
Sampling in Computer Vision
and Bayesian Nonparametric Mixtures

by

Jason Chang

B.S., Electrical Eng., University of Illinois at Urbana-Champaign, 2007
S.M., Electrical Eng. and Comp. Sci., Massachusetts Institute of Technology, 2009

Submitted to the Department of Electrical Engineering and Computer Science in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology

June 2014

© 2014 Massachusetts Institute of Technology
All Rights Reserved.

Signature of Author:

Department of Electrical Engineering and Computer Science
May 21, 2014

Certified by:

John W. Fisher III
Senior Research Scientist of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by:

Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science

Chair of the Committee on Graduate Students

ii

Sampling in Computer Vision
and Bayesian Nonparametric Mixtures

by Jason Chang

Submitted to the Department of Electrical Engineering
and Computer Science on May 21, 2014

in Partial Fulfillment of the Requirements for the Degree
of Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract
The field of computer vision focuses on understanding and reasoning about the visual
world. Due to the complexity of this problem, researchers often focus on one specific
component of this large task, such as segmentation or recognition. This modularized
approach necessitates the combination of each separate component, which Bayesian
formulations handle in a mathematically consistent framework. Unfortunately, prob-
abilistic formulations are often difficult in computer vision due to the complexity and
large dimensionality of data. In this thesis, we demonstrate how efficient Markov chain
Monte Carlo (MCMC) sampling techniques can address a subset of these problems.

In the first half of this thesis, we consider the problem of inference in discrete Markov
random fields (MRFs) that often occur in segmentation and tracking. We develop the
Permutation-based Gibbs-Inspired Metropolis-Hasting (PGIMH) sampling algorithm
and show its applicability to a variety of formulations (including curve-length penalties
and topology priors). In particle filtering, PGIMH precludes the need to update particle
weights or use of sequential importance resampling. Empirical results demonstrate that
PGIMH is approximately 104 times faster than previous shape sampling approaches and
that it improves results in segmentation, boundary detection, and object tracking.

In the second half of this thesis, we focus on inference in the Dirichlet process mix-
ture model (DPMM), which is often slow and cumbersome due to the infinite number of
mixture components. We develop a parallel algorithm that samples from the posterior
distribution of a DPMM without requiring finite model approximations. This method,
called DP Sub-Clusters, essentially fits a two-component mixture model to each regular
cluster. These “sub-clusters” are then used to propose splits and merges, resulting in
the efficient exploration of the sample space. We show how the developed framework
extends to other mixture models, such as the hierarchical Dirichlet process, often used
in document analysis. Additionally, we develop the spatially-varying Dirichlet pro-
cess Gaussian mixture model (SV-DPGMM), which achieves state-of-the-art results in
intrinsic image decomposition by leveraging the DP Sub-Cluster algorithm.

By addressing these problems, we demonstrate the applicability of MCMC methods
to computer vision, and highlight the importance of designing fast sampling algorithms.

Thesis Supervisor: John W. Fisher III
Title: Senior Research Scientist of Electrical Engineering and Computer Science

iv

Acknowledgments

This thesis would not have been possible without the support of many people at MIT
and beyond. First and foremost, I would like to start by thanking my thesis committee,
John Fisher, Alan Willsky, and Antonio Torralba. Their comments on the writing and
research directions have undoubtedly made it form into one cohesive story.

I am very grateful for John, who has been a great friend and mentor for the past
seven years at MIT. John has given me the freedom to pursue any research interest
that I have had without ever having to worry about funding. When I look back at my
time at MIT, it is abundantly clear that John has shaped both my thought process and
research interests. I cannot even begin to imagine what my experience would have been
like if it was not for John’s guidance.

I would also like to personally thank Alan, who has essentially been a second advisor
to me. I met with Alan to discuss research on a weekly basis in the SSG grouplets, and
I was always amazed at how much he knew about every subject that came up, whether
research-related or otherwise. Grouplets with Alan have helped me become a better
presenter and have exposed me to a wealth of other interesting research topics. I will
always remember Alan’s comments that were prefaced by his “synapses firing,” since
they were guaranteed to be something very insightful.

This thesis would also not have been possible without the help of collaborators.
Donglai Wei and I worked tirelessly on the temporal superpixels work, solving a seem-
ingly endless flow of problems that kept arising. Unfortunately, our optimization scheme
was too much of a departure from the sampling goals of this thesis to include. Randi
Cabezas helped a lot with the intrinsic image decomposition and even created an entire
dataset that we never ended up using. I would also like to acknowledge all the grouplet
members I have had over the years. In particular, Matt Johnson, Dahua Lin, Ying Liu,
James Saunderson, and Kush Varshney were recurring grouplet participants. Their
combined expertise in computer vision, machine learning, probabilistic modeling, and
optimization is simply astounding.

The other SLI group members, Christopher Dean, Oren Freifeld, Zoran Dzunic,
Bonny Jain, Hosseein Mobahi, Giorgos Papachristoudis, Guy Rosman, Michael Sira-
cusa, Julian Straub, and Sue Zheng have also been very helpful in reading over early
drafts of research papers and sitting through many presentations. The SLI group has
grown from the four members when I started to the current large, twelve member group,
and I’m glad to see that the culture remains.

I’ve had the pleasure of sharing an office with a fun group of friends: Randi Cabezas,
Michal Depa, Andrew Mastin, Julian Straub, Archana Venkataraman, and Sue Zheng.
We’ve had many dart fights and random discussions over the past years, and I could

v

vi ACKNOWLEDGMENTS

always count on one of them being in the office regardless of the time or day.
Lastly, I would like to thank my family and friends. In particular, my parents and

sister have provided the emotional support and love to get through my Ph.D. journey.
They have taught me to value what is important in life and that anything is possible
when you set your mind on a goal. Thank you for always being there for me.

Different aspects of this thesis were partially supported by the Office of Naval Re-
search Multidisciplinary Research Initiative program, award N000141110688, the Army
Research Office Multidisciplinary Research Initiative program award W911NF-11-1-
0391, the Defense Advanced Research Projects Agency, award FA8650-11-1-7154, and
Shell via the MIT Energy Initiative.

Contents

Abstract iii

Acknowledgments v

Contents vii

List of Figures xiii

List of Tables xvii

List of Algorithms xix

1 Introduction 1
1.1 A Bayesian Approach . 2
1.2 Thesis Outline and Contributions . 4

2 Background 9
2.1 Posterior Inference . 9
2.2 Conjugate Priors . 11

2.2.1 Marginal Data Likelihood . 12
2.2.2 Predictive Distribution . 13

2.3 Conjugate Distributions . 13
2.3.1 Categorical Distribution . 13
2.3.2 Multinomial Distribution . 13
2.3.3 Dirichlet Distribution . 14

Categorical Conjugacy . 14
Multinomial Conjugacy . 15

2.3.4 Multivariate Gaussian Distribution 16
Self Conjugacy on Mean . 16

2.3.5 Normal Inverse-Wishart Distribution on Mean and Covariance . 18
Multivariate Gaussian Conjugacy 18

2.4 Probabilistic Graphical Models . 19

vii

viii CONTENTS

2.4.1 Directed Acyclic Graphical Models 19
Markov Chains . 21

2.4.2 Undirected Graphical Models . 22
2.5 Sampling Algorithms . 22

2.5.1 Markov Chain Monte Carlo Sampling 22
Metropolis-Hastings Sampling . 24
Gibbs Sampling . 26
Reversibile-Jump MCMC . 27
Determining Convergence . 29

2.5.2 Importance Sampling . 29
Particle Filtering . 30

2.6 Implicit Shapes Representations via Level-Set Methods 31
2.6.1 Signed Distance Function . 32
2.6.2 Sampling-Based Inference . 33

2.7 Digital Topology . 34
2.7.1 Connectiveness . 35
2.7.2 Topological Numbers and Simple Points 35
2.7.3 Extended Topological Numbers 36

2.8 Finite Mixture Models . 37
2.8.1 Priors on Parameters . 38
2.8.2 Posterior MCMC Inference . 39

2.9 Non-parametric Bayesian Statistics . 39
2.9.1 Gaussian Processes . 40

Exact Posterior Inference . 40
Covariance Kernels . 41
Approximate Sampling and Inference via Equivalent Kernels . . 42
Approximate Likelihood Computation 45

2.9.2 Dirichlet Processes . 46
Chinese Restaurant Process . 48
Collapsed-Weight Samplers . 49
Instantiated-Weight Samplers . 50
Super-Cluster Parallel Samplers 51
Split/Merge Sampling Algorithms 52

2.9.3 Hierarchical Dirichlet Process . 54
Explicit Atom Representation . 54
Chinese Restaurant Franchise Representation 55
Direct Assignment Representation 58
Finite Symmetric Dirichlet Approximation 60

3 Implicit Shapes and Discrete MRFs 63
3.1 Related Work . 65
3.2 Permutation-based Gibbs-Inspired Metropolis Hastings 66

CONTENTS ix

3.2.1 Problem Statement . 66
3.2.2 Augmented Ordering Sample Space 67
3.2.3 Metropolis-Hastings in Augmented Space 69

Validity of Sampling Algorithm 70
A Gibbs-Inspired Proposal . 71

3.2.4 An Efficient Implementation . 72
3.3 K -Ary Sampling . 73

Validity of K -Ary Sampling Algorithm 73
3.4 Compatible Priors . 75

3.4.1 Priors on Curve Length . 75
3.4.2 Priors on Balloon Force . 77
3.4.3 Priors on Topology . 77
3.4.4 Other Priors . 79

3.5 Mutual Information Energy Functional 79
3.6 Applications . 80

3.6.1 Convergence Times . 81
3.6.2 Sensitivity to Noise . 83
3.6.3 Boundary Detection in Natural Images 83
3.6.4 Topology-Controlled Sampling 85

3.7 Discussion . 87

4 Shape Dynamics in Object Tracking 91
4.1 Related Work . 92
4.2 Layered Model . 93

4.2.1 In-Frame Appearance . 93
4.2.2 Temporal Appearance Dynamics 94
4.2.3 Temporal Support Dynamics . 95

4.3 Gaussian Process Flow . 96
4.3.1 Smooth Deformable Flow . 97

4.4 Inference . 98
4.4.1 Efficient Particle Filtering without Weight Updates 98
4.4.2 Single Layer Sampler . 100
4.4.3 Multiple Layer Sampler . 101

4.5 Experiments . 102
4.5.1 Implementation Details . 102
4.5.2 Tracking . 102
4.5.3 Inferring Layer Order . 104
4.5.4 Independent Contributions . 106
4.5.5 Optical Flow . 107

4.6 Discussion . 109
4.6.1 Future Work . 109

5 Parallel Split-Merge MCMC for the DPMM 111

x CONTENTS

5.1 Related Work . 112
5.2 Exact and Parallel Instantiated-Weight Samplers 114

5.2.1 Restricted DPMM Gibbs Sampler with Super-Clusters 114
Deleted Clusters via Restricted Sampling 116
Data-Dependent Super-Clusters 116

5.3 Randomized Split/Merge Moves . 117
5.4 Parallel Split/Merge Moves via Sub-Clusters 119

5.4.1 Augmenting the Space with Auxiliary Variables 120
5.4.2 Restricted Gibbs Sampling in Augmented Space 121
5.4.3 Sub-Cluster Split Moves . 122
5.4.4 Deferred Metropolis-Hastings Sampling 124
5.4.5 Merge Moves with Random Splits 124

5.5 Non-Deterministic Sub-Cluster Split Proposals 125
5.6 Experimental Results . 126

5.6.1 Split/Merge Proposal Comparison 126
5.6.2 Parallelizability and Sensitivity to Hyper-Parameters 128
5.6.3 Real-World Datasets . 129

5.7 Discussion . 129

6 Parallel Split-Merge MCMC for the HDP 133
6.1 Related Work . 133
6.2 Hierarchical Dirichlet Processes . 135
6.3 Restricted Parallel Sampling in HDPs 136
6.4 Sub-Topic Fitting . 137
6.5 Sub-Topic Split/Merge Moves . 138

6.5.1 Local Splits and Merges . 140
6.5.2 Global Split/Merge Proposals . 141

6.6 Experimental Results . 143
6.6.1 Visualizing Sub-Topics . 143
6.6.2 Parallelizability & Convergence 143
6.6.3 Associated Press Dataset . 144
6.6.4 Large Datasets . 146

6.7 Discussion . 147

7 Intrinsic Image Decomposition via the SV-DPGMM 151
7.1 Related Work . 152
7.2 Generative Model . 154

7.2.1 Relation to DPGMMs . 156
7.3 Posterior Inference . 157

7.3.1 Iterative Posteriors Inference without Marginalization 158
7.3.2 Marginalized Posterior Inference 159
7.3.3 Marginalized Split/Merge Posterior Inference 161

7.4 Parameter Learning . 162

CONTENTS xi

7.4.1 Supervised Learning . 163
7.4.2 Unsupervised Learning . 163

7.5 Post-Processing for Color Constancy . 164
7.6 Experimental Results . 166

7.6.1 Cross-Validation Performance . 167
7.6.2 Sensitivity to Noise . 173

7.7 Discussion . 173

8 Conclusion 175
8.1 Contributions to Shape Sampling . 175
8.2 Contributions to Probabilistic Mixture Models 176
8.3 Future Work . 177

8.3.1 Spatially-Coherent Mixture Models 177
8.3.2 Segmentation via Intrinsic Images 179

8.4 Final Thoughts . 180

A Derivations Pertaining to Shape Dynamics 181
A.1 Particle Filtering without Weight Updates 181
A.2 Approximate Marginalization of Independent Flow 182

B Derivations Pertaining to DPMM Sub-Clusters 185
B.1 Auxiliary Variable Prior and Posterior Distributions 185
B.2 Hastings Ratios for Splits . 186
B.3 Hastings Ratios for Merges . 189

C Derivations Pertaining to HDP Sub-Topics 191
C.1 Calculating the p(β, z) Distribution . 191

C.1.1 Deriving the Joint: p(β, κ, τ, z) 191
C.1.2 Deriving the Conditional p(κ, τ |β, z) 192
C.1.3 Finding the Prior p(β, z) . 193
C.1.4 Notes on p(β, z) . 194

C.2 Joint Model Likelihoods . 194
C.3 Hastings Ratios for Local Proposals . 195
C.4 Hastings Ratios for Global Proposals . 197

D Derivations Pertaining to SV-DPGMM 199
D.1 Marginalization of the Gaussian Process 199
D.2 Marginalization of the Gaussian Process and the Means 202
D.3 Marginalized Splits and Merges . 203

List of Symbols 205

Bibliography 213

xii CONTENTS

List of Figures

1.1 Detecting whether a human is riding a bicycle. 2
1.2 Two human-annotated segmentations from [88]. 2
1.3 An example of the mixture model. 4

2.1 An example of posterior inference in tracking. 10
2.2 Examples of directed graphical models, plate notation, and observations. 20
2.3 Latent and observed Markov chains. 21
2.4 An importance sampling example. 30
2.5 Markov chain that can be inferred via particle filtering. 30
2.6 Example of a level-set function. 32
2.7 Example of a level-set function as a signed distance function. 33
2.8 A proposal from the alternating implicit/explicit shape sampling algorithm. 34
2.9 A proposal from the foot-point-based shape sampling algorithm. 35
2.10 Examples of topology paradoxes. 35
2.11 Examples of topological numbers with (n, n) = (4, 8). 36
2.12 Extended topological numbers. 37
2.13 An example of a finite mixture model. 38
2.14 Graphical model for a Bayesian finite mixture model. 39
2.15 Samples of Gaussian processes with different characteristic length-scales. 42
2.16 Magnification of samples from a Gaussian process. 42
2.17 Covariance kernels and samples from the Matérn class of kernels. 43
2.18 Comparing inference methods for Gaussian processes. 44
2.19 Approximating determinants of symmetric Toeplitz matrices. 46
2.20 Two equivalent graphical models for the DPMM. 47
2.21 Graphical models for the explicit atom and CRF formulations of the HDP. 55
2.22 A visualization of draws from HDPs. 57
2.23 Direct assignment representation of the HDP. 58

3.1 Example MRF structures. 64
3.2 Positive and negative examples of relative orderings. 68
3.3 Positive and negative examples of consistent orderings. 69

xiii

xiv LIST OF FIGURES

3.4 An example of the PGIMH proposals. 73
3.5 Local neighborhood dependence for computing curve-length. 76
3.6 Splitting a region vs. destroying a handle. 78
3.7 Comparison of shape sampling algorithms on a synthetic example. . . . 81
3.8 Average log likelihood vs. time for multiple sampling algorithms. 82
3.9 A problematic example for Gibbs sampling. 82
3.10 Results for three synthetic images with varying SNR values. 83
3.11 Sampling vs. optimization on the BSDS. 84
3.12 Example results from BSDS. 85
3.13 Example samples obtained by imposing different topology constraints. . 86
3.14 Histogram images with different initializations and topology constraints. 86
3.15 Results on low SNR images using different topology constraints. 87
3.16 Example images illustrating the utility of topology priors. 88

4.1 Bounding box tracking versus boundary accurate tracking. 91
4.2 The graphical model used in the tracking algorithm. 93
4.3 An example of the three types of pixels that can occur in a new frame. . 94
4.4 Samples flows from different GPs. 97
4.5 Frames of a deformable object with self occlusions and disocclusions. . . 97
4.6 Markov chain that can be inferred via particle filtering. 98
4.7 Visualization of the edge sharpening. 103
4.8 Four results on the SegTrack dataset [118]. 104
4.9 Results on the datasets of [49] and [82]. 105
4.10 Frames and pie charts showing the posterior distribution over orderings. 106
4.11 Average errors on SegTrack using different versions of our algorithm. . . 106
4.12 Inferred flow on the Middlebury dataset [3]. 108

5.1 Graphical models for the DPMM and augmented super-cluster space. . 114
5.2 Visualizations of the restricted state diagrams. 115
5.3 An illustration of the super-cluster grouping. 116
5.4 An illustration of data-dependent and data-independent super-clusters. . 117
5.5 Graphical models for the augmented DPMMs. 121
5.6 A visualization of the inferred sub- and super-clusters of the algorithm. 122
5.7 Log likelihood vs. computation time for various split/merge proposals. . 127
5.8 Synthetic results vs. initial clusters, concentration parameters, and cores. 128
5.9 Results on real-world Gaussian and Multinomial data. 130

6.1 The Hierarchical Dirichlet process graphical model. 135
6.2 Augmented sub-topic HDP graphical models. 137
6.3 Visualization of augmented sample space. 137
6.4 A visualization of how m̃jk(z) is determined. 139
6.5 Visualizing sub-topics on the synthetic “bars” example of [47]. 143
6.6 Different split/merge schemes and parallelization. 144

LIST OF FIGURES xv

6.7 Results on the “bars” example. 144
6.8 Results on the Associated Press dataset for 1, 25, 50, and 75 initial topics.145
6.9 Confusion matrices on the Associated Press dataset. 145
6.10 Results on the Associated Press dataset after switching algorithms. . . . 146
6.11 Results on the Enron emails for 1 and 50 initial topics. 146
6.12 Results on the New York Times articles for 1 and 50 initial topics. . . . 147
6.13 Subset of learned topic distributions from the New York Times dataset. 148
6.14 A graphical model for the HDP-HMM. 148

7.1 An example of the intrinsic image problem. 151
7.2 The graphical model for SV-DPGMM with two equivalent representations.154
7.3 A visualization of the set of covariances, SΣ. 156
7.4 An example of correcting color constancy as a post processing step. . . . 164
7.5 Kernel density estimates for the prior log-reflectance and log-shading. . 165
7.6 Visual comparison of results . 170
7.6 Visual comparison of results . 171
7.6 Visual comparison of results . 172
7.7 Performance with additive noise. 173

8.1 Graphical models for the DPMM and the a spatially coherent DPMM. . 178
8.2 An example where shading give information about object boundaries. . 179
8.3 Graphical models for the SV-DPGMM and the Hiearchical SV-DPGMM. 180

B.1 Probability quantities associated with rejecting a merge proposal. 190

C.1 Joint log likelihood vs. number of topics. 195

xvi LIST OF FIGURES

List of Tables

3.1 Topological changes as a function of topological numbers. 78
3.2 Empirical Convergence Times for Shape Sampling. 82

4.1 Average number of incorrect pixels per frame on SegTrack. 103
4.2 Average endpoint error for training set of Middlebury dataset [3]. 107

5.1 Capabilities of MCMC Sampling Algorithms in DPMMs 112

7.1 Differences in Algorithms for Intrinsic Image Decomposition 154
7.2 Comparing SV-DPGMM Inference Methods 167
7.3 Comparing SV-DPGMM Inference Methods 168
7.4 Leave-One-Out-Cross-Validation on 16 images from [48] 169
7.5 Separate Train/Test Validation on 20 images from [48] 169

xvii

xviii LIST OF TABLES

List of Algorithms

2.1 The Metropolis-Hastings Algorithm . 26
2.2 The Gibbs Sampling Algorithm . 27
2.3 The RJMCMC Proposal . 28
2.4 Alternating Implicit/Explicit Shape Sampling 33
2.5 Foot-Point-Based Shape Sampling . 34
2.6 Chinese Restaurant Process Sampling for DPMMs 50
2.7 Finite Symmetric Dirichlet Approximation for DPMMs 51
2.8 Restricted Gibbs Split Merge Sampling for DPMMs 53
2.9 Sequentially-Allocated Split Proposal for DPMMs 54
2.10 Direct Assignment Sampling for HDPs 60
2.11 Finite Symmetric Dirichlet Approximation for HDPs 61
3.1 Gibbs Sampling an MRF . 65
3.2 Blocked Gibbs Sampling an MRF . 66
3.3 PGIMH Proposal Distribution . 70
3.4 An iteration of sampling p(z) via PGIMH 72
3.5 An iteration of sampling p(z) for multiple labels via PGIMH 73
5.1 Sampling Super-clusters with Similar Cluster 117
5.2 Restricted Sampling with Sub-Clusters 121
6.1 HDP Split-Merge Framework . 139
6.2 Sub-Cluster HDP Sampler . 143
7.1 SV-DPGMM Iterative Inference via MCMC 159
7.2 SV-DPGMM Marginalized Inference via MCMC 161
7.3 SV-DPGMM Marginalized Split/Merge Inference via MCMC 162

xix

xx LIST OF ALGORITHMS

Chapter 1

Introduction

The field of computer vision attempts to develop algorithms to better understand
the visual world. Successful computer vision algorithms are applicable to a wide
variety of problems. For example, in robotics, understanding the surrounding en-

vironment enables robots to navigate and interact with the physical world. In surveil-
lance, streaming videos could greatly benefit from autonomous analysis in anomaly
detection, object recognition, and object tracking. In this thesis, we consider the prob-
lem of statistical computer vision by demonstrating that reasoning over statistics of
complex distributions in computer vision is not only useful, but feasible for a variety
tasks.

One of the ultimate goals of computer vision is to semantically understand scenes.
This task is difficult because of the intricate dependencies that exist amongst objects
in the scene, only which are obfuscated even more by the camera sensor that translates
the semantically-meaningful world into millions of tiny pixels. Due to the complexity of
the overarching problem, computer vision research often focuses on one specific aspect
of the problem, such as image segmentation, object recognition, or object tracking.
Obtaining a hard decision for any of these individual task is typically easier than finding
the uncertainty in the decision. Furthermore, when the individual task is treated as the
end goal, a single hard decision may suffice. For example, in object detection, knowing
that there are three detected humans in the scene may be satisfactory.

However, when considering the scene as a whole, reliably combining the individual
solutions of the separate problems into a unified decision becomes more difficult. For
example, consider the task of detecting whether a human is riding a bicycle in the image
in Figure 1.1. If the human is detected but the bicycle is missed because of the threshold
of the detector, there is little hope for an algorithm to declare that a human is riding
a bicycle.. Alternatively, if probabilities of detection are used, the uncertainty in the
detections can be used by the higher-level reasoning to make a more informed decision.
As such, it is critical to capture the uncertainty of the individual lower-level tasks (such
as object and gesture recognition) before declaring the final decision. A unified Bayesian
formulation of the individual tasks provides a mathematically consistent framework for
such an integration.

The benefit of reasoning about the uncertainty of a solution also exists in the indi-
vidual tasks of computer vision. For example, consider image segmentation, which aims

1

2 CHAPTER 1. INTRODUCTION

(a) Original Image (b) Hard Declaration (c) Probabilistic Declaration

Figure 1.1: Detecting whether a human is riding a bicycle. Green and red bounding
boxes represent hard positive and negative detections, respectively, and yellow bound-
ing boxes represent probabilistic detections. (b) A bike is not found, resulting in the
declaration that there is no human riding a bike. (c) A probabilistic detection defers
the declaration to the higher-level reasoning.

(a) Original Image (b) Segmentation 1 (c) Segmentation 2

Figure 1.2: Two human-annotated segmentations from [88].

to divide the visual world into different, semantically-meaningful objects. This task can
be formalized as assigning a discrete label to each pixel of the image, where two pixels
with the same label belong to the same object. An example of the image segmentation
task from the Berkeley Segmentation Dataset [88] is shown in Figure 1.2 for two dif-
ferent human annotators. While there is clearly a high amount of agreement between
the human segmentations, there is also quite a bit of variability. Typical approaches
to image segmentation attempt to find a solution by optimizing some user-specified en-
ergy. However, regardless of how well the energy approximates the actual human visual
system, an optimization scheme cannot capture the variability in results that exists in
human processing.

� 1.1 A Bayesian Approach

The Bayesian formulation provides a mechanism where the uncertainty in a solution is
reasoned about in a mathematically consistent framework. Generally speaking, a full
model of uncertainty is captured by a probability distribution; however, in the context

Sec. 1.1. A Bayesian Approach 3

of computer vision, such distributions are complex and exist in very high-dimensional
spaces. For example, in a reasonably sized image of 640×480, there exists 3×105 pixels
and 23×105

possible segmentations into two regions. This leads to certain challenges in
exploiting Bayesian models.

One tool that is often used in complicated distributions (such as those encountered
in computer vision) is Monte Carlo simulation. Monte Carlo simulation relies on the
law of large numbers, which essentially states that the expectation of any function of
a random variable is well-approximated with the average of the function evaluated at
sample realizations of the random variable. Furthermore, when distributions cannot
be sampled from directly, Markov chain Monte Carlo (MCMC) methods can be used.
MCMC methods draw a sample from a user-specified, target distribution by simulating a
specific Markov chain. Under certain mild conditions, the state of the Markov chain will
converge to its stationary distribution after an adequate amount of time. Furthermore,
as we review in Chapter 2, one can guarantee that the stationary distribution is exactly
the target distribution of interest by ensuring certain conditions. At the heart of many
MCMC problems is the design of transition distributions that reduce the convergence
time to the stationary distribution. This is especially true when scaling the algorithm
to large amounts of data.

While the use of MCMC methods is fairly common in a variety of domains, chal-
lenges exist when applying them to computer vision problems. MCMC methods are
typically slower than optimization procedures since they must reason about the un-
derlying distribution instead of finding the single point that corresponds to the best
configuration. This computation is exacerbated in the computer vision domain due
to the large scale of the data. Moreover, quantities of interest in computer vision are
often quite complex and exhibit intricate dependencies. For example, representing the
boundary of an object and the temporal evolution that couples the appearance and
shape is challenging to represent in a probabilistic framework.

In this thesis, we demonstrate that some challenges in applying MCMC methods to
computer vision can be addressed by developing efficient algorithms. As we shall see,
these methods are extensible to fields outside of computer vision as well. For example,
in probabilistic modeling, one common problem focuses on clustering sets of data with
a mixture model (e.g., see Figure 1.3). In such scenarios, it is already common to use
MCMC methods such as Gibbs sampling [40] or Metropolis-Hastings sampling [51] to
infer information about distributions instead of relying on point-estimates. However,
current methods can take quite a long time to converge, and/or require approximations
so that the methods can be parallelized and scaled to the large size of the data. We
address these issues in this thesis. Consequently, the developed algorithms are broadly
applicable to problems in both computer vision and machine learning.

4 CHAPTER 1. INTRODUCTION

(a) Data Observations (b) Colored Labeling

Figure 1.3: An example of the mixture model.

� 1.2 Thesis Outline and Contributions

In this thesis, we address some of the aforementioned issues in two types of discrete-
labeling problems. The first is when the labels of interest are interdependent and
assumed to take on values in a finite set. The interdependence of the labels occur in
many formulations when there is an assumed smoothness in the labels. For example,
we will focus on the problems of image segmentation and object tracking, where labels
are known to be smooth in space and time. The second labeling problem that we con-
sider is when the labels correspond to cluster assignments in a mixture model. These
labels are assumed to be conditionally independent, and can take on values from an
unknown, potentially infinite, number of labels. For example, in Bayesian nonparamet-
rics, the Dirichlet process mixture model and the Hierarchical Dirichlet process both fit
within this framework. For each of the two problems, we develop fast MCMC sampling
methods and show their application to various computer vision and machine learning
tasks.

The methods that we will develop exploit the Metropolis-Hastings algorithm [51],
which is an MCMC framework that allows one to control the stationary distribution
of the Markov chain. As we shall see, we will augment each model with additional
auxiliary variables. While one might expect that the expanded sample space may
complicate the problem, we show that clever choices of auxiliary variables that are
tailored to the problem at hand can drastically help the convergence of the Markov
chain. We now give an overview of the thesis while summarizing the specific problems
and contributions.

Chapter 2: Background

We begin the thesis with a discussion of relative background material in Chapter 2. Af-
ter motivating Bayesian frameworks with the use of prior information, a formal setup
of the problem of posterior inference is stated. We then discuss the class of tractable,

Sec. 1.2. Thesis Outline and Contributions 5

conjugate distributions, and detail the distributions used in the rest of this thesis. The
background chapter continues to introduce directed graphical models and undirected
graphical models (i.e., Markov random fields). Following this discussion, we outline var-
ious MCMC sampling frameworks (Gibbs, Metropolis-Hastings, and Reversible-Jump
MCMC), importance sampling, and particle filtering.

Relevant sections related to each chapter are then discussed, including level-set
methods, shape sampling methods, digital topology, and finite mixture models. We
conclude the chapter with a detailed description of three nonparametric processes that
are used throughout much of this thesis: the Gaussian process, the Dirichlet process,
and the hierarchical Dirichlet process. We review previous work and current inference
algorithms for each of these stochastic process.

Chapter 3: Implicit Shapes and Discrete MRFs

In Chapter 3, we develop an MCMC sampling method for implicitly defined shapes
represented as a Markov random field (MRF) over a discrete set of labels. The proposed
method is called the Permutation-based Gibbs-Inspired Metropolis-Hastings (PGIMH)
algorithm, and can be used for nearly any distribution that imposes local constraints
on the labels. For example, we show how PGIMH can be applied to the commonly-used
Ising or Potts model in MRFs or for the curve-length penalty in level-set methods. We
additionally show how PGIMH can be used for global constraints that can be computed
locally, such as constraints on digital topology or desired area.

PGIMH makes large, localized changes to the set of labels by augmenting the sample
space with an explicit ordering of the pixels. The proposed algorithm is similar to
blocked Gibbs sampling in that it samples a localized group of pixels simultaneously.
Also like blocked Gibbs sampling, PGIMH simplifies to traditional Gibbs sampling when
the localized changes only act on a single label. However, the complexity of the PGIMH
algorithm scales linearly with the block size as opposed to scaling exponentially as in
blocked Gibbs sampling.

We show that using a sampling method such as PGIMH naturally transforms any
segmentation algorithm into a probabilistic boundary detection algorithm. Moreover,
boundary detections obtained using this approach vastly outperform hard boundary
declarations from their optimization-based counterparts on the Berkeley Segmentation
Dataset [88]. Results in low signal-to-noise-ratio images are also improved when con-
sidering marginal statistics. We conclude with a demonstration on how to control the
topology of the underlying 2D shape to satisfy prior information.

Chapter 4: Shape Dynamics in Object Tracking

Next, we address the problem of object tracking in Chapter 4. Object tracking is
a particular application where describing uncertainty in distributions is critical. We
show that reasoning about this uncertainty is possible by relying on the development
of PGIMH in Chapter 3. Specifically, we present a generative model for scenes that
models the support and ordering of objects in videos. A model for the motion of the

6 CHAPTER 1. INTRODUCTION

camera and each object in the scene is formulated as a Gaussian process, and coupled
with the evolution of both the shape and appearance. Additionally, we enforce strict
topology constraints on each object through PGIMH.

We present an efficient sampling-based approach to perform posterior inference.
The developed particle filter departs from traditional approaches by not needing weight
updates or sequential importance resampling techniques. Experimental results show
that the proposed model outperforms other tracking and segmentation algorithms on
the SegTrack dataset [118].

Chapter 5: Parallel Split-Merge MCMC for the DPMM

Next, in Chapter 5, we switch to the discrete labeling problem in mixture model analy-
sis. We develop a new sampling method for mixture models with a directed focus on the
infinite Dirichlet process mixture model (DPMM). Unlike many previous approaches,
the proposed approach, called the DP Sub-Cluster algorithm, can be parallelized with-
out finite model approximations, and can be used in models with non-conjugate priors.
One advantage of the DP Sub-Cluster algorithm is that large split and merge moves are
efficiently proposed to drastically improve convergence. The model is augmented with
auxiliary sub-clusters that fit a 2-component mixture model to each regular cluster.
These sub-clusters are then used to propose likely splits. Unlike all previous DPMM
split proposals, the DP Sub-Cluster splits are improved with each iteration by explicitly
instantiating the sub-clusters.

Our empirical results show that the DP Sub-Cluster algorithm outperforms all pre-
vious sampling approaches across multiple data types (e.g., multivariate-Gaussian ob-
servations and multinomial observations) in both synthetic and real-world datasets. In
fact, the DP Sub-Cluster algorithm converges to a better solution, and does so approx-
imately 10–103 times faster than other sampling algorithms.

Chapter 6: Parallel Split-Merge MCMC for the HDP

We extend the DP Sub-Cluster algorithm to the hierarchical Dirichlet process (HDP)
in Chapter 6, with a focus on the problem of topic-modeling in document analysis.
Some additional tools are needed to extend the model properly to HDPs. For example,
this extension is slightly complicated by the additional top-level Dirichlet process which
represents the posterior on global topic-weights.

One interesting insight of this chapter is that local splits and merges, which only
act on a pair of clusters, are insufficient when distributions are highly overlapped (e.g.,
in topic modeling). Consequently, we develop global split and merge moves that alter
the DP Sub-Cluster algorithm by jointly changing all labels at once.

We demonstrate on a variety of corpora that the proposed HDP Sub-Cluster algo-
rithm converges more reliably than current HDP sampling algorithms. Additionally, we
have found through the comparisons that cross-validation techniques do not accurately
indicate convergence of MCMC algorithms. In our experiments, the cross-validation
metrics converge quickly, but the inferred latent representation (e.g., the number of

Sec. 1.2. Thesis Outline and Contributions 7

clusters) does not converge for a considerable amount of time after that.

Chapter 7: Intrinsic Image Decomposition via the SV-DPGMM

Lastly, we return to computer vision and show an application of the DP Sub-Cluster
algorithm to the problem of intrinsic image decomposition. We develop the spatially-
varying Dirichlet process Gaussian mixture model (SV-DPGMM), a new Bayesian non-
parametric model that allows the mixture parameters to change jointly in space via a
Gaussian process. When the SV-DPGMM is applied to the problem of intrinsic image
decomposition, the mixture model captures the reflectance image, and the Gaussian
process captures the shading image.

We develop efficient inference algorithms based on the DP Sub-Cluster algorithm
that marginalize over both the Gaussian process and the mixture parameters. Our
results outperform similar models working in the image domain on the MIT Intrinsic
Image Dataset [48], and is comparable with models that infer complete 3D models.

Chapter 8: Conclusion and Future Work

Finally, in Chapter 8, we summarize the work and contributions in this thesis. We
give some recommendations for extensions and future work pertaining to the developed
PGIMH and Sub-Cluster sampling algorithms.

Appendices

Some details of derivations that would detract from the flow of the narrative have been
included in Appendices A–D. These typically include a considerable amount of algebra
in deriving relationships (e.g., Hastings ratios in split/merge steps).

List of Symbols

A list of symbols used in each chapter is included at the end of this thesis for convenience.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background

Many computer vision algorithms can be interpreted in a probabilistic frame-
work. In this chapter, we review relevant background material to this thesis.
We begin by motivating the Bayesian formulation, followed by discussing the

tractable class of conjugate distributions. A brief introduction is then given for graphi-
cal models, Monte Carlo sampling approaches, level-set methods, digital topology, and
finite mixture models. We conclude with a detailed discussion about Gaussian pro-
cesses, Dirichlet processes, and hierarchical Dirichlet processes.

� 2.1 Posterior Inference

In many applications, the quantity of interest (denoted z) is not directly observable, but
related observations (denoted x) are readily available. It may additionally be known
that the distribution of the observations conditioned on the hidden variable, p(x|z),
follows a specific function. In such a setting, one is often concerned with finding the
posterior distribution of the hidden variables conditioned on the observations, p(z|x).
We note that we use p(x) to abstractly denote the distribution of the random variable
x. This is sometimes denoted as pX(x), where the random variable is X, and x is the
specific value taken by X. We do not make such a distinction here.

Using Bayes’ rule, this posterior distribution can be expressed as

p(z|x) = p(x|z)p(z)
p(x)

. (2.1)

Here, we note that p(x) is the marginal data likelihood, and does not depend on the
hidden, latent variables. We can therefore express the posterior distribution up to a
scale factor as

p(z|x) ∝ p(z)p(x|z). (2.2)

This decomposition lends itself to a readily interpretable explanation: p(z) is the prior
distribution and p(x|z) is the data likelihood distribution. In particular, the prior dis-
tribution captures information about the latent variable that is known without any
observations, and the data likelihood distribution captures how well the data is ex-
plained by a particular realization of the latent variable.

9

10 CHAPTER 2. BACKGROUND

(a) Observations (b) Mean Prediction (c) 95% Confidence

Figure 2.1: A simple example of posterior inference in a tracking problem. Measure-
ments are assumed to be generated from the ground truth locations subject to i.i.d.
additive Gaussian noise. A Gaussian process prior is used on the trajectory.

We now consider a simple example of posterior inference that will be used for the
remainder of the background section.

Example 2.1.1 (GPS Tracking). Consider the problem of tracking the precise location
of a vehicle. While the exact latitude and longitude of the vehicle cannot be directly
obtained, a GPS unit can give very accurate measurements of this quantity. An illus-
tration of such measurements is shown in Figure 2.1a.

The noise characteristics of the measurements are reflected in the data likelihood
term, p(x|z). One simple assumption that may be used is that the noise is independent
and identically distributed (i.i.d.) Gaussian noise. Even though the observations are
quite jagged, the true location of the vehicle may be known to follow a smooth trajectory.
Such information can be encoded into the prior distribution, p(z), using, for example,
a Gaussian process. As shown in Section 2.9.1, one can then perform maximum a
posteriori (MAP) estimation, which seeks to find

z∗ = arg max
z
p(z|x). (2.3)

The MAP estimate of z is shown in Figure 2.1b.
Alternatively, it may be worthwhile to know the confidence of the prediction, instead

of simply finding the optimal estimate. In this particular example, finding the confidence
interval can be done in closed-form, and is illustrated in Figure 2.1c.

The p(x) term in Equation (2.1) normalizes the function so that p(z|x) properly
integrates to 1. However, in most situations, only p(z) and p(x|z) are assumed to be
known. The marginal data likelihood, p(x), which can be expressed as

p(x) =

∫
p(x, z)dz =

∫
p(x|z)p(z)dz, (2.4)

cannot typically be expressed analytically. In such situations, inferring the entire pos-
terior distribution may not be tractable, but finding the MAP solution may still be
possible since the optimization scheme is independent of the normalization. However,

Sec. 2.2. Conjugate Priors 11

when other statistics of the posterior distribution are desired, one must take a different
approach. In the Bayesian framework, there are two broad approaches to address this
issue, often which are both exploited: choose priors and likelihoods that lend themselves
to efficient inference, and perform approximate inference. We now overview a subset of
each of these techniques.

� 2.2 Conjugate Priors

In this section, we consider a small class of prior and data likelihood distributions
that result in analytical posterior distributions. We begin by defining the concept of
exchangeability.

Definition 2.2.1 (Exchangeability). Let {x1, . . . , xN} denote N observations drawn from
the joint distribution, p(x1, . . . , xN). Let P ∈ P define a permutation of the integers
{1, . . . , N} from the set of all permutations, P, and Pi denote the ith number in the
permutation. If the following conditions holds

p(x1, x2, . . . , xN−1, xN) = p(xP1 , xP2 , . . . , xPN−1
, xPN), ∀P ∈ P, (2.5)

then the random variables, {x1, . . . , xN}, are said to be exchangeable.

An exchangeable set of random variables can be thought of as an unordered set. de
Finetti proved that for any set of exchangeable variables, there must exist a prior dis-
tribution that decouples the observations into the product of independent and identical
distributions.

Theorem 2.2.1 (de Finetti’s Theorem). Let {x1, . . . , xN} denote a set random variables.
If these random variables are exchangeable, there must exist a distribution, p(θ), such
that the joint distribution can be expressed as

p(x1, . . . , xN) =

∫
p(θ)

N∏
i=1

p(xi|θ)dθ. (2.6)

Proof. See [52].

Consider the case of de Finetti’s theorem where the distribution, p(xi|θ), is known.
For example, suppose p(xi|θ) is Gaussian and θ captures the mean and variance of the
Gaussian. Additionally, prior knowledge of the parameter can be encoded into p(θ).
The posterior distribution of interest is then p(θ|x), where x without subscripts implies
the entire set of variables, {x1, . . . , xN}.

We first introduce some notation. Assume that the data likelihood takes on a specific
functional form parametrized by θ. We denote this with

p(xi|θ) , fx(xi; θ). (2.7)

12 CHAPTER 2. BACKGROUND

Furthermore, assume that the prior distribution takes on a different functional form
parametrized by λ:

p(θ) , fθ(θ;λ). (2.8)

The posterior distribution can then be expressed as

p(θ|x) = p(x|θ)p(θ)
p(x)

∝ p(θ)p(x|θ) = fθ(θ;λ)

N∏
i=1

fx(xi; θ). (2.9)

In general, the form of the posterior distribution will not be in the same parametric
form as the prior, fθ. However, for a certain class of paired priors and data likelihoods,
the posterior distribution actually stays within the same family of functions as the
prior. This class of paired distributions is typically referred to as the class of conjugate
distributions, and the prior distribution that pairs with a particular data likelihood
is called the conjugate prior. This relationship is precisely stated in the following
definition.

Definition 2.2.2 (Conjugate Prior). Let p(xi|θ) = fx(xi; θ) and p(θ) = fθ(θ;λ) denote a
particular data likelihood and prior distribution, respectively. If the following relation-
ship holds

p(θ|x) = fθ(θ;λ
∗(x)), (2.10)

then fθ is said to be conjugate to fx. The posterior hyper-parameters, λ∗(x), typically
depend on the set of observations, x, and the prior hyper-parameters, λ.

Because λ∗(x) can often be expressed analytically, posterior inference in conjugate
distributions can be done in closed-form. In many situations, other quantities of interest
can also be expressed analytically. We review two such quantities here.

� 2.2.1 Marginal Data Likelihood

The data likelihood marginalizing over the parameters, p(x), is typically intractable to
due to the integral over θ:

p(x) =

∫
p(x|θ)p(θ)dθ =

∫
fx(x; θ)fθ(θ;λ)dθ. (2.11)

However, this expression simplifies to the following when a conjugate prior is used:

p(x) =
p(θ)

p(θ|x)
p(x|θ) =

fθ(θ;λ)

fθ(θ;λ∗(x))
fx(x; θ). (2.12)

While it seems that this equation depends on a particular value of θ, the analytical
expression for any particular class of conjugate distributions will not depend on θ.
With a slight abuse of notation, we denote the above distribution as

p(x) , fx(x;λ), (2.13)

Sec. 2.3. Conjugate Distributions 13

which is generally a different functional form from fx(x; θ).

� 2.2.2 Predictive Distribution

The predictive distribution expresses the probability of a single, new observation con-
ditioned on all current observations. We denote the predictive distribution as p(x̂|x),
where x̂ denotes the new observation. We note the following relationship with conjugate
priors:

p(x̂|x) =

∫
p(x̂|θ)p(θ|x)dθ =

∫
fx(x̂; θ)fθ(θ;λ

∗(x))dθ. (2.14)

Notice that this expression is of the same form as Equation (2.11). Thus, we can directly
conclude from Equation (2.13) that the predictive distribution is

p(x̂|x) = fx(x;λ∗(x)). (2.15)

� 2.3 Conjugate Distributions

In this section, we briefly review some discrete and continuous conjugate distributions
used throughout this thesis. For each conjugate pair, we derive the posterior hyper-
parameter expressions and the form of the marginal data likelihood, keeping in mind
that the predictive distribution is expressed as the combination of these two through
Equation (2.15).

� 2.3.1 Categorical Distribution

A categorical distribution is a discrete distribution over a fixed alphabet. A discrete
random variables x is said to be drawn from a D-dimensional categorical distribution
parametrized by π if x is distributed according to

x ∼ Cat(x;π) ,

{
πd, x ∈ {1, . . . , D}
0, otherwise

. (2.16)

The parameter π ∈ (0, 1)D is a D-dimensional vector that sums to 1. We note that we
occasionally denote a categorical distribution with the explicit discrete form of

Cat(x;π) =
D∑
d=1

πd1I[x = d]. (2.17)

� 2.3.2 Multinomial Distribution

A multinomial distribution is a generalization of the categorical distribution to multiple
trials. In particular, it is a joint distribution over counts of occurrences for N indepen-
dent, categorical trials. If x is drawn from a D-dimensional multinomial distribution
for N trials, Mult(x;π,N) represents the probability that element d was selected xd

14 CHAPTER 2. BACKGROUND

times for all dimensions, d. The probably mass function can be expressed as

x ∼ Mult(x;π,N) , N !
D∏
d=1

πxdd
xd!

. (2.18)

Again, π ∈ (0, 1)D is a D-dimensional vector that sums to 1. Since x represents counts
rather than indices (as was the case in the Categorical distribution), x is now a D-
dimensional vector of non-negative integers that sums to N .

A Categorical distribution is a special case of the Multinomial distribution with
one trial (N = 1), and where the Categorical random variable takes on the value of
the specific dimension of the non-zero value. As such, the literature often refers to a
Categorical distribution as a Multinomial distribution. We will be precise in our naming
since we will make use of both the Categorical and Multinomial distributions.

� 2.3.3 Dirichlet Distribution

The conjugate distribution to the Multinomial distribution is the Dirichlet distribution.
Furthermore, because the Categorical distribution is a special case of the Multinomial,
the Dirichlet is also conjugate to the categorical distribution. A D-dimensional Dirichlet
distribution is distributed according to

π ∼ Dir(π;α1, . . . , αD) , Γ(A)
D∏
d=1

παd−1
d

Γ(αd)
, (2.19)

where all α’s are positive real numbers, and A ,
∑D

d=1 αd. We additionally refer to a
symmetric Dirichlet distribution as a special case of the Dirichlet distribution where all
α values are equal. A variable that is drawn from a symmetric Dirichlet distribution is
denoted with

π ∼ Dir(π;α). (2.20)

The vector π sums to 1, and the parameters, α, represent pseudo-counts of the prior.

Categorical Conjugacy

The Dirichlet distribution is a conjugate prior of the categorical distribution. Assuming
{x1, . . . , xN} are independent samples from a categorical distribution, the posterior

Sec. 2.3. Conjugate Distributions 15

distribution can be expressed as

p(π|x) ∝ p(π)
N∏
i=1

p(xi|π) =

[
Γ(A)

D∏
d=1

παd−1
d

Γ(αd)

][
N∏
i=1

πxi

]

=

[
Γ(A)

D∏
d=1

παd−1
d

Γ(αd)

][
D∏
d=1

πNdd

]

= Γ(A)
D∏
d=1

παd+Nd−1
d

Γ(αd)

∝ Dir(π;α1 +N1, . . . , αD +ND). (2.21)

Thus, the posterior hyper-parameters, α∗(x), are as follows:

α∗d(x) = αd +Nd, ∀d ∈ {1, . . . , D}. (2.22)

Using Equation (2.12), the marginal data likelihood can then be expressed as

p(x) =
Γ(A)

∏D
d=1

π
αd−1

d
Γ(αd)

Γ(A+N)
∏D
d=1

π
αd+Nd−1

d
Γ(αd+Nd)

D∏
d=1

πNdd

=
Γ(A)

Γ(A+N)

D∏
d=1

Γ(αd +Nd)

Γ(αd)

, DirCat(x;α1, . . . , αD). (2.23)

Using Equation (2.15) and a bit of algebra, the predictive distribution can then be
expressed as

p(x̂|x) = DirCat(x̂;α∗1(x), . . . , α∗D(x)) =
α∗x̂(x)

A∗(x)
, (2.24)

where A∗(x) =
∑D

d=1 α
∗
d(x).

Multinomial Conjugacy

The Dirichlet distribution is also conjugate to the multinomial distribution. Assum-
ing {x1, . . . , xN} are drawn from a multinomial distribution of N trials, the posterior

16 CHAPTER 2. BACKGROUND

distribution can be expressed as

p(π|x) ∝ p(π)
N∏
i=1

p(xi|π) =

[
Γ(A)

D∏
d=1

παd−1
d

Γ(αd)

][
N !

D∏
d=1

πxdd
xd!

]

= Γ(A)N !

D∏
d=1

παd+xd−1
d

Γ(αd)xd!

∝ Dir(π;α1 + x1, . . . , αD + xD). (2.25)

Thus, the posterior hyper-parameters, α∗, are as follows:

α∗d(x) = αd + xd, ∀d ∈ {1, . . . , D}. (2.26)

Using Equation (2.12), the marginal data likelihood can then be expressed as

p(x) =
Γ(A)

∏D
d=1

π
αd−1

d
Γ(αd)

Γ(A+N)
∏D
d=1

π
αd+xd−1

d
Γ(αd+xd)

N !

D∏
d=1

πxdd
xd!

=
N !∏D
d=1 xd!

Γ(A)

Γ(A+N)

D∏
d=1

Γ(αd + xd)

Γ(αd)

, DirMult(x;α1, . . . , αD). (2.27)

Using Equation (2.15), the predictive distribution can then be expressed as

p(x̂|x) = DirMult(x̂;α∗1(x), . . . , α∗D(x)) =
N̂ !∏D
d=1 x̂d!

Γ(A∗(x))

Γ(A∗(x) + N̂)

D∏
d=1

Γ(α∗d(x) + x̂d)

Γ(α∗d(x))
.

(2.28)

� 2.3.4 Multivariate Gaussian Distribution

The one-dimensional Gaussian (or Normal) distribution is a continuous distribution
with support on the entire real line. The multivariate Gaussian distribution is a gen-
eralization to D dimensions that has support on RD. The distribution is parametrized
by a mean vector, µ ∈ RD, and a positive-definite covariance matrix, Σ ∈ RD×D, and
can be expressed as

x ∼ N (x;µ,Σ) , (2π)−D/2 |Σ|−1/2 e−
1
2

(x−µ)>Σ−1(x−µ) (2.29)

Self Conjugacy on Mean

The Gaussian distribution exhibits some interesting properties. For example, because
Gaussian functions are closed under products and convolutions, a Gaussian prior on

Sec. 2.3. Conjugate Distributions 17

the mean is conjugate to a Gaussian likelihood.
We first show that the joint likelihood over multiple independent and identically

distributed (i.i.d.) can be calculated via sufficient statistics. The product of likelihoods
can be expressed as

N∏
i=1

N (xi;µ,Σ) = (2π)−ND/2 |Σ|−N/2 exp

[
−1

2

N∑
i=1

(xi − µ)>Σ−1(xi − µ)

]
. (2.30)

By denoting the sufficient statistics as T1 =
∑

i xi and T2 =
∑

i xix
>
i , the term inside

the exponential can be expressed as

−N
2

(
µ− T1

N

)>
Σ−1

(
µ− T1

N

)
+ 1

2N T
>
1 Σ−1T1 − 1

2 tr(Σ−1T2) (2.31)

With some algebra, the product of Gaussians then simplifies to

N∏
i=1

N (xi;µ,Σ) = N−
D
2
(
(2π)D |Σ|

) 1−N
2 exp

[
1

2N T
>
1 Σ−1T1 − 1

2 tr(Σ−1T2)
]
N
(
µ; T1

N ,
Σx

N

)
(2.32)

We now show that the Gaussian prior on the mean is conjugate to the Gaussian
likelihood. More precisely, a multivariate-Gaussian prior on the mean is chosen to be

p(µ) = N (µ; θ,∆) , (2.33)

where θ is the prior mean of the mean parameter, and ∆ is the prior covariance of the
mean parameter. Using Equation (2.32), this choice of prior results in the following
posterior

p(µ|x) ∝ p(µ)
N∏
i=1

p(xi|µ) ∝ N (µ; θ,∆)N
(
µ; T1

N ,
Σx

N

)
= N (µ; θ∗,∆∗) , (2.34)

where the posterior hyper-parameters, θ∗ and ∆∗ are

θ∗ = (∆−1 +NΣ−1)−1(∆−1θ + Σ−1T1) (2.35)

∆∗ = (∆−1 +NΣ−1)−1 (2.36)

Using Equation (2.12) and a bit of algebra, the marginal data likelihood can then be
expressed as

p(x) = N−
D
2
(
(2π)D |Σ|

) 1−N
2 exp

[
1

2N T
>
1 Σ−1T1 − 1

2 tr(Σ−1T2)
]
N
(
T1
N ; θ,∆ + Σ

N

)
(2.37)

Using Equation (2.15) and a bit of algebra, the predictive distribution can then be

18 CHAPTER 2. BACKGROUND

expressed as
p(x̂|x) = N (x̂; θ∗(x),∆∗(x) + Σ) (2.38)

� 2.3.5 Normal Inverse-Wishart Distribution on Mean and Covariance

When the mean and covariance of a multivariate Gaussian distribution are both un-
known, the conjugate prior follows a Normal Inverse-Wishart (NIW) distribution of the
following form

µ,Σ ∼ NIW(µ,Σ;κ, θ, ν,∆) , N
(
µ; θ, 1

κΣ
)
W−1(Σ; ν,∆), (2.39)

where W−1(Σ; ν,∆) denotes the following Inverse-Wishart distribution

W−1(Σ; ν,∆) ,
|ν∆|

ν
2

2
νD
2 ΓD(ν2)

|Σ|−
ν+D+1

2 exp

[
−1

2
tr
(
ν∆Σ−1

)]
. (2.40)

Here, ΓD(·) denotes the multivariate gamma function defined as

ΓD(x) , π
D(D−1)

4

D∏
d=1

Γ
(
x+ 1−d

2

)
. (2.41)

The hyper-parameters κ and ν capture pseudo-counts of the prior on the mean and
covariance, respectively. A large pseudo-count value corresponds to a prior that is more
peaked. The hyper-parameter θ captures the prior mean of the mean parameter, and
the prior mean of the covariance is related to ∆ via

E[Σ] =
ν∆

ν −D − 1
. (2.42)

As ν increases, the expected value approaches ∆. Thus, it is convenient to think of ∆
as the mean of the covariance, though this is not exactly correct. In some literature, the
NIW distribution is alternatively parametrized with a scale matrix, Ψ , ν∆, instead of
∆. We find the above parametrization to be more intuitive, since ∆ can thought of as the
mean of the covariance, instead of having to consider 1

νΨ, and use this parametrization
for the remainder of the thesis.

Multivariate Gaussian Conjugacy

The algebra is quite complicated to derive the posterior hyper-parameters, marginal
data likelihood, and predictive distributions with a Normal Inverse-Wishart prior. We
therefore only show the resulting distributions. Additionally, we denote the posterior
hyper-parameters without the explicit dependence on x for compactness.

