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Abstract

This thesis applies time and frequency domain analyses to a high-frequency market
making strategy to study the profitability of liquidity provision over multiple time
horizons from 1964 to 2013. Using daily returns and inside quotes, we provide ev-
idence that widening spreads on the NASDAQ National Market System in the late
1980s and early 1990s were facilitated by implicit pricing agreements amongst secu-
rity dealers. In contrast, we show that regulatory changes, such as decimalization,
and the development of liquidity providing algorithmic trading strategies acted to
narrow spreads and reduce transaction costs. Increasing the focus of our analytical
lens to the intraday level we find that, over the past two decades, market making
profitability has been higher and sensitivity to market turbulence has been lower at
shorter time horizons providing strong incentives for traders to move into higher fre-
quency domains. As an informative example we show that, during the 2010 Flash
Crash, high-frequency realizations of our market making strategy are unaffected by
the rapid market downturn while slower realizations are caught on the wrong side of
markets as prices fall. This last observation leads us to consider a frequency decom-
position of average portfolio returns to characterize the profitability of our trading
strategy at different time horizons. We use this spectral technique to demonstrate
that turbulence or momentum in one frequency band may substantially affect the
profitability of contrarian trading strategies that target a given time horizon while
leaving other strategies relatively unaffected.
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Chapter 1

Introduction

The past couple of decades have been witness to some of the highest periods of

volatility in the history of the stock market. This increase in volatility has inciden-

tally occurred during a major technological and environmental shift in the financial

industry leading many to wonder if and how these effects are related. The advent of

electronic communication networks (ECNs) -- electronic systems that facilitate trading

- has been linked to a steep rise in overall trading volume, causing some to specu-

late that algorithmic trading firms could be the driving force behind the unusually

high market volatility. Shorter investment horizons, higher turnover and an increase

in the complexity of interacting algorithms may well pose a risk to market stabil-

ity. On the other hand, proponents of algorithmic trading argue that lower latency

times and more intelligent trading strategies have increased market liquidity and ef-

ficiency, ultimately acting to mitigate market volatility. Unfortunately, the problem

of determining precisely how technology and new regulations have affected market

conditions has proven difficult, especially in the wake of the dot-com and housing

market bubbles.

This paper will apply time and frequency domain techniques to help untangle the

role technology and regulations have played in shaping recent market events. The

scope of the analysis, ranging from 1964 to 2013, complemented with the laser-like

precision of the mathematical tools employed will enable us to uncover subtle yet

important market shifts. While the analytical tools used in this paper are based
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on very simple trading strategies that are not representative of the statistical arbi-

trage industry as a whole, and a simulation of a more sophisticated set of strategies

would undoubtedly paint a more complex picture, our goal is to expose some of the

fundamental relationships that exist in the marketplace today. Understanding the

connection between technology and market stability has become especially important

as recent events like the 2010 Flash Crash have led many to question the potential

negative impacts algorithmic trading could have on markets. Only by understanding

the interactions of all financial activity will we be able to implement well-designed

regulations that curb the risk of market instability.

1.1 Literature Review

We begin by studying the impact the bid-ask bounce, market liquidity and investor

overreaction have on price reversals at the one-day time horizon. De Bondt and

Thaler (1985) find that when stocks are grouped into winners and losers by their past

three- to five- year returns, the past losers tend to outperform past winners in the

future. They attribute these long-term reversals to irrational investor overreaction

to past information caused by behavioral decision theory biases. Since then, many

other return anomalies across a spectrum of time horizons have been studied and

their causes and significance debated.

At the daily returns resolution, one method the overreaction hypothesis has been

studied involves analyzing stock returns immediately following large price changes.

Brown, Harlow and Ticnic (1988) find significant reversals after large price declines

and provide a rational behavior explanation, the uncertain information hypothesis.

They suggest that in addition to increasing measurable risk, a noisy piece of favorable

or unfavorable news causes risk-averse investors to set stock prices below their condi-

tional expected value. As the uncertainty is resolved, subsequent price changes will

tend to be positive on average. Restricting event studies to one-day price declines of

at least 10 percent, both Bremer and Sweeney (1991) and Cox and Peterson (1994)

also find significant price reversals. Cox and Peterson suggest that much of this price
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reversal can be explained by the bid-ask bounce, and similarly Atkins and Dyl (1990)

find that price reversals following large single day returns are small relative to the

bid-ask spread.

The mechanism for these bid-ask bounce price reversals works as follows. One-day

price declines (increases) are associated with selling (buying) pressure, increasing the

probability that the closing price associated with the last transaction is at a the bid

(ask) price. The larger the magnitude of the price decrease (increase), the larger the

probability that the price is associated with the bid (ask). If, on the next day, selling

and buying pressures re-equilibrate, then the price will have an equal chance of closing

at either the bid or the ask and will, on average, induce a negative autocorrelation in

returns. Moreover, since the inventory risks borne by market makers increase during

large changes in price, spreads may widen in response to thinning liquidity, amplifying

the size of the subsequent bid-ask bounce.

For our daily returns analysis, the availability of closing transaction prices as

well as inside bid and ask quotes for the NASDAQ National Market System (NMS)

securities allows us to study short-term reversals with respect to the bid-ask spread.

If the bid-ask bounce plays an important role in price reversal, then we should expect

that the profits of a simulated contrarian trading strategy designed to take advantage

of negative autocorrelation should 1) be correlated with the size of the percentage

bid-ask spread, and 2) diminish if prices are calculated as the midpoint between the

inside bid and ask quotes. We would also expect these profits to decrease over time

as markets become more liquid due to increased market making competition driven

by advances in alternative trading systems like ECNs.

The adoption of computer technology as well as the implementation of regulatory

changes designed to promote greater transparency and competition have all helped

electronic and algorithmic trading gain popularity over the past couple of decades.

One example of this trend occurred in 1993, when the Professional Trader Rule, a

regulation that barred the high-frequency traders of the day - SOES bandits -- from

trading on the NASDAQ's Small Order Execution System (SOES), was removed.

These professional day traders, who only held positions for a few minutes, were able
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to capitalize on short-term momentum and reversals by having their orders executed

rapidly through ECNs like SelectNet and Instinet. By establishing positions before

the slower market makers could update their quotes, SOES bandits were able trade

within the bid-ask spread. This strategy earned a small average profit per trade, and

would be executed thousands of times per month (Harris and Schultz 1998).

Harris and Schultz (1998) study the source of profits of SOES bandits and find that

the ECNs SelectNet and Instinet were essential to making their strategies profitable.

Their complementary paper (1997) examines the effects of a rule change in January

1994 that reduced the maximum SOES trade from 1000 to 500 shares and finds

little evidence that quoted spreads were subsequently changed. Battalio, Hatch and

Jennings (1997) study the impact SOES bandit trading had on market volatility. As

with today's high-frequency traders, there was concern that SOES bandits, if pursuing

a momentum strategy, could push a stock's price higher when it had been increasing

and depress the price further if it was decreasing. They report that bandits did not

in fact increase volatility, but rather facilitated faster price changes.

Over time, algorithmic trading grew in popularity as the trading environment

continued to evolve in its favor. The reduction of the minimum tick size first from

1/8th to 1/16th of a dollar in 1997 and then to one cent in 2001 spurred innova-

tion in the liquidity provision algorithmic trading sector, as smaller spreads required

more sophisticated techniques to capture profits. The introduction of the Regulation

National Market System (Reg. NMS) in 2007, designed to promote transparency

by requiring trade orders to be posted nationally, further increased the premium

for speed as traders could now profit from momentary price lags between exchanges

(Capgemeni 2012). Catalyzed by advancements in fiber optics and digital processors,

high-frequency traders (HFTs) have profoundly changed market microstructures. To-

day, despite representing only 2% of all trading firms, high-frequency trading (HFT)

in the US accounts for almost 75% of all trades, and the average time a stock is held

has been reduced to 22 seconds (Solman 2012). Looking ahead, the prevalence of HFT

is expected to continue to grow as hedge funds and proprietary trading desks look to

implement these highly profitable trading strategies globally and across various asset
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classes.

A recent paper by Baron, Brogaard and Kirilenko (2012) examined the profitabil-

ity of HFTs and found that an important determinant of a firm's profitability was

its level of liquid provision. Aggressive liquid-taking HFTs, defined as HFT firms

that initiate at least 60% of their trades, were found to be more profitable than

liquid-providing passive HFTs. Similar to some of the literature on hedge funds (Ja-

gannathan, Malakhov and Novikov 2010) but unlike mutual funds (Carhart 1997),

they find that, as a group, HFTs consistently outperform the market.

Of the commonly deployed electronic trading strategies, this paper will focus oii

a form of liquidity providing statistical arbitrage. We simulate the performance of

a short-term mean reversion strategy developed by Lo and MacKinlay (1990) that

involves holding hundreds of securities for very short holding periods (measured in

seconds to days). In doing so we will be able to quantify the systematic decline in the

profitability of long/short equity strategies due to technological advances, environ-

mental changes such as decimalization, and increased market making competition.

The simulated strategy functions by buying recent losers and shorting recent win-

ners. Contrarian trading strategies such as these, in effect, stabilize price swings,

lower volatility, and provide liquidity in the marketplace. Traditionally, market spe-

cialists and dealers, who were compensated through the bid-ask spread, have held this

role of liquidity provider but, as spreads have narrowed, hedge funds and propriety

trading desks employing contrarian-like strategies have stepped in to compete with

market makers. If these strategies do in fact reduce volatility, we should be able to

show that decreasing contrarian trading profitability, caused by increased competition

fueled by technological advancement, corresponds to greater market efficiency, higher

levels of liquidity and lower levels of volatility. Similarly shocks to the system that

cause hedge funds to reduce their risk exposure and withdraw capital from market

making strategies will be marked by periods of increased CTS profitability, wider

bid-ask spreads and higher levels of overall volatility.

If stocks exhibit momentum from sustained buy or sell pressure, then our mean

reversion trading strategy will prove to be unprofitable. Khandani and Lo (2007)
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leverage this fact and simulate a contrarian trading strategy to provide evidence that

unprecedented losses suffered by quantitative hedge funds in the second week of Au-

gust were triggered by the rapid deleveraging of one or more equity market-neutral

portfolios. In their 2011 companion paper, they use 5-minute price level data to

precisely identify the time and location of the unwinds that triggered this "Quant

Meltdown". In a similar spirit, this paper aims to simulate the contrarian trad-

ing strategy to help uncover the role algorithmic trading, technology and regulation

changes have played over the last five decades. The breadth, from 1964 to 2013, and

depth, reaching a one-second price level resolution, of this analysis is unprecedented.

