lattice of fixed constant a. At each coordinate ρ, we

emulate the Lüneburg distribution n(ρ) = n0

√
2− (ρ/R)2 by choosing the rod radius

r at coordinate ρ from Fig. 6-5(b) such that n3D
eff = n(ρ), as opposed to using n2D

eff =

n(ρ). The design has to be carried out separately for the TE and TM polarizations.

The ambient index is chosen as n0 = 1.53.

Figure 6-7 illustrates the lens structures and the corresponding 3D finite–difference

time–domain (FDTD) simulation results for the actual adiabatically variant thin–film

nanostructured Lüneburg lens performed by MIT Electromagnetic Equation Propa-

gation (MEEP) [105]. The 3D model used for FDTD consists of a rectangular box of

size 41a × 24a × 41a which contains perfectly matched layers on both sides of each

dimension. The radius of the lens is chosen as 15a. With plane wave illumination,

almost diffraction–limited focal points at the edge can be observed for both TE and

TM polarizations. For a more computationally efficient and intuitive representation

we also ray–traced the field inside the Lüneburg structure using the adiabatic Hamil-

tonian method [49, 50, 51, 52, 73, 77, 114]. The ray position q and momentum p are

obtained by solving the two sets of coupled ordinary differential equations

dq

dσ
=

∂H

∂p
,

dp

dσ
= −∂H

∂q
, (6.8)

where H(q,p) ≡ ω(ρ,k) is obtained from the dispersion diagram at each coordinate

|q| = ρ and for k ≡ p. Ray tracing results are superimposed in Fig. 6-7 with FDTD

results, and are seen to be in good agreement. Furthermore, as a comparison, similar

thin–film Lüneburg lens is designed using the DBD method and simulation results

are shown in Fig. 6-8. It is observed that results of the all–analytical EGM method
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design agree with those from the DBD method.

In Section 6.1.1 we mentioned the second–order effective medium theory for better

approximation of the effective index when the wavelength is not significantly larger

than the size of unit cell. To illustrate the importance of these second–order terms,

we designed a thin–film Lüneburg lens using the EGM method, but the second–order

terms were neglected when estimating the effective indices. The FDTD and ray–

tracing results are shown in Fig. 6-9. The performance of the lens is degraded with

aberrations and shifted focal position. Note that to clearly illustrate the focal points,

we extended the size of the 3D FDTD model in z direction to 61a.

To compare the redesigned lens (3D, finite height) with the original design (2D,

infinite height), we repeated the design using the values of refractive indices predicted

by the dispersion relation of the infinite–height rod lattice (see Fig. 6-5(b) blue and

red solid curves). In this case, we are forced to use TM polarization only because

the TE polarization reaches the bandgap for relatively small value of r, not leaving

enough room to implement the Lüneburg profile with rod radius r large enough to be

robust to practical lithography and etching methods (in our experiment, this requires

r ≥ 0.27a [131, 132]). Also, for better illustration, the size of 3D FDTD model is

modified to 41a× 24a× 101a. It can be observed from the FDTD and Hamiltonian

ray–tracing results shown in Fig. 6-10 that the focal point is outside the lens edge

and it is strongly aberrated. This is in good agreement with the experimental results

of the original design [131, 132].

6.3 Anisotropic guidance correction

The analytical method discussed above assumes that the thin–film layer can be ap-

proximated by an isotropic effective medium. However, in some cases this layer may

be anisotropic. Anisotropic guidance correction is necessary when more precise design

is required.

Fig. 6-11 illustrates the directions of E and H fields while the wave is propagating

through the slab. Note that because all materials considered here are dielectric and
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Figure 6-7: (a) Top view and side view of the thin–film subwavelength Lüneburg lens
designed by EGM method for TE mode and (b) the corresponding 3D FDTD and
Hamiltonian ray tracing results. (c) Top view and side view for TM mode and (d)
the corresponding 3D FDTD and ray tracing results. Red circles outline the edge
of Lüneburg lens, where radius R = 30a. Blue lines are the ray tracing results and
color shading denotes the field [Hy for (b) and Ey for (d)] distribution, where red is
positive and blue is negative.
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Figure 6-8: Structure and the corresponding 3D FDTD and Hamiltonian ray tracing
for the thin–film subwavelength Lüneburg lens shown in Fig. 6-7, but designed by the
DBD method instead.
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Figure 6-9: Structure and the corresponding 3D FDTD and Hamiltonian ray tracing
for the thin–film subwavelength Lüneburg lens shown in Fig. 6-7, but designed using
the EGM method without second–order terms when estimating the effective refractive
indices.
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Figure 6-10: FDTD and Hamiltonian ray–tracing results of the subwavelength
Lüneburg lens made of finite height silicon rods, but designed assuming infinite height.
The color conventions are the same as in Fig. 6-7(b&d).