Sec. 2.4. Probabilistic Graphical Models 19

The posterior hyper-parameters are as follows

κ∗ = κ+N, θ∗ =
1

κ∗

[
κθ +

N∑
i=1

xi

]
, (2.43)

ν∗ = ν +N, ∆∗ =
1

ν∗

[
ν∆ + κθθ> − κ∗θ∗θ∗> +

N∑
i=1

xix
>
i

]
. (2.44)

The marginal data likelihood can be expressed as

p(x) =
1

π
ND

2

ΓD (ν∗/2)

ΓD (ν/2)

|ν∆|ν/2

|ν∗∆∗|ν∗/2
(κ
κ∗

)D/2
. (2.45)

The predictive distribution can be expressed as

p(x̂|x) = Student-tν∗−D+1

(
x̂; θ∗,

κ∗ + 1

κ∗(ν∗ −D + 1)
ν∗∆∗

)
, (2.46)

where the multivariate Student-t distribution is defined as

Student-tν(x;µ,Σ) =
Γ
(
ν+D

2

)
Γ
(
ν
2

)
(νπ)

D
2

|Σ|−
1
2

[
1 +

1

ν
(x− µ)>Σ−1(x− µ)

]− ν+D
2

. (2.47)

� 2.4 Probabilistic Graphical Models

In simple problem formulations, such as the GPS tracking problem in Example 2.1.1,
using conjugate priors makes posterior inference tractable. However, in more complex
models, this is not always the case. In fact, it can be difficult to even represent the
dependencies in complicated models. Probabilistic graphical models (cf. [66]) are a
useful representation to visualize these complex dependencies. We now briefly review
two types of graphical models: the directed graphical model, and the undirected graph-
ical model. In these models, a random variable is represented with a circular graphical
node, and dependencies between variables are represented with an edge.

� 2.4.1 Directed Acyclic Graphical Models

Directed graphical models give an explicit expression for the joint distribution. A
directed edge from a node z to a node x encodes information about the conditional
distribution, p(x|z). Directed graphs can often be thought of as being a generative
model, where one generates random variables conditioned on all of its parents. As
such, they are not well defined for cyclic graphs. In the remainder of this thesis, we will
assume that directed graphical models are acyclic.

As an example, we consider the generative process for the graphical model depicted
in Figure 2.2a. One can generate a sample from this model by completing the following

20 CHAPTER 2. BACKGROUND

(a) Directed Model (b) Plate Notation (c) With Observations (d) Posterior Graph

Figure 2.2: Example directed graphical model. If the bi’s in (a) are independent and
identically distributed conditioned on a, the compact plate notation of (b) can be used.
Observed nodes are shaded, like the random variable c in (c). The resulting posterior
distribution, conditioned on observed variables, connects the parents to each other and
to the children.

steps:

1. Sample a ∼ p(a).

2. Sample b1 ∼ p(b1|a), b2 ∼ p(b2|a), and b3 ∼ p(b3|a).

3. Sample c ∼ p(c|b1, b2, b3).

4. Sample d ∼ p(d|c).

The entire joint distribution of the model can then be expressed as the following

p(a, b1, b2, b3, c, d) = p(a) p(b1|a)p(b2|a)p(b3|a) p(c|b1, b2, b3) p(d|c). (2.48)

Additionally, if the set of random variables, {b1, b2, b3}, are independent and identically
distributed conditioned on a, one can use the compact plate notation of Figure 2.2b,
where the number in the rectangular plate denotes the number of replicated variables.

Shaded nodes in a graphical model denote an observation. For example, Figure
2.2c represents a model where the random variable c is observed. We note that when a
particular random variable is observed, the dependency structure for the graph changes.
In particular, the parents of the observed become interdependent, and the children of
the observed node depend on the parents. Figure 2.2d depicts the resulting dependence
after observing c. This operation is commonly referred to as moralizing the graph,
since parents are connected with an additional edge. We note that the interdependence
among the parents cannot typically be modeled with a directed relationship and is
therefore represented with a generic undirected edge. More specifically, the posterior

Sec. 2.4. Probabilistic Graphical Models 21

(a) Latent Markov Chain (b) Markov Chain with Observations

Figure 2.3: Latent and observed Markov chains.

distribution is proportional to the joint

p(a, b1, b2, b3, d|c) =
p(a, b1, b2, b3, c, d)

p(c)
∝ p(a, b1, b2, b3, c, d), (2.49)

and the posterior distribution of the bi’s conditioned on all other variables can be
expressed as

p(b1, b2, b3|a, c, d) = p(b1, b2, b3|a, c) ∝ p(b1|a)p(b2|a)p(b3|a) p(c|b1, b2, b3). (2.50)

The newly introduced undirected edges exactly capture the p(c|b1, b2, b3) term, and is
clearly missing the generative nature of directed edges.

Markov Chains

A Markov chain is a specific type of directed graphical model where each latent node
has one parent and one child. An example of a Markov chain with no observations is
shown in Figure 2.3a. In many applications, the Markov chain persists through time,
and the subscript index refers to a particular time instance. While a purely latent
Markov chain is rarely of interest, one can also include observations in the graphical
model, as depicted in Figure 2.3b. Observations in Markov chains can occur at every
time point or at arbitrary points as depicted in the figure.

We note that this model is applicable to many problems with temporal dynamics
such as Example 2.1.1. In such a problem, the data likelihood distribution, p(xt|zt),
which is often referred to as the emission distribution in Markov chains, can be mod-
eled with a 2D Gaussian distribution in Euclidean space. The prior distribution on the
evolution of the latent location, p(zt|zt−1), which is often referred to as the dynamics
of the Markov chain, can also be modeled with a Gaussian. We note that the actual
solution used in Example 2.1.1 involves modeling smoothness in trajectory and requires
a higher-order Markov chain where nodes have more than a single parent and child.
Regardless, when both the emission and dynamics follow Gaussian or categorical dis-
tributions, the posterior distribution of any or all of the latent variables can be found
in closed form using the Kalman filter [67] or the Forward-Backward Algorithm [99].
Other distributions require approximate inference methods, such as those discussed in
Section 2.5.2.

22 CHAPTER 2. BACKGROUND

� 2.4.2 Undirected Graphical Models

As eluded to in the previous section, some distributions cannot be easily decomposed
into sequential conditional distributions that form a generative model. One alternative
representation in such situations is to use an undirected graphical model. Undirected
graphical models are also often referred to as Markov random fields (MRFs).

We first begin by defining a clique in an undirected graphical model, which is a
set of nodes that is fully connected (i.e., every node in the clique is connected directly
to every other node in the clique). Each individual node is called a singleton clique,
and each pair of nodes that are joined by an edge form a pairwise clique. Higher-order
cliques can also exist (e.g., the bi’s of Figure 2.2d).

In an undirected graphical model, the distribution over the random variables, z, can
be factored into the product of functions of cliques as follows

p(z) =
1

Z

∏
c∈C(G)

ψc(zc) ∝
∏

c∈C(G)

ψc(zc), (2.51)

where G is the graph, C(G) is the set of all cliques in the graph, and ψc(·) denotes a
function for clique c. These clique functions are often referred to as clique potentials.
Z in the above equation is often referred to as the partition function, and ensures that
the resulting distribution integrates to 1. The partition function for arbitrary MRFs
can be difficult to calculate. Fortunately, it is not needed for all inference algorithms.
We note that when only singleton and pairwise cliques exist in the graphical model, the
distribution can be expressed as

p(z) =
1

Z

∏
i

ψi(zi)
∏

{i,j}∈E(G)

ψij(zi, zj), (2.52)

where ψi and ψij denote the singleton and pairwise clique potentials, and E(g) denotes
the set of edges in the graph.

� 2.5 Sampling Algorithms

When posterior distributions are not analytical, one option for inference is to sample
from the model. Multiple samples can be combined in a Monte Carlo method to cal-
culate event probabilities to any desired precision. In this section, we review some
sampling algorithms that can be used when the target distribution of interest cannot
be sampled directly.

� 2.5.1 Markov Chain Monte Carlo Sampling

One method for sampling from an arbitrary target distribution is to use a Markov
chain Monte Carlo (MCMC) algorithm. MCMC methods simulate a Markov chain
with a particular transition distribution such that the stationary distribution of the

Sec. 2.5. Sampling Algorithms 23

chain is exactly the target distribution of interest. Certain conditions must be specified
to ensure that this condition holds. A sample from the target distribution can then be
generated by simulating a Markov chain until it converges to its stationary distribution,
followed by taking the value of the chain when it is terminated. We review relevant
Markov chain theory here.

We begin by defining certain properties of Markov chains. The state of a Markov
chain at iteration t is denoted as z(t). Suppose that the Markov chain evolves according
to some transition distribution, q∗(z(t+1)|z(t)). A stationary distribution of a Markov
chain is a distribution over states that is invariant under the transition distribution, q∗.
We define this concept more formally.

Definition 2.5.1 (Stationary Distribution). If a distribution, fz(·), over the state of the
Markov chain satisfies the following relationship

fz(z
(t+1)) =

∫
fz(z

(t))q∗(z(t+1)|z(t))dz(t), ∀z(t+1) (2.53)

then fz(·) is defined to be a stationary distribution of the Markov chain.

Stationarity of a Markov chain with respect to a transition distribution essentially
means that if the chain is currently in the stationary distribution, simulating a transition
from q∗ will not alter the distribution. Multiple such distribution can exist for a Markov
chain. MCMC sampling algorithms must consequently ensure uniqueness by enforcing
ergodicity of the Markov chain. An ergodic chain must satisfy a set of properties, which
we discuss after some additional definitions.

Definition 2.5.2 (Accessible States). A state j is said to be accessible from state i if, for
some t ≥ 0, the following condition holds for a given transition distribution:

Pr[z(t) = j | z(0) = i] > 0. (2.54)

Definition 2.5.3 (Communicating States). A state is said to communicate with another
state if they are accessible from each other.

Definition 2.5.4 (Communicating Class). A communicating class is a set of states that
satisfies the condition where every pair of states in the class communicate with each
other.

Definition 2.5.5 (Irreducible Markov Chains). A Markov chain is said to be irreducible
if the chain contains a single communicating class.

Definition 2.5.6 (Period of State). A state i is said to be periodic with period k if the
chain can only return to state i after a multiple of k iterations.

Definition 2.5.7 (Aperiodicity). A Markov chain is said to be aperiodic if every state of
the chain has period 1.

24 CHAPTER 2. BACKGROUND

We are now finally ready to discuss the definition of an ergodic chain.

Definition 2.5.8 (Ergodicity). A finite-state Markov chain is said to be ergodic if it is
aperiodic and irreducible. Ergodic Markov chains will converge to a unique stationary
distribution regardless of the initial state.

Ergodicity is clearly a desirable trait in MCMC sampling because of the convergence
guarantees. In many situations, proving that a Markov chain is aperiodic is difficult
(cf. [42]) and one typically only shows that it is irreducible (i.e., that every state can be
reached from every other state). In the unlikely case that the simulated Markov chain
is periodic, average statistics of the sample path will still be correct.

Metropolis-Hastings Sampling

The idea of MCMC sampling is to simulate a Markov chain that has the target distri-
bution as a stationary distribution. Ergodicity ensures convergence to the chain, but
one has to use additional methodologies to ensure the correct stationary distribution.
The Metropolis-Hastings algorithm is one such method.

Suppose that one can sample from some arbitrary distribution, q(ẑ|z(t)). We refer
to this distribution as the proposal distribution, and note that it is different from
the transition distribution of the Markov chain, q∗(z(t+1)|z(t)). Metropolis et al. [90]
developed an algorithm that constructs a transition distribution, q∗, from a symmetric
proposal distribution, q, such that the stationary distribution is exactly the target
distribution. Hastings [51] later generalized this algorithm to allow for non-symmetric
proposal distributions. The latter algorithm is commonly referred to as the Metropolis-
Hastings (MH) algorithm.

The concept underlying the Metropolis-Hastings algorithm is the notion of detailed
balance. The detailed balance condition for Markov chains is defined as the following.

Theorem 2.5.1 (Detailed Balance). Let fz(z) denote the target distribution. If a Markov
chain is constructed with a transition distribution, q∗, that satisfies

fz(z1)q∗(z2|z1) = fz(z2)q∗(z1|z2), (2.55)

then the chain is said to satisfy the detailed balance condition. Furthermore, fz(z) is
guaranteed to be a stationary distribution of the chain.

Proof. Stationarity of a chain must satisfy the condition described in Definition 2.5.1.
That is, we must show that if the Markov chain is currently in the stationary distri-
bution, fz, transitioning with respect to q∗ does not change the resulting distribution.

Sec. 2.5. Sampling Algorithms 25

This can be seen from the following

p(z(t+1)) =

∫
fz(z

(t))q∗(z(t+1)|z(t))dz(t)

=

∫
fz(z

(t+1))q∗(z(t)|z(t+1))dz(t)

= fz(z
(t+1)) (2.56)

Consequently, satisfying detailed balance guarantees that fz is a stationary distribution
of the Markov chain.

Detailed balance is a sufficient condition to ensure that fz(z) is a stationary dis-
tribution, but it is not necessary. In other words, a Markov chain can have fz(z) as a
stationary distribution without satisfying Equation (2.55). In typical applications, how-
ever, ensuring stationarity with respect to fz(z) is difficult without satisfying detailed
balance.

The MH algorithm is now detailed. Let ẑ ∼ q(ẑ|z(t)) denote a sample from the user-
specified proposal distribution. Hastings showed that if the transition distribution, q∗,
is constructed according to

q∗(z(t+1)|z(t), ẑ) =

min
[
1, fz(ẑ)

fz(z(t))

q(z(t)|ẑ)
q(ẑ|z(t))

]
, z(t+1) = ẑ

1−min
[
1, fz(ẑ)

fz(z(t))

q(z(t)|ẑ)
q(ẑ|z(t))

]
, z(t+1) = z(t)

, (2.57)

then the resulting Markov chain satisfies the detailed balance condition. The con-
structed transition distribution subjects the newly proposed sample to an accept or

reject step. The ratio in the probability of acceptance, H = fz(ẑ)

fz(z(t))

q(z(t)|ẑ)
q(ẑ|z(t))

, is typically

referred to as the Hastings ratio. We note that it will sometimes be convenient to denote
the Hastings ratio with the following

H =
p(ẑ)

p(z)

q(z|ẑ)
q(ẑ|z)

, (2.58)

where z = z(t) and p(z) = fz(z).
We now show that the MH construction of transition distributions from proposal

distributions must satisfy detailed balance. Denoting the acceptance ratio as

α(z, ẑ) , min

[
1,
fz(ẑ)

fz(z)

q(z|ẑ)
q(ẑ|z)

]
(2.59)

the transition distribution can be expressed as

q∗(z(t+1) = ẑ|z(t) = z) = q(ẑ|z)α(z, ẑ) + (1− α(z, ẑ)) δ(ẑ − z). (2.60)

26 CHAPTER 2. BACKGROUND

Additionally, we note the following relationship:

fz(z)q(ẑ|z)α(z, ẑ) = fz(ẑ)q(z|ẑ)α(ẑ, z) (2.61)

It is then trivial to show that the resulting chain satisfies detailed balance:

fz(z)q
∗(z(t+1) = ẑ|z(t) = z)

= fz(z)q(ẑ|z) [α(z, ẑ) + (1− α(z, ẑ)) δ(ẑ − z)]

= fz(ẑ)q(z|ẑ)
[
α(ẑ, z) +

(
fz(z)q(ẑ|z)
fz(ẑ)q(z|ẑ)

− α(ẑ, z)

)
δ(ẑ − z)

]
= fz(ẑ)q(z|ẑ) [α(ẑ, z) + (1− α(ẑ, z)) δ(ẑ − z)]
= fz(ẑ)q

∗(z(t) = z|z(t+1) = ẑ),

which is exactly the detailed balance condition. �
The Metropolis-Hastings algorithm therefore guarantees that the target distribution

is a stationary distribution of the chain. Furthermore, Markov chain theory states
that the resulting Markov chain is guaranteed to converge uniquely to the stationary
distribution if it is ergodic.

We summarize the steps in Metropolis-Hastings in Algorithm 2.1. The MH algo-

Algorithm 2.1 The Metropolis-Hastings Algorithm

1. Initialize z(0) arbitrarily and set t← 0

2. Sample a new proposed sample from ẑ ∼ q(ẑ|z(t))

3. Accept the proposal with probability Pr[z(t+1) = ẑ] = min
[
1, fz(ẑ)

fz(z(t))

q(z(t)|ẑ)
q(ẑ|z(t))

]
.

4. Otherwise, reject the proposal and leave the state unchanged (i.e., z(t+1) = z(t)).

5. Increment t and repeat from Step 2.

rithm allows the sampling of an arbitrary distribution from some user-specified proposal
distribution. Consequently, the choice of the proposal distribution will often greatly im-
pact the “burn-in” time, which is the time it takes for the chain to reach its stationary
distribution. In the limiting case where q(ẑ|z) = fz(ẑ), the Hastings ratio trivially
simplifies to 1 and every sample is accepted. Directly sampling from the target dis-
tribution is typically infeasible (which motivates the need for MCMC sampling), but
this observation gives insight in designing good proposals. In particular, the closer the
proposal distribution is to the target distribution, the better the convergence.

Gibbs Sampling

Gibbs sampling [40] is a special case of Metropolis-Hastings where the transition dis-
tribution only acts on a subset of the variables (or, a subset of dimensions of a multi-
dimensional variable). In particular, the Gibbs sampler chooses the proposal distribu-

Sec. 2.5. Sampling Algorithms 27

tion to be the true posterior distribution of the subset of variables conditioned on all
variables. We outline the steps of Gibbs sampling in Algorithm 2.2, denoting \i as all
the indices excluding i.

Algorithm 2.2 The Gibbs Sampling Algorithm

1. Initialize z(0) arbitrarily and set t← 0

2. Sample an index, i, that selects a dimension of the random variable: i ∼ q(i)
3. Sample a new z: z

(t+1)
i ∼ p

(
z

(t+1)
i |z(t)

\i
)
.

4. Copy the other values of z: z
(t+1)
\i = z

(t)
\i .

5. Increment t and repeat from Step 2.

Under some mild conditions of the target distribution, it is simple to see that the
resulting Markov chain produced by Gibbs sampling is irreducible. Any random index
can be selected in Step 2, and it can change to any value in Step 3. Consequently, any
state is reachable from any other state assuming that the conditional distributions do
not result in disconnected states [80].

It is also quite simple to see that the resulting chain satisfies detailed balance, which
ensures that the target distribution is a stationary distribution of the Markov chain.
Any Metropolis-Hastings algorithm satisfies detailed balance if the Hastings ratio is
implemented correctly. Gibbs sampling precludes the need of an accept/reject step
because it results in a Hastings ratio that evaluates to 1. We therefore only need

to verify this claim. Letting q(ẑ|z(t−1)) = q(i)p
(
ẑi|z(t−1)
\i

)
, the Hastings ratio can be

expressed as

H =
p(ẑ)

p(z(t))

q(z(t)|ẑ)
q(ẑ|z(t))

=
p
(
z

(t)
\i
)
p
(
ẑi|z(t)
\i
)

p
(
z

(t)
\i
)
p
(
z

(t)
i |z

(t)
\i
) q(i)p

(
z

(t)
i |z

(t)
\i
)

q(i)p
(
ẑi|z(t)
\i
) = 1. (2.62)

This shows that the Gibbs sampling algorithm can accept all proposed samples while
still satisfying detailed balance.

Gibbs sampling is often preferred over Metropolis-Hastings because it does not re-
quire one to specify a proposal distribution. However, it can only be used when the
conditional posterior distributions are known. Furthermore, Gibbs sampling may result
in slow convergence because only a single random dimension of the latent variable is
sampled at a time. This procedure can explore the space very slowly due to the lo-
cal changes proposed by the sampling algorithm. Alternatives such as blocked Gibbs
sampling attempt to address this issue, but come at a significant computational cost.

Reversibile-Jump MCMC

Green [44] developed the Reversible-Jump MCMC (RJMCMC) algorithm, which is
a generalization of the Metropolis-Hastings algorithm where auxiliary variables are

28 CHAPTER 2. BACKGROUND

used to propose moves in mismatched dimensions. Let z ∈ RD denote the current
D-dimensional variable and let ẑ ∈ RD+d denote the desired proposal. RJMCMC aug-
ments the current space to be [z, v] and the proposed space to be [ẑ, û]. The auxiliary
variables v and û must be chosen so that both spaces have the same dimensionality
(i.e., v ∈ RC+d and û ∈ RC , where C is any integer that satisfies C+d ≥ 0 and C ≥ 0).
RJMCMC then deterministically changes from the current space to the proposed space
using a user-specified function f that performs [ẑ, û] = f(z, v).

Let Jf denote the Jacobian matrix of function f(z, v), of the form

Jf =

∂ẑ1
∂z1

· · · ∂ẑ1
∂zD

∂ẑ1
∂v1

· · · ∂ẑ1
∂vC+d

...
. . .

...
...

. . .
...

∂ẑD+d

∂z1
· · · ∂ẑD+d

∂zD

∂ẑD+d

∂v1
· · · ∂ẑD+d

∂vC+d
∂û1
∂z1

· · · ∂û1
∂zD

∂û1
∂v1

· · · ∂û1
∂vC+d

...
. . .

...
...

. . .
...

∂ûC
∂z1

· · · ∂ûC
∂zD

∂ûC
∂v1

· · · ∂ûC
∂vC+d

. (2.63)

Green showed that the steps outlined in Algorithm 2.3 preserve detailed balance and
ensure that the target distribution is a stationary distribution of the resulting Markov
chain.

Algorithm 2.3 The RJMCMC Proposal

1. Generate auxiliary variables for the current state from some proposal distribution:
v ∼ q(v|z). (2.64)

2. Apply a deterministic function, f to the current state to obtain a new proposal:
[ẑ, û] = f(z, v). (2.65)

3. Accept the proposal with the following probability

min

[
1,
p(ẑ)q(û|ẑ)
p(z)q(v|z)

|det(Jf)|
]
. (2.66)

We note that the Metropolis-Hastings algorithm is a special instance of the RJM-
CMC algorithm. More precisely, assuming q denotes the MH proposal distribution,
the MH algorithm can be constructed as follows: (1) sample auxiliary variables from
the proposal distribution, v ∼ q(v|z); and (2) use the deterministic function that maps
ẑ = v and û = z. The Jacobian of this deterministic function is simply 1, resulting in
accepting proposals with probability

min

[
1,
p(ẑ)q(û|ẑ)
p(z)q(v|z)

|det(Jf)|
]

= min

[
1,
p(ẑ)q(z|ẑ)
p(z)q(ẑ|z)

]
.

Sec. 2.5. Sampling Algorithms 29

This is exactly the acceptance probability of MH in Equation (2.58).
Because of the similarities between RJMCMC and MH, we will often incorrectly

refer to the ratio, p(ẑ)q(û|ẑ)
p(z)q(v|z) |det(Jf)| as the Hastings ratio for simplicity. It should be

implied from the context of the proposal distribution whether using the RJMCMC
proposal is necessary.

Determining Convergence

There are typically two quantities of interest when evaluating the effectiveness of the
Markov chain used in an MCMC sampling algorithm: the burn-in time and the mixing
time. The burn-in time refers to the time it takes for the chain to reach the stationary
distribution. Once the chain has burned-in, the state of the Markov chain contains
a single sample from the target distribution. The state of the chain after one more
transition will be highly correlated with the previous sample. Consequently, the chain
is simulated for multiple iterations before taking another sample. The mixing time
refers to the time required between samples such that the samples are independent.

When designing MCMC sampling algorithms, it is generally preferred to minimize
both the burn-in time and the mixing time. If multiple random initializations are used
to explore different modes, the burn-in time may have more of an impact. If only
a single chain is used to draw samples, then mixing time may be a more important
factor. It is generally very difficult to say anything concretely about either of these
quantities except in very specific situations (e.g., [65]). As a result, burn-in is often
showed empirically by monitoring joint model likelihoods, and mixing time is often
measured via an autocorrelation on a user-specified scalar statistic of the model.

� 2.5.2 Importance Sampling

An alternative to Markov chain Monte Carlo sampling approaches are Monte Carlo
algorithms that do not simulate a Markov chain. One such approach, called impor-
tance sampling, approximates the target distribution with a set of weighted samples.
Importance sampling first draws N independent samples from a proposal distribution,
denoted q(z):

zs ∼ q(z), ∀s ∈ {1, . . . , N}. (2.67)

Each sample is then assigned a corresponding importance weight according to

ws , w(zs) =
p(zs)

q(zs)
. (2.68)

Importance sampling allows one to approximate expectations of an arbitrary func-
tion h(·) over the true target distribution via a weighted sum of the proposed samples.

30 CHAPTER 2. BACKGROUND

(a) Target / Proposals (b) Samples from q1(z) (c) Samples from q2(z)

Figure 2.4: An importance sampling example. (a) shows the target distribution (blue)
and two proposal distributions (red and green). (b) and (c) show 100 samples and
associated weights for the two proposal distributions. Better approximations occur
when the proposal distribution is more similar to the target distribution (green).

Figure 2.5: Markov chain that can be inferred via particle filtering.

This can be seen from the following

1

N

N∑
s=1

wsh(zs) ≈ Eq[w(z)h(z)] =

∫
q(z)w(z)h(z)dz =

∫
p(z)h(z)dz = Ep[h(z)]

(2.69)
In general, the closer the proposal distribution is to the target distribution, the

better the approximation. For example, consider the distributions shown in Figure 2.4.
The green proposal distribution is more similar to the target distribution than the red
proposal distribution. Consequently, the associated importance weights are more evenly
distributed in the second case than the first, indicating a better approximation.

Particle Filtering

Importance sampling can also be extended to incorporate temporal dependence in a
Markov chain. Consider a general Markov chain where z denotes the set of hidden
variables, and x denotes the set of observed variables (as depicted in Figure 2.5). Similar
to importance sampling, a particle filter [59] then represents the poster distribution,
p(yt|x0:t), at time t with a set of weighted samples, {zts, wts}. We use the superscript
(0 : t) to mean the set of indices in {0, . . . , t}.

Particle filtering then propagates particles through time and updates the corre-
sponding importance weights such that they still approximate the true target distribu-
tion correctly. In typical algorithms, a particle, zts is propagated to the new time point
using the distribution over temporal dynamics, p(zt+1

s |zts). In this case, the resulting

Sec. 2.6. Implicit Shapes Representations via Level-Set Methods 31

weight updates must reflect the new data likelihood term

zt+1
s ∼ p(zt+1|zt) , wt+1

s = p(xt+1|zt+1
s)wts. (2.70)

Particle weights may decay over time for many likelihood-dominated applications, in-
dicating a poor representation of the desired distribution. Sequential importance re-
sampling (SIR) techniques (cf. [43]) are typically utilized to mitigate this issue. SIR
replaces particles that have small weights with particles that have large ones when the
representation is poor.

� 2.6 Implicit Shapes Representations via Level-Set Methods

Level-set methods provide a way to implicitly represent and evolve an N -dimensional
(or less) hyper-surface in an N -dimensional space. The works of Osher and Fedkiw [95]
and Sethian [105] provide the original development of level-set methods and a wealth
of knowledge on this subject. When applied to image segmentation, a scalar function,
ϕ, is defined by values on a two-dimensional Cartesian grid. In practice, this function
is stored as an image, and the height of the level-set function is defined for each pixel
in the image.

The implicit hyper-surface as it pertains to image segmentation is just a curve that
exists in the two-dimensional support of the image. Any level-set (the intersection of
the surface with a constant height plane) of ϕ can be used as the implicit hyper-surface,
but the zero level-set is typically chosen for the representation. The implied curve, C,
is defined as the set of all real-valued points on the 3-dimensional level-set function that
have height zero. The zero level-set divides the image into two regions that consist of
the positive and negative values of the level-set function, respectively.

The implicit curve of the level-set function is defined at a sub-pixel accuracy since
the location that ϕ is zero may be between two pixels. In the realm of image segmen-
tation problems, such fine-grained accuracy is often not needed. As such, we work in
the discrete domain of pixels. The two regions created by the zero level-set are then
distinguished by assigning a binary label to each pixel, i, denoted zi, according to

zi = 1I[ϕi ≥ 0]. (2.71)

We can then define the discrete curve as the set of pixels that are on the boundary of
the regions:

C =

i; zi = 1,
∏

j∈N(i)

zj = 0

 , (2.72)

where N(i) denotes the neighbors of i. An example level-set function is shown in Figure
2.6

Level-set methods involve representing a hyper-surface in a higher dimension, typi-
cally leading to increased memory and computation. However, the utility of representing

32 CHAPTER 2. BACKGROUND

Figure 2.6: Example of a level-set function. The zero level-set is represented with the
yellow curve.

a curve with level-set methods is that the curve is implicitly represented. Creating or
removing a new region is a matter of perturbing the underlying surface. If an explicit
representation (e.g., snakes [68]) is used, it requires the user to maintain the explicit
set of points on each curve. Creating or removing regions with an explicit representa-
tion requires bookkeeping and suffers from what is known as reparametrization of the
curve (i.e., resampling points on the curve as it changes shape). In fact, the overhead
of representing the entire underlying surface with an implicit representation typically
outweighs the nuisance of an explicit representation.

� 2.6.1 Signed Distance Function

In image segmentation algorithms using level-set methods, the user is only concerned
with the zero level-set because it is the curve that segments the image. Consequently,
this restricts pixels on the curve to have zero height, but pixels away from the curve
need only have the same sign. An infinite number of parameterizations of level-set
functions exist that have the same zero level-set.

A very common approach is to make the level-set function a signed distance function,
which has the property that the absolute value at each pixel is the minimum distance
to the zero level-set. An illustration of the signed distance function for the same zero
level-set as Figure 2.6 is shown in Figure 2.7.

A signed distance function is a solution to the general Eikonal equation for F = 1:

|∇ϕ| = F, (2.73)

subject to the constraint that the sign of ϕ is preserved. Consequently, in addition
to other numerical stability benefits, the signed distance function also satisfies the
condition that the gradient has magnitude 1. This relationship holds for all pixels
except those that are equidistant from multiple points on the zero level-set (i.e., the

Sec. 2.6. Implicit Shapes Representations via Level-Set Methods 33

Figure 2.7: Example of a level-set function as a signed distance function.

peaks and valleys of the level-set function). Fast methods (e.g., [119]) exist for solving
the Eikonal equation. A more in-depth description of the formulation and benefits of
using a signed distance function can be found in [95].

� 2.6.2 Sampling-Based Inference

In many applications, one defines an energy functional over the implicitly-defined curve
and attempts to optimize the energy to find the optimal configuration. However, in the
Bayesian setting, one may be more interested with characterizing the associated Boltz-
mann distribution obtained by exponentiating the negative of the energy. In such cases,
one approach for inference is to use Monte Carlo Markov Chain sampling methods. We
now briefly discuss two such sampling methods, both which use a Metropolis-Hastings
framework.

The first method was developed by Fan et al. [31], and is outlined in Algorithm
2.4. For additional details, please refer to its original presentation. We note that this

Algorithm 2.4 Alternating Implicit/Explicit Shape Sampling

1. Change from an implicit representation to explicit, arc-length parametrized markers.

2. Sample a perturbation magnitude for each marker point.

3. Construct a perturbation that changes each marker point in the normal direction by
the sampled magnitude and that extends the velocity to other points on the curve.

4. Accept the proposal according to the Hastings ratio.

5. Repeat from Step 1 until convergence.

algorithm alternates between an implicit and explicit representation. An example of the
entire proposal is depicted in Figure 2.8. We remind the reader that the Hastings ratio
requires computing the probability of the forward proposal and the probability of the
backward proposal. Because the normals of the curve change after the perturbation in

34 CHAPTER 2. BACKGROUND

(a) Initialization (b) Markers (c) Perturbation (d) Proposal (e) Reverse Move

Figure 2.8: An example proposal from the alternating implicit/explicit shape sampling
algorithm. The proposed move is indicated by the dotted shape. The forward move is
indicated by the red arrows, and the reverse move is indicated by the yellow arrows.

Algorithm 2.4, the resulting backward proposal is difficult to compute. A visualization
of this complication is illustrated in Figure 2.8e. Notice that the proposed shape at the
red markers do not have the same normals as the original shape at the green markers.
Consequently, the reverse move perturbs along a different normal direction and must
perturb the curve with a different magnitude than the forward move. Finding the
locations of the yellow markers complicates the calculation of the Hastings ratio. See
[31] for a cumbersome exact calculation or for an approximation solution.

The second method was developed by Chen and Radke [23], and is outlined in
Algorithm 2.5. For additional details, please refer to its original presentation. An

Algorithm 2.5 Foot-Point-Based Shape Sampling

1. Select a point on the curve randomly and call it the foot point.

2. Sample a perturbation magnitude the foot point.

3. Construct a perturbation that changes the foot point in the normal direction and
smoothly changes the surrounding curve.

4. Accept the proposal according to the Hastings ratio.

5. Repeat from Step 1 until convergence.

example of this proposal is depicted in Figure 2.9 In this algorithm, only one marker
point is used, denoted the foot point. The velocity is extended in the surrounding curve
such that the proposed perturbation is smooth and preserves the normal direction at
the foot point. As such, the reverse move can be calculated efficiently since it is just
the probability of generating the reverse magnitude perturbation.

� 2.7 Digital Topology

The topology of a continuous, compact surface is often described by its genus (i.e., the
number of “handles”). Digital topology [72] is the discrete counterpart of continuous
topology, where regions are represented via binary variables on a lattice grid.

Sec. 2.7. Digital Topology 35

(a) Initialization (b) Foot Point (c) Perturbation (d) Proposal (e) Reverse Move

Figure 2.9: An example proposal from the foot-point-based shape sampling algorithm.
The proposed move is indicated by the dotted shape. The forward move is indicated
by the red arrow, and the reverse move is indicated by the yellow arrow.

(a) (n, n) = (8, 8) (b) (n, n) = (4, 4) (c) (n, n) = (4, 8)

Figure 2.10: Examples of topology paradoxes. (n, n) indicate the connectivities for the
foreground and background, respectively. (a) and (b) illustrate the paradoxes when
the connectivities for the foreground and background are the same. In (a), part of the
continuous space belongs to both the foreground and background. In (b), part of the
continuous space is ambiguously owned by the two regions. When the connectivities
are jointly chosen, as in (c), there is no such paradox.

� 2.7.1 Connectiveness

In digital topology, connectiveness, which describes how pixels in a local neighborhood
are connected, must be defined in pairs for the foreground (FG) and background (BG).
For example, in 2D, a 4-connected region corresponds to a pixel being connected to its
neighbors above, below, left, and right. An 8-connected region corresponds to being
connected to the eight pixels in a 3 × 3 neighborhood. Connectivities must be jointly
defined for the foreground (n) and background (n) to avoid topological paradoxes. As
shown in [72], valid connectivities for 2D are (n, n) ∈ {(4, 8), (8, 4)}.

� 2.7.2 Topological Numbers and Simple Points

Given a pair of connectivities, the topological numbers [6] at a particular pixel, Tn
(for the FG) and Tn (for the BG) count the number of connected components a pixel
is connected to in a 3x3 neighborhood. The connected components are computed ig-
noring the center pixel of interest. Figure 2.11 shows a few neighborhoods with their

36 CHAPTER 2. BACKGROUND

�

�

�

� �

� �

�

�

�

�

� �

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

✁✂ ✄�☎✆✟ ✝✡✞☞✌✠✠✆☞☛✆✍✎

✒✂ ✄�☎✆✟ ✝✓✞☞✌✠✠✆☞☛✆✍✎

✔✌✠✠✆☞☛✆✍ ✔✌✏✖✌✠✆✠☛

Figure 2.11: Examples of topological numbers with (n, n) = (4, 8).

corresponding topological numbers.
Topological numbers can be used to identify when changing the label of a pixel

causes a topology change. A simple point is defined to be a point that can change
labels without changing the digital topology of the background or foreground regions.
Simple points can be uniquely identified by the condition that Tn = Tn = 1. That is,
when either topological number is not 1, switching labels of the corresponding pixel
will necessarily change the topology of one of the regions. The work of [50] exploited
this fact by only allowing simple points to change label during optimization, thereby
not allowing the topology of the regions to change.

� 2.7.3 Extended Topological Numbers

While these topological numbers can be used to detect a topological change, they cannot
distinguish the splitting or merging of a region from the creation or destruction of a
handle. Segonne [104] defines two additional, extended topological numbers, T+

n and
T+
n , which count the number of unique connected components a pixel is connected to

over the entire image domain. T+
n and T+

n depend on how pixels are connected outside
of the 3x3 region and allow one to distinguish all topological changes. The connected
components for the extended topological numbers are also computed ignoring the center
pixel of interest. Four examples of the extended topological numbers are shown in the
top row of Figure 2.12.

By labeling each connected component in the foreground and background, Segonne
shows that T+

n can be computed efficiently when the pixel currently belongs to the
background. Consider the examples shown in Figure 2.12, and notice that T+

n can be
computed when the current pixel is in the background (second row) by simply counting
the unique foreground labels. Similarly, T+

n can also be computed efficiently when the
pixel currently belongs to the foreground by counting the unique background labels.

Unfortunately, T+
n cannot be computed efficiently when a pixel is moved from the

foreground to the background, and T+
n cannot be computed efficiently when a pixel is

moved from the background to the foreground. For example, the number of unique
labels in both Figures 2.12c and 2.12d is 1 when the pixel currently is in the foreground
(bottom row), even though their corresponding values of T+

n are different. In 3D, one
must calculate all extended topology numbers to uniquely identify all topology changes.
This is clearly prohibitive since it requires connected component analysis for every single

Sec. 2.8. Finite Mixture Models 37

(a) T+
n = 1, T+

n = 1 (b) T+
n = 1, T+

n = 0 (c) T+
n = 2, T+

n = 1 (d) T+
n = 1, T+

n = 2

Figure 2.12: Extended topological numbers. The top row shows the configuration,
where red indicates foreground, light gray indicates background, and dark gray indicates
the pixel of interest. The second row shows the connected component labeling assuming
the pixel belongs to the background. The third row shows the connected component
labeling assuming the pixel belongs to the foreground.

pixel change.

� 2.8 Finite Mixture Models

In this section, we describe the finite mixture model, which is a probabilistic model that
is used in many lines of research. A single parametric distribution (e.g., Gaussian) is
often not rich enough to capture interesting data. For example, approximating all in-
tensities of pixels in an image with a single Gaussian distribution is nonsensical since we
know that objects are composed of multiple distinct colors. A mixture model improves
the expressiveness of these simple, parametric models by using a convex combination of
multiple, parametric distributions. For the remainder of this section, we will describe
finite mixture models that are assumed to be composed of K separate distributions. A
generalization to an unknown number of components is described in Section 2.9.2.

A mixture model assumes that the observations are drawn from the following dis-

38 CHAPTER 2. BACKGROUND

(a) Original Data (b) Latent Variables

Figure 2.13: An example of a finite mixture model. The color of the data points in
the latent variables correspond to different values of zi and the ellipses indicate the
Gaussian parameters for each cluster (mean and covariance).

tribution

xi ∼
K∑
k=1

πkfx(xi; θk), (2.74)

where
∑K

k=1 πk = 1, and fx(·; θk) denotes some density parametrized by θk (e.g., Gaus-
sian). An equivalent formulation introduces a corresponding zi for each data point
that indicates which of the K possible distributions the data was drawn from. This
formulation can be expressed as

zi ∼ Cat(π1, . . . , πK), (2.75)

xi ∼ fx(xi; θzi). (2.76)

It is easily verified that the resulting xi has the same distribution as Equation (2.74)
when marginalizing over zi. The zi’s are typically referred to as labels or assignments
since their label assigns a data point to a particular mixture component. Furthermore,
when the mixture model is framed in this formulation, a natural clustering of the data
arises from the posterior inference on the latent zi’s. An example of data and desired
latent variables in a finite mixture model is shown in Figure 2.13.

� 2.8.1 Priors on Parameters

In general, the only variables of the mixture model that are observed are the data, x.
Bayesian mixture models consequently place priors on both π and θ. Some methods
(e.g., K-means) place uniform priors on these parameters, but it is also common to
place a Dirichlet prior on π and a prior on θ that is conjugate to fx(xi; θk) (see Section
2.2). The corresponding probabilistic graphical model is shown in Figure 2.14. The full

Sec. 2.9. Non-parametric Bayesian Statistics 39

Figure 2.14: Graphical model for a Bayesian finite mixture model.

generative model is summarized by the following steps

(π1, . . . , πK) ∼ p(π1, . . . , πK) = Dir(π1, . . . , πK ;α), (2.77)

θk ∼ p(θk) = fθ(θk;λ), ∀k ∈ {1, . . . ,K}, (2.78)

zi ∼ p(zi|π) = Cat(π1, . . . , πK), ∀i ∈ {1, . . . , N}, (2.79)

xi ∼ p(xi|zi, θ) = fx(xi; θk), ∀i ∈ {1, . . . , N}. (2.80)

� 2.8.2 Posterior MCMC Inference

Because the priors are all chosen to be conjugate, posterior inference via Gibbs sampling
is quite straightforward. Exploiting the results of Section 2.2, posterior inference then
iterates between the following steps

π ∼ p(π|z) = Dir(π1, . . . , πK ;α+N1, . . . , α+NK), (2.81)

θk ∼ p(θk|x, z) = fθ(θk;λ
∗(xIk)), ∀k ∈ {1, . . . ,K}, (2.82)

zi ∼ p(zi|xi, π, θ) ∝
K∑
k=1

πkfx(xi; θk))1I[zi = k], ∀i ∈ {1, . . . , N}, (2.83)

where we denote Ik , {i; zi = k}, and xIk as the subset of all the data with label
zi = k. Alternatively, one can marginalize over π and potentially θ if conjugate priors
are used. This method is not discussed here.

� 2.9 Non-parametric Bayesian Statistics

Probabilistic modeling essentially attempts to fit real-world data with some approxi-
mate, tractable stochastic model. There is a long of history of using parametric distri-
butions, some of which lend themselves to very efficient inference (e.g., conjugate priors
discussed in Section 2.2). However, as the number of observations grows, one might
expect the approximation of the real-world data with a finite parametric distribution
to suffer. In these situations, it may be fitting to use a non-parametric model, where
the number of model parameters grows with the number of observations.

There has been a lot of recent success in applying non-parametric Bayesian models
to both synthetic and real-world data. In this section, we briefly review three such
models that will be used in this thesis: the Gaussian process, the Dirichlet process, and
the hierarchical Dirichlet process.

40 CHAPTER 2. BACKGROUND

� 2.9.1 Gaussian Processes

We begin with a brief discussion on Gaussian processes. For a more in-depth overview,
please consult [100].

A Gaussian process (GP) can be thought of as the limit of a multivariate Gaussian
distribution as the number of dimensions approaches infinity. As such, it is common to
specify a mean function and a covariance kernel instead of a finite-length mean vector
and covariance matrix. We will denote a sample from a GP as

g(i) ∼ GP (g(i);m(i), κ(i, j)) , (2.84)

where i and j denote the locations realized by the GP, m(i) is the mean function,
and κ(i, j) is the covariance kernel. One main difference between a GP and a finite,
multivariate Gaussian random variable is that GPs handle new data effortlessly; the
covariance between any two data points (whether they were previously defined or newly
observed) is completely characterized by m(i) and κ(i, j). The same cannot generally
be said with a multivariate Gaussian random variable.

Exact Posterior Inference

Posterior distributions in Gaussian processes can be expressed in closed form. Let x
denote an independent set of noisy observations of g, distributed according to

xi ∼ p(xi|gi) = N
(
xi; gi, σ

2
x

)
, ∀i ∈ {1, . . . , N}, (2.85)

where gi , g(i). Assume that these observations are at a set of locations, I (i.e., i ∈ I),
and that we are interested in the posterior distribution of g at a set of possibly different
locations, I∗. We denote the covariance matrix ΣII as the covariance between all
observations, and ΣI

∗I∗ as the covariance between all desired locations. Similarly, the
non-square matrices, ΣII

∗
and ΣI

∗I denote the covariance kernel evaluated at observed
and desired locations. These matrices can be expressed element-wise as

ΣIIij = κ(i, j), ∀i ∈ I, j ∈ I, (2.86)

ΣI
∗I∗
ij = κ(i, j), ∀i ∈ I∗, j ∈ I∗, (2.87)

ΣII
∗

ij = κ(i, j), ∀i ∈ I, j ∈ I∗, (2.88)

ΣI
∗I
ij = κ(i, j), ∀i ∈ I∗, j ∈ I. (2.89)

As shown in [100], the posterior distribution of g evaluated at I∗ is the following mul-
tivariate Gaussian distribution

g ∼ N
(
g ;
[
ΣII

∗ (
ΣII + σ2

xIN
)−1

x
]
,
[
ΣI
∗I∗ − ΣI

∗I (ΣII + σ2
xIN

)−1
ΣII

∗
])
,

(2.90)
where IN denotes an N ×N identity matrix.

Sec. 2.9. Non-parametric Bayesian Statistics 41

The above expression completely captures the posterior distribution of the Gaussian
process. This computation requires the inversion of N ×N matrices, and the product
of matrices of size N∗ ×N , N ×N , and N ×N∗, where N , |I| and N∗ , |I∗|. The
computational complexity for general, non-sparse, covariance matrices is then O(N3 +
N2N∗+NN∗2), and can be efficiently computed when N and N∗ are both fairly small.

This exact approach was used to infer the results of Example 2.1.1, where the xi’s
were noisy 2D coordinates of a measurement of the underlying ground truth trajectory,
g. While exact inference is desirable, this approach clearly does not scale well. For
example, in images, N and N∗ can both be on the order of a million. In such regimes,
matrices can hardly be stored, let alone be inverted or multiplied.

Covariance Kernels

Because exact inference may not be tractable, it will be convenient to select a stationary
covariance kernel to aid approximate inference. Here, stationarity implies that the
covariance only depends on the relative difference in locations, i.e., κ(i, j) ≡ κ(i − j).
We begin this discussion with two examples of covariance kernels. In this thesis, we will
only make use of zero-mean GPs with stationary covariance kernels, which we denote
as

g ∼ GP(g;κ). (2.91)

The locations will typically be the image domain, but will be specified if it they are
not.

The choice of a particular covariance kernel greatly affects samples from the resulting
Gaussian processes. There are many different parametric forms for stationary covari-
ance kernels. Here, we consider two commonly used classes: the squared-exponential
kernel, and the class of Matérn kernels.

The squared-exponential (SE) kernel (sometimes referred to as the radial-basis func-
tion) uses the following Gaussian function as the kernel

κSE(r) = σ2
g exp

[
− r

2

2l2

]
, (2.92)

where we have denoted the change in locations as r , i − j. The SE kernel contains
two parameters: the signal variance, σ2

g , and the characteristic length-scale, l. The
signal variance essentially just multiplies the entire Gaussian process by a constant
scale factor. The characteristic length-scale determines the rate at which the correlation
decays. Samples from Gaussian processes with a SE kernel are shown in Figure 2.15
for three different characteristic length-scales.

We note that the characteristic length-scale only scales the rate that the correlation
decays. While it may appear that samples from l = 10 are much smoother than l = 1,
a magnification of the l = 1 case by ×5 and ×10 in Figure 2.16 shows this to not be the
case. The resulting magnified GPs look similar to the l = 5 and l = 10 case. In other
words, the smoothness is a function of the class of covariance kernel; the characteristic

42 CHAPTER 2. BACKGROUND

l = 1 l = 5 l = 10

Figure 2.15: Four samples from Gaussian processes with a squared exponential kernel
at three different characteristic length-scales, l.

l = 1, Magnification ×1 l = 1, Magnification ×5 l = 1, Magnification ×10

Figure 2.16: A visualization of samples under different magnifications. The left plot
shows 4 samples of the GP with l = 1. The right plots show magnifications of the
left plot at ×5 and ×10. The corresponding magnified regions are indicated with bold
rectangles.

length-scale only scales the space.
The SE kernel is often very smooth, and [111] argues that it may even be too smooth

for physical processes. In such cases, the Matérn class of covariance kernels may be more
useful. The covariance kernel for the Matérn class can be expressed as

κ(r ; σ2
g , ν, l) = σ2

g

21−ν

Γ(ν)

(r√2ν

l

)ν
Kν

(r√2ν

l

)
, (2.93)

where there are three parameters: σ2
g , l, and ν. The first two hyper-parameter capture

the same meaning as in the SE kernel case. The extra ν controls the smoothness of
the kernel, where higher values correspond to smoother functions. The class of Matérn
functions captures a wide range of smoothness. For example, in the limit, as ν goes to
∞, the Matérn kernel is equivalent to the squared exponential kernel. When ν = 0.5,
the covariance kernel is equal to an exponential function. Some kernels and resulting
samples are shown in Figure 2.17.

Approximate Sampling and Inference via Equivalent Kernels

As stated previously, posterior distributions on GPs can be expressed analytically, but
cannot be computed efficiently for large datasets. In this section, we briefly consider the
problem of sampling from the posterior of a high-dimensional Gaussian process (GP)
under the following two conditions: (1) a stationary covariance kernel is used, and (2)

Sec. 2.9. Non-parametric Bayesian Statistics 43

(a) Covariance Kernels (b) Sample Realizations

Figure 2.17: Covariance kernels and samples from the Matérn class of kernels. All
kernels have l = 1 and σ2

g = 1 but vary the hyper-parameter ν.

the observation locations and target locations are both the same and form a lattice grid.
Let g be a sample from a GP on a 2D grid of equally spaced locations. This finite

realization of g can then be expressed as a joint Gaussian with

g ∼ N (g; 0,Σg) , (2.94)

where Σg is the covariance obtained by evaluating the kernel, κ, at the grid locations.
Let x be noisy observations of g as follows

x ∼ N
(
x; g, σ2

x

)
. (2.95)

Applying Equation (2.90) results in the following posterior distribution:

p(g|x) = N
(
g ; ΣgΛg+xx , Σg − ΣgΛg+xΣg

)
= N (g;µ∗,Σ∗) , (2.96)

where we define Λg+x = (Σg+x)−1 , (Σg + σ2
xIN)−1.

In the limit, as the size of the 2D grid approaches ∞, equivalent kernel methods
[110] state that the posterior mean approaches

lim
N→∞

µ∗ = hµ ∗ x, (2.97)

where the equivalent kernel, hµ, is defined to be

hµ = F−1

(
F(κ)

F(κ) + σ2
x

)
, (2.98)

and F and F−1 denote the Fourier and inverse Fourier transforms, respectively. We
exploit this limiting behavior by approximating µ∗ with

µ∗ ≈ hµ ∗ x̂, (2.99)

44 CHAPTER 2. BACKGROUND

(a) Observation x (b) True Posterior (c) Zero-Padded (d) Nearest-Padded

Figure 2.18: Comparing inference methods for Gaussian processes. (a) A noisy obser-
vation generated from the GP. (b) The true mean of the posterior GP. We note that
the true mean can only be computed for very small images (30×30 in this case) since it
requires the inversion of an N ×N matrix, where N is the number of pixels. (c) Equiv-
alent kernel approximation with zero-padding outside of the borders. (d) Equivalent
kernel approximation after padding boundaries with the nearest value of x.

where x̂ denotes padding the boundaries of x with the nearest values. We show results
with and without padding in Figure 2.18.

The above expression approximates the MAP solution to the latent Gaussian pro-
cess. To accurately draw a sample from the posterior, we must also categorize the
posterior covariance. We first remind the reader of the useful property of Gaussian
random variables:

g ∼ N
(
µ∗g,Σ

∗
g

)
≡ µ∗g +N

(
0,Σ∗g

)
. (2.100)

That is, the randomness in g can be completely captured by the second term involving
the covariance. Additionally, it is well known that if y ∼ N (0, IN) (i.e., a vector of
standard normals), then multiplying this vector by a matrix A results in correlated
Gaussian variables:

Ay ∼ N
(

0, AA>
)
. (2.101)

While this relationship is most often used to generate multivariate normals by setting
A to be the Cholesky decomposition of the covariance matrix, the identity holds for
any matrix, A. We first find the corresponding filter that is equivalent to multiplying
a vector with Σ∗g as

hΣ,2 = F−1

{
F {κ} − F {κ}2

F {κ}+ σ2
x

}
. (2.102)

Then, we choose a particular decomposition in Equation (2.101) where A is symmetric,
resulting in:

hΣ = F−1

√
F {κ} − F {κ}2

F {κ}+ σ2
x

 . (2.103)

Sec. 2.9. Non-parametric Bayesian Statistics 45

An approximate sample from the Gaussian process of Equation (2.90) with:

g = [hµ ∗ x̂] + [hΣ ∗ N (0, IN) ∗] (2.104)

Approximate Likelihood Computation

To to perform parameter-learning in Gaussian processes, it is common to need to cal-
culate the likelihood. Assuming a zero-mean Gaussian process, g, the likelihood can be
expressed as

p(g|κ) = |Σg|−
1
2 (2π)−

N
2 exp

[
−1

2
g>(Σg)−1g

]
, (2.105)

where the covariance matrix, Σg is dependent on the covariance kernel, κ. This likeli-
hood computation poses a computational difficulty because g>(Σg)−1g is a large vector-
matrix-vector product, and |Σg| is the determinant of a large matrix. The vector-matrix-
vector product can be well approximated using equivalent kernel methods and FFTs.
We now discuss the computation of the determinant.

We note that because Toeplitz matrices approach circulant matrices in the infinite
data regime, one can approximate determinants of large Toeplitz matrices. Let C denote
a symmetric Toeplitz matrix, defined as

C =

c0 c1 . . . cN−1 cN
c1 c0 . . . cN−2 cN−1
...

...
. . .

...
...

cN−1 cN−2 . . . c0 c1

cN cN−1 . . . c1 c0

 . (2.106)

If ci is monotonically decreasing to 0 (as is the case for most covariance kernels of
interest), we can then approximate the Topelitz matrix with the following circulant
matrix with

C̃ = C +

0 cN . . . c2 c1

cN 0 . . . c3 c2
...

...
. . .

...
...

c2 c3 . . . 0 cN
c1 c2 . . . cN 0

 (2.107)

=

c0 c1 + cN . . . c2 + cN−1 c1 + cN

c1 + cN c0 . . . c3 + cN−2 c2 + cN−1
...

...
. . .

...
...

c2 + cN−1 c3 + cN−2 . . . c0 c1 + cN
c1 + cN c2 + cN−1 . . . c1 + cN c0

 (2.108)

Because the determinant of a circulant matrix is known to be the product of its Fourier

46 CHAPTER 2. BACKGROUND

(a) Toeplitz, C (b) Circulant, C̃ (c) Approximation Error

Figure 2.19: Approximating determinants of symmetric Toeplitz matrices.

series coefficients, the determinant of the covariance matrix can be calculated efficiently
using the Fast Fourier Transform. We visualize the approximation in Figure 2.19 for
varying amounts of observations, N . We note that this approximation is related to the
the Szegő limit theorems.

� 2.9.2 Dirichlet Processes

In this section, we give a brief overview of Dirichlet processes. For a more in-depth
understanding, we refer the reader to [112]. The seminal work of Ferguson [33] proves
the existence of the random process defined in Definition 2.9.1.

Definition 2.9.1 (Dirichlet Process). Let H be a measure on a measureable space, Ω. If
for any finite partition, (A1, A2, . . . , AK) of the space, the measure, G on the partition
follows the following Dirichlet distribution

(G(A1), G(A2), . . . , G(AK)) ∼ Dir(αH(A1), αH(A2), . . . , αH(AK)), (2.109)

for some positive scalar α, then G is said to be a Dirichlet process with concentration
parameter α and base measure H. This relationship is denoted as G ∼ DP(α,H).

Sethuraman [106] later developed the following constructive proof of the existence
of the DP.