Finally, we modify a spectral analysis technique introduced by Engle (1974, 1978)

and further developed by Hasbrouck and Sofianos (1993) to decompose the simulated

contrarian trading strategy profits by frequency allowing us to determine in what

time horizons these market making strategies earn profits. Our analysis shows that

different trading strategies will be affected by different frequency components of return

autocovariance, and therefore a diversification across frequencies can increase the risk-

adjusted performance of an overall portfolio. For instance, Kirilenko et al. (2011)

show that during the 2010 Flash Crash, HFTs, despite their large share of trading

volume, appear to have operated at such a high speed that they were not affected

by the price momentum or volatility. Intermediaries, on the other hand, traded on a

slower timescale and seem to have been caught on the wrong side of the market as

prices fell.

1.2 A Brief History of the National Market System

In the 1980s and early 1990s the NASDAQ experienced the introduction of real-

time transaction reporting, the expansion of institutional trading systems including

Instinet, increased institutional trading, the establishment and exploitation of the

retail-oriented trading system SOES (Small Order Execution System), and market

maker collusion to maintain artificially wide spreads. This section provides a brief

introduction and history of these developments.
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In February 1982, the National Association of Securities Dealers (NASD) estab-

lished the National Market System (NMS) to provide more comprehensive, real-time

information -- high, low and last sale prices, cumulative volume figures, and bid and

ask quotes -- throughout the day for the most active stocks in the NASDAQ market.

The new reporting rules significantly expanded transaction and price information

available to NASD members, issuers and public investors in NASDAQ NMS securi-

ties. Market makers now had to report the actual price and number of shares in each

transaction within 90 seconds as opposed to the nonreal-time reporting procedures'

for non-NMS stocks. The NMS, which initially started with only 40 securities, had

increased to 1180 of 4723 (25%) NASDAQ securities by the end of 1984 and accounted

for 50% of total NASDAQ trading volume. By 1988, the number of NMS securities

had grown to exceed 3000 and accounted for over 70% of total NASDAQ trading

volume (Kothare and Laux 1995).

In 1984 the NASDAQ also experienced a rapid expansion in Instinet, a system

designed to facilitate the direct trading of institutional stock positions, and conse-

quently, an increase in the presence of institutional traders. In parallel, SOES, a

system designed to allow individual investors to execute small trades quickly and give

them access to similar orders as institutional traders, was developed. At the end of

1984, only 50 securities were listed on the pilot version of SOES.

In response to criticisms of difficulties in executing trades during the stock market

crash of 1987, the NASD required dealers to automatically execute SOES trades via

the NASDAQ computer system. Market makers were also prevented from having

their quotes updated automatically, which provided an opportunity for short-term

professional day traders (SOES bandits) to exploit cross-sectional discrepancies that

arose from stale quotes using rapid buy and sell orders. In 1991, the NASD perceived

this bandit trading as a significant problem to the public's trading costs, arguing

that these trades distorted prices, increased volatility and caused dealers to widen

spreads to compensate for their increased risk, thereby reducing liquidity. They ap-

proached the US Securities & Exchange Comunission (SEC) to expand the definition

'last sales prices and minute-to-minute volume updates were not available.
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of restricted trading on SOES to include more short-term professional traders. These

amendments to the Professional Trader Rule were eventually dismissed in court as

being vague and arbitrary. Overall however, SOES bandits restricted their trading to

the largest and most active NMS stocks and only accounted for 2% of total NASDAQ

volume in 1995 (Kothare and Laux 1995).

Kothare and Laux (1995) find little evidence that the abuse of SOES by day

traders influenced transaction costs, and instead suggest that increased institutional

activity widened bid-ask spreads. They report that bid-ask spreads for NMS stocks

rose sharply (on the order of 100% overall) from the mid-1980s to mid-1990s and

that growth in institutional trading may have created difficult to manage order flow

which ultimately increased market maker inventory risk. They also suggest that

if institutions were privately informed investors, then their growing presence would

have increased dealers' exposure to asymmetric information risk, and consequently,

broadened spreads.

On May 26 and 27, 1994 several national newspapers including the Wall Street

Journal reported the evidence provided by Christie and Schultz (1994a) that market

makers of active NASDAQ stocks were implicitly colluding to maintain wide spreads

by avoiding odd-eighth quotes. In a follow up paper Christie and Schultz (1994b) show

that on Friday May 27, 1994, the average inside spread for Amgen, Cisco Systems, and

Microsoft fell to about $0.15 per share after varying between $0.25 and $0.45 during

the preceding 17 months. A similar reduction in spreads was reported for Apple the

following trading day. The authors find no changes in the cost of market making

and attribute the decrease in transaction costs to a fundamental shift in the use of

odd-eighth quotes and the breakdown of implicit price agreements between dealers.

Market maker competition for order flow was supposed to drive down transaction

costs leading to better execution for investors, however this finding undermines that

premise and leads us to ask: how significant was collusion to increasing spreads

throughout the 1980s and early 1990s? This paper provides evidence that in fact,

market maker collusion and the avoidance of odd-eighth quotes was an important

factor in widening spreads.
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1.3 Dataset

In this thesis we use three sources of data for our analysis. Our daily returns analysis

focuses on all stocks in the University of Chicago's CRSP Database from January

1, 1964 to December 31, 2013. Specifically, we only use US cornmon stocks (CRSP

share code 10 and 11), which eliminates REIT's, ADR's, and other types of securities,

and we drop stocks with share prices below $5 and above $2,000. CRSP occasionally

reports returns and prices that are based on bid-ask quote midpoints and, unless

otherwise specified, these values are filtered out. Transaction prices and inside bid-

ask quotes at each day's close 2 for NASDAQ NMS and Small Cap Market securities

are not reported until November 1, 1982 and June 15, 1992, respectively. Prior to

those dates, NASDAQ security prices are given as the bid-ask quote midpoints and

the quotes themselves are not recorded. Furthermore, the bid quotes are missing for

all NASDAQ NMS securities in February 1986.

All of our intraday returns analysis focuses on the members of the S&P Composite

1500, which includes all stocks in the S&P 500 (large-cap), S&P 400 (mid-cap) and

S&P 600 (small-cap) indexes. Components of the S&P 1500 were based oii mem-

berships of the first day of the month and were obtained from Standard & Poor's

Compustat database via the Wharton Research Data Services (WRDS) platform. To

improve our temporal resolution, we use the NYSE Trade and Quote (TAQ) database.

This database contains intraday transactions and quotes data for all securities listed

on the NYSE, the American Stock Exchange, and the NASDAQ NMS and Small Cap

Market. The dataset consists of the Daily National Best Bids and Offers (NBBO)

File, the Daily Quotes File, the Daily TAQ Master File, and the Daily Trades File.

For the purposes of this thesis, we only use actual trades as reported in the Daily

Trades File. This file includes information such as the security symbol, trade time,

size, exchange on which the trade took place, as well as a few condition and correction

flags. We only use trades that occur during normal trading hours (9:30am to 4:00pm)

and discard all records that have Trade Correction Indicator field entries other than

21
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"00", which signifies a regular trade that was not corrected, changed or canceled. We

also remove all trades that were reported late or out of sequence, according to the Sale

Condition field (entries B, C, G, L, M, N, P, Q, R, S, T, W, Z and/or 9). These filters

have been used in other studies based on TAQ data; see, for example Khandani and

Lo (2011), Christie, Harris and Schultz (1994) or Chordia, Roll and Subrahmanyam

(2001). See the TAQ documentation for further details.
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Chapter 2

Contrarian Trading Strategy

For the daily returns analysis, we simulate a specific strategy - first proposed by

Lehmann (1990) and Lo and MacKinlay (1990) -which we apply directly to US equi-

ties and subsets of US equities (e.g., stocks that trade primarily on the NYSE). Given

a collection of M securities, consider a long/short equity market-neutral strategy con-

sisting of an equal dollar amount of long and short positions. At each rebalancing

interval, the long positions consist of "losers" (underperforming stocks, relative to

the equal-weighted market average) and the short positions consist of "winners" (out-

performing stocks, relative to the same market average). Specifically, if wi[n] is the

portfolio weight of security i at date n, then,

Will] = 1 ('r-i n - k] - rmLnn - k]), (2.1)M

rMIn - k] = > rin - k] (2.2)
i=1

for some k > 0.

Note that the portfolio weights are the negative of the degree of outperformnance k

periods ago, so each value of k yields a somewhat different strategy. For our purposes,

we set k = 1 period, where the length of each period will depend on the context (e.g.,

daily vs. intraday returns analysis). By buying the previous period's losers and selling

the previous period's winners at the onset of each period, this strategy actively bets
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on mean reversion across all M stocks and profits from reversals that occur within the

subsequent interval. For this reason, this strategy has been called "contrarian" as it

benefits from market overreaction and mean reversion (i.e., when underperformance

is followed by positive returns and outperformance is followed by negative returns).

By construction, the weights sum to zero and therefore the strategy is considered

a "dollar-neutral" or "arbitrage" portfolio. Accordingly, the weights have no natural

scale since any constant multiple of the weights will also sum to zero. In practice,

however, the return of such a strategy over any finite interval is easily calculated as

the profit-and-loss of that strategy's positions over the interval divided by the capital

required to support those positions. Under Regulation T, the minimum amount of

capital required is one-half of the total capital invested (often stated as 2:1 leverage,

or a 50% margin requirement) and therefore the unleveraged (Reg T) portfolio return,

r,[n] is given by:

Al

1w [n]ri[n]
rI[n] = [n(23)

I [n] = 2 w [n]j. (2.4)
i=1

Since the portfolio weights are proportional to the differences between the equal-

weighted market index and the returns, securities that deviate more positively from

the market at time n - k will have a greater negative weight in the time n portfolio,

and vice-versa. This means the strategy bets on greater or more certain price rever-

sals following large price changes. Such a strategy is designed to take advantage of

negative serial autocorrelation, but Lo and MacKinlay (1990) show that, if returns

are positively cross-autocorrelated, then a contrarian investment strategy can also

yield positive profits.