Figure 6-11: Polarization of electrical and magnetic fields while propagating along the
thin–film under (left) TM–like and (right) TE–like polarizations. TE–like polarization
results into an anisotropic effective medium.
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non–magnetic, the polarization of magnetic field H does not matter. However, E

field directions play an important role. Under TM–like polarization, E is always

parallel to thin film; thus this slab can be considered isotropic. However, under

TE–like polarization, because waves are bouncing back–and–forth between the two

waveguide interfaces, E field is not perfectly perpendicular to the slab (that is also

why this mode should be called TE–like instead of TE, to be more precise), but is

tilted. E field contains two components: one is perpendicular to the slab and the

other is parallel to it. These two components “see” different effective indices because

they are orientated at different directions. One is parallel to the rods, while the

other is vertical to them. The parallel component of E field (in x–z plane) is the

same to the TM–like polarization case, which contributes to an effective permittivity

along y direction; and the perpendicular component (along y direction) contributes

to an effective permittivity along z direction (assuming waves are propagating along

z direction).

Figure 6-12: Three–layer effective structure for a thin–film slab under TE–like polar-
ization. The middle layer now becomes anisotropic effectively.

Therefore, the thin–film layer is actually anisotropic and can be modeled by an

effective anisotropic medium illustrated in Fig. 6-12. It is a uniaxial birefringent

layer with optical axis perpendicular to the interface. Note that ϵIIy is equivalent to

the effective index of an isotropic medium of TM–like polarization. We re–write the

guidance condition under TE polarization assuming isotropic effective medium here
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(see also Eq. 6.6)

arctan

(
ϵII
√
k2
z − ϵIω2/c2

ϵIkIIy

)
+ arctan

(
ϵII
√

k2
z − ϵIIIω2/c2

ϵIIIkIIy

)
= kIIy · h+mπ, (6.9)

where m is an integer. After some calculation, the guidance condition assuming an

anisotropic effective medium can be written as

arctan

(
ϵIIz

√
k2
z − ϵIω2/c2

ϵIkIIy

)
+ arctan

(
ϵIIz

√
k2
z − ϵIIIω2/c2

ϵIIIkIIy

)
= kIIy · h+mπ, (6.10)

where m is an integer as well. The only difference is that we are using ϵIIz for the effec-

tive permittivity of the slab layer, instead of using ϵII which equals to ϵIIy. Thin–film

subwavelength nanostructured devices can be designed more precisely when taking

the above anisotropic effect into consideration.

6.4 Conclusion

In this chapter, we designed an all–dielectric finite–thickness aperiodic nanostructured

Lüneburg lens. In order to compensate for the thin–film effect, an all–analytical

approach is proposed. Our method estimates the effective refractive index of the

infinite–height lattice from the second–order effective medium theory, then we re-

place this lattice with a continuum medium of the same effective index. In this

way the structure becomes one of the asymmetric waveguide, and a new effective

index explicitly accounting for the thin–film effect can be derived from the waveguide

dispersion relation. The results agree with those calculated using the conventional

numerical treatment; but our method avoids 3D numerical calculation and provides

more physical intuition. The performance of the Lüneburg lens has been verified

with 3D finite–difference time–domain (FDTD) method. In the end the effect of

anisotropic effective medium has been discussed.
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Chapter 7

Conclusions and future work

In this thesis, we explored various designs and applications of three dimensional pu-

pils. Three different categories of pupils have been discussed, including:

• 3D diffractive pupils where shift variance is desirable, enabling the favorable

property of depth selectivity. In Chapter 2, a volume holographic filter ar-

chitecture for detecting artificial satellites in daytime has been proposed and

optimized. This design is verified by a tabletop experiment. Effects of field

of view, atmospheric turbulence and lens aberrations on this design have been

evaluated.

• 3D diffractive pupils where shift variance and PSF manipulation are both de-

sirable. Manipulation can be achieved by deforming the pupils, i.e. holograms.

In Chapter 3 and Chapter 4, both point indenters and bulk transformations

have been investigated. Especially for bulk transformations, we aim at locat-

ing analytical expressions, which are physically intuitive and computationally

efficient.

• Subwavelength structures where the PSF needs to be manipulated. This ma-

nipulation is mostly realized by designing inhomogeneous and anisotropic re-

fractive index or permittivity distributions. In Chapter 5 and Chapter 6, we

explored the possibilities of fine tuning each unit cell to achieve gradient in-

dex and anisotropic materials. Three dimensional thin film effect has also been
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emphasized, which are the steps towards full three dimensional pupils.