Theorem 2.9.1 (Stick-Breaking Construction of a Dirichlet Process). Let π be an infinite
length vector where each component is sampled according to the following:

βk ∼ Beta(1, α), ∀k ∈ Z+, (2.110)

πk = βk

(
1−

k−1∑
l=1

πl

)
∀k ∈ Z+. (2.111)

Sec. 2.9. Non-parametric Bayesian Statistics 47

(a) Model with atoms (b) Model with explicit labels

Figure 2.20: Two equivalent graphical models for the DPMM.

Furthermore, let each πk be associated with a corresponding θk drawn from

θk ∼ H, ∀k ∈ Z+. (2.112)

If G is constructed from π and θ as follows

G =
∞∑
k=1

πkδθk , (2.113)

then G is guaranteed to be a Dirichlet process distributed according to G ∼ DP(α,H).

Proof. Please see [106].

The above construction is referred to as the stick-breaking construction since one can
think of each draw of πk as breaking off part of a unit length stick. For each new stick
break, πk, βk determines the proportion of the remainder of the stick to allocate. We
note that it is common to denote the stick-breaking process as π ∼ GEM(1, α) (GEM
stands for the authors Griffiths, Engen, and McCloskey). A draw from a Dirichlet
process is therefore a set of discrete atoms, where the atom locations are drawn from
the base measure H, and the heights of the atoms are drawn from the stick-breaking
process.

A Dirichlet process mixture model (DPMM) uses a Dirichlet process as the prior
over the model parameters. The graphical model for a DPMM is shown in Figure 2.20a.
The generative model is summarized in the following steps:

G ∼ DP(α,H), (2.114)

θ̃i ∼ G(θ̃i), ∀i ∈ {1, . . . , N}, (2.115)

xi ∼ fx(xi; θ̃i), ∀i ∈ {1, . . . , N}. (2.116)

For each data point, i, a corresponding parameter θ̃i is first drawn from the Dirichlet
process realization, G. Because G is a draw from a DP, it is composed of discrete atoms;
therefore, multiple data points have non-zero probability of sharing the same value of
θ̃i.

Alternatively, the Dirichlet process mixture model can be equivalently represented
with an explicit indexing latent variable, zi. This model is depicted in Figure 2.20b. In-

48 CHAPTER 2. BACKGROUND

stead of sampling an explicit atom location from G, zi samples an index into a particular
atom. This generative model is summarized in the following steps:

π ∼ GEM(1, α), (2.117)

θk ∼ fθ(θk;λ) = H, ∀k ∈ {1, . . . }, (2.118)

zi ∼ Cat(π), ∀i ∈ {1, . . . , N}, (2.119)

xi ∼ fx(xi; θzi), ∀i ∈ {1, . . . , N}. (2.120)

While this model is equivalent to the one presented in Equation (2.114)–(2.116), it is
often simpler to understand since it is a generalization of the finite mixture model in
Section 2.8.

Chinese Restaurant Process

Before detailing posterior inference algorithms in DPMMs, we first discuss another al-
ternative generative model of the DPMM, called the Chinese Restaurant Process. We
begin by developing the predictive distribution of z by marginalizing over the Dirichlet
process. The Dirichlet process is essentially a generalization of the Dirichlet distribu-
tion. As shown in Section 2.2, the Dirichlet distribution is conjugate to categorical
observations. As such, one would expect the weights associated with the stick-breaking
process of the Dirichlet process to also be conjugate to the categorical observations, z.
We now show that this intuition is indeed true.

Assume that the set of labels, {z1, . . . , zN} take on K distinct values, each with an
associated atom location θk. According to Definition 2.9.1, any partition of the sample
space, Ω, must follow a Dirichlet distribution. One valid partition is the following

(A1, . . . , AK , AK+1) = (δθ1 , . . . , δθK ,Ω \ {∪
K
k=1δθk}), (2.121)

where the first K partitions are singular points located at the values of θk. Furthermore,
because each observation places a point mass, δθzi , at the location θzi , and there is
measure α spread throughout Ω, the resulting distribution from this partition will be

(G(A1), . . . , G(AK), G(AK+1)) ∼ Dir(N1, . . . , NK , α). (2.122)

According to the properties of the Dirichlet distribution described in Section 2.2, we
know that marginalizing this distribution results in the following predictive distribution

p(ẑ|z1, . . . , zN) = DirCat(ẑ;N1, . . . , NK , α) ∝ α1I[ẑ = K + 1] +
K∑
k=1

Nk1I[ẑ = k].

(2.123)
We note that when ẑ = K+ 1, this is equivalent to sampling from a new atom that was
not previously used among the {z1, . . . , zN} values.

Sec. 2.9. Non-parametric Bayesian Statistics 49

The distribution on the set of labels, z, can be decomposed as

p(z) = p(z1)p(z2|z1)p(z3|z1, z2) . . . p(zN |z1, . . . , zN−1). (2.124)

Furthermore, because the observations are exchangeable in a DPMM, each term in this
expression follows the form of the predictive distribution in Equation (2.123). As such,
it is easily shown (cf. [1]) that z follows the following distribution

p(z) =
αKΓ(α)

Γ(N)

K∏
k=1

Γ(Nk). (2.125)

The Chinese Restaurant Process (CRP) [97] describes the process of sampling from
Equation (2.124) iteratively using Equation (2.123). In the CRP, each observation is
represented as a customer in a restaurant. Customers come into the restaurant and
either sit at a previously-occupied table or sit at a new table. The different tables par-
tition the observations into separate clusters. Sitting at a table with another customer
is equivalent to assigning both customers to the same atom, whereas sitting at an empty
table corresponds to sampling a new atom. According to Equations (2.123) and (2.124),
a valid partitioning from a DPMM can be drawn according to the following: customers
sequentially enter the restaurant and sit at a table with probability proportional to
the number of customers already seated there, or start a new table with probability
proportional to α.

Collapsed-Weight Samplers

We are now properly equipped to discuss posterior inference in DPMMs. One main
problem in DPMMs is that π and θ are both infinite-length vectors that cannot be
explicitly instantiated. Fortunately, the CRP marginalizes over the infinite length vector
π. Furthermore, if a conjugate prior is placed on θ (e.g., [16, 30, 85, 92, 126]), the
parameters can also be marginalized. The only remaining latent variable, z, then has
the following posterior distribution

p(zi|x, z\i) ∝ αfx(xi;λ)1I[zi = k̂] +
K∑
k=1

Nk\ifx(xi;λ
∗(xIk\i))1I[zi = k], (2.126)

where \i denotes all indices excluding i, Nk\i are the number of elements in z\i with label

k, k̂ is a new cluster label, Ik , {i; zi = k} denotes the set of indices with label zi = k,
fx(◦;λ) denotes the distribution of x when marginalizing over parameters, and λ∗(·)
denotes the posterior hyper-parameters. This Gibbs sampling algorithm is summarized
in Algorithm 2.6. When a non-conjugate prior is used, a computationally expensive
Metropolis-Hastings step (e.g., [86, 93]) must be used when sampling the label for each
data point.

50 CHAPTER 2. BACKGROUND

Algorithm 2.6 Chinese Restaurant Process Sampling for DPMMs

1. Initialize z arbitrarily.

2. Label inference across the data:
(a) Sample a random permutation of the integers in [1, N].

(b) Select the next index, i, from the permutation.

(c) Sample a label, zi, conditioned on all other labels from Equation (2.126).

(d) Repeat from Step 2(b) until no indices remain.

3. Repeat from Step 2 until convergence.

Instantiated-Weight Samplers

The constructive proof of the Dirichlet processes [106] shows that a DP can be sampled
by iteratively scaling an infinite sequence of Beta random variables. Therefore, posterior
MCMC inference in a DPMM could, in theory, alternate between the following samplers

(π1, . . . , π∞) ∼ p(π|z, α), (2.127)

θk
∝∼ fθ(θk;λ)

∏
i∈Ik

fx(xi; θk), ∀k ∈ {1, 2, . . . }, (2.128)

zi
∝∼
∞∑
k=1

πkfx(xi; θk)1I[zi = k], ∀i ∈ {1, . . . , N}, (2.129)

where
∝∼ samples from a distribution proportional to the right side. When conjugate

priors are used, the posterior distribution for cluster parameters is in the same family
as the prior:

p(θk|x, z, λ) ∝ fθ(θk;λ)
∏
i∈Ik

fx(xi; θk) ∝ fθ(θk;λ∗(xIk)), (2.130)

where λ∗(xIk) denotes the posterior hyper-parameters for the data belonging to cluster
k. Unfortunately, the infinite length sequences of π and θ clearly make this procedure
impossible.

As an approximation, authors have considered the truncated stick-breaking repre-
sentation [60] and the finite symmetric Dirichlet distribution [61]. The latter is summa-
rized in Algorithm 2.7 assuming conjugate priors. These approximations become more
accurate when the truncation is much larger than the true number of components, which
is often unknown. When cluster parameters are explicitly sampled, these algorithms
may additionally suffer from slow convergence issues. In particular, a broad prior will
often result in a very small probability of creating new clusters since the probability
of generating a parameter from the prior to fit a single data point is small. However,
these approximations do excel in certain aspects compared to the collapsed-weight sam-

Sec. 2.9. Non-parametric Bayesian Statistics 51

Algorithm 2.7 Finite Symmetric Dirichlet Approximation for DPMMs

1. Initialize z arbitrarily and choose a truncation, L.

2. Sample the L mixture weights from π ∼ Dir(N1 + α
L , . . . , NL + α

L).

3. Sample the L mixture parameters, each from θl ∼ fθ(θl;λ∗(xIl)).
4. Sample the N labels, each from zi ∼

∑L
k=1 πlfx(xi; θl)1I[zi = l]

5. Repeat from Step 2 until convergence.

plers. Instantiated-weight sampling algorithms can be easily parallelized since each zi
is independent. Moreover, non-conjugate priors on θ are also easier to handle since
marginalization over θ is not required.

Super-Cluster Parallel Samplers

While parallelizable algorithms are of interest to the machine-learning community, the
approximation required for using the finite models is undesirable. More recently, the
works of [83] and [127] present an alternative parallelization scheme that does not
require such approximations. These works draw on the nesting property of Dirichlet
processes in the atom representation of Figure 2.20a, summarized in below.

Theorem 2.9.2 (Nesting Partitions of the DPMM). Let L be a positive integer. If a
set of N observations, denoted {x1, . . . , xN}, is drawn from a Dirichlet process mixture
model with concentration parameter α and base measure H, the following steps form an
equivalent generative process:

Gl ∼ DP(αL , H), l ∈ {1, . . . , L}, (2.131)

φ ∼ Dir(φ1, . . . , φL; αL , . . . ,
α
L), (2.132)

gi ∼ Cat(gi;φ), (2.133)

θ̃i ∼ Ggi(θ̃i), i ∈ {1, . . . , N}, (2.134)

xi ∼ fx(xi; θ̃i), i ∈ {1, . . . , N}. (2.135)

Proof. See [127].

Theorem 2.9.2 effectively partitions the parameter space of H into L disjoint sets.
Each of the L partitions then forms its own Dirichlet process, and each data point
is assigned to one such partition through gi. As such, each of the L partitions is
often referred to as a super-cluster. This observation is useful because it allows an
algorithm to parallelize across the L super-clusters. That is, all of the data points
assigned to super-cluster 1 are independent from the data points assigned to super-
cluster 2. Assuming that each super-cluster contains the same number of points, this
type of algorithm has the potential of having an L times speedup if L processors are

52 CHAPTER 2. BACKGROUND

used in parallel. Unfortunately, in practice and in theory (cf. [38]), the size of each
super-cluster is extremely unbalanced, and this optimistic speedup cannot be achieved.
Furthermore, sampling from the super-cluster model can artificially impede burn-in
because data can only move within the current super-cluster until the super-cluster
assignment is resampled.

Split/Merge Sampling Algorithms

Jain and Neal [63], among many others, have noticed that both the previously dis-
cussed collapsed-weight and instantiated-weight sampling algorithms tend to converge
very slowly. This has consequently motivated sampling methods for DPMMs that in-
corporate large moves, such as splitting a cluster into two, or merging two clusters into
one. Two such methods are often used in practice: the “Restricted Gibbs Split Merge”
presented in [63] and [64], and the “Sequentially-Allocated Merge Split” presented in
[27].

RGSM. The Restricted Gibbs Split Merge (RGSM) algorithm, originally proposed in
[63] and later extended to non-conjugate priors in [64], is a collapsed-weight sampling
algorithm that uses a Metropolis-Hastings accept/reject framework to propose split
and merge moves. In this section, we only consider the case where conjugate priors
are used, and the resulting algorithm can collapse both the mixture weights and the
mixture parameters. We will use the symbols \, [, and] to denote cluster indices that
will be involved in splits and merges, where \, [,] ∈ {1, . . . ,K}. A proposed merge move
will merge clusters [and] into cluster \. This notation is motivated by musical theory,
where a flat accidental ([) combined with a sharp accidental (]) results in a natural
note (\).

Two data points, denoted j1 and j2 are first selected uniformly at random from the
N possible observations. If, for the current configuration, zj1 = zj2 = \ (i.e., the points
are both assigned to cluster \), then a split of cluster \ is proposed. If the converse is
true (i.e., zj1 = [6= zj2 =]), then a merge of clusters [and] is proposed.

A proposed split move is first randomly initialized by the following:

ẑi ∼
∑

k∈{[,]}

0.51I[ẑi = k], ∀i ∈ {i; zi = \} (2.136)

The proposed split move is then improved by running a restricted Gibbs iteration. That
is, the data points are explored via a random permutation of the indices, where each
data point is sampled from

ẑi ∼
∑

k∈{[,]}

Nk\ifx(xi;λ
∗(xIk\i))1I[ẑi = k]. (2.137)

The process is repeated for M iterations and then accepted in a Metropolis-Hastings

Sec. 2.9. Non-parametric Bayesian Statistics 53

algorithm with the following Hastings ratio:

Hsplit-\ =
p(ẑ)p(x|ẑ)
p(z)p(x|z)

1

qsplit(ẑ|z)
, (2.138)

where qsplit(ẑ|z) aggregates all the probabilities in Equation (2.137) for the last of the
M iterations.

Similarly, a merge of clusters [and] into \ is proposed by simply performing

ẑi = \, ∀i ∈ I[∪ I], (2.139)

and accepted with probability

Hmerge-[] =
p(ẑ)p(x|ẑ)
p(z)p(x|z)

qsplit(z|ẑ)
1

. (2.140)

One must be careful in computing the reverse move in this Hastings ratio, captured by
qsplit(z|ẑ). Jain and Neal have shown that one can simply sample a random permutation
of the indices involved in the merge, followed by aggregating the terms of Equation
(2.137). The overall steps in RGSM are summarized in Algorithm 2.8.

Algorithm 2.8 Restricted Gibbs Split Merge Sampling for DPMMs

1. Randomly select two data points, j1 and j2. If the points belong to the same cluster,
go to Step 2 to propose a split. Otherwise, go to Step 5 to propose a merge.

2. Split Proposal:
(a) Randomly initialize the new labels according to Equation (2.136).

(b) Sample a random permutation of the indices involved in the split proposal.

(c) Loop through the permutation and sample assignments from Equation (2.137).

(d) Repeat from Step 2(b) M − 1 times.

(e) Accept or reject the proposal with the Hastings ratio of Equation (2.138).

(f) Repeat from Step 1.

3. Merge Proposal:
(a) Deterministically assign the new labels according to Equation (2.139).

(b) Sample a random permutation of the indices involved in the merge proposal.

(c) Loop through the permutation and aggregate probabilities in Equation (2.137).

(d) Accept or reject the proposal with the Hastings ratio of Equation (2.140).

(e) Repeat from Step 1.

SAMS. The Sequentially-Allocated Merge Split (SAMS) algorithm, originally pro-
posed in [27], improves upon RGSM by only requiring one pass through the data as
opposed to M . The only part of the algorithm that is changed is the construction of a

54 CHAPTER 2. BACKGROUND

split proposal. As such, we only review the specific split construction here.
Conditioned on the two randomly selected data points that currently belong to the

same cluster, a split is constructed with the steps outlined in Algorithm 2.9. The re-
sulting Hastings ratios are essentially the same as Equations (2.138) and (2.140), except
that qsplit must be calculated by aggregating the probabilities in Equation (2.141).

Algorithm 2.9 Sequentially-Allocated Split Proposal for DPMMs

1. Assign ẑj1 = [and ẑj2 =].

2. Choose a random permutation of all other indices in I\ \ {j1, j2}.
3. Take the next index from the random permutation, denoted i.

4. Assign the data point to cluster [or] based on

ẑi
∝∼
∑

k={[,]}

Nkfx(xi;λ
∗(xIk))1I[ẑi = k], (2.141)

where Nk and λ∗(xIk) depend only on previously assigned data points.

5. Repeat from Step 3 until all points have been assigned.

� 2.9.3 Hierarchical Dirichlet Process

The Hierarchical Dirichlet process [116] is an extension of the Dirichlet process that
allows for groups of data to share cluster statistics. Since the Hierarchical Dirichlet
process (HDP) is often used in topic modeling, we motivate this section with this
specific problem. Suppose a corpus of documents exist, where each document consists
of a bag of words, and each word is associated with a topic. For example, 90% of the
words in one document might be about finance and 10% about economics. Another
document might have 70% of the words be about economics, 20% about politics, and
10% about education. In topic modeling, one would like to reason about the different
topics that exist in the corpus and the proportion of each topic that exists in each
document. The HDP is a generative probabilistic model that captures exactly these
aspects.

There are many different ways to represent an HDP. We cover three such rep-
resentations here: the explicit atom representation, the Chinese restaurant franchise
representation, and the direct assignment representation.

Explicit Atom Representation

The graphical model capturing the dependencies for the explicit atom representation
is depicted in Figure 2.21a. The generative model for the explicit atom representation
is as follows. A global set of atoms and weights, G0, is drawn from a Dirichlet process
with concentration parameter γ and base measure H according to the stick-breaking

Sec. 2.9. Non-parametric Bayesian Statistics 55

(a) Explicit Atoms (b) Chinese Restaurant Franchise

Figure 2.21: Graphical models for the explicit atom and Chinese restaurant franchise
formulations of the HDP.

construction of Theorem 2.9.1:

G0 ∼ DP(γ,H). (2.142)

For each document, j, a document-specific set of atoms and weights, Gj , is drawn from
a Dirichlet process with concentration parameter α and base measure G0:

Gj ∼ DP(α,G0), ∀j ∈ {1, . . . , D}. (2.143)

We note that because the base measure, G0, on the document-specific DP is discrete,
Gj is guaranteed to draw the same atom from G0 multiple times. Each word is then
assigned a specific topic distribution with θ̃ji, drawn from Gj :

θ̃ji ∼ Gj(θ̃ji) ∀j ∈ {1, . . . , D},∀i ∈ {1, . . . , Nj}. (2.144)

Finally, each word is drawn from its assigned topic distribution:

xji ∼ fx(xji; θ̃ji) ∀j ∈ {1, . . . , D},∀i ∈ {1, . . . , Nj}. (2.145)

Chinese Restaurant Franchise Representation

An equivalent representation of the HDP breaks out the atoms and explicitly instan-
tiates indices to each atom. This representation is depicted in Figure 2.21b. More
precisely, G0 ∼ DP(γ,H) is a discrete distribution sampled using a stick-breaking con-
struction, and can be expressed as

G0 =

∞∑
k=1

βkδθk . (2.146)

As such, β and θ can be equivalently be drawn from

β ∼ GEM(γ), (2.147)

θk ∼ fθ(θk;λ) = H, ∀k ∈ {1, 2, . . . }. (2.148)

56 CHAPTER 2. BACKGROUND

Similarly, for each document, Gj can also be sampled according to a stick-breaking
process. However, as noted to previously, because the base measure G0 is discrete,
resulting DPs will necessarily draw exactly the same location. If we express Gj as

Gj =
∞∑
t=1

π̃jtδφ̃t , (2.149)

this repeating of atoms causes the set of atom locations {φ̃1, φ̃2, . . . } to contain repeated
values (e.g., φ̃1 might be equal to φ̃2). Since φ̃t must be an element of the infinite set
of global atom locations, {θ1, θ2, . . . }, we introduce an auxiliary variable, κjt, that
explicitly assigns the τ th atom of Gj to the the kth

jt global atom

Gj =
∞∑
t=1

π̃jtδθκjt . (2.150)

A visualization of these Dirichlet processes are shown in Figure 2.22a.
This representation is named the Chinese Restaurant Franchise (CRF) by [116] as

an extension to the Chinese Restaurant Process (CRP) in DPMMs. The equivalent
analogy for a CRF is as follows. Each document is represented by a restaurant, and the
corpus of documents represent the entire franchise of restaurants. Similar to the CRP,
A customer enters a restaurant (or, in topic modeling, a word in a document) and sits
at table. The CRF then departs from a CRP by assigning a dish to each non-empty
table from a global set of possible dishes. Tables within the same restaurant and across
the different restaurants can all be assigned the same dish. Two customers that are
eating the same dish (regardless of their table or restaurant) then belong to the same
cluster.

The entities of the CRF relate to the HDP as follows. Customer i in restaurant j sits
at table τji. Table t in restaurant j corresponds to the jth atom of Gj . The dish served
to table t, denoted by φjt is exactly the same as one of the atoms in G0. Assuming
φjt takes on the value of θkjt , we then denote the dish label assigned to table t as κjt.
The resulting graphical model for the CRF representation with explicit assignments is
depicted in Figure 2.22b.

We note that the notation of τ and κ slightly departs from the original presentation
in [116]. In the original presentation, t denoted the index of a table in a restaurant, and
tji denoted the table assignment to customer i in restaurant j. Similarly, k denoted the
index of a particular dish, and kjt denoted the dish assigned to table t in restaurant j.
We find this overloaded notation to be quite confusing since it is not clear as to whether
t refers to an index of a table or to the set of all table assignments. Consequently, we
have introduced τ and κ to be the actual set of table and dish assignments, respectively,
and t and k to be indices of tables and dishes, respectively.

It will be useful to define counts, as was done in [116]. We use njtk to denote the
number of customers in restaurant j sitting at table t eating dish k. Since each table is

Sec. 2.9. Non-parametric Bayesian Statistics 57

(a) Explicit Atom and Chinese Restaurant Franchise Representations

(b) Direct Assignment Representation

Figure 2.22: A visualization of draws from HDPs. The top plot shows the global
Dirichlet process drawn from the base measure, H. (a) and (b) show a document-level
Dirichlet process drawn from the base measure, G0. (a) is the explicit atom or Chinese
restaurant franchise representation that has repeated atoms, and (b) is the simplified,
direct assignment representation that aggregates repeated atoms.

only assigned a single dish, njtk for a fixed j and t will only be non-zero at one value
of k. Additionally, we use mjk to denote the number of tables in restaurant j that are
serving dish k. Marginalized counts that sum over a particular index are denoted with
a dot. For example, njt· counts the number of customers in restaurant j sitting at table
t, nj·· counts the number of customers in restaurant j, and mj· counts the total number
of tables in restaurant j. For shorthand, we also denote the number of customers per
restaurant as Nj , nj··.

58 CHAPTER 2. BACKGROUND

Figure 2.23: Direct assignment representation of the HDP.

The equivalent generative model for the CRF is then the following:

β ∼ GEM(1, γ), (2.151)

κjt ∼ Cat(κjt;β), ∀j ∈ {1, . . . , D}, t ∈ {1, 2, . . . }, (2.152)

θk ∼ fθ(θk;λ) = H, ∀k ∈ {1, 2, . . . } (2.153)

π̃j ∼ GEM(1, α), ∀j ∈ {1, . . . , D}, (2.154)

τji ∼ Cat(τji; π̃j), ∀j ∈ {1, . . . , D}, i ∈ {1, . . . , Nj}, (2.155)

xji ∼ fx(xji; θkjtji), ∀j ∈ {1, . . . , D}, i ∈ {1, . . . , Nj}. (2.156)

When a conjugate prior is used on θ, one can use the predictive distributions of the
CRF to marginalize over β, π̃, and θ (cf. [116]) to perform posterior inference via
Gibbs sampling. Since this method is more complicated than inference in the direct
assignment model (which we now discuss), we do not explain the approach here.

Direct Assignment Representation

The repeated atoms in the previous discussion complicate the indexing required in
the CRF representation. We now present the direct assignment (DA) representation,
which collapses the repeated atoms into a single atom. Atoms from this equivalent
representation are visualized in Figure 2.22b.

The graphical model for the DA representation of the HDP is shown in Figure 2.23.
The main idea in the DA representation is to aggregate atoms at the same location.
The resulting aggregated atom then has an associated weight according to

πjk =

mj·∑
t=1

π̃jt1I[κjt = k]. (2.157)

Using Definition 2.9.1, one can show that πj is then distributed according to DP(α, β)
The new random variable, zji, then directly assigns the data point xji to cluster zji.

Sec. 2.9. Non-parametric Bayesian Statistics 59

The resulting generative model is summarized as follows:

β ∼ GEM(1, γ), (2.158)

θk ∼ fθ(θk;λ) = H, ∀k ∈ {1, 2, . . . } (2.159)

πj ∼ DP(α, β), ∀j ∈ {1, . . . , D}, (2.160)

zji ∼ Cat(zji;πj), ∀j ∈ {1, . . . , D}, i ∈ {1, . . . , Nj}, (2.161)

xji ∼ fx(xji; θzji), ∀j ∈ {1, . . . , D}, i ∈ {1, . . . , Nj}. (2.162)

We now consider the posterior distributions of each latent variable. Unfortunately,
unlike the CRF representation, the posterior distribution for β cannot be expressed
analytically conditioned only on π. As such, Teh et al. [116] propose to first sample the
counts m prior to sampling β, according to [1]:

p(mjk|z, β) =
Γ(αβk)

Γ(αβk + nj·k)
s(nj·k,mjk)(αβk)

mjk , (2.163)

where s(n,m) are unsigned Stirling numbers of the first kind.
Using conjugacy of the Dirichlet with the Categorical distribution, the posterior

distribution on β conditioned on m is then

p(β1, . . . , βK , βK+1|m) = Dir(β1, . . . , βK , βK+1;m·1, . . . ,m·K , γ), (2.164)

where we have assumed that K clusters exist in the current realization of z, and that
βK+1 aggregates all the β’s associated with empty-clusters. We note that this definition
of β has slightly changed, since they are now defined over explicit partitions of the
sample space.

Assuming that fθ is conjugate to fx, we can marginalize over θ in the label assign-
ment, precluding the need to explicitly instantiate θ. Furthermore, since πj is Dirichlet
and conjugate to the Categorical random variable zji, πj can also be marginalized. This
results in the following posterior distribution for zji

p(zji|x, z\(ji)) ∝ αβK+1fx(xji;λ)1I[zji = K + 1]

+

K∑
k=1

(n(j·k)\(ji) + αβk)fx(xji;λ
∗(xIk\(ji)))1I[zji = k], (2.165)

where K+1 indicates a new cluster, the subscript Ik denotes all indices j, i ∈ {j, i; zji =
k}, and the subscript \(ji) excludes index ji.

These posterior distributions fully characterize a Gibbs sampler. The resulting
sampling procedure is summarized in Algorithm 2.10.

60 CHAPTER 2. BACKGROUND

Algorithm 2.10 Direct Assignment Sampling for HDPs

1. Initialize z and β arbitrarily, but ensuring that they are consistent with each other.

2. Label inference across the corpus:
(a) Sample a random permutation of the integers in [1, D] indicating documents.

(b) Select the next document index, j, from the permutation.

(c) Label inference within a document:
i. Sample a random permutation of the integers in [1, Nj] indicating words.

ii. Select the next word index, i, from the permutation.

iii. Sample a label, zji, conditioned on all other labels from Equation (2.165).

iv. Repeat from Step 2(c)ii until no word indices remain.

(d) Repeat from Step 2(a) until no document indices remain.

3. Sample dish counts, m, from Equation (2.163).

4. Sample global topic weights, β, from Equation (2.164).

5. Repeat from Step 2 until convergence.

Finite Symmetric Dirichlet Approximation

Fully instantiated inference in the DA model is complicated by the infinite-length vectors
β, π, and θ. Similar to the DPMM, one can use the finite model approximations of [61]
to approximate the fully instantiated model in an HDP (as was done in [34]). More
precisely, the prior distribution on β is approximated with the following finite symmetric
Dirichlet distribution:

p(β) ≈ Dir(β1, . . . , βL; γL , . . . ,
γ
L). (2.166)

The posterior on β again must depend on the auxiliary dish counts, m, which has the
same distribution as Equation (2.163). This results in the following posterior distribu-
tion for β:

p(β|m) = Dir(β1, . . . , βL;m·1 + γ
L , . . . ,m·L + γ

L). (2.167)

Similarly, the posterior on π can be expressed as

p(πj |β, z) = Dir(πj1, . . . , πjL;nj·1 + αβ1, . . . , nj·L + αβL), ∀j ∈ {1, . . . , D}, (2.168)

and the posterior on θ can be expressed as

p(θk|x, z) ∝ fθ(θk;λ)
∏
ji∈Ik

fx(xji; θk) = fθ(θk;λ
∗(xIk)), ∀k ∈ {1, . . . , L} (2.169)

This approximate inference method has the benefit of being highly parallelizable. Con-
ditioned on the document-specific weights, πj , and the topic parameters, θ, each word

Sec. 2.9. Non-parametric Bayesian Statistics 61

can be sampled in parallel according to

zji
∝∼

L∑
k=1

πjkfx(xji; θk)1I[zji = k]. (2.170)

We outline the steps of the entire approximate method in Algorithm 2.11.

Algorithm 2.11 Finite Symmetric Dirichlet Approximation for HDPs

1. Initialize z and β arbitrarily and choose a truncation, L.

2. Global topic parameters and weights:
(a) Sample the LD dish counts, m, from Equation (2.163).

(b) Sample the global topic weights, β, from Equation (2.167).

(c) Sample the L topic parameters, θk, from Equation (2.169).

3. Label inference across the corpus:
(a) Select the next document index, j.

(b) Sample the document-specific weights, πj , from Equation (2.168).

(c) Label inference within a document:
i. Select the next word index, i.

ii. Sample a label, zji, from Equation (2.170).

iii. Repeat from Step 3(c)i until no word indices remain.

(d) Repeat from Step 3(a) until no document indices remain.

4. Repeat from Step 2 until convergence.

62 CHAPTER 2. BACKGROUND

Chapter 3

Implicit Shapes and Discrete MRFs

In this chapter, we consider the problem of sampling a distribution of 2-dimensional
shapes. We focus on a particular implicit representation of the shape that is ex-
pressed as a set of binary variables located on a lattice grid. The resulting shape

is implicitly defined by the boundary of the binary mask. We will also consider the
case of sampling K shapes jointly, where the latent variables of interest take on 1 of K
values instead of the simplified binary representation.

Because our shape representation is simply a discrete set of variables defined on a
lattice grid, the sampling methods developed in this chapter can be generally applied
to arbitrary discrete Markov random fields (MRF). While we focus on the problem of
image segmentation, extensions to arbitrary MRFs is straightforward.

Implicit shape representations are useful since they eschew explicit curve and sur-
face parametrizations while allowing topological changes. An “implicit shape represen-
tation” typically refers to using the level-set based representation (cf. [95]) which we
briefly described in Section 2.6. Certain forms of prior knowledge on shapes, such as
a curve-length penalty or balloon forces, are easily incorporated in a level-set repre-
sentation. However, priors such as the curve-length penalty are sometimes difficult to
represent in an MRF since they are defined on the underlying continuous curve. Level-
set methods also typically have the benefit of being accurate to a sub-pixel level. That
is, the curve that divides region does not reside on a pixel level grid since it is implic-
itly defined in a continuous space. However, in natural image segmentation problems,
sub-pixel accuracy is often unnecessary.

In this thesis, we use the term “implicit shape” to define a broader class of shapes
that contain boundaries that are not explicitly parametrized (e.g., with splines or mark-
ers). The particular implicit shape representation that we will use is quite similar to a
level-set representation; for each location on a lattice-grid of pixels, we place a binary
variable that indicates the region label. If the binary variables are thought of as a set of
dependent random variables, the resulting model forms a Markov random field with a
graphical structure defined by the problem. Example graphical structures are depicted
in Figure 3.1. As we shall see, the graphical structure depicted in Figure 3.1c is useful
for approximating curve-length, a commonly-used term in level-set methods.

The space of implicitly defined shapes on lattice grids quickly becomes intractable
since it grows exponentially with the size of the grid. In complicated distributions

63

64 CHAPTER 3. IMPLICIT SHAPES AND DISCRETE MRFS

(a) 4-Connected MRF (b) 8-Connected MRF (c) 24-Connected MRF

Figure 3.1: Example MRF structures. (a) depicts a 4-connected neighborhood structure
often used in Ising models [40]. (b) is a more complicated, 8-connected neighborhood
structure. (c) depicts a 24-connected neighborhood structure represented as a factor
graph.

such as these, it is common in Bayesian formulations to use Markov chain Monte Carlo
(MCMC) methods. MCMC methods enable one to reason about entire complex distri-
butions instead of relying on a single point-estimate, such as the maximum a posteriori
(MAP) value obtained using energy minimization. Integrating these two formalisms
faces two distinct challenges. First, the high dimensionality of implicit representations
induces a large configuration space resulting in slow convergence for näıve implemen-
tations. Second, certain technical conditions induce a correspondence problem that, in
prior efforts [23, 31], has overly constrained the applicable class of curves (e.g., simply
connected shapes). In this chapter, we address these and additional issues to develop
a computationally tractable MCMC sampling algorithm over the space of implicitly de-
fined shapes. This, in turn, simplifies the estimation of marginal statistics defined over
the distribution segmentations.

Our primary contribution in this field is to develop a computationally tractable
MCMC sampling algorithm by which optimization-based methods of level-set formula-
tions may be analyzed within a Bayesian framework. As with many MCMC samplers,
the proposal distribution has a critical impact on the “burn-in” time, i.e., convergence
to the stationary distribution from which we would like to sample. In addition to relax-
ing constraints on the allowed shape class (as compared to previous methods [23, 31]),
we suggest a design method for the proposal distribution that dramatically reduces the
burn-in time. In summary, the contributions of this work are threefold. First, we de-
velop an MCMC sampling method for implicit shape representations and show how to
control the topology of the resulting shape. Second, we extend the approach to the case
of K-ary segmentations. Third, we achieve these improvements while simultaneously
accelerating the sampling procedure by orders of magnitude over previous methods.
The proposed method turns out to be a generalization of traditional Gibbs sampling.

Sec. 3.1. Related Work 65

� 3.1 Related Work

Sampling from the space of implicit segmentations has been suggested previously within
a Metropolis-Hastings MCMC framework (cf. Section 2.5.1). Fan et al. [31] developed a
hybrid method that alternates between implicit (level-set) and explicit (marker-based)
representations of a single, simply connected shape. Their proposal distribution gen-
erates a sample perturbation over a set of marker points. Upon completion, the new
sample is converted into an implicit form by resolving the Eikonal equation (cf. Sec-
tion 2.6). While establishing the feasibility of applying MCMC methods to implicit
representations, the method of [31] is constrained to binary segmentations of a single,
simply connected shape. Furthermore, iterations between implicit and explicit repre-
sentations incur a substantial computational burden. Fan suggests the use of jump
diffusion processes [46] as a means of incorporating topological changes. However, no
specific formulation is provided.

Chen and Radke [23] improved upon the method of Fan et al. by obviating the need
to transition between implicit and explicit representations. They construct a smooth
normal perturbation at a single point on the curve (denoted the “foot point”) that
preserves the signed distance property between proposal samples, thereby simplifying
the correspondence problem and evaluation of the Hastings ratio. However, the resulting
perturbations are overly smooth, and as such, explore the configuration space very
slowly. As in [31] obstacles remain for incorporating topological changes, restricting
this method to binary segmentations with a single simply connected shape.

When the implicitly defined shape is viewed as an MRF, another possible approach is
to use a traditional Gibbs sampler [40]. This formulation requires the ability to trans-
form a level-set based energy functional (e.g., including terms such as curve-length
penalty) to a graphical model. As we shall see shortly, this formulation can be ap-
proximated efficiently. A typical Gibbs sampler selects a random variable, either at
random or according to some sequence, and samples from the conditional distribution
conditioned on all other variables. We outline one such Gibbs sampling algorithm when
applied to a binary MRF in Algorithm 3.1, where zi denotes one of the N possible bi-
nary variables of interest and z\i denotes all variables except zi. Unfortunately, Gibbs
sampling is often very sensitive to the initialization and is known to converge slowly
because only a single variable is sampled at a time.

Algorithm 3.1 Gibbs Sampling an MRF

1. Initialize the values of z randomly.

2. Sample a random location uniformly from i ∼ Uniform(1, N).

3. Sample a new zi from the conditional distribution zi ∼ p(zi|z\i).
4. Repeat from Step 2 until convergence.

One can alternatively consider a blocked Gibbs sampler, which samples from the
conditional distribution of a set of random variables. Treating the set of variables as

66 CHAPTER 3. IMPLICIT SHAPES AND DISCRETE MRFS

a multi-dimensional random variable leads to a standard Gibbs sampler with a higher
dimensional random variable as opposed to the näıve singleton sampling. We outline
the steps of a blocked Gibbs sampler in Algorithm 3.2. We distinguish two types

Algorithm 3.2 Blocked Gibbs Sampling an MRF

1. Initialize the values of z randomly.

2. Sample a random subset of locations, denoted I.

3. Sample a new zI from the conditional distribution zI ∼ p(zI |z\I).
4. Repeat from Step 2 until convergence.

of blocked Gibbs sampling here. The first selects a set of indices that correspond
to conditionally independent random variables conditioned on the other indices. For
example, in a 4-connected MRF, indices that form a checkerboard pattern follow this
formulation. In this type of sampling, each random variable can be sampled in parallel
due to the independence relationship. However, since the conditional distribution of
each single random variable is still one-dimensional, this approach does not typically
help convergence.

The second type of blocked Gibbs sampling, which is of direct interest here, selects
a set of indices that correspond to a dependent set of random variables. In many
cases, this type of blocked Gibbs sampling can exhibit better convergence properties
because a set of interdependent variables are sampled jointly. It is therefore desirable
to choose a large set of variables to improve convergence. Unfortunately, Step 3 of
Algorithm 3.2 requires one to instantiate the conditional distribution, p(zI |z\I), which
often grows exponentially with respect to the size of the block. For example, in a
binary MRF, sampling from the conditional distributions requires the enumeration of
2|I| configurations.

� 3.2 Permutation-based Gibbs-Inspired Metropolis Hastings

In this section, we present an alternative to blocked Gibbs sampling that allows for
changes to a large set of variables, I, whose complexity scales linearly with |I|. Earlier
versions of this work were originally presented in [19, 20, 22].

� 3.2.1 Problem Statement

We begin with a formal statement of the problem. Consider a set of random variables,
z, that are drawn from a prior distribution, p(z), and have associated measurements,
x, drawn from a distribution p(x|z). The posterior distribution of interest is then

p(z|x) =
p(z)p(x|z)
p(x)

(3.1)

Sec. 3.2. Permutation-based Gibbs-Inspired Metropolis Hastings 67

It is often the case that p(z) may only be known up to a constant factor (e.g., in general
undirected graphical models). Furthermore, computing p(x) is often intractable. For
inference purposes, however, p(x), which only depends on the observations, is a fixed
scalar value for any particular realization of observations. As such, the function of
interest is

p(z|x) ∝ p∗(z)p(x|z), (3.2)

where p(z) = 1
Z p
∗(z) and Z is the partition function.

Fortunately, methods exist to perform inference even when the normalization con-
stant is not known. Maximum a posteriori inference (which is equivalent to energy
minimization) attempts to find the mode of the distribution. Our goal here is to reason
about the entire distribution of shapes instead of finding the single most likely shape.
As such, we turn to a Metropolis-Hastings MCMC (MH-MCMC) framework.

MH-MCMC only requires one to know the distribution of interest up to a propor-
tionality (see Section 2.5.1). This property results from the evaluation of the Hastings
ratio which precludes the need to calculate the partition function. In the following sec-
tions, we will often denote the posterior distribution as being proportional to p(z)p(x|z)
with the implied understanding that p∗(z) can be substituted for p(z) in MH-MCMC.

� 3.2.2 Augmented Ordering Sample Space

The space of possible labelings is very large (2N , where N is the number of pixels). One
might expect that augmenting the model with additional random variables would only
further complicate inference; however, to the contrary, we will show that a particular
choice of auxiliary variables based on orderings of the pixels can significantly simplify
the configureation space. A similar type of augmentation was used in the Dirichlet
process mixture models sampling work of [79].

We begin the discussion with some definitions related to orderings of a set. Assume
that each pixel, i, of the N total pixels is assigned an order-index, denoted by oi, that
takes on an integer value in {1, . . . , N}.

Definition 3.2.1 (Total Ordering). Let oi be the order index assigned to pixel i. If the
vector o contains the set of integers 1 to N in any order, then it is defined to be a total
ordering. It can be shown that the set of all total orderings of size N can be placed in
correspondence with the permutation group over N elements. Additionally, if oi < oj ,
we say that pixel i precedes pixel j in the ordering.

For example, when N = 3, the ordering o = [1, 2, 2] would not be a total ordering
because o2 = o3. The set of all total orderings has cardinality N !, and for N = 3 is the
following:

{[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]}.

The proposed algorithm will only consider changing a subset of pixels at once. As
such, it will be convenient to define the relative ordering implied in a subset of pixels
and their corresponding order-indices.

68 CHAPTER 3. IMPLICIT SHAPES AND DISCRETE MRFS

i: 1 2 3 4
oi: 3 2 1 4

ri: – 2 1 3

i: 1 2 3 4
oi: 3 2 1 4

ri: – 2 1 4

i: 1 2 3 4
oi: 3 2 1 4

ri: – 1 2 3
Relative Ordering Not Relative Ordering Not Relative Ordering

Figure 3.2: Positive and negative examples of relative orderings with I = {2, 3, 4}. ‘–’
is used to denote a pixel that does not belong to I. The second case is not a relative
ordering because r is not a total ordering of size |I| since r4 = 4 > 3. The third case
is not a relative ordering because it does not preserve the implied order of o; pixel 3
precedes pixel 2 according to o, but the same does not hold according to r.

Definition 3.2.2 (Relative Ordering). Let o define a total ordering on the pixels, and I
be a subset of all the pixels. A relative ordering, r, of the pixels in I is defined to be the
total ordering of size |I| that orders the pixels in I implied by o. A relative ordering
satisfies the following condition:

ri < rj ⇐⇒ oi < oj , ∀i, j ∈ I.

That is, pixel i precedes pixel j in the relative order iff pixel i precedes pixel j in the
total order o.

We note that there is a single unique relative ordering given any total order and subset
of indices. Examples of positive and negative relative orderings are shown in Figure
3.2.

Each pixel i is also associated with a discrete label, zi, that takes on values in
{1, . . . ,K} in the K-ary case, or {0, 1} in the binary case. We now define a consistent
ordering, which is a property that relates orderings, o with labels, z.

Definition 3.2.3 (Consistent Ordering). Let o define a total ordering on the pixels and
z define the labeling of the pixels. The ordering, o, is consistent with the labeling, z, if
for all k, the set of pixels with label k (i.e., {i; zi = k}) have contiguous order-indices.
An ordering that is consistent with a labeling must satisfy the following condition:

zi = k, ∀i ∈ {i; oi ∈ {ak, . . . , bk}},

where ak = min{i;zi=k} oi and bk = max{i;zi=k} oi.

We note that unlike relative orderings, there generally exists multiple consistent total
orderings given a set of labels. Examples of positive and negative consistent orderings
are shown in Figure 3.3.

We note that, in general, a relative ordering need not be consistent with a labeling.
However, if the total ordering on pixels is consistent, all derived relative ordering must
also be consistent. We now define the joint distribution over the augmented space of
labels and orderings, denoted by p(z, o) = p(z)p(o|z). We note that by definition, any

Sec. 3.2. Permutation-based Gibbs-Inspired Metropolis Hastings 69

i: 1 2 3 4
zi: 0 0 0 1

oi: 3 2 1 4

i: 1 2 3 4
zi: 1 0 0 1

oi: 3 2 1 4

i: 1 2 3 4
zi: 0 0 1 1

oi: 3 2 1 4
Consistent Ordering Consistent Ordering Not Consistent Ordering

Figure 3.3: Positive and negative examples of consistent orderings in the binary case.
The third case is not a consistent ordering since the order-indices for k = 1 are {1, 4},
which are not a set of contiguous numbers.

valid conditional distribution of orderings preserves the correct marginal distribution
of p(z). For simplicity, we choose the conditional distribution to be uniform over all
consistent orderings.

We now focus our discussion on the binary case, where zi ∈ {0, 1}. Denoting Nk as
the number of pixels with label k, the conditional distribution can be expressed as

p(o|z) =
1

2N0!N1!
, (3.3)

where the dependence on z is implied by the counts, N0 and N1. We note that the
factor of 2 in the denominator arises due to the ambiguity in permuting the labels.
That is, all the pixels with label 0 can either come before or after the pixels with label
1. Furthermore, all orderings that are not consistent with the given labeling, z, will
have zero probability by construction. The resulting joint distribution is then

p(z, o) = p(z)p(o|z) =
p(z)

2N0!N1!
. (3.4)

� 3.2.3 Metropolis-Hastings in Augmented Space

We formulate a Metropolis-Hastings Markov chain Monte Carlo algorithm to sample
from Equation (3.4). Conditioned on the previous values, denoted z(t) and o(t), we
sample values from a user-specified proposal distribution, q(ẑ, ô|z(t), o(t)). These values
are then accepted or rejected with probability:

Pr
[
{z(t+1), o(t+1)} = {ẑ, ô}

]
= min

[
1,

H︷ ︸︸ ︷
p(ẑ, ô)p(x|ẑ)

p(z(t), o(t))p(x|z(t))
· q(z

(t), o(t)|ẑ, ô)
q(ẑ, ô|z(t), o(t))

]
,

Pr
[
{z(t+1), o(t+1)} = {z(t), o(t)}

]
= 1− Pr

[
{z(t+1), o(t+1)} = {ẑ, ô}

]
(3.5)

The ratio within the minimization is generally referred to as the Hastings Ratio, which
we denote as H. The particular proposal distribution, which is chosen for efficiency, is
described in Algorithm 3.3. The proposal distribution over subsets of pixels, q(I), is
typically chosen to sample a circle with a random center and a radius drawn uniformly

70 CHAPTER 3. IMPLICIT SHAPES AND DISCRETE MRFS

Algorithm 3.3 PGIMH Proposal Distribution

1. Sample a subset of pixels, I ∼ q(I).

2. Sample a new set of labels, ẑI ∼ q(ẑI |z(t), o(t), x), that possibly changes labels within
I while preserving the consistency of the relative ordering.

3. Sample a new consistent total ordering, ô ∼ q(ô|I, ẑ, z(t), o(t)), uniformly from all
orderings that preserve the relative ordering of the pixels in I, and is consistent with
the proposed label.

from a fixed set of sizes. Consequently, Step 1 can be computed in constant time. It is
easily seen that there exist |I|+1 possible configurations of the pixels in I that preserve
the consistency of the relative ordering, which can be found by sorting the ordered pixels
in I. Step 2 can consequently be computed in O(|I| log |I|) for the sorting, and O(|I|)
for the enumeration of the configurations. Finally, Step 3 requires one to sample a new
valid consistent order for all pixels, which has complexity O(N), where N � |I|. This
näıve implementation exhibits O(|I| log |I|+N) complexity, which is clearly undesirable
since many iterations of Algorithm 3.3 are needed. After proving the validity of this
proposal, we show how this complexity can be reduced to O(|I|).

Validity of Sampling Algorithm

As with any MH-MCMC algorithm, we must show that the resulting Markov chain
is ergodic and that the Hastings ratio can be computed in order to preserve detailed
balance. As stated in Section 2.5.1, ergodicity is often difficult to prove, and we in-
stead show that the chain is irreducible. We remind the reader that irreducibility is
essentially equivalent to ensuring that every state can reach every other state. If q(I)
includes single pixel regions, then irreducibility is trivial, since every pixel has non-zero
probability of changing labels at any particular iteration in the proposal.

Next, we show that the Hastings ratio can be calculated for the specific proposal dis-
tribution described in Algorithm 3.3. The ratio of target distributions in H of Equation
(3.4) is simply calculated based on the pre-specified distributions:

p(ẑ, ô)p(x|ẑ)
p(z(t), o(t))p(x|z(t))

=
p(ẑ)p(x|ẑ)

p(z(t))p(x|z(t))
· p(ô|ẑ)
p(o(t)|z(t))

=
p(ẑ)p(x|ẑ)

p(z(t))p(x|z(t))
· N0!N1!

N̂0!N̂1!
. (3.6)

We now focus on the ratio of proposal distributions. We note that the number of
permutations with a subset of indices following a specific order is N !

NI ! , where N is the
length of the full permutation, and NI = |I| is the size of the ordered subset. The

Sec. 3.2. Permutation-based Gibbs-Inspired Metropolis Hastings 71

probability of generating from the proposal in Algorithm 3.3 can then be expressed as

q(ẑ, ô|z(t), o(t)) = q(I)q(ẑI |z(t), o(t), x) · q(ô|I, ẑ, z(t), o(t)),

= q(I)q(ẑI |z(t), o(t), x) ·

[
N̂I0 !

N̂0!
· N̂I1 !

N̂1!

]
, (3.7)

where N̂k is the number of pixels with label ẑ = k, Ik are the subset of pixels within
I that have label k, and N̂Ik = |Îk|. Because the proposal distribution preserves the
relative ordering of pixels in I, the reverse move, q(z(t), o(t)|ẑ, ô) is always possible, and
only depends on the counts associated with the subset of pixels. This likelihood can
therefore be expressed as

q(z(t), o(t)|ẑ, ô) = q(I)q(z
(t)
I |ẑ, ô, x) · q(o(t)|I, z(t), ẑ, ô),

= q(I)q(z
(t)
I |ẑ, ô, x) ·

[
NI0 !

N0!
· NI1 !

N1!

]
. (3.8)

The expressions in Equations (3.6)–(3.8) combine to form the following Hastings ratio

H =
p(ẑ)p(x|ẑ)

p(z(t))p(x|z(t))
· N0!N1!

N̂0!N̂1!
·

q(I)q(z
(t)
I |ẑ, ô, x) · NI0 !

N0! ·
NI1 !

N1!

q(I)q(ẑI |z(t), o(t), x) · N̂I0 !

N̂0!
· N̂I1 !

N̂1!

=
p(ẑ)p(x|ẑ)

p(z(t))p(x|z(t))
·

q(z
(t)
I |ẑ, ô, x) ·NI0 !NI1 !

q(ẑI |z(t), o(t), x) · N̂I0 !N̂I1 !
(3.9)

A Gibbs-Inspired Proposal

As shown in Section 2.5.1, the Gibbs sampler can be seen as a special case of Metropolis-
Hastings where the acceptance ratio always evaluates to 1. This convenient property
occurs because the proposal distribution is chosen to be the conditional posterior dis-
tribution, and is desirable because computation is not wasted on rejected samples. We
follow in a similar fashion here. While the Hastings ratio in (3.9) results in a valid
sampling algorithm for nearly any choice of q(ẑI |z(t), o(t)), if we choose the proposal to
be

q(ẑI |z(t), o(t)) ∝ p(ẑ)p(x|ẑ) 1

N̂I0 !N̂I1 !
, (3.10)

the Hastings ratio evaluates to one, and every proposed sample is accepted. Moreover,
because proposed labels must preserve the relative ordering of the pixels in I, there exist
only NI + 1 possible consistency-preserving configurations. Sampling from Equation
(3.10) is efficient because enumerating all possible configurations only grows linearly in
the size of I. We call this sampling algorithm the “Permutation-based Gibbs-Inspired
Metropolis-Hastings” (PGIMH).

72 CHAPTER 3. IMPLICIT SHAPES AND DISCRETE MRFS

� 3.2.4 An Efficient Implementation

The previous section described an algorithm for correctly sampling from target distribu-
tions. However, for the algorithm to be useful, sampling from the proposal distribution
and evaluating the Hastings ratio must be efficient. As stated previously, the computa-
tional complexity of the näıve implementation is O(|I| log |I|+N), which is quite large.
In this section, we describe an exact implementation of this algorithm that reduces this
complexity to O(|I|) per iteration.

As discussed in Section 2.5.1, any combination of valid proposal distributions can be
mixed while still preserving the limiting convergence guarantees. We consider mixing
the PGIMH sampling algorithm detailed previously with a Gibbs iteration that samples
a consistent total ordering conditioned on the labels. While this may seem like it adds
complexity to the model, it actually allows us to simplify the implementation. We draw
on the following key observation: when a näıve PGIMH iteration is preceded by a Gibbs
iteration that samples a consistent ordering, the relative ordering of the pixels within I
will be uniformly distributed over all consistent relative orderings. Thus, this iterative
procedure can be exactly reproduced with the method described in Algorithm 3.4. We

Algorithm 3.4 An iteration of sampling p(z) via PGIMH

1. Sample a subset of pixels, I ∼ q(I).

2. Sample a consistent relative ordering of pixels in I uniformly using a Knuth shuffle
[71] on each I0 and I1.

3. Enumerate the NI consistency-preserving configurations.

4. Sample a z
(t+1)
I ∼ p(ẑ)p(x|ẑ) 1

N̂I0 !N̂I1 !
from the set of possible moves.

note that because a random relative ordering is sampled at each iteration of PGIMH,
the explicit ordering, o, does not actually need to be maintained. Additionally, since
the Knuth shuffle [71] can be performed in O(|I|) time, and the total ordering does not
need to be updated, the overall complexity of an iteration is now O(|I|). In practice,
I ∼ q(I) is sampled by: (1) sampling a random circle center followed by (2) sampling
a random radius around it (from some pre-specified range of valid radii). Figure 3.4
illustrates an example proposal from PGIMH.

It is interesting to note that this relationship holds for any data-independent pro-
posal distribution of the subset, I. In particular, if I is chosen to be a single random
pixel, PGIMH simplifies to the typical Gibbs sampler since the denominator of Equa-
tion (3.10) evaluates to 0! · 1! = 1. Thus, PGIMH is essentially a generalization of
Gibbs sampling that allows larger moves like blocked Gibbs sampling but without the
computational drawbacks.

Sec. 3.3. K -Ary Sampling 73

Figure 3.4: An example of the PGIMH proposals. A random subset is chosen (left),
I = {♠, q,r,♣} where suits indicate indices and colors indicate labels. A consistent
relative order is selected at random. One of the NI + 1 possible consistency-preserving
configurations is selected to produce z(t+1).

� 3.3 K -Ary Sampling

The above algorithm is described for partitioning the image into two distinct regions.
However, in practice, binary segmentations are of limited interest because scenes typi-
cally contain multiple objects. We now show how one can extend PGIMH to allow for
K regions.

There has been significant work in extending the level-set framework to multiple
objects for image segmentation (e.g., [14, 121], which both require added complexity
and memory consumption). The sampling methods of [23, 31] do not address multiple
regions. However, as we soon discuss, the PGIMH algorithm extends to multiple regions
straightforwardly.

Assume there are K labels of interest and that the same definition of consistent
ordering in Definition 3.2.3 applies to multiple labels. A multi-label proposal follows
similarly to Algorithm 3.4 after selecting a pair of labels, k and `. We summarize the
steps in Algorithm 3.5 and follow by proving its validity.

Algorithm 3.5 An iteration of sampling p(z) for multiple labels via PGIMH

1. Sample two random labels, k and `, uniformly.

2. Sample a subset of pixels, I ∼ q(I) that only contains pixels with label k or `.

3. Sample a consistent relative ordering of pixels in I uniformly using a Knuth shuffle
[71] on each I0 and I1.

4. Enumerate the NI + 1 consistency-preserving configurations that only changes
pixels to labels k or `.

5. Sample a z
(t+1)
I ∼ p(ẑ)p(x|ẑ) 1

N̂I0 !N̂I1 !
from the set of possible moves.