For the intraday returns analysis, we apply a similar contrarian trading simulation

to transactions data from November 1, 1994 to December 31, 2012 for the stocks in the

S&P 1500 universe. This high-frequency mean reversion strategy has been simplified

relative to the daily returns analysis to improve computational robustness and is
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based on buying losers and selling winners over lagged r-second returns, where we

vary m from 15 to 1800 seconds. Specifically, each trading day is broken into non-

overlapping M-second intervals, aid during each m-second interval we construct a

long/short dollar-neutral portfolio that is long those 80 stocks with returns that rank

lowest (dropping the 5 lowest) over the previous m-second interval, and short those

80 stocks with returns that rank highest (dropping the 5 highest) over the previous

m-second interval. Stocks are equal-weighted, and no overnight positions are allowed.

The value of the portfolio is then calculated for the next m-second holding period,

and this procedure is repeated for each of the non-overlapping m-second intervals

during the day. We always use the last traded price in each m-second interval to

calculate returns, and so the first set of prices for each day are the prices based on

trades just before 9:30am plus M seconds, and the first set of positions are established

at 9:30am plus 2,m seconds. We only use those transactions that occur during normal

trading hours, and discard all trades that are reported late, out of sequence, or have

a non-zero correction field (see section 1.3 for further details).

2.1 Expected Profits

Making minor modifications to the profitability analysis developed by Lo and MacKin-

lay (1990), we can estimate the fraction of the expected contrarian trading strategy

profits due to the cross-covariance versus the autocovariance of returns. Rearranging

Eq. (2.3), letting 7i[n] = ri[n]/Ik[n] and taking expectations yields the following:

17'f 1 1 1 Al
E[A,[n]] = A MTr(k) -- >3(/ - Jim) (i -- fT) (2.5)

i=1

where pi = E[ri[n]], £m = E[in]], fi = E[i [n]], , = E[ m[n] ] and f k (i, J)

E[r [n '] [n - k]] - E[r [nI] ]E [ [nI - A]]. Similar to the derivation in Lo and MacKinlay

(1990), E[r,[n]] can be decomposed into three terms: one (Qk) that depends only on

cross-covariance terms, a second (Ok) that depends only on autocovariance terms, and
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a third [o2(f)] that is independent of the auto- and cross-covariances. Specifically,

E[rp[n]] = ± Ok - 2( ) (2.6)

where

~~ 1 Ok -M-1 2 1
Ck = 1 f2 kl -trif k)] 6(M2 tr(Fk) a 2Ck M M

(2.7)

In Appendix A we show how to derive the sampling theory for the estimators Ck, Ok,

and .2

2.2 A Model of Returns

As in Khandani and Lo (2011), suppose that stock returns satisfy the following simple

linear multivariate factor model:

ri[n] = pi + ijv[n] + Ai[n] + rji[n], (2.8)

Ai[n] = OjAj[n - 1] - Ei[n]+ E i[n - 1], 0? C (0, 1), (2.9)

v[n] = pv[n - 1] + ([n], p E (-1, 1), (2.10)

where 7/i [n], Ei [n], and ([n] are white-noise random variables that are uncorrelated at

all leads and lags.

The impact of random idiosyncratic supply and demand shocks is represented by

Fi[n], the variance of which, oj, is representative of the width of the bid-ask spread.

Notice that Eq. (2.9) is an ARMA(1,1) process and exhibits negative autocorrelation

to capture the mean reversion generated by market making activity such as the bid-ask

bounce, as in Roll (1984), and market maker inventory rebalancing, as in Hasbrouck

and Sofianos (1993). Additionally, decreasing the parameter Oi increases the speed of

mean reversion and is representative of less persistence in buying/selling pressures.

Mean reversion or momentum in the market common factor, v[n], is captured
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by the parameter p when it is less than or greater than zero, respectively. Note

that this model does not consider idiosyncratic autocorrelation induced from stock-

specific fluctuations, r/i[n], which are unrelated to liquidity or common factors (e.g.,

stock specific investor overreaction or under reaction followed by a correction).

By changing the variances of our white noise random variables, we can change the

relative importance of market making activity to informational shocks with respect

to price movements in stock i. For example, increasing the power in Ej[rT] could be

representative of wider spreads and decreased liquidity, while increasing the variance

of ([n] would increase the importance of common factor turbulence. Changing the

variance of l i['u] would not change the expected profits of the contrarian trading

strategy since it is not cross or serially correlated with returns at any leads or lags,

but would substantially increase the volatility of the strategy's returns if AI, the

number of stocks, were small. We shall see that both cases, where liquidity and

common factors dominate, significantly affect contrarian trading profitability in our

daily and intraday returns analysis.

Lo and Khadani (2011) show that the expected one-period profit of Eq. (2.3) with

k = and without the norrmalization of I[T] is given by,

M -1 1 1- 2
E[r _ _ IA1 07 - p72 U2 (0) _o(p), (2.11)

where /3 and p are (M x 1)-vectors representing the collection of ),'s and wi's,
respectively.

When p > 0 and there is dispersion in 3, then the momentum in the common

factor causes a decrease in contrarian trading profits. In our subsequent analysis,

we shall see that the common factor contribution is usually dorrminated by the irmar-

ket making component, in part because narket neutrality ensures that profits remain

largely insulated from common factor effects. In certain cases, when market pressures

build (e.g., in the event of a large factor unwind), then this termn can overwhelm the

liquidity term and drive profits negative. If however p < 0, then the negative autocor-

relation in the common factor contributes positively to expected profits. Assuming
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9'(1t) ~ 0, then the expected profits will be unambiguously positive as the strategy

always benefits from the nean reversion induced by market making activity.
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Chapter 3

Daily Returns Analysis

In this section, we summarize the contrarian trading strategy's historical performance

over the past five decades as an interesting and informative case study of how market

making activity can alter price dynamics. Panel A of Fig. 3-1 illustrates the average

daily returns of the contrarian strategy when applied to stocks sorted into NYSE and

NASDAQ NMS portfolios by their CRSP exchange code identifier. Between 1983 and

1988, the average daily returns for the NASDAQ NMS portfolio increased from -0.67%

to 1.64% while the NYSE portfolio remained relatively unchanged and unprofitable.

Throughout the late-1980s and early-1990s the profitability of the contrarian strategy

remained just below 2% for NMS stocks, until 1995 when it began to gradually decay

towards 0% over the next decade. During the 2008 financial crisis and the ensuing

downturn, profitability for the strategy again increased to about 0.7% for NMS stocks

but remained relatively flat for NYSE stocks.

Panel B of Fig. 3-1 decomposes the average contrarian trading profits of the NMS

portfolio into its autocorrelation and cross-correlation components as explained in Eq.

(2.6). We notice the autocorrelation term is almost exclusively responsible for changes

in profitability over time which suggests that profits are driven either by market mak-

ing activity (e.g., a larger bid-ask bounce due to wider spreads) or by common factor

negative serial autocorrelation. In Panel C, to test the common factor hypothesis, we

plot both the one-day autocorrelation of equal-weighted NMS returns (Pmrkt) -- which

can be considered a proxy to a market information common factor - as well as the
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cross-sectional mean of individual security return one-day autocorrelations (i). We

see that initially, contrarian profits are negatively correlated with the idiosyncratic

autocorrelation, and less closely related to the market autocorrelation, suggesting

that the liquidity provision term in Eq. (2.11) is dominant and driving profitability.

During the 2008 financial crisis and thereafter, contrarian profits appear to be more

closely related to market autocorrelation suggesting that the common factor term in

Eq. (2.11) began to play a relatively more substantial role in determining expected

profits.

Tables 3.1 and 3.2 show that the composition of the NMS portfolio, in terms of

number of stocks and average market capitalization, rapidly changes over its first

couple of years in existence. Initially, only the most active NASDAQ stocks had their

recent trade and volume data relayed electronically on the NMS. Between 1983 and

1985 the composition of the NMS changed as less actively traded stocks were added,

causing the contrarian profitability during this period to rise. By 1986 the number of

stocks as well as the average market capitalization had stabilized, suggesting that the

subsequent rise and fall in contrarian profitability was related to other factors. Table

3.1 also reports the strategy's annualized Sharpe ratio relative to a 0% risk-free rate

as a simple measure of the strategy's expected return per unit of risk. As mentioned

in Khandani and Lo (2007), some of these Sharpe ratios may seem unrealistically

high, but it should be kept in mind that we have not incorporated the formidable

transaction costs required to rebalance each stock daily. However, if these returns

are capturing the bid-ask spread through liquidity provision, it is reasonable that a

dampened form of these returns could have been attained by market making statistical

arbitrage strategies given the economics of price discovery. Finally, we note that

the increase in average daily returns for the NMS portfolio around 2008 occurred

simultaneously with an increase in the strategy's volatility. The earlier period of

high profitability during the late 1980s and early 1990s did not have this feature,

suggesting alternative mechanisms were driving returns in the two periods.
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Figure 3-1: Year-by-year average daily returns of Lo and MacKinlay's (1990) con-
trarian trading strategy applied to all US common stocks (CRSP share codes 10 and
11) and exchange-sorted subsets with share prices above $5 and less than $2,000 from
January 1, 1964 to December 31, 2013 (Panel A). Decomposition of contrarian NMS
portfolio profits into autocovariance and cross-covariance components (Panel B). Id-
iosyncratic and market autocorrelation estimates over the same time interval (Panel
C).
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3.1 Bid-Ask Spreads and Even-Eighth Quotes

To determine what features of the market microstructure were driving changes in

liquidity provision profitability, we analyze the characteristics of the inside spread

and quotes. Panel A of Fig. 3-2 applies the contrarian strategy to three market

capitalization tercile subsets of the NMS portfolio and Panel C shows the cross-

sectional average of their percentage bid-ask spreads. The small cap stocks generally

exhibit larger spreads relative to their prices, and this spread is translated into larger

contrarian strategy profits. From these two panels, it appears the dynamics causing

negative autocovariance in the returns of NMS stocks are directly related to the width

of the percentage bid-ask spread. By implementing the same contrarian strategy

on individual stock returns that have been calculated using inside bid-ask averages

instead of transaction prices we see, in Panel B, that the profitability for all subsets

substantially decreases. Finally, in absolute terms, Panel D shows that the average

bid-ask spread is in fact similar across all three market cap terciles except during the

financial crisis when increased market making costs induced wider spreads, especially

for the thinly traded small cap stocks. Unlike the financial crisis, the wide spreads

seen in the early 1990s did not occur during a period of historically high market

volatility leading us to ask: what drove the widening of spreads, and consequently

the increased contrarian trading strategy profits, post-1987, and moreover, why did

they decrease in the mid-to-late 1990s?

