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Abstract

We study the role of partial flexibility in large-scale dynamic resource allocation
problems, in which multiple types of processing resources are used to serve multiple
types of incoming demands that arrive stochastically over time. Partial flexibility
refers to scenarios where (a) only a small fraction of the total processing resources
is flexible, or (b) each resource is capable of serving only a small number of demand
types. Two main running themes are architecture and information: the former asks
how a flexible system should be structured to fully harness the benefits of flexibility,
and the latter looks into how information, across the system or from the future, may
critically influence performance.

Overall, our results suggest that, with the right architecture, information, and
decision policies, large-scale systems with partial flexibility can often vastly outper-
form their inflexible counterparts in terms of delay and capacity, and sometimes be
almost as good as fully flexible systems. Our main findings are:

1. Flexible architectures. We show that, just like in fully flexible systems, a large
capacity region and a small delay can be achieved even with very limited flexi-
bility, where each resource is capable of serving only a vanishingly small fraction
of all demand types. However, the system architecture and scheduling policy



need to be chosen more carefully compared to the case of a fully flexible system.

(Chapters 3 and 4.)

2. Future information in flexible systems. We show that delay performance in a

partially flexible system can be significantly improved by having access to pre-

dictive information about future inputs. When future information is sufficient,
we provide an optimal scheduling policy under which delay stays bounded in

heavy-traffic. Conversely, we show that as soon as future information becomes

insufficient, delay diverges to infinity under any policy. (Chapters 5 and 6.)

3. Decentralized partial pooling. For the family of Partial Pooling flexible architec-

tures, first proposed and analyzed by [84], we demonstrate that a decentralized

scheduling policy can achieve the same heavy-traffic delay scaling as an optimal

centralized longest-queue-first policy used in prior work. This demonstrates

that asymptotically optimal performance can be achieved in a partially flexible

system with little information sharing. Our finding, which makes use of a new

technical result concerning the limiting distribution of an M/M/1 queue fed by

a superposition of input processes, strengthens the result of [84], and provides

a simpler line of analysis. (Chapter 7.)

Thesis Supervisor: John N. Tsitsiklis

Title: Clarence J. Lebel Professor of Electrical Engineering



Acknowledgments

First and foremost, I would like to thank my doctoral advisor, Professor John
N. Tsitsiklis. There are no words adequate in expressing how instrumental Professor
Tsitsiklis has been in my development as a researcher as well as a person, nor how
grateful I am to having him as my advisor. It is only my hope that this dissertation
marks the beginning of a new journey of interaction, collaboration, and learning.

I would like to thank Professors Bruce Hajek and Devavrat Shah for serving on my
thesis committee, and for their feedback at various stages of my dissertation research.
Special thanks go to Professors David Gamarnik and Devavrat Shah: even though
I have not had the opportunity to work with them, we have had many interactions
and discussions throughout the years, and they have been incredibly supportive of
me in many way.

I have had the fortune to collaborate with a number of researchers during my
doctoral study, and I would like to thank them all: Professors Carri W. Chan, Mor
Harchol-Balter, Shie Mannor, and Joel Spencer, Doctors Christian Borgs, Jennifer
T. Chayes, and Madhu Sudan, and Sherwin Doroudi.

I would like to thank the administrative staff at the Laboratory for Informa-
tion and Decision Systems (LIDS) for their help, especially Jennifer Donovan, Brian
E. Jones, and Debbie Wright. I want to say a special thank-you to Lynne R. Dell,
who has been so patient, helpful, and supportive over the years.

Life at LIDS and MIT would not be the same without the student community. I
would like to thank the members of SyNDeG and SPPIN, as well as other students in
LIDS and ORC, for their friendship and enthusiasm. Special thanks go to Professors
Mihalis Markakis and Yuan Zhong, who have survived countless research discussions
and counseling sessions. I would also like to thank my friends at the MIT Graduate
Student Council (GSC), as well as the MIT Ballroom Dance Team.

This dissertation has been supported by a number of research funds and fellow-
ships, which I would like to acknowledge: the MIT Jacobs Presidential Fellowship,
MIT-Xerox Fellowship, Siebel Foundation, MIT-RLE Claude E. Shannon Fellow-
ship, and National Science Foundation grants CCF-0728554, CMMI-0856063, and
CMMI-1234062.

Last, but not least, I would like to thank my parents, Xu Kangjie and Wu Yufang,
for their love and support. I owe my deepest gratitude to them.



Dedicated to my parents, Xu Kangjie and Wu Yufang.



Contents

1 Introduction 17

1.1 Main Themes: Architectures and Information . . . . . . . . . . . . . . . 21

1.2 Related Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Organization of the Report . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Models and Notation 30

2.1 Multi-Server Multi-Type Queueing Model with Flexible Servers . . . . 30

2.2 Two Ways to Distribute Flexibility . . . . . . . . . . . . . . . . . . . . . 35

2.3 N otation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Queueing System Architectures with Limited Flexibility 40

3.1 Introduction ......................................... 41

3.1.1 Motivating Applications ..... ....................... 44

3.1.2 Related Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 M odel and M etrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Queueing Model and Interconnection Toplogies . . . . . . . . . 47

3.2.2 Performance Metrics ........................ . 50

3.3 Main Results: Capacity and Delay Performance for Flexible Architec-

tures ....... ....................................... 52

7



. . . . . . . . . . . . . . . . . . . . . . . . . . 5 6

3.3.2 Random Graph Architectures . . . . . . .

3.3.3 Modular Architectures ...........

3.3.4 Expanded Modular Architectures . . . . .

3.4 Proofs of Main Results . . . . . . . . . . . . . . .

3.4.1 Proof of Theorem 3.5 . . . . . . . . . . . .

3.4.2 Proof of Theorem 3.7 . . . . . . . . . . . .

3.4.3 Proof of Theorem 3.8 . . . . . . . . . . . .

3.4.4 Proof of Theorem 3.9 . . . . . . . . . . . .

3.4.5 Proof of Theorem 3.11 . . . . . . . . . . .

3.5 Summary and Future Research . . . . . . . . . .

The Random Graph Architecture

4.1 Virtual Queue and the Scheduling Policy . . . .

4.2 Arrivals to the Virtual Queue ...........

4.3 Mode Transitions and Service Rules . . . . . . .

4.3.1 Modes and Actions of the Virtual Queue

4.3.2 States and Actions of Physical Servers. .

4.4 Dynamics of the Virtual Queue . . . . . . . . . .

4.4.1 Inter-arrival Time Statistics . . . . . . . .

4.4.2 A Breakdown of Service Times . . . . . .

4.4.3 Probability of Assignment Success . . . .

4.4.4 Service Time Statistics . . . . . . . . . . .

4.4.5 Delay Bound for the Waiting Time in the

4.5 Proof of Theorem 3.6 . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . 56

. . . . . . . . . . . . . 60

. . . . . . . . . . . . . 63

. . . . . . . . . . . . . 66

. . . . . . . . . . . . . 66

. . . . . . . . . . . . . 67

. . . . . . . . . . . . . 67

. . . . . . . . . . . . . 75

. . . . . . . . . . . . . 76

. . . . . . . . . . . . . 78

81

. . . . . . . . . . . . . 81

. . . . . . . . . . . . . 84

. . . . . . . . . . . . . 85

. . . . . . . . . . . . . 85

. . . . . . . . . . . . . 88

. . . . . . . . . . . . . 90

. . . . . . . . . . . . . 91

. . . . . . . . . . . . . 91

. . . . . . . . . . . . . 94

. . . . . . . . . . . . . 102

Virtual Queue . . . 103

. . . . . . . . . . . . . 105

8

4

3.3.1 Preliminaries



5 Queueing with Future Information

5.1 Introduction .............................

5.1.1 Variable, but Predictable .............

5.1.2 Admission Control Viewed as Resource Alloca

5.1.3 Overview of Main Contributions .........

5.1.4 Related Work ......................

5.1.5 Organization of the Chapter . . . . . . . . . . .

5.2 M odel and Setup . . . . . . . . . . . . . . . . . . . . . .

5.2.1 System Dynamics . . . . . . . . . . . . . . . . .

5.2.2 Initial Sample Path . . . . . . . . . . . . . . . .

5.2.3 Diversion Policies .................

5.2.4 Performance Measure ..................

5.3 Summary of Main Results ................

5.3.1 Optimal Delay for Online Policies . . . . . . .

5.3.2 Optimal Delay for Offline Policies . . . . . . .

5.3.3 Policies with a Finite Lookahead Window ...

5.4 Interpretations of 7 FNOB . . . . . . .. . . . . . . . .

5.4.1 Stack Interpretation ...................

5.4.2 A Linear-time Algorithm for IFNOB . . . . . . .

5.5 Optimal Online Policies . . . . . . . . . . . . . . . . . .

5.5.1 A Markov Decision Problem Formulation . . .

5.5.2 Proof of Theorem 5.8 . . . . . . . . . . . . . . .

5.6 Optimal Offline Policies . . . . . . . . . . . . . . . . . .

5.6.1 Additional Notation . . . . . . . . . . . . . . . .

5.6.2 Performance of the No-Job-Left-Behind Policy

107

. . . . . . . . . . 108

. . . . . . . . . . 108

tion . . . . . . . 109

. . . . . . . . . . 112

. . . . . . . . . . 116

. . . . . . . . . . 119

. . . . . . . . . . 120

. . . . . . . . . . 120

. . . . . . . . . . 121

. . . . . . . . . . 122

. . . . . . . . . . 125

. . . . . . . . . . 126

. . . . . . . . . . 126

. . . . . . . . . . 127

. . . . . . . . . . 130

. . . . . . . . . . 135

. . . . . . . . . . 135

.......... 137

. . . . . . . . . . 139

. . . . . . . . . . 139

. . . . . . . . . . 141

. . . . . . . . . . 146

. . . . . . . . . . 147

. . . . . . . . . . 148

5.6.3 Optimality of the No-Job-Left-Behind Policy in Heavy Traffic

9

160



5.6.4 Proof of Theorem 5.10 . . . . . . . . . . . . . .

5.7 Policies with a Finite Lookahead. . . . . . . . . . . . .

5.7.1 Proof of Theorem 5.13 . . . . . . . . . . . . . .

5.8 Summary and Future Research . . . . . . . . . . . . .

6 Necessity of Future Information

6.1 Related Research . . . . . . . . . . . . . . . . .

6.2 Model and Notation . . . . . . . . . . . . . . .

6.3 Proof of Theorem 6.1 . . . . . . . . . . . . . .

6.3.1 Preliminaries . . . . . . . . . . . . . . .

6.3.2 Base Sample Paths ...........

6.3.3 From Diversions to Server Idling . . .

6.3.4 Consequences of Too Few Diversions .

6.3.5 Proof of Theorem 6.1 ...........

6.4 Summary and Future Research . . . . . . . .

7 Decentralized Partial Resource Pooling

7.1 Decentralized Optimal Pooling . . . . . . . . . . . . . .

7.1.1 Main Result: Decentralized Resource Pooling

7.1.2 Proof of Theorem 7.1 - Part I . . . . . . . . . .

7.2 Model for Merging Thoerem . . . . . . . . . . . . . . .

7.3 Merging Theorem and Applications . . . . . . . . . . .

7.3.1 Proof of Theorem 7.1 - Part II . . . . . . . . .

7.3.2 Generalizations of Partial Pooling . . . . . . .

7.3.3 From Admission Control to Partial Pooling.

7.4 Related Research . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . 170

. . . . . . . . . . 172

. . . . . . . . . . 172

. . . . . . . . . .174

177

. . . . . . . . . . . . . . . 178

. . . . . . . . . . . . . . . 1 8 0

. . . . . . . . . . . . . . . 1 8 3

. . . . . . . . . . . . . . . 184

. . . . . . . . . . . . . . . 188

. . . . . . . . . . . . . . . 1 9 2

. . . . . . . . . . . . . . . 1 9 6

. . . . . . . . . . . . . . .199

. . . . . . . . . . . . . . . 200

202

. . . . . . . . . . 206

. . . . . . . . . . 208

. . . . . . . . . . 211

. . . . . . . . . . 213

. . . . . . . . . . 215

. . . . . . . . . . 216

. . . . . . . . . . 218

. . . . . . . . . . 220

. . . . . . . . . . 222

10



7.5 Outline of Proof for Theorem 7.2 .

7.5.1 Notation . . . . . . . . . . .

7.6 Probability Preliminaries . . . . . .

7.7 Evolution of the Modulating States

7.8 Evolution of the Queue Length . .

7.9 Proof of the Merging Theorem . . .

7.10 Summary and Future Work . . . . .

8 Concluding Remarks

A Appendix: Queueing System

ity

A.1 Additional Proofs . . . . . .