Validity of K -Ary Sampling Algorithm

The chain for K labels is irreducible by the same argument as the binary case. We
therefore only show how the Hastings ratio can be calculated and that Algorithm 3.5

74 CHAPTER 3. IMPLICIT SHAPES AND DISCRETE MRFS

results in a Hastings ratio that always accepts the samples. The ratio of joint distribu-
tions in H of Equation (3.4) is calculated in a similar fashion as the binary case. The
only change is in the conditional distribution on orderings. Assuming that labels k and
l change, this results in

p(ẑ, ô)p(x|ẑ)
p(z(t), o(t))p(x|z(t))

=
p(ẑ)p(x|ẑ)

p(z(t))p(x|z(t))
· p(ô|ẑ)
p(o(t)|z(t))

=
p(ẑ)p(x|ẑ)

p(z(t))p(x|z(t))
· Nk!Nl!

N̂k!N̂l!
(3.11)

We now focus on the ratio of proposal distributions. The probability of generating
from the proposal in Algorithm 3.5 can then be expressed as

q(ẑ, ô|z(t), o(t)) = q(k, `)q(I)q(ẑI |z(t), o(t), x) · q(ô|I, ẑ, z(t), o(t)),

=
2

K(K − 1)
q(I)q(ẑI |z(t), o(t), x) ·

[
N̂Ik !

N̂k!
· N̂Il !
N̂l!

]
. (3.12)

The likelihood of the reverse move can similarly be expressed as

q(z(t), o(t)|ẑ, ô) = q(k, `)q(I)q(z
(t)
I |ẑ, ô, x) · q(o(t)|I, z(t), ẑ, ô),

=
2

K(K − 1)
q(I)q(z

(t)
I |ẑ, ô, x) ·

[
NIk !

Nk!
· NIl !
Nl!

]
. (3.13)

The expressions in Equations (3.11)–(3.13) combine to form the following Hastings ratio

H =
p(ẑ)p(x|ẑ)

p(z(t))p(x|z(t))
· Nk!Nl!

N̂k!N̂l!
·

2
K(K−1)

2
K(K−1)

·
q(I)q(z

(t)
I |ẑ, ô, x) · NIk !

Nk! ·
NIl !

Nl!

q(I)q(ẑI |z(t), o(t), x) · N̂Ik !

N̂k!
· N̂Il !
N̂l!

=
p(ẑ)p(x|ẑ)

p(z(t))p(x|z(t))
·

q(z
(t)
I |ẑ, ô, x) ·NIk !NIl !

q(ẑI |z(t), o(t), x) · N̂Ik !N̂Il !
. (3.14)

If we use the proposal for label moves of Step 5 in Algorithm 3.5, this results in

H =
p(ẑ)p(x|ẑ)

p(z(t))p(x|z(t))
·
p(z(t))p(x|z(t)) 1

NIk !NIl !
·NIk !NIl !

p(ẑ)p(x|ẑ) 1
N̂Ik !N̂Il !

· N̂Ik !N̂Il !
= 1, (3.15)

which means that every proposed sample is accepted. This proves the validity of the
multi-label sampling algorithm.

We note that the sampling of a mask must be slightly altered from the binary case.
Sampling a random circle will, in general, contain pixels with labels other than k or l.
Consequently, we change this proposal to conform to Algorithm 3.5 by further selecting

Sec. 3.4. Compatible Priors 75

only the pixels in the circular mask that currently have labels k or l.

� 3.4 Compatible Priors

The preceding sections develop a sampling algorithm that makes large moves, scales
well, and maintains properties that yield a valid MCMC sampling procedure. In this
section, we give some examples of priors that can be used on the labels, p(z), that fit
within the PGIMH framework. We cover the commonly used curve length penalty and
balloon force in image segmentation. Additionally we develop a method for controlling
the topology of the shape. Finally, we discuss the required properties of a prior to fit
in the sampling framework.

� 3.4.1 Priors on Curve Length

One common application for using implicitly defined shapes is image segmentation,
where a prior is placed on the shape that penalizes the curve length. Unlike many MRF-
based priors that are explicitly parametrized over neighbors, computing curve length
can be non-local and fairly expensive. In optimization-based segmentation algorithms,
the evolution of the level-set is based on the gradient of the curve length (i.e., the
curvature), which is a local and efficient computation.

A curve length penalty is a term often used in optimization-based image segmen-
tation algorithms, since the penalty is placed directly on the energy functional that
is minimized. Typical energy functionals can be decomposed into separate data and
regularization terms:

E(z;x) = Edata(x, z) + Eregularization(z). (3.16)

The curve-length penalty is incorporated directly in the regularization term

Eregularization(z) = α

∮
C
dl, (3.17)

where α is a weighting parameter and C denotes the boundary of the segmentation.
The energy functional also has a direct interpretation in the Bayesian setting when
exponentiated. That is, we can choose the joint distribution to be related to the energy
as follows

p(x, z) ∝ e−E(z;x) = e−Edata(x,z)︸ ︷︷ ︸
≈p(x|z)

· e−α
∮
C dl︸ ︷︷ ︸

≈p(z)

. (3.18)

We note that we use the approximation symbol since the energy functional is defined
over a continuous function, whereas the distribution of interest is defined over a discrete
set of random variables, z. Additionally, the partition function is not typically known.

We now present an efficiently computed approximation to the non-local curve length.
We denote Ω as the image domain, and δ(ϕ) as the derivative to the Heaviside function.
With these definitions, we approximate the curve length by setting all pixels on the

76 CHAPTER 3. IMPLICIT SHAPES AND DISCRETE MRFS

(a) (b)

Figure 3.5: Local neighborhood dependence for computing curve-length. (a) Signed
distance function dependence and (b) curve length penalty dependence. The black-
colored pixel depends on the gray-colored pixels.

boundary to have an equivalent level-set height of ±0.5, initializing a signed-distance
function, and then calculating the curve length via∮

C
dl =

∫
Ω
δ(ϕi) |∇ϕi| di ≈

∑
i

δ̂(ϕi) |∇ϕi| , (3.19)

where the following discrete approximation to the δ(·) function is used

δ̂(ϕi) =

{
1 |ϕi| ≤ 1

0 else
. (3.20)

We note that every time a single pixel changes labels, the resulting signed-distance
function, ϕ, must be updated by solving the Eikonal equation (see Section 2.6). This
computation is quite cumbersome and undesirable for local changes.

If a first-order approximation to the signed-distance function is obtained using a
fast marching method [119], the height at a particular pixel depends only on pixels in
a 3x3 neighborhood. This dependence relationship is illustrated in Figure 3.5a, where
changing the sign of the center black pixel will affect the height of the signed distance
function at all the gray pixels. From Equation (3.19), the local curve length calculation
depends on the magnitude of the gradient of the level-set function. If a centered finite-
difference is used for the x and y directions, then the local curve length computation
depends on neighbors above, below, left, and right. Thus, if the heights are changed
for the gray pixels in Figure 3.5a, the curve length computation changes for all the
gray pixels in Figure 3.5b. The change in the curve length for changing the sign of the
center pixel is consequently a function of the sign of the 21 pixels in Figure 3.5b. We
precompute all possible 221 (≈ 2 million) combinations so that the curve length penalty
can be efficiently computed by a simple table lookup. We note that this approximation
does not scale well to higher dimensions. However, if a curve-length penalty prior is
not needed, the remaining framework of PGIMH extends straightforwardly to arbitrary
dimensions.

Sec. 3.4. Compatible Priors 77

� 3.4.2 Priors on Balloon Force

The curve length penalty favors shrinking regions down to a point. The balloon force
was introduced as a term to complement the bias towards small regions. Cohen and
Cohen [26] show that the balloon force has the following corresponding regularization
energy

Eregularization(z) = −α
∫

Ω
dA, (3.21)

which, when minimized, tries to maximize the area of the region (assuming α > 0).
In the Bayesian framework, exponentiating the energy functional and translating

the continuous function to the discrete grid results in the following balloon force prior

p(z) ∝ eα
∑
i 1I[zi=k], (3.22)

where we have assumed that the balloon force prior has been placed on region k. We
note that if a balloon force is placed on all K possible regions, all with equal weights,
α, the resulting prior favors partitions with equal areas.

� 3.4.3 Priors on Topology

The previous two priors were ways to regularize the smoothness of the shape. Alter-
natively, one may have prior knowledge of the topology of the shape. Restricting the
topology of the region should not be confused with the fact that implicit shapes handle
topology changes automatically. Rather, we exploit this property of implicit shapes to
specifically allow or disallow certain topologies. This goal is similar to the works of
[50, 104], which altered the level-set velocity to preclude restricted topologies.

We have reviewed some digital topology concepts in Section 2.7. We briefly describe
some of our contributions to this line of research, followed by how constraints can be
incorporated into a sampling algorithm. We note that digital topology is only well-
defined for binary segmentations of a single foreground from the background.

As stated in Section 2.7, the topology numbers, Tn and Tn of [6], and the extended
topology numbers, T+

n and T+
n of [104], uniquely identify any topology changes that

may occur if a pixel is moved from one region to another. Unfortunately, Segonne [104]
discovered that the required extended topology numbers cannot be efficiently computed
for 3D shapes. In particular, T+

n cannot be computed efficiently when a pixel is moved
from the foreground to the background, and T+

n cannot be computed efficiently when
a pixel is moved from the background to the foreground. We now show that these
particular situations are not needed in 2D.

Consider the two pixels marked by ◦ and 4 in Figure 3.6. Removing the ◦ pixel
from the foreground splits the region and removing the 4 pixel destroys a handle. We
emphasize that in this 2D case, both T+

n (◦) 6= T+
n (4) and T+

n (◦) 6= T+
n (4). In 3D,

this is generally not the case because the two background regions bordering the 4
pixel can actually be connected in another 2D slice of the volume. In fact, in 2D, the
destruction of a handle in the foreground corresponds directly to a merging of regions in

78 CHAPTER 3. IMPLICIT SHAPES AND DISCRETE MRFS

���������	
����������

���������	�����������

�����������������

�������������������

Figure 3.6: Splitting a region vs. destroying a handle when a pixel is added to BG.
Topological numbers are shown on right.

Table 3.1: Topological changes as a function of topological numbers.

Pixel Added to FG Pixel Added to BG
Tn T+

n Tn T+
n FG BG FG BG

0 0 1 1 CR CH DR DH
1 1 0 0 DH DR CH CR
1 1 1 1 - - - -
≥ 2 < Tn X X CH SR X X
≥ 2 ≥ 2 X X MR DH X X
X X ≥ 2 < Tn X X SR CH
X X ≥ 2 ≥ 2 X X DH MR

‘C’ – Create ‘D’ – Destroy ‘S’ – Split ‘M’ – Merge
‘H’ – Handle(s) ‘R’ – Region(s) ‘X’ – any value ‘-’ – no topological change

Omitted configurations are impossible in 2D.

the background. Likewise, the splitting of regions in the foreground corresponds directly
to a creation of a handle in the background. This one-to-one mapping precludes the
need to compute the expensive T+

n when adding a pixel to the foreground. Table
3.1 summarizes the topological changes of the foreground and background in 2D as a
function of the four topological numbers.

A näıve approach could restrict the topology of the shape by generating propos-
als using PGIMH and rejecting samples that violate topology constraints. Such an
approach wastes significant computation generating samples that are rejected due to
their topology. We take a different approach: only generate proposed samples from
the set of allowable topological changes. Recalling the discussion of enumerating the
possible moves in PGIMH, one can simply determine which moves correspond to al-
lowable topologies and which do not. Moves corresponding to restricted topologies
have their likelihood set to zero when topology control is desired. This methodology
treats the topology as a hard constraint; however a distribution over topologies could
be implemented by weighting moves based on topology changes rather than completely
eliminating restricted ones.

Sec. 3.5. Mutual Information Energy Functional 79

� 3.4.4 Other Priors

There are a wealth of other priors that can easily be used in the PGIMH algorithm.
For example, the following slight modification to the balloon force places a Gaussian
prior on the actual size of a shape

p(z) ∝ exp

[
−α

(
A−

∑
i
1I[zi = k]

)2
]
, (3.23)

where A is the desired area.
We note that any of the aforementioned priors can be combined to form a new

prior. Additionally, any prior that can be efficiently computed from local changes fits
in the PGIMH framework. This even applies to some global priors, such as the prior on
size, which can be efficiently computed from local changes by maintaining a summary
statistic that captures the current area of the shape.

� 3.5 Mutual Information Energy Functional

As shown previously, most energy functionals can be exponentiated and treated as being
proportional to the posterior distribution. Therefore, PGIMH is a general method with
application to a variety of commonly used energy functionals over implicit representa-
tions. We choose a specific form for the remainder of this chapter. Unless otherwise
stated, we use the energy functional of [69]. This approach iteratively estimates a
nonparametric kernel density estimate over pixel intensities and maximizes the mutual
information between the labels and pixel intensities subject to a curve length penalty.
By denoting X and Z as the random variables that each xi and zi are realized from,
the resulting energy can be expressed as:

E(x, z) = N · I(X;Z)− α
∮
C
d`. (3.24)

We choose this particular formulation because of the intricate relationship between
mutual information and posterior distribution. The following shows that exponentiating
the energy is equivalent to the posterior distribution assuming that pixels are i.i.d.
conditioned on the label. We first note that since x is observed, adding a function that
only depends on x does not change the function. We therefore consider the following
equivalent energy:

E(x, z) = N · (I(X;Z)−H(X))− α
∮
C
d` = N ·H(X|Z)− α

∮
C
d`. (3.25)

80 CHAPTER 3. IMPLICIT SHAPES AND DISCRETE MRFS

Exponentiating the energy results in

exp [E(x, z)] = exp [N ·H(X|Z)] e−α
∮
C d`

= exp

[
N ·

K∑
k=1

Pr(Z = k)E[log p(X|Z = k)]

]
e−α

∮
C d` (3.26)

Approximating Pr(Z = k) ≈ Nk
N with the empirical counts and the expectation with

sample realizations, we have

exp [E(x, z)] ≈ exp

N K∑
k=1

Nk

N

1

Nk

∑
i∈{i;zi=k}

log p(xi|zi = k)]

 e−α ∮
C d`

= exp

[
N∑
i=1

log p(xi|zi)

]
e−α

∮
C d` = p(z)

N∏
i=1

p(xi|zi), (3.27)

which is equivalent to the joint distribution, p(x, z), assuming that observations, x, are
conditionally independent conditioned on z, and that the prior is p(z) = e−α

∮
C d`.

� 3.6 Applications

In this section, we consider some examples in image segmentation using the proposed
PGIMH sampling algorithm. As is typical in MCMC approaches, marginal statistics
can be evaluated over samples using a simple counting measure. Similar to [31], one
can compute the histogram image of a segmentation, where each pixel in the histogram
contains a count of the number of times it was included in a particular region. Similarly,
the 50% quantile curve corresponds to thresholding the histogram image at 0.5.

Here, we consider another marginal event probability: the probability that a pixel
lies on the boundary. We refer to this as the probability of boundary image (PB).
The PB at pixel i is calculated by simply counting the number of samples that pixel
i lies on a boundary and normalizing by the number of samples. This statistic is of
particular interest, as it allows one to evaluate results over the Berkeley Segmentation
Dataset (BSDS) [88] that compares precision-recall (PR) curves on precisely this event
probability. In this dataset, the maximum harmonic mean of points on the PR curve,
or F-measure, is used as the metric for rating boundary detectors. Unlike boundary
detectors, however, optimization-based segmentation algorithms produce a single point
on the PR curve. Recent segmentation algorithms rarely report benchmark results on
the BSDS due to poor F-measures owing to the inability to trade off between precision
and recall. PGIMH enables these segmentation algorithms to produce a PB image for
more robust comparison on the BSDS.

Sec. 3.6. Applications 81

Original PGIMH Gibbs Chen [23] Fan [31]

Figure 3.7: Comparison of shape sampling algorithms on a synthetic example. Each
algorithm was run for 105 iterations. The top row shows the histogram images, and the
bottom row shows a detail of the PB image.

� 3.6.1 Convergence Times

We begin by comparing convergence between different sampling algorithms. We exam-
ine the computation times for four algorithms: PGIMH, Gibbs sampling, the method
of Chen and Radke, [23], and the method of Fan et al. [31], noting that the Gibbs
sampling algorithm can only be efficiently applied to image segmentation with curve
length penalties because of the approximations we have developed in Section 3.4.

Consider the synthetic image of Figure 3.7 containing the letter ‘C’. We run each
algorithm for 105 iterations and compute summary statistics over 100 sample paths,
which are shown in Figure 3.7. The histogram images imply that all algorithms, aside
from Chen [23], have converged. Examination of a detail of the ‘C’ and the PB associ-
ated with each algorithm shows this not to be the case; it is clear that Chen [23] and
Fan [31] have not converged. The results of Fan [31] have a blurred PB, and the results
of Chen [23] are both blurred and miss corners.

The average log likelihood for each algorithm is shown versus computation time in
Figure 3.8. We note that the ending time on this plot is slightly different than the full
runs used to obtain the results of Figure 3.7 (because an iteration of each algorithm
takes different amounts of time). This plot illustrates that PGIMH and Gibbs sampling
(using our approximation of curve length) achieve at least 4 orders of magnitude in speed
up as compared to the previous shape sampling algorithms. We fit a linear regression to
the last 50 iterations of each algorithm to predict convergence times for the algorithms,
noting that the assumption of linear growth is an optimistic lower bound, since the
observed growth is sub-linear. Predicted convergence times are compared in Table 3.2.

We have empirically found that PGIMH and Gibbs are comparable in many ex-
periments that are very likelihood dominated. However, Gibbs sampling suffers from
convergence issues when many local extrema exist due to its local nature. For example,
consider the image shown in Figure 3.9a, where the intensities in the background follow
N (32, 100) and the foreground follow N (196, 100). A small subset of background pix-
els have additionally been incorrectly drawn from the foreground distribution. Typical

82 CHAPTER 3. IMPLICIT SHAPES AND DISCRETE MRFS

Figure 3.8: The average log likelihood across all sample paths vs. time (log scale) for
multiple sampling algorithms. Dotted lines are estimated using linear regression from
the last 50 iterations.

Table 3.2: Empirical Convergence Times for Shape Sampling.

Convergence Time Speed Gain

PGIMH 1.8 seconds ×1
Gibbs 3.4 seconds ×2
[23] ∗52, 133.2 seconds ×28, 963
[31] ∗122, 273.7 seconds ×67, 930

* denotes overly optimistic, estimated convergence times

(a) Original (b) Initialization (c) PGIMH (d) Gibbs

Figure 3.9: A problematic example for Gibbs sampling that converges to a local ex-
tremum. The observation distributions, p(xi|zi) are assumed to be known. The total
observation log likelihood ,

∑
i log p(xi|zi) for PGIMH is −6.1× 10−4 and while Gibbs

is only −8.1× 10−4.

Sec. 3.6. Applications 83

Original Histogram PB 50% Quantile Optimal

Figure 3.10: Results for three synthetic images with varying SNR values (0.5, 1.0, and
2.0, top to bottom, respectively). The columns show the original image, the histogram
image, the probability of boundary image, the 50% quantile curve, and the “best”
realized sample path (with the highest energy), respectively.

samples when the topology of the shape is not allowed to change are shown in Figures
3.9c-3.9d. Notice that the sample from Gibbs suffers from being stuck in a local ex-
tremum, whereas PGIMH converges to the correct solution. The errors in the Gibbs
sampling output result from the following conditions. The corrupted pixels in the
background look like the foreground, and are very unlikely to move to the background
region. Consequently, neighboring pixels that are currently labeled foreground can
also not move due to the topology restriction. While this example is admittedly quite
contrived, it does highlight convergence issues that can occur from Gibbs sampling.

� 3.6.2 Sensitivity to Noise

The previous results illustrate the computational advantages of PGIMH and its im-
proved convergence properties as compared to other sampling algorithms. We now
show results of using PGIMH in a few applications. Consider the synthetic images
shown in Figure 3.10. Each image contains two regions that are drawn from Gaussian
distributions with different means. We alter the variance to consider three different
SNR values: 0.5, 1.0, and 2.0. The last column shows the sample path with the highest
energy, which approximates the optimal configuration. In the lowest SNR case, the 50%
quantile clearly produces much better results than the optimal sample path. As the
SNR increases, the optimal sample path approaches the average sample path, but in
low SNR scenarios, marginal event probabilities tend to be more robust than optimal
configurations.

� 3.6.3 Boundary Detection in Natural Images

As stated previously, marginal events such as the probability of boundaries are of in-
terest. Due to their inherent topological constraints, [23] and [31] are less applicable to
natural images where it is often desirable to group regions that are separated spatially

84 CHAPTER 3. IMPLICIT SHAPES AND DISCRETE MRFS

Figure 3.11: Sampling vs. optimization on the BSDS. The scatter plot shows the F-
measures of each image using an image-based threshold on the PB image vs. the optimal
segmentation. The bar plot shows the average F-measures using the global threshold
on the PB image, the image-based threshold on the PB image, and the optimal seg-
mentation.

and/or segment an image into more than two region labels. As such, the remaining
results focus on the use of the K-ary version of PGIMH without topology constraints.
We consider four different image features: the raw intensity of a pixel [69], the intrin-
sic intensity of a pixel [69] & [18], the shape operator [56], and the steerable pyramid
output [53]. The intrinsic intensity is estimated a priori , meaning that a gain and
bias field [18] are estimated and removed prior to segmentation. As PGIMH extends
almost any segmentation algorithm to a boundary detector, the emphasis here is not on
a particular energy functional or image feature, but rather the improved performance
via marginal statistics (made feasible by PGIMH) compared to optimization. To avoid
local minima in the optimization comparison, we run gradient descent with 100 ran-
dom initializations and select the minimal energy configuration for each image. Results
across the entire BSDS are shown in Figure 3.11. In addition to reporting performance
on BSDS with the average F-measure (as is typical) we also report results using the
optimal image-based threshold. While a measure of image complexity or contextual
content might provide a means of approximating such a threshold, our purpose is to
illustrate the achievable gains using the PB image. Regardless, results are reported
using both global and image-based thresholds, and in either case, sampling improves
upon the optimization approach across the majority of images in the dataset.

Figure 3.12 shows results on four specific images from the BSDS. Qualitatively, the
PB image provides a superior demarcation of edges in the image. Quantitatively, the
F-measure is also improved by thresholding the PB image rather than using the optimal
sample path.

We remind the reader that the model is inferred based on the chosen posterior
distribution, p(z|x), and the error metric is computed as the F-measure with respect
to ground-truth. Optimization based methods may find the best configuration of z
according to p(z|x), but this configuration may not correspond to the minimum error
when comparing to ground-truth. In general, ground truth is not known, so one cannot

Sec. 3.6. Applications 85

Original PB Optimal PR-Curve

Figure 3.12: Example images from BSDS [88]. In the PR curves, the ‘×’ marks the
F-measure obtained using BFPS, and the ‘+’ marks that of the optimal sample. The
first two rows use the image feature of [69]. The third row also uses the image feature
of [69] but with the gain and bias field of [18]. The fourth row uses the textural image
feature of [56].

access the error metric of interest. However, the preceding experiments show that
marginal event probabilities are more robust to noise and seem to better align with the
ground-truth annotations for a particular task.

� 3.6.4 Topology-Controlled Sampling

In this section, we show some capabilities of the topology controlled prior that one can
impose using PGIMH. We impose four different topology constraints on the foreground:
unconstrained (UC), topology-preserving (TP), genus-preserving (GP), and connected-
component-preserving (CCP). The UC sampler allows any topology change, the TP
sampler does not allow any topology changes, the GP sampler only allows the splitting
and merging of regions, and the CCP sampler only allows the creation and destruction
of handles.

86 CHAPTER 3. IMPLICIT SHAPES AND DISCRETE MRFS

Initialization UC TP GP CCP

Figure 3.13: Example samples obtained by imposing different topology constraints.

Original UC TP GP CCP

FG Init

Random
Init

Figure 3.14: Histogram images obtained from different initializations and topology
constraints.

Typical samples from each of these constraints are shown for a particular synthetic
example in Figure 3.13. When the topology constraint is incorrect for the object (e.g.,
using TP or GP), the resulting sample may be undesirable (e.g., creating an isthmus
connecting the two connected components of the background). When the topology is
correct, however, more robust results can be obtained. For example, the CCP constraint
removes some noise in the background.

The usefulness of the topology constraint relies on a valid initialization. The com-
puted histogram images are shown in Figure 3.14 for each of the topology constraints.
We initialize the samples either using a random circle containing the foreground (FG
Init), or a random circle placed anywhere in the image (Random Init). While not
always true, incorrect topology constraints are sometimes mitigated when looking at
marginal statistics. For example, in the FG initialization case, the isthmus in the TP
and GP constraints is no longer visible. Additionally, if the initialization only captures
one connected component of the background (which may occur from random initial-
izations), the priors that prohibit splitting regions (TP and CCP) cannot capture the
entire region. This is reflected in the histogram image with the gray center.

Next, we consider the low SNR image of Figure 3.15. We have already shown
that sampling improves results when compared to optimization based methods in low
SNR cases. In these situations, the prior has a greater impact since the data is more
ambiguous. The top row of Figure 3.15 shows the histogram images obtained using

Sec. 3.7. Discussion 87

UC TP GP CCP

Figure 3.15: Results on low SNR images using different topology constraints. Initializa-
tions were chosen to be a random circle containing the foreground (FG Init). Histogram
images are shown above, and quantiles (thresholded histograms) are shown below.

each of the topological constraints. One can see remnants of the isthmuses in the TP
and GP cases. Thresholding the normalized histogram image at a value t reveals the tth

quantile of the segmentation. For example, if t = 0.9, the resulting foreground region
of the thresholded histogram contains pixels that are in the foreground for at least
90% of the samples. We show the 95%, 50%, and 5% quantile segmentations in Figure
3.15. Since reducing the threshold never shrinks the foreground segmentation, we can
overlay these quantiles on top of each other. In the 5% quantile, we can clearly see the
isthmuses in the TP and GP cases. This result is poor because the wrong topology (i.e.,
the wrong prior) was used. However, if we use the CCP constraint, results improve as
compared to the unconstrained case by removing a lot of the background noise.

The CCP constraint is particularly useful when an unknown number of handles exist
(e.g., deformable objects). Objects with a known number of handles in 3D projected
onto a 2D plane can have any number of handles. We show two example images of
a human and the resulting thresholded histogram image in Figure 3.16. In the first
image, the handles formed by the arms are not captured well with TP and GP. In the
second image, the vignetting allows the UC and GP constraints to incorrectly group
some background with foreground.

� 3.7 Discussion

We have developed an MCMC sampling algorithm called the Permutation-based Gibbs-
Inspired Metropolis-Hastings (PGIMH) algorithm. PGIMH converges to the stationary
distribution of the Markov chain more than 4 orders of magnitude faster than the
previous shape sampling algorithms of [23] and [31]. Moreover, because of the fast
method we have developed for approximating curve-length with a local table lookup,
traditional Gibbs sampling can also be used in these segmentation problems. However,
it is well known that the local changes made in traditional Gibbs sampling are prone
to converge to local extrema, a condition that PGIMH is more likely to overcome.

The use of a sampling algorithm such as PGIMH was applied to real-world data on

88 CHAPTER 3. IMPLICIT SHAPES AND DISCRETE MRFS

Original UC TP GP CCP

Figure 3.16: Example images illustrating the utility of topology priors.

the Berkeley Segmentation Dataset. Our results show that inference based on marginal
statistics drastically outperform the point estimates obtained from maximum a poste-
riori inference. These results hold true across the vast majority of images, and even
across different types of exponentiated energy functionals.

PGIMH can be used for many different types of priors, as indicated to in Section
3.4. Furthermore, our work is, to our knowledge, the first sampling-based approach to
incorporate any explicit notion of topology constraints. While previous methods such as
[23] and [31] were implicitly constrained to a single simply connected shape due to their
limited representations, we have shown how one can actually control the topology of the
shape. This contribution is significant even in the optimization literature, where [50] and
[104] have only shown that topology-preserving and genus-preserving constraints can
be enforced. In contrast, we have demonstrated that in 2 dimensions, any specific type
of topology constraint can be enforced, such as the unconstrained, topology-preserving,
genus-preserving, and connected-component-preserving constraints. Soft constraints
(e.g., penalizing the number of handles or separate connected components) can also be
integrated into the PGIMH framework.

Lastly, we have shown the relationship between PGIMH and blocked Gibbs sam-
pling. In particular, PGIMH is more favorable than blocked Gibbs sampling since the
complexity of the algorithm scales linearly with the block size instead of exponentially.
It is interesting to note that PGIMH simplifies to traditional Gibbs sampling when the
size of the block is 1. Because of the widespread use of Gibbs sampling, we hope that

Sec. 3.7. Discussion 89

PGIMH can aid in many discrete-labeling problems beyond just image segmentation.
We believe that one potential avenue of further research related to the PGIMH al-

gorithm is to consider parallelizations. Some perturbations are inherently independent,
conditioned on a suitable prior. For example, because the approximation for curve-
length penalty only depends on a local 5× 5 neighborhood, perturbations that do not
have overlapping 5 × 5 neighborhoods can be computed independently. This becomes
slightly more complicated with global priors such as those on topology or area. Re-
gardless, a significant potential speed-up can be gained if PGIMH can be effectively
parallelized.

90 CHAPTER 3. IMPLICIT SHAPES AND DISCRETE MRFS

Chapter 4

Shape Dynamics in Object Tracking

The previous chapter developed an efficient sampling framework for implicitly de-
fined shapes and discrete Markov random fields. The development of PGIMH
applies to many different energy functionals and priors, but is thus far limited to

a single, static MRF. In this chapter, we consider the problem of inference in a model of
multiple, temporally dependent MRFs. This situation often occurs in computer vision
when working with videos instead of images, where one would like to perform object
tracking or video segmentation.

Tracking and segmentation are fundamental tasks in video sequence analysis. The
resulting tracks can be used to analyze past behavior and predict future trajectories of
objects in the scene (e.g., [24]). Segmentation and motion analysis of video provides
a preprocessor for object classification. Accurate object boundaries enable methods
for learning shape models (e.g., [101]). We focus on object tracking with accurate
boundaries in contrast to bounding box methods. Figure 4.1 illustrates the difference
between the two related problems.

In this chapter, we present a generative probabilistic model using a layered repre-
sentation of scenes. The resulting model for layered object tracking combines dynamic
appearance and shape models, topology constraints, and Gaussian process flow. These
concepts have been considered individually in a variety of contexts including tracking.
Here, we consider an integrated model and develop efficient sampling-based algorithms.
An earlier version of this was originally presented in [22].

Figure 4.1: Bounding box tracking versus boundary accurate tracking. The object
boundaries were found using the algorithm described in this paper.

91

92 CHAPTER 4. SHAPE DYNAMICS IN OBJECT TRACKING

� 4.1 Related Work

Elements of the approach are certainly related to previous work. Layered models have
been popular since the Bayesian model of [28], with the promising results of [123]
motivating many similar approaches. The layered appearance model described herein
is closely related to [62, 102], but as described in Section 4.2, differs explicitly by
coupling occlusions and disocclusions with the layer supports. Similarly, Section 4.3
discusses how our flow model generalizes that of [124] by using Gaussian processes.

Owing to the wealth of literature in tracking and segmentation, we focus on relevant
prior work. Some optimization-based approaches, such as [49, 77, 84], automatically
segment objects of interest by processing the entire video offline. Others (e.g., [118])
require annotations to identify key objects or frames. Such batch processing is akin
to Bayesian smoothing, where inference depends on both past and future observations.
Alternatively, analogous to Bayesian filtering, one can track objects in an online fashion
(e.g., [101, 102, 108]). The proposed method adopts a filtering approach, scaling linearly
in the number of frames for computation, and having constant memory consumption.

There is also a rich literature in probabilistic tracking, most of which track bounding
box trajectories instead of accurate boundaries. A notable exception is [101], which uses
an unconventional particle filter that propagates particles with a number of gradient
descent iterations instead of a randomized proposal. We show that this deterministic
approximation of a randomized algorithm is unnecessary. Additionally, the dynamics
of [101] do not correspond to an actual object motion. Rather, the dynamics are chosen
to be a mean translation of the convex combination of predefined shapes learned from
training data. This approach can be quite limiting, and it is not clear how many
training examples are needed to accurately represent highly-deformable objects. One
final difference between the proposed approach and the method of [101] is that their
method essentially uses a bag-of-pixels model for the foreground and background region.
They assume that pixels are distributed independently conditioned on the region label
according to a Gaussian distribution with unknown mean and variance. Consequently,
appearance changes cannot be coupled with shape changes, which we know must occur
in the physical world.

To our knowledge, only the optimization-based methods of [108] and [35] consider
topology constraints in video analysis. The first uses digital topology to penalize merges
of two connected components (each corresponding to a separate object). This soft
constraint does not, however, necessarily preserve connected components. Similarly,
the second extends binary topology to K-ary topology to restrict objects from merging.
This method does not use an appearance or flow model and also does not handle
occlusions that may split the visible support of objects.

Similiar to the proposed method, Sun et al. [113, 114] estimate motion and reason
about depth ordering in a layered model. In fact, [114] extends [113] to infer the number
of layers, something the proposed method does not consider. In contrast to the proposed
method, these methods segment objects via batch processing of the entire sequence. Un-
like our method, which reasons over the shape distribution, [114] adopts an optimization

Sec. 4.2. Layered Model 93

Figure 4.2: The graphical model associated with our approach. x denotes an image,
zk, ak, and fk are the support, appearance, and flow for layer k, and ÿ controls the
ordering of the layers.

approach within a probabilistic formulation. While [113] achieves state-of-the-art opti-
cal flow results, it does so at considerable computational expense. Furthermore, these
methods do not allow for the temporal evolution of layer ordering. Processing times on
current standard computer hardware are on the order of hours per frame as compared
to approximately one minute per frame for the proposed approach.

� 4.2 Layered Model

We begin by developing the probabilistic model used to represent scenes, depicted as a
directed graph in Figure 4.2. While it is important for any practical method to be able
to detect new objects entering a scene, for purposes of exposition, we restrict ourselves
to the case of tracking K previously detected objects. The method of initialization is
discussed in Section 4.5.

� 4.2.1 In-Frame Appearance

Scene models are comprised of K layers, where each object exists in one layer, and
one layer is the designated background. The support of layer k at time t is denoted
by ztk ∈ {0, 1}N , where N is the number of pixels. Specifically, ztk,i = 1 iff pixel i is

in the support of layer k at time t. The layers are ordered with ÿt, which contains a
permutation of the integers 1 to K. The visible layer at pixel i, denoted vti , can then
be expressed as

vti = arg min{k;ztk,i=1} ÿtk. (4.1)

Associated with each layer is a pixel-wise appearance model, atk ∈ RN×3, where atk,i
is the 3-dimensional color (we use the Lab colorspace) at pixel i. Assuming Gaussian
observation noise, the observed image, xt is generated by

xti|at, zt, ÿt ∼ N
(
xti ; atvti ,i

,Σx
)
. (4.2)

94 CHAPTER 4. SHAPE DYNAMICS IN OBJECT TRACKING

Figure 4.3: An example of the three types of pixels that can occur in a new frame.

We note that the visible pixel, vti , is implicitly dependent on zt and ÿt through Equation
(4.1). We assume the color channels are independent (i.e., Σx is diagonal). While
[62] and [102] use similar models, they do not address the appearance of occluded or
disoccluded pixels, which we now discuss.

� 4.2.2 Temporal Appearance Dynamics

Given the appearance and support of a previous frame, the dynamics of these random
variables evolve jointly based on the underlying motion of the layer, denoted f tk. We
defer the discussion of the motion model for Section 4.3. While deformations of 3D
objects are typically diffeomorphic, projections onto the 2D image plane are not because
of occlusions and disocclusions. For example, consider the illustration in Figure 4.3
where a visible pixel in the new frame can belong to three possible portions of a layer:

1. Observed regions, O, which have been seen before;

2. Disoccluded regions, D, which have never been seen and were previously occluded
by another layer;

3. Revealed regions, R, which have never been seen and were previously hidden by
a pixel belonging to the same layer.

Consequently, we define a probability distribution over the evolving appearance model
for each of these categories.

Observed regions, Otk, are chosen to evolve with a Gaussian distribution from the
appearance model

p(atk,i|i ∈ Otk, fat−1
k) = N

(
atk,i; fa

t−1
k,i ,Σ

a
)
, (4.3)

where fat−1
k denotes the aligned appearance obtained by evolving at−1

k with the flow f tk,
and fat−1

k,i indexes pixel i from the image fat−1
k . Similar to the observation, we assume

independent color channels with a diagonal covariance, Σa.
Disoccluded regions are often similar to neighboring pixels. For example, the dis-

occluded pixels in Figure 4.3 are likely to be green or black. Because no additional
prior information is given, we model these pixels as being drawn from a mixture of

Sec. 4.2. Layered Model 95

neighboring pixels according to

p(atm,i|i ∈ Dtm, fat−1
m) ∝

∑
j∈Ot−1

m

N
(
j; i, σ2

DI
)
δ
(
atm,i − fat−1

m,j

)
, (4.4)

where N
(
j; i, σ2

DI
)

is a 2D Gaussian over pixel coordinates.
Lastly, revealed regions appear when objects turn and reveal a new side. These can

look quite different from neighboring pixels. For example, the revealed side of the box in
Figure 4.3 can be of any color. Appearances in Rtm are therefore drawn from a mixture
of a uniform distribution and a kernel density estimate of the observed appearances

p(atm,i|i ∈ Rtm, at−1
m) = (1− αR)U3(atm,i) + αRκ(atm,i),

κ(a) = 1

|Ot−1
m |

∏
d

∑
j∈Ot−1

m

N
(
ad; a

t−1
m,j,d, σ

2
k

)
, (4.5)

where U3 is the uniform distribution over the colorspace, d indexes a color. κ(·) can
be estimated with [128] and σ2

κ is chosen to be the “rule-of-thumb” bandwidth. While
these simple assumptions do not explain all situations, we have empirically found that
they work well in most videos.

� 4.2.3 Temporal Support Dynamics

The evolution of each layer support is coupled to the evolution of its appearance. How-
ever, by introducing disoccluded and revealed pixels, we must also allow the support of
each layer to deviate from the aligned support, fzt−1

k . Consequently, layer supports are
chosen to evolve according to a distribution proportional to exponentiated symmetric
area difference (SAD), where SAD can be expressed as

SAD(z1, z2) =
∑

i
1I
[
z1
i 6= z2

i

]
, (4.6)

and 1I[·] is the indicator function that is one iff [·] is true. Additionally, a curve length
penalty is placed on the shape of each layer, and the support of each layer is restricted
to be a single connected component. The resulting temporal dynamics on layer support
are expressed as

p(ztk|zt−1
k , f tk) ∝ QL(ztk)

∏
i
QS(ztk,i|fzt−1

k,i), (4.7)

QL(ztk) = 1I
[
T (ztk) = 1

]
exp

[
−αLLtk

]
, (4.8)

QS(ztk,i|fzt−1
k,i) = exp

[
−αS1I

[
ztk,i = fzt−1

k,i

]]
, (4.9)

where Ltk is the contour length of ztk, T (·) counts the number of connected components,
and the αL, αS control the relative weighting of these penalties.

The chosen appearance and shape models will not explain every situation. For
example, an object that splits into two will violate the topology prior of the model.

96 CHAPTER 4. SHAPE DYNAMICS IN OBJECT TRACKING

If a light is turned on, the Gaussian diffusion of appearances may be too restrictive.
However, in subsequent sections we show that they yield good empirical performance
across a variety of video sequences.

� 4.3 Gaussian Process Flow

Having detailed the observation model conditioned on the layered flow fields, we now
describe a flow model comprised of layered Gaussian processes (GPs). A GP can be
parametrized with a mean and covariance function (cf. [100]). We restrict the model
to zero-mean GPs with stationary covariance kernels, which, as shown in Section 4.4,
enables an efficient sampling-based inference method.

GPs have been widely used as a prior for trajectories (e.g., [11, 70, 120]). In practice,
however, these formulations have been applied to object trajectories, whereas here we
consider their application to dense flow between frames. GPs are not typically used to
model flow for two reasons: (1) GPs are often smooth everywhere, causing errors across
object boundaries; and (2) näıve inference requires inverting covariance matrices that
do not scale well with the image size. We address the first issue here and the second
via an approximation in Section 4.4.

One particular GP covariance kernel is closely related to the L2 penalty in the Horn-
Schunck optical flow formulation [55]. However, when observations are not present, the
L2 penalty on flow differences results in an improper distribution with a rank deficient
covariance matrix (cf. [87]). Regardless, one can approximate this prior with a GP
having a sparse precision matrix (inverse of the covariance), arising from the 4-connected
neighborhood of each node. Figure 4.4a shows a sample from this type of GP, which
fails to capture long range correlations in flow fields and, concurrently, overly penalizes
discontinuities across object boundaries. Following [124], we instead compose smooth,
layered flows using

f i = [fvi]i ∀i ∈ {1, · · · , N}, (4.10)

where vi denotes the visible layer at pixel i according to Equation (4.1). Here, [fk]i
denotes the ith pixel of the flow for layer k, and f is the composite flow for visible
pixels. Similar to optical flow, we assume that the x and y components of flow are
independent. Figure 4.4b shows a sample from a GP using Equation (4.10) with the
squared exponential (SE) kernel (cf. [100]). Composing multiple smooth GPs in this
fashion mitigates the problem of discontinuities.

Unlike [124], which uses layered flows of the form of [55], a GP flow is a valid prior
distribution that can capture long-range dependency. Any 2D GP has an equivalent
Gaussian Markov random field (GMRF). The graphical structure of the corresponding
GMRF depends on the particular covariance kernel, and is often quite complex, im-
pacting inference. However, by utilizing a GP formulation, we show in Section 4.4 that
inference is easily adapted to changes in the covariance.

Sec. 4.3. Gaussian Process Flow 97

(a) (b) (c) (d)

Figure 4.4: Samples from different GPs: (a) sparse neighborhood precision; (b) SE
kernel with layered composition using the layers of (c). (d) Flow vectors mapping to
colors.

Figure 4.5: Consecutive frames of a deformable object with self occlusions and disoc-
clusions.

� 4.3.1 Smooth Deformable Flow

Tracking deformable objects encounters additional complexity when parts of the objects
exhibit self-occlusions or disocclusions (e.g., the arms and legs of the girl in Figure 4.5).
The SE kernel often results in overly smoothed flow estimates that do not adequately
capture object deformation. We mitigate this issue by adopting a covariance kernel
that is the composition of the SE kernel and a delta function. It is easily verified that
the resulting GP follows the distribution

p(fk) = N
(
fk ; 0,Σg + σ2

f I
)
, (4.11)

where Σg is the resulting covariance from the SE kernel, and σ2
f I is the resulting co-

variance from the delta kernel. Notation is slightly abused since each component of the
flow is not explicitly written. We show in Section 4.4 how to exploit a decomposition
of this flow for efficient inference. In particular, we decompose the flow into a smooth
flow (denoted gk) and the remaining independent part with

p(gk) = N (gk ; 0,Σg) , (4.12)

p(fk|gk) = N
(
fk ; gk, σ

2
f I
)
. (4.13)

98 CHAPTER 4. SHAPE DYNAMICS IN OBJECT TRACKING

Figure 4.6: Markov chain that can be inferred via particle filtering.

� 4.4 Inference

Having developed a generative dynamic appearance and shape model, we present a
Bayesian filtering procedure that reasons about the distribution of the hidden variables
conditioned on past and current observations. Exact inference is generally infeasible for
complex distributions, as is the case here. A typical approach is to use a particle filter
[59] where the distribution at any time is represented by a set of weighted samples. Par-
ticle filters propagate these samples and corresponding weights through time, typically
using the prior distribution over temporal dynamics (cf. Section 2.5.2). Many applica-
tions are, however, likelihood-dominated (e.g., segmentation and tracking). This causes
particles to move to low likelihood regions and the weights to decay over time, indicat-
ing a poor representation of the desired distribution. Sequential importance resampling
(SIR) techniques are typically utilized to mitigate this issue.

Alternatively, instead of propagating particles solely based on the prior, one can
incorporate data information to propagate samples so that they do not move to low
likelihood configurations. These methods typically require making additional approx-
imations while still needing SIR techniques to maintain an accurate particle represen-
tation. For example, [25] updates particles using a Hybrid Monte Carlo algorithm that
exploits gradient information and incorporates an expensive Metropolis-Hastings rejec-
tion step. Methods such as [17] and [29] attempt to keep particles near modes but still
require weight updates and may not accurately represent tails of distributions. [101] ap-
proximates the randomized propagation with a fixed number of deterministic gradient
iterations.

Here, we propose a more accurate particle propagation approach by incorporating
both the prior and the data likelihood terms in the PGIMH framework presented in
Chapter 3. In this case, similar to a Gibbs sampler, weight updates are unnecessary
because samples are drawn from the true conditional distribution. Following this dis-
cussion for a general Markov chain, we describe the particular inference scheme for the
presented model.

� 4.4.1 Efficient Particle Filtering without Weight Updates

Consider the general Markov chain described in Section 2.5.2 where z denotes the set
of hidden variables, and x denotes the set of observed variables. The graphical model
representing this relationship is reproduced in Figure 4.6.

Proposition 4.4.1. (Particle Filtering without Weight Updates) Let {zt1, . . . , ztS} be a set

Sec. 4.4. Inference 99

of S samples, each drawn from some density q(zt), and wts be the importance weight for
sample s such that the set of weighted samples approximates the posterior distribution at
time t, denoted p(zt|x0, . . . , xt). If at time t+ 1, a sample s is drawn from the posterior

zt+1
s ∼ p(zt+1|xt+1, zt = zts), (4.14)

the weights do not need to be updated to accurately represent the new posterior distri-
bution, p(zt+1|x0, . . . , xt+1).

Proof. A rigorous proof is given in Appendix A.1.

Proposition 4.4.1 should not be very surprising. Intuitively, Equation (4.14) is the
posterior distribution conditioned on a sample from the previous time point. Thus,
sampling from it directly must trivially correspond to a valid sample from the posterior
as long as zts was a valid sample, which is assumed in the proposition.

While propagating the particles with both the data and prior is more accurate
and avoids weight decay, this approach is typically avoided because sampling from the
full conditional distribution in Equation (4.4.1) is often computationally prohibitive.
Fortunately, the PGIMH algorithm developed in Chapter 3 addresses this issue.

We now describe the overall inference procedure. The presence of many hidden
variables (g, f , z, a, and ÿ) suggests multiple possible sampling schemes. Here, we
discuss two different layer and flow samplers, after which the layer orderings, ÿ, are
sampled by enumerating over the possible total orders. The first iterates between
sampling smooth flow and labels, which benefits from large moves in the space of layer
supports. In our experiments, this sampling algorithm occasionally fails to converge
in certain situations that will be described shortly. The second sampling procedure
addresses these issues by jointly sampling the flows and level sets at one particular
pixel for all layers simultaneously. This procedure exhibits poor convergence in isolation
because it only makes very local changes to the support. Consequently, we alternate
between both samplers, noting that switching between two valid samplers will still
preserve detailed balance.

Additionally, both sampling procedures marginalize out some form of the flow. As
noted in [114], this type of joint inference generally exhibits better convergence prop-
erties. However, owing to our particular formulation, the samplers are more efficient
than the proposed optimization moves in [114].

100 CHAPTER 4. SHAPE DYNAMICS IN OBJECT TRACKING

� 4.4.2 Single Layer Sampler

The first sampling algorithm iterates over the following steps

gt ∼ p(gt|f t), (4.15)

zt, at ∼ p(zt, at|gt, zt−1, at−1, xt, ÿt), (4.16)

f t ∼ p(f t|gt, zt, zt−1, at−1, xt, ÿt), (4.17)

ÿt ∼ p(ÿt|f t, zt, at−1, xt). (4.18)

Sampling from gt|f t is equivalent to sampling a GP with observations. With some
manipulation from the typical GP regression (cf. [100]), we show in Section 2.9.1 that
this distribution can be expressed as

gtk|f tk ∼ N
(
µ∗g,Σ

∗) , (4.19)

µ∗g = Σg[Σg + σ2
f I]−1f tk , Σ∗ = Σg − Σg[Σg + σ2

f I]−1Σg.

Sampling from this expression is difficult because of the dimension of the GP. By draw-
ing on the work of [109], we show in Section 2.9.1 that a GP with a stationary covariance
kernel, κ(x− x′), can be approximately sampled with

gtk|f tk ∼
[
hµ ∗ f tk

]
+N (0, I) ∗ hΣ, (4.20)

hµ = F−1

{
K
K+σ2

f

}
, hΣ = F−1

{√
K − K2

K+σ2
f

}
.

Here, K denotes the Fourier transform of κ. We note that this approximation degrades
closer to image boundaries.

While sampling the layer supports of Equation (4.16) utilizes thousands of the
PGIMH iterations described in Algorithm 3.4, this entire process takes less than one
second. As each iteration perturbs only a single layer, we refer to this procedure as
the “Single Layer Sampler.” A layer, k, is first chosen at random, and its support is
sampled from the following posterior distribution

p(ztk, a
t
k|gt, zt−1, at−1, xt, ÿt) ∝

∫
p(f tk|gtk)p(ztk|fzt−1

k)p(atk|fat−1
k)p(xt|zt, at, ÿt) df tk

= QL(ztk)
∏

i

∫
p(f tk,i|gtk,i)Ltk,i(f tk,i − gtk,i) df tk,i (4.21)

where the pixel-wise likelihood term, Ltk,i(j), is

Ltk,i(j) = QS(ztk,i|gzt−1
k,i+j)p(a

t
k,i|gat−1

k,i+j)p(x
t
i|zti , ati, ÿt) (4.22)

Sec. 4.4. Inference 101

and we have used the fact that

f(·)t−1
k,i = g(·)tk,i+f tk,i−gtk,i . (4.23)

We can marginalize f tk by approximating p(f tk,i|gtk,i) = N
(
f tk,i − gtk,i, σ2

f

)
with a discrete

finite impulse response filter, hf . The distribution over ztk in Equation (4.16) is then
proportional to

p(zt|gt, zt−1, at−1, xt, ÿt) ∝ QL(`tm)
∏N

i=1

∑
j
hf (j)Ltm,i(j), (4.24)

which is efficiently sampled using PGIMH described in Algorithm 3.4. Equation (4.24)
is efficiently evaluated for hf with small support. A detailed derivation is included in
Appendix A.2. Changing the kth layer accomplishes one of the following:

1. Grow and occlude the currently visible layer;

2. Grow behind the currently visible layer;

3. Shrink and disocclude the next layer;

4. Shrink behind the currently visible layer.

Each situations can be expressed with Equations (4.2)–(4.9). Furthermore, the Gaus-
sian appearance dynamics and observation models allow for efficient marginalization of
previously observed appearances. For disoccluded and revealed appearances, we draw
a sample from the distributions in Equation (4.4)–(4.5). Similarly, f tk is approximately

sampled from Equation (4.17) by multiplying Equation (4.24) with 1I
[
f tk,i = gtk,i + j

]
.

We conclude a full iteration by sampling the layer ordering, ÿt. Because of the
uniform prior on orderings, Equation (4.18) is proportional to the observation likelihood,
which can be computed using Equations (4.2)–(4.9). The videos we analyze typically
have fewer than ten objects. As such, it is efficient to simply enumerate all possible total
orders. When the number of layers is larger, a swap proposal in a Metropolis-Hastings
framework can be used.

� 4.4.3 Multiple Layer Sampler

The second step of the preceding algorithm samples the support of a single layer at once,
which can exhibit slow convergence in certain situations. For example, if layers k =
1, 2, 3 all have support at pixel i, but the actual visible layer should be the background
(k = 3), the sampler must move through an intermediate state before making the
background visible. Consequently, this approach may converge to a local extrema when
the intermediate state is unlikely. We now detail an alternative sampling algorithm
that samples the layer support at a a single-pixel for all layers jointly. First, a visible

102 CHAPTER 4. SHAPE DYNAMICS IN OBJECT TRACKING

layer is sampled according to the following categorical distribution

Pr(vti = k) = p(xti|vti = k) Pr[ztk,i = 1]
∏

{`;ÿt`<ÿtk}

Pr[zt`,i = 0], (4.25)

where the conditioned variables have been omitted for convenience. If layer k is visible,
all layers above k are explicitly precluded from having support at pixel i and all layers
below are sampled from Equation (4.7). This process is repeated for all pixels in a
random order. In practice, we sample from Equation (4.16) by running a full iteration of
this “Multiple Layer Sampler” followed by a full iteration of the “Single Layer Sampler”.

� 4.5 Experiments

Having described a model and associated inference procedure, we now compare the
performance of the proposed method with results reported in the literature. As noted,
we assume that objects of interest have been detected. In our experiments, simple user
annotations followed by Lazy Snapping [78] are used to initiate tracking. Parameters
are fixed across all sequences and we have verified that a wide range of parameters yield
similar performance.

� 4.5.1 Implementation Details

Flow is an inferred latent variable and, theoretically, initialization does not impact
convergence guarantees. However, as with any iterative procedure, convergence may be
to a local mode. We have found that using a combination of the optical flow estimates
of [13] and [82] as an initialization improves convergence empirically. For each frame,
both flows are calculated, and the flow that minimizes the L2 warped image difference
is used for the initial value of f .

Additionally, while a pixelwise appearance model is used, blurring effects caused
by the image acquisition are not explicitly modeled. This causes boundary pixels be-
tween two regions to have a value that is the convex combination of the bordering
regions. While this image acquisition phenomenon could potentially be incorporated
in the model, we find that a simple procedure for fixing edges works well. We run
each frame through three Sobel filter, one for each color channel. Then, we threshold
each image according to the procedure described in [98]. We define an edge pixel as
a pixel that is declared to be an edge in any of the color channels. The color of each
edge pixel is then set to the color of the nearest non-edge pixel. An example of this
process is shown in Figure 4.7. We find that preprocessing the frames with this simple
edge-sharpening procedure slightly improves results.

� 4.5.2 Tracking

For each video frame, we draw 100 samples and consider pixels that appear in at least
T of the sampled layer supports. Of this set, we take the largest connected component.

Sec. 4.5. Experiments 103

Figure 4.7: Visualization of the edge sharpening. Original image (left), edge detection
(middle), edge sharpened image (right). Bottom row shows a detail of the image.

Table 4.1: Average number of incorrect pixels per frame on SegTrack.

Human Ours [84] [77] [118]

birdfall 130 265 189 288 252
cheetah 308 570 806 905 1142
girl 762 841 1698 1785 1304
monkeydog 306 289 472 521 563
parachute 299 310 221 201 235
penguin 279 456 - 136285 1705

Mean Error 347 455 677∗ 740∗ 867

* indicates the exclusion penguin.

Results are shown for T = 25%, but other confidence levels may be useful for other
applications. Quantitative results on the SegTrack [118] dataset with the top three
state-of-the-art algorithms are shown in Table 4.1. We note that [84] and [77] do not
require the first frame to be segmented; however by depending on future data, these
methods are a form of Bayesian smoothing instead of filtering. Additionally, we hand-
label each video separately from the ground truth as a means to gauge human error.
The proposed method achieves state-of-the-art results on most of the videos. Tracked
frames and initial annotations for select SegTrack videos are shown in Figure 4.8. We
note that there is ambiguity in the parachute sequence; our algorithm incorporates the
human (as shown in the last frame) whereas the ground truth and other algorithms do
not.

104 CHAPTER 4. SHAPE DYNAMICS IN OBJECT TRACKING

Figure 4.8: Four results on the SegTrack dataset [118]. First column shows user anno-
tation and segmentation.