To shed light oii these questions we turn to Christie and Schultz (1994) and

Christie, Harris and Schultz (1994) who provide evidence that market makers of active

NASDAQ stocks were implicitly colluding to maintain wide spreads by avoiding odd-

eighth quotes. Fig. 3-3 compares the fraction of even-eighth and odd-sixteenth inside

bid-ask quotes and transaction prices for our market-cap tercile NYSE and NMS

portfolios. To prevent clutter, we leave out the fraction of odd-eighth quotes as it can

be calculated before 2001 as one minus the fraction of even-eighth and odd-sixteenth

quotes'. Since the characteristics of both bid and ask quotes are nearly identical,

'In 2001, both NYSE and NASDAQ switched to decimalization making odd-eighth and odd-
sixteenth quotes unattainable. Also note that both exchanges changed their minimum price varia-
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Figure 3-2: Year-by-year average daily returns of the contrarian trading strategy
applied to US common NASDAQ NMS market capitalization terciles with share prices
above $5 and less than $2,000 from January 1, 1983 to December 31, 2013 (Panel A).
Same analysis as in Panel A except using the mean of the inside bid and ask quotes

instead of transaction prices to calculate daily stock returns (Panel B). Cross-sectional

average of percentage bid-ask spread (Panel C) and bid-ask spread (Panel D) over
the same time interval.

they have been plotted together. For the small cap NMS portfolio, the fraction of

even-eighth quotes initially rises from 0.65 to 0.74, and may be explained by the

rapidly changing composition of the NMS as less actively traded stocks were added

to the system. Between 1989 and 1993, a period in which the number of stocks in

the NMS had become relatively stable, the fraction of even-eighth quotes increased

further from 0.75 to 0.85! Post-1994, perhaps due in part to the publication of the

Christie and Schultz findings, the fraction of even-eighth quotes started to decline but

remained well above the value of 0.5 that would be expected in an efficient market

tions to from eighths to sixteenths of a dollar for all stocks in 1997.
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where the distribution across even and odd quotes is uniform. Once sixteenths were

introduced in 1997, the fraction even-eighth eighth quotes continued to decline to

about 0.5 but remained well above the new efficient market value of 0.25. Post-

2001, after decimalization had been introduced, the fraction of even-eighth quotes

dropped rapidly towards its efficient market value of 0.04 but even then there was

some latency in the decline. In fact, for the small cap NMS stocks there was a slight

preference for even-eighth quotes during the 2008 financial crisis. The same general

pattern can be seen across each market cap-based NMS portfolio and is consistent

with the result shown in Fig. 3-2 where average bid-ask spreads, in absolute terms,

were approximately equal across each tercile. Panel B shows that the pattern is

roughly the same for transaction prices with slightly smaller values for the fraction

of even-eighth prices during the initial period.

Panels B and D show the case for the NYSE cap-based terciles. A continuous

series of bid and ask quote data are not available on CRSP for these stocks until

December 28, 1992, and so we focus our attention on the transaction price data

noting that, where the bid and ask quote data are available, the results are similar.

Starting in 1982, the fraction of even-eighth prices is 0.58, which is already much

closer the expected efficient market value of 0.5. Over the next 14 years the fraction

of even-eighth prices declines gradually and almost linearly to 0.53 in 1996. In 1997,

the NYSE changed its minimum price variation from eighths to sixteenths of a dollar

and almost immediately by 1998 the fraction of even-eighths decreased to 0.33 and

the fraction of odd-sixteenths increased to about 0.4, close to their efficient market

values of 0.25 and 0.5, respectively. This is in sharp contrast to the pattern of slow

adoption of odd-sixteenths seen in the NMS subsets. Post-2001, once decimalization

was introduced, the fraction of even-eighths again dropped sharply toward its efficient

value of 0.04, but similar to the NMS portfolios, there was some latency in this decline.

A higher fraction of even-eighths in both quotes and transaction prices, delays in

integrating new price levels, as well as a larger profitability of the liquidity providing

contrarian strategy all provide evidence of inefficient market making dynamics in the

NMS relative to the NYSE. Competition for order flow amongst market makers was
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Figure 3-3: Year-by-year cross-sectional average of the fraction of even-eighth inside
quotes within US common NASDAQ NMS and NYSE market capitalization terciles
with share prices above $5 and less than $2,000 from January 1, 1983 to December
31, 2013 (Panels A and B respectively). Same analysis as in Panels A and B except
applied to transaction prices instead of inside quotes (Panels C and D, respectively).

designed to encourage tighter spreads, however a seemingly implicit agreement to offer

only even-eighth quotes would have maintained the bid-ask spread to a minimum

of $0.25, driving up profits for liquidity providers. Perhaps part of the reason for

the widening spreads was due to increased market making risk associated with the

growing presence of institutional trading as described in Kothare and Laux (1995).

Or maybe institutional traders found trading in even-eighths more efficient and were

directly responsible for the rise in even-eighth quotes and transaction prices. It does

appear though, that the avoidance of odd-eighth quotes was in place even before

institutional trading was a significant fraction of the volume on the NMS. Moreover,
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abuse of the retail trading system SOES is also unlikely to explain the full extent of

these widening spreads seen across all market cap cross-sections as the professional

day traders limited their trading activity to the most active NMS stocks.

One question that, due to limitations in our dataset, we cannot conclusively an-

swer is whether the avoidance of odd-eighth fractions was facilitated by the real-time

reporting procedures of the NMS or if it was prevalent amongst all NASDAQ securi-

ties. Prices for non-NMS NASDAQ stocks prior to June 15, 1992 are recorded in our

dataset as the mean of the inside bid-ask quotes and the quotes themselves are not

recorded. Post June 15, 1992 these securities adopted a similar real-time transaction

reporting scheme to the NMS securities making a direct comparison uninteresting.

For both NMS and non-NMS NASDAQ securities, we looked at the average of inside

bid and ask quotes noting that a greater fraction of odd-eighth quotes would translate

into a greater prevalence of odd-sixteenth midpoints. The similarity between the two

exchanges, as seen in Fig. 3-4, and the overall scarcity of odd-sixteenth midpoints

provides partial evidence that the tendency to avoid odd-eighth quotes was not lim-

ited to the NMS. Note that the rapidly growing and changing composition of the

NMS through the inclusion of less actively traded stocks is likely the cause of the

initial decrease in the fraction of odd-sixteenth midpoints in Panel A.

In 1994, the tendency for NMS market makers to avoid odd-eighth quotes, the

width of the average inside spread and the profitability of the contrarian strategy all

started to decline. A breakdown of implicit pricing agreements amongst market mak-

ers may well have been triggered by the negative publicity surrounding the Christie

and Schultz (1994) findings. Indeed, the follow up paper by Christie, Harris and

Schultz (1994) reported that the average inside spread for Amgen, Cisco Systems,

and Microsoft fell to about $0.15 per share after varying between $0.25 and $0.45

over the preceding 17 months. Competition from non-traditional market makers also

played a role in narrowing spreads across all market cap-based NMS portfolios as

hedge funds and proprietary trading desks, attracted by wide spreads and the effi-

ciency afforded by electronic trading networks, injected enormous amounts of liquidity

into the market. These new entrants would have traded within the even-quoted spread
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Figure 3-4: Year-by-year cross-sectional average of the fraction of odd-sixteenth inside
bid-ask quote midpoints within US common NASDAQ NMS (Panel A) and NASDAQ
non-NMS (Panel B) market capitalization terciles with share prices above $5 and less
than $2,000 from January 1, 1983 to December 31, 2003.

in an effort to attract more order flow leading to the eventual collapse of any implicit

pricing agreements that may have existed amongst traditional market makers. Fi-

nally, we highlight the small resurgence in the preference for even-eighth quotes for

small cap NMS stocks during the 2008 financial crisis. This observation suggests that

market makers may default to a limited subset of quotes to widen spreads in response

to thinning liquidity and increased inventory and asymmetric information risks.
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Chapter 4

Intraday Returns Analysis

Having documented the historical behavior of market making profits for daily returns,

we now turn our attention to intraday returns by applying a similar analysis to the

transactions dataset from November 1, 1994 (the first month after the launch date of

the S&P 600) to December, 31, 2012 for stocks in the S&P 1500 universe.

Fig. 4-1 plots the 5-day moving average of the daily returns of the simplified

mean reversion strategy described in chapter 2 with non-overlapping, 600-second (10

minute) intervals for both NYSE and NASDAQ subsets of stocks. Dates that cor-

respond to important shifts in these returns are also labeled and correspond to the

following events:

1. June 2, 1997: NASDAQ changes its minimum tick size from 1/8th to 1/16th of

a dollar.

2. June 24, 1997: NYSE changes its minimum tick size from 1/8th to 1/16th of a

dollar.

3. January 29, 2001: NYSE changes its minimum tick size from 1/16th to 1/100th

of a dollar.

4. April 9, 2001: NASDAQ changes its minimum tick size from 1/16th to 1/100th

of a dollar.

5. September 11, 2001: September 11 terrorist attacks.

41



6. July 19, 2002: Stock-market downturn of 2002 related to the information tech-

nology bubble.

7. August 6, 2007: Quant Meltdown.

8. March 14, 2008: Bear Stearns suffers one-day loss of -47.4%.

9. October 6, 2008: Start of the worst week for the stock market in 75 years.

10. May 6, 2010: Flash Crash.

11. August 8, 2011: Stock markets fall due to fears of contagion of European

sovereign debt crisis.

10
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Figure 4-1: 5-day moving average of the daily returns of the mean reversion strategy
with non-overlapping, 600-second intervals applied to exchange-sorted portfolios from
November 1, 1994 to December 31, 2012.
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Events 1 to 4 all correspond to market environment changes, where the nmninum

price variation (i.e., tick size) decreased. After each of these events, the average

daily contrarian returns decreased indicating there had been a substantial reduction

in the idiosyncratic mean reversion effect most likely due to a narrowing of spreads

and a subsequently smaller bid-ask bounce. Note that, as documented in the daily

returns analysis, the NASDAQ stocks show a gradual decline in contrarian trading

profitability after their switch from eighths to sixteenths. As we discussed earlier,

a strong bias towards even-eighth quotes hindered the adoption of odd-sixteenths in

NASDAQ markets and led to a more gradual decrease in inside spreads. Over the

next couple of years, this inefficiency appears to have been corrected as both NYSE

and NASDAQ stocks show rapid decreases in profitability following their switch from

sixteenths to decimalization in January and April 2001, respectively.