A.1.1 Proof of Lemma 3.4 .

A.1.2 Proof of Lemma 3.12

A.1.3 Proof of Lemma 3.10

A.1.4 Proof of Lemma 4.9

A.1.5 Proof of Lemma 4.12

Architectures with Limited Flexibil-

263

. . . . . . . . . . . . . . . . . . . . . . . . . 263

. . . . . . . . . . . . . . . . . . . . . . . . . 263

. . . . . . . . . . . . . . . . . . . . . . . . . 264

. . . . . . . . . . . . . . . . . . . . . . . . . 266

. . . . . . . . . . . . . . . . . . . . . . . . . 266

. . . . . . . . . . . . . . . . . . . . . . . . . 270

B Appendix: Queueing with Future Information

B.1 Additional Proofs .................

B.1.1 Proof of Lemma 5.15 ...........

B.1.2 Proof of Lemma 5.17 ...........

B.1.3 Proof of Lemma 5.19 ...........

B.1.4 Proof of Lemma 5.25 ...........

B.1.5 Proof of Lemma 5.27 ...........

11

224

227

227

230

234

247

249

251

272

272

272

273

275

277

278



C Appendix: Necessity of Future Information 280

C.1 Additional Proofs ............................... 280

C.1.1 Proof of Lemma 6.4 .......................... 280

C.1.2 Proof of Lemma 6.5 .......................... 281

C.1.3 Proof of Lemma 6.6 .......................... 283

C.1.4 Proof of Lemma 6.8 .......................... 283

D Appendix: Decentralized Partial Resource Pooling 286

D.1 Additional Proofs ............................... 286

D.1.1 Proposition 7.9 .................................. 286

D.1.2 Lemm a 7.8 ............................... 287

D.1.3 Lemm a 7.11 .............................. 289

D.1.4 Lemm a 7.13 .............................. 294

D.1.5 Lemm a D.1 ............................... 297

12



List of Figures

1-1 Flexible versus inflexible (dedicated) systems. . . . . . . . . . . . . . . . 21

1-2 A parallel queueing system with multiple job types and flexible servers. 25

2-1 The multi-server multi-type queueing model. . . . . . . . . . . . . . . 31

2-2 A Partial Pooling architecture, where a fraction p of processing re-

sources is fully flexible, and the remaining 1 - p fraction is dedicated. 36

3-1 Extreme cases of flexibility: d, = n versus d. = 1. . . . . . . . . . . . . . 42

3-2 A processing network with n queues and n servers. . . . . . . . . . . . 45

3-3 A Modular architecture consisting of n/dn subnetworks, each with dn

queues and servers. Within each subnetwork, all servers are connected

to all queues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4-1 Examples of mode transitions at the physical server and service slots. 86

5-1 An illustration of the admission control problem, with a constraint on

the a rate of diversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5-2 Illustration of the Partial Pooling model with flexible and inflexible

resources, [84]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5-3 Resource pooling using a central queue. . . . . . . . . . . . . . . . . . . 114

13



5-4 Comparison of heavy-traffic delay scaling between optimal online and

offline policies, with p = 0.1 and A -> 1. The value plotted is the

resulting average queue length as a function of A. . . . . . . . . . . . . 115

5-5 Illustration of applying IrNOB to an initial sample path, Q0 , where the

diversions are marked by the bold arrows (in red). . . . . . . . . . . . . 128

5-6 The solid lines depict the resulting sample path, Q = D (Q 0 , M"'),

after applying irNOB to Q0 . . . . . . . . . . . . . . . . . . . . . . . . . . .  128

5-7 Example sample paths of Q 0 and those obtained after applying L(pA)
Example th

and IFNOB to Q0 , with p = 0.05 and A = 0.999. . . . . . . . . . . . . . . 130

5-8 Optimal delay scaling in the heavy-traffic regime, as a function of the

length of the lookahead window, wA. The blue (a), red (b), and black

(c) segments correspond to the regimes established by Theorems 5.8,

5.14, and 5.13, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 134

5-9 The truncated birth-death process induced by 7r. . . . . . . . . . . . . 142

6-1 An illustration of the queueing admission control problem (rep. of

Figure 5-8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6-2 This figure illustrates the macroscopic behavior of the base sample

paths. The blue segment represents a period of sustained upward

drift of S(0, .), and the red segment that of a downward drift. The

two black segments, each with length equal to that of the lookahead

window, serve as a "buffer," ensuring that the actions of the diversion

policy before the segment are independent from the evolution of S(0, -)

afterw ards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7-1 Partially centralized resource pooling architecture, from [84, 91]. . . . 204

7-2 Modified Partial Pooling architecture with a central queue. . . . . . . 207

14



7-3 Queueing model for Theorem 7.2. The arrival process in the nth

system, A", is the superposition of n independent Markov modulated

Poisson processes (MMPP), each modulated by a finite-state Markov

process, W i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7-4 An illustration of the admission control problem first introduced in

Chapter 5, rep. of Figure 5-1. . . . . . . . . . . . . . . . . . . . . . . . . 220

7-5 Illustrations of total arrival rates during one time slot. . . . . . . . . . 238

7-6 The cumulative rates for processes A (solid) and H (dashed), during

the interval [0, B). The instantaneous rates for H and A are given in

Figures 7-5-(a) and 7-5-(b), respectively. . . . . . . . . . . . . . . . . . . 240

15



List of Tables

3.1 This table summarizes and compares the flexibility architectures that we

study, along with the metrics of capacity and delay. We say that capacity

is "good" for A if A falls within the capacity region of the architecture,

and that delay is "good" if the expected delay is vanishingly small for

large n. When describing the size of the set of A for which a statement

applies, we use the following (progressively weaker) quantifiers: 1. "for all"

means that the statement holds for all A E An(un); 2. "for most" means

that the statement holds with high probability when A is drawn from an

arbitrary distribution over An (un), independently from any randomization

in the construction of the flexibility architecture; 3. "for many" means

that the statement is true for a non-empty set of As, even when the degree

of fluctuation un is small or constant. The label "w.h.p." means that

all statements in the corresponding row hold with high probability with

respect to the randomness in generating the flexibility architecture. The

statement marked "a" is based on an alternative interpretation of Theorem

3.6, given in Eq. (3.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

16



Chapter 1

Introduction

Imagine being the manager of a call center that supports a large number of product

categories. With the goal of minimizing customers' waiting time in mind, which

choice of staffing would you rather have?

1. Flexible agents, who have expertise in every product category.

2. Inflexible agents, who know about one (or a few) category only.

Intuitively, the flexible agents are much more desirable: if one category suddenly

receives a burst of inquiries, there will be many other available agents that can come

to help. However, flexibility also comes at a cost: having every agent well versed

in all categories can be prohibitively expensive in terms of training cost, or simply

infeasible. Is there a desirable scheme somewhere in between, involving a multitude

of agents with different types of versatility? If so, what are the guiding principles for

the system to be structured, and efficiently operated in real time?

The above example illustrates some aspects of the main focus of this report,

that is, to understand the role of partial flexibility in large-scale dynamic resource

17



allocation problems, where multiple processing resources (e.g., computer servers,

human agents, medical resources, etc.) aim to serve multiple types of demands (e.g.,

computational tasks, customer inquiries, patients arriving to an emergency room,

etc.) that arrive stochastically over time. In this context, by flexibility we mean

a processing resource's capability to serve multiple types of demands, and partial

flexibility refers to scenarios where:

1. only a small fraction of the total processing resources is flexible, or

2. each processing resource can only serve a small number of demand types.

Why are we interested in studying partially flexible systems? Here are some of

the main reasons:

1. Full flexibility can be expensive or infeasible. While it is often desirable to have

a fully flexible system, where each unit of processing resource is capable of

serving all types of demand, it can often be too expensive, or simply impos-

sible, to build or operate in practice. Such challenges are only exacerbated in

large-scale systems. For instance, in content distribution systems, processing

resources correspond to physical servers in server farms, and demand types

correspond to different pieces of content (e.g., video clips). Having full flex-

ibility means storing all pieces of content on each server, which can lead to

high infrastructure costs. In the example we saw earlier, having a fully flexible

staff at a large call center with hundreds of product categories can simply be

impossible due to human skill limitations.

In these settings, partial flexibility provides a viable, if not the only, alternative,

where a small amount of flexibility can be built into the system inexpensively,

and in a way that remains scalable as the system size grows.

18



2. Partial flexibility is effective. As we will see in subsequent chapters, even a

small amount of flexibility can be surprisingly effective. In many scenarios, a

partially flexible system can significantly outperform an inflexible counterpart,

where processing resources are dedicated to serving only one specific demand

type, and are sometimes almost as good as a fully flexible system. Viewed from

this angle, partial flexibility is important not only as a "last resort" when full

flexibility is unavailable. Rather, it can be an appealing design approach that

delivers the most desirable cost-performance trade-off.

3. Partial flexibility is challenging to understand and design. Unfortunately, de-

spite their practical importance, dynamical systems with partial flexibility ap-

pear to be much less understood than either fully flexible or inflexible systems.

To a large extend, this is because by allowing for partial flexibility, we have

substantially enlarged the space of possible design choices, and hence expos-

ing a multitude of complexities that are unseen in either the fully flexible or

inflexible settings, which are often significantly simpler.

The importance of partially flexible systems, compounded with a relatively poor

understanding of their nature, has been the main motivation of our inquiries. That

being said, the notion of partial flexibility in resource allocation remains rather gen-

eral, whose manifestations can take on vastly differently forms depending on the

angle through which we approach it. Therefore, the scope of our investigation is

necessarily contained. In this report, we shall be primarily focusing on resource

allocation systems that possess the following features:

1. Non-trivial dynamics. We will be studying queueing systems that involve

non-trivial dynamics (as opposed to static models), where resource allocation deci-

19



sions have to be made repeatedly over time. As a result, our metrics will also involve

quantities measured in time, such as queueing delays and lengths of predictive win-

dows.

2. Large-scale systems. We will be focusing on the regime where the size of the

system (e.g., number of processing resources and demand types) grows to infinity.

Indeed, most dynamical service systems are fairly intractable, not amenable to exact

analytical solutions. On the other hand, asymptotic analyses (in the limit of a large

number of resources) are often possible and can provide significant architectural

insights. Furthermore, they often turn out to be quite accurate even for moderately

sized systems. Finally, our interest in large systems is well motivated from many and

diverse contexts, such as large data centers, server farms, call centers, etc.