Since SegTrack only contains ground truth for single object tracking, we show ad-
ditional results from the datasets of [49] and [82] in Figure 4.9. While good results are
achieved for most videos, the first video of Figure 4.9 exhibits a failure of the proposed
approach when a car in the background explodes. Such rapid appearance changes are
not well represented by Gaussian evolution. As such, the flames in this video are er-
roneously labeled as foreground. On the other hand, the last video is over 500 frames
long, and the proposed approach tracks the ice skater throughout the entire sequence.

� 4.5.3 Inferring Layer Order

In this section, we show a visualization of the inferred layer order. While we do not
impose temporal dependencies among layers, many videos have a static layer order for all
frames. We can calculate the posterior distribution over layer orders for the entire video
by treating each frame as an independent observation. We show this distribution for
two videos in Figure 4.10. In the first video, the posterior distribution is only non-zero
for the three orderings where the printer tray is in front of the printer. The uncertainty

Sec. 4.5. Experiments 105

Figure 4.9: Results on the datasets of [49] and [82].

is expected because the phone and printer do not overlap during the sequence. In
the second example, we consider the penguin video of SegTrack. Although the ground
truth segmentation only tracks one penguin, we track three here. Because the penguins
overlap, the posterior distribution is essentially a delta function at the correct layer
order.

106 CHAPTER 4. SHAPE DYNAMICS IN OBJECT TRACKING

Figure 4.10: Frames and pie charts showing the posterior distribution over orderings.

Figure 4.11: Average errors on SegTrack using different versions of our algorithm.
Numbers in legend indicate the best achievable errors. Gray algorithms lie outside the
limits.

� 4.5.4 Independent Contributions

We analyze seven variations of our algorithm in order to test different aspects of the
model. We consider using only one optical flow algorithm as an initialization (Brox
[12] and Liu [82]), not using edge-sharpening (NoEdge), using an optimization scheme
(Max), not enforcing topology constraints (NoTop), and treating optical flow as a mea-
surement (OF-g and OF-f). For the optimization-based inference, we change all sam-
pling steps to maximization steps. When using optical flow as a measurement (which
is done in [49, 77, 84]), we can choose to either equate it to g (OF-g) or f (OF-f). The
resulting average errors on the SegTrack dataset are shown for varying thresholds (T)
in Figure 4.11. Removing topology constraints or plugging in flow without reinferring it
perform so poorly that the curves do not fit in the plot. Using different optical flow ini-
tializations or removing the edge-sharpening does not change results significantly. While
the optimization scheme only produces one segmentation and eliminates the trade-off

Sec. 4.5. Experiments 107

Table 4.2: Average endpoint error for training set of Middlebury dataset [3].

Video Without Initialization With Initialization

Dimetrodon 0.6864 0.3195
Grove2 1.0042 0.4917
Grove3 1.5564 1.0516

Hydrangea 0.5151 0.4302
RubberWhale 0.4103 0.4053

Urban2 6.1440 0.8631
Urban3 4.5784 0.8631
Venus 1.1397 0.6317

with thresholds, it still performs better than the current state-of-the-art algorithms.

� 4.5.5 Optical Flow

While the presented approach infers a dense flow field, the purpose of the flow is not to
be accurate on a sub-pixel level. Rather, the particular Gaussian process formulation
was chosen for purposes of efficient inference in object tracking. Any realization of
the flow will not be locally smooth because of the independence assumption in the
composite flow field.

Regardless, for completeness, we show quantitative results on the Middlebury opti-
cal flow dataset [3] for the presented approach. We note that in the actual formulation,
objects are assumed to have been detected. In the Middlebury dataset, because other
algorithms do not have access to this segmentation data, we also do not use it. Rather,
we treat the entire image as one layer and hope that the independent flow can cap-
ture the necessary discontinuities. Additionally, while our method is designed to track
objects moving in natural scenes, the frames from [3] are all synthetically created or
pictures in a laboratory setup. As such, their motion vectors are only a few pixels in
magnitude as compared to the tens of pixels common in natural scenes. Estimated flow
using our algorithm with the optical flow initialization of [82] and initialization with
zero flow are evaluated quantitatively in Table 4.2 and shown in Figure 4.12. The flow
field for each sequence is calculated as the mean flow over 100 samples, and each result
is computed using the same set of parameters. We note that from Figure 4.12, it seems
like the flow near the center of objects is estimated quite well while the flow near object
boundaries is overly smoothed. This is a result of treating the entire scene as one layer.
Additionally, we find that using optical flow as an initialization can greatly help the
inference scheme for large regions of similar color.

108 CHAPTER 4. SHAPE DYNAMICS IN OBJECT TRACKING

Dimetrodon

Grove2

Grove3

Hydrangea

RubberWhale

Urban2

Urban3

Venus

Figure 4.12: Inferred flow on the Middlebury dataset [3]. The first column shows the
initial frame, the second column shows the inferred flow without any initialization, the
third column shows the inferred flow with the optical flow of [82] as an initialization,
and the fourth column is the ground truth flow. These results are obtained assuming
the video is composed of a single layer, which would never be used in actual tracking.

Sec. 4.6. Discussion 109

� 4.6 Discussion

We presented a generative model for tracking objects in scenes that models occlusions,
dynamic appearances, dynamic shapes, and enforces explicit topology constraints. Fur-
thermore, we have shown that particle filtering where particles are propagated according
to the posterior distribution does not require weight updates or particle resampling tech-
niques. While this is typically difficult to do efficiently, the development of the PGIMH
algorithm in Chapter 3 makes the particle propagation very efficient. The proposed ap-
proach has proven to outperform current tracking and video segmentation algorithms
on the SegTrack dataset.

� 4.6.1 Future Work

We believe that the results presented in this chapter are quite encouraging. However,
there is still much work to be done. MCMC sampling cannot typically be performed in
real time because of the need to draw multiple samples for computing event statistics.
In addition to the computation needed for multiple samples, the current framework
still takes approximately 1 minute of processing time per sample per frame. While
this is much faster than some previous probabilistic approaches (e.g., [113]), it is not
nearly fast enough to process many videos of interest (such as surveillance videos with
constant, streaming data). Multi-threaded approaches using a graphics processing unit
(GPU) may be potential avenues to speed up the computation.

It is also not clear if the squared exponential (SE) kernel is the best class of covari-
ance kernels for flow estimation. The “independent” flow, f , was introduced so that it
could capture highly deformable and self-occluding objects that cannot be modeled by
the smooth Gaussian process. Using other kernels (e.g., the Matérn class of kernels),
or other parametric models of flow (e.g., piece-wise affine) may be more suitable.

Additionally, the current method requires objects to be already detected. As a proxy,
results in this chapter have been obtained using user-specified strokes followed by Lazy
Snapping [78]. It would be beneficial if the model capturing new objects entering the
scene and had an explicit appearance model for them. A particle smoothing (as opposed
to particle filtering) approach that considers both past and future data may aid such a
model.

One possible approach to entertain new objects is to use a mixture model for the
appearance model of each object, essentially treating each object as a bag of pixels.
However, this would require an additional inference step in an already complicated
model. Current probabilistic inference methods for mixture models with an unknown
number of components are quite slow. In the following chapters, we develop alternative
inference methods for Dirichlet process mixture models that improve convergence by
orders of magnitude. We believe the combination of these approaches with the layered
tracking presented in this chapter can be combined into a very interesting framework.

110 CHAPTER 4. SHAPE DYNAMICS IN OBJECT TRACKING

Chapter 5

Parallel Split-Merge MCMC for the
DPMM

Computer vision problems are often difficult because of the sheer size of data to
process. As such, developments in the probabilistic modeling community are
often impeded in applications to computer vision. We believe one such develop-

ment is in the Bayesian nonparametric models (e.g., Dirichlet process mixture models
and their extensions), where inference that can handle the large number of observations
in computer vision problems are still lacking. Motivated by this observation, we spend
the next two chapters developing scalable inference algorithms for Dirichlet process
mixture models (DPMMs) and their extensions. This work is a slight departure from
the previous focus on computer vision and is a standalone contribution to the machine
learning and probabilistic modeling community. In Chapter 7, we apply the developed
inference algorithms to computer vision in intrinsic image decomposition.

Mixture models are a commonly used framework to model clusters of data in the
machine learning community. In the recent decades, there has been considerable interest
in extending classical finite mixture models to exploit non-parametric Bayesian statis-
tics. Among other things, the elegant theory behind Dirichlet process mixture models
(DPMM) has extended finite mixture models to include automatic model selection in
clustering problems.

However, the rich representative power of the DP comes at a cost; unlike finite
mixture models where the number of components is known a priori and can be fully
instantiated, the infinite number of components cannot be represented. This has led
to much work on developing methods of posterior inference, some of which are sum-
marized in Section 2.9.2. One common approach is to perform Markov chain Monte
Carlo sampling with Gibbs sampling, but this often leads to undesirable results be-
cause samplers that propose local changes exhibit poor convergence. Split and merge
moves, first considered in DPs by [63], attempt to address these convergence issues, but
currently cannot be parallelized and often waste precious computation on proposing a
split or merge that is simply rejected by a Metropolis-Hastings ratio. Little work has
been done in developing scalable split/merge moves for large datasets. Alternatively,
approximate inference based on asymptotic limits such as [73] or variational approx-

111

112 CHAPTER 5. PARALLEL SPLIT-MERGE MCMC FOR THE DPMM

Table 5.1: Capabilities of MCMC Sampling Algorithms in DPMMs

Proposed
CW [60, 61] [32, 96] [27, 45, 63] [64] [83, 127] Method

Exact Model X · X X X X X
Splits & Merges · · · X X · X
Intra-cluster Parallel · · · · · X X
Inter-cluster Parallel · X X · · · X
Non-conjugate Priors X X X · X · X

imations such as [10] can be used. Small-variance asymptotics perform inference on
an altered model and variational algorithms do not have the limiting guarantees of
MCMC methods. Both such methods may also suffer from similar convergence issues,
but are particularly appealing for use in large datasets as they often lend themselves to
parallelization.

In this chapter, we develop an MCMC sampling technique for mixture models that:
(1) preserves limiting guarantees; (2) proposes splits and merges to improve conver-
gence; (3) parallelizes and scales well for use in large datasets; and (4) is applicable
to a conjugate and non-conjugate priors. To our knowledge, no current sampling algo-
rithms satisfy all of these properties simultaneously. While this chapter mainly focuses
on Dirichlet process mixture models, we note that similar methods can be applied for
mixture models with other priors (finite Dirichlet distributions, Pitman-Yor Processes,
etc.). An earlier version of this work was originally presented in [21].

� 5.1 Related Work

We briefly review relevant related work in MCMC sampling for the Dirichlet pro-
cess mixture model. The majority of DPMM samplers fit into one of two categories:
collapsed-weight samplers that marginalize over the mixture weights or instantiated-
weight samplers that explicitly represent them. Capabilities of current algorithms,
which we now overview, are summarized in Table 5.1. A more detailed description of
some related work is given in Section 2.9.2.

Collapsed-weight (CW) samplers using both conjugate (e.g., [16, 30, 85, 92, 126]) and
non-conjugate (e.g., [86, 93]) priors sample the cluster labels iteratively one data point
at a time without needing to approximate the infinite-length model. When a conjugate
prior is used, one can also marginalize out cluster parameters. However, as noted
by multiple authors (e.g., [27, 63, 79]), these methods often exhibit slow convergence.
Additionally, due to the particular marginalization schemes, these samplers cannot be
parallelized.

Instantiated-weight (IW) samplers explicitly represent cluster weights, typically us-
ing a finite approximation to the DP (e.g., [60, 61]). Recently, [32] and [96] have
eliminated the need for this approximation; however, IW samplers still suffer from con-

Sec. 5.1. Related Work 113

vergence issues. If cluster parameters are marginalized, it can be very unlikely for a
single point to start a new cluster. When cluster parameters are instantiated, samples
of parameters from the prior are often a poor fit to the data. However, IW samplers
are often useful because they can be parallelized across each data point conditioned
on the weights and parameters. We refer to this type of algorithm as “inter-cluster
parallelizable”, since the cluster label for each point within a cluster can be sampled in
parallel.

The recent works of [83] and [127] present an alternative parallelization scheme
for CW samplers in DPMMs and HDPs. They observe that multiple clusters can be
grouped into “super-clusters” and that each super-cluster can be sampled indepen-
dently. We refer to this type of implementation as “intra-cluster parallelizable”, since
points in different super-clusters can be sampled in parallel, but points within a clus-
ter cannot. This distinction is important as many problems of interest contain far
more data points than clusters, and the greatest computational gain may come from
inter-cluster parallelizable algorithms. Due to their particular construction, current al-
gorithms group super-clusters solely based on the size of each super-cluster. We will
show empirically that this can lead to slow convergence and demonstrate how data-
dependent super-clusters improve upon these methods.

There has also been work on collapsed-weight sampling algorithms that consider
larger moves to address convergence issues. Green and Richardson [45] present a re-
versible jump MCMC sampler that proposes splitting and merging components. While
a general framework is presented, proposals are model-dependent and generic choices
are not specified. Proposed splits are unlikely to fit the posterior since auxiliary vari-
ables governing the split cluster parameters and weights are proposed independent
of the data. Jain and Neal [63, 64] construct a split by running multiple restricted
Gibbs scans for a single cluster in conjugate and non-conjugate models. While each
restricted scan improves the constructed split, it also increases the amount of com-
putation needed. As such, it is not easy to determine how many restricted scans are
needed. Dahl [27] proposes a split scheme for conjugate models by reassigning labels of
a cluster sequentially. All current split samplers construct a proposed move to be used
in a Metropolis-Hastings framework. If the split is rejected, considerable computation
is wasted, and all information contained in learning the split is forgotten. In contrast,
the proposed method of fitting sub-clusters iteratively learns likely split proposals with
the auxiliary variables. Additionally, we show that split proposals can be computed in
parallel, allowing for very efficient implementations.

Alternatives to classical sampling in DPMMs have been proposed. For example,
Liang et al. [79] propose to sample from an augmented space of orderings and consistent
partitions. While their algorithm works well when many components exist, they still
find that using split-merge algorithms (e.g., [63, 27]) improve convergence speeds.

114 CHAPTER 5. PARALLEL SPLIT-MERGE MCMC FOR THE DPMM

(a) DPMM Graphical Model (b) Augmented Super-Cluster

Figure 5.1: Graphical models for the DPMM and augmented super-cluster space. Aux-
iliary variables are dotted.

� 5.2 Exact and Parallel Instantiated-Weight Samplers

The Dirichlet process mixture model is summarized with previous sampling methods in
Section 2.9.2. We reproduce the graphical model corresponding to a DPMM in Figure
5.1a for convenience. As stated previously, sampling from the DPMM is complicated
by the infinite length mixture weights, π, and cluster parameters, θ, and often requires
using an approximate finite model (such as the finite symmetric Dirichlet or truncated
stick-breaking approximations).

We now present an alternative to the instantiated-weight samplers that does not
require any finite model approximations. The detailed balance property of Definition
2.5.1 underlies most MCMC sampling algorithms. If one desires to sample from a target
distribution, satisfying detailed balance for an ergodic Markov chain (Definition 2.5.8)
guarantees that simulations of the chain will uniquely converge to the target distribution
of interest. We now consider the atypical case of simulating from a non-ergodic chain
with a transition distribution that satisfies detailed balance.

We define a restricted sampling algorithm as one that satisfies detailed balance
(e.g., using the Metropolis-Hastings or Gibbs sampling algorithms) but that does not
result in an ergodic chain. We note that without ergodicity, detailed balance does not
imply uniqueness in, or convergence to the stationary distribution. However, multiple
restricted samplers can be combined to form an ergodic chain, ensuring the uniqueness
of the stationary distribution. In particular, we consider a sampler that is restricted
to only sample labels belonging to non-empty clusters. Such a sampler is not ergodic
because it cannot create new clusters. However, when mixed with a sampler that
proposes splits, the resulting chain is ergodic and yields a valid sampler. A visualization
of the state space is shown in Figure 5.2. We now consider a restricted Gibbs sampler.
The coupled samplers that split or merge clusters is discussed in Sections 5.3-5.4.

� 5.2.1 Restricted DPMM Gibbs Sampler with Super-Clusters

A property stemming from the definition of Dirichlet processes is that the measure for
every finite partitioning of the measurable space is distributed according to a Dirichlet
distribution [33]. While the DP places an infinite length prior on the labels, denoted
with z, any realization of z will belong to a finite number of clusters. Supposing
zi ∈ {1, · · · ,K}, ∀i, we showed in Section 2.9.2 that the posterior distribution on the

Sec. 5.2. Exact and Parallel Instantiated-Weight Samplers 115

(a) State Diagram of Restricted Sampler (b) State Diagram with Split/Merge

Figure 5.2: Visualizations of the state diagrams for the restricted sampler and the
restricted sampler with split/merge moves. Each orange circle represents some con-
figuration of z with K unique values. Dotted arrows correspond to the transitions in
the state diagram that are not allowed due to the restricted sampling. This results in
isolated islands of states, which the split and merge moves connect.

Dirichlet process follows the Dirichlet distribution of Equation (2.122). This corre-
sponds directly to the following posterior distribution of mixture weights, π:

(π1, · · · , πK , πK+1) ∼ Dir (π1, . . . , πK , π̃K+1;N1, . . . , NK , α) , (5.1)

where Nk =
∑

i 1I[zi = k] is the number of points in cluster k, and πK+1 =
∑∞

k=K+1 πk
is the sum of all the weights associated with empty clusters. This relationship has
previously been noted in the literature (cf. [116]). This leads to the following iterated
restricted Gibbs sampler:

(π1, . . . , πK , π̃K+1) ∼ Dir(N1, . . . , NK , α), (5.2)

θk
∝∼ fx(xIk ; θk)fθ(θk;λ), ∀k ∈ {1, . . . ,K}, (5.3)

zi
∝∼
∑K

k=1
πkfx(xi; θk)1I[zi = k], ∀i ∈ {1, . . . , N}, (5.4)

where
∝∼ denotes drawing a sample from a distribution proportional to the equation on

the right and the subscript Ik , {i; zi = k} denotes the set of indices with label zi = k.
The astute reader may realize that these distributions are quite similar to posterior
inference in finite mixture models discussed in Section 2.8 or the finite approximations
to the DP discussed in Section 2.9.2. The main difference is that in this formulation, the
concentration parameter still corresponds to the probability of creating a new cluster,
but zi is never actually allowed to create a new cluster. These steps preserve detailed
balance on the exact model, unlike the finite approximations. Additionally, we note that
each of these steps can be parallelized and that this procedure applies to conjugate and
non-conjugate priors because the mixture parameters are explicitly represented. When
non-conjugate priors are used, any proposal that leaves the stationary distribution
invariant can be used (cf. [93]).

116 CHAPTER 5. PARALLEL SPLIT-MERGE MCMC FOR THE DPMM

Figure 5.3: An illustration of the super-cluster grouping. Nodes represent clusters,
arrows point to neighbors, and colors represent the implied super-clusters.

Deleted Clusters via Restricted Sampling

While restricted sampling explicitly disallows the creation of new clusters, it is possible
for all the data points in a non-empty cluster to slowly move to another cluster. This is
difficult to explicitly restrict since the label assignments are done in parallel. However,
using similar arguments from Section 2.9.2 about the posterior on π, we can create
a partitioning of the space to find the posterior on the cluster weights. Suppose that
cluster e no longer has any data points associated with it (i.e., Ne = 0). The partitioning
described by A in Equation (2.121), reproduced here as

(A1, . . . , Ae, . . . , AK , AK+1) = (δθ1 , . . . , δθe , . . . , δθK ,Ω \ {∪
K
k=1δθk}), (5.5)

then has a corresponding posterior distribution that follows

(G(A1), . . . , G(Ae), . . . , G(AK), G(AK+1)) ∼ Dir(N1, . . . , Ne, . . . , NK , α). (5.6)

Because Ne = 0, there is no posterior measure on the resulting partition, G(Ae), and we
know that it must be assigned zero probability. Consequently, πe will be zero, and the
next step of restricted sampling will not assign any data points to cluster e. A cluster
that is empty after an iteration of restricted sampling can therefore just be deleted,
since no data points will ever be assigned to it again.

Data-Dependent Super-Clusters

Similar to previous super-cluster methods, we can also restrict each cluster to only
consider moving to a subset of other clusters. The super-clusters of [83] and [127] are
formed using a size-biased sampler. This can lead to slower convergence since clusters
with similar data may not be in the same super-cluster. Because any restricted Gibbs
sampler satisfies detailed balance, any algorithm that assigns finite probability to all
super-cluster grouping will still satisfy detailed balance.

We therefore can augment the sample space with super-cluster groups, g, that group
similar clusters together. The resulting graphical model is depicted in Figure 5.1b.
Conditioned on g, Equation (5.4) is altered to only consider labels within the super-
cluster that the data point currently belongs to. The super-cluster sampling procedure
is described in Algorithm 5.1. Here, D denotes an arbitrary distance measure between
probability distributions. In our experiments, we use the symmetric version of KL-
divergence (J-divergence). When the J-divergence is difficult to calculate, any distance

Sec. 5.3. Randomized Split/Merge Moves 117

Figure 5.4: An illustration of the difference between data-dependent and data-
independent super-clusters. Ellipses indicate cluster means and covariances. Color of
data points indicate super-cluster membership. (left) super-clusters from the presented
the algorithm. (right) super-clusters from [83].

measure can be substituted. For example, in the case of multinomial distributions,
we use the J-divergence for the categorical distribution as a proxy. An illustration of
the implied super-cluster grouping from the algorithm is shown in Figure 5.3 and a
visualization of an actual super-cluster grouping is shown in Figure 5.4. Notice that
the super-cluster groupings using [83] are essentially random while the data-dependent
super-clusters from Algorithm 5.1 are grouped by similar data.

Algorithm 5.1 Sampling Super-clusters with Similar Cluster

1. Form the adjacency matrix, A, where Ak,m = exp[−D(fx(◦; θk), fx(◦; θm))].

2. For each cluster, k, sample a random neighbor k′, according to

k′
∝∼
∑

m
Ak,m1I[k′ = m].

3. Form the groups of super-clusters, g, by finding the separate connected graphs.

� 5.3 Randomized Split/Merge Moves

The preceding section showed that an exact MCMC sampling algorithm can be con-
structed by alternating between a restricted Gibbs sampler and split moves. In this
section, we present a pair of data-independent split and merge proposals. Split moves
that are constructed without knowledge of the data will typically be nonsensical, and we
should not expect these split moves to perform well. Data-independent merge moves,
in contrast to splits, can produce sensible proposals because the only way to merge two
clusters is to simply put all the data into one new cluster. As we shall see in Section
5.4, these merge moves will have an important role in sampling from the true model.

Similar “randomized” moves were first considered in [63], where a proposed splitting
of a cluster was generated by randomly assigning each data point to one of two new
clusters with probability 0.5. We will use the symbols \, [, and] to denote cluster indices
that will be involved in splits and merges, where \, [,] ∈ {1, . . . ,K}. A proposed merge
move will merge clusters [and] into cluster \. This notation is motivated by musical

118 CHAPTER 5. PARALLEL SPLIT-MERGE MCMC FOR THE DPMM

theory, where a flat accidental ([) combined with a sharp accidental (]) results in a
natural note (\).

We now discuss the randomized splits of [63]. A proposed split of cluster \ into
clusters [and], denoted QKrsplit-\, is first selected with probability q(QKrsplit-\) and then
constructed according to

ẑi ∼ q(ẑi|z,QKrsplit-\) =

1, ẑi = zi, zi 6= \,

0.5, ẑi = [, zi = \,

0.5, ẑi =], zi = \.

(5.7)

The corresponding merge move, QK+1
rmerge-[], is selected with probability q(QK+1

rmerge-[]) and

simply puts all of the data associated with clusters [and] into cluster \. We note that
this procedure is slightly different from the original work of Jain and Neal [63], but will
suffice for our purposes. The Hastings ratio for proposing a merge in this framework is

HJ.N.
merge-[] =

p(ẑ)p(x|ẑ)
p(z)p(x|z)

q(z|ẑ)
q(ẑ|z)

=
Γ(N[+N])

αΓ(N[)Γ(N])

p(x|ẑ)
p(x|z)

0.5N[+N]

1

q(QK−1
rsplit-\)

q(QKrmerge-[])
(5.8)

This randomized procedure has one minor flaw; corresponding partitions from a
split will have high probability of being similar in size. This is in direct contrast to the
Dirichlet process prior on partitions which explicitly favors larger clusters getting larger.
We highlight the discrepancy between the proposal and the prior with an example.
Consider the proposal of merging two clusters, m and n, where Nm = 90 and Nn = 10,
with α = 1. It would be preferable if the acceptance of the proposed merge was based
on the data. However, this proposal has a corresponding Hastings ratio of

HJ.N.
merge-[] =

p(x|ẑ)
p(x|z)

q(QK−1
rsplit-\)

q(QKrmerge-[])
e−36.635,

which extremely favors rejecting the proposal, regardless of the data.
We present a slight improvement over this randomized split proposal that is still

data-independent. As stated in Section 2.5.1, the closer the proposal distribution is to
the target distribution, the better the convergence. We therefore propose a split by
generating from the related Dirichlet-Categorical distribution

ẑI\ ∼ DirCat(ẑI\ ;
α
2 ,

α
2), (5.9)

where I\ , {i; zi = \} denotes the subset of indices that have label \. All other values of
zi remain unchanged. Again, the corresponding merge move simply combines clusters
[and] into one new cluster. This set of split/merge proposals results in the following

Sec. 5.4. Parallel Split/Merge Moves via Sub-Clusters 119

Hastings ratio for a proposed merge

Hrand
merge-[] =

Γ(N[+N])

αΓ(N[)Γ(N])

p(x|ẑ)
p(x|z)

Γ(α)
Γ(α+N[+N])

Γ(α
2

+N[)Γ(α
2

+N])

Γ(α
2

)Γ(α
2

)

1

q(QK−1
rsplit-\)

q(QKrmerge-[])
. (5.10)

For the example considered above, this Hastings ratio equates to

Hrand
merge-[] =

p(x|ẑ)
p(x|z)

q(QK−1
rsplit-\)

q(QKrmerge-[])
e−2.363.

This value essentially results in the proposed sampling being accepted if the data like-
lihood favors the merge and is a consequence of the Dirichlet-Categorical distribution
better fitting the Dirichlet process prior.

Furthermore, generating a sample from Equation (5.9) can be parallelized by first
sampling an auxiliary Dirichlet random variable, π̃ from

π̃ ∼ Dir(π̃; α2 ,
α
2), (5.11)

followed by sampling each zi in parallel according to

ẑi ∼ Cat(zi; π̃), ∀i ∈ {i; zi = \}. (5.12)

The Hastings ratio for a random merge proposal can additionally be calculated effi-
ciently from summary statistics (e.g., Equation (2.30)) since the two current clusters,
[and], are already instantiated. Thus, a merge can be proposed in constant time.
The Hastings ratio for a random split proposal depends on the resulting split cluster
assignments, ẑ. Consequently, a random split proposal requires linear time in the size
of the cluster. We therefore choose q(QKrsplit-\) = 0.01×q(QK+1

rmerge-[]) so that the random
split proposals do not take too much computation. We note that any value besides 0.01
could be used without much difference.

We reiterate that the previous restricted Gibbs sampling algorithm can be paired
with any split/merge framework to produce an exact sampling algorithm for infinite
mixture models. While the randomized split proposals described above do not typically
fit the data (and are therefore likely to be rejected), the merge proposals work quite
well in practice. In the following section, we describe a more sophisticated framework
that excels at proposing likely splits.

� 5.4 Parallel Split/Merge Moves via Sub-Clusters

We now develop efficient data-dependent split moves that are compatible with conjugate
and non-conjugate priors and that can be parallelized. The general approach will be
to augment the space with auxiliary variables that learn two sub-clusters within each
cluster of the mixture model. These sub-clusters will contain a likely partition of the

120 CHAPTER 5. PARALLEL SPLIT-MERGE MCMC FOR THE DPMM

data and will be used to propose splits. We note that in any augmented model, samples
of the non-auxiliary variables can be obtained by drawing samples from the joint space
and simply discarding any auxiliary values.

� 5.4.1 Augmenting the Space with Auxiliary Variables

Each regular cluster is augmented with two explicit sub-clusters, herein referred to as
the “left” and “right” sub-clusters. Each data point is then attributed with a sub-cluster
label, zi ∈ {`, r}, indicating whether it is associated with the left or right sub-cluster.
Additionally, each sub-cluster has an associated pair of weights, πk = {πk`, πkr}, and
parameters, θk = {θk`, θkr}. These auxiliary variables are named in a similar fashion to
their regular-cluster counterparts because of the similarities between sub-clusters and
regular-clusters. One näıve choice for auxiliary parameter distributions is

p(πk) = Dir(πk`, πkr;
α
2 ,

α
2), (5.13)

p(θk) = fθ(θk`;λ)fθ(θkr;λ), (5.14)

p(z|π, θ, x, z) =
K∏
k=1

∏
i∈Ik

∑
h∈{`,r}

πkhfx(xi; θkh)

Zi(x, z, πk, θk)
1I[zi = h], (5.15)

where the normalization term Zi(x, z, πk, θk) is defined to be

Zi(x, z, πk, θk) , πk`fx(xi; θk`) + πkrfx(xi; θkr), (5.16)

and is constant with respect to z. The corresponding graphical model is shown in Figure
5.5a. It would be advantageous if the form of the posterior for the auxiliary variables
matched those of the regular-clusters in Equation (5.2)–(5.4). Unfortunately, because
the normalization, Zi, depends on π and θ, this choice of auxiliary distributions results
in the following posterior distributions for π and θ

p(πk|•) ∝ Dir(πk`, πkr;
α
2 ,

α
2)
∏
i∈Ik

Zi(x, z, πk, θk)
−1, (5.17)

p(θk|•) ∝
∏

h={`,r}

fθ(θkh;λ)fx(xIkh ; θkh)
∏
i∈Ik

Zi(x, z, πk, θk)
−1, (5.18)

where conditioning on • denotes conditioning on all other variables, and Ikh , {i; zi =
k, zi = h}. These posterior distributions are quite different from the regular-cluster
posterior distributions, and it is not clear how to sample from them efficiently. We note
that this problem only arises in the auxiliary space where x generates the auxiliary
label z (in contrast to the regular space, where z generates x).

Consequently, we alter the distribution over sub-cluster parameters to be

p(θk|x, z, π) ∝ fθ(θk`;λ)fθ(θkr;λ).
∏
i∈Ik

Zi(x, z, πk, θk). (5.19)

Sec. 5.4. Parallel Split/Merge Moves via Sub-Clusters 121

(a) Näıve Augmented Sub-Cluster Model (b) Correct Augmented Sub-Cluster Model

Figure 5.5: Graphical models for the augmented DPMMs. Auxiliary variables are
dotted.

It is easily verified that this results in the following conditional posterior distributions

p(πk|•) = Dir(Nk` + α/2, Nkr + α/2), ∀k ∈ {1, . . . ,K}, (5.20)

p(θkh|•) ∝ fx(xIkh ; θkh)fθ(θkh;λ), ∀k ∈ {1, . . . ,K},∀h ∈ {`, r}, (5.21)

p(zi|•) ∝
∑

h∈{`,r}
πzihfx(xi; θzih)1I[zi = h], ∀i ∈ {1, . . . , N}, (5.22)

which essentially match the distributions for regular-cluster parameters in Equation
(5.2)–(5.4). We note that the joint distribution over the augmented space cannot be
expressed analytically as a result of only specifying Equation (5.19) up to a propor-
tionality constant that depends on π, x, and z. The corresponding graphical model is
shown in Figure 5.5b. Additional details and derivations for this section can be found
in Appendix B.

� 5.4.2 Restricted Gibbs Sampling in Augmented Space

Restricted sampling in the augmented space can be performed in a similar fashion as
before. One can draw a sample from the space of K regular clusters by sampling all
the regular- and sub-cluster parameters conditioned on labels and data from Equations
(5.2), (5.3), (5.20), and (5.21). Conditioned on these parameters, one can sample a
regular-cluster label followed by a sub-cluster label for each data point from Equations
(5.4) and (5.22). All of these steps can be computed in parallel. The procedure is
summarized in Algorithm 5.2.

Algorithm 5.2 Restricted Sampling with Sub-Clusters

1. Sample π and π from Equations (5.2) and (5.20).

2. For each cluster k, sample θk and θk from Equations (5.3) and (5.21).

3. For each index i, sample zi and zi from Equation (5.4) and (5.22).

The resulting inference from the restricted Gibbs sampling algorithm for a synthetic

122 CHAPTER 5. PARALLEL SPLIT-MERGE MCMC FOR THE DPMM

Figure 5.6: A visualization of the inferred sub- and super-clusters of the algorithm. Solid
ellipses indicate regular-cluster means and covariances and dotted ellipsses indicate sub-
cluster means and covariances. Color of data points indicate super-cluster membership.

Gaussian mixture model is shown in Figure 5.6. We have initialized the inference to
have 4 clusters. Inferred regular-cluster parameters are illustrated with a solid ellipse
and inferred sub-cluster parameters are illustrated with dotted ellipses of the same color.
Because split moves have not been incorporated into the procedure yet, the result is not
a valid sample from the posterior. This is indicated by the black and yellow clusters,
which each contain two true clusters. However, the dotted ellipses show that the inferred
sub-clusters correctly capture the information of interest in representing a likely split.

� 5.4.3 Sub-Cluster Split Moves

We now exploit these auxiliary variables to propose likely splits. Similar to previous
split/merge algorithms, we use a Metropolis-Hastings (MH) MCMC [51] method for

proposed splits. A new set of random variables, {π̂, θ̂, ẑ, π̂, θ̂, ẑ} are proposed via some
proposal distribution, q, and accepted with probability

min[1, H] = min

[
1,
p(π̂, ẑ, θ̂, x)p(π̂, θ̂, ẑ|x, ẑ)
p(π, z, θ, x)p(π, θ, z|x, z)

· q(π, z, θ, π, θ, z|π̂, ẑ, θ̂, π̂, θ̂, ẑ)

q(π̂, ẑ, θ̂, π̂, θ̂, ẑ|π, z, θ, π, θ, z)

]
. (5.23)

Unfortunately, because the joint likelihood for the augmented space cannot be expressed
analytically, the Hastings ratio for an arbitrary proposal distribution cannot be com-
puted. We now discuss a very specific proposal distribution which results in a tractable
Hastings ratio. A split or merge move, denoted by Q, is first selected at random. As we
detail shortly, all possible splits and a large subset of all possible merges are considered
at every iteration. A randomized proposal can be used instead when the number of
clusters is large.

Conditioned on Q = QKsplit-\, which splits cluster \ into clusters [and], or Q =

QKmerge-[], which merges clusters [and] into cluster \, a new set of variables are sampled

Sec. 5.4. Parallel Split/Merge Moves via Sub-Clusters 123

with the following

Q = QKsplit-\ Q = QKmerge-[]

ẑ = split-\(z, z), ẑ = merge-[](z), (5.24)

(π̂[, π̂]) = π\ · (u[, u]), (u[, u]) ∼ Dir(N̂[, N̂]), π̂\ = π̂[+ π̂], (5.25)

(θ̂[, θ̂]) ∼ q(θ̂[, θ̂]|x, ẑ, ẑ), θ̂\ ∼ q(θ̂\|x, ẑ, ẑ), (5.26)

v̂[, v̂] ∼ p(v̂[, v̂]|x, ẑ), v̂\ ∼ p(v̂\|x, ẑ). (5.27)

Here, vk = {πk, θk, zIk} denotes the set of auxiliary variables for cluster k, the function
split-\(◦) splits the labels of cluster \ deterministically based on the sub-cluster labels
according to

ẑi = split-\(zi, zi) =

zi, zi 6= \

[, zi = \, zi = `

], zi = \, zi = r

. (5.28)

and merge-[](◦) merges the labels of clusters [and] according to

ẑi = merge-[](zi) =

{
zi, zi 6= [, zi 6=]

\ zi = [or zi =]
. (5.29)

The proposal of cluster parameters in Equation (5.26) is written in a general form for
compatibility with non-conjugate priors. If conjugate priors are used, Equation (5.26)
should be sampled directly from the posterior distribution. Sampling auxiliary variables
from Equation (5.27) will be discussed shortly. Assuming that this can be performed,
we show in Appendix B that the resulting Hastings ratio for a split is

Hdet
split-\ =

q(QK+1
merge-[])

q(QKsplit-\)

αq(θ\|x, z, ẑ)
Γ(N\)fθ(θ\;λ)fx(xI\ ; θ\)

∏
k∈{[,]}

Γ(N̂k)fθ(θ̂k;λ)fx(xIk ; θ̂k)

q(θ̂k|x, z, ẑ)

=
q(QK+1

merge-[])

q(QKsplit-\)

α

Γ(N\)fx(xI\ ;λ)

∏
k∈{[,]}

Γ(N̂k)fx(xIk ;λ). (5.30)

The first expression can be used for non-conjugate models, and the second expression
can be used in conjugate models where new cluster parameters are sampled directly
from the posterior distribution. We note that these expressions do not have any residual
normalization terms and can be computed exactly, even though the joint distribution
of the augmented space can not be expressed analytically.

As noted previously, we consider every possible split at each iteration, resulting in
q(QKsplit-\) = 1. When proposing merge moves, we construct bK/2c possible pairs by first
generating a random permutation of the integers in [1,K], and proposing to merge dis-

joint neighbors. For example, if the random permutation for K = 7 is { 3 1 7 4 2 6 5},

124 CHAPTER 5. PARALLEL SPLIT-MERGE MCMC FOR THE DPMM

we will propose to merge clusters 3 and 1, clusters 7 and 4, and clusters 2 and 6. It
is easily verified that the probability of proposing any specific merge is then 2bK/2c

K(K−1) .

The probability of selecting any specific merge is approximately 2
K , meaning that it is

uncommon to select a pair of clusters that should actually be merged. We therefore use
this proposal K times, resulting in q(QKmerge-[]) = 2bK/2c

K−1 .
Unfortunately, the Hastings ratio for a merge move is slightly more complicated. We

discuss these complications following the explanation of sampling the auxiliary variables
in the next section.

� 5.4.4 Deferred Metropolis-Hastings Sampling

The preceding section showed that sampling a split according to Equations (5.24)–
(5.27) results in an accurate MH framework. However, sampling the auxiliary variables
from Equation (5.27) is not straightforward. This step is equivalent to sampling clus-
ter parameters and labels for a 2-component mixture model, which is known to be
difficult. One typically samples from this space using an MCMC procedure. In fact,
that is precisely what the restricted Gibbs sampler is doing. We therefore sample
from Equation (5.27) by running a restricted Gibbs sampler for each newly proposed
sub-cluster until they have burned-in. We monitor the data-likelihood for cluster k,
Lk = fx(xIk` ; θk,`) · fx(xIkr ; θk,r) and declare burn-in once Lk begins to oscillate.

Furthermore, due to the implicit marginalization of auxiliary variables, the restricted
Gibbs sampler and split moves that act on clusters that were not recently split do not
depend on the proposed auxiliary variables. As such, these proposals can be computed
before the auxiliary variables are even proposed. The sampling of auxiliary variables
of a recently split cluster are deferred to the restricted Gibbs sampler while the other
sampling steps are run concurrently. Once a set of proposed sub-clusters have burned-in,
the corresponding clusters can be proposed to split again.

� 5.4.5 Merge Moves with Random Splits

The Hastings ratio for a merge depends on the proposed auxiliary variables for the
reverse split. Since proposed splits are deterministic conditioned on the sub-cluster
labels, the Hastings ratio will be zero if the proposed sub-cluster labels for a merge do
not match those of the current clusters. We show in Appendix B.3 that as the number
of data points grows, the acceptance ratio for a merge move quickly decays. With
only 256 data points, the acceptance ratio for a merge proposal for 1000 trials in a 1D
Gaussian mixture model did not exceed 10−16. We therefore approximate all merges
with an automatic rejection. Unfortunately, this can lead to slow convergence when too
many clusters exist at the current iteration.

The sub-cluster split and merge moves excel at proposing good split moves but are
poor at accepting merge moves. We remind the reader that the pair of randomized
split and merge proposals presented in Section 5.3 is essentially the opposite; random-
ized splits are typically poor but the corresponding randomized merges often perform

Sec. 5.5. Non-Deterministic Sub-Cluster Split Proposals 125

well. Therefore, we mix the sub-cluster split sampler with the randomized split/merge
sampler to achieve good splits and merges.

� 5.5 Non-Deterministic Sub-Cluster Split Proposals

The preceding section presented a sampling algorithm that samples from the exact
model without any approximations. While we have empirically noticed that this sam-
pling algorithm works very well in practice, it is a bit unnerving that the sub-cluster
merges are always rejected and that the randomized splits and merges are needed to
achieve good convergence. In this section, we propose an alternative set of split/merge
moves, where both the split and the merge are likely to be accepted. We note that this
algorithm will require a slight approximation whereas the previous framework did not.

Instead of deterministically copying the sub-topic labels, we modify the proposal to
sample a split. The sub-cluster statistics are used to propose a new cluster assignment
by first constructing temporary parameters, {π̃[, π̃], θ̃[, θ̃]}

(π̃[, π̃]) = π\ · (π\`, π\r), (θ̃[, θ̃]) = (θ\`, θ\r). (5.31)

Conditioned on these temporary cluster parameters, new cluster assignments for topic
\ are drawn from

q(ẑ|v, v,QKsplit-\) =
∏
i∈I\

∑
k∈{[,]}

π̃kfx(xi; θ̃k)1I[ẑi = k]

π̃[fx(xi; θ̃[) + π̃]fx(xi; θ̃])
. (5.32)

We note that a sample from this distribution is already drawn from the restricted Gibbs
sampler described in Equation (5.22). Therefore, no additional computation is needed
to sample from this distribution. If the split is rejected, the ẑ is used as the next sample
of the auxiliary z for cluster \.

The corresponding merge move combines topics [and] into topic \ by determinis-
tically performing

q(ẑi|v,QKmerge-[]) = 1I[ẑi = \], ∀i ∈ I[∪ I]. (5.33)

Split and merge proposals for π̂, θ̂, and v̂ follow the previous distributions of Equations
(5.25)–(5.27) conditioned on ẑ.

The resulting Hastings ratio for this non-deterministic split only differs from Equa-
tion (5.30) by including the additional term from Equation (5.32) and can be expressed
as

Hnon-det
split-\ = Hdet

split-\

1

q(ẑ|v, v,QKsplit-\)
(5.34)

We record the probability q(ẑ|v, v) when generating the auxiliary variables, and all
remaining terms can be computed efficiently as before without iterating through the
data.

126 CHAPTER 5. PARALLEL SPLIT-MERGE MCMC FOR THE DPMM

The Hastings ratio for a merge is essentially the reciprocal of Equation (5.34). How-
ever, calculating the terms for a merge is slightly more problematic since the probability
of the reverse split after a merge is proposed, q(z|v̂, v̂, QK−1

split-\), depends on the inferred

sub-cluster parameters, v̂ = {π̂, θ̂, ẑ}. These proposed sub-topic parameters are not
readily available due to the Deferred Metropolis-Hastings. Instead, we calculate the
Hastings ratio by approximating the inferred sub-clusters with the two original clusters
that are merging. In the limit, as the Markov chain has reached its stationary distribu-
tion, this assumption is quite accurate because of the similarity between regular-clusters
and sub-clusters.

With this approximation, generating the reverse move that splits cluster l into m
and n can be expressed as

q(z|v̂, v̂, QK−1
split-\) ≈

∏
i∈I[∪I]

πzifx(xi; θzi)∑
k∈{[,]} πkfx(xi; θk)

. (5.35)

All the terms in this ratio are already calculated in the restricted Gibbs steps of Equation
(5.4) in Algorithm 5.2. When aggregated properly, any merge can be proposed in
constant time. We maintain a K × K matrix L, where each element aggregates the
following

Lkk =
∏
i∈Ik

πkfx(xi; θk), (5.36)

Lkl =
∏
i∈Ik

∑
κ∈{k,l}

πκfx(xi; θκ). (5.37)

The reverse split move can then be approximated with

q(z|v̂, v̂, QK−1
split-\) ≈

L[[L]]
L[]L][

. (5.38)

This concludes the discussion of non-deterministic split and merge proposals in
DPMMs. Because merge proposals are now accepted with non-zero probability, incor-
porating randomized split/merge proposals is no longer needed.

� 5.6 Experimental Results

In this section, we analyze the proposed sampling method. We compare the different
split/merge proposals described in the preceding sections and compare the proposed
methods to other popular MCMC sampling methods.

� 5.6.1 Split/Merge Proposal Comparison

We begin by comparing the different split/merge proposals described in the preceding
sections. We consider four algorithms: using deterministic and randomized proposals

Sec. 5.6. Experimental Results 127

Figure 5.7: Log likelihood vs. computation time for various split/merge proposals on
two datasets. Three different initializations with varying number of initial clusters are
used for each algorithm.

(Det+Rand), using only deterministic proposals (Det), using only randomized pro-
posals (Rand), and using the non-deterministic proposals (Non-Det). We test the
methods on a Gaussian model with a Normal Inverse-Wishart prior on the MNIST
dataset [76] by first running PCA on the 70,000 training and test images to 50 dimen-
sions. We additionally test the algorithm on multinomial data with a Dirichlet prior on
the Associated Press [9] (2,246 documents and 10,473 dimension dictionary). Results
are shown in Figure 5.7 for each dataset with 1, 50, and 100 initial clusters. Each plot
shows the average log likelihood for multiple sample paths obtained using 16 cores.

The plots show a few important points. The Rand algorithm does not typically
propose useful splits, causing the log-likelihood to stay constant when initialized to
a single cluster. Conversely, the Det algorithm does not accept merges, causing
the log-likelihood to prematurely plateau when initialized to too many clusters. The
Det+Rand and Non-Det methods both do not suffer from these issues since likely
splits are proposed, and merges are accepted with non-negligible probability. Addi-
tionally, the Non-Det method seems to take slightly longer than Det+Rand. This
increase in time is due to the extra computation required to aggregate statistics in L
for the non-deterministic moves. For this reason, the remainder of this chapter will
use the Det+Rand split proposals. However, as we shall see in Chapter 6, the non-
deterministic proposals will still play an important role for extensions to hierarchical
models.

128 CHAPTER 5. PARALLEL SPLIT-MERGE MCMC FOR THE DPMM

Figure 5.8: Results on synthetic data for various initial clusters K, concentration pa-
rameters α, and cores.

� 5.6.2 Parallelizability and Sensitivity to Hyper-Parameters

Next, we compare the proposed algorithm with other MCMC sampling algorithms on
synthetic data. We consider three different versions of the proposed algorithm: us-
ing sub-clusters with and without super-clusters (SubC and SubC+SupC) and an
approximate method that does not wait for the convergence of sub-clusters to split
(SubC+SupC Approx). We note that while we do not expect this last version to
converge to the correct distribution, empirical results show that it is similar in av-
erage performance. We compare the proposed methods against four other methods:
the finite symmetric Dirichlet approximate model (FSD) with 100 components, a Rao-
Blackwellized Gibbs sampler (Gibbs), a Rao-Blackwellized version of the original super-
cluster work of [83] (Gibbs+SupC), and the current state-of-the-art split/merge sam-
pler [27] (Gibbs+SAMS). In our implementations, the concentration parameter is not
resampled, though one could easily use a slice-sampling algorithm if desired.

We compare these algorithms on synthetic Gaussian data with a Normal Inverse-
Wishart prior. 100,000 data points are simulated from ten 2D Gaussian clusters. The
average log likelihood for multiple sample paths obtained using the algorithms without
parallelization for different numbers of initial clusters K and concentration parameters
α are shown in the first two columns of Figure 5.8. In this high data regime, α should
have little effect on the resulting clusters. However, we find that the samplers without
split/merge proposals (FSD, Gibbs, Gibbs+SC) perform very poorly when the initial
number of clusters and the concentration parameter is small. We also find that the
super-cluster method, Gibbs+SC, performs even worse than regular Gibbs sampling.
This is likely due to the super-clusters not being grouped by similar data, which hin-
ders convergence because data points cannot move between different super-clusters. In
contrast, the proposed super-cluster method does not suffer from the same convergence
problems, but is comparable to SubC because there are a small number of clusters.
Finally, the approximate sub-cluster method has significant gains when only one initial
cluster is used, but performs approximately the same with more initial clusters.

Next we consider parallelizing the algorithms using 16 cores in the last column
of Figure 5.8. The four inter-cluster parallelizable algorithms, SubC, SubC+SupC,

Sec. 5.7. Discussion 129

SubC+SupC Approx, and FSD exhibit an order of magnitude speedup, while the the
intra-cluster parallelizable algorithm Gibbs+SupC only has minor gains. As expected,
parallelization does not aid the convergence of algorithms, only the speed at which they
converge.

� 5.6.3 Real-World Datasets

We now show results on real data. We test a Gaussian model with a Normal Inverse-
Wishart prior on the MNIST dataset [76] by first running PCA on the 70,000 training
and test images to 50 dimensions. Results on the MNIST dataset are shown in Figure
5.9a. We additionally test the algorithm on multinomial data with a Dirichlet prior
on the following datasets: Associated Press [9] (2,246 documents and 10,473 dimension
dictionary), Enron Emails [2] (39,861 documents and 28,102 dimension dictionary),
New York Times articles [2] (300,000 documents and 102,660 dimension dictionary), and
PubMed abstracts [2] (8,200,000 documents and 141,043 dimension dictionary). Results
are shown in Figure 5.9b-e. In contrast to HDP models, each document is treated as
a single draw from a multinomial distribution. We note that on the PubMed dataset,
we had to increase the approximation of FSD to 500 components after observing that
SubC inferred approximately 400 clusters. On real data, it is clearly evident that
the other algorithms have issues with convergence. In fact, in the allotted time, no
algorithms besides the proposed methods converge to the same log likelihood with the
two different initializations on the larger datasets. The presented sub-cluster methods
converge faster and to a better configuration as compared to the other algorithms.

On the small, Associated Press dataset, the proposed methods actually perform
slightly worse than the Gibbs methods. Approximately 20 clusters are inferred for
this dataset, resulting in approximately 100 observations for each cluster in a 10,473-
dimensional space. In these small data regimes, it is important to marginalize over as
many variables as possible. We believe that because the Gibbs methods marginalize
over the cluster parameters and weights, they achieve better performance as compared
to the sub-cluster methods and FSD which explicitly instantiate them. This is not an
issue with larger datasets.

� 5.7 Discussion

This chapter develops a new MCMC sampling algorithm for Dirichlet process mixture
models called the DP Sub-Cluster algorithm. The DP Sub-Cluster algorithm is easily
parallelized to scale to large datasets, and exhibits better convergence through the
proposed sub-cluster split and merge moves. In fact, the algorithm converges to a
better configuration than other algorithms, and does so approximately 10–103 times
faster. While the focus of discussion in this chapter was on DPMMs, we believe that
the framework used in developing the DP Sub-Cluster algorithm is widely applicable
to the general finite or infinite mixture model.

The deterministic split move and randomized split/merge proposals are paired with

130 CHAPTER 5. PARALLEL SPLIT-MERGE MCMC FOR THE DPMM

Figure 5.9: Results on real-world Gaussian and Multinomial data. Each figure plots log
likelihood vs. computation time. All parallel algorithms use 16 cores. The first column
is initialized to one cluster and the second column is initialized to 50 clusters.

Sec. 5.7. Discussion 131

a restricted Gibbs sampling algorithm to produce an MCMC algorithm that does not
require any approximations. However, the non-deterministic split and merge moves
required a slight approximation due to the deferred Metropolis-Hastings. In particu-
lar, because the sub-cluster assignments are not readily available after a proposed split
or merge, the sub-clusters were estimated using the original clusters. While this ap-
proximation was argued to be fairly accurate in the limit of reaching the stationary
distribution, the theory would benefit from a more rigorous analysis.

Additionally, we note that small clusters, which often appear from the collapsed
Gibbs sampling algorithms, tend to occur less frequently in the DP Sub-Cluster algo-
rithm. This is likely due to the implicit bias towards proposing large split moves from
the instantiated sub-clusters paired with the restricted Gibbs sampling algorithm that
does not allow the creation of new clusters. This is in stark contrast to the collapsed
Gibbs sampling algorithms, which can start a cluster with a single data point at any
iteration. As shown in [91], these small clusters are in the typical set of DPMMs, and
should be expected.

We also believe the method of deferred Metropolis-Hastings, where the auxiliary
variables are deferred to the restricted Gibbs sampling algorithm, is an interesting idea
that other auxiliary variable methods may benefit from. This type of proposal could
also benefit from a more detailed derivation.

While we have done our best to compare many of the current MCMC sampling algo-
rithms, one additional interesting experiment that could be performed is comparing the
DP Sub-Cluster algorithm to variational inference methods. In particular, variational
methods often benefit from being highly parallelizable. Moreover, recent variational
methods (e.g., [57]) also exploit split/merge moves, but are simpler because they do
not need to satisfy detailed balance.

We believe one promising direction is the extension of the DP Sub-Cluster algorithm
to models that use Dirichlet processes as a component in a larger model. For exam-
ple, the Hierarchical Dirichlet Process [116], the Hierarchical Dirichlet Process Hidden
Markov Model [34, 116], and the Dependent Dirichlet Process [81] could all greatly
benefit from scalable MCMC inference methods. In the next chapter, we demonstrate
how the DP Sub-Cluster algorithm can extend to the HDP, with the intent to show
that many models can take advantage of the work presented in this chapter.

132 CHAPTER 5. PARALLEL SPLIT-MERGE MCMC FOR THE DPMM

Chapter 6

Parallel Split-Merge MCMC for the
HDP

The previous chapter developed an efficient sampling scheme for Dirichlet pro-
cess mixture models based on sub-clusters. In this chapter, we show how the
sub-cluster method can be extended to hierarchical models, like the Hierarchical

Dirichlet process (HDP) [116]. The HDP models groups of data with shared cluster
statistics and has been used in many statistical learning applications including doc-
ument analysis [116], object categorization [112], and as a prior for hidden Markov
models [34].

Similar to DPMMs, the proposed method for HPDs is extremely parallelizable and
does not require any finite model approximations. As will be shown, considerable
work is needed for this extension because of additional latent variables and overlapping
distributions that are difficult to disambiguate.

This chapter will follow in a similar fashion as Chapter 5. We first consider a
restricted Gibbs sampling algorithm that is exact and can be easily parallelized. We
then introduce the extension of the auxiliary sub-clusters in the HPDs, and show how
they can be incorporated in the restricted sampler. The sub-clusters are used to propose
large split and merge moves that change the labels of all observations. Finally, we
test the algorithm on synthetic and real-world data and observe improved convergence
properties as compared to other sampling methods. As a by-product of our experiments,
we have found that cross-validation metrics do not accurately gauge convergence of
MCMC procedures in HDPs. We propose an alternative metric that empirically shows
that current sampling methods converge extremely slowly.

� 6.1 Related Work

The seminal work of Teh et al. [116] developed the HDP along with the Chinese Restau-
rant Franchise and the Direct Assignment sampling algorithms. These methods are re-
viewed in Section 2.9.3. Since then, there has been a considerable effort on alternative
inference methods for HDPs with a large emphasis on scalable, variational methods.

Unfortunately, unlike Dirichlet process mixture models, there has not been much
work in developing split/merge MCMC algorithms for HDP models. To our knowledge,

133

134 CHAPTER 6. PARALLEL SPLIT-MERGE MCMC FOR THE HDP

the only work that attempts to use splits and merges in an MCMC sampling framework
is [122], which extends the Sequentially Allocated Merge-Split (SAMS) algorithm of
[27] designed for DPMMs. Their preliminary results show that the addition of splits
and merges has little impact on cross-validation metrics, sometimes even degrading
performance. While this may result from a misfit between the HDP model and the data,
our empirical results suggest that it is likely due to properties of the specific sampler
instead. Additionally, the SAMS algorithm cannot be parallelized, and is therefore only
tested on a corpus with up to 263K words. In contrast, we scale our algorithm to test
on 100M words.