Throughout the 1990s and early 2000s, the profitability of the contrarian strategy

applied to both NYSE and NASDAQ subsets consistently declined with the excep-

tion of a pair of increases in profitability caused by widening spreads following the

September 11 terrorist attacks and the stock-market downturn of 2002. In fact, the

fastest prolonged decay in profitability occurred between 1997 and 1999, a time when

ECNs and algorithmic trading were rapidly growing in popularity. As we mentioned

in the previous section, these advances enabled non-traditional market makers in the

form of hedge funds and proprietary trading desks to compete with traditional mar-

ket makers, adding enormous amounts of liquidity and narrowing the width of the

bid-ask spread.

The monotonous downward trend in profitability during the mid-2000s was abruptly

interrupted by the Quant Meltdown of 2007. This substantial deviation from the his-

torical trend was marked by a sudden period of large losses followed by an equally

rapid stabilization. The unprecedented nature of the losses helps to explain why so

many previously consistently profitable quant funds were caught so severely exposed.

As David Vinlar, Chief Financial Officer of Goldman Sachs said: "We were seeing

things that were 25-standard deviation moves, several days in a row" (Thal Larsen,

2007). Khandani and Lo (2007, 2011) provide evidence that this steep decline in
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contrarian profits was triggered by the deleveraging of long/short equity positions

ultimately causing the momentum in the common factor term in Eq. (2.11) to over-

whelm the historically profit-generating market making activity term.

From 2008 to 2010, the pattern of profitability is highly variable and, on average,

higher than in the previous period. The uncertainty surrounding financial markets

in the wake of the housing bubble and the ensuing credit crisis increased volatility,

reduced liquidity and widened spreads. In fact, as we saw in Fig. 3-3, some mar-

ket makers reverted to their preference of even-eighth quotes as a means to widen

their spreads, however, unlike their implicit price agreements in the early 1990s, this

was in response to increased inventory and asymmetric information costs. As mar-

kets eventually stabilized, so did the profitability of the contrarian strategy until the

Flash Crash of 2010 again caused liquidity to be withdrawn from the market. Heal-

ing occurred over the subsequent year until uncertainty surrounding the European

sovereign debt crisis again drove contrarian profits up to levels where they have more

or less remained the past couple of years.

To obtain a better sense of the performance of the mean reversion strategy across

different time horizons, Fig. 4-2 plots the 250 trading-day moving average of nor-

malized profits, risk and profits per unit risk for various values of m. In Panel A,

the leverage of each strategy is altered such that they are all initially equally prof-

itable which enables us to clearly visualize the evolution of their relative performance.

Panel A demonstrates that the profitability of the longer, m = 30 min, time horizon

strategy declines at a faster rate relative to the m = 5 and 10 min time horizon

strategies between 1995 and 2003. Over the subsequent half decade the relative rates

of decay are reversed as each strategy converges towards 0. This is consistent with

the idea that non-traditional market makers were initially able to profit at longer

time horizons and, as profit margins at these frequencies narrowed and technology

improved, sought out profits in higher frequency domains. Panel B normalizes the

risk, measured as the sampled standard deviation, such that one unit of risk is equiv-

alent to the initial standard deviation of the m = 30 min trading strategy leveraged

according to Panel A. Panel C plots the profitability from Panel A divided by the risk
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Figure 4-2: 250 trading day moving average of the contrarian strategy's daily returns

for various time horizons (m) from November 1, 1994 to December 31, 2012 normalized

so that each strategy's profits are initially equal (Panel A). The risk of each strategy

described in Panel A is normalized such that the m = 30 min strategy initially holds

one unit of risk (Panel B). The profit per unit risk for each strategy (Panel C).

in Panel B and shows that the longer time horizon strategies could only achieve the

same average profitability as the shorter time horizon strategies by accepting higher

levels of risk. The risk gap between the shorter and longer time horizon strategies

in Panel B remained relatively constant throughout the entire sample period except

during intervals marked by increased market instability. Turbulence and uncertainty

surrounding the September 11, 2001 terrorist attack, 2002 stock market downturn

and 2008 financial crisis impacted the volatility of the lower frequency strategies to

a greater degree than they impacted the higher frequency strategies. This insulation
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from market instability combined with the opportunity for substantially larger profits

provided strong incentives for traders to shorten the time horizon of their strategies,

ultimately leading to the development of today's HFT industry.

4.1 Analysis of the May 6, 2010 Flash Crash

In this section we increase the magnification of our analytical lens by another order

of magnitude, and focus on the events of May 6, 2010, and compare them to those

of August 2007. Panel A of Fig. 4-3 provides the minute-by-minute profitability of

the contrarian trading strategy with m = 60 seconds during the 2010 Flash Crash

applied to stocks within the S&P 1500 universe. Panel B shows the average daily

returns of the contrarian trading strategy with m = 600 seconds applied to the same

same universe of stocks during the 2007 Quant Meltdown. What is remarkable is

the similarity in returns between these two market dislocations, despite the order of

magnitude difference in time horizon (m = 60 seconds vs. m = 600 seconds) and the

time-scale over which they last (minutes vs. days).

The SEC and US Commodity Futures Trading Commission (CFTC) joint report

(2010) on the Flash Crash states that, even before the crash, May 6th was an unusually

turbulent day for markets and that, by early afternoon, negative market sentiment

was already affecting the volatility of some securities. The profitability of the short-

term mean reversion strategy seen in Panel A of Fig. 4-3 started to rise around 1:45

pm ET in response to the increasing volatility and trading activity. To interpret

this pattern, recall that the mean reversion strategy provides immediacy by buying

losers and selling winners every m seconds. As positions were being deleveraged,

the price for immediacy presumably increased, resulting in higher profits for market

making strategies such as ours (recall from Eq. (2.11) that expected returns rise when

the speed of mean reversion, parameterized by Oi, increases). Easley et al. (2011)

show that one hour prior to the Flash Crash, the stock market recorded its highest

reading of order flow toxicity - a measurement of adverse selection in the marketplace

- in recent history. This increase in toxicity may be one factor that induced some
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Figure 4-3: Minute-by-minute returns of Lo and MacKinlay's (1990) contrarian trad-
ing strategy with m = 60 seconds applied to S&P 1500 stocks during the Flash Crash
of May 6, 2010 (Panel A). Average daily returns of the same strategy with m = 600
seconds applied to S&P 1500 stocks during the Quant Meltdown of August 2007
(Panel B).

participants to withdraw from the market, reducing liquidity. A similar pattern is

seen in Panel B in the weeks leading up to August 6, 2007. Khandani and Lo (2011)

provide evidence that in the weeks leading up to the Quant Meltdown long/short

equity positions were being unwound which would have similarly increased the price

for immediacy, inducing higher profits for market making strategies such as ours.

The SEC and CFTC go on to report that at 2:32 pm ET, amid thinning liquidity

and unusually high volatility, "a large fundamental trader (a mutual fund complex)

initiated a sell program to sell a total of 75,000 E-Mini S&P 500 contracts (valued at

approximately $4.1 billion) as a hedge to an existing equity position." Within minutes,
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HFT firms and other traders, began quickly buying and re-selling the long futures

positions, with an overall effect of driving the E-mini S&P 500 down approximately 3%

in just four minutes from 2:41 pm to 2:44 pm which soon spilled over into the equities

market. As seen in Panel A of Fig. 4-3, the return of our mean reversion strategy

turned sharply negative, which is consistent with the large and sustained negative

pressure that was placed on security prices. Again, the same pattern can be found

during the Quant Meltdown, however over a longer time horizon and sustained over

days rather than minutes. The cause of the sharp decline in this case was likely caused

by the unwind of large quant factor subsets causing other hedge funds employing

similar strategies to deleverage to mitigate losses, yet inducing the unfortunate effect

of prolonging the unwind. While the exact cause of the Flash Crash is still debated,

what is clear is that, in both these cases, complex market connections fostered the

right conditions to create a positive feedback loop of sustained negative returns. Some

form of toxicity reduced liquidity in the marketplace and, while markets were in this

fragile state, the right stimulus caused the system to fail.

The joint report states that, at 2:45:33 pm, prices stabilized shortly after trading

on the E-Mini was paused for five seconds when the Chicago Mercantile Exchange Stop

Logic Functionality was triggered in order to prevent further price declines. During

that time buy and sell interest was allowed to recalibrate and a normal price discovery

process was restored. In the aftermath of the Flash Crash, contrarian trading strategy

profits remained elevated relative to their recent historical average and it was not for

a few days that new capital began to flow into the market to take advantage of

opportunities created by the dislocation. Similarly, by Tuesday, August 14, 2007 the

supply/demand imbalances during the Quant Meltdown returned to relatively normal

levels, and market making capital began to flow back to take advantage of the higher

profits.

Fig. 4-4 shows the minute-by-minute returns of the contrarian strategy applied to

the S&P 1500 stocks for n = 15, 30 and 60 seconds. The one-minute returns of the

m < 60 second trading strategies are calculated by summing their returns within each

one-minute interval. Between 2:41 and 2:45:27 pm ET, the S&P 500 SPR exchange
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Figure 4-4: Minute-by-minute returns of Lo and MacKinlay's (1990) contrarian trad-
ing strategy with m -15, 30 and 60 seconds (Panels A, B and C, respectively) applied
to S&P 1500 stocks during the Flash Crash of May 6, 2010.

traded fund suffered a decline of over 6%, the momentum of which was translated into

substantial losses for the m = 60 second contrarian strategy. The higher frequency

contrarian strategies suffered less severely, and in fact, Panel C shows the m = 15

second strategy was completely unaffected by the contemporaneous market losses

during this period. This observation is consistent with the findings of Kirilenko et

al. (2011) who show that, during the 2010 Flash Crash, HFTs, despite their large

share of trading volume, appeared to operate at such a high speed that they were not

affected by the price level or volatility. Intermediaries, on the other hand, traded on

a slower timescale and were caught on the wrong side of the market as prices fell.
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Chapter 5

Spectral Analysis

Fig. 4-4 from the previous chapter demonstrates that the contrarian strategy has

different risk-reward characteristics across different holding periods. To further un-

derstand this observation we develop a spectral analysis technique that can be used to

decompose any portfolio's average return into its frequency components. The discus-

sion closely parallels Engle (1974, 1978), Hasbrouck and Sofianos (1993) and Baron,

Brogaard and Kirilenko (2012), however we make a novel modification to their anal-

ysis to make it applicable to weights and returns. We go on to relate this spectral

analysis as an extension of Lo's (2008) active/passive (AP) decomposition.