3. Engineered systems. We study systems that are engineered or designed, and

their operations are moderated by decision makers or managers with collective objec-

tives, who follow decision policies that are prescribed beforehand. This is in contrast

to game-theoretic models, where the structure and dynamics of the system can be

the result of strategic interactions among different parties. Our modeling focus does

not imply that the issue of human incentives or strategic interactions are unimpor-

tant in designing flexible systems; quite to the contrary, they are often essential

ingredients in some of the applications we consider, such as a call center. We chose

to focus on engineered systems because they are often easier to analyze, and can

help us obtain fundamental understanding of the power and limitations of partially

flexible systems. We believe that these insights can, in the future, be used to guide

the design of flexible systems that do involve human incentives and interactions.

20



1.1 Main Themes: Architectures and Information

We outline in this section the main themes of the research presented in this report,

as well as preview some of the main contributions. Before we do so, it will be useful

to examine a simple example, which will help us gain some intuition about why

flexibility should be beneficial in dynamic resource allocation problems, and in what

way such benefits are measured. For the purpose of illustration, we will describe the

model informally, and postpone the statements of exact mathematical assumptions

till subsequent chapters.

Consider the queueing systems illustrated in Figure 1-1. Each system contains

two servers that are capable of processing one job per unit time, and has two types

of jobs that arrive at the average rates of A, and A2 per unit time, respectively. Two

queues, one for each job type, are used to store currently unprocessed jobs. We shall

assume that the jobs arrive to each queue according to some stochastic process (e.g.,

a Poisson process), so that the exact times of arrivals of jobs are randomly disbursed

across the time horizon, as opposed to arriving exactly at evenly spaced intervals.

We say that system (a) is flexible, because each server is capable of processing jobs

of both types, and system (b) is inflexible, or dedicated, because the servers can

process jobs from one queue only.

queue 1 server 1

queue 2 server 2

(a) (b)

Figure 1-1: Flexible versus inflexible (dedicated) systems.
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In what sense is the flexible system better than the inflexible one? The first

benefit, that of capacity, is easy to see. In the flexible system, suppose that the

arrival rate to the first queue, A1 is greater than 1 and hence exceeds the processing

rate of the first server. The system will still be stable as long as the rate A2 is

sufficiently small. This is because, thanks to being flexible, the second server can

devote part of its processing power and help process jobs from the first queue, hence

stabilizing the system. The inflexible system, however, does not enjoy this benefit:

if A, exceeds 1, the first queue in system (b) will inevitably become unstable, and

the second server can do nothing to help.

To summarize, compared to an inflexible system, the presence of flexibility allows

the system to admit a larger capacity region, captured, in our case, by the set of

(A1, A2) pairs that the system is able to stabilize. This is achieved with the same

amount of processing resources as in the inflexible system; the credit goes solely to

flexibility.

While this notion of "flexible resources helping each other" may appear obvious

at first, it turns out to have profound, and more subtle, implications in the dynamics

of the system. Consider the situation of uniform arrival rates, with A1 = A2 = A. Ca-

pacity is no longer a distinguishing factor between the flexible and inflexible systems,

because both are stable if and only if A < 1. Does this mean that we should expect

identical performance from both systems?

Not quite. We shall argue that the flexible system still does better, but this

time, in its delay performance. Because the arrival process is stochastic, it is

inevitable that some periods of time will have more arrivals than others. Imagine

the occurrence of such a "busy period," where a relatively large number of jobs have

just arrived to queue 1, while queue 2 happens to be empty and will remain so for

some time (see Figure 1-1). In a flexible system, the sensible thing to do is for both
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servers to focus on processing jobs from queue 1 and quickly reduce its backlog. In

contrast, in an inflexible system, the long backlog in queue 1 will have to be cleared

by server 1 alone (and hence more slowly), while server 2 remains idle and incapable

of providing any assistance.

The more general phenomenon here is that, in a dynamic setting, flexibility also

manifests itself in a form of agility, which allows for processing resources to be quickly

dispatched to serving the most congested demand types. In the long run, the net

effect of such actions helps avoid the frequent buildup of large backlogs, and will

ultimately result in a smaller queueing delay. Fundamentally, this notion of agility

is no different from the benefits of large capacity region in a flexible system that we

saw earlier, because it is simply the result of the flexible processing resources being

repeatedly re-purposed throughout the time horizon. However, unlike the more static

property of capacity region, the resulting dynamics in a flexible system can often be

considerably more difficult to characterize.

Flexible Architectures (Chapters 3 and 4). With the two-queue example of

Figure 1-1 in mind, the first line of our research concerns the structural aspect of

how partially flexible architectures should be designed, given only partially flexible

processing resources. In particular, we would like to know:

1. With partially flexible resources, can we still harness the benefits of a large

capacity region and small delay, similar to the case of a fully flexible system?

2. If so, how should the flexible architecture be designed, along with the appro-

priate scheduling polices?

We will study a class of multi-server multi-class queueing systems, with multiple

queues (job types) and servers connected through a bipartite graph, where the level
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of flexibility is captured by the average number of job types a server is capable of

processing, d (Figure 1-2). In this framework, the fully flexible system in Figure 1-1

corresponds to the case where the connectivity graph is a complete bipartite graph.

We focus on the scaling regime where the system size n tends to infinity, while

the overall traffic intensity stays fixed. Our main finding is that, just like in the case

of full flexibility, large capacity region and diminishing queueing delay can be simul-

taneously achieved even under very limited flexibility (d « n). However, the flexible

architecture, as well as the associated scheduling policy, need be chosen carefully in

order to harness the benefits of flexibility. These findings are conveyed through a

collection of results, stated in Section 3.3 and summarized in Table 3.1, which char-

acterize the delay and capacity performance for three families of partially flexible

architectures: the Modular, Random Graph, and Expanded Modular architectures.

Because each server can be connected to a different set of queues, the family of

partially flexible systems we study encompasses a rich set of architectures. Therefore,

we will also examine and compare different flexibility architectures and scheduling

policies, and examine the extent to which the objectives of a favorable capacity region

and delay are possible for each architecture - its strengths, as well as its limitations.

While the analysis of capacity and delay is relatively straightforward for both fully

flexible and inflexible systems, conventional techniques often fall short when applied

to partially flexible systems with a more complex interconnection topology. As a

result, some of our efforts will also go into developing novel problem formulations

and analytical methodologies, mostly focusing on asymptotic scaling laws for large

systems, which will help us rigorously study the delay and capacity performance of

partially flexible systems with non-trivial structures.
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queue 1 dserver 1

queue 2 server 2
X2

queue rn server n

ME,
Figure 1-2: A parallel queueing system with multiple job types and flexible servers.

Importance of Information (Chapters 5 to 7). We next shift our focus to

studying a less obvious, but equally important, aspect of flexible systems: the role

of information. In the two-queue systems of Figure 1-1 that we saw earlier, this is

reflected by the fact that the flexible servers must have up-to-date information of

the lengths of the two queue at all times, in order to constantly focus the collective

processing resource on serving the most needed demand type. Conversely, suppose

that the queue length information is unknown, and that the server incurs a non-

negligible delay when trying to serve an empty queue. The servers in the flexible

system will then suffer from unnecessary idling because of not knowing which queue

to serve, and it can be shown that the resultant delay performance can be comparable

to that of an inflexible system, despite the presence of flexibility.

In some sense, having a well-designed flexible architecture is only half of the pic-

ture. The decision maker must also be equipped with adequate information, in the

right place at the right time, in order to make optimal resource allocation decisions.

Moreover, studying the information requirements of flexible systems also helps us

understand how much information is necessary to achieve a target level of perfor-
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mance. This is of practical importance especially in large-scale systems, because

a high level of information sharing can often lead to significant infrastructural or

communications overhead.

For the second part of the report, we focus on a class of flexible queueing systems

first proposed by [84], henceforth referred to as the Partial Pooling family, where

a small fraction of the processing resources are fully flexible while the remaining

resources are dedicated. We first show that having access to information ahead of

time can provide substantial improvement in performance. We show that the decision

maker can leverage a finite lookahead window, within which the times of future

arrivals and services are revealed, and drastically decrease the resulting delay in

heavy-traffic (Theorem 5.13), compared to that of an optimal online policy, which

does not make use of future information (Theorem 5.8). Conversely, we quantify how

much future information is necessary in order to improve performance, by proving a

tight, information lower bound, which shows that with insufficient future information,

delay performance cannot be improved by more than a constant factor over that of

an online policy (Theorem 5.14).

We further demonstrate that in these Partial Pooling systems, a decentralized

scheduling policy that uses only local queue length information achieves optimal

delay, which is significantly smaller than that of an inflexible system, where all pro-

cessing resources are dedicated (Theorem 7.1). In contrast, the scheduling scheme

given in [84] requires real-time information for all queues in the systems.

1.2 Related Research

We review in this section some of the existing literature and prior research that is

related to our work. We shall stay at a relatively general level, by highlighting the
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connections and differences in terms of philosophies and approaches. More extended

discussions of related work concerning specific topics and techniques will be presented

within subsequent chapters.

Earlier studies of flexible systems can be traced back to the 1980s, where the focus

was largely on the performance and cost tradeoffs between fully flexible versus fully

dedicated designs (see [72] for a survey). The seminal paper of Jordan and Graves

[47] was the first to consider the design and performance of manufacturing systems

with limited flexibility. It was shown, both empirically and through simulations, that

when each plant is only capable of producing a small number of products (partial

flexibility) a specific type of assignment architecture, called the "Long Chain," can

offer performance comparable to that of a fully flexible system (where all products can

be produced by all plants). A large body of literature has since followed, extending

the idea of the Long Chain into other application domains [9, 13, 37, 38, 45, 46, 58,

88], and providing theoretical justifications for the effectiveness of the Long Chain

and its variations [22, 23, 73]. With a few exceptions, the Long Chain model and its

variants have been traditionally applied to static allocation problems (with a single

or a small number of stages), and the results are often justified either empirically or

via simulations. In contrast, we will be focusing on problems that involve non-trivial

dynamics, where resource allocation decisions have to be made repeatedly over time,

as well as on developing precise analytical results and scaling laws. We view our

work as highly complementary to the above mentioned literature.

Another line of work concerns the design of load balancing systems and bears

close intellectual ties to ours. Here, the general problem is to direct a stream of

incoming tasks to a set of queues for processing. In the line of work initiated in [87]

and [63] (popularly known as the "supermarket model"), it is shown that by routing

tasks to the shorter queue among a small number (d > 2) of randomly chosen queues,
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the probability that a typical queue has at least i tasks decays as ATT (super-

geometrically), as i -+ oo. The general idea has since been extended to various

other settings [3, 18, 36, 56, 57, 61]; see also the survey paper [64] and references

therein. Another line of work is concerned with the impact of service flexibility in

routing problems, motivated by applications such as multilingual call centers, dating

back to the seminal work in [32] which shows that the ability to route a portion

of customers to a least-loaded station can lead to a constant-factor improvement

in average delay under diffusion scaling. Similar models have been subsequently

studied in [42, 68, 79] and more recently in [1, 2]. A major difference between our

approach and the load balancing literature is our focus on resource flexibility (e.g., in

scheduling and resource allocation), as opposed to to the demand flexibility in load-

balancing and routing problems; in fact, our earlier work suggests that the system

dynamics can be fundamentally different under these two flexibility types (see the

discussion in Section 1.3 of [91]). Despite the differences, we expect that many of the

concepts and techniques developed in the load-balancing literature, and in particular

those for analyzing large-scale systems, will spark fruitful synergies with our theory

and methodologies.

There are several other strands of the literature that touch upon some of the

themes in this report, although the details of the models therein are quite different.