Alternatively, approximate inference methods such as the variational algorithms of
[10, 15, 74, 117] can be used. Variational algorithms do not have the limiting guaran-
tees of MCMC methods and may also suffer from similar convergence issues, but are
particularly appealing for use in large datasets as they often lend themselves to paral-
lelization. Recent work in Bayesian non-parametrics (e.g., [15, 58, 57]) has addressed
convergence issues in variational approximations with split/merge moves being applied
to HDPs, DPs, and beta process hidden Markov models. Consequently, the results
of the HDP-SAMS sampler should not be discouraging; we expect splits and merges
to help convergence in MCMC sampling for HDPs much like they have in variational
inference and in DPMMs.

There has also been work on parallel sampling algorithms for HDPs. Fox et al. [34]
approximate the highest level DP with a finite symmetric Dirichlet distribution of order
L. This method generalizes the work of Ishwaran and Zarepour [61] on DPs to HDPs.
While iterations of this finite approximation can be easily parallelized, setting a hard
model order ruins the non-parametric nature of the HDP since the model no longer
grows with the data. Furthermore, at each iteration, the sampler must consider each
data point as being associated with each of the L clusters. Assuming N data points,
each iteration then takes O(NL) complexity. Since the approximation improves as the
L increases, this method slows for good approximations (large L).

The parallelization scheme of Williamson et al. [127] for DPMMs was also extended
to HDPs. However, Gal and Ghahramani [38] have since shown that the paralleliza-
tion does not scale well. Furthermore, as evident from the experiments in Chapter 5,
this super-cluster method often converges slower that Gibbs sampling because of the
restriction on sampling, even with the added benefit of parallelization.

Lastly, Newman et al. [94] present another parallel approximation scheme that ex-
plicitly partitions and assigns the data across multiple processors. Each processor then
independently runs a Gibbs sampler on its assigned data. When complete, the proces-
sors resynchronize sufficient statistics of the clustered data and the process is repeated.
While this method has shown to perform well on cross-validation techniques, no limiting
guarantees or bounds can be given.

The presented approach differs from previous methods by achieving a linear paral-
lelization speed-up with the number of processors while also proposing large split and
merge moves in parallel. We show that when the observed mixture model has am-

Sec. 6.2. Hierarchical Dirichlet Processes 135

Figure 6.1: The Hierarchical Dirichlet process graphical model.

biguous, overlapping distributions (as is the case in topic modeling), simply splitting a
cluster into two or merging two clusters into one may not greatly affect convergence.
However, by incorporating larger, “global” moves, one can improve inference.

� 6.2 Hierarchical Dirichlet Processes

A summary of the HDP model is presented in Section 2.9.3. We reproduce the graphical
model in Figure 6.1 and the notation here for convenience. Because of their prolific
use in topic modeling, we will refer to the model variables with their topic modeling
names: β are the corpus-level, global topic proportions, πj are the topic proportions for
document j, zji is the topic assignment for the ith word in document j, xji is ith word
in document j, and θk are the parameters for the word distribution of topic k.

A sample from the HDP model can be drawn according to:

β ∼ GEM(1, γ), (6.1)

πj ∼ DP(α, β), ∀j ∈ {1, . . . , D}, (6.2)

θk ∼ fθ(θk;λ), ∀k ∈ {1, 2, . . . }, (6.3)

zji ∼ Cat(πj), ∀j ∈ {1, . . . , D}, ∀i ∈ {1, . . . , Nj}, (6.4)

xji ∼ fx(xji; θzji), ∀j ∈ {1, . . . , D}, ∀i ∈ {1, . . . , Nj}, (6.5)

where fx and fθ denote some specific form of likelihood and prior distributions.
Alternatively, one can generate a sample from the HDP using the Chinese Restau-

rant Franchise (CRF). In the CRF, each document is a restaurant, each word is a
customer, and cluster parameters are dishes served to tables. A customer enters a
restaurant and sits at a table with probability proportional to the number of customers
already at a table, or sits at a new table with probability α. New tables are then as-
signed a particular dish with probability proportional to the number of tables already
serving that dish, or a new dish with probability γ. It can be shown that simulating a
CRF is equivalent to sampling from Equations (6.1)–(6.5).

We adopt the notation of [116] for the CRF. The number of tables in restaurant j
serving dish k is denoted mjk, and the number of customers in restaurant j at table t
eating dish k is njtk. Marginal counts are represented with dots. For example, nj·· and
mj· represent the number of customers and dishes, respectively, in restaurant j.

136 CHAPTER 6. PARALLEL SPLIT-MERGE MCMC FOR THE HDP

� 6.3 Restricted Parallel Sampling in HDPs

Similar to the work on DPMMs, the restricted Gibbs sampling algorithms acts on the
fully instantiated model, but is restricted to the current non-empty clusters. More
precisely, the restricted sampler is not allowed to create new clusters. This allows
sampling without needing to instantiate an infinite number of β, π, or θ. Following the
observation in Chapter 5 that super-clusters do not significantly affect results, we omit
their inclusion in the augmented HDP model for simplicity.

The main difference between the HDP restricted Gibbs sampling algorithm and the
DPMM counterpart is the inclusion of β. While the posterior p(β|z) is not known in
closed form, the posterior p(β|m) is known. Antoniak [1] showed that the posterior of
mjk has the following distribution

p(mjk|β, z) =
Γ(αβk)

Γ(αβk + nj·k)
s(nj·k,mjk)(αβk)

mjk , (6.6)

where s(n,m) are unsigned Stirling numbers of the first kind. Assuming that the current
topic assignments fall into K topics (i.e., zji ∈ {1, . . . ,K}), it was shown in [34, 116]
that the posterior distribution on the global-level and document-level proportions can
then be expressed as

p(β|m) = Dir(β1, . . . , βK+1;m·1, . . . ,m·K , γ), (6.7)

p(πj |β, z) = Dir(πj1, . . . πj(K+1);αβ1 + nj·1, . . . , αβK + nj·K , αβK+1). (6.8)

We note that β and π have slightly changed from Equations (6.1)–(6.2), and are now
defined over explicit partitions of the space. Also, instead of being infinite in length,
they are (K+1)-length vectors where the last components, βK+1 and πj(K+1), aggregate
the weight over all empty topics.

Topic parameters can be sampled according to

p(θk|x, z) ∝ fx(xIk ; θk)fθ(θk;λ). (6.9)

Similar to the DPMM case, Ik , {ji; zji = k} denotes the subset of data assigned to
cluster k across all documents. If conjugate priors are used, Equation (6.9) stays in the
same family of parametric distributions as fθ(θ;λ) (see Section 2.2).

The last step in the restricted sampler is to sample the topic assignments, z. This
posterior distribution is a categorical distribution, restricted to the current non-empty
clusters.

p(zji|x, πj , θ) ∝
K∑
k=1

πjkfx(xji; θk)1I[zji = k]. (6.10)

This concludes the extension of the DPMM Sub-cluster algorithm to HDPs. We
note that sampling from any of Equations (6.6)–(6.10) can be done in parallel. Further-
more, similar to the DPMM algorithm, these distributions are quite similar to the finite

Sec. 6.4. Sub-Topic Fitting 137

(a) Näıve Augmented Sub-Cluster Model (b) Correct Augmented Sub-Cluster Model

Figure 6.2: Augmented sub-topic HDP graphical models. Hyper-parameters are omit-
ted and auxiliary variables are dotted.

Figure 6.3: Visualization of augmented sample space.

approximations of HDPs used in [34]. The main differences are in the distribution of
β since no approximation is used, and the sampling of z, which is explicitly restricted
to non-empty clusters. Unlike the finite approximation, this sampler is guaranteed to
converge to the correct target distribution without approximations when combined with
any split proposal.

� 6.4 Sub-Topic Fitting

In this section we extend the augmented sub-cluster model in DPMMs to a sub-topic
model for HDPs. We reiterate that the goal of fitting sub-topics is to find a two-
component mixture model that potentially corresponds to a likely split of the data.

For each topic, k, we fit two sub-topics, k` and kr, referred to as the “left” and
“right” sub-topics. Each topic is augmented with auxiliary variables for global sub-topic
proportions βk = {βk`, βkr}, document-level sub-topic proportions πjk = {πjk`, πjkr},
and sub-topic parameters θk = {θk`, θkr}. Furthermore, a sub-topic assignment, zji ∈
{`, r} is associated with each word, xji. The augmented latent space is summarized in
Figure 6.2a. Figure 6.3 visualizes these latent variables. Similar to the DP Sub-Cluster

138 CHAPTER 6. PARALLEL SPLIT-MERGE MCMC FOR THE HDP

method, we adopt the following auxiliary distributions

p(βk) = Dir(βk`, βkr; γ, γ), (6.11)

p(πjk|βk) = Dir(πjk`, πjkr;αβk`, αβkr), (6.12)

p(θk|π, z, x) =
∏

h∈{`,r}

fθ(θkh;λ)
∏
ji∈Ik

Zji(π, θ, z, x), (6.13)

p(z|π, θ, z, x) =
K∏
k=1

∏
ji∈Ik

πjkzjifx(xji; θkzji)

Zji(π, θ, z, x)
, (6.14)

Zji(π, θ, z, x) ,
∑

h∈{`,r}

πjzjisfx(xji; θzjih). (6.15)

To be correct, Figure 6.2a should have edges pointing from π, z, and x to θ as shown
in Figure 6.2b. However, we find Figure 6.2a easier to interpret. It can be shown that
the auxiliary distributions of Equations (6.11)–(6.15) result in the following posteriors:

p(mjkh|•) =
Γ(αβkh)

Γ(αβkh + nj·kh)
s(nj·kh,mjkh)(αβkh)mjkh , (6.16)

p(βk|•) = Dir(γ +m·k`, γ +m·kr), (6.17)

p(πjk|•) = Dir(αβk` + nj·k`, αβkr + nj·kr), (6.18)

p(θkh|•) ∝ fx(xIkh ; θkh)fθ(θkh;λ), (6.19)

p(zji|•) ∝ πjzjizjifx(xji; θzjizji), (6.20)

where • denotes all other variables and Ikh , {ji; zji = k, zji = h}. Notice the similar-
ity between these equations and Equations (6.6)–(6.10). Since the auxiliary variables
are generated conditioned on the main variables, posterior inference can be performed
by interleaving the sampling of Equations (6.6)–(6.10) and Equations (6.16)–(6.20).
Furthermore, all of these steps can all be computed in parallel because the model is
fully instantiated.

� 6.5 Sub-Topic Split/Merge Moves

The proposed split/merge sampling algorithm for HDPs is also quite similar to DPMMs;
we use a Metropolis-Hastings algorithm that proposes splits or merges and accepts them
with some probability. The steps of the framework are summarized in Algorithm 6.1.
In the following sections, we present two different methods for the proposal of new topic
assignments in Step 2.

Most of these steps are identical to the DPMM algorithm. For example, π̂ can be
sampled from its posterior expressed in Equation (6.8), and θ̂ can be sampled directly
from its posterior assuming conjugate priors. Similarly, sampling the auxiliary variables,

Sec. 6.5. Sub-Topic Split/Merge Moves 139

Algorithm 6.1 HDP Split-Merge Framework

1. Propose a cluster to split or a pair of clusters to merge.

2. Propose new topic assignment from the inferred sub-topics: ẑ ∼ q(ẑ|v, v).

3. Propose new global topic proportions: β̂ ∼ q(β̂|ẑ).
4. Propose new document topic proportions: π̂ ∼ q(π̂|β̂, ẑ).
5. Propose new topic parameters: θ̂k ∼ q(θ̂k|x, z).
6. Defer the proposal of auxiliary variables.

7. Accept/reject the proposal with the Hastings ratio.

Figure 6.4: A visualization of how m̃jk(z) is determined.

v̂ , {m̂, β̂, π̂, θ̂, ẑ}, is deferred to the restricted sampler like what was done in the
DPMM case. The main difference is that a new set of global topic proportions, β, must
be proposed conditioned on the labels, z.

As stated previously, the closer the proposal distribution, q(·), is to the target
distribution, p(·), the better the convergence. Thus, it would be ideal to propose a
new β from p(β|z). Unfortunately, this conditional distribution cannot be expressed
analytically unless one additionally conditions on the dish counts, m·k (cf. Equation
(6.7)). Since the distribution of dish counts depends on β itself, we approximate its
value with

m̃jk(z) = arg max
m

p(m|β α
K , z) = arg max

m

Γ(αK)

Γ(αK + nj·k)
s(nj·k,m)(αK)m, (6.21)

where the global topic proportions have essentially been substituted with 1
K . A visual-

ization of the m̃jk(z) is shown in Figure 6.4.
We note that the dependence on z is implicit through the counts, n. We can then

define a proposal for the global topics proportions as

q(β̂|ẑ) = p(β̂| ˆ̃m) = Dir
(
β̂1, . . . , β̂K , β̂K+1 ; ˆ̃m·1, · · · , ˆ̃m·K , γ

)
, (6.22)

where we denote ˆ̃m , m̃(ẑ). We emphasize that the approximate ˆ̃m is only used to
create a proposal distribution similar to the prior and the resulting chain will still satisfy
detailed balance.

140 CHAPTER 6. PARALLEL SPLIT-MERGE MCMC FOR THE HDP

The global topic weights β not only complicate the proposal distributions, but also
the computation of the Hastings ratio. When π̂ and θ̂ are directly sampled from their
respective posterior distributions and v̂ is deferred, the resulting Hastings ratio can be
expressed as

H =
p(β̂, ẑ)p(x|ẑ)
p(β, z)p(x|z)

· q(z|v̂, v̂)q(β|z)
q(ẑ|v, v)q(β̂|ẑ)

(6.23)

With a considerable amount of algebra, we show in Appendix C that the joint prior
p(β, z) can be expressed as

p(β, z) = γβγ−1
K+1

K∏
k=1

β−1
k

 D∏
j=1

Γ(α)

Γ(α+ nj··)

K∏
k=1

Γ(αβk + nj·k)

Γ(αβk)

 . (6.24)

We now present two methods of proposing new labels that fit within this split/merge
framework.

� 6.5.1 Local Splits and Merges

In the DP Sub-Cluster algorithm presented in Chapter 5, splits were constructed by
altering the labels of a single cluster. We define this type of split move as a “local”
split since only assignments within one cluster or topic are changed. This is in contrast
to a “global” split (discussed shortly), which changes all topic assignments.

A local split of topic \ into topics [and] in HDPs is proposed in a similar fashion
as in DPMMs. The sub-topic statistics are used to propose a new topic assignment by
first constructing temporary parameters, {π̃1[, π̃1], . . . , π̃D[, π̃D], θ̃j[, θ̃j]}

(π̃j[, π̃j]) = πj\ · (π\`, π\r), ∀j ∈ {1, . . . , D} (6.25)

(θ̃[, θ̃]) = (θ\`, θ\r). (6.26)

Conditioned on these temporary topic parameters, new topic assignments for data as-
sociated with topic \ are drawn from

q(ẑji|v, v,Qsplit-\) =
∑

k∈{[,]}

π̃jkfx(xji; θ̃k)1I[ẑji = k]

π̃j[fx(xji; θ̃[) + π̃j]fx(xji; θ̃])
, ∀{j, i} ∈ I\. (6.27)

A new β̂ can be drawn by splitting β\, into two parts, β̂[and β̂]. The proportions
of the new weights are generated in a local version of Equation (6.22) as follows

q(β̂[, β̂]|ẑ, β\) = Dir(β̂[/β\, β̂]/β\; ˆ̃m·[, ˆ̃m·]). (6.28)

The corresponding merge move combines topics [and] into topic \ by deterministically

Sec. 6.5. Sub-Topic Split/Merge Moves 141

performing

q(ẑji|v,Qmerge-[]) = 1I[ẑji = \], ∀{j, i} ∈ I[∪ I], (6.29)

q(β̂\|v) = δ(β̂\ − (β[+ β])). (6.30)

We show in Appendix C that this results in a Hastings ratio for a local split of

H local
split-\ =

γΓ(ˆ̃m·[)Γ(ˆ̃m·])

Γ(ˆ̃m·[+ ˆ̃m·])

β
ˆ̃m·[+ ˆ̃m·]
\

β̂
ˆ̃m·[
[β̂

ˆ̃m·]
]

p(x|ẑ)
p(x|z)

1

q(ẑ|v, v,Qsplit-\)
(6.31)

×
QK+1

merge-[]

QKsplit-\

D∏
j=1

Γ(αβ\)

Γ(αβ\ + nj·\)

∏
k∈{[,]}

Γ(αβ̂k + n̂j·k)

Γ(αβ̂k)
,

where the dependence of m̃ on ẑ is omitted. All of these terms can be computed
efficiently for the same reasons as in the DPMM case. Similarly, the Hastings ratio for
a local merge is

H local
merge-[] =

Γ(m̃·[+ m̃·])

γΓ(m̃·[)Γ(m̃·])

β
m̃·[
[β

m̃·]
]

β̂
m̃·[+m̃·]
\

p(x|ẑ)
p(x|z)

q(z|v̂, v̂, Qsplit-\)

1
(6.32)

×
QK−1

split-\

QKmerge-[]

D∏
j=1

Γ(αβ̂\ + n̂j·\)

Γ(αβ̂\)

∏
k∈{[,]}

Γ(αβk)

Γ(αβk + nj·k)
.

� 6.5.2 Global Split/Merge Proposals

Since the clusters in topic modeling are defined over a discrete dictionary, word distri-
butions for different topics tend to have significant overlap. Consequently, local splits
may be rejected because the joint likelihood cannot increase enough unless points move
to and from the other topics as well. In this section, we consider generating global
split/merge moves by constructing a split or merge followed by reassigning all topic
assignments.

A global split proposal is constructed by first forming temporary topic proportions
and parameters with

(π̃j[, π̃j]) = πj\ · (π\`, π\r), π̃jk = πjk, ∀k 6= \, ∀j ∈ {1, . . . , D} (6.33)

(θ̃[, θ̃]) = (θ\`, θ\r), θ̃k = θk, ∀k 6= \. (6.34)

New topic assignments are then sampled for all words:

q(ẑji|v, v) =
∑
k

π̃jkfx(xji; θ̃k)1I[zji = k]∑
l π̃jlfx(xji; θ̃l)

, ∀{j, i}. (6.35)

142 CHAPTER 6. PARALLEL SPLIT-MERGE MCMC FOR THE HDP

Note that the summations in this categorical distribution index over all K previous
topics and topic [and], but excludes the index \. We then sample β̂ ∼ q(β̂|ẑ) via
Equation (6.22). The remaining split proposal follows directly from Algorithm 6.1.

The corresponding merge first samples a temporary parameter, θ̃\,

θ̃\ ∼ q(θ̃\|x, z) ∝ fx(xI[∪I] ; θ̃\)fθ(θ̃\;λ), (6.36)

and constructs the remaining temporary variables with

π̃j\ = πj[+ πj], π̃jk = πjk, ∀k 6= [,], ∀j ∈ {1, . . . , D}, (6.37)

θ̃k = θk, ∀k 6= [,]. (6.38)

ẑ is then sampled via Equation (6.35), followed by sampling β̂ via Equation (6.22).
We show in Appendix C that the Hastings ratios for the global split and merge are

Hglobal
split-\ =

γΓ
(
γ +

∑K
k=1 m̃·k

)
Γ
(
γ +

∑K+1
k=1

ˆ̃m·k

) p(x|ẑ)
p(x|z)

q(z|v̂, v̂)

q(ẑ|v, v)

q(θ̃\|x, z)
1

QK+1
merge-[]

QKsplit-\

(6.39)

×
K∏
k=1

βm̃·kk

Γ(m̃·k)

K+1∏
k=1

Γ(ˆ̃m·k)

β̂
ˆ̃m·k
k

×
D∏
j=1

K∏
k=1

Γ(αβk)

Γ(αβk + nj·k)

K+1∏
k=1

Γ(αβ̂k + n̂j·k)

Γ(αβ̂k)
.

Hglobal
merge-[] =

Γ
(
γ +

∑K
k=1 m̃·k

)
γΓ
(
γ +

∑K−1
k=1

ˆ̃m·k

) p(x|ẑ)
p(x|z)

q(z|v̂, v̂)

q(ẑ|v, v)

1

q(θ̃\|x, ẑ)
QK−1

split-\

QKmerge-[]

(6.40)

×
K∏
k=1

βm̃·kk

Γ(m̃·k)

K−1∏
k=1

Γ(ˆ̃m·k)

β̂
ˆ̃m·k
k

×
D∏
j=1

K∏
k=1

Γ(αβk)

Γ(αβk + nj·k)

K−1∏
k=1

Γ(αβ̂k + n̂j·k)

Γ(αβ̂k)
.

The Hastings ratio for a merge move again depends on the resulting sub-topics param-
eters. Similar to the argument made for local splits and merges, we approximate the
resulting sub-topic parameters with the main-topic parameters prior to the proposed
merge.

Unfortunately, unlike the local split/merge proposals, generating a new ẑ requires
significant computation by looping through all data points. As such, we randomly pro-
pose only one split and merge at every iteration. Thus, QKsplit-\ = 1/K and QKmerge-[] =
2/(K(K−1)). Even with this added computation, we show in the Section 6.6 that con-
vergence rates improve dramatically. Additionally, we note that the presented global
split is very different from all previous local split/merge algorithms. We believe it is for
this reason that the exhibited performance of [122] is poor.

Sec. 6.6. Experimental Results 143

(a) True Topics (b) Visualizing Sub-Topics

Figure 6.5: Visualizing sub-topics on the synthetic “bars” example of [47]. (a) Visu-
alization of the 10 true topics. (b) Visualization of the word distributions for each
topic without splits/merges for K = 5. Top row: regular-topics, fx(◦; θ). Bottom row:
sub-topics, fx(◦; θ).

� 6.6 Experimental Results

In this section, we test the proposed method on topic modeling. The sampler is sum-
marized in Algorithm 6.2. Hyper-parameters are fixed in our implementation, although
resampling techniques [116] can be easily incorporated. All results were obtained by
averaging 10 sample paths.

Algorithm 6.2 Sub-Cluster HDP Sampler

1. Initialize β and z randomly.

2. Sample π, θ, π, and θ via Equations (6.8), (6.9), (6.18), and (6.19).

3. Sample z and z via Equations (6.10) and (6.20).

4. Propose bK2 c local merges followed by K local splits.

5. Propose a global merge followed by a global split.

6. Sample m and m via Equations (6.6) and (6.16).

7. Sample β and β via Equations (6.7) and (6.17).

8. Repeat from Step 2 until convergence.

� 6.6.1 Visualizing Sub-Topics

We generated 200 documents from the synthetic “bars” example of [47] with a dictionary
of 25 words that can be arranged in a 5x5 grid. Figure 6.5a shows the 10 topics used
to generate documents, each of which is a horizontal or vertical bar. To visualize the
auxiliary variables, we initialize to 5 topics and do not propose any splits or merges.
The resulting regular-topic and sub-topic word distributions are shown in Figure 6.5b.

� 6.6.2 Parallelizability & Convergence

Figure 6.6a considers the different split/merge proposals. The local and combined moves
both converge whereas the deterministic moves are always rejected. While there is no
benefit of global moves in such a well-separated dataset, we have observed that the
combination of the local and global moves outperforms any single type in real-world

144 CHAPTER 6. PARALLEL SPLIT-MERGE MCMC FOR THE HDP

(a) Split/Merge Proposals (b) Parallelization

Figure 6.6: (a) Different split/merge proposals. (b) Different levels of parallelization.

Figure 6.7: Results on the “bars” example. All algorithms use a single core and are
initialized to one topic.

datasets. Furthermore, every step of Algorithm 6.2 can be parallelized. As evident
from Figure 6.6b, we achieve a linear speedup in the number of processors.

We compare our algorithm (Sub-Clusters) with the Direct Assignment (DA)
sampler and the Finite Symmetric Dirichlet with L = 20 (FSD). We emphasize the
importance here is to analyze convergence speed, since all algorithms should sample
from the same model. We monitor the number of inferred topics and perform cross-
validation by holding out one word (HOW) from each document. Results are shown
without parallelization in Figure 6.7. Notice that while FSD seems to have converged
according to the HOW likelihood after 1 second, it is clear from the number of topics
that it does not converge until 100 seconds. While cross-validation metrics evaluate
model fit, they alone cannot determine convergence of the MCMC procedure. It is also
interesting to note that the FSD sampler tends to first create all L topics and slowly
prune them away. Even larger speedups occur when parallelization is exploited.

� 6.6.3 Associated Press Dataset

Next, we consider articles from the Associated Press (AP) [9] containing 2K documents
and 436K words. We manually increased L to 100 for the FSD algorithm. Results
for each algorithm using 16 cores with 1, 25, 50, and 75 initial topics are shown in
Figure 6.8. We note that DA cannot be parallelized. Each sampler should converge
to the same distribution regardless of the initialization. However, Figure 6.8a shows
that while HOW likelihood converges for 3/4 FSD algorithms, the number of topics
indicates that none of the sample paths of DA or FSD have converged. In contrast,
all initializations of the Sub-Clusters method have converged to approximately 20

Sec. 6.6. Experimental Results 145

(a) AP Statistics (b) AP Sample Paths

Figure 6.8: Results on the Associated Press dataset for 1, 25, 50, and 75 initial topics.

Figure 6.9: Confusion matrices on the Associated Press dataset for Sub-Clusters,
DA, and FSD (left to right). Outlines are overlaid to compare size.

topics. We visualize the path each sampler takes in the joint HOW likelihood / number
of topics space in Figure 6.8b. This figure shows the stark difference in how the different
samplers approach the problem. FSD explodes the number of topics and slowly prunes
them. The path of FSD indicates that it is approaching the same stationary point, just
at a very slow rate. DA has difficulty because of the small local changes and the lack
of parallelization. Sub-Clusters efficiently make these changes from the splits and
merges.

Figure 6.9 visualizes the confusion matrices, C, of the inferred topics. Each element
of C is defined as:

Cr,c =
∑
x

fx(x; θr) log fx(x; θc), (6.41)

and approximately measures how likely a word from one topic is under another topic.
We find that DA and FSD both infer many topics that are easily confused, whereas
Sub-Clusters finds more distinguishable topics.

While DA and FSD have clearly not converged, we cannot be certain that Sub-
Clusters has converged. Concrete statements about convergence to the stationary
distribution are quite difficult. Instead, we consider running each sample path for a
total of 2,000 seconds. After 1,000 seconds, we switch DA and FSD to Sub-Clusters,

146 CHAPTER 6. PARALLEL SPLIT-MERGE MCMC FOR THE HDP

Figure 6.10: Results on the Associated Press dataset after switching algorithms at 1000
secs.

(a) Enron Statistics (b) Enron Sample paths

Figure 6.11: Results on the dataset of Enron emails for 1 and 50 initial topics.

and switch Sub-Clusters to FSD. We expect to see all of these algorithms converge to
the same point. As shown in Figure 6.10, switching from Sub-Clusters to FSD did not
change the results, but switching from DA and FSD to Sub-Clusters immediately
helps the algorithms reach the topics that were inferred by the Sub-Clusters method.
We note that the number of topics after the switch is slightly higher than the original.
We believe this is because it is difficult for the Sub-Clusters method to create topics
with few words since, by construction, the splits make large moves. In contrast, DA
and FSD often create single word topics.

� 6.6.4 Large Datasets

Finally, we consider two large datasets from [2]: Enron Emails containing 6M words in
40K documents and New York Times (NYTimes) Articles containing 100M words in
300K documents. We note that the NYTimes dataset is 3 orders of magnitude larger
than the datasets considered in the previous HDP split/merge work of [122]. Again, we
manually increased L to 200 for the FSD algorithm. Results are shown in Figures 6.11–
6.12 initialized to 1 and 50 topics. In such large datasets, it is difficult to know how
long convergence will take. After 28 hours, it seems as though none of the algorithms

Sec. 6.7. Discussion 147

(a) NYTimes Statistics (b) NYTimes Sample Paths

Figure 6.12: Results on the dataset of New York Times articles for 1 and 50 initial
topics.

have converged. However, Sub-Clusters seems to be approaching a solution, whereas
FSD has yet to prune topics and DA has yet to to achieve a good cross-validation
score. Thirty inferred topics using Sub-Clusters on the NYTimes dataset are shown
in Figure 6.13.

� 6.7 Discussion

We have extended the DP Sub-Cluster algorithm to Hierarchical Dirichlet Processes. In
addition to demonstrating the extensibility of the DP Sub-Cluster algorithm, we have
also discovered an important observation about HDPs; current sampling algorithms
can take a very long time to converge. Moreover, while commonly-used cross-validation
metrics may measure how well the current model fits the data, our experiments have
shown that they do not accurately capture convergence of Markov chain Monte Carlo
methods to their stationary distributions.

We would like to reiterate that the only previous HDP MCMC sampling algorithm
that incorporated splits and merges was the method of Wang and Blei [122], which
found that their extension of [27] to HDPs only slightly helped convergence. Our results
indicate that global split and merge moves can drastically improve results due to the
highly overlapping distributions in topic models.

One interesting direction of research to extend this work is to consider its application
to Hierarchical Dirichlet process Hidden Markov models (HDP-HMMs) [116]. HDP-
HMMs essentially model an HMM with a nonparametric prior on state transition and
emission distributions. An example graphical model for an HMM is shown in Figure
6.14. In the HDP-HMM, a realization is drawn according to

148 CHAPTER 6. PARALLEL SPLIT-MERGE MCMC FOR THE HDP

Figure 6.13: Subset of learned topic distributions from the New York Times dataset.

Figure 6.14: A graphical model for the HDP-HMM.

Sec. 6.7. Discussion 149

β ∼ GEM(1, γ), (6.42)

πk ∼ DP(α, β), ∀k ∈ {1, 2, . . . }, (6.43)

θk ∼ fθ(θk;λ), ∀k ∈ {1, 2, . . . }, (6.44)

zt ∼ πzt−1 , ∀t ∈ {2, . . . , T}, (6.45)

xt ∼ fx(xt; θzt), ∀t ∈ {1, . . . , T}, (6.46)

where πk denotes an infinitely-sized matrix containing the transition distribution be-
tween the infinite number of possible states. The Direct Assignment (DA) sampling
algorithm discussed in Section 2.9.3 can be applied to HDP-HMM models [116] to per-
form inference without needing model approximations. However, as was explored in
[103] for finite HMMs, inference that only considers changing one state assignment at a
time typically exhibits poor convergence. As an alternative to the DA algorithm, Fox
[34] considers approximating the infinite state space with some truncation L combined
with the forward-backward algorithm [99] to make larger moves.

The Sub-Cluster algorithm should easily adapt to temporal sequences and the
forward-backward algorithm because the resulting “sub-sequences” (similar to the sub-
clusters) will already be instantiated. For this reason, we believe that the use of the
HDP Sub-Cluster algorithm can significantly improve results in the HDP-HMM, with-
out requiring a finite-model approximation.

150 CHAPTER 6. PARALLEL SPLIT-MERGE MCMC FOR THE HDP

Chapter 7

Intrinsic Image Decomposition via
the SV-DPGMM

In this chapter, we consider applying the DPMM Sub-Cluster inference algorithm
to the intrinsic image decomposition problem in computer vision. Intrinsic image
analysis, first introduced in [5], is the problem of decomposing an image into various,

typically generative, scene characteristics. The intrinsic reflectance and shading images
are of particular interest. In this specific decomposition, the reflectance image contains
the albedo of the underlying object surface and the shading image captures the amount
of reflected light from the surface. Under the assumption of a Lambertian reflectance
model, where the perceived illumination is constant from all angles of incidence, the
observed image decomposes into the product of the shading and reflectance image. An
example of this decomposition obtained using the proposed algorithm is shown in Figure
7.1.

While interesting in its own right, intrinsic image analysis is also important for other
fields of computer vision. For example, the shading image can be exploited in shape-
from-shading algorithms to reveal the underlying 3D structure of an object. Other
quantities of interest describing the scene illumination, such as the number, location,
and color of the light sources, can also be inferred from the shading image. Use of the
reflectance image improves many segmentation algorithms, where shading effects often
introduce artifacts.

We consider the problem of intrinsic reflectance and shading decomposition from a

Figure 7.1: An example of the intrinsic image problem. From left to right: original
masked image, inferred shading image, inferred reflectance image. Result were obtained
using the proposed method

151

152 CHAPTER 7. INTRINSIC IMAGE DECOMPOSITION VIA THE SV-DPGMM

single observation. The Retinex algorithm [7, 54, 75], one of the first proposed methods
for this problem, estimates the intrinsic images by detecting edges in the observed image
and solving for a reflectance image that has matching gradients at the detected edges.
Surprisingly, existing methods still require these gradient-matching terms to achieve
good results except for the recent algorithm of [4].

The proposed method, which does not incorporate the gradient-matching terms,
combines a Dirichlet process Gaussian mixture model (DPGMM) for the reflectance
image with a Gaussian process for the shading image. While aspects of the approach
are certainly related to previous methods, the presented formulation differs by: (1)
treating the observed image as an observation from a generative, stochastic process;
(2) using more expressive smoothness terms for the shading image; and (3) developing
inference techniques that are extremely robust to initialization.

� 7.1 Related Work

There have been many algorithms developed to decompose images into their intrinsic
components. Some algorithms use multiple images to disambiguate the decomposition
(e.g., [125]), while others use data-driven, patch-based algorithms (e.g., [36]). We review
the most related work here.

The original Retinex algorithm [75], which many algorithms build upon (e.g., [7, 37,
39, 54, 89, 107, 115]), still performs well decades after its original inception. In fact,
results on the MIT Intrinsic Image Dataset [48] show that the original Retinex algorithm
formulated in 1971 outperforms all other algorithms prior to 2009. The different flavors
of the Retinex algorithm all include two underlying concepts: sharp edges should occur
in the reflectance image, and the shading image should be smooth. Edges in the image
are first detected, typically by thresholding intensity and/or chromaticity gradients.
The gradients of the reflectance image are then favored to match the gradients in the
observed image at the detected edges. This type of interaction is often referred to as
the “Retinex term”. Because this term only biases solutions at edges, a smoothness
assumption in the shading image is then used to propagate the information of the
Retinex term globally.

Many authors have observed that a small set of distinct colors can often be used to
model the reflectance image (e.g., [4, 39, 107]). In particular, Shen et al. [107] groups
reflectance values based on a local texture patch. They develop a “match weight” for
each pairwise match that is used as a heuristic to weight reflectance differences in their
energy functional. The approach of Gehler et al. [39] explicitly partitions the pixels
based on their reflectance colors into K clusters. However, it is unclear how to set K
a priori , since one would expect this value to be dependent on the particular image.
In contrast, we model the reflectance image as being drawn from a Dirichlet process
mixture model that does not predefine a model order.

Smoothness in the shading image is most commonly enforced by using a Markov
random field (MRF) with an L1 or L2 penalty on the difference of neighboring shading

Sec. 7.1. Related Work 153

pixels. As mentioned in Chapter 4, an L2 penalty is equivalent to using an improper
Gaussian MRF (GMRF) prior [87]. These types of model are also used in [39], [107],
and every method in the survey paper of [48]. In this work, we place a similar prior on
the shading image. However, instead of restricting the smoothness to be a 4-connected
GMRF as was done previously, we allow for a much broader class of smooth functions
by placing a Gaussian process (GP) prior on the shading image. Certain properties of
the GP, which we will exploit, lend themselves to efficient inference (such as stationary
covariance kernels). Stationary GMRFs are approximately finite realizations of GPs
with stationary covariance kernels. However, as we shall see, framing the model using
a GP allows us to exploit two advantages: (1) inference is simplified when framing
the model with GPs; and (2) changing the prior smoothness is a matter of altering
the covariance kernel without having to explicitly adapt to a different graphical MRF
structure.

The two current state-of-the-art intrinsic image algorithms take quite different ap-
proaches. The recent work of Barron and Malik [4], called SIRFS, is the current best-
performing algorithm on the MIT Intrinsic Image Dataset [48]. SIRFS differs from
many other methods by incorporating a model of the 3D structure of an object. In
this framework, the shading image is seen as a by-product of the lighting conditions
and 3D geometry. One might draw the conclusion from the results obtained using
SIRFS that modeling the 3D structure is essential to good performance; however, as
we will show, that is not necessarily the case. Furthermore, training and inference
in the SIRFS model is complex because of the numerous parameters, and the current
SIRFS framework only allows inference from a single spherical harmonic illumination.
Multiple point light sources, which often occur in real-world scenes, cannot be modeled
without modifying the formulation and developing a new inference procedure. As such,
we address the problem from the more traditional approach of explicitly inferring the
shading image.

The second best-performing algorithm is the approach of Gehler et al. [39], which
we have already mentioned above. Our model, called the spatially-varying Dirichlet
process Gaussian mixture model (SV-DPGMM), is actually quite similar to the model
of [39]. As such, we explicitly summarize the differences in Table 7.1. While [39] has
shown that the Retinex term improves results, it is difficult to incorporate such a term
in a generative model. Moreover, our experiments show that by using a more expressive
shading model and improved performance, the Retinex term is unnecessary to achieve
state-of-the-art results. Additionally, we note one final distinction between the work
presented here and all previous works. The SV-DPGMM is a generative model that
explicitly captures the noise characteristics of the observed image. As we shall see, the
generative model benefits from incorporating Bayesian priors that adapt to different
noise variances and object complexities. Moreover, as we briefly discuss in Chapter 8,
the particular generative model can be modularized into a larger framework. Studying
the problem when applied to noise-free images certainly provides insight. However, as
we shall see in Section 7.6, noise significantly degrades results of algorithms that do not

154 CHAPTER 7. INTRINSIC IMAGE DECOMPOSITION VIA THE SV-DPGMM

Table 7.1: Differences in Algorithms for Intrinsic Image Decomposition

Gehler et al. [39] SV-DPGMM

Shading Smoothness 4-connected GMRF Gaussian Process
Reflectance Prior Uniform over fixed K clusters Dirichlet Process
Observations Noiseless Log-Normal Noise
Probabilistic Model Discriminative Generative
Retinex Term Yes No
Inference Iterative Optimization Robust & MCMC

(a) Model with Explicit Labels (b) Model with Atoms

Figure 7.2: The generative graphical model with two equivalent representations. See
text for description. λµ = {θ,Σµ} and λg = {κ, σ2

g , ν, l} denote sets of hyper-parameters
in the labeled model. λµ is encoded in the base measure, H, in the atom model.

explicitly model it.

� 7.2 Generative Model

As is common in intrinsic image analysis, we assume a Lambertian surface model, where
an image decomposes into the product of a shading a reflectance image. We now present
a generative model that explicitly builds upon this decomposition.

Multiplicative models become additive in the log domain, which simplifies noise
characteristics and interactions between Gaussian terms. Consequently, for the remain-
der of this chapter, we will work in the log domain, where the the log of the observed
image, x, is assumed to be generated from the sum of the log shading and the log re-
flectance image. We note that this additive model in the log domain implicitly defines
an equivalent multiplicative model in the regular image domain.

We now detail the specific generative process. The related graphical model captur-
ing the dependency structure is depicted in Figure 7.2. The log reflectance image is
generated from a standard Dirichlet process Gaussian mixture model (DPGMM) as fol-
lows: (1) an infinite-length vector or mixture weights, π, is drawn from a stick-breaking
process [106], (2) the 3D mean color for each cluster, µk, is drawn from a multivariate
Gaussian prior, (3) the cluster assignment for each pixel, i, denoted zi, is drawn from a
categorical distribution with parameters π. The following expressions summarize this

Sec. 7.2. Generative Model 155

process:

p(π) = GEM(π ; 1, α), (7.1)

p(µ) =
∞∏
k=1

p(µk) =
∞∏
k=1

N (µk ; θ,Σµ) , (7.2)

p(z|π) =

N∏
i=1

p(zi|π) =

N∏
i=1

Cat(zi ; π). (7.3)

The hyper-parameters, α, θ, and Σµ, are chosen such that the resulting priors are
broad and uninformative. We use µ without subscripts to denote the entire vector of
means. Assuming 3 color channels and K clusters in an actual realization, µ will have
dimensions 3K × 1. The log reflectance image, denoted µz, is then formed by setting
each pixel to the corresponding cluster mean. That is, each pixel i of µz, denoted [µz]i
is assigned the following 3× 1 vector-valued color

[µz]i = µzi . (7.4)

The reflectance image, µz, is then represented by a 3N × 1 vector for an image with N
pixels.

The log shading image, denoted g, is generated from a zero-mean Gaussian pro-
cess (GP) with a stationary covariance kernel, κ. Shading images of interest (e.g., in
the MIT Intrinsic Image Dataset [48]) are often generated from white-colored incident
light. However, we find that allowing colored shading images generally results in better
convergence. As such, we model g as a 3D Gaussian process with a covariance kernel
that is a function of location and color. Denoting {i,m} as color channel m of pixel i,
and {j, n} as color channel n of pixel j, the 3D stationary covariance kernel can then
be expressed as a function of the different in location and color channels:

κ({i,m}, {j, n}) = κ(i− j,m− n). (7.5)

Furthermore, we are only interested in the values of the GP at the fixed grid locations.
Since any subset of variables in a GP is jointly Gaussian, we can express the GP as

p(g) = GP(g ; κ) = N (g ; 0,Σg) , (7.6)

where Σg denotes the finite-dimensional covariance matrix obtained by evaluating the
kernel, κ, at the grid points. The specific covariance kernel and parameters govern the
smoothness properties of g and are inferred as part of the training phase.

Finally, we assume that the observed pixels in the the log image are drawn inde-

156 CHAPTER 7. INTRINSIC IMAGE DECOMPOSITION VIA THE SV-DPGMM

Figure 7.3: A visualization of the set of covariances, SΣ. Note that the covariance
matrices on the left have small values that do not display well.

pendently from the following Gaussian distribution:

p(x|µ, z, g,Σx) =
N∏
i=1

p(xi|µ, zi, gi,Σx) =
N∏
i=1

N (xi;µzi + gi,Σ
x) . (7.7)

While one could assume a fixed observation covariance, Σx, we have found that this is
quite difficult to set a priori , and instead treat the covariance as a latent variable. We
note that one näıve solution is to use a cluster-specific covariance instead of a global
covariance (e.g., via a Normal Inverse-Wishart distribution). However, as described in
Section 7.3, a global observation covariance that is also Toeplitz lends itself to efficient
inference of g. As we are unaware of conjugate priors on positive definite Toeplitz
matrices, we generate Σx uniformly from a discrete set of covariances, SΣ:

Σx = SΣ(u), u ∼ Uniform(|SΣ|). (7.8)

The elements of SΣ are chosen to be 3×3 matrices with color correlations logarithmically
spaced in [2−10, 20] and covariances logarithmically spaced in [2−7, 20]. This choice does
not affect results significantly as long as the range is sufficiently broad. A visualization
of the set of covariances is shown in Figure 7.3.

� 7.2.1 Relation to DPGMMs

A typical DPGMM treats each pixel as being drawn from one of the infinite Gaussians
with mean µk. This is equivalent to having mixture components that are the same re-

Sec. 7.3. Posterior Inference 157

gardless of where the actual pixel is located. Following the discussion in the background
(Section 2.9.2), the DPMM can be expressed in the explicit atom formulation, where
the Dirichlet process, G, is expressed as

G(µ) =
∞∑
k=1

πkδµk . (7.9)

Here, G is a discrete distribution with atoms located at the µk locations, each with
height πk. A particular atom is then drawn for each of the N data points according to

µ̃i ∼ G(µ̃i), ∀i ∈ {1, . . . , N}. (7.10)

Finally, each data point is drawn according to

xi ∼ N (xi; µ̃i,Σ
x) , ∀i ∈ {1, . . . , N}. (7.11)

The model presented in Equation (7.1)–(7.8) departs from this traditional interpretation
by allowing the parameters to change jointly in space according to the Gaussian process,
g. More precisely, the generative process in the presented model draws a particular atom
conditioned on g according to

µ̃i ∼ G(µ̃i − gi), ∀i ∈ {1, . . . , N}. (7.12)

Each data point is then drawn similarly to the traditional DPMM from Equation (7.11).
One can therefore view each pixel as being drawn from an (infinite) mixture of Gaussian
distributions whose means are shifted jointly (and smoothly) over space by a Gaussian
process. As such, we refer to this type of model as the spatially-varying Dirichlet process
Gaussian mixture model (SV-DPGMM).

Related models that change parameters in some independent dimension have been
proposed in the nonparametric Baysian statistics literature before. For example, Lin
et al. [81] constructs Dependent Dirichlet Processes where, in addition to the birth
and death of atoms, atom locations are allowed to vary with time. We note that the
main difference between the SV-DPGMM and previous DPMM extensions like [81] is
that in the SV-DPGMM, the parameters evolve jointly instead of independently for
each mixture component. This joint evolution is exactly the quantity of interest. Al-
though inference is slightly more complicated, we now develop a method that efficiently
marginalizes over multiple quantities.

� 7.3 Posterior Inference

One motivation for generative models is that computation of marginal event proba-
bilities are generally more robust to noise as compared to point estimates such as the
maximum a posteriori (MAP) estimate. Consequently, we resort to methods that reason
over the full distribution described by the SV-DPGMM rather than using optimization

158 CHAPTER 7. INTRINSIC IMAGE DECOMPOSITION VIA THE SV-DPGMM

approaches. MCMC methods, such as Gibbs sampling or the Metropolis-Hastings al-
gorithm, are commonly used in complex probabilistic models. We now develop similar
MCMC inference techniques for the SV-DPGMM.

We first introduce some useful notation. All covariance matrices are denoted by Σ,
possibly superscripted by an associated random variable. The corresponding precision
matrices are denoted by Λ , Σ−1. Additionally, we use i, j ∈ {1, . . . , N} to denote
pixel indices, k, l ∈ {1, . . . ,K} to denote cluster indices, and m,n ∈ {1, 2, 3} to denote
color channel indices. While a DP prior describes an infinite number of mixture ele-
ments, there are only a finite number instantiated for any realization of z. We denote
the number of instantiated components by K. The following sections derive relevant
posterior distributions for each of the latent variables. As the expressions are somewhat
complex, we break up the explanation into three sections leading to the final inference
algorithm.

� 7.3.1 Iterative Posteriors Inference without Marginalization

The SV-DPGMM simplifies to a traditional DPGMMM conditioned on the Gaussian
process, g. In this paper, we exploit the DP Sub-Cluster sampling method presented
in Chapter 5. It is a trivial extension to show that the restricted sampling in the DP
Sub-Cluster algorithm results in alternating between the following steps

π ∼ Dir(π ; N1, . . . , NK , α), (7.13)

µk ∼ N
(
µk ; θ∗(x{k}),Σ

µ∗(x{k})
)
, ∀k ∈ {1, . . . ,K} (7.14)

Σx ∝∼
|SΣ|∑
u=1

p(x|µ, z, g,Σx = SΣ(u)), (7.15)

zi
∝∼

K∑
k=1

1I[zi = k]πkN (xi ; µk + gi,Σ
x) , ∀i ∈ {1, . . . , N} (7.16)

where Nk counts the number of pixels assigned to cluster k, and θ∗ and Σµ∗ denote
posterior hyper-parameters that are functions of the data through the conjugate prior.
The use of a global covariance, Σx, constitutes a minor departure from the usual for-
mulation of DPGMMs. Due to the uniform prior over a discrete set (see Equation
(7.8)), the posterior distribution is equivalent to weighting each possible value with the
likelihood, as reflected in Equation (7.15).

Conditioned on the cluster assignments, z, and cluster parameters, µ, the posterior
on g is known to be Gaussian with the following distribution (cf. [100]):

p(g|µ, z,Σx, x) = N
(
g ; ΣgΛg+x(x− µz),Σg − ΣgΛg+xΣg

)
, (7.17)

where (Λg+x)−1 = Σg+x , (Σg + Σx ⊗ IN) is defined for convenience, ⊗ denotes the
Kronecker product, and IN denotes an N ×N identity matrix. We note that Σx ⊗ IN
is a 3N × 3N block diagonal matrix where each 3× 3 block represents the observation

Sec. 7.3. Posterior Inference 159

covariance for a 3-channel, colored pixel. When a stationary covariance kernel is used
for the Gaussian process, Sampling from Equation (7.17) is well approximated using
equivalent kernel methods [110]. One expects the approximation to suffer near image
boundaries, but we have observed that padding the boundaries with the nearest values
prior to filtering mitigates this potential issue (details in the Section 2.9.1).

Equations (7.13)–(7.17) analytically describe the conditional posterior distributions
of all latent variables. One possible method to perform posterior inference then alternate
between sampling these expressions. Such a procedure is outlined in Algorithm 7.1 and
is very closely related to the optimization method presented in [39]. The main difference
is that one may solve Equation (7.17) analytically, while the authors of [39] employ a
significant number of conjugate gradient iterations. Regardless, this approach tends to
converge to local extrema and is very sensitive to the initialization. While the algorithm
of [39] chooses the best initialization from multiple restarts, it is preferable to have a
procedure that does not rely heavily on initial values.

Algorithm 7.1 SV-DPGMM Iterative Inference via MCMC

1. Initialize z and g to be all 0.

2. Sample (z, µ,Σx|g, x) using the DP Sub-Cluster algorithm of Chapter 5.

3. Sample (g|µ,Σx, z, x) from Equation (7.17) using equivalent kernel [110] techniques.

4. Repeat from Step 2 until convergence.

� 7.3.2 Marginalized Posterior Inference

Both the reflectance, µ, and shading, g, contribute additively (in the log domain).
Consequently, large errors in one can be incorrectly explained by the other. In Bayesian
inference such problems are addressed by treating one variable as a nuisance parameter
for the other and then marginalizing out the nuisance parameter. While this is often
computationally burdensome, there is an analytic expression for the marginalization of
the shading image in the SV-DPGMM. Consider the joint model-likelihood conditioned
on cluster assignments, p(x, µ, g|z,Σx). Because each conditional probability in the
generative model is Gaussian, the joint distribution must be jointly Gaussian. As such,
any marginal or conditional distribution must also be Gaussian. With some cumbersome
algebra, we show in Appendix D that p(µ|z,Σx, x) can be analytically expressed as

p(µ|z,Σx, x) = N (µ ; θ∗,Σ∗), (7.18)

160 CHAPTER 7. INTRINSIC IMAGE DECOMPOSITION VIA THE SV-DPGMM

where each element of the mean and precision (Λ∗ = (Σ∗)−1) is defined as

Λ∗km,ln = Λµm,n +
∑

i∈Ik

∑
j∈Il

Λg+xim,jn, ∀k = l, (7.19)

Λ∗km,ln =
∑

i∈Ik

∑
j∈Il

Λg+xim,jn, ∀k 6= l, (7.20)

[Λ∗θ∗]km = [Λµθ]m+
∑

i∈Ik

∑
j

∑3

n=1
xjnΛg+xim,jn, (7.21)

where Ik , {i; zi = k} denotes the set of pixels that have label k.
We note that Equations (7.18)–(7.21) define a system of 3K linear equations that

express the posterior on reflectance colors, and differ from Equation (7.14) by marginal-
izing over the shading image. This modification to the inference procedure avoids de-
pendence on (possibly erroneous) estimates of g. In its current form, the inference
procedure requires the inversion of Σg+x, a large 3N × 3N matrix, which represents
a substantial computational burden. Because we enforce the Gaussian process to use
a stationary covariance kernel on a square grid, the covariance matrix, Σg+x, will be
Toeplitz and we can exploit equivalent kernel methods [110]. In the limit as the domain
of observations extends to infinity, the inverse covariance will also be Toeplitz, but in
finite data regimes, approximating the precision as Toeplitz degrades near boundaries.
If such an approximation was used, Equations (7.19)–(7.21) can be expressed as con-
volutions and fast computations can be performed in the Fourier domain. In practice,
we find that this approximation does not work well. Consequently, we consider an
alternative.

We note that the system of equations in Equations (7.19)–(7.21) only contain
4.5(K2 + K) variables estimated from approximately N2 variables. We remind the
reader that K is the number of clusters (typically less than 10) and N is the number of
pixels (typically more than 50,000). As such, there are many more observations than
are necessary to reliably categorize θ∗ and Λ∗. We therefore approximate the posterior
on µ from a subset of the data. The subset of data is chosen to ensure that each cluster
has at least 10 pixels and there are a total of at least 1,000 pixels.

Denoting the subset of pixel indices as S, we then define a new realization of the
GP on the subset of indices as gS , which has the following distribution

p(gS) = N (gS ; 0,ΣgS). (7.22)

Following the same formulation as above, we approximate the posterior on the mean
colors as

p(µ|z,Σx, x) ≈ p(µ|zS ,Σx, xS) = N (µ ; θ̂∗, Σ̂∗), (7.23)

Sec. 7.3. Posterior Inference 161

where the approximate mean and precision are defined as

Λ̂∗km,ln = Λµm,n +
∑

i∈Ik∩S

∑
j∈Il∩S

ΛgS+x
im,jn, ∀k = l, (7.24)

Λ̂∗km,ln =
∑

i∈Ik∩S

∑
j∈Il∩S

ΛgS+x
im,jn, ∀k 6= l, (7.25)

[Λ̂∗θ̂∗]km = [Λµθ]m+
∑

i∈Ik∩S

∑
j∈S

∑
n
xj,nΛgS+x

im,jn. (7.26)

Due to the subsampling process, ΛgS+x = (ΣgS+Σx⊗I|S|)
−1 can be computed efficiently.

We note that this approximation performs well in practice. The resulting inference
procedure is detailed in Algorithm 7.2.

Algorithm 7.2 SV-DPGMM Marginalized Inference via MCMC

1. Initialize z and g to be all 0.

2. Sample (z, µ,Σx|g, x) using the DP Sub-Cluster algorithm.

3. Sample (µ|Σx, z, x), marginalizing out g, from Equation (7.23).

4. Sample (g|µ,Σx, z, x) from Equation (7.17) using equivalent kernel [110] techniques.

5. Repeat from Step 2 until convergence.

� 7.3.3 Marginalized Split/Merge Posterior Inference

The previous sections detail relevant posterior distributions for the latent variables and
presented two potential ways of performing inference. The latter of these methods sam-
ples µ while marginalizing over g. In this section, we describe an improved procedure
that samples z while marginalizing out both µ and g. As mentioned previously, we ex-
ploit the DP Sub-Cluster algorithm presented in Chapter 5 to sample from the posterior
of z. In particular, the split and merge proposals formed by the sub-clusters can be
performed with the desired marginalization of µ and g. We can think of the marginal-
ized split move as determining whether there are two distinct colors in a given subset
of pixels, and the marginalized merge move as determining whether two regions should
actually be represented with a single color, but that do so without specifying particular
colors. These proposed moves make large, global decisions since each plausible labeling
integrates over all possible shading images and reflectance colors.

In a similar fashion to the marginalization of the shading image g, we show in
Appendix D that a similar derivation can be used to express p(x|z,Σx) as

p(x|z,Σx) =
|Λg+x|

1
2 |Λµ|

K
2

(2π)
3N
2 |Λ∗|

1
2

exp

[
1

2

(
θ∗>Λ∗θ∗ −Kθ>Λµθ − x>Λg+xx

)]
∝ |Λ∗|−

1
2 exp

[
1

2
θ∗>Λ∗θ∗

]
, (7.27)

162 CHAPTER 7. INTRINSIC IMAGE DECOMPOSITION VIA THE SV-DPGMM

where the dependence on z and Σx are implied in the definitions of θ∗ and Λ∗ in Equa-
tions (7.19)–(7.21). We note that one must be careful when computing this expression
due to the sub-sampling procedure in estimating θ∗ and Λ∗. In practice, we simply scale
the terms so that the likelihood of the subset of indices has the same dimensionality as
the full set of data. One can then accept a split of cluster \ into clusters [and] with

HSV-DPGMM
split-\ =

αΓ(N[)Γ(N])

Γ(N[+N])
· p(x|ẑ,Σ

x)

p(x|z,Σx)

∏
i∈I\

π̃[N (xi ; µ̃[,Σ
x) + π̃]N (xi ; µ̃],Σ

x)

π̃ẑi N (xi ; µ̃ẑi ,Σ
x)

,

(7.28)
where ẑ is the newly split cluster assignments, and π̃ and µ̃ are the temporary cluster
parameters constructed from the sub-clusters as defined in Section 5.5. Note that the
likelihoods, p(x|z, g,Σx), integrate out the mean parameter.