Fourier transform representations of portfolio returns provide us with a more direct

characterization of time horizon effects. Simply put, once two time series are expressed

in terms of their frequency components, it becomes possible to decompose their cross-

moment into the contributions from different frequencies. Since expected returns can

be approximated by the cross-moment of weights and returns, spectral analysis can

be applied directly'. The Discrete Fourier Transform (DFT) is used to extract the

frequency components of the weight and return time series. If the weights and returns

are in phase at a given frequency, the contribution that frequency makes to the average

portfolio return is positive. If they are out of phase, then that particular frequency's

contribution will be negative.

'This expression is an approximation because it ignores the effect of compounding. The error is
typically small, especially for short holding periods
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For a stock i held in a portfolio from times n = 0, ..., N - 1, the average weighted

one-period return can be calculated as:

N-1

wiri = N wi [n]ri [n], (5.1)
n=O

where wi[n] is the weight and ri[n] is the return of the ith stock at time n. This

calculation is equivalent to the one formed from the N-point DFT:

w N-1 
1 N-1

wiri = Z Wi[k]R*[k] Nk
k=O k=O

where the asterisk (*) denotes complex conjugation, Re denotes taking the real com-

ponent of a complex number, and Wi[kj and Ri[k] are the N-point DFT coefficients

of wi[n] and ri[n] respectively. The last equality follows because the imaginary com-

ponents sum to 0 (see Appendix B.1 for details). If we consider M stocks, the average

one-period portfolio return is simply:

M MI N-1

EW2iri N 2  1 Re(W,[k]R*[k]). (5.3)
i=1 i=1 k=O

In this form, the contribution to the average one-period portfolio return by the fre-

quency fk = k/(NT,), where k E 0, ..., N - 1 and T, is the length of time of one

period, is clearly visible. Note that Re(Wi[k]R*[k]), for k E 1, ..., N - 1, is symmetric

about k = N/2 and that values of k closer to N/2 correspond to higher frequen-

cies. The value at k = 0 is the lowest (DC) frequency and, as we show in Appendix

B.3, is computationally equivalent to the "Passive Component" defined in Lo (2008).

Moreover, the higher frequency components correspond to a further decomposition

of Lo's "active component", allowing us to visualize the profitability of different time

horizon strategies employed by a portfolio manager. Similar to the "active /passive"

(AP) decomposition, if the weights or returns are being sampled at a lower frequency

than the weights are being changed, then the decomposition will be biased due to a

phenomenon known as aliasing.
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5.1 Some Numerical Examples

In this section, we apply spectral analysis to the numerical example portfolios de-

scribed in Lo (2008) to provide intuition for the frequency decomposition and to

illustrate its connection with Lo's active and passive components. First, consider a

portfolio of two assets, one which yields a monthly return that alternates between 1%

and 2% (Asset 1) and the other which yields a fixed monthly return of 0.15% (Asset

2). Let the weights of this portfolio, called Al, be given by 75% in Asset 1 and 25% in

Asset 2. Table 5.1 illustrates the dynamics of this portfolio over a 12-month period,

where the expected return of the

to the DC frequency (k = 0).

Table 5.1: The expected return of
component.

portfolio is 1.1625% per month, all of which is due

a constant portfolio depends only on the DC (k = 0)

Miontn w1

1
2
3
4
5
6
7
8
9
10
11
12
Mean:

k =1,=0

1.1625% 0%

75%
75%
75%
75%
75%
75%
75%
75%
75%
75%
75%
75%
75%

Til W2  T2
Strategy Al

1.00% 25% 0.15%
2.00% 25% 0.15%
1.00% 25% 0.15%
2.00% 25% 0.15%
1.00% 25% 0.15%
2.00% 25% 0.15%
1.00% 25% 0.15%
2.00% 25% 0.15%
1.00% 25% 0.15%
2.00% 25% 0.15%
1.00% 25% 0.15%
2.00% 25% 0.15%
1.50% 25% 0.15%

Frequency decomposition of r-
11 k=2,10 k =3,9 k=4,8

0% 0% 0%

rp

0.7875%
1.5375%
0.7875%
1.5375%
0.7875%
1.5375%
0.7875%
1.5375%
0.7875%
1.5375%
0.7875%
1.5375%
1.1625%

k =5,7

Now consider portfolio A2, which differs from Al only in that the portfolio weight

for Asset 1 alternates between 50% and 100% in phase with Asset l's returns which

alternates between 1% and 2% (see Table 5.2). In this case, the total expected return

is 1.2875% per month, of which 0.1250% is due to the positive correlation between the
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portfolio weight for Asset 1 and its return at the shortest-time horizon (i.e., highest

frequency).

Table 5.2: The dynamics of the portfolio weights are positively correlated with returns
at the shortest time horizion, which adds value to the portfolio and yields a positive
contribution from the highest frequency (k = 6).

Month w, r1 w 2  r 2  rp
Strategy A2

1 50% 1.00% 50% 0.15% 0.5750%
2 100% 2.00% 0% 0.15% 2.0000%
3 50% 1.00% 50% 0.15% 0.5750%
4 100% 2.00% 0% 0.15% 2.0000%
5 50% 1.00% 50% 0.15% 0.5750%
6 100% 2.00% 0% 0.15% 2.0000%
7 50% 1.00% 50% 0.15% 0.5750%
8 100% 2.00% 0% 0.15% 2.0000%
9 50% 1.00% 50% 0.15% 0.5750%
10 100% 2.00% 0% 0.15% 2.0000%
11 50% 1.00% 50% 0.15% 0.5750%
12 100% 2.00% 0% 0.15% 2.0000%
Mean: 75% 1.50% 25% 0.15% 1.2875%

k =0 k =1,11
Frequency decomposition of -

k=2,10 k=3,9 k=4,8 k =5,7 k=6
1.1625% 0% 0% 0% 0% 0% 0.1250%

Finally, consider a third portfolio A3 which also has alternating weights for Asset

1, but exactly out of phase with Asset l's returns. When the return is 1%, the

portfolio weight is 100%, and when the return is 2%, the portfolio weight is 50%.

Table 5.3 confirms that this is counterproductive as Portfolio A3 loses 0.1250% per

month from its highest frequency component, and its total expected return is only

1.0375%.

Note that in all three cases, the DC components (k = 0) are identical at 1.1625%

per month because the average weight for each asset is the same across all three port-

folios. The only differences among Al, A2, and A3 are the dynamics of the portfolio

weights at the shortest time horizon, and these differences give rise to different values

for the highest frequency component. As shown in Appendix B.3, the contribution

from the DC frequency is computationally equivalent to Lo's passive component and
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Table 5.3: The dynamics of the portfolio weights are negatively correlated with returns
at the shortest time horizion, which subtracts value from the portfolio and yields a
negative contribution from the highest frequency (k = 6).

Month w, rI w 2  'r2  ,
Strategy A3

1 100% 1.00% 0% 0.15% 1.0000%
2 50% 2.00% 50% 0.15% 1.0750%
3 100% 1.00% 0% 0.15% 1.0000%
4 50% 2.00% 50% 0.15% 1.0750%
5 100% 1.00% 0% 0.15% 1.0000%
6 50% 2.00% 50% 0.15% 1.0750%
7 100% 1.00% 0% 0.15% 1.0000%
8 50% 2.00% 50% 0.15% 1.0750%
9 100% 1.00% 0% 0.15% 1.0000%
10 50% 2.00% 50% 0.15% 1.0750%
11 100% 1.00% 0% 0.15% 1.0000%
12 50% 2.00% 50% 0.15% 1.0750%
Mean: 75% 1.50% 25% 0.15% 1.0375%

Frequency decomposition of 7-
k 0 k = 1, 11 k = 2, 10 k = 3, 9 k = 4,8 k = 5, 7 k= 6
1.1625% 0% 0% 0% 0% 0% -0.1250%

contributions from higher frequencies (k > 0) sum to Lo's active component. These

higher frequency contributions can be interpreted as the portion of the active corn-

ponent that arises from a given time horizon.

5.2 Analytical Result of a Simple MA(1) Model

Now suppose that stock returns are i.i.d and satisfy the following simple MA(1) model:

ri[n] = E&[n] + AEj [n - 1] (5.4)

where the Ei [I] are serially and cross-sectionmally uncorrelated white-noise random

variables with variance oa.

So far we have shown how to calculate the spectral representation of a portfolio's

average return for a finite sample of observations. Here we calculate the population
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analog, called the cross-spectrum, for the simple stochastic process described in Eq.

(5.4). If we simplify the contrarian trading strategy described in Eq. (2.3) so that

we do not normalize by I[n]2 and set k = 1, then the expected one-period portfolio

return is:
1

E[r,] = -AO2 (1 - ) (5.5)
M

We see that profits are proportional to both the mean reversion factor A as well as

the variance of the underlying stock returns. To construct the cross-spectrum for each

security, Iu.(w), we take the Fourier transform of the cross-covariance function:

002

W ()Cov(ri[n], wi[n - l])e-iwl- = (I - 1 )(Aei 2 + (1 + A2)ew + A).
MMI=-oo

(5.6)

As with the sample cross-spectrum, we notice that the imaginary components at

complementary frequencies (e.g., w {-7/4, 7r/4}) are equal in magnitude and op-

posite in sign, so we can define the spectral representation of each security's expected

one-period weighted return as the real component of Eq. (5.6):

Re('Iwr.(w)) =? (1 - )(Acos(2w) + (1 + A2 )cos(W) + A). (5.7)
Al M

The expected one-period portfolio return can be recovered by summing over the

expected weighted return of each security which is itself equivalent to the average

value of Eq. (5.7) over a continuous interval of 27.

M1

E[r,] = 21 Re(Aw.,(w)) dw -Au(1 - ), (5.8)

Note that the general form of Eq. (5.8) is the population analog to Eq. (5.3).