Flexibility in the form of resource pooling is known to improve performance [11,

41, 59, 60], but much less is known on the impact of various degrees of pooling, or

about scaling behaviors in large-system limits. Some recent work in this area [10]

that studies limited pooling in a large-system limit is closer to our work in spirit,

but still differs significantly in terms of critical modeling assumptions and dynamics.

Regarding the role of information sharing on performance, the information required
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to control an unstable plant has been studied in the control theory community [15,

26, 65, 70, 82], but in a completely different context, and with a greater emphasis on

stability rather than performance (e.g., delay or queue length). Finally, there have

been studies of advanced reservations (a form of future information) in lossy networks

[24, 55] and, more recently, in revenue management [54], although the motivation of

and dynamics in these models are very different from ours.

Parts of the material presented in this report have also appeared in a number of

earlier papers. Preliminary results from Chapters 3 and 4 appeared in SIGMETRICS

2013 [85]. Chapters 5 and 6 are based on [77] and [92], respectively. The material of

Chapter 7 is new and has not appeared in any publication.

1.3 Organization of the Report

The remainder of report largely follows the logical development of the two themes

described in Section 1.1. We begin by describing some of our main modeling assump-

tions and notation in Chapter 2. Chapters 3 to 4 examine the design and analysis

of partially flexible architectures, and Chapters 5 to 7 are devoted to the role of in-

formation in partially flexible systems. We conclude the report in Chapter 8, where

we also highlight several potential avenues for future research.
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Chapter 2

Models and Notation

This chapter presents the queueing model that will form the basis of our analysis.

We shall refrain from delving into great details of the mathematical formalism, which

will be presented in subsequent chapters, and instead focus on highlighting the main

modeling features, as well as connections between the more specific models adopted

in different chapters.

2.1 Multi-Server Multi-Type Queueing Model with

Flexible Servers

The general problem is that of allocating n units of processing resources to serve

demands of m types, as depicted in Figure 2-1. We shall focus on the regime where the

total number of demand types, m, is proportional to the total amount of processing

resources, n, so that m = rn, where r E R, is a constant.1 For simplicity of notation,

'Throughout, we shall avoid the excessive use of floors and ceilings, and assume that relevant
quantities are appropriated rounded to an integer.
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we will further assume that the number of demand types is equal to n (r = 1). As it

will become clear in subsequent chapters, most results generalize to the case of other

values of r as well.

Demands arrive to the system in the form of discrete jobs. 2 For the ith demand

type, we assume that jobs arrive according to an independent Poisson process of rate

Ai E R,, that is, the inter-arrival times between two adjacent jobs are independent

and identically distributed (i.i.d.), according to an exponential distribution with

mean 1/Ai. An infinite buffer, or queue, is associated with each job type, to store the

jobs that are currently unprocessed.

queue I server n

queue 2 server 2

X21

queue n server n

Figure 2-1: The multi-server multi-type queueing model.

We now turn to the modeling of processing resources. For most parts of this

report, it suffices to think of the n units of total processing resources as a collection

of n servers, each being capable of processing jobs at the average rate of 1 job per

unit time. The flexibility of the processing resources is captured by the types of

jobs each server is capable of processing, illustrated in Figure 2-1 by the bipartite

graph that connects the servers to their corresponding compatible job types. We will
2We will use the terminology "demand" and "job" interchangeably from this point onward.
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assume that such service flexibility is fixed over time, once the system is built.

Similar to the arrival process, the way jobs are being served is assumed to be

stochastic to reflect the inherent variability of service times or server speeds in prac-

tical applications. Barring minor differences, the models for service stochasticities in

this report fall under one of the following two types:

1. Exponential service times (Service Time model). In this setup, each job is

associated with a random job size (a.k.a. workload), which is independently

distributed as an exponential random variable with mean 1, regardless of its

type. To initiate service, a job is transferred from the queue into a compatible

server, and the corresponding server cannot accept a new job until the pro-

cessing of the current job has been completed. We assume that each server

works at a constant speed of 1, and therefore the service time to complete the

processing of one job is equal to the job's size. A job departs the system as

soon as it has received an amount of work that is equal to its size. The Service

Time model will be used in Chapters 3 and 4.

2. Poisson service token generation (Service Token model). In this setup, each

server constantly generates service tokens according to a Poisson process, whose

rate is equal to that of the server (in this case, one). The generations of

service tokens are independent across different servers. When a service token

is generated, it is either "consumed" to instantly serve a job currently waiting

in queue, in which case the job departs from the queues, or "wasted" (e.g.,

when all queues are empty) and causes no further change to the system. Note

that because service speed variations are solely associated with the service

token process rather than the job sizes, all jobs of the same type are essentially

indistinguishable in the Service Token model.
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As a rough analogy, the generation of a service token can be thought of as

being equivalent to completing the service of a job in the Service Time model

- both events lead to a new job being taken away from a queue. This analogy

will be discussed in more detail in a subsequent paragraph that compares the

two models. The Service Token model will be used in Chapters 5 to 7.

Note that in either model, we have not specified which jobs are to be served

when processing resources become available. Indeed, these decisions, to be made

dynamically by a scheduling policy, play a central role in the design of flexible systems,

and shall be treated in detail in subsequent sections.

Service Time versus Token. By definition, the Service Time model attributes

the source of service variability to the variation in job sizes, while the Service Token

model postulates that the server's processing "speed," captured by the generation of

service tokens, is stochastic.

However, there is, in fact, very little difference in the queueing dynamics and

resulting performance from the two models, largely as a result of the properties of

Poisson processes and exponential service times. First, it can be shown that the

Service Time model is capable of simulating the queue length dynamics produced

under a Service Token model, by allowing a server to stay idle, or process "dummy"

jobs. To see why this is possible, consider a Service Time model with just one queue

and one server. Upon the completion of a previous job, assume that the server uses

the following rule:

1. If the queue is not empty, the server fetches a job from the queue and initiates

its service.

2. If the queue is empty, the server initiates the service of a fictitious "dummy job",
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whose size is an exponential random variable with mean 1, drawn independently

from the rest of the system dynamics.

If we refer to the completion of both real and dummy jobs as a "service completion,"

then it is not difficult to verify that the times of service completions under the

above-mentioned rule form a Poisson process of rate 1. Because one job leaves the

queue at each of these service completions if the queue is non-empty, the above rule

produces a queue length process that has the same distribution as one under a Service

Token model, where the generation of a service token corresponds to that of a service

completion. An analogous argument can be used to show such "simulation" for the

general case with multiple queues and servers.

The above simulation argument implies that the Service Time model is strictly

more powerful in terms of the set of queueing dynamics it is capable of producing.

As a result, all queueing performance guarantees derived under the Service Token

model can be achieved with Service Time as well.

On the other hand, the Service Token model is not much weaker than the Service

Time model. Note that by viewing the generation of a service token as being equiv-

alent to a service completion in the Service Time model, the evolution of the queues

is essentially identical under both models when all queues are non-empty. Indeed, it

is possible to show that the behavior of the two models are very similar when the

system is heavily loaded. The reader is referred to [84, 91] for additional discussions

on the relationship between the two server models.

Both approaches to server modeling have appeared in the literature, and the

Service Time model is more common (cf., the model of M/M/1 queues). We chose to

use the Service Token model in some of the chapters, because it often allows for more

concise descriptions of the model, as well as simpler calculations. Nevertheless, all
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results derived in this report for the Service Token model can also be extended to the

Service Time model, and the two models can be thought of as being interchangeable

for most of our purposes.

2.2 Two Ways to Distribute Flexibility

Within the general class of multi-server multi-type queueing models described in

Section 2.1, we shall further focus on two families of partially flexible systems, dis-

tinguished by how flexibility is being measured and distributed across the processing

resources.

Family 1: Sparse Flexibility. The first family, illustrated in Figure 2-1, aims

to capture situations where the system's flexibility spreads across the processing

resources, so that all servers are partially flexible to some degree. In particular, each

server is capable of processing a few job types, and the system's level of flexibility

is measured by the average number of job types a server is able to serve, or, the

average degree, d, of the bipartite graph that connects the queues and servers. A

partially flexible system is one where d is significantly smaller than the system size,

n - hence the name "sparse flexibility".

Family 2: Partial Pooling. The second family aims to model cases where the

system's flexibility is concentrated on a small number of servers. In this family, a

fraction, p, of the total processing resources is fully flexible (or pooled), while the

remaining 1 - p fraction of the resources is inflexible and is dedicated to serving

specific demand types. The system's level of flexibility is captured by the fraction

of fully flexible servers, p. A partially flexible system corresponds to one where the
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queue

queue 2

pn

queue n

Figure 2-2: A Partial Pooling architecture, where a fraction p of processing resources

is fully flexible, and the remaining 1 - p fraction is dedicated.

value of p is small but positive, and hence a fraction of the resources are "partially

pooled." The Partial Pooling model was first proposed and analyzed in [84, 91].

A typical system in the Partial Pooling family is illustrated in Figure 2-2, which

consists of one flexible (central) server running at speed pn, and n inflexible (local)

servers running at speed 1-p. One may wonder whether the Partial Pooling model

in Figure 2-2 can be captured by the multi-server multi-type model that we have

seen in Section 2.1 and Figure 2-1. To see the relation between the two models, fix

p E (0,1), and let 6 > 0 be a constant so that both p and 1 -p are integer multiples

of 6. Suppose that the n units of total processing resources consist of n/6 servers,

each running at rate 6. Note that this is essentially the same as the original system

(Figure 2-1), except that the servers now run at speed 6, instead of 1. Then, under

the Service Token model in Section 2.1, it is not difficult to see that the system in

Figure 2-2 produces the same dynamics as the case where:

(a) a fraction p of the n/J servers are fully flexible, forming a resource pool, and
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(b) the remaining 1 - p fraction of the servers are inflexible, where each job type

is served by (1 - p)/5 such inflexible servers.

The Sparse Flexibility family will be analyzed in Chapters 3 and 4, and the

Partial Pooling family in Chapters 5 through 7. While both families belong to the

general class of multi-server multi-type queueing systems, they have fairly distinct

structural properties as well as stochastic dynamics. As a result, our research will also

have different emphases, among which the most prominent distinction lies between

architecture versus information.

1. Within the Sparse Flexibility family, we will mainly be studying the architec-

tural question of how the flexibility of different resources should be arranged,

in a way that delivers the most desirable capacity and delay performance. In

a large part, this is because in the Sparse Flexibility family every server can

serve a different set of job types (cf. Figure 2-1), and hence it encompasses a

considerably larger set of flexible architectures than the Partial Pooling family,

which is parameterized by a single parameter, p.

2. With the Partial Pooling family, we will mainly be exploring the topic of infor-

mation: what does the system operator know when making dynamic resource

allocation and scheduling decisions, and how does that knowledge impact per-

formance? The inherent symmetry in the Partial Pooling family provides suf-

ficient structure for our models to be tractable, and enables us to drive sharp

bounds and scaling laws. On the other hand, the mixture of flexible and ded-

icated resources manifests itself in queueing dynamics that are considerably

richer and more complex than either fully flexible or inflexible systems, which

allows us to obtain interesting, and deeper, insights on the relationship between

information and the system's dynamic behavior.
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2.3 Notation

We now introduce some of the terminology that will be used throughout the report.

We shall postpone the definition of symbols and notation that are more restricted to

a particular topic, which will be introduced in the corresponding chapters.

We will denote by N, Z, and R., the sets of natural numbers, non-negative

integers, and non-negative reals, respectively. The following short-hand notation for

asymptotic comparisons will be used; here f and g are positive functions, and L is

certain limit of interest in the set of extended reals, R u {-oo, +oo}:

1. f (x) - g(x) for f (x) = 0 (g(x)), and f(x) > g(x) for f(x) = Q (g(x));

2. f(x) >> g(x) for liminfx,Lf(x)/g(x) = oo, and << is defined analogously.