A similar marginalization scheme can be used when proposing merge moves. The
resulting Hastings ratio for a proposed merge of clusters [and] into cluster \ can then
be expressed as

HSV-DPGMM

merge-[] =
Γ(N[+N])

αΓ(N[)Γ(N])
· p(x|ẑ,Σ

x)

p(x|z,Σx)

∏
i∈I[∪I]

π̃zi N (xi ; µ̃zi ,Σ
x)

π̃[N (xi ; µ̃[,Σx) + π̃]N (xi ; µ̃],Σx)
.

(7.29)
The steps in this sampling procedure, which proposes marginalized splits and merges,
are summarized in Algorithm 7.3.

Algorithm 7.3 SV-DPGMM Marginalized Split/Merge Inference via MCMC

1. Initialize z and g to be all 0.

2. Run the restricted sampling algorithm of DP Sub-Cluster to find likely splits condi-
tioned on g (Σx is concurrently sampled within DP Sub-Clusters).

3. Sample (z|Σx, x) by proposing all splits or merges and accept with the Hastings
ratios in Equations (7.28) and (7.29).

4. Sample (µ|Σx, z, x) marginalizing over g from Equation (7.23).

5. Sample (g|µ,Σx, z, x) from Equation (7.17) using equivalent kernel [110] techniques.

6. Repeat from Step 2 until convergence.

� 7.4 Parameter Learning

We now present two methods for learning parameters of the model. The first is a
supervised approach that uses training data to find the set of parameters that works
best across all training examples. The second is an unsupervised approach that places
hyper-priors on the parameters.

We remind the reader that the only parameters to set in the model are those of

Sec. 7.4. Parameter Learning 163

the covariance kernel in the Gaussian process, g. The Matérn class of kernels can be
expressed as:

κ(r ; σ2
g , ν, l) = σ2

g

21−ν

Γ(ν)

(r√2ν

l

)ν
Kν

(r√2ν

l

)
, (7.30)

where r is the change in 2D location, Kν is a modified Bessel function of the second
kind, and {σ2

g , ν, l} are the set of hyper-parameters we wish to learn. Note that l here
should not be confused with the cluster label. Here, it refers to the characteristic length-
scale of the covariance kernel. Additionally, as mentioned previously, allowing for small
amounts of color in the shading images improves convergence. As such, we supplement
the Matérn class kernel with the following

κ(c, r ; σc, σ
2
g , ν, l) = σ1I[c6=0]

c σ2
g

21−ν

Γ(ν)

(r√2ν

l

)ν
Kν

(r√2ν

l

)
, (7.31)

where c is the change in the color channel, and σc is an additional hyper-parameter to
learn. The set of all parameters is then λg = {σc, σ2

g , ν, l}.

� 7.4.1 Supervised Learning

In the following sections, we will focus on analyzing results on the MIT Intrinsic Image
Dataset [48]. Unfortunately, because the 20 images from [48] were released in two
batches, some published methods only run their algorithm on a subset of the images.
For example, the results from [39] use 16 of the 20 images, while the results from [4]
use all 20 images. Furthermore, each method uses different training and test sets; [39]
performs leave-one-out-cross-validation (LOOCV), while [4] separates the set into 10
training images and 10 test images. For an accurate comparison, we learned separate
parameters using LOOCV and the separate training/test sets used in [4]. For each
image, we ran the inference algorithm under a discrete set of parameter choices. The
set of parameters that minimized the arithmetic mean of RS-MSE was chosen (similar
to [39]). This error metric will be described in more detail in Section 7.6.

� 7.4.2 Unsupervised Learning

Because the presented model is formulated in a Bayesian framework, an alternative
approach for unsupervised learning is to place an additional prior on the parameters,
λg, and explicitly infer them. More precisely, we place a prior on λg that is uniformly
distributed over a discrete set of plausible values. Inference then proceeds in the same
sequence as before, with the added sampling step of

λg
∝∼ p(λg)p(g|λg) ∝ p(g|λg). (7.32)

164 CHAPTER 7. INTRINSIC IMAGE DECOMPOSITION VIA THE SV-DPGMM

Original Ground Truth SV-DPGMM SV-DPGMMpost

Figure 7.4: An example of correcting color constancy as a post processing step.

This requires computing the likelihood of a Gaussian process realization with parame-
ters λg. For the finite realization of interest, this term can be expressed as

p(g|λg) = |Σg|−
1
2 (2π)−

N
2 exp

[
−1

2
g>(Σg)−1g

]
. (7.33)

Two of these terms, |Σg| and g>(Σg)−1g pose computational issues for large data sizes
that are encountered in images. Fortunately, as discussed in Section 2.9.1, |Σg| can
be approximated using equivalent kernel methods and the determinant can be approx-
imated with circulant matrix determinants. These approximations perform well when
the size of the matrix is large and the covariance kernel decays quickly, both of which
are satisfied in the problem of interest.

� 7.5 Post-Processing for Color Constancy

Since the goal is to infer multiple latent variables for each observed pixel, intrinsic
image decomposition is inherently an ill-posed problem. While regularizations such as
Gaussian processes and DPGMMs restrict the solution space, there is one ambiguity
that has not been explicitly addressed; any color channel of the log-shading image can
be shifted by an arbitrary amount if the same color channel of the log-reflectance image
is shifted by the negative of the same amount. The resulting decomposition will still
produce the exact same image. For example, this could correspond to changing the
color of the light from white to blue, and adding a yellow tint to reflectance image.

The SV-DPGMM approach implicitly restricts these ambiguities. Because the Gaus-
sian process is assumed to be zero-mean with correlated color channels, the shading
image largely favors white lights and grayscale shading images. This is undesirable in
many situations such as the images in the MIT Intrinsic Image Dataset. We show one
such example in Figure 7.4.

Barron and Malik [4] address this issue of color constancy by placing an explicit
prior over absolute log reflectance values and by assuming a specific lighting model
(spherical harmonic illuminations). It is difficult to incorproate an explicit lighting
model without modeling the 3D surfaces as well. We take a slightly different approach
here. In each type of cross-validation, we learn the distribution of the log shading and
log reflectance values from the ground truth on the training data via a kernel density
estimate. Example distributions are shown in Figure 7.5. It would be ideal if these

Sec. 7.5. Post-Processing for Color Constancy 165

2D (Marginalized) Log-Reflectance Priors Likely Unlikely

2D (Marginalized) Log-Shading Priors Likely Unlikely

Figure 7.5: Kernel density estimates for the prior log-reflectance and log-shading. The
images on the right show colors ranked from likely (left) to unlikely (right) according
to the learned distributions.

distributions could be incorporated into the generative model, but the non-parametric
nature of the distributions eliminate the conjugacy that was exploited in the inference.
As such, we perform a post-processing step that corrects for the ambiguity in the colors.
The following procedure can be used in any intrinsic image algorithm to correct for color
constancy.

Let fs(si) and fr(ri) denote the learned 3D prior distributions on the log-shading
and log-reflectance colors, respectively. We estimate these distributions by binning the
kernel density estimates into M bins for each dimension, resulting in fs, fr ∈ RM×M×M .
Given estimated log-shading and log-reflectance images, s and r, and denoting the bins
corresponding to pixel i by si, ri ∈M , {1, . . . ,M}3, we aim to maximize

∆∗ = arg max
∆

N∏
i=1

fs(si + ∆)fr(ri −∆), (7.34)

where ∆∗ ∈ R3 is the optimal 3D constant color shift applied to both the log-shading
and log-reflectance images. This optimization can be expressed as

∆∗ = arg max
∆

N∑
i=1

log fs(si + ∆) + log fr(ri −∆)

= arg max
∆

∑
m∈M

Ns(m) log fs(m+ ∆) +Nr(m) log fr(m−∆), (7.35)

166 CHAPTER 7. INTRINSIC IMAGE DECOMPOSITION VIA THE SV-DPGMM

where Ns(m) and Nr(m) denote the number of pixels in the shading and reflectance im-
age assigned to bin m. This optimization can be computed exhaustively (but efficiently)
via FFTs since each term is essentially a 3D convolution.

� 7.6 Experimental Results

We now present some results obtained on real images using the SV-DPGMM. We focus
our experiments on the MIT Intrinsic Image dataset [48], which contains ground truth
reflectance and shading components for 20 images. For each image, we simulate the
Markov chain until convergence. We then take the mean of 25 samples from the sta-
tionary distribution. The reflectance image estimate is obtained with exp[〈µz〉] and the
shading image estimate with exp[〈g〉], where 〈•〉 denotes the mean over the 25 samples.
Since the simulated Markov chains tend to explore a local mode within the 25 itera-
tions, we run 10 chains independently and show the resulting pixel-wise median shading
and reflectance images over the 10 independent chains. We can think of each chain as
finding the local mean shading and reflectance, and then using the median of the 10
independent chains to find the mean that is in the middle. As we soon show, while this
procedure slightly improves results, running a single chain still achieves state-of-the-art
results.

In the following section, we compare our algorithm with Retinex, and the two state-
of-the-art methods from [4] and [39]. For an accurate comparison to each method, we
train the model parameters using the same training and test sets described in each of
the previous methods. For each algorithm, we compute three different metrics from [4]
and [48] R-MSE, S-MSE, and RS-MSE. R-MSE and S-MSE compute the global scale-
invariant reflectance and shading mean squared error, respectively. We first define a
scale-invariant mean squared error as

MSESI(x̂, x
∗) = min

α

1

N

N∑
i=1

‖αx̂i − x∗i ‖22, (7.36)

where x̂ denotes a predicted image, x∗ denotes a ground-truth image, and N counts the
number of pixels. The R-MSE and S-MSE can then be expressed as

R-MSE(r̂, r∗) = MSESI(r̂, r
∗) (7.37)

S-MSE(ŝ, s∗) = MSESI(ŝ, s
∗). (7.38)

Errors are computed in the image domain versus log-image domain.
RS-MSE is the metric from [48], which computes the average of local scale-invariant

MSEs. Given a window of pixels (e.g., 20×20) denoted by w, RS-MSE finds the optimal
scaling for each window of the images. Defining the set of all windows in an image to

Sec. 7.6. Experimental Results 167

Table 7.2: Comparing SV-DPGMM Inference Methods

S-MSE R-MSE RS-MSE gS-MSE gR-MSE gRS-MSE

SV-DPGMMit1 0.0548 0.0309 0.0362 0.0202 0.0196 0.0205
SV-DPGMMit2 0.0532 0.0238 0.0302 0.0193 0.0146 0.0181
SV-DPGMMmarg1 0.0300 0.0146 0.0248 0.0097 0.0085 0.0121
SV-DPGMMmarg2 0.0321 0.0175 0.0271 0.0106 0.0109 0.0154
SV-DPGMM 0.0321 0.0144 0.0239 0.0093 0.0078 0.0111
SV-DPGMMopt 0.0352 0.0172 0.0286 0.0120 0.0104 0.0157

be W, the local scale-invariant MSE for two images can be expressed as

LMSESI(x̂, x
∗) =

∑
w∈W

MSESI(x̂w, x
∗
w). (7.39)

The RS-MSE can then be expressed as the average of the local scale-invariant MSEs
for each color channel of the shading and reflectance, normalized so a predicted image
of all zeros produces an error of 1:

RS-MSE(r̂, r∗, ŝ, s∗) =
1

2

(
LMSESI(r̂, r

∗)

LMSESI(0, r∗)
+

LMSESI(ŝ, s
∗)

LMSESI(0, s∗)

)
(7.40)

These metrics are complementary. The first two metrics measure global perfor-
mance, whereas the latter measures local performance. Additionally, we compute both
the arithmetic and geometric mean (denoted with a preface ‘g’) across the images. We
note that [39, 48] use the arithmetic mean while [4] uses the geometric mean.

� 7.6.1 Cross-Validation Performance

We first compare different inference algorithms in SV-DPGMMs while performing leave-
one-out-cross-validation on the 16 images of the original dataset presented in [48]. We
consider the following inference methods: iterative inference via Algorithm 7.1 (SV-
DPGMMit1); iterative inference via Algorithm 7.1 but that samples shading first (SV-
DPGMMit2); marginalized inference via Algorithm 7.2 (SV-DPGMMmarg1); marginal-
ized inference via Algorithm 7.2 but that samples shading first (SV-DPGMMmarg2);
marginalized split/merge inference via Algorithm 7.3 (SV-DPGMM). Additionally, we
consider an optimization-based procedure (SV-DPGMMopt) that follows the same steps
as SV-DPGMM, but replaces all sampling steps with an optimization. Furthermore,
it accepts any proposed splits or merges with a Hastings ratio larger than 0.5. The
comparison of these different inference schemes is summarized in Table 7.2. We see
that the four inference methods based on Algorithms 7.1–7.2 are quite sensitive, since
their results vary dramatically based on if the shading or reflectance is first estimated.
In contrast, Algorithm 7.3 compute these jointly and does not suffer from the same sen-

168 CHAPTER 7. INTRINSIC IMAGE DECOMPOSITION VIA THE SV-DPGMM

Table 7.3: Comparing SV-DPGMM Inference Methods

S-MSE R-MSE RS-MSE gS-MSE gR-MSE gRS-MSE

SV-DPGMMunsup 0.0298 0.0166 0.0260 0.0096 0.0098 0.0136
SV-DPGMMsingle 0.0328 0.0151 0.0249 0.0100 0.0087 0.0124
SV-DPGMMK=10 0.0321 0.0147 0.0241 0.0095 0.0083 0.0120
SV-DPGMM 0.0321 0.0144 0.0239 0.0093 0.0078 0.0111
SV-DPGMMpost 0.0317 0.0135 0.0239 0.0072 0.0060 0.0111

sitivity. Since the training is only based on RS-MSE, it is reasonable that SV-DPGMM
does not perform the best across all metrics.

Next, we consider different variants of the SV-DPGMM model. In particular we
consider the following: unsupervised training (SV-DPGMMunsup); supervised training
on a single Markov chain (SV-DPGMMsingle); supervised training and computing the
median across 10 Markov chains (SV-DPGMM); and SV-DPGMM with the color con-
stancy post-processing (SV-DPGMMpost). Additionally, we compare to a simpler model
that uses a finite mixture model with a 10-dimensional Dirichlet distribution prior in-
stead of the Dirichlet process (SV-DPGMMK=10). The single Markov chain results were
obtained by averaging the errors for 10 independent Markov chains, instead of com-
bining the 10 Markov chains with a median image. The comparison of these different
variants is summarized in Table 7.3. We see that the unsupervised method generally
performs worse than the supervised training. In principle, unsupervised learning has an
advantage, in that it yields a set of parameters for each observed image. However, the
sample space that includes a prior on the GP covariance kernels may be too difficult to
sufficiently explore. Furthermore, combining multiple chains, using a Dirichlet process,
and post-processing to enforce color constancy all improve results. We note that the
RS-MSE and gRS-MSE do not change with post-processing since these metrics are
invariant to global shifts in any color channel.

Next, we compare SV-DPGMMpost to the following methods in Table 7.4: the
Retinex algorithm; the method of [39] without Retinex ([39]−Ret.); and the method
of [39] with Retinex ([39]+Ret.). We see that SV-DPGMM outperforms all methods
in Table 7.4. The arithmetic mean of the shading MSE is the only metric on which
the SV-DPGMM yields worse performance. Upon examination of the actual results,
we have found that this abnormally high error is due to making a large error in the
shading estimate on one of the 16 images. This result is confirmed in the geomertric
mean of S-MSE, which is less affected by large errors. Since the training was only
based on the RS-MSE, it is understandable that SV-DPGMM does not perform the
best across all metrics. However, it is encouraging that it is generally better than all
previous methods. We remind the reader that the only differences between SV-DPGMM
and [39]−Ret. are the incorporation of the Dirichlet process, a more expressive shading
smoothness, and more robust, marginalized inference. Moreover, many of the simplified

Sec. 7.6. Experimental Results 169

Table 7.4: Leave-One-Out-Cross-Validation on 16 images from [48]

S-MSE R-MSE RS-MSE gS-MSE gR-MSE gRS-MSE

Retinex 0.0400 0.0292 0.0297 0.0219 0.0225 0.0185
[39]−Ret. 0.0311 0.0172 0.0304 0.0107 0.0134 0.0156
[39]+Ret. 0.0287 0.0205 0.0277 0.0119 0.0150 0.0166
SV-DPGMMpost 0.0317 0.0135 0.0239 0.0072 0.0060 0.0111

Table 7.5: Separate Train/Test Validation on 20 images from [48]

S-MSE R-MSE RS-MSE gS-MSE gR-MSE gRS-MSE

SIRFS Reported - - - 0.0064 0.0098 0.0125
SIRFS Locally Run 0.0201 0.0158 0.0247 0.0068 0.0115 0.0125
SV-DPGMM 0.0306 0.0148 0.0229 0.0113 0.0092 0.0136
SV-DPGMMpost 0.0303 0.0141 0.0229 0.0092 0.0074 0.0136

inference algorithms described in Tables 7.2–7.3 also outperform current methods. We
note that our optimization procedure of a more expressive model is only comparable to
[39]. We believe this is due to the particular realization converging to a local extrema.
Methods such as [39] circumvent these issues by choosing the best result from multiple
randomized initializations.

Table 7.5 compares the algorithm when trained on half the images and tested on
the other half, as was done [4]. We compare results with the algorithm from [4], called
SIRFS. We note that the numbers from SIRFS were obtained by running their pub-
licly available source code and are slightly different than those originally reported in
[4]. Regardless, SV-DPGMM performs better in three of the six metrics, but has the
advantage of being simpler while avoiding the need to model the 3D scene geometry.

We visualize results from each algorithm in Figure 7.6. All results except those
from SIRFS were obtained using LOOCV. This is somewhat of an unfair comparison
since the LOOCV has more training examples for each test image. On the other hand,
half of the results obtained using SIRFS were actually in their training set. In general,
the reflectance image obtained from SV-DPGMM exhibits superior piecewise color con-
stancy and has less bleeding of reflectance into the shading images. We note that the
post-processing to fix color constancy does not always improve results, as shown in the
first image of Figure 7.6. However, the previous numerical comparisons show that it
generally improves the result. Furthermore, SV-DPGMM makes gross errors occasion-
ally, such as the first cup on the second page of Figure 7.6. We suspect that these errors
are due to allowing color in the shading images and that an image-specific covariance
kernel may correct these errors.

170 CHAPTER 7. INTRINSIC IMAGE DECOMPOSITION VIA THE SV-DPGMM

Original Truth [39]−Ret. [39]+Ret. SIRFS SV-DPGMM SV-DPGMMpost

Figure 7.6: Visual comparison of results. The first row for each image is the esti-
mated reflectance image, and the second row is the estimated shading image. [4] is
trained via separate train/test sets, and all other algorithms are trained using LOOCV.
Consequently, comparisons against algorithms are not completely accurate.

Sec. 7.6. Experimental Results 171

Original Truth [39]−Ret. [39]+Ret. SIRFS SV-DPGMM SV-DPGMMpost

Figure 7.6: (cont.) Visual comparison of results. The first row for each image is the
estimated reflectance image, and the second row is the estimated shading image. [4] is
trained via separate train/test sets, and all other algorithms are trained using LOOCV.
Consequently, comparisons against algorithms are not completely accurate.

172 CHAPTER 7. INTRINSIC IMAGE DECOMPOSITION VIA THE SV-DPGMM

Original Truth [39]−Ret. [39]+Ret. SIRFS SV-DPGMM SV-DPGMMpost

Figure 7.6: (cont.) Visual comparison of results. The first row for each image is the
estimated reflectance image, and the second row is the estimated shading image. [4] is
trained via separate train/test sets, and all other algorithms are trained using LOOCV.
Consequently, comparisons against algorithms are not completely accurate.

Sec. 7.7. Discussion 173

Figure 7.7: Performance with additive noise.

� 7.6.2 Sensitivity to Noise

Lastly, we consider the case of noisy observations. Images from [48] do not have any
camera noise, so we inject artificial additive Gaussian noise in the observed image. We
note that this synthetic noise does not contain the same noise characteristics assumed
in SV-DPGMM, which models Gaussian noise in the log domain. Results for varying
levels of noise variance are shown in Figure 7.7. This plot illustrates that SV-DPGMM,
which explicitly characterizes noise, outperforms other methods in the noisy regime
even with the model mismatch.

� 7.7 Discussion

This chapter presents the spatially-varying Dirichlet process Gaussian mixture model,
an extension to the DPGMM that allows the mixture parameters to jointly change.
The application of intrinsic image decomposition shows that non-parametric Bayesian
approaches can be scaled to computer vision if one is clever about the inference. The
DP Sub-Cluster algorithm of Chapter 5 enables efficient and effective MCMC inference
techniques that marginalize over a large set of variables. Applying the SV-DPGMM
to intrinsic image decomposition has been useful in improving results. Furthermore,
these results show that the incorporation of a Retinex term is not needed to achieve
state-of-the-art results in traditional shading and reflectance decomposition problems.

174 CHAPTER 7. INTRINSIC IMAGE DECOMPOSITION VIA THE SV-DPGMM

Chapter 8

Conclusion

This thesis has focused on developing and analyzing MCMC algorithms for two spe-
cific types of discrete labeling problems in computer vision and machine learning: the
Markov random field and the probabilistic mixture model. We have shown that MCMC
algorithms are not only feasible, but that they can also improve results across multiple
applications in computer vision. We have developed two overarching frameworks for
sampling: the Permutation-based Gaussian-Inspired Metropolis Hastings shape sam-
pling algorithm, and the Dirichlet Process Sub-Cluster algorithm for mixture models.
Both algorithms have shown to converge orders of magnitude faster than previous meth-
ods and improve by augmenting the sample space with additional auxiliary variables.
We now summarize the contributions of this work to each of the addressed problems.

� 8.1 Contributions to Shape Sampling

The following highlights some of our contributions to the problem of sampling shapes
and discrete MRFs.

Discretization of Shape Sampling

One important observation of sampling shapes was the connection of traditionally-
defined “implicit shapes” via level-set methods to the discretized lattice grid. In the
discretized representation, one can use traditional Gibbs sampling to sample from the
posterior distribution of label configurations. Furthermore, priors in level-set methods
such as the curve-length penalty can be easily implemented in Gibbs sampling via the
approximation described in Chapter 3 and a simple table look-up.

PGIMH Complexity and Generalization of Gibbs Sampling

The developed PGIMH algorithm augments the sample space of labels with an explicit
ordering of the pixels. A random block of pixels is then changed conditioned on the
ordering. We have drawn interesting ties between PGIMH and blocked Gibbs sampling,
and have shown that the computational complexity of PGIMH grows linearly with
the block size instead of exponentially like in blocked Gibbs sampling. Furthermore,
PGIMH also simplifies to traditional Gibbs sampling when the block is a single pixel.

175

176 CHAPTER 8. CONCLUSION

Arbitrary Topology Constraints in 2D Shapes

Using the PGIMH algorithm, we have shown how one can incorporate arbitrary con-
straints on 2D topologies. This extends the work of Han [50] and Ségonne [104] which
only restrict the topology of the shape or the genus of the shape to remain constant.
In contrast, we have shown that any 2D topology constraint, such as the connected-
component-preserving constraint, can be efficiently incorporated. Furthermore, to our
knowledge, this is the first attempt to embed topology constraints into a probabilistic
sampling framework.

Temporal Dynamics on Shapes

We have shown a particular model formulation that incorporates dynamics on the
shapes. Furthermore, by exploiting the PGIMH algorithm, we have shown how samples
in a particle filter can be propagated without needing to update weights. This also pre-
cludes the need to use sequential resampling techniques. The presented layered model
has shown to produce state-of-the-art results on the SegTrack dataset [118].

� 8.2 Contributions to Probabilistic Mixture Models

The following highlights some of our contributions to the problem of inference in mixture
models.

Scalable MCMC Algorithms without Model Approximations

The DP Sub-Cluster algorithm pairs a non-ergodic restricted Gibbs sampler with split
and merge moves. In addition to being highly parallelizable, the algorithm benefits
from satisfying the limiting guarantees of Markov chain theory without needing finite
model approximations. We have shown empirically that the DP Sub-Cluster algorithm
converges to a better solution, and does so 10–103 times faster than previous MCMC
methods, and that the resulting distribution is a much more likely sample.

Sub-Cluster Splits and Merges

The mixture model is augmented with auxiliary sub-clusters that are chosen to learn
a 2-component mixture model within the confines of each regular cluster. The pro-
posed splits are then constructed from the instantiated sub-clusters. As such, unlike all
previous split and merge proposals which construct a proposal on the spot, the DP Sub-
Cluster learns likely splits of the data over many iterations. Furthermore, conditioned
on the sub-clusters, splits and merges can be proposed in constant time from summary
statistics. We have shown that an exact algorithm can be constructed by combining de-
terministic split/merge moves with randomized, data-independent split/merge moves.
The randomized moves can be ignored with a slight approximation to the distribution
of the sub-clusters.

Sec. 8.3. Future Work 177

Extensions to HDPs

The DP Sub-Cluster is extensible to many different mixture models, both finite and
infinite. For example, we have shown that it can be extended to HDPs. We have
also found that in topic modeling, topic distributions have significant overlap, and
larger moves on the entire corpus are needed. The proposed global splits and merges
address this issue and improve convergence where other split/merge algorithms (e.g.,
[122]) could not. We have additionally motivated the need to inspect metrics besides
cross-validation techniques to analyze convergence in HDP MCMC algorithms.

Spatially Varying Dirichlet Process Gaussian Mixture Model

Lastly, we have presented a new nonparametric mixture model, called the spatially-
varying Dirichlet process Gaussian mixture model, that allows the cluster parameters
to change jointly in space. We have applied the SV-DPGMM to the problem of intrinsic
image decomposition. By exploiting the DP Sub-Cluster algorithm, we have developed
efficient inference methods that marginalize over a significant number of parameters
and produce state-of-the-art results on the MIT Intrinsic Image Dataset [48].

� 8.3 Future Work

In this thesis, we considered two fairly different labeling problems. While we have
listed potential future work for each project at the end of their corresponding chapter,
we highlight two other suggestions here that combine work across multiple chapters.

� 8.3.1 Spatially-Coherent Mixture Models

One potential direction for future work is to combine the MRF model that captures local
spatial-coherence with the Dirichlet process as a global prior over label distributions.
This idea is related to the distance dependent Chinese restaurant process (dd-CRP)
[8] and the region-based hierarchical distance dependent CRPs (rdd-CRP) [41], which
both include spatial dependence in a nonparametric mixture model. These approaches
typically require sequentially iterating through points because of their constructive def-
initions. We now discuss an alternative to these approaches.

Consider the graphical model for a DPMM shown in Figure 8.1a. Each zi condi-
tioned on π and θ is independent as indicated in the plate notation. Alternatively, we
can consider the case where the z’s have inter-dependence via some Markov random
field structure. This relationship is depicted in Figure 8.1b, where z is now the joint
N -dimensional random variable. A generative model for this model could, for example,

178 CHAPTER 8. CONCLUSION

(a) DPMM (b) DPMM with Spatial-Coherence

Figure 8.1: Graphical models for the DPMM and the a spatially coherent DPMM.

be described by the following process:

π ∼ GEM(1, α), (8.1)

z
∝∼

N∏
i=1

ψ1(zi)
∏
i,j∈E

ψ2(zi, zj), (8.2)

θk ∼ fθ(θk;λ), ∀k ∈ {1, 2, . . . }, (8.3)

xi ∼ fx(xi; θzi), ∀i ∈ {1, . . . , N}, (8.4)

where ψ1(·) and ψ2(·) denote generic singleton and pairwise potentials of the MRF and
E denotes the set of edges in the MRF of z. The potential functions can be specified
to fit the problem of interest. For example, in segmentation, ψ2(zi, zj) may take on the
form of an Ising or Potts model and be

ψ2(zi, zj) = exp [γ · 1I[zi = zj]] . (8.5)

If the singleton potentials, ψ1 are chosen to be

ψ1(zi) = πzi = Cat(zi;π), (8.6)

then convenient conjugacy properties of Dirichlet process mixture models still hold.
In particular, the posterior on π does not depend on the MRF of z, since it can be
expressed as

p(π|z) ∝ p(π) ·
N∏
i=1

Cat(zi;π)
∏
i,j∈E

ψ2(zi, zj), (8.7)

∝ p(π) ·
N∏
i=1

Cat(zi;π), (8.8)

∝ Dir(π1, . . . , πK , πK+1;N1, . . . , NK , α). (8.9)

Furthermore, the posterior on the parameters, θk, are similarly still decoupled as in the
traditional DPMM case.

Inference in this spatially coherent mixture model could then follow in a similar
approach as any DPMM sampling algorithm, such as the DP Sub-Cluster algorithm.
The only modification that would be needed is when sampling z, one must account for

Sec. 8.3. Future Work 179

Figure 8.2: An example image where shading cues give information about object bound-
aries.

the MRF with an algorithm such as PGIMH. This is one simple way that the PGIMH
algorithm and the DP Sub-Cluster algorithm could be combined to spatially coherent
applications such as image segmentation.

� 8.3.2 Segmentation via Intrinsic Images

Chapter 7 presented a generative model for an object that is explicitly decomposed into
shading and reflectance components. One motivation of using generative probabilistic
models is that they are often modular and can be built upon to represent more com-
plicated problems. We view the SV-DPGMM as a model that solves a very specific
component of computer vision. Here, we briefly consider building upon the model to
perform object segmentation as well.

Consider the image shown in Figure 8.2. Many clues about object boundaries are
hidden in the shading image. For example, the legs of the dog darken towards the
back of each leg. Each leg of the human also has a very different shading model, both
of which are different from the ground, which darkens towards to the top left corner.
With an adequate prior smoothness on shading images, one may hope to recover object
segmentations based on intrinsic image decompositions.

A rearranged graphical model of the SV-DPGMM for a single object is displayed
in Figure 8.3a. We could additionally place another Dirichlet process prior on the
object level, as indicated in Figure 8.3b. This Hierarchical SV-DPGMM contains object
proportions, β ∼ GEM(1, γ), and an object label yi for each pixel. Each object, indexed
by j, is then assigned its own SV-DPGMM with its own shading and reflectance image.
This model could also impose a Markov random field on object labels, similar to what
was mentioned in the previous section.

We suspect that the Hierarchical SV-DPGMM may have trouble when objects do
not touch each other, since the ambiguity between the shading and reflectance always

180 CHAPTER 8. CONCLUSION

(a) SV-DPGMM (b) Hierarchical SV-DPGMM

Figure 8.3: Graphical models for the SV-DPGMM and the proposed Hiearchical SV-
DPGMM.

allows one to explain the other. However, we do believe that this model takes an
interesting approach to the classical image segmentation problem.

� 8.4 Final Thoughts

This thesis attempts to address efficient sampling techniques for two discrete labeling
problems in computer vision. While the proposed methods achieve orders of magnitude
in speed gains as compared to previous sampling methods, we believe there is still
more work to be done. We hope that the frameworks and analysis of the PGIMH and
DP Sub-Cluster algorithms can help researchers in making complicated models more
accessible and motivate others to improve upon these methods.

Appendix A

Derivations Pertaining to Shape
Dynamics

In this appendix, we derive expressions related to Chapter 4. We formally prove the
proposition that particle filtering can be done without weight updates, and then develop
the approximation used to marginalize over the independent flow.

� A.1 Particle Filtering without Weight Updates

We now prove Proposition 4.4.1, reproduced below for convenience.

Proposition 4.4.1 : (Particle Filtering without Weight Updates) Let {zt1, . . . , ztS} be a set
of S samples, each drawn from some density q(zt), and wts be the importance weight for
sample s such that the set of weighted samples approximates the posterior distribution at
time t, denoted p(zt|x0, . . . , xt). If at time t+ 1, a sample s is drawn from the posterior

zt+1
s ∼ p(zt+1|xt+1, zt = zts), (A.1)

the weights do not need to be updated to accurately represent the new posterior distri-
bution, p(zt+1|x0, . . . , xt+1).

Proof. We show that an expectation of an arbitrary function, h(·), can be approximated
by the sum of the weighted samples. Denoting w(zt) as the associated weight for the
random sample, zt, we have∑

s

wtsh(zt+1
s) ≈ Eq

[
w(zt)h(zt+1)

]
= Eq

[
Ezt+1|xt+1,zt

[
w(zt)h(zt+1)|zt

]]
=

∫
zt
q(zt)

∫
zt+1

p(zt+1|xt+1, zt)w(zt)h(zt+1)dzt+1dzt.

181

182 APPENDIX A. DERIVATIONS PERTAINING TO SHAPE DYNAMICS

Substituting the equation for importance weights (i.e., w(zt) = p(zt|x0,...,xt)
q(zt)) results in

∑
s

wtsh(zt+1
s) =

∫
zt

∫
zt+1

p(zt|x0, . . . , xt)p(zt+1|xt+1, zt)h(zt+1)dzt+1dzt

=

∫
zt

∫
zt+1

p(zt+1, zt|x0, . . . , xt+1)h(zt+1)dzt+1dzt

=

∫
zt+1

p(zt+1|x1:t+1)h(zt+1)dzt+1

= Ezt+1|x1:t+1

[
h(zt+1)

]
.

Therefore, when wts correctly represent importance weights, propagating particles using
both prior and data evidence does not require updating the weights.

� A.2 Approximate Marginalization of Independent Flow

Equations (4.21)–(4.24) describe the approximation used to marginalize out the inde-
pendent flow f . We describe this derivation in more detail here.

p(ztm|gtm, zt\m, z
t−1, at−1

m , xt, ÿt) (A.2)

∝ p(xt, ztm|gtm, zt\m, z
t−1
m , at−1

m , ÿt) (A.3)

= p(xt|zt, gtm, zt−1
m , at−1

m , ÿt)p(ztm|gtm, zt−1
m , at−1

m , ÿt) (A.4)

=

∫
p(f tm|gtm)p(ztm|fzt−1

m)p(atm|fat−1
m)p(xt|zt, at, ÿt)df tm (A.5)

= QL(ztm)
∏
i

∫
p(f tm,i|gtm,i)QS(ztm,i|fzt−1

m,i)p(a
t
m,i|fat−1

m,i)p(x
t
i|zti , ati, ÿt)df tm (A.6)

= QL(ztm)
∏
i

∫
N (f tm,i; g

t
m,i, σ

2
f)QS(ztm,i|fzt−1

m,i)p(a
t
m,i|fat−1

m,i)p(x
t
i|zti , ati, ÿt)df tm (A.7)

We note that evolving an image (e.g., a) with a flow (e.g., f) can be expressed as
evolving with a different flow (e.g., g) with an additional offset:

fai = ai+fi = ai+gi+fi−gi = gai+fi−gi . (A.8)

Using this relationship, we can express terms in Equation (A.7) as follows. The sym-
metric area difference prior and appearance likelihood can be expressed as

QS(ztm,i|fzt−1
m,i) = QS(ztm,i|gzt−1

m,i+fi−gi) = QS(ztm,i|gzt−1
m,i+j) (A.9)

p(atm,i|fat−1
m,i) = p(atm,i|gat−1

m,i+fi−gi) = p(atm,i|gat−1
m,i+j), (A.10)

Sec. A.2. Approximate Marginalization of Independent Flow 183

where we denote j , fi − gi. Furthermore, the independent deviation of f from g can
be expressed as

N (f tm,i; g
t
m,i, σ

2
f) = N (j, 0, σ2

f). (A.11)

Combining Equations (A.7)–(A.11) results in

p(ztm|gtm, zt\m, z
t−1, at−1

m , xt, ÿt) (A.12)

= QL(ztm)
∏
i

∫
N (j; 0, σ2

f)QS(ztm,i|gzt−1
m,i+j)p(a

t
m,i|gat−1

m,i+j)p(x
t
i|zti , ati, ÿt)dj (A.13)

Denoting Ltm,i(j) as

Ltm,i(j) = QS(ztm,i|gt−1
m,i+j)p(a

t
m,i|gatm,i+j)p(xti|zti , ati, ÿt), (A.14)

followed by a discrete approximation to the integral results in

p(ztm|gtm, zt\m, z
t−1, at−1

m , xt, ÿt) ∝ QL(ztm)
∏
i

∫
N (j; 0, σ2

f)Ltm,i(j)dj (A.15)

≈ QL(ztm)
∏
i

∑
j

N (j; 0, σ2
f)Ltm,i(j) (A.16)

= QL(ztm)
∏
i

∑
j

hf (j)Ltm,i(j), (A.17)

which is exactly Equation (4.24).

184 APPENDIX A. DERIVATIONS PERTAINING TO SHAPE DYNAMICS

Appendix B

Derivations Pertaining to DPMM
Sub-Clusters

In this appendix, we derive expressions related to Chapter 5. We compute the Hastings
ratios for the split and merge proposals, and develop the approximation that automat-
ically rejects all proposed deterministic merge moves.

� B.1 Auxiliary Variable Prior and Posterior Distributions

For the näıve choice for auxiliary parameter distributions of Equations (5.13)–(5.15),
reproduced here for convenience

p(πk) = Dir(πk`, πkr;
α
2 ,

α
2),

p(θk) = fθ(θk`;λ)fθ(θkr;λ),

p(z|π, θ, x, z) =
K∏
k=1

∏
i∈Ik

∑
h∈{`,r}

πkhfx(xi; θkh)

Zi(x, z, πk, θk)
1I[zi = h],

Zi(x, z, πk, θk) , πk`fx(xi; θk`) + πkrfx(xi; θkr),

the joint distribution for auxiliary parameters for cluster k can be expressed as

p(πk, θk, z{k}|x, π, z, θ)

= Dir(πk`, πkr;
α
2 ,

α
2)fθ(θk`;λ)fθ(θkr;λ)

∏
i∈Ik

πkzifx(xi; θkzi)

Zi(x, z, πk, θk)
(B.1)

= Dir(πk`, πkr;
α
2 ,

α
2)

∏
h={`,r}

πNkhkh fx(xIkh ; θkh)fθ(θkh;λ)
∏
i∈Ik

1
Zi(x,z,πk,θk)

. (B.2)

185

186 APPENDIX B. DERIVATIONS PERTAINING TO DPMM SUB-CLUSTERS

By simply ignoring terms that do not correspond to the variable of interest, the posterior
distributions for the the sub-cluster weights and parameters can be expressed as

p(πk|•) ∝ Dir(πk`, πkr;
α
2 ,

α
2)πNk`k` πNkrkr

∏
i∈Ik

1
Zi(x,z,πk,θk)

(B.3)

= Dir(πk`, πkr;
α
2 +Nk`,

α
2 +Nkr)

∏
i∈Ik

1
Zi(x,z,πk,θk)

, (B.4)

p(θk|•) ∝ fθ(θk`;λ) fθ(θkr;λ) fx(xIk` ; θk`) fx(xIkr ; θkr)
∏
i∈Ik

1
Zi(x,z,πk,θk)

(B.5)

∝ fθ(θk`;λ∗k`) fθ(θkr;λ∗kr)
∏
i∈Ik

1
Zi(x,z,πk,θk)

, (B.6)

where • is used to denote all other variables, and we have assumed conjugate priors for
explanatory purposes. The product term,

∏
i∈Ik

1
Zi(x,z,πk,θk)

, complicates these distri-

butions because they no longer follow the form of regular-cluster parameters.
If the sub-cluster parameters follow the distribution of Equation (5.19), reproduced

here,

p(θk|x, z, π) ∝ fθ(θk`;λ)fθ(θkr;λ)
∏
i∈Ik

Zi(x, z, πk, θk) (B.7)

the joint distribution can be expressed as

p(πk, θk, z{k}|x, π, z, θ)

= Dir(πk`, πkr;
α
2 ,

α
2)fθ(θk`;λ)fθ(θkr;λ)

∏
i∈Ik

πkzifx(xi; θkzi) (B.8)

= Dir(πk`, πkr;
α
2 ,

α
2)
∏

h={`,r}
πNkhkh fx(xIkh ; θkh)fθ(θkh;λ). (B.9)

Following a similar argument as before, this results in the desired sub-cluster posterior
distributions expressed in Equations (5.20)–(5.22).

� B.2 Hastings Ratios for Splits

In this section, we derive the Hastings ratio for a deterministic split proposal. We first
note the following useful distribution

p(z)p(π|z) =
αKΓ(α)

∏
k Γ(Nk)

Γ(α+N)

Γ(α+N)

Γ(α)
∏
k Γ(Nk)

παK+1

∏
k

πNk−1
k = αKπαK+1

K∏
k=1

πNk−1
k .

(B.10)

Sec. B.2. Hastings Ratios for Splits 187

The Hastings ratio for a split can be expressed as

Hdet
split-\ =

p(π̂, ẑ, θ̂, x)p(π̂, θ̂, ẑ|x, ẑ)
p(π, z, θ, x)p(π, θ, z|x, z)

·
QK+1

merge-[]

QKsplit-\

·
q(π, z, θ, π, θ, z|π̂, ẑ, θ̂, π̂, θ̂, ẑ, QK+1

merge-[])

q(π̂, ẑ, θ̂, π̂, θ̂, ẑ|π, z, θ, π, θ, z,QKsplit-\)
.

(B.11)
Because of the deferred proposal for auxiliary variables, this can be simplified to

Hdet
split-\ =

p(π̂, ẑ, θ̂, x)

p(π, z, θ, x)
·
QK+1

merge-[]

QKsplit-\

·
q(π, z, θ|π̂, ẑ, θ̂, π̂, θ̂, ẑ, QK+1

merge-[])

q(π̂, ẑ, θ̂|π, z, θ, π, θ, z,QKsplit-\)
. (B.12)

We now analyze these terms separately.
The ratio of posteriors for z and π can be easily simplified to

p(ẑ)p(π̂|ẑ)
p(z)p(π|z)

=
απ̂

N̂[−1
[π̂

N̂]−1
]

π
N\−1
\

. (B.13)

This results in the following posterior ratio

p(π̂, ẑ, θ̂, x)

p(π, z, θ, x)
=

απ̂
N̂[−1
[π̂

N̂]−1
]

π
N\−1
\

·
fθ(θ̂[;λ)fx(xI[; θ̂[) fθ(θ̂];λ)fx(xI] ; θ̂])

fθ(θ\;λ)fx(xI\ ; θ\)
. (B.14)

The ratio of proposal distributions can similarly be simplified. We first note that
the proposal for the new labels is an indicator function at the particular split or merge
move:

q(ẑ|z, z,Qsplit-\) = 1I[ẑ = split-\(z, z)], (B.15)

q(z|ẑ, ẑ, Qmerge-[]) = 1I[z = merge-[](ẑ)]. (B.16)

We note one important observation; the reverse label move that merges the two proposed
clusters does not depend on auxiliary variables. This results in all split moves being
exactly reversible by a merge move. The proposal ratio for proposed labels can then
simplify to

q(z|ẑ, ẑ, Qmerge-[])

q(ẑ|z, z,Qsplit-\)
= 1 (B.17)

Conditioned on these new labels, we use the Reversible-Jump MCMC (RJMCMC)
[44] algorithm to calculate the term for the π’s. RJMCMC is a generalization of
Metropolis-Hastings where auxiliary variables may be used to propose deterministic
moves in mismatched dimensions. A detailed description of the RJMCMC algorithm
can be found in Section 2.5.1.

188 APPENDIX B. DERIVATIONS PERTAINING TO DPMM SUB-CLUSTERS

The split proposal can be expressed as a mapping from the original space [π\, v] to
the new space, [π̂[, π̂]],

[π\, v]→ [π̂[, π̂]], (B.18)

where v ∼ Beta(N̂[, N̂]) and the deterministic mapping between dimensions is

π̂[= π\v, π̂] = π\(1− v). (B.19)

Because of the relationship between the Beta distribution and the Dirichlet distribution,
the above construction can also be seen as a draw from a Dirichlet distribution followed
by scaling by π\. The Jacobian matrix can be expressed as

Jπ =

[
∂π̂[
∂π\

∂π̂[
∂v

∂π̂]
∂π\

∂π̂]
∂v

]
=

[
v π\

(1− v) −π\

]
, (B.20)

which has a corresponding absolute value determinant

|det(Jπ)| = |−π\v − (π\(1− v))| = π\. (B.21)

Therefore, the RJ proposal ratio for the π′s can be expressed as

q(π|•̂)
q(π̂|•)

=
1

Beta(v; N̂[, N̂])
π\ =

Γ(N̂[)Γ(N̂])

Γ(N\)
vN̂[−1(1− v)N̂]−1π\ (B.22)

=
Γ(N̂[)Γ(N̂])

Γ(N\)

(
π̂[
π\

)N̂[−1(π̂]
π\

)N̂]−1

π\ (B.23)

=
Γ(N̂[)Γ(N̂])

Γ(N\)
π̂
N̂[−1
[π̂

N̂]−1
] π

−N\+1
\ . (B.24)

We note that we slightly abuse the notation above, and by the ratio, q(π|•̂)q(π̂|•) , we actually

mean the true RJMCMC ratio, 1
q(v|•) |det Jπ|.

A similar reversible-jump proposal ratio can be found for the θ’s. This requires one
to define a 6-dimensional augmented space which we do not express here. Because the
Jacobian can be written as the identity matrix, the determinant is simply 1. Thus, the
ratio can be expressed as

q(θ|•̂)
q(θ̂|•)

=
q(θ\|x, z, z)

q(θ̂[|x, ẑ, ẑ)q(θ̂]|x, ẑ, ẑ)
. (B.25)

Combining the boxed expressions, results in the split Hastings ratio of Equation (5.30).

Sec. B.3. Hastings Ratios for Merges 189

� B.3 Hastings Ratios for Merges

The Hastings ratio for a deterministic merge move is more complicated. This is due to
the following proposal ratio for labels

q(z|ẑ, ẑ, QK−1
split-\)

q(ẑ|z, z,QKmerge-[])
. (B.26)

The numerator calculates the probability of splitting the proposed merged cluster back
into the original two clusters. This means that the sub-cluster labels, ẑ, must exactly
correspond to the current clusters for the ratio to be non-zero. In practice, this is
very unlikely for most situations. Consider the case where cluster [and cluster] have
essentially the same weights and parameters (e.g., both Gaussian with the same mean

and covariance). In the limit, this results in Pr(ẑI[= `, ẑI] = r) =
(

1
2

)N[+N] since

all configurations are the same. This means with only probability
(

1
2

)N[+N] do the
proposed sub-cluster labels exactly correspond to the original regular-clusters. This
probability clearly diminishes very quickly as N grows. When the proposed sub-cluster
label does not correspond to the regular-clusters, the proposal is automatically rejected
since q(z|ẑ, ẑ, QK−1

split-\) = 0.
As the clusters [and] become more separable, the probability of proposing merged

sub-cluster labels that exactly correspond to the regular-cluster labels increases. Imag-
ine the limiting case where clusters [and] are infinitely far apart so that the only
non-zero label assignment is the one that splits the data points correctly. In this case,
the probability of the labels is one, and the probability of proposing the corresponding
merged sub-cluster labels also is one. This results in a proposal ratio for labels equaling
one. However, under the same assumption that the clusters [and] are very separable,
it should be intuitive that they should not be merged to begin with. As such, the
posterior ratio in the Hastings ratio will begin to dominate the overall acceptance ratio,
and consequently still approach zero.

More precisely, the probability of accepting a proposed merge can be expressed as

min[1, Hdet
merge-[]]

= min

[
1,

Γ(N̂\)fx(xI\ ;λ)

α
∏
k∈{[,]} Γ(Nk)fx(xIk ;λ)

1I
[
(ẑI\` , ẑI\r) = (zI[, zI])

]]
(B.27)

= min

[
1,

Γ(N̂\)fx(xI\ ;λ)

α
∏
k∈{[,]} Γ(Nk)fx(xIk ;λ)

]
1I
[
(ẑI\` , ẑI\r) = (zI[, zI])

]
. (B.28)

Again, we have assumed conjugate priors for simplifying the explanation.
We note the following inequality

fx(xI\ ;λ) =

∫
fx(xI\ ; θ\)fθ(θ\;λ)dθ\ ≤

∫
fx(xI\ ; θ

∗
\)fθ(θ\;λ)dθ\ = fx(xI\ ; θ

∗
\), (B.29)

190 APPENDIX B. DERIVATIONS PERTAINING TO DPMM SUB-CLUSTERS

Figure B.1: Probability quantities associated with rejecting a merge proposal. The
numbers in the parenthesis correspond to the maximum observed upper bounds to the
acceptance ratio over all samples and separations.

where θ∗\ is the mode of the distribution and can be expressed as, θ∗\ = maxθ\ fx(xI\ ; θ\).
For any realization of data, the probability of accepting a proposed merge can then be
upper bounded by the following

min[1, Hmerge-[]]

= min

[
1,

Γ(N̂\)fx(xI\ ;λ)

α
∏
k∈{[,]} Γ(Nk)fx(xIk ;λ)

]
Pr
[
(ẑI\` , ẑI\r) = (zI[, zI])|x, z

]
(B.30)

≤ min

[
1,

Γ(N̂\)fx(xI\ ;λ)

α
∏
k∈{[,]} Γ(Nk)fx(xIk ;λ)

]
Pr
[
(ẑI\` , ẑI\r) = (zI[, zI])|x, z, θ

∗
l

]
. (B.31)

We test our approximation to compute the probability that this acceptance ratio is 0
on the following synthetic data. We generate data from two 1D Gaussian distributions
with mean separated by a varying amount. A Gaussian prior is used on the mean,
and the variance is assumed to be known. The probability that the proposed merge is
automatically rejected due to the second term in Equation (B.31) for varying separations
and number of data points is shown in the first panel of Figure B.1. Each value on each
curve was calculated with 1,000 samples of N data points. Clearly, as N increases, the
proposed merge is rejected automatically more and more frequently. As expected, as
the separation between the two clusters increases, the automatic rejection is less likely.

Next, we show the probability of rejecting the merge due to the first term in Equation
(B.31). The curves are shown in the second panel of Figure B.1. This plot shows
that as the separation increases, the posterior ratio favors rejecting the sample more
and more. The overall log acceptance ratio is shown in the last panel of Figure B.1
(note the additional log scale). In the legend, the values in the parenthesis indicate
the maximum observed upper bounds to the acceptance ratio over all samples and
separations. Even for relatively small N , approximating the proposals for merge moves
to always be rejected is very good. We note that the samplers are typically run for less
than 103 iterations even for large datasets of N ≈ 106, reinforcing the validity of the
approximation even more.

Appendix C

Derivations Pertaining to HDP
Sub-Topics

In this appendix, we derive expressions related to Chapter 6. We begin by deriving the
joint prior distribution, p(β, z). We then show that the typical set in HDP models is
very far from the mode of the distribution, which is when all the words are placed into
a single, all-encompassing topic. Lastly, the Hastings ratios for the local and global
split/merge proposals are computed.

� C.1 Calculating the p(β, z) Distribution

To calculate the prior distribution, p(β, z), we will rely heavily on the Chinese Restau-
rant Franchise (CRF) representation of the HDP given in [116], which we summarize in
Section 2.9.3. In particular, we will make use of τji, the table assignment for customer
i in restaurant j, and the dish assignment κjt assigned to table t in restaurant j. The
derivation is outlined in the following steps.

1. Find p(β, κ, τ, z)

2. Find p(κ, τ |β, z)

3. Combine to find p(β, z)

� C.1.1 Deriving the Joint: p(β, κ, τ, z)

Based on the generative process of the CRF, p(κ, τ) can be expressed as

p(τ) =

D∏
j=1

CRP(α, nj··) =

D∏
j=1

Γ(α)αmj·

Γ(α+ nj··)

mj·∏
t=1

Γ(njt·), (C.1)

p(κ|τ) = CRP(γ,m··) =
Γ(γ)γK

Γ(γ +m··)

K∏
k=1

Γ(m·k), (C.2)

191

192 APPENDIX C. DERIVATIONS PERTAINING TO HDP SUB-TOPICS

where CRP(·) represents a sample from a Chinese Restaurant Process. These expres-
sions can be combined to form the joint:

p(κ, τ) =

[
Γ(γ)γK

Γ(γ +m··)

K∏
k=1

Γ(m·k)

]
·

 D∏
j=1

Γ(α)αmj·

Γ(α+ nj··)

mj·∏
t=1

Γ(njt·)

 . (C.3)

We note that z, which directly assigns a customer to a dish, is a deterministic
function conditioned on κ and τ . More precisely, it can be expressed as

p(z|κ, τ) =

D∏
j=1

Nj∏
i=1

1I[zji = κjτji]. (C.4)

Additionally, it is well known that p(β|m) is the following Dirichlet distribution

p(β|m) = Dir(β1, . . . , βK , βK+1;m·1, · · · ,m·K , γ). (C.5)

This can be seen by drawing on the fact that any partitioning of the space in a Dirichlet
process results in a Dirichlet distribution. Since m is a summary statistic of k, we have

p(β|κ, τ, z) = p(β|m) =
Γ(γ +m··)β

γ−1
K+1

Γ(γ)
∏K
k=1 Γ(m·k)

K∏
k=1

βm·k−1
k (C.6)

Finally, assuming z is consistent with κ and τ (i.e., Equation (C.4) evaluates to 1
instead of 0), the entire joint prior of interest can be expressed as

p(β, κ, τ, z)

=

[
Γ(γ)γK

Γ(γ+m··)

K∏
k=1

Γ(m·k)

] D∏
j=1

Γ(α)αmj·

Γ(α+nj··)

mj·∏
t=1

Γ(njt·)

[Γ(γ+m··)β
γ−1
K+1

Γ(γ)
∏K
k=1 Γ(m·k)

K∏
k=1

βm·k−1
k

]

= γKβγ−1
K+1α

m··

[
K∏
k=1

βm·k−1
k

] D∏
j=1

Γ(α)

Γ(α+ nj··)

mj·∏
t=1

Γ(njt·)

 (C.7)

� C.1.2 Deriving the Conditional p(κ, τ |β, z)
We now show how to express p(κ, τ |β, z). We note that conditioning on z is equivalent
to assigning each customer a particular dish. Thus, we need to calculate the probability
of any particular configuration of tables such that each customer gets the correct dish.

Suppose there are three customers with assignments z11 = 1, z12 = 2, and z13 = 2.
While x11 must sit at a different table than x12 and x13 (i.e., τ12 6= τ11 6= τ23), nothing
can be said about the relationship between τ12 and τ13. This results from the fact that
two customers can be served the same dish at different tables.