Fig. 5-1 plots the real component of the cross-spectrum for A = -0.4- (mean

reversion), 0 (serially uncorrelated) and 0.4- (momentum). In Panel A we can un-

derstand why the lower frequency contributions are negative by recalling that the DC

2 This is done to make the analytical result tractable and exact.
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Figure 5-1: Spectral analysis of the contrarian trading strategy applied to serially un-
correlated (Panel A), mean reversion (Panel B) and momentum (Panel C) realizations
of Eq. (5.4).

Al
component of Eq. (5.3) is equal to w-j Ti. Since returns are uncorrelated, if Tj is

i=1
negative (positive), then 'w, will tend to be positive (negative) due to the contrarian

aspect of the trading strategy. Their product will therefore be negative. Similarly,

the highest frequency's contribution is positive because, if ri[n] has significant power

in that frequency (i.e., it randomly has reversions in that frequency) then, because

of the nature of the contrarian trading strategy, so will wi [TI]. These high-frequencies

components [see Eq. (B.26)] will tend to be in phase leading to an overall positive
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contribution. We also notice that the positive contributions from the high frequencies

and the negative contributions from the low frequencies cancel and so, for this model

of serially and cross-sectionally uncorrelated returns, the average profitability of the

contrarian trading strategy is 0.

Panels B and C of Fig. 5-1 show spectral analysis applied to contrarian trading

profits for mean reverting and momentum returns. For the mean reversion case we

notice that, relative to the serially uncorrelated case, both the lowest and highest

frequencies are more profitable, while the middle frequencies remain approximately

unchanged. Furthermore, the integral over all frequency components, and therefore

the overall profitability, is positive. The momentum case is the opposite. Relative

to the serially uncorrelated case, both the lowest and highest frequencies are less

profitable, the middle frequencies remain approximately unchanged, and the integral

over all frequency components is negative.

Now suppose that in each of the above cases, the standard deviation of the white

noise variable doubles (e.g., a widening of the inside spread). In this case, the contri-

bution to the average portfolio return from each frequency quadruples.

5.3 Diversification Across Time Horizons

For quantitative strategies like the contrarian trading strategy where we are investing

at a particular time horizon, we may consider diversifying not only across assets but

also across the frequency components of trading strategies. We know from chapter 4

that, in general, operating at a higher frequency earns higher returns and therefore

time horizon diversification will result in smaller returns. What we learned in section

4.1 was that market dislocations can be isolated to certain frequency bands, and

therefore, contrarian trading profits across multiple frequencies need not be strongly

correlated during market dislocations. Since these time horizon specific strategies

can be run contemporaneously, they can be viewed as separate assets with varying

risk-reward characteristics and correlations. One could then optimize the expected

profit of a portfolio that held these frequency dependent assets for a given variance
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and risk-related measures.

Fig. 5-2 shows the frequency decomposition of each strategy's profits averaged

over the entire two decade time period. We notice that most of the profits for each

strategy are isolated to a band around the targeted frequency, and therefore are most

sensitive to changes in the idiosyncratic mean reversion at that frequency. Therefore,

as was demonstrated for the Flash Crash in section 4.1, an increase in momentum

at one frequency could substantially impact the profitability of one trading strategy

while leaving another unaffected.

0

_0

ca

1.5

1

0.5

0

-0.5

1
0 0.05 0.1 0.15 0.2 0.25 0.3

Frequency [min-1]

0.35 0.4 0.45

Figure 5-2: Frequency contributions to yearly average of daily profits for various
contrarian strategies with different time horizons averaged over 1994 to 2012.

If one considers each frequency's (or frequency band's) contribution an asset with

its own time-varying mean, variance and covariance with other frequencies within

the same and across other trading strategies, then each strategy could be thought

of as representing a portfolio of "frequency assets". These parameters could then be

59

m=1 min
m=2 min
m=5 min

- -II

0.5
-



estimated using the spectral analysis technique described herein, however to increase

efficiency and accuracy a method of directly estimating the variances and covariances

of these frequency assets would have to be developed. One could then apply the

optimization techniques from modern portfolio theory to combine various trading

strategies to efficiently manage risk at various time horizons. Another method would

be to consider each trading strategy as a separate time-series of returns and use

spectral analysis to estimate how the profitability and variance at a given frequency

band would change as a function of portfolio allocation. These diversification across

frequency applications require further analysis and will be the focus of future research.
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Chapter 6

Conclusion

In this thesis we applied time and frequency domain analyses to contrarian trad-

ing profits to help untangle the role regulations, market environment and technology

played in shaping recent market events. In particular, this strategy enabled us to

study the profits of liquidity provision since, by buying recent losers and selling re-

cent winners, we were effectively able to capture profits from the bid-ask spread

by transforming the negative autocorrelation from market making activity (e.g., the

bid-ask bounce) into positive returns. Moreover, by studying this profitability over

multiple decades and time horizons we were able to characterize gradual changes to

the market microstructure from increased competition to traditional market makers

and also rapid shifts in price dynaiics from market dislocations and new regulations.

We began by studying Lo and MacKinlay's (1990) contrarian trading strategy

when applied to the daily returns of exchange sorted portfolio subsets. The large

rise and subsequent decline in profitability when the strategy was applied to the

subset of NASDAQ NMS securities throughout the 1980s and 1990s was in sharp

contrast to the flat, near-zero returns delineated by the NYSE subset. The source

of these profits stemmed from the percentage bid-ask spread which widened and

narrowed in tandem with the NMS profits. We found evidence that market makers

were implicitly colluding, across all sizes of NMS stocks, to offer only even-eighth bid-

ask quotes thereby maintaing at least a $0.25 spread in an effort to increase profits

at the expense of larger transaction costs for investors. Competitive pressure from
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the entry of non-traditional liquidity providers in the form of algorithmic traders

willing to offer odd-eighth quotes to earn a greater share of order flow seems to

have reduced the profitability of these inefficient practices. New regulations requiring

stocks to be traded in sixteenths and then hundredths of a dollar also helped to

narrow inside spreads - however, the rate of adoption of new price levels was slower

for the NMS compared to the NYSE consistent with the premise of greater market

maker inefficiency.

Next, to improve temporal resolution and study changes to markets as traders be-

gan to operate at faster time-scales, we applied the contrarian strategy to minute-level

intraday holding periods again sorting securities by their primary exchange. For both

NASDAQ and NYSE subsets there was a general downward trend in the profitability

of our mean reversion strategies driven by increasing levels of liquidity. Increased

market making competition, advances in algorithmic trading and the introduction of

smaller minimum price variations all contributed to the gradual decline in profitabil-

ity which was frequently interrupted by liquidity shocks and market dislocations. By

reducing the length of the holding period we found that profitability increased and

sensitivity to market instability decreased providing strong incentives for traders to

move into higher frequency domains.

Increasing the focal strength of our time domain analysis by another order of

magnitude, we analyzed the minute-by-minute contrarian trading profits during the

2010 Flash Crash and compared it to the 10 min holding period returns of the same

strategy during the 2007 Quant Meltdown. The similarity of these time-series led us to

conclude that while the event-specific details and time-scales of these two dislocations

were different, the nature of their underlying causes were similar. In both cases,

complex market connections fostered the right conditions to create a positive feedback

loop of sustained negative returns. Some form of toxicity reduced liquidity in the

marketplace and, while markets were in this fragile state, the right stimulus caused

the system to fail. As prices stabilized, liquidity providers that were able to remain

solvent earned large profits and eventually market making capital flowed back into

the system. By decreasing the holding period of the contrarian strategy from minutes
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to seconds we found that profitability was no longer adversely affected by the sudden

and widespread market losses that occurred during the Flash Crash. This suggests

that very high frequency traders were unaffected by the market downturn while slower

traders were been caught on the wrong side of the market as prices fell.

This last observation led us to consider a frequency domain analysis of profits.

We developed a spectral analysis technique that extended Lo's (2008) active/passive

decomposition into frequency specific components and enabled us to characterize the

profitability of a trading strategy at different time horizons. An analytical analysis

of a simple MA(1), i.i.d returns model showed that the profitability of the contrar-

ian strategy was greatest around its holding period and weakest around the DC (i.e.

long-term, passive) frequency. This suggests that turbulence or momentuni in one

frequency band may substantially affect the contrarian strategies whose holding peri-

ods target those frequencies, while leaving shorter holding period strategies relatively

unaffected. This presents a plethora of diversification across frequencies applications

that we hope to explore in future work.
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Appendix A

Sampling Theory for Ck, 0 k, and

To derive the sampling theory for the estimators CA and Ok, we reexpress them as

averages of artificial time series and then apply standard asymptotic theory to those

averages. For details on the required assumptions we refer the reader to Appendix 2

to in Lo and MacKinlay (1990).

Let Ck[n] and Ok[n] be the following two time series:

I Al

C ] = rm[n]'r m [ - k] - /mim - Z(r],]i[n - k] - /ii7) (A. 1)

M 12
M -- 1

Ok[n] -( M2 ) (ri[n]ji[n - k] - (A.2)
i=1

where ,j and jm are the usual sample means of the returns to security i and the

equal-weighted market index, respectively, and fi and frnm are their normalized return

(,r[n] = ri[r]/I[n]) counterparts. Then the estimators Ck, Ok, and ,2 (f) are given
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1 N-1

N- (k +i 1) n]
n=k+1

1 N-i
Ok N-(kZ+) Ok[n]

n=k+1

Z(I - [m) i- m )-

66

by,

Ck= (A.3)

(A.4)

(A.5)



Appendix B

Spectral Analysis Relations

In this Appendix, we provide proofs for the main spectral analysis relations in the

thesis.

B.1 Frequency Decomposition of the Cross-Moment

If x1[n] and x 2 [n] are two real-valued time-series defined on n = 0,..., N

that,

1, show

LnrX2[rI] =\I

N-I

X1 [k]X*[k]
k=0

N2

N-1

Z Re
k=0

(X 1 [k]X* [k])

where X 1 [k] and X 2 [k] are the N-point DFT coefficients of x1 [n] and x2[n] respectively.

Specifically,

N-I

Xi [k] Z Xi Tle
n-0

AT~ 1

j 27rk11
N 0 < k

Cj 27fkflx.[n] = Xi[k]e N 0
k=O

Proof: Let X3[rI] = 2[((-n))N], for TI 0..