3. f(x) ~ g(x) for lim..L f(x)/g(x) = 1.

Whenever possible, we will use upper-case letters for random variables, and lower-

case letters for deterministic values. Let X and Y be two random variables.

1. X = Y means that X and Y have the same distribution.

2. Suppose X and Y are real-valued. Then XY means that X is stochastically

dominated by Y, i.e.,

P (X> C) P (Y> C), VC ER. (2.1)

We will use Expo (A), Geo (p), Bino(n,p) as short-hands for the exponential,

geometric and binomial distributions with the standard parameters, respectively.

We will minimize the use of floor and ceiling throughout the report to avoid the

cluttering of notation, and thus assume that all values of interest are appropriately
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rounded up or down to an integer, whenever doing so does not cause ambiguity or

confusion.
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Chapter 3

Queueing System Architectures

with Limited Flexibility

In this chapter and the next, we will explore the design and operation of partially

flexible architectures. We will study a multi-server multi-type queueing model, de-

scribed in Section 2.1, with n flexible servers and n queues, connected through a

bipartite graph, where the level of flexibility is captured by the graph's average de-

gree, dn. Applications in content replication in data centers, skill-based routing in

call centers, and flexible supply chains are among our main motivations.

We focus on the scaling regime where the system size n tends to infinity, while

the overall traffic intensity stays fixed. We show that a large capacity region and

diminishing queueing delay are simultaneously achievable even under very limited

flexibility (dn «n). We also explore and compare different flexibility architectures

and scheduling algorithms, and examine the extent to which the objectives of a

favorable capacity region and delay are possible for each architecture. 1

1A preliminary version of this chapter appeared at Sigmetrics 2013, [85].
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3.1 Introduction

The class of multi-server multi-type queueing models, described in Section 2.1, lies at

the heart of a number of modern queueing networks. In these systems, the designer

is confronted with the problem of allocating processing resources (manufacturing

plants, web servers, or call-center staff) to meet multiple types of demands that

arrive dynamically over time (orders, data queries, or customer inquiries). It is often

the case that a fully flexible or completely resource-pooled system, where every unit

of processing resource is capable of serving all types of demands, delivers the best

possible performance. Our inquiry is, however, motivated by the unfortunate reality

that such full flexibility is often infeasible due to overwhelming implementation costs

(in the case of a data center) or human skill limitations (in the case of a skill-based

call center).

What are the key benefits of flexibility and resource pooling in such queueing

networks? Can we harness the same benefits even when the degree of flexibility

is limited, and how should the network be designed and operated? These are the

main questions that we wish to address. While these questions can be approached

from a few different angles, we will focus on the metrics of capacity region and

expected queueing delay; the former measures the system's robustness against demand

uncertainties, i.e., when the arrival rates for different demand types are unknown or

likely to fluctuate over time, while the latter is a direct reflection of performance. Our

main message is positive: in the regime where the system size is large, improvements

in both the capacity region and delay are jointly achievable even under very limited

flexibility, given a proper choice of the architecture (interconnection topology) and

scheduling policy.
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(a) (b)

Figure 3-1: Extreme cases of flexibility: dn = n versus d4 = 1.

Benefits of Full Flexibility. We begin by illustrating the benefits of flexibility

and resource pooling using two simple examples, which have been alluded to in the

introductory chapter (cf. Figure 1-1 in Section 1.1). Consider a system of n servers,

each running at rate 1, and n queues, where each queue stores jobs of a particular

demand type. For each i E { 1,... , n}, queue i receives an independent Poisson arrival

stream of rate Ai. The average arrival rate _I Ai is denoted by p, and is referred

to as the traffic intensity. The sizes of all jobs are independent and exponentially

distributed with mean 1.

For the remainder of this chapter, we will use a measure of flexibility given by

the average number of servers that a demand type can receive service from, denoted

by d.. Let us consider the two extreme cases: a fully flexible system, with dn = n

(Figure 3-1(a)), and an inflexible system, with d4 = 1 (Figure 3-1(b)). Fixing the

traffic intensity p < 1, and letting the system size, n, tend to infinity, we observe the

following qualitative benefits of full flexibility:

1. Large Capacity Region. In the fully flexible case and under any work-conserving

scheduling policy 2, the collection of all jobs in the system evolves as an MIMIn
2 A work-conserving policy mandates that a server be always busy whenever there is at least one

job in the queues to which it is connected.
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queue, with arrival rate E' A and service rate n. It is easy to see that the system

is stable for all arrival rates that satisfy, E'l Ai < n, whereas in the inflexible system,

since all M/M/1 queues operate independently, we must have Ai < 1, for all i, in

order to achieve stability. Comparing the two, we see that the fully flexible system

attains a much larger capacity region, and is hence more robust to uncertainties or

changes in the arrival rates.

2. Diminishing Delay. Let W be the steady-state average waiting time in queue

(time from entering the queue to the initiation of service). As mentioned earlier, the

total number jobs in the system for the fully flexible case evolves as an M/M/n queue

with traffic intensity p < 1. It is not difficult to verify that for any fixed value of p, the

expected total number of jobs in the queues is bounded by a constant independent of

n, and hence the expected waiting time in queue satisfies E (W) -+ 0, as n - oo.3 In

contrast, the inflexible system is simply a collection of n unrelated M/M/1 queues,

and hence the expected waiting time is E (W) = j- > 0, for all n. In other words,

the expected delay diminishes in a fully flexible system, as the system size increases,

but stays bounded away from zero in the inflexible case.

Preview of Main Results. Will the above benefits continue to be present if the

system is no longer fully flexible, that is, if d4 << n? The main results of the chapter

show that a large capacity region and a diminishing delay can still be simultaneously

achieved, even when the amount of flexibility in the system is limited (d4 << n), and

the extent to which this is possible depends largely on the architecture of choice

(c.f., Table 3.1). However, when flexibility is scarce, the architecture and scheduling

3The diminishing expected waiting time follows from the bounded expected total number of

jobs in steady-state, the fact that the total arrival rate is pn, which goes to infinity as n -- oo, and

Little's Law.

43



policy need be chosen with care: our solutions are based on connectivity topolo-

gies that range from simple Modular architectures to those based on Erd6s-R6nyi

random bipartite graphs and expander graphs, combined with scheduling policies

that range from greedy policies (for Modular architectures) to more sophisticated

virtual-queue-based scheduling rules that utilize job-to-server assignments on the

connectivity graph in a dynamic fashion (for architectures based on random graphs).

3.1.1 Motivating Applications

We describe here several motivating applications for our model; Figure 3-2 illustrates

the overall architecture that they share. Content replication is commonly used

in data centers for bandwidth intensive operations such as database queries [76] or

video streaming [53], by hosting the same piece of content on multiple servers. Here,

a server corresponds to a physical machine in the data center, and each queue stores

incoming demands for a particular piece of content (e.g., a video clip). A server j is

connected to queue i if there is a copy of content i on server j, and d" corresponds

to the average number of replicas per piece of content across the network. Similar

structures also arise in skill-based routing (SBR) in call centers, where agents

(servers) are assigned to answer calls from different categories (queues) based on

their domains of expertise [88], and in process-flexible supply chains [22, 38, 46,

47, 73], where each plant (server) is capable of producing multiple product types

(queues). In many of these applications, demand rates can be unpredictable and

may change significantly over time; for instance, unexpected "spikes" in demand

traffic are common in modern data centers [48]. These demand uncertainties make

robustness an important criterion for system design. These practical concerns have

been our primary motivation for studying the joint trade-off between robustness,
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performance, and the level of flexibility.

3.1.2 Related Research

Bipartite graphs provide a natural model for capturing the relationships between

demand types and service resources. It is well known in the supply chain literature

that limited flexibility, corresponding to a sparse bipartite graph, can be surprisingly

effective in resource allocation even when compared to a fully flexible system [22, 38,

46, 47, 73]. The use of sparse random graphs or expanders as flexibility structures to

improve robustness has recently been studied in [23] in the context of supply chains,

and in [53] for content replication. Similar to the robustness results reported in this

chapter, both works show that random graphs or expanders can accommodate a large

set of demand rates. However, in contrast to our work, nearly all analytical results in

this literature focus on static allocation problems, where one tries to match supply

with demand in a single slot, as opposed to our model, where resource allocation

decisions need to be made dynamically over time.

- queue 1 dn erer

MEIN 1

queue 2 server 2

)2 
M

queue n server n11 N

Figure 3-2: A processing network with n queues and n servers.

In the queueing theory literature, the models that we consider fall under the
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umbrella of the so-called multi-class multi-server systems, where a set of servers are

connected to a set of queues through a bipartite graph. Under these (and similar)

settings, complete resource pooling (full flexibility) is known to improve system per-

formance [11, 41, 59]. However, much less is known when only limited flexibility is

available: systems with a non-trivial connectivity graph have proven to be extremely

difficult to analyze, even under seemingly simple scheduling policies (e.g, first-come-

first-serve) [81, 86]. Simulations in [88] show empirically that limited cross-training

can be highly effective in a large call center under a skill-based routing algorithm.

Using a very different set of modeling assumptions, [10] proposes a specific chaining

structure with limited flexibility, which is shown to perform well under heavy traf-

fic. Closer to the spirit of the current work is [84], which studies a partially flexible

system where a fraction p > 0 of all processing resources are fully flexible, while the

remaining fraction, 1 -p, is dedicated to specific demand types, and which shows an

exponential improvement in delay scaling under heavy-traffic. However, both [10]

and [84] focus on the heavy-traffic regime, which is different from the current set-

ting where traffic intensity is assumed to be fixed, and the analytical results in both

works apply only to uniform demand rates. Furthermore, with a constant fraction of

fully flexible resources, the average degree in [84] scales linearly with the system size

n, whereas here we are interested in the case of a much smaller (sub-linear) degree

scaling.

At a higher level, our work is focused on the joint trade-off between robustness,

delay, and the degree of flexibility in a queueing network, which is much less studied in

the existing literature, and especially for networks with a non-trivial interconnection

topology.

On the technical end, we build on several existing ideas. The techniques of

batching (cf. [67, 83]) and the use of virtual queues (cf. [52, 62]) have appeared in
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many contexts in queueing theory, but the specific models considered in the literature

bear little resemblance to ours. The study of perfect matchings on a random bipartite

graph dates back to the seminal work in [29]; while it has become a rich topic in

combinatorics, we will refrain from giving a thorough literature survey because only

some elementary and standard properties of random graphs are used in the current

chapter.

Organization of the Chapter We describe the model in Section 3.2 along with

the notation to be used throughout. The main theorems, as well as constructions for

the corresponding flexibility architectures and scheduling policies, are stated in Sec-

tion 3.3. The construction and the analysis associated with the virtual-queue-based

scheduling algorithm, designed for the Random Graph architecture, is relatively more

complex and will be presented separately, in Chapter 4. We conclude the chapter

in Section 3.5 with a further discussion of the results as well as directions for future

research.

3.2 Model and Metrics

3.2.1 Queueing Model and Interconnection Toplogies

The Model. We consider a sequence of systems operating in continuous time,

indexed by the integer n, where the nth system consists of rn queues and n servers,

where r is a positive constant that is fixed as n varies (Figure 3-2). To simplify

notation, we will mostly focus on the case of r = 1 for the remainder of the chapter,

while noting that all results and arguments in this chapter can be extended to the

case of an arbitrary r > 0 without significant difficulty.
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The flexible architecture is represented by an n x n undirected bipartite graph

gn = (E, I u J), where I and J represent the set of queues and servers, respectively,

and E the set of edges between them.4 We will also refer to I and J as the set of

left and right vertices, respectively. A server j E J is capable of serving a queue i E I,

if and only if (i, j) E E. We will use the following notation.