An equivalent metaphor for the process conditioned on z is that a customer comes

Sec. C.1. Calculating the p(β, z) Distribution 193

into a restaurant having been assigned dish k. The customer then chooses to sit at an
occupied table serving dish k with probability proportional to the number of customers
there, or starts a new table that serves dish k with probability αβk. This process
is equivalent to D × K independent CRPs, each with nj·k customers and αβk as the
concentration parameter. Thus, we can write this easily as

p(κ, τ |β, z) =
D∏
j=1

K∏
k=1

CRP(αβk, nj·k) (C.8)

=
D∏
j=1

K∏
k=1

(αβk)
mjkΓ(αβk)

Γ(αβk + nj·k)

mjk∏
t=1

Γ(njtk) (C.9)

= αm··

 D∏
j=1

K∏
k=1

β
mjk
k Γ(αβk)

Γ(αβk + nj·k)

 D∏
j=1

mjk∏
t=1

Γ(njt·)

 , (C.10)

where we have used the fact that every table only serves one dish to equate the following

K∏
k=1

mjk∏
t=1

Γ(njtk) =

mj·∏
t=1

Γ(njt·). (C.11)

� C.1.3 Finding the Prior p(β, z)

We now note the following relationship:

p(β, κ, τ, z) = p(β, z)p(κ, τ |β, z). (C.12)

Finding the expression for p(β, z) is as simple as substituting the previously found
expressions. Assuming consistency between z with κ and τ , we can ignore the p(z|κ, τ)
term in Equation (C.4), resulting in

p(β, z) =
p(β, κ, τ, z)

p(κ, τ |β, z)
, (C.13)

=
γKβγ−1

K+1α
m··
[∏K

k=1 β
m·k−1
k

] [∏D
j=1

Γ(α)
Γ(α+nj··)

∏mj·
t=1 Γ(njt·)

]
αm··

[∏D
j=1

∏K
k=1

Γ(αβk)
Γ(αβk+nj·k)β

mjk
k

] [∏D
j=1

∏mj·
t=1 Γ(njt·)

] , (C.14)

=
γKβγ−1

K+1

[∏K
k=1 β

−1
k

] [∏D
j=1

Γ(α)
Γ(α+nj··)

]
∏D
j=1

∏K
k=1

Γ(αβk)
Γ(αβk+nj·k)

, (C.15)

= γKβγ−1
K+1

K∏
k=1

β−1
k

 D∏
j=1

Γ(α)

Γ(α+ nj··)

K∏
k=1

Γ(αβk + nj·k)

Γ(αβk)

 . (C.16)

194 APPENDIX C. DERIVATIONS PERTAINING TO HDP SUB-TOPICS

This concludes the derivation of finding the expression for p(β, z).

� C.1.4 Notes on p(β, z)

We highlight a few notes on the derived expression for p(β, z). At first glance, parts
of Equation (C.16) may seem a bit odd. For example, the β−1

k term seems like an
improper prior, and the term inside the square brackets just seems like the product of
Dirichlet-Categorical distributions. We remind the reader that meaning of β in p(β, z)
slightly differs from the infinite-length global topic proportions. In particular, β is
defined over the partitions imposed by z. Moreover, because z takes on exactly K
non-empty partitions, βk > 0 ∀k ∈ {1, . . . ,K}, and β−1

k will never result in division by
zero.

The term in the square brackets is very similar to a Dirichlet-Categorical (defined
in Section 2.3.3. A product of D independent Dirichlet-Categorical distributions can
be expressed as

D∏
j=1

DirCat(zj ;αβ1, . . . , αβK+1) =
D∏
j=1

Γ(α)

Γ(α+ nj··)

K+1∏
k=1

Γ(αβk + nj·k)

Γ(αβk)
,

where we have used the fact that
∑K

k=1 αβk = α. While this expression looks similar
to the one in Equation (C.16), the inner product is over K + 1 terms instead of K.
Furthermore, Equation (C.16) implicitly assumes that nj·(K+1) is zero, since z can only
take on K unique partitions. For these reasons, the term inside the square brackets of
Equation (C.16) is not the product of Dirichlet-Categoricals.

Equation (C.16) cannot be analytically integrated to validate that it has the correct
normalization. We know, however, that Equation (C.10) describing p(κ, τ |β, z) trivially
integrates to one by the construction of the independent CRPs. Because p(κ, τ |β, z)
is a valid distribution and p(β, κ, τ, z)/p(κ, τ |β, z) has no dependence on κ or τ , the
derived expression for p(β, z) must be a valid distribution, conditioned on p(β, κ, τ, z)
being the correct joint distribution.

� C.2 Joint Model Likelihoods

When the desired topic distributions have a lot of overlap, the resulting likelihood of
a sample from the typical set under the posterior is typically much smaller than the
mode of the distribution. To illustrate this observation, we consider the Associated
Press dataset of [9]. We initialize a sample with K initial topics, and then run a
sampling algorithm while restricting the addition of new topics. The resulting joint
posterior log likelihood for the entire model is shown in Figure C.1 Clearly, the joint
likelihood is highest for one global topic. However, we do not expect a sample from the
posterior to only contain one topic. This observation means that the configuration with
a single topic is not in the typical set of the posterior, even though it has the highest
likelihood.

Sec. C.3. Hastings Ratios for Local Proposals 195

Figure C.1: Joint posterior model log likelihood plotted against number of topics for
the Associated Press dataset [9].

For this reason, a deterministic split proposal that has q(z|v̂,v̂)
q(ẑ|v,v) close to unity will

almost always reject the sample, since the model likelihood decreases. This is slightly
abnormal since, in general, non-deterministic proposals for a split will have ratios,
q(z|v̂,v̂)
q(ẑ|v,v) , that evaluate to much less than unity. This results from the fact that there
is only one way to merge two clusters, but typically many ways to split a cluster into
two. As such, the deterministic split proposals described Chapter 5 do not work well
in HDPs.

� C.3 Hastings Ratios for Local Proposals

For the proposed local split of topic \, the only variables that are changed are β\ and
zji for all points with label \. Thus, the ratio of posteriors for the local split can be
expressed as

p(β̂, ẑ, x)

p(β, z, x)
=

γβ\

β̂[β̂]

 D∏
j=1

Γ(αβ\)

Γ(αβ\ + nj·\)

∏
k∈{[,]}

Γ(αβ̂k + n̂j·k)

Γ(αβ̂k)

 p(x|ẑ)
p(x|z)

(C.17)

Consider the proposal over the main variables β̂ and ẑ. A split move is proposed as
follows. Conditioned on β and z, we propose a new β̂ and ẑ with the following:

ẑ ∼ q(ẑ|v, v) (C.18)

(β̃[, β̃]) ∼ Dir(ˆ̃m·[, ˆ̃m·]) (C.19)

(β̂[, β̂]) = β\ · (β̃[, β̃]), (C.20)

where q(ẑ|v, v) is described in the main chapter, and we have used ˆ̃m , m̃(ẑ). Here,
we considering calculating the proposal ratio for the β’s. We use the reversible jump

196 APPENDIX C. DERIVATIONS PERTAINING TO HDP SUB-TOPICS

algorithm [44] to calculate the ratio. The function f maps us from

[β\, β̃\`]→ [β̂[, β̂]] (C.21)

The Jacobian matrix for the mapping is then

Jβ =

∂β̂[∂β\

∂β̂[
∂β̃\`

∂β̂]
∂β\

∂β̂]
∂β̃\`

 =

[
β̃\` β\

(1− β̃\`) −β\

]
, (C.22)

which has an absolute value determinant of

|det(Jβ)| =
∣∣∣β\ · β̃\` − β\(1− β̃\`)∣∣∣ = β\. (C.23)

The ratio of proposals for a split proposal can then be expressed as:

q(β|z, v̂, v̂)

q(β̂|ẑ, v, v)
=

β\

Dir(β̂[/β\, β̂]/β\; ˆ̃m·[, ˆ̃m·])

= β\
Γ(ˆ̃m·[)Γ(ˆ̃m·])

Γ(ˆ̃m·[+ ˆ̃m·c)

(
β̂[
β\

)1− ˆ̃m·[
(
β̂]
β\

)1− ˆ̃m·]

=
Γ(ˆ̃m·[)Γ(ˆ̃m·])

Γ(ˆ̃m·[+ ˆ̃m·])

β̂
1− ˆ̃m·[
[β̂

1− ˆ̃m·]
]

β
1− ˆ̃m·[− ˆ̃m·]
\

(C.24)

Combining these expressions results in the following Hastings ratio for a local split

H local
split-\ =

p(β̂, ẑ, x)

p(β, z, x)

QK+1
merge-[]

QKsplit-\

q(β|z, v̂, v̂)

q(β̂|ẑ, v, v)

1

q(ẑ|x, v, v,Qsplit-\)

=
γβ\

β̂[β̂]

 D∏
j=1

Γ(αβ\)

Γ(αβ\ + nj·\)

∏
k∈{[,]}

Γ(αβ̂k + n̂j·k)

Γ(αβ̂k)

 p(x|ẑ)
p(x|z)

×
QK+1

merge-[]

QKsplit-\

Γ(ˆ̃m·[)Γ(ˆ̃m·])

Γ(ˆ̃m·[+ ˆ̃m·])

β̂
1− ˆ̃m·[
[β̂

1− ˆ̃m·]
]

β
1− ˆ̃m·[− ˆ̃m·]
\

1

q(ẑ|x, v, v,Qsplit-\)

=
γΓ(ˆ̃m·b)Γ(ˆ̃m·c)

Γ(ˆ̃m·b + ˆ̃m·c)

β
ˆ̃m·b− ˆ̃m·c
a

β̂
ˆ̃m·b
b β̂

ˆ̃m·c
c

p(x|ẑ)
p(x|z)

1

q(ẑ|x, v, v,Qsplit-\)

×
QK+1

merge-[]

QKsplit-\

D∏
j=1

Γ(αβ\)

Γ(αβ\ + nj·\)

∏
k∈{[,]}

Γ(αβ̂k + n̂j·k)

Γ(αβ̂k)
, (C.25)

which matches Equation (6.31). The same algebra can be used to show that the Hastings

Sec. C.4. Hastings Ratios for Global Proposals 197

ratio for a local merge is

H local
merge-[] =

Γ(m̃·b + m̃·c)

γΓ(m̃·b)Γ(m̃·c)

β
m̃·b
b β

m̃·c
c

β̂m̃·b−m̃·ca

p(x|z)
p(x|ẑ)

q(z|x, v̂, v̂, Qsplit-\)

1

×
QK−1

split-\

QKmerge-[]

D∏
j=1

Γ(αβ̂\ + nj·\)

Γ(αβ̂\)

∏
k∈{[,]}

Γ(αβk)

Γ(αβk + n̂j·k)
, (C.26)

where m̃ , m̃(z) is a function of the original z.

� C.4 Hastings Ratios for Global Proposals

For the proposed global split of topic \, all β’s and z’s change. Instead of denoting the
empty β with βK+1, we use the notation βE here. The ratio of posteriors for the global
split can be expressed as

p(β̂, ẑ, x)

p(β, z, x)
=

[
β̂E
βE

]γ−1
p(x|ẑ)
p(x|z)

γ

K∏
k=1

βk

K+1∏
k=1

β̂−1
k

D∏
j=1

K∏
k=1

Γ(αβk)

Γ(αβk + nj·k)

K+1∏
k=1

Γ(αβ̂k + n̂j·k)

Γ(αβ̂k)

(C.27)
The proposal ratio for the z’s is

q(z|v̂, v̂)

q(ẑ|v, v)
q(θ̃\|z) (C.28)

We follow in the same steps as the previous local proposals by calculating the pro-
posal ratio for the β’s.

q(β|z)
q(β̂|ẑ)

=
Dir(β1, . . . , βK , βE ; m̃·1, . . . , m̃·K , γ)

Dir(β̂1, . . . , β̂K+1, β̂E ; ˆ̃m·1, . . . , ˆ̃m·(K+1), γ)
(C.29)

=
Γ(γ +

∑K
k=1 m̃·k)

Γ(γ +
∑K+1

k=1
ˆ̃m·k)

(
βE

β̂E

)γ−1 K∏
k=1

βm̃·k−1
k

Γ(m̃·k)

K+1∏
k=1

Γ(ˆ̃m·k)

β̂
ˆ̃m·k−1
k

(C.30)

198 APPENDIX C. DERIVATIONS PERTAINING TO HDP SUB-TOPICS

Combining these expressions, we arrive at the following Hastings ratio for a global split

Hglobal
split-\ =

p(β̂, ẑ, x)

p(β, z, x)

QMK+1

QSK

q(β|z, v̂, v̂)

q(β̂|ẑ, v, v)

q(z|v̂, v̂)

q(ẑ|v, v)
q(θ̃a|z)

=

[
β̂E
βE

]γ−1
p(x|ẑ)
p(x|z)

γ

K∏
k=1

βk

K+1∏
k=1

β̂−1
k

D∏
j=1

K∏
k=1

Γ(αβk)

Γ(αβk + nj·k)

K+1∏
k=1

Γ(αβ̂k + n̂j·k)

Γ(αβ̂k)

×
QMK+1

QSK

q(z|v̂, v̂)

q(ẑ|v, v)
q(θ̃a|z)

Γ(γ +
∑K

k=1 m̃·k)

Γ(γ +
∑K+1

k=1
ˆ̃m·k)

(
βE

β̂E

)γ−1 K∏
k=1

βm̃·k−1
k

Γ(m̃·k)

K+1∏
k=1

Γ(ˆ̃m·k)

β̂
ˆ̃m·k−1
k

=
γΓ(γ +

∑K
k=1 m̃·k)

Γ(γ +
∑K+1

k=1
ˆ̃m·k)

p(x|ẑ)
p(x|z)

q(z|v̂, v̂)

q(ẑ|v, v)

q(θ̃a|x, z)
1

QK+1
merge-[]

QKsplit-\

×
K∏
k=1

βm̃·kk

Γ(m̃·k)

K+1∏
k=1

Γ(ˆ̃m·k)

β̂
ˆ̃m·k
k

D∏
j=1

K∏
k=1

Γ(αβk)

Γ(αβk + nj·k)

K+1∏
k=1

Γ(αβ̂k + n̂j·k)

Γ(αβ̂k)
, (C.31)

which matches Equation (6.39). Similar algebra shows that the Hastings ratio for a
global merge is

Hglobal
merge-[] =

Γ
(
γ +

∑K
k=1 m̃·k

)
γΓ
(
γ +

∑K−1
k=1

ˆ̃m·k

) p(x|ẑ)
p(x|z)

q(z|v̂, v̂)

q(ẑ|v, v)

1

q(θ̃\|x, ẑ)
QK−1

split-\

QKmerge-[]

(C.32)

×
K∏
k=1

β
m̃·k(z)
k

Γ(m̃·k(z))

K−1∏
k=1

Γ(ˆ̃m·k)

β̂
ˆ̃m·k
k

×
D∏
j=1

K∏
k=1

Γ(αβk)

Γ(αβk + nj·k)

K−1∏
k=1

Γ(αβ̂k + n̂j·k)

Γ(αβ̂k)
,

which matches Equation (6.40).

Appendix D

Derivations Pertaining to
SV-DPGMM

In this appendix, we derive expressions related to Chapter 7. We develop the analytical
distributions of the the mean parameters, µ, and the data likelihood x, when marginaliz-
ing over the Gaussian process, g. We also show the details of how these marginalizations
can be exploited in the DP Sub-Cluster algorithm to propose marginalized split and
merge moves.

� D.1 Marginalization of the Gaussian Process

In this section, we derive the posterior distribution of means, µ, when marginalizing
over the shading image, g. We remind the reader that the prior on the log shading
image, g, is a finite realization of a Gaussian process. As such, it can be expressed a a
joint Gaussian:

p(g) = N (g; 0,Σg) . (D.1)

The observations are generated from the SV-DPGMM according to

p(x|µ, z, g,Σx) =

N∏
i=1

N (xi;µzi + gi,Σ
x) = N (x;µz + g,Σx ⊗ IN) . (D.2)

Consequently, the joint distribution, p(x, g, µ|z,Σx), can then be expressed as

p(x, g, µ|z,Σx) = p(µ)p(g)p(x|g, µ, z,Σx),

= p(µ)N (g; 0,Σg)N (x;µz + g,Σx ⊗ IN) ,

= p(µ)N (g; 0,Σg)N (g;x− µz,Σx ⊗ IN) ,

= p(µ)N (x;µz,Σ
g + Σx ⊗ IN)N (g; •, •) , (D.3)

where each • represents some function of x, µz, Σg, and Σx.
Marginalizing over g is then as simple as eliminating the last Gaussian distribution

in the expression above, since it is the only term that depends on g, and it integrates

199

200 APPENDIX D. DERIVATIONS PERTAINING TO SV-DPGMM

to 1. This marginalization results in

p(x, µ|z,Σx) = p(µ)p(x|µ, z,Σx) = p(µ)N (x;µz,Σ
g + Σx ⊗ IN) . (D.4)

We now express each of these terms separately. The prior on the means is the product
of K independent Gaussian distributions:

p(µ) =
∏

k
N (µk; θ,Σ

µ) ,

= (2π)−KC/2 |Σµ|−K/2 exp

[
−1

2

∑
k
(µk − θ)>Λµ(µk − θ)

]
,

= (2π)−KC/2 |Σµ|−K/2 exp

[
−1

2

∑
k

∑
m,n

(µkm − θm)Λµm,n(µkn − θn)

]
. (D.5)

The posterior on observations marginalizing out g can be expanded to

p(x|µ, z,Σx) = N (x;µz,Σ
g + Σx ⊗ IN) ,

= (2π)−NC/2
∣∣Σg+x

∣∣−1/2
exp

[
−1

2
(x− µz)>Λg+x(x− µz)

]
,

= (2π)−NC/2
∣∣Σg+x

∣∣−1/2
exp

−1

2

∑
i,m

∑
j,n

(xim − µzim)Λg+xim,jn(xjn − µzjn)

 , (D.6)

where we denote Σg+x , Σg + Σx ⊗ IN . Combining the above distributions results in
the following expression for Equation (D.4):

p(x, µ|z,Σx) = (2π)−(K+N)C/2 |Σµ|−K/2
∣∣Σg+x

∣∣−1/2

× exp

[
− 1

2

∑
k

∑
m,n

(µkm − θm)Λµm,n(µkn − θn)︸ ︷︷ ︸
A

]

× exp

[
− 1

2

∑
i,m

∑
j,n

(xim − µzim)Λg+xim,jn(xjn − µzjn)︸ ︷︷ ︸
B

]
. (D.7)

We now consider expressing the terms inside each of the exponentials separately. The

Sec. D.1. Marginalization of the Gaussian Process 201

first term can be expressed as

A =
∑
k,m,n

(µkm − θm)Λµm,n(µkn − θn)

=
∑
k,m,n

(µkmµkn − 2µkmθn + θmθn) Λµm,n

= θ>Λµθ +
∑
k,m,n

µkmµknΛµm,n − 2
∑
k,m

µkm[Λµθ]m. (D.8)

The second term can be expressed as

B =
∑
i,m,j,n

(xim − µzim)Λg+xim,jn(xjn − µzjn),

=
∑

k,m,l,n

∑
i∈Ik

∑
j∈Il

(xim − µkm)Λg+xim,jn(xjn − µln),

=
∑

k,m,l,n

∑
i∈Ik

∑
j∈Il

(ximxjn − 2µkmxjn + µkmµln)Λg+xim,jn,

= x>Λg+xx+
∑

k,m,`,n

µkmµln
∑
i∈Ik

∑
j∈Il

Λg+xim,jn +
∑
k,m

µkm
∑
j,n

xjnΛg+xim,jn. (D.9)

Because x is observed, Equation (D.7) is also proportional to

p(x, µ|z,Σx) ∝ p(µ|z,Σx, x). (D.10)

Furthermore, since p(x, µ|z,Σx) is jointly Gaussian, we know that p(µ|z,Σx, x) must
also be Gaussian. The general form of this Gaussian distribution can be expressed as

p(µ|z,Σx, x) = N (µ; θ∗,Σ∗)

= (2π)−KC/2 |Σ∗|−1/2 exp

[
−1

2
(µ− θ∗)>Λ∗(µ− θ∗)

]
= (2π)−KC/2 |Σ∗|−1/2

exp

−1

2

θ∗>Λ∗θ∗ +
∑

k,m,`,n

µkmµ`nΛ∗km,`n − 2
∑
k,m

µkm
∑
`,n

Λ∗km,`nθ
∗
`n

 (D.11)

Matching µ terms from Equation (D.11) with Equations (D.8)–(D.9) leads to the fol-

202 APPENDIX D. DERIVATIONS PERTAINING TO SV-DPGMM

lowing expressions for θ∗ and Σ∗:

µkmµln → Λ∗km,ln = Λµm,n +
∑
i∈Ik

∑
j∈Il

Λg+xim,jn, ∀k = l (D.12)

µkmµln → Λ∗km,ln =
∑
i∈Ik

∑
j∈Il

Λg+xim,jn, ∀k 6= l (D.13)

µkm → [Λ∗θ∗]km = [Λµθ]m+
∑
i∈Ik

∑
j

∑
n

xjnΛg+xim,jn (D.14)

The posterior mean on µ, denoted θ∗, is then described with the linear system of
equations above, and can be found according to

θ∗ = Σ∗[Λ∗θ∗]. (D.15)

� D.2 Marginalization of the Gaussian Process and the Means

We now show how a similar marginalization scheme to the one used above can be used to
marginalize over the mean parameters and the Gaussian process. We note the following
relationship

p(x|z,Σx) =
p(x, µ|z,Σx)

p(µ|z,Σx, x)
. (D.16)

Combining Equations (D.7) and (D.11), results in

p(x|z,Σx)

=
(2π)−(K+N)C/2 |Σµ|−K/2 |Σg+x|−1/2

exp
[
−1

2θ
>Λµθ − 1

2x
>Λg+xx

]
(2π)−KC/2 |Σ∗|−1/2 exp

[
−1

2θ
∗>Λ∗θ∗

] ,

=
|Λµ|K/2 |Λg+x|1/2

(2π)NC/2 |Λ∗|1/2
exp

[
−1

2
θ>Λµθ − 1

2
x>Λg+xx+

1

2
θ∗>Λ∗θ∗

]
. (D.17)

Because z are the labels corresponding to a DPMM, the prior distribution on z
follows the Chinese Restaurant Process (CRP)

p(z) = CRP(z;α) =
αKΓ(α)

Γ(α+N)

K∏
k=1

Γ(Nk), (D.18)

where α is the concentration parameter, and Nk counts the number of observations

Sec. D.3. Marginalized Splits and Merges 203

associated with cluster k. The posterior on z can then be expressed as

p(z|x,Σx) ∝ p(x, z|Σx),

= p(z)p(x|z,Σx),

∝ CRP(z;α) |Λ∗|−1/2 exp

[
1

2
θ∗>Λ∗θ∗

]
,

= |Λ∗|−1/2 exp

[
1

2
θ∗>Λ∗θ∗

]
αKΓ(α)

Γ(α+N)

K∏
k=1

Γ(Nk). (D.19)

� D.3 Marginalized Splits and Merges

Following the work in Chapter 5, we propose splits and merges via the DP Sub-Cluster
method. A proposed split or merge is subjected to a Hastings ratio which either accepts
or rejects the proposed move. Because distributions in the SV-DPGMM are conjugate,
it is simple to extend Chapter 5. The only slight variation is that Σx is not altered,
since marginalizing over g requires conditioning on Σx. This results in a proposed split
of cluster \ into clusters k̂ and] being accepted with the following Hastings ratio

HSV-DPGMM
split-\ =

p(ẑ|x,Σx)

p(z|x,Σx)

QK+1
merge-[]

QKsplit-\

∏
{i;zi=\}

π̃[N (xi; µ̃[,Σ
x) + π̃]N (xi; µ̃],Σ

x)

π̃ẑi N (xi; µ̃ẑi ,Σ
x)

, (D.20)

where QKsplit-\ is the probability of proposing to split one of the K clusters, QKmerge-[] is
the probability of merging two of the K clusters, ẑ are the proposed cluster assignments,
and π and µ are the sub-cluster parameters as defined in Chapter 5. We propose K
splits uniformly, resulting in QKsplit-\ = 1. Similarly, we propose to merge all possible

pairs of clusters, resulting in QKmerge-[] = 1. This simplifies the Hastings ratio to the
following

HSV-DPGMM
split-\ =

p(ẑ|x,Σx)

p(z|x,Σx)

∏
{i;zi=\}

π̃[N (xi; µ̃[,Σ
x) + π̃]N (xi; µ̃],Σ

x)

π̃ẑi N (xi; µ̃ẑi ,Σ
x)

. (D.21)

Similarly, the Hastings ratio for a proposed merge of clusters [and] can be well
approximated with

HSV-DPGMM

merge-[] ≈ p(ẑ|x,Σx)

p(z|x,Σx)

∏
{i;zi=\}

π̃zi N (xi; µ̃zi ,Σ
x)

π̃[N (xi;µ[,Σx) + π̃]N (xi; µ̃],Σx)
. (D.22)

An approximation is necessary for the same reasons one was needed in the non-deterministic
merge moves of Chapter 5.

204 APPENDIX D. DERIVATIONS PERTAINING TO SV-DPGMM

List of Symbols

The following tables summarize the symbols used in this thesis. Most of the notation
is consistent throughout the entire thesis, but the specific symbols used in each chapter
are summarized separately for convenience.

Global Notation of Variables

Symbol Definition

x Set of all observed data, {x1, . . . , xN}
z Set of discrete labels, {z1, . . . , zN}
θ Generic parameters of an arbitrary distribution

µ Mean of a Gaussian distribution

σ2 Variance of a Gaussian distribution

Σ◦ Covariance matrix of the Gaussian distribution of ◦
Λ◦ Precision matrix of the Gaussian distribution of ◦
λ Hyper-parameters of an arbitrary distribution

IN N ×N identity matrix

Global Notation of Indexing

Symbol Definition

(◦)i The ith element of (◦)
i Index into N , i ∈ {1, . . . , N}
k Index into K, k ∈ {1, . . . ,K}
\i Excluding index i

I Set of indices, I ⊆ {1, . . . , N}
N Number of data points

Nk Number of points with label k

K Number of unique labels in z

205

206 APPENDIX D. DERIVATIONS PERTAINING TO SV-DPGMM

Global Miscellaneous Notation

Symbol Definition

◦̂ A proposed sample of ◦
H The Hastings ratio or Reversible Jump MCMC ratio

J Jacobian matrix

h A 2D filter

p(◦) The probability distribution of ◦
q(◦) A user-specific proposal distribution for ◦

E◦[f(◦)] Expected value of the function, f , of the random variable, ◦
f◦(4;λ) A distribution for ◦, parametrized by λ, and evaluated at 4
⊗ Kroenecker product

Sec. D.3. Marginalized Splits and Merges 207

Shape Sampling Notation

Symbol Definition

o Auxiliary ordering random variable

ϕ Level-set function

α Curve-length penalty

C The curve implied by z

Tn Topological number of foreground region

Tn Topological number of background region

T+
n Extended topological number of foreground region

T+
n Extended topological number of background region

Shape Sampling with Dynamics Notation

Symbol Definition

a Appearance model

ÿ Layer-ordering permutation

v Visible-layer image

g Smooth Gaussian process flow

f Smooth + Independent Gaussian process flow

t An index into time

O The set of observed pixels

D The set of disoccluded pixels

R The set of revealed pixels

208 APPENDIX D. DERIVATIONS PERTAINING TO SV-DPGMM

Dirichlet Process Mixture Models

Symbol Definition

N Number of observations

Nk Number of points associated with cluster k

i Index into the data points, {1, . . . , N}
`, r Indices for the left and right sub-clusters, respectively

k Index into the unique cluster labels, {1, 2, . . . }
h Index into the unique sub-cluster labels, {`, r}
Ik Indices of points assigned to cluster k

Ikh Indices of points assigned to cluster k and sub-cluster h

K Number of non-empty clusters

x Set of observations

α Concentration parameter of the DP

λ Hyper-parameters of the base-measure

π Infinite-length mixture weights

θ Infinite-length mixture parameters

z Cluster assignments

v The set of all regular-cluster variables, z, π, θ

πk Pair of sub-cluster weights, {πk`, πkr} for regular-cluster k

θk Pair of sub-cluster parameters, {θk`, θkr} for regular-cluster k

z Sub-cluster assignments

v The set of all sub-cluster variables, z, π, θ

π̃ Temporary weights used in constructing proposals

θ̃ Temporary parameters used in constructing proposals

\ Index of cluster that is to be split

[,] Indices of clusters that are to be merged

QKsplit-\ Probability of proposing a split with K non-empty components

QKmerge-[] Probability of proposing a merge with K non-empty components

Sec. D.3. Marginalized Splits and Merges 209

Hierarchical Dirichlet Processes

Symbol Definition

D Number of documents

Nj Number of words in document j

K Number of non-empty topics

j Index into the documents, {1, . . . , D}
i Index into the words, {1, . . . , Nj}
`, r Indices for the left and right sub-clusters, respectively

k Index into the unique cluster labels, {1, . . . ,K}
h Index into the unique sub-cluster labels, {`, r}
Ik Indices of words assigned to cluster k

Ikh Indices of words assigned to cluster k and sub-cluster h

κjt Dish assignment of table t in restaurant j

τji Table assignment of customer i in restaurant j

mjk Number of tables serving dish k in restaurant j

njtk Number of customers at table t eating dish k in restaurant j

mj· Number of tables in restaurant j

m·k Number of tables in franchise serving dish k

njt· Number of customers at table t in restaurant j

nj·k Number of customers eating dish k in restaurant j

nj·· Number of customers in restaurant j

x Corpus of documents

γ Concentration parameter of the global-level DP

α Concentration parameter of the document-level DP

λ Hyper-parameters for the global-level DP base measure

β Infinite-length global topic weights

πj Infinite-length topic weights for document j

θ Infinite-length topic parameters

z Topic assignments

v The set of all regular-topic variables, z, β, π, θ

210 APPENDIX D. DERIVATIONS PERTAINING TO SV-DPGMM

Hierarchical Dirichlet Processes (cont.)

Symbol Definition

βk Pair of global sub-topic weights, {βk`, βkr} for regular-cluster k

πjk
Pair of sub-topic weights, {πk`, πkr} for document j and regular-
cluster k

θk Pair of sub-topic parameters, {θk`, θkr} for regular-cluster k

z Sub-topic assignments

v The set of all sub-topic variables, z, β, π, θ

β̃ Temporary global weights used in constructing proposals

π̃
Temporary document-specific weights used in constructing pro-
posals

θ̃ Temporary parameters used in constructing proposals

\ Index of topic that is to be split

[,] Indices of topics that are to be merged

QKsplit-\ Probability of proposing a split with K non-empty components

QKmerge-[] Probability of proposing a merge with K non-empty components

Sec. D.3. Marginalized Splits and Merges 211

Intrinsic Images via SV-DPGMM

Symbol Definition

N Number of pixels in the image

Nk Number of points associated with cluster k

i, j Indices into the pixels, {1, . . . , N}
m,n Indices into the three color channels

k, l Indices into the unique cluster labels, {1, 2, . . . }
K Number of non-empty clusters

x The observed image in the log domain

α Concentration parameter of the DP

κ Covariance kernel for g

σ2
g Signal variance of κ

ν Matérn kernel smoothness for kernel κ

l Characteristic length-scale of κ

λg Set of hyper-parameters, {κ, σ2
g , ν, l} for g

θ 3× 1 hyper-parameter representing mean of µk
Σµ 3× 3 hyper-parameter covariance of µk
λµ Set of hyper-parameters, {θ,Σµ}, for µk
SΣ Discrete set of 3× 3 observation covariances

π Infinite-length mixture weights

µk 3× 1 mean of cluster k

z Cluster assignments

g Gaussian process log-shading image

µz Log-reflectance image

Σx,Λx 3× 3 Toeplitz observation covariance and precision matrices

Σg,Λg 3N × 3N Topelitz log-shading covariance and precision matrices

I Indices of pixels assigned to cluster k

S Randomly sub-sampled indices for inference

\ Index of cluster that is to be split

[,] Indices of clusters that are to be merged

QKsplit-\ Probability of proposing a split with K non-empty components

QKmerge-[] Probability of proposing a merge with K non-empty components

212 APPENDIX D. DERIVATIONS PERTAINING TO SV-DPGMM

Bibliography

[1] C. E. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian
nonparametric problems. Annals of Statistics, 2(6):1152–1174, 1974.

[2] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[3] S. Baker, D. Scharstein, J.P. Lewis, S. Roth, M.J. Black, and R. Szeliski. A
database and evaluation methodology for optical flow. In International Conference
on Computer Vision, 2007.

[4] J. Barron and J. Malik. Shape, illumination, and reflectance from shading. Tech-
nical report, Univeristy of California, Berkeley, 2013.

[5] H. Barrow and J. Tenenbaum. Recovering intrinsic scene characteristics from
images. In Computer Vision Systems, 1978.

[6] G. Bertrand. Simple points, topological numbers and geodesic neighborhoods in
cubic grids. Pattern Recognition Letters, 15:1003–1011, October 1994.

[7] A. Blake. Boundary conditions for lightness computation in Mondrian world. In
Computer Vision, Graphics, and Image Processing, 1985.

[8] D. M. Blei and P. I. Frazier. Distance dependent Chinese restaurant processes.
Journal of Machine Learning Research, 12:2461–2488, 2011.

[9] D. M. Blei, T. L. Griffiths, M. I. Jordan, and J. B. Tenenbaum. Hierarchical
topic models and the nested Chinese restaurant process. In Neural Information
Processing Systems, 2003.

[10] D. M. Blei and M. I. Jordan. Variational inference for Dirichlet process mixtures.
Bayesian Analysis, 1:121–144, 2005.

[11] T. J. Broida and R. Chellappa. Estimation of object motion parameters from
noisy images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
8(1):90–99, January 1986.

213

214 BIBLIOGRAPHY

[12] T. Brox and J. Malik. Object segmentation by long term analysis of point tra-
jectories. In European Conference on Computer Vision, 2010.

[13] T. Brox and J. Malik. Large displacement optical flow: Descriptor matching
in variational motion estimation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pages 500–513, 2011.

[14] T. Brox and J. Weickert. Level set image segmentation with multiple regions.
IEEE Transactions on Image Processing, 15(10):3213–3218, October 2006.

[15] M. Bryant and E. Sudderth. Truly nonparametric online variational inference for
Hierarchical Dirichlet processes. In Neural Information Processing Systems, 2012.

[16] C. A. Bush and S. N. MacEachern. A semiparametric Bayesian model for ran-
domised block designs. Biometrika, 83:275–285, 1996.

[17] T Cham and J. M. Rehg. A multiple hypothesis approach to figure tracking. In
Computer Vision and Pattern Recognition, 1999.

[18] J. Chang and J. W. Fisher III. Analysis of orientation and scale in smoothly
varying textures. International Conference on Computer Vision, 2009.

[19] J. Chang and J. W. Fisher III. Efficient MCMC sampling with implicit shape
representations. In Computer Vision and Pattern Recognition, June 2011.

[20] J. Chang and J. W. Fisher III. Efficient topology-controlled sampling of implicit
shapes. In IEEE International Conference on Image Processing, September 2012.

[21] J. Chang and J. W. Fisher III. Parallel sampling of DP mixture models using
sub-clusters splits. In Neural Information Processing Systems, December 2013.

[22] J. Chang and J. W. Fisher III. Topology-constrained layered tracking with latent
flow. In International Conference on Computer Vision, December 2013.

[23] S. Chen and R. J. Radke. Markov chain Monte Carlo shape sampling using level
sets. NORDIA, in conjunction with ICCV, 2009.

[24] P. Y. Choi and M. Hebert. Learning and predicting moving object trajectory:
a piecewise trajectory segment approach. Technical Report CMU-RI-TR-06-42,
Robotics Institute, Pittsburgh, PA, August 2006.

[25] K Choo and D. J. Fleet. People tracking using hybrid Monte Carlo filtering. In
International Conference on Computer Vision, 2001.

[26] L. D. Cohen and I. Cohen. Finite-element method for active contour models and
balloons for 2-d and 3-d images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(11):1131–1147, November 1993.

BIBLIOGRAPHY 215

[27] D. B. Dahl. An improved merge-split sampler for conjugate Dirichlet process
mixture models. Technical report, University of Wisconsin - Madison Dept. of
Statistics, 2003.

[28] T. Darrell and A. Pentland. Robust estimation of a multi-layered motion repre-
sentation. In IEEE Workshop on Visual Motion, 1991.

[29] D. Demirdjian, L. Taycher, G. Shakhnarovich, K. Grauman, and T. Darrell.
Avoiding the “streetlight effect”: tracking by exploring likelihood modes. In
International Conference on Computer Vision, 2005.

[30] M. D. Escobar and M. West. Bayesian density estimation and inference using
mixtures. Journal of the American Statistical Association, 90(430):577–588, 1995.

[31] A. C. Fan, J. W. Fisher III, W. M. Wells III, J. J. Levitt, and A. S. Willsky.
MCMC curve sampling for image segmentation. Medical Image Computing and
Computer Assisted Intervention, 2007.

[32] S. Favaro and Y. W. Teh. MCMC for normalized random measure mixture models.
Statistical Science, 28(3):335–359, 2013.

[33] T. S. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals
of Statistics, 1(2):209–230, 1973.

[34] E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky. An HDP-HMM for
systems with state persistence. In International Conference on Machine Learning,
July 2008.

[35] K. Fragkiadaki and Jianbo Shi. Detection free tracking: Exploiting motion and
topology for segmenting and tracking under entanglement. In Computer Vision
and Pattern Recognition, 2011.

[36] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learning low-level vision.
In International Journal of Computer Vision, 2000.

[37] B. V. Funt, M. S. Drew, and M. Brockington. Recovering shading from color
images. In European Conference on Computer Vision, 1992.

[38] Y. Gal and Z. Ghahramani. Pitfalls in the use of parallel inference for the Dirichlet
process. In Workshop on Big Learning, NIPS, 2013.

[39] P. V. Gehler, R. Carsten, M. Kiefel, L. Zhang, and B. Schölkopf. Recovering
intrinsic images with a global sparsity prior on reflectance. In Neural Information
Processing Systems, 2011.

[40] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 6(6):721–741, November 1984.

216 BIBLIOGRAPHY

[41] S. Ghosh, A. B. Ungureanu, E. B. Sudderth, and D. Blei. Spatial distance depen-
dent Chinese restaurant process for image segmentation. In Neural Information
Processing Systems, 2011.

[42] W. R. Gilks, W. Richardson, and D. J. Spiegelhalter. Markov Chain Monte Carlo
in Practice. Chapman & Hall / CRC Press, 1996.

[43] N.J. Gordon, D.J. Salmond, and A. F M Smith. Novel approach to nonlinear/non-
gaussian bayesian state estimation. IEEE Transacations of Radar and Signal
Processing, 140(2):107–113, April 1993.

[44] P. J. Green. Reversible jump Markov chain Monte Carlo computation and
Bayesian model determination. Biometrika, 82:711–732, 1995.

[45] P. J. Green and S. Richardson. Modelling heterogeneity with and without the
Dirichlet process. Scandinavian Journal of Statistics, pages 355–375, 2001.

[46] U. Grenander and M. I. Miller. Computational anatomy: an emerging discipline.
Quarterly of Applied Mathematics, LVI(4):617–694, 1998.

[47] T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the
National Academy of Sciences, 101:5228–5235, April 2004.

[48] R Grosse, M. K. Johnson, E. Adelson, and W. T. Freeman. A ground-truth
dataset and baseline evaluations for intrinsic image algorithms. In International
Conference on Computer Vision, 2009.

[49] M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hierarchical graph
based video segmentation. In Computer Vision and Pattern Recognition, 2010.

[50] X. Han, C. Xu, and J. L. Prince. A topology preserving level set method for geo-
metric deformable models. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 25(6):755–768, 2003.

[51] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, 1970.

[52] D. Heath and W. Sudderth. De Finetti’s theorem on exchangeable variables.
American Statistician, 30(4):188–189, 1976.

[53] M. Heiler and C. Schnorr. Natural image statistics for natural image segmentation.
International Conference on Computer Vision, 2003.

[54] B. K. P. Horn. Robot Vision. MIT Press, Cambridge, MA, 1986.

[55] B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial Intelligence,
1981.

BIBLIOGRAPHY 217

[56] N. Houhou, J.P. Thiran, and X. Bresson. Fast texture segmentation model based
on the shape operator and active contour. Computer Vision and Pattern Recog-
nition, 2008.

[57] M. Hughes and E. Sudderth. Memoized online variational inference for Dirichlet
process mixture models. In Neural Information Processing Systems, 2013.

[58] M. C. Hughes, E. B. Fox, and E. B. Sudderth. Effective split-merge Monte Carlo
methods for nonparametric models of sequential data. In Neural Information
Processing Systems, December 2012.

[59] M. Isard and A. Blake. A mixed-state condensation tracker with automatic model-
switching. In International Conference on Computer Vision, 1998.

[60] H. Ishwaran and L. F. James. Gibbs sampling methods for stick-breaking priors.
Journal of the American Statistical Association, 96:161–173, 2001.

[61] H. Ishwaran and M. Zarepour. Exact and approximate sum-representations for
the Dirichlet process. Canadian Journal of Statistics, 30:269–283, 2002.

[62] Nebojsa J. and B. J. Frey. Learning flexible sprites in video layers. In Computer
Vision and Pattern Recognition, 2001.

[63] S. Jain and R. Neal. A split-merge Markov chain Monte Carlo procedure for
the Dirichlet process mixture model. Journal of Computational and Graphical
Statistics, 13:158–182, 2000.

[64] S. Jain and R. Neal. Splitting and merging components of a nonconjugate Dirichlet
process mixture model. Bayesian Analysis, 2(3):445–472, 2007.

[65] M. R. Jerrum and A. J. Sinclair. Approximating the permanent. SIAM Journal
on Computing, 18:1149–1178, 1989.

[66] M. I. Jordan. Graphical models. Statistical Science, 19(1):140–155, 2004.

[67] R. E. Kalman. A new approach to linear filtering and prediction problems. Trans-
actions of the ASME, 82(1):35–45, 1960.

[68] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. Inter-
national Journal of Computer Vision, V1(4):321–331, January 1988.

[69] J. Kim, J. W. Fisher III, A. Yezzi, M. Cetin, and A.S. Willsky. A nonparametric
statistical method for image segmentation using information theory and curve
evolution. IEEE Transactions on Image Processing, 14:1486–1502, October 2005.

[70] K. Kim, D. Lee, and I. Essa. Gaussian process regression flow for analysis of
motion trajectories. In International Conference on Computer Vision, 2011.

218 BIBLIOGRAPHY

[71] D. E. Knuth. The Art of Computer Programming. Addison-Wesley, Boston, 1969.

[72] T. Y. Kong and A. Rosenfeld. Digital topology: introduction and survey. Com-
puter Vision, Graphics, and Image Processing, 48:357–393, December 1989.

[73] B. Kulis and M. Jordan. Revisiting k-means: New algorithms via Bayesian non-
parametrics. In International Conference on Machine Learning, 2012.

[74] K. Kurihara, M. Welling, and Y. W. Teh. Collapsed variational Dirichlet process
mixture models. In International Joint Conference on Artificial Intelligence, 2007.

[75] E. Land and J. McCann. Lightness and retinex theory. In Journal of the Optical
Society of America, 1971.

[76] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[77] Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video object segmentation.
In International Conference on Computer Vision, 2011.

[78] Y. Li, J. Sun, C.K. Tang, and H.Y. Shum. Lazy snapping. In SIGGRAPH, 2004.

[79] P. Liang, M. I. Jordan, and B. Taskar. A permutation-augmented sampler for DP
mixture models. In International Conference on Machine Learning, 2007.

[80] D. Lin and J. W. Fisher III. Efficient Sampling from Combinatorial Space via
Bridging. In Artificial Intelligence and Statistics, 2012.

[81] D. Lin, E. Grimson, and J. W. Fisher III. Construction of dependent Dirichlet
processes based on Poisson processes. In Neural Information Processing Systems,
2010.

[82] C. Liu, W. T. Freeman, E. H. Adelson, and Y. Weiss. Human-assisted motion
annotation. In Computer Vision and Pattern Recognition, 2008.

[83] D. Lovell, R. P. Adams, and V. K. Mansingka. Parallel Markov chain Monte
Carlo for Dirichlet process mixtures. In Workshop on Big Learning, NIPS, 2012.

[84] T. Ma and L. J. Latecki. Maximum weight cliques with mutex constraints for
video object segmentation. In Computer Vision and Pattern Recognition, 2012.

[85] S. N. MacEachern. Estimating normal means with a conjugate style Dirichlet
process prior. In Communications in Statistics: Simulation and Computation,
1994.

[86] S. N. MacEachern and P. Müller. Estimating mixture of Dirichlet process models.
Journal of Computational and Graphical Statistics, 7(2):223–238, June 1998.

BIBLIOGRAPHY 219

[87] D. Malioutov, J. Johnson, M. Choi, and A. Willsky. Low-rank variance approxi-
mation in gmrf models: Single and multiscale approaches. IEEE Transactions on
Signal Processing, 56(10):4621–4634, 2008.

[88] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and
measuring ecological statistics. In International Conference on Computer Vision,
2001.

[89] Y. Matsushita, K. Nishino, Ikeuchi K., and Sakauchi M. Illumination normaliza-
tion with time-dependent intrinsic images for video surveillance. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 26(10):1336–1347, 2004.

[90] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equations
of state calculations by fast computing machines. Journal of Chemical Physics,
21(6):1087–1092, 1953.

[91] J. W. Miller and M. T. Harrison. A simple example of Dirichlet process mixture
inconsistency for the number of components. In Neural Information Processing
Systems, 2013.

[92] R. Neal. Bayesian mixture modeling. In International Workshop on Maximum
Entropy and Bayesian Methods of Statistical Analysis, 1992.

[93] R. Neal. Markov chain sampling methods for Dirichlet process mixture models.
Journal of Computational and Graphical Statistics, 9(2):249–265, June 2000.

[94] D. Newman, A. Asuncion, P. Smyth, and M. Welling. Distributed algorithms for
topic models. Journal of Machine Learning Research, 10:1801–1828, December
2009.

[95] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Springer, 2002.

[96] O. Papaspiliopoulos and G. O. Roberts. Retrospective Markov chain Monte Carlo
methods for Dirichlet process hierarchical models. Biometrika, 95(1):169–186,
2008.

[97] J. Pitman. Combinatorial stochastic processes. Technical report, U.C. Berkeley
Dept. of Statistics, 2002.

[98] W. K. Pratt. Digital Image Processing. John Wiley & Sons, 2007.

[99] L. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, February 1989.

[100] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, Cambridge, MA, 2006.

220 BIBLIOGRAPHY

[101] Y. Rathi, N. Vaswani, and A. Tannenbaum. A generic framework for tracking
using particle filter with dynamic shape prior. IEEE Transactions on Image
Processing, 16(5):1370–1382, May 2007.

[102] I. Reid and K. Connor. Multiview segmentation and tracking of dynamic occlud-
ing layers. Image and Vision Computing, 2010.

[103] S. L. Scott. Bayesian methods for hidden Markov models: Recursive computing
in the 21st century. Journal of the American Statistical Association, 97:337–351,
2002.

[104] F. Ségonne. Active contours under topology control–genus preserving level sets.
International Journal of Computer Vision, 79:107–117, August 2008.

[105] J.A. Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces
in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials
Science. Cambridge University Press, second edition, June 1999.

[106] J. Sethuraman. A constructive definition of Dirichlet priors. Statstica Sinica,
4:639–650, 1994.

[107] L. Shen, P. Tan, and S. Lin. Intrinsic image decomposition with non-local texture
cues. In Computer Vision and Pattern Recognition, 2008.

[108] Y. Shi and W.C. Karl. Real-time tracking using level sets. In Computer Vision
and Pattern Recognition, 2005.

[109] B. W. Silverman. Spline smoothing: The equivalent variable kernel method.
Annals of Statistics, 12(3):898–916, 1984.

[110] P. Sollich and C. K. I. Williams. Using the equivalent kernel to understand
Gaussian process regression. In Neural Information Processing Systems, 2005.

[111] M. L. Stein. A kernel approximation to the kriging predictor of a spatial process.
Annals of the Institute of Statistical Mathematics, 43(1):61–75, 1991.

[112] E. B. Sudderth. Graphical Models for Visual Object Recognition and Tracking.
PhD thesis, Massachusetts Institute of Technology, 2006.

[113] D. Sun, E. Sudderth, and M. J. Black. Layered image motion with explicit oc-
clusions, temporal consistency, and depth ordering. In NIPS, 2010.

[114] D. Sun, E.B. Sudderth, and M.J. Black. Layered segmentation and optical flow
estimation over time. In Computer Vision and Pattern Recognition, 2012.

[115] M. F. Tappen, W. T. Freeman, and E. H. Adelson. Recovering intrinsic im-
ages from a single image. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(9):1459–1472, 2005.

BIBLIOGRAPHY 221

[116] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet
processes. Journal of the American Statistical Association, 101(476):1566–1581,
2006.

[117] Y. W. Teh, K. Kurihara, and M. Welling. Collapsed variational inference for
HDP. In Neural Information Processing Systems, volume 20, 2008.

[118] D. Tsai, M. Flagg, and J. M. Rehg. Motion coherent tracking with multi-label
MRF optimization. In British Machine Vision Conference, 2010.

[119] J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Trans-
actions on Automatic Control, 40(9):1528–1538, September 1995.

[120] R. Urtasun, D.J. Fleet, and P. Fua. 3d people tracking with Gaussian process
dynamical models. In Computer Vision and Pattern Recognition, 2006.

[121] L. A. Vese and T. F. Chan. A multiphase level set framework for image segmen-
tation using the mumford and shah model. International Journal of Computer
Vision, 50(3):271–293, 2002.

[122] C. Wang and D Blei. A split-merge MCMC algorithm for the Hierarchical Dirich-
let process. arXiv:1207.1657 [stat.ML], 2012.

[123] J. Y. A. Wang and E. H. Adelson. Representing moving images with layers. IEEE
Transactions on Image Processing, 1994.

[124] Y. Weiss. Smoothness in layers: Motion segmentation using nonparametric mix-
ture estimation. In Computer Vision and Pattern Recognition, 1997.

[125] Y. Weiss. Deriving intrinsic images from image sequences. In International Con-
ference on Computer Vision, 2001.

[126] M. West, P. Müller, and S. N. MacEachern. Hierarchical priors and mixture mod-
els, with application in regression and density estimation. Aspects of Uncertainity,
pages 363–386, 1994.

[127] S. A. Williamson, A. Dubey, and E. P. Xing. Parallel Markov chain Monte
Carlo for nonparametric mixture models. In International Conference on Ma-
chine Learning, 2013.

[128] C. Yang, R. Duraiswami, N. A. Gumerov, and L. Davis. Improved fast gauss
transform and efficient kernel density estimation. In International Conference on
Computer Vision, 2003.

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	A Bayesian Approach
	Thesis Outline and Contributions

	Background
	Posterior Inference
	Conjugate Priors
	Marginal Data Likelihood
	Predictive Distribution

	Conjugate Distributions
	Categorical Distribution
	Multinomial Distribution
	Dirichlet Distribution
	Categorical Conjugacy
	Multinomial Conjugacy

	Multivariate Gaussian Distribution
	Self Conjugacy on Mean

	Normal Inverse-Wishart Distribution on Mean and Covariance
	Multivariate Gaussian Conjugacy

	Probabilistic Graphical Models
	Directed Acyclic Graphical Models
	Markov Chains

	Undirected Graphical Models

	Sampling Algorithms
	Markov Chain Monte Carlo Sampling
	Metropolis-Hastings Sampling
	Gibbs Sampling
	Reversibile-Jump MCMC
	Determining Convergence

	Importance Sampling
	Particle Filtering

	Implicit Shapes Representations via Level-Set Methods
	Signed Distance Function
	Sampling-Based Inference

	Digital Topology
	Connectiveness
	Topological Numbers and Simple Points
	Extended Topological Numbers

	Finite Mixture Models
	Priors on Parameters
	Posterior MCMC Inference

	Non-parametric Bayesian Statistics
	Gaussian Processes
	Exact Posterior Inference
	Covariance Kernels
	Approximate Sampling and Inference via Equivalent Kernels
	Approximate Likelihood Computation

	Dirichlet Processes
	Chinese Restaurant Process
	Collapsed-Weight Samplers
	Instantiated-Weight Samplers
	Super-Cluster Parallel Samplers
	Split/Merge Sampling Algorithms

	Hierarchical Dirichlet Process
	Explicit Atom Representation
	Chinese Restaurant Franchise Representation
	Direct Assignment Representation
	Finite Symmetric Dirichlet Approximation

	Implicit Shapes and Discrete MRFs
	Related Work
	Permutation-based Gibbs-Inspired Metropolis Hastings
	Problem Statement
	Augmented Ordering Sample Space
	Metropolis-Hastings in Augmented Space
	Validity of Sampling Algorithm
	A Gibbs-Inspired Proposal

	An Efficient Implementation

	K-Ary Sampling
	Validity of K-Ary Sampling Algorithm

	Compatible Priors
	Priors on Curve Length
	Priors on Balloon Force
	Priors on Topology
	Other Priors

	Mutual Information Energy Functional
	Applications
	Convergence Times
	Sensitivity to Noise
	Boundary Detection in Natural Images
	Topology-Controlled Sampling

	Discussion

	Shape Dynamics in Object Tracking
	Related Work
	Layered Model
	In-Frame Appearance
	Temporal Appearance Dynamics
	Temporal Support Dynamics

	Gaussian Process Flow
	Smooth Deformable Flow

	Inference
	Efficient Particle Filtering without Weight Updates
	Single Layer Sampler
	Multiple Layer Sampler

	Experiments
	Implementation Details
	Tracking
	Inferring Layer Order
	Independent Contributions
	Optical Flow

	Discussion
	Future Work

	Parallel Split-Merge MCMC for the DPMM
	Related Work
	Exact and Parallel Instantiated-Weight Samplers
	Restricted DPMM Gibbs Sampler with Super-Clusters
	Deleted Clusters via Restricted Sampling
	Data-Dependent Super-Clusters

	Randomized Split/Merge Moves
	Parallel Split/Merge Moves via Sub-Clusters
	Augmenting the Space with Auxiliary Variables
	Restricted Gibbs Sampling in Augmented Space
	Sub-Cluster Split Moves
	Deferred Metropolis-Hastings Sampling
	Merge Moves with Random Splits

	Non-Deterministic Sub-Cluster Split Proposals
	Experimental Results
	Split/Merge Proposal Comparison
	Parallelizability and Sensitivity to Hyper-Parameters
	Real-World Datasets

	Discussion

	Parallel Split-Merge MCMC for the HDP
	Related Work
	Hierarchical Dirichlet Processes
	Restricted Parallel Sampling in HDPs
	Sub-Topic Fitting
	Sub-Topic Split/Merge Moves
	Local Splits and Merges
	Global Split/Merge Proposals

	Experimental Results
	Visualizing Sub-Topics
	Parallelizability & Convergence
	Associated Press Dataset
	Large Datasets

	Discussion

	Intrinsic Image Decomposition via the SV-DPGMM
	Related Work
	Generative Model
	Relation to DPGMMs

	Posterior Inference
	Iterative Posteriors Inference without Marginalization
	Marginalized Posterior Inference
	Marginalized Split/Merge Posterior Inference

	Parameter Learning
	Supervised Learning
	Unsupervised Learning

	Post-Processing for Color Constancy
	Experimental Results
	Cross-Validation Performance
	Sensitivity to Noise

	Discussion

	Conclusion
	Contributions to Shape Sampling
	Contributions to Probabilistic Mixture Models
	Future Work
	Spatially-Coherent Mixture Models
	Segmentation via Intrinsic Images

	Final Thoughts

	Derivations Pertaining to Shape Dynamics
	Particle Filtering without Weight Updates
	Approximate Marginalization of Independent Flow

	Derivations Pertaining to DPMM Sub-Clusters
	Auxiliary Variable Prior and Posterior Distributions
	Hastings Ratios for Splits
	Hastings Ratios for Merges

	Derivations Pertaining to HDP Sub-Topics
	Calculating the p(beta,z) Distribution
	Deriving the Joint: p(beta,kappa,tau,z)
	Deriving the Conditional p(kappa,tau | beta,z)
	Finding the Prior p(beta,z)
	Notes on p(beta,z)

	Joint Model Likelihoods
	Hastings Ratios for Local Proposals
	Hastings Ratios for Global Proposals

	Derivations Pertaining to SV-DPGMM
	Marginalization of the Gaussian Process
	Marginalization of the Gaussian Process and the Means
	Marginalized Splits and Merges

	List of Symbols
	Bibliography