K

< N - 1 (B.2)

TI< N - 1. (B.3)

1, where the notation ((k))N

represents the modulus of k after division by N. Also let y~n] be the N-point circular
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convolution of xi [n] and x3 [n], or more specifically,

N-1

y[n] = EXI[m]X3[((n- m))N-
m=O

Evaluating y[n] at n = 0 we find that,

N-1

y[0] E Xi[n]X3[((O- m))N]
m=O

N-1

=jxiirm]x2 [m].
m=O

Similarly, in the frequency domain, we find that,

Y [k] = X1[k]X 3 [k]

=X1[k]X*[k],

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

where in the last step we used the fact that x2 [n] is real and the N-point DFT of

X [((-n))N] is equal to Xp [k]. Using Eq. (B.3), we see that,

N-i

y[0] EZ Y[k]
k=O

1N-I

N X1 [k]X*[k]
k=O

N-i

k=O

(B.9)

(B.10)

(B.11)

Where in the last step we noticed that y[] is real and so the imaginary components

of XI[k]X*[k] must sum to 0. Finally, we achieve the desired result by equating Eq.

(B.6) and Eq. (B.11), and multiplying both sides by an extra factor of N-1.

B.2 Symmetry in Spectral Analysis

Show that Re(Xi[k]X * [k]), for k = 1, ... ,N - 1, is symmetric about N/2
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Proof: From Eq. (B.2) we know that for k = 0, ... , N - 1,

N-I
2 , N-Ak) n

X1[N - k] Zx[n]ej N (B.12)
TI=O

N-I
*2,, (N -k)i

X*[N - k] Lx[n] N- (B.13)
n=O
N-I

= a>[n] e2 N (B.14)
n=O

= , X[k], (B.15)

where, is the second step, we used the fact that the complex conjugate is distributive

under complex addition. Similarly, we find that X*[k] = X2[N - k] for k =(, ... , N -

1. Putting it all together and using the fact that the complex conjugate is also

distributive over complex multiplication we find that for 0 < k < N - 1,

X1 [k]X*[k] = (X 1 [N - k]X*[N - k])* (B.16)

Re(X[k]X*[k]) = Re(XI[N - k]X2*[N - k]). (B.17)

From Eq. (B.17) it becomes clear that Re(X[k]X*[k]), for k = 1, ... , N - 1, is

symmetric about N/2. Therefore it is sufficient to consider only frequencies where

0 < k < [N] when performing spectral analysis.

B.3 Time Horizon Extension of the AP Decomposi-

tion

Show that Lo's (2008) passive component (VP) is computation ally equivalent to the DC

component from the spectral analysis and that his active component (OP) is equivalent

to the sum of contributions from higher frequencies.

Lo (2008) shows how to decompose the average portfolio return (-) into an active
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component (M5) and a passive component (vp). The value of 6p is attributed to active

management, as it estimates the profitability of the portfolio manager's conscious de-

cision to buy, sell, or avoid a security by aggregating the sample covariances between

the portfolio weights, wi[n], and security returns, ri[n]. In particular, if a manager

has, on average, positive weights when security returns are positive and negative

weights when returns are negative, this implies positive covariances between portfolio

weights and returns, and will have a positive impact on the portfolio's average return.

In effect, the covariance term captures the manager's timing ability, asset by asset.

The non-DC component contributions to trading profits decompose this covariance

term further, by calculating the profitability of different time horizons employed by a

trading strategy. Fourier analysis first deconstructs the weights and returns into their

various frequency components. At each frequency, if the weights and returns are in

phase (i.e., peaks and valleys coincide), then that time horizon's contribution to the

average portfolio return will be positive. If the two signals are out of phase, then that

particular frequency's contribution will be negative. As we show show in Eq. (B.24),

the sum of all contributions made by non-DC frequencies across all assets is 6P.

The other source of profitability that must be added to 6p to get the average

portfolio return is vp, which has nothing to do with asset timing, but arises instead

from the manager's average position in a security. Lo labels this contribution "passive"

and, as shown in Eq. (B.20), it is equivalent to the DC component's contribution to

trading profits. Specifically,

VP = )-, T-,, (B.18)

where
1N-1 N-1

i = E wi[n], 5 = ri[n]. (B.19)
n=O n=O

Similarly, in the frequency domain, the contribution to the average portfolio return

from the DC component can be calculated as,

1 M Al

N Re(Wi[0]R[0]) =3w, r7 = vp, (B.20)
=Ni=1

70



where we used Eq. (B.2) to find that,

N-1 N-1

W1 [0] = E w n] = Nw1 , R*J0] = ri [T] = N7i. (B.21)
n=O n=o

It is now trivial to prove the active component portion of this proposition,

6 - - up (B.22)

-1 N 1 Al

N 2 S E Rc(Wj [k] R[k]) - vp (B.23)
k=O i=1

N-1 Al

NE ER(WI[k] R*[k]) (B.24)
k=1 i=1

We end this section by providing some intuition for the time horizon interpretation

of the frequency decomposition and its relation to Lo's active component. If we take

the inverse transform of W[k] and Ri[k], restricted to a single frequency k, and denote

these single frequency reconstructions as i [n] and ij [n], then the sum of their real

and imaginary component cross-moments is equal to that frequency's profitability.

Specifically if,

2, kn1 j2
it,[n] Wi[k] c N 1[n] -Ri~k~c N 0 < n < N - 1, (B.25)

N N

then,

N-1

1 Re(,&i [T] ) Re []) + Im(t>V[n])Im n]) = 2 Rc(Wi[k]R*[k]). (B.26)
n =0

Eq. (B.26) explicitly shows that the contribution from the kth frequency is equivalent

to the cross-moment between weights and returns restricted to that time horizon. This

interpretation is analogous to that of Lo's AP decomposition and can be considered

the restricted frequency version of Eq. (B.1). Finally, we note that this analysis

can be restricted to a subset of frequencies to determine the profitability of a band

of time horizons. If the kth frequency is included in the band then so should the
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N - kth frequency since they have the same time horizon (remember that the highest

frequency is at N/2). Furthermore, their contributions complement each other since

they are complex conjugates and their imaginary components cancel (see Appendix

B.2 for more details).

72



References

Atkins, A. B., & Dyl, E. A. (1990). Price reversals, bid-ask spreads, and market
efficiency. Journal of Financial and Quantitative Analysis, 25(04), 535-547.

Baron, M., Brogaard, J., & Kirilenko, A. (2012). The trading profits of high fre-
quency traders. Working Paper.

Battalio, R. H., Hatch, B., & Jennings, R. (1997). SOES trading and market volatil-
ity. Journal of Financial and Quantitative Analysis, 32(2).

Bremer, M., & Sweeney, R. J. (1991). The Reversal of Large Stock Price Decreases.
The Journal of Finance, 46(2), 747-754.

Brown, K. C., Harlow, W. V., & Tinic, S. M. (1988). Risk aversion, uncertain
information, and narket efficiency. Journal of Financial Economics, 22(2),
355-385.

Capgemini. (2012). High Frequency Trading: Evolution and the Future.

Carhart, M. M. (1997). On persistence in mutual fund performance. The Journal
of finance, 52(1), 57-82.

Chordia, T., Roll, R., & Subrahmanyam, A. (2001). Market liquidity and trading
activity. The Journal of Finance, 56(2), 501-530.

Christie, W. G., & Schultz, P. H. (1994). Why do NASDAQ Market Makers Avoid
Odd-Eighth Quotes?. The Journal of Finance, 49(5), 1813-1840.

Christie, W. G., Harris, J H., & Schultz, P. H. (1994). Why Did NASDAQ Market
Makers Stop Avoiding Odd-Eighth Quotes?. The Journal of Finance,49(5),
1841-1860.

Cox, D. R., & Peterson, D. R. (1994). Stock Returns following Large One?Day
Declines: Evidence on Short?Term Reversals and Longer?Tern Performance.
The Journal of Finance, 49(1), 255-267.

De Bondt, W. F., & Thaler, R. (1985). Does the stock market overreact?. The
Journal of finance, 40(3), 793-805.

Engle, R. F. (1974). Band spectrum regression. International Economic Review,15(1),
1-11.

Engle, R. F. (1978). Testing price equations for stability across spectral frequency
bands. Econometrica: Journal of the Econometric Society, 869-881.

Harris, J. H., & Schultz, P. H. (1997). The importance of firn quotes and rapid
executions: Evidence from the January 1994 SOES rules changes. Journal of
Financial Economics, 45(1), 135-166.

73



Harris, J. H., & Schultz, P. H. (1998). The trading profits of SOES bandits. Journal
of Financial Economics, 50(1), 39-62.

Hasbrouck, J., & Sofianos, G. (1993). The trades of market makers: An empirical
analysis of NYSE specialists. The Journal of Finance, 48(5), 1565-1593.

Jagannathan, R., Malakhov, A., & Novikov, D. (2010). Do hot hands exist among
hedge fund managers? An empirical evaluation. The Journal of Finance ,65(1),
217-255.

Khandani, A. E., & Lo, A. W. (2007). What happened to the quants in August
2007?. Journal of Investment Management, 5(4), 5-54.

Khandani, A. E., & Lo, A. W. (2011). What happened to the quants in August 2007?
Evidence from factors and transactions data. Journal of Financial Markets,
14(1), 1-46.

Kirilenko, A., Kyle, A. S., Samadi, M., & Tuzun, T. (2011). The flash crash: The
impact of high frequency trading on an electronic market. Manuscript, U of
Maryland.

Kothare, M., & Laux, P. A. (1995). Trading costs and the trading systems for
NASDAQ stocks. Financial Analysts Journal, 42-53.

Lehmann, B. N. (1990). Fads, martingales, and market efficiency. The Quarterly
Journal of Economics, 105(1), 1-28.

Lo, A. (2008). Where Do Alphas Come From?: A New Measure of the Value of
Active Investment Management. Journal of Investment Management, 6(2), 1-
29.

Lo, A. W., & MacKinlay, A. C. (1990). When are contrarian profits due to stock
market overreaction?. Review of Financial studies, 3(2), 175-205.

Roll, R. (1984). A simple implicit measure of the effective bid-ask spread in an
efficient market. The Journal of Finance, 39(4), 1127-1139.

Securities and Exchange Commission. (2010). Findings regarding the market events
of May 6, 2010. Report of the Staffs of the CFTC and SEC to the Joint Advisory
Committee on Emerging Regulatory Issues.

Solman, P. (2012). Fictional Thriller Tackles Dangers of High-Frequency Trading
[video]. PBS Newshour.

Thal Larsen, P. (2007). Goldman Pays the Price of Being Big. Financial Times,
August 13.

74