1. Let gn be set of all n x n bipartite graphs.

2. For gn E C/, let deg(gn) be the average degree among the n left vertices. (Since

r = 1, this is the same as the average degree of the right vertices.)

3. For a subset of vertices, M c I u J, let gjM be the graph induced by g on the

vertices in M.

4. Denote by K (i) the set of servers in J connected to queue i, and similarly, by

K (3) the set of queues in I connected to server i.

In the nth system, each queue i receives a stream of incoming jobs according

to a Poisson process of rate Ani, independent of all other streams, and we define

An = (An, 1 , An,2, -... , An,n), which is the arrival rate vector. 5 The sizes of the jobs

are exponentially distributed with mean 1, independent from each other and from

the arrival processes. All servers are assumed to be running at a constant rate of

1. The system is assumed to be empty at time t = 0. Note that, the assumption of

exponential service times and uniform-speed servers corresponds to the Service Time

model introduced in Section 2.1.

Jobs arriving at queue i can be assigned (immediately, or in the future) to an idle

server j E K (i) to receive service. The assignment is binding, in the sense that once

4 For notational simplicity, we omit the dependence of E, I, and J on n.
5When referring to a specific arrival rate vector, we may omit the dependence on n and write

A= (A,. .. , An) instead.
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the assignment is made, the job cannot be transferred to, or simultaneously receive

service from, any other server. Moreover, service is non-preemptive, in the sense that

once service is initiated for a job, the assigned server has to dedicate its full capacity

to this job until its completion.6 Formally, if a server j has just completed the service

of a previous job at time t or is idle, its available actions are: (a) Serve a new

job: Server j can choose to fetch a job from any queue in K (j) and immediately

start service. The server will remain occupied and take no other actions until the

processing of the current job is completed. (b) Remain idle: Server j can choose to

remain idle. While in the idling state, it will be allowed to initiate a service (Action

(a)) at any point in time.

Given the limited set of actions available to the server, the performance of the

system is fully determined by a scheduling policy, ir, which specifies for each server

j E J, (a) when to remain idle, and when to serve a new job, and (b) from which

queue in K (j) to fetch a job when initiating a new service. We only allow policies

that are causal, in the sense that the decision at time t depends only on the history

of the system (arrivals and service completions) up to t. We allow the scheduling

policy to be centralized (i.e., to have full control over all server actions) based on the

knowledge of all queue lengths and server states. On the other hand, the policy does

not observe the actual sizes of the jobs before they are served.

6 While we restrict ourselves to only binding and non-preemptive scheduling polices in this chap-
ter, other common architectures where (a) a server can serve multiple jobs concurrently (processor
sharing), (b) a job can be served by multiple servers concurrently, or (c) jobs sizes are revealed upon
entering the system, are clearly more powerful than the current setting, and are therefore capable of
implementing the scheduling policy considered in this chapter. As a result, the performance upper
bounds developed in this chapter also apply to these more powerful variations.
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3.2.2 Performance Metrics

Characterization of Arrival Rates. Throughout the chapter, we will restrict

ourselves to arrival rate vectors with average traffic intensity p, i.e.,

n

Ai pn, (3.1)
i=1

where p < 1 is a fixed constant. To quantify the level of variability or uncertainty of

a set of arrival rate vectors, A, we introduce a fluctuation parameter, denoted by un,

defined as the maximum arrival rate to any single queue among arrival rate vectors

in A:

Un= sup max Aj. (3.2)
AEA iEI

Note that, for a graph with maximum degree dn, the fluctuation parameter should

not exceed d4, because otherwise at least one queue could be unstable. Therefore,

the best we can hope for is a flexible architecture that can accommodate arrival rate

vectors with a un that is close to dn. The following condition formally character-

izes the range of arrival rate vectors we will be interested in, parameterized by the

fluctuation parameter, un, and traffic intensity, p.

Condition 3.1. (Rate Condition) Fix n > 1 and some un > 0. We say that a

(non-negative) arrival rate vector A satisfies the rate condition if the following hold:

1. maX i : Ai <iun.

2 n1 Ai
2. Z: 1 A pn.

We denote by An(un) the set of all arrival rate vectors that satisfy the above condi-

tions.
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Capacity Region. The capacity region for a given architecture is defined as the

set of all arrival rate vectors that it can handle. As mentioned in the Introduc-

tion, a larger capacity region indicates that the architecture is more robust against

uncertainties or changes in the arrival rates. More formally, we have the following

definition.

Definition 3.2 (Feasible Demands and Capacity Region). Let G = (I u J, E)

be an n x n bipartite graph. An arrival rate vector (demand), A = (A,... , An), is said

to be feasible (or admissible), if there exists a flow, F = { fij : (i, j) E E}, such that

Ai= E fij, Vi E I,
jE.A(i)

fij < 1, Vj E J,
iE (j)

fij >: 0, V(ij) E E. (3.3)

In this case, we say that the flow F satisfies the demand A. The capacity region of

G, denoted by R(G), is defined as set of all feasible demand vectors of G.

For the remainder of the chapter, we will use the fluctuation parameter un (Con-

dition 3.1) to gauge the size of the capacity region of an architecture, R(gn). For

instance, if An(un) c R(gn), then the architecture gn is able to handle all arrival rate

vectors with a maximum arrival rate of un.

Diminishing Delay. We define the expected average delay, E (WIA, g, 7r), as the

expected queueing delay under the arrival rate vector A, flexible architecture g, and

scheduling policy 7r. Specifically, let Wi,m be the waiting time in queue experienced
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by the mth job arriving to queue i, and let

E (WIA, g,ir) = 1 AiE (Wi), (3.4)
iE, Ai W

where E (Wi) = limsupm. E (Wi,m).7 For the remainder of the chapter, we may omit

the mentioning of g and r, and write E (WIA) instead to emphasize the dependence

of delay on the arrival rate.

The delay performance of the system is measured by the following criteria: (a) for

what ranges of arrival rates, A, is diminishing delay achieved as the system size tends

to infinity, i.e., E (WIA) -+ 0 as n -+ oo, and (b) at what speed does the delay diminish,

as a function of n.

3.3 Main Results: Capacity and Delay Performance

for Flexible Architectures

The statements of our main theorems are given in this section, and focus on the

performance of three flexible architectures: Random Graph, Modular and Expanded

Modular. For each case, we also provide the scheduling policy associated with the

flexible architecture.

Our results show that all three flexible architectures are able to achieve the joint

objective of a large capacity region and diminishing delay, under limited flexibility

(dn «n). However, they do so to different degrees, and the associated scheduling

policies also vary in complexity. Below is a high-level summary of our results, and a

7Note that E (WIA) captures a worst-case expected waiting time across all jobs in the long

run, and is always well defined, even under scheduling policies that do not induce a steady-state
distribution.
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more complete comparison is given in Table 3.1.

1. The Random Graph architecture is based on an interconnection topology gen-

erated by an Erd6s-Renyi bipartite random graph. It admits a capacity re-

gion that is essentially optimal, with high probability (Theorem 3.5). Using

a virtual-queue-based scheduling policy that utilizes dynamic assignments of

jobs to servers over the connnectivity graph, we show that one can achieve

diminishing delay for "most" arrival rate vectors in the capacity regime.

2. A Modular architecture consists of collection of separate small subnetworks,

and the queues and servers within each subnetwork are fully connnected. Since

the subnetworks are disconnected from one another, a Modular architecture

does not admit a large capacity region: there always exists an infeasible arrival

rate vector even when the fluctuation parameter is of constant order (Theorem

3.7). Nevertheless, we show that with proper randomization in the construction

of the subnetworks, a simple greedy scheduling policy is able to deliver dimin-

ishing delay for "most" arrival rate vectors with essentially optimal fluctuation

parameters, with high probability (Theorem 3.8).

3. The Expanded Modular architecture can be thought of as a combination of the

Random Graph and Modular architectures. By construction, it devotes the

system's flexibility separately in achieving the performance goal of capacity

and delay. As a result, the Expanded Modular architecture admits a smaller

capacity region compared to that of a Random Modular architecture, but it

is able to ensure a diminishing delay for all arrival rates, uniformly across the

capacity region (Theorem 3.11).

Based on these considerations, the Random Graph architecture appears to be
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best performing one. Whether some even better performance is achievable, however,

remains an open problem; cf. the "Ideal graph" in Table 3.1 and Conjecture 3.15 in

Section 3.5.
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Flexible architectures Rate Conditions Capacity Delay

Random Graph dn > nn, Good for most A with a

(w.h.p.) Good for all A E (W) < 1n 2 n/dn, dn >> 1n2 n
un ds/ln n

(Theorems 3.5, 3.6) Unknown whether "for all A"

Modular d >> 1, Bad for many Good for uniform A,

with
(Theorems 3.7, 3.9) un > 1 A (even if Un <" 1)

E (W) < exp(-c -d)

Random Modular Good for most A, with
d4 2 nri, Good for most A,

(w.h.p.) Un< n n a o oeA E (W) -< exp (- c -dn),
n 4 d/ln n Bad for some A

(Theorems 3.8, 3.9) Bad for some A

Expanded Modular Good for all A,
d >>1,

with dn = di(n) -d2 (n) Good for all A with slower rate

(Theorem 3.11) E (W) < 1/d 2(n)

Ideal Graph dn >> 1, Good for all A, with

(Conjecture 3.15) un < dn Good for all A E (W) < exp(-c -dn)

Table 3.1: This table summarizes and compares the flexibility architectures that we study,
along with the metrics of capacity and delay. We say that capacity is "good" for A if A falls
within the capacity region of the architecture, and that delay is "good" if the expected delay
is vanishingly small for large n. When describing the size of the set of A for which a statement
applies, we use the following (progressively weaker) quantifiers:

1. "for all" means that the statement holds for all A E An(Un);

2. "for most" means that the statement holds with high probability when A is drawn from an

arbitrary distribution over An(un), independently from any randomization in the construction

of the flexibility architecture;

3. "for many" means that the statement is true for a non-empty set of As, even when the degree

of fluctuation un is small or constant.

The label "w.h.p." means that all statements in the corresponding row hold with high proba-

bility with respect to the randomness in generating the flexibility architecture. The statement

marked "a" is based on an alternative interpretation of Theorem 3.6, given in Eq. (3.9).
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3.3.1 Preliminaries

The notion of an expander graph will be used in some of our constructions.

Definition 3.3. An n x n bipartite graph (I u J, E) is an (a, )-expander, if for all

S c I that satisfy IS| an, we have that K (S) I > ,QISI, where Af (S) = Ujs K (s).

The usefulness of expanders in our context comes from the following lemma,

which relates an expander's expansion parameters to the size of its capacity region,

measured by the fluctuation parameter, un. The proof is elementary and is given in

Appendix A.1.1.

Lemma 3.4 (Capacity of Expanders). Fix n E N and -y E [p, 1). Suppose that g,

is an (7-Y/un, u)-expander. Then An(un) c R(gn).

3.3.2 Random Graph Architectures

The Random Graph architecture is an n x n Erd6s-Renyi random bipartite graph G,

where each of the n2 edges is present with probability p, independently of all other

edges. We will refer to it as an (n,p) random bipartite graph, and use P,, (-) to

denote the corresponding probability measure on 9n, i.e.,

Pn,_ (g) = pE| (1 _)n 2 -EI, Vg E gn. (3.5)

Construction of the Architecture. We will simply use a (n, dn/n) random bi-

partite graph, so that each queue-server pair is connected with probability dn/n.8

8Note that even though the process for generating the interconnection topology involves ran-

domization, the topology itself remains fixed once generated.

56



Scheduling Policy. We will employ a class of virtual-queue-based scheduling poli-

cies, which chooses job-to-server assignments in a dynamic fashion. The details of

the scheduling policy are described in the proof of Theorem 3.6 in Chapter 4.

The following theorem states that with high probability, the Random Graph

architecture has a large capacity region. This stems from the fact that a random

graph is also a good expander with high probability.

Theorem 3.5 (Capacity of Random Graph Architectures). Suppose that dn

Slnn, and un < 1-1d/ln n. Let G , be an (n,p) random bipartite graph, with

p = dn/n. We have

lim Pa,, (An (un) c R(Gn)) = 1. (3.6)

Proof. See Section 3.4.1. E

Note that when d > In n, a (n, p) bipartite random graph with p = d//n has

average degree of order d4 with high probability. Therefore, Theorem 3.5 shows

that, with high probability, the size of the capacity region of the Random Graph

architecture is the best possible, within a logarithmic factor, because the fluctuation

parameter, un, can be of order O(d7 /lnn).

We next turn to the delay in a Random Graph architecture. The following the-

orem states that, when un < d/ln n, for any arrival rate vector An E An(un), the

Random Graph architecture can achieve a diminishingly small delay, with high prob-

ability. The first part of the theorem states that if An is known, then a "good graph"

with desirable delay performance can be constructed. The second part states that

the random graph construction will be able to produce such a "good graph" with

high probability. The proof of the theorem will be presented in Chapter 4.

Theorem 3.6 (Delay of Random Graph Architectures). Fix y > 0, and n 1.
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Suppose that d 4 In2.1 n, and un < ! dnln n.9

(a) For any An E An(un), there exists a bipartite graph, gn E !gn, with deg(gn)

(1 + -y)dn, and a scheduling policy, irn, under which 10

1n2 n
E(W I An) K In , (3.7)

where K > 0 is a constant independent of n, gn, and An.

(b) For any An E An(un), there exists -n c gn, with11

Pn,dn/n (1n) > 1 - 6n, (3.8)

such that there exists a scheduling policy irn, under which Eq. (3.7) holds for

every gn E ln. Here { 6
fl}f>1 is a sequence of non-increasing constants with

lim-,, 5 n = 0.

(c) The scheduling policy, irn, only depends on gn and an upper bound on the traffic

intensity, p. It has no additional dependencies on the arrival rate vector An.

We can interpret Theorem 3.6 as a statement for "most" arrival rate vectors in

An(un), as follows. Consider the case where the flexible architecture G is drawn

according to the probability measure Pn,d,/n, and the arrival rate vector An is chosen

at random, according to some arbitrary probability measure An on An(un), but still

independently from G. It can be shown, through an easy application of Fubini's

9The theorem holds if dn >> In2 n. Here, we have chosen to let dn --- In 2 1 n for concreteness.
i-p

'0The choice of gn can depend on An .
11Pn,, is the probability measure induced by an (n, p) random bipartite graph, defined in Eq. (3.5).
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Theorem, that

(Prgi X P (I WiAn) - Kil" , under G and rn -+1, (3.9)

for any sequence of measures, {pn}r,1, where each pn has support on An(un), and

x is used to denote product measure. In other words, with high probability, the

Random Graph architecture yields small delay for "most" An E An(un) (as in Table

3.1).

Remark. The delay characterization given by Theorem 3.6 is weaker than that

for the capacity in Theorem 3.5. We do not know whether it is possible to find an

architecture, under which we can guarantee a small delay for all A E An (un) (see

Conjecture 3.15 in Section 3.5).

The requirement of d > In 2 1 n in Theorem 3.6 is stronger than that of Theorem

3.5 by a lnn factor. This is, however, not a hard limitation. Using a more refined

analysis, one can extend Theorem 3.6 to showing that, for any 9 E [0, 1), it is possible

to achieve a delay scaling of order

EffI A) <In 2-0 n
E (W I A,) 5 dr, (3.10)

whenever d4 >> In2- n and un < dn/ln 1* n. While this extension provides an ad-

ditional trade-off among the system parameters, it does not change the qualitative

conclusions of Theorem 3.6, and we have hence excluded it from the statement of

the theorem for simplicity.

59



3.3.3 Modular Architectures

In a Modular architecture, the designer partitions the network into n/d, separate sub-

networks. Each sub-network consists of d, queues and servers that are fully connected

(Figure 3-3), but disconnected from queues and servers in other subnetworks.

Construction of the Architecture. More formally, the construction is as follows.

1. Partition the set of servers, J, into n/d, clusters of dn servers each, in some

arbitrary manner (e.g., assign dn servers to the first cluster, the next dn servers

to the second cluster, etc). Let s(j) be the index of the cluster to which server

j belongs.

2. Let o- {1,... , n} - {1,... , n/dc} be a partition of the set of queues, I, into

n/dn queue clusters, so that each cluster has exactly dn elements. That is,

o(q) has cardinality dn for every q E {1,...,n/dn}. Let q(i) be the index of

the cluster to which queue i belongs.

3. To construct the interconnection topology, we connect queue i to server j if

they belong to queue and server clusters with the same index, i.e., s(j) = q(i).

A pair of queue and server clusters with the same index will be referred to as

a subnetwork.

Note that any choice of o- yields an isomorphic architecture. In the case where

o-, is drawn uniformly at random from the set of possible partitions, we call the

resulting topology a Random Modular architecture. Note also that by construction,

the degree of all nodes in a Modular architecture is equal to the size of the cluster,

dn.
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Scheduling Policy. We will use a simple greedy policy that is equivalent to run-

ning each subnetwork as an M/M/du queue. When server j become available, it

starts serving a job from any non-empty queue in K (j). Similarly, when a job ar-

rives at queue i, it is immediately served by an arbitrary idle server in K (i) if such

a server exists, and waits in queue i, otherwise.

S 0

z0. -- ------------

0

ZJ 0

ZZ 0:

Figure 3-3: A Modular architecture consisting of n/dn subnetworks, each with d"

queues and servers. Within each subnetwork, all servers are connected to all queues.

Our first result shows that a Modular architecture does not have a large capacity

region in the worst-case sense: for any partition o-n, there always exists an inadmis-

sible arrival rate vector, even if un is small, of order 0(1).

Theorem 3.7 (Capacity for Deteministic Modular Architectures). Fix n > 1.

Suppose that d4 2n, and Un > 1. Let gn be a Modular architecture associated with

the permutation on. Then, there exists A e An(un) such that A f R(gn).

Proof. See Section 3.4.2.

However, if we are willing to consider a weaker characterization of the capacity

region, the next theorem states that the Random Modular can handle any arrival rate
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vector, with high probability, if the fluctuation parameter, un, is of order (9(d,/lInn),

but no more than that.

Theorem 3.8 (Capacity of Random Modular Architectures). Let O- be drawn

uniformly at random from the set of all partitions and independent of A, and let G be

the Modular architecture generated by o-n. Suppose that dn c1 inn, for some c1 > 0.

1. There exists c2 > 0, so that if un c2dn/ inn, then

lim inf PG (A E R(G)) = 1. (3.11)
n-oo AEAn(un)

2. Conversely, for any c1 > 0, there exists c3 > 0, such that if u" c3 dn/ Inn and

d_ s nO-3 , then

lim inf PG (A E R(G)) = 0, (3.12)
n-oo AEAn (Un)

Proof. See Section 3.4.3.

We now turn to delay. The following theorem shows that in any Modular ar-

chitecture, delay is vanishingly small for essentially all arrival rate vectors in the

capacity region.

Theorem 3.9 (Delay of Modular Architectures). Fix some -y E (0, 1), and let

gn be a Modular architecture. Suppose that A E R(gn). Then, there exists a constant

c > 0, independent of n, so that

E (W I yAn) < exp(-c -dn). (3.13)

Proof. See Section 3.4.4.
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3.3.4 Expanded Modular Architectures

The Expanded Modular architecture combines the features of a Modular architecture

and an expander graph via a graph product. However, we will start by providing the

more general version of the construction, without an explicit use of expander graphs.

Construction of the Architecture. We first express the average degree as a

product, d, = d,(n)- d2(n), where the magnitudes of di(n) and d2 (n) relative to each

other are a design choice. The architecture is constructed as follows.

1. Partition I and J into equal-sized clusters of size d1(n). We will refer to the

index set of the queue and server clusters as Q and S, respectively. For all i E I

and j E J, denote by q(i) E Q and s(j) E S the indices of the queue and server

clusters to which i and j belong, respectively.

2. Let ge be a bipartite graph of maximum degree d2(n) defined on the set of

queue and server clusters, Q u S. Let Ee be the set of edges of ge.

3. To construct the interconnection topology gn = (I u J, E), let (i, j) EF if and

only if their corresponding queue and server clusters are connected in ge, i.e.,

(q(i), s(j)) E Ee.

Note that by the above construction, each queue is connected to at most d2 (n)

server clusters through gn, and within each connected cluster, d1 (n) servers. There-

fore, the maximum degree of gn is at most d1 (n) -d2 (n) = dn.

Scheduling Policy. The scheduling policy consists of two stages, and the policy

requires the knowledge of the arrival rate vector, A. The computation in the first

stage is performed only once for any given A, while the second stage is repeated

throughout the operation of the system. We assume that A E R(gn).
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1. Compute a feasible flow, {fq,s}(q,s)EEe, over the graph ge, where the demand

at each queue cluster q E Q is equal to rq = Eieq Ai, and the supply at each

server cluster s E S is equal to " d, (n). Note that such a flow exists as long

as A E R(g.). Denote by fq,s the total rate of flow from the queue cluster q to

the server cluster s.

2. When a server becomes available, it chooses a neighboring queue cluster (w.r.t.

the topology of ge) with probability roughly proportional to the flow between

the clusters. In particular, a server in cluster s chooses the queue cluster q

with probability

fq,s l1+p 1 i-p
psq = qs + (3.14)

'q Eq'EV(s) fq',,s 2 deg(s) 2 '

where deg(s) is the degree of s in ge. Within the chosen cluster, the server

starts serving a job from an arbitrary non-empty queue, or, if all queues in

the cluster are empty, the server initiates an idling period whose length is

exponentially distributed with mean 1.

When the graph ge is an expander graph, we refer to the topology created

via the above procedure as an Expanded Modular architecture generated by ge. The

following lemma ensures that such expander graphs exist for the range of parameters

we are interested in. The lemma is a simple consequence of a standard result on the

existence of expander graphs, and its proof is given in Appendix A.1.3.

Lemma 3.10. Suppose that d2 (n) -+ oo as n -+ oo. Let 0,, = . (ln-1 +1 d2(n),

and a,, = L-P. There exists n' > 0, such that for all n > n', there exists an

expander with maximum degree d2 (n).
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Note that an Expanded Modular architecture is constructed as a "product" be-

tween an expander graph across the queue and server clusters, and a fully connected

graph for each pair of connected clusters. As a result, its performance is also of a

"hybrid" nature: the expansion properties of ge guarantee a large capacity region,

while a diminishing delay is obtained as a result of the growing size of the server

and queue clusters. We summarize this in the following theorem. Here we assume

that d2 (n) is sufficiently large so that the expander graph described in Lemma 3.10

exists.

Theorem 3.11 (Capacity and Delay of Expanded Modular Architectures).

Suppose that dn = d1 (n) -d2(n), and let On = } (n-1 1 + 1) d2(n), and an = 2 - -.

Let ge be an (an, on) -expander with maximum degree d2(n), and let gn be an Expanded

Modular architecture generated by ge. If

Un 2 Pn= 1 In-1 - + 1) d2(n), (3.15)
2 4 p

then

sup E (WjA) d c , (3.16)
AEA(u) d(n)

under the scheduling policy described above, where c is a constant that does not depend

on n.

Proof. See Section 3.4.5.

A Capacity-Delay Trade-off. For the Expanded Modular architecture, the relative

values of d1 (n) and d2 (n) reflect a design choice: a larger value of d2(n) ensures a

larger capacity region, while a larger value of d, (n) yields smaller delays. Therefore,

while the Expanded Modular architecture is able to provide a strong delay guarantee

that applies to all arrival rate vectors in An(un), it comes at the expense of either
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a slower rate of diminishing delay (small di(n)) or a smaller capacity region (small

d2(n)).

3.4 Proofs of Main Results

3.4.1 Proof of Theorem 3.5

Proof. The following useful lemma shows that a random graph is w.h.p. an expander

graph.

Lemma 3.12. (Expanders from Random Graphs) Fix -y E (0,1). Let d.,

Inn, and 6(n) = 112d/ Inn. Let G be an (n,dn/n) random bipartite graph. We

have

a (,#i n-expander) = 1. (3.17)

Proof. See Appendix A.1.2.

Let =1 - (1 - p)/2> p. We have that

lim P (A E R(Gn), VA E An(un))
fl-+ 00

(a)
> lim P (G, is an (-y/un, un)-expander)

n-+oo

1, (3.18)

where steps (a) follows from Lemma 3.4, and step (b) from Lemma 3.12, with , =

Un- DJ
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3.4.2 Proof of Theorem 3.7

Proof. Since the arrival rate vector we choose can depend on the architecture, without

loss of generality, we assume that servers and queues are clustered in the same

manner: server i and queue i belong to the same cluster. Since all servers have

capacity 1, and each cluster has exactly d,, servers, it suffices to show that there

exists A = (Al,..., A,) E A,(un), such that the total arrival rate to the first queue

cluster exceeds d, i.e.,

Z A > d, (3.19)

To this end, consider the vector A where Ai = min{un,2} for all i E {1,...,d} and

A = 0 for all i > d, + 1. We have that

max A = min{2,u,} u,, , (3.20)

and

Z = dn min{2, u} ( n -2 = pn, (3.21)
~f 2

where step (a) follows from the assumption that dn 2n. Eqs. (3.20) and (3.21)

together ensure that A E An(Un). Since we had assumed that u" > 1, Eq. (3.19) holds

for this A. We thus have that A R(g9), which proves our claim. 0

3.4.3 Proof of Theorem 3.8

Proof. Upper Bound (Eq. (3.11)). We will use the following classical result due

to Hoeffding (adapted from Theorem 3 in [44]).

Lemma 3.13. Fix m and n, so that 0 < m < n. Let X 1 ,X 2 ,... ,X, be drawn

uniformly at random from a finite collection C = {c 1 ,. .. , c,, } without replacement.
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Suppose that 0 ci b for all 1 i n, and Var (X1) = 0.2 . Letting X = 1 F X

we have

P E (X) + t) exp - + in 1+ ) - 1]) (3.22)

for all t E (0,b).

Fix EE (0,1-1) and k E {1,...,n/dn}. Let Ak c I be the set of d4 queues to

which the servers kdn + 1 through (k + 1)dn are connected under the architecture G,

generated by the partition O-n. Define the event Ek as

Ek = { Ai > (1+ E)pdn. (3.23)
iEAk

Since o- is drawn uniformly at random from all possible partitions, it is not

difficult to see that =Eik A E d Zr Xj, where X1 ,X 2 ,...,Xm are m elements drawn

uniformly at random without replacement from the set {A ,... , A}. Applying

Lemma 3.13, with m = dn and b = un we have that

P(E 1)=P Xi >(1+e)pd)

(a) 1dn 1 d.
< P -E X > E -Z i e

<exp -epd" +Var(XI) n (1+ CUn (3.24)
Un \ epun ) Var (X1) '

where the probability is measured with respect to the randomness in G, and where

in step (a) we used the fact that

(dn dnE i (X =dE( X1) = du Ai pdn. (3.25 )
i=1 i=n j =1
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It is not difficult to show that, if (A1, A2, ... , An) E An(un) , i.e.,

- Ai : p, and max Ai 1 u , (3.26)
n j=1 2i:in

then the value of Var (X 1 ) is upper-bounded by the setting where

Un, if 1 < i < p"-
Ai i f " (3.27)

0, otherwise.

This implies that

Var (X 1 ) E(X 2) 2 = p . (3.28)
Un

Combining Eqs. (3.24) and (3.28), and the fact that the right-hand-side of (3.24) is

non-decreasing in Var (X 1 ), we have that there exists 0 > 0, so that for all E E (0, 0),

P (El) exp -Pn [1+ In (1+ e) -1]
\Un L E/J

(a) P E2dn
( exp 3Un, (3.29)

where the step (a) follows from the fact that [(1 + -) ln(1 + x) - 1]~ x as x 1 0.

Lete= min{ -1, 0}, and suppose that un Pdn In-' n for all n E N. Combining
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Eq. (3.29) with the union bound, we have that

n/dnP (A R(G)) : P UEk)
(k=1

n/dn

Z P(Ek)
k=1

- exp ( 6 E2dn)
dn 3 Un/

(a) 1 U

~ dn n2

<.n-1, (3.30)

where step (a) follows from the assumption that un Pdn In 1 n. Because Eq. (3.30)

holds for all A E An(un), we have proven the upper bound, Eq. (3.11), by letting

C2 = pE2 /6.

Lower Bound (Eq. (3.12)). For this part of the proof, we will assume that

Un 2 C3dn In-' n, for some c3 > 0. Because we are interested in showing the lower

bound, without loss of generality, we may assume that un << n. Denote by An

a probability distribution over An(un). Let A be a random vector drawn from the

distribution pn, independent of the randomness in the Random Modular architecture,

G. The following basic fact is useful.

Lemma 3.14. Suppose there exist { An: n E N} and {an: n E N}, so that

P'A,G (A f R(G)) an, Vn E N. (3.31)

Then

sup PG(~ f R(G)) an, Vn E N. (3.32)
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Proof. We have that

sup PG(O 0 R(G)) > f PG(1 0 R(G))dyn(A)
AEAn(un) AA(Un)

=-PA,G (A 0 R(G))

a,. (3.33)

In light of Lemma 3.14, we will find sequences, {,a : n E N}, and {an : n E N},

with limn, an = 1, so that Eq. (3.31) holds.

Fix n E N. We first construct the distribution A. Let A' = {A' A', ... , A'} be a

random vector where all coordinates are independent, with

_ n, (3.34)
w.P. rwise

otherwise,

for all i. Let the event H be defined by

H= {ZA'pn,
i=1

(3.35)

and by F its complement. Let A be the random vector given by

A = I(H)A' + I(77)0, (3.36)

where 0 is the n x 1 all-zero vector. That is, A takes on the value of A' if H occurs, and

is set to zero, otherwise. It is not difficult to verify that by construction, A E An(un)

almost surely. We will let P, be the distribution associated with A.
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We next show that

liMPAX,G (A f R(G)) = 1,n-,r

which, by Lemma 3.14, will have proven our claim. Define the event

(3.37)

(3.38)Ek= f A'> (1+ E)pdn }
iEAk

Note that, whenever E > - 1, the occurrence of Ek for any k implies that A' mustp

not be in kR(G). Therefore, we have that

k=Ek) (3.39)

Let {Xi}iEN be i.i.d. Bernoulli random variables with P(X 1 ) = P- . By the defini-

tion of A' (cf. Eq. (3.34)), we have that

P(E 1 ) =P (Z A'> (1 + E)2pd)

= X >(1 +E)2p_)(i=1 Un

(1+ 6) 2E (X 1 ) (3.40)

By Sanov's theorem (cf. Chapter 12, [25]), we have that

P(E1 ) = - EX > (1

1 /=

(d+ 1)2 exp

+ E)E (X1))

9B (+ 6)2p dnDn n ,
(3.41)

where DB(pllq) is the Kullback-Leibler divergence between two independent Bernoulli
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distributions with parameters p and q, respectively, with

DB(plq) = pin - + (1
q

- p)lIn
1 -q

(3.42)

Fixing r E (0, 1), and using the fact that In(1 + y) ~ y as y -+ 0, we have that

DB (xjj rx) ~ h,x, as x -+ 0. (3.43)

where hr = 1- r + In! > 0. Recall that dn ci In n, and un , cAd In- 1 n. By Eq. (3.43),

with x = (1 + E)2p/un and r = 1/(1 + e) 2 , we can set c3 to be sufficiently large so that

DB ((+)P &)dn 2hfd,
\ Un Un / Un

(3.44)

for all n 10, where h = hl/(l+E)2 > 0. Combining Eqs. (3.41) and (3.44), we have

that

d ) (a)-2h- n-2ac -,
Un

(3.45)

where step (a) follows from the assumption that un t! c3dn n-1 n and dn n. Fix
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e> - 1 and c3 = 40h. We have that
P

P(A' f R(G)) >P (Ek
k=1

1 - I 1 /" (1 - P(Ek))

(b)-3 12/ d
1 - (1 - d;3n1-2h/c3d/n)n

1 - (1 - no-05dn)/n

-+, as n -+ oo, (3.46)

where step (a) is based on the independence among the events in {Ek k = 1,... ,

which is in turn based on the independence among the A's, step (b) follows from

Eq. (3.45), and step (c) from the assumption that dn nO.3 and c3 = 40h.

We next show that the event H occurs with high probability, as n -+ oo.

P(H) =P i < pn

=P $(Xi Xpn/un

=1 -P Z Xi > (1 +,E)E (X1)(nE j=1

> exp - 3(1 + E) . 1, as n oo, (3.47)

where the Xis are i.i.d. Bernoulli random variables with E(X 1 ) = , and step

(a) follows from the Chernoff bound, and the fact that un «n.
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We are now ready to prove Eq. (3.37). We have that

PA,G(A f R(G)) =PA',G(I(H)A + I(H)0 f R(G))

=IPA',G (H n {A' 0 R(G)})

>P(H) + P (A' f R(G)) -1
(a) (3.48)-+1, as n --> oo,

where step (a) follows from Eqs. (3.46) and (3.47). Together with Lemma 3.14, this

completes the proof of the lower bound, Eq. (3.12).

3.4.4 Proof of Theorem 3.9

Proof. Denote by Qi(t) the number of jobs in queue i at time t, and by Qq(t) the

total number of jobs in queue cluster q, i.e.,

Qq(t) = ZQi(t). (3.49)
iEq

It is not difficult to verify that the evolution of Qq(-) is identical to the number of

jobs in an M/M/k queue, with k = d, and arrival rate Kq = EiEq Ai. Note that since

A E R(g,), we have that rxq < d,. Using the equation for the expected waiting time

in queue for an MIMIk queue, one can show that the average waiting time across

jobs arriving to cluster q, Wq, satisfies

1 C(dn, q) C(dndn) (a) (350)E (WqI'yA) = Z AiE (Wi) = -nq < (xp(-ycd (a),)(3.)7
I iqAi iE' q -
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where C(x, y) is the Erlang's C formula: C(x, y) = ( -1 ( .- L + jyi'- ,

and step (a) follows from the fact that for all y E (0,1), there exists c > 0, so that

C(x, yx) < exp(-cx) as x -+ oo.

3.4.5 Proof of Theorem 3.11

Proof