Three dimensional diffractive pupils such as volume holograms do not have to be

used for detecting artificial satellites in the case of long distance imaging. While,

up to now, most volume holographic imaging applications aim towards microscopy,

or objects located at a short distance away. We have demonstrated in this thesis

that depth selectivity can be equally applied to long–distance imaging. Our tabletop

experiment implemented a prototype for this purpose. Potential applications to be

explored in the future include imaging underwater through a turbulence, locating

live objects through thick smoke in a fire, and all other cases where noise dominates

and a significant SNR enhancement is desired. In addition, this VHF system is

definitely multifunctional, and in vivo adjustment of this system is also available.

Once this system has been built, changing the system for imaging at a different

distance (depth) can be easily realized by tuning the relative distance between the two

lenses of the telephoto system. Furthermore, because of the wavelength degeneracy

of volume holograms, this type of 3D pupils can also be tuned to function at different

wavelengths, including at least infrared and ultraviolet.

Besides shift variance, deforming the exterior of 3D pupils provides richer design

opportunities through the manipulation of PSFs. We have investigated the deforma-

tions from point indenters and bulk transformations. In the future, these deformed

3D pupils can be realized in experiment. First we define the PSFs required for differ-

ent imaging purposes, such as a narrow mainlobe PSF, a suppressed sidelobe PSF,

or even a rotating PSF. In the next step, a proper deformation is calculated using

optimization approach. The analytical relationship investigated in Chapter 4 could

facilitate this process. Once the deformations for desired PSFs are found, experiments

may be performed to utilize this deformed 3D pupil. This experiment prototype can

be applied to various applications, e.g. biological imaging. Changing the transforma-

tions exerted on the hologram allows for a switching of PSFs. Thus an object could

be probed through different systems using just one architecture.

It is also beneficial to explore larger deformations, where the material of the pu-

pils not only redistributes, but also becomes, for example, anisotropic. The effect
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of anisotropy should be considered in deriving the analytical deformation–PSF rela-

tionship. Material anisotropy makes this problem more difficult, but on the other

hand it also provides possibilities of more potentially interesting properties and phe-

nomena. For dealing with anisotropy, it is helpful to make an analogy between this

diffractive regime with subwavelength regime, where anisotropy has been discussed

and considered as a standard tool.

As has been discussed, the deformation is applied upon an already recorded pat-

tern of plane–wave interference, thus design flexibility is limited. To create more

complex patterns, a phase or amplitude mask could be placed in one or both of the

recording beams; this could potentially record arbitrary permittivity patterns on the

hologram. Resulting recorded pattern manipulates the PSF in combination with the

deformations. Note that due to the diffraction limit, this pattern is limited to the

diffractive regime, unless the hologram is used at longer (infrared) wavelengths.

In subwavelength regime, there are also various directions for exploration. Now

that inhomogeneity [60, 131] and anisotropy [143, 148], have been realized, many com-

plex subwavelength optical elements can be designed in a similar manner, especially

those for integrated optical systems and future “optical circuits”, including modula-

tors, waveguides, couplers, collimators, and even nanostructured optical sources and

detectors. Three dimensional device designs are readily available, since our approach

can be easily extended to the third dimension. The current major obstruction in

developing 3D devices is the limited 3D fabrication methods available, not the design

itself.

Three dimensional subwavelength devices should be inserted into the pupil plane of

an optical system in order to achieve the desired PSF or relevant optical functionality.

Note that the (almost) free modulation of “effective” material properties in these

subwavelength devices enables lots of flexibilities in pupil design. This problem again

becomes an “inverse problem”, i.e. one is required to design a subwavelength 3D pupil,

giving the input–output relationship, desired PSF, or required system functionality.

We could use a similar approach as the one presented in Chapter 3, to first locate the

permittivity or refractive index distribution of the 3D pupil. From this a final device

139



structure design is straightforward based on the analytical or numerical approaches

presented in Chapter 5 & 6. Inverse problem and optimization, though interesting and

very helpful, are always hard problems and difficult to tackle. Starting from simple

designs is important and can potentially shed lights on future complicated ones. In

addition, ray tracing can be used to aid this process. Ray tracing, given its pleasing

advantages of physical intuitions and computational efficiency, is a good candidate to

be used as an intermediate step for converting the input–output relationship to the

final permittivity distribution.

Furthermore, subwavelength devices do not have to be restricted in manipulating

optical fields only. Proper deformation of the structure (similar to the volume holo-

gram deformation in diffractive regime) further enriches design possibilities. Thus,

in vivo adjustment of optical properties can also be realized for subwavelength 3D

pupils.
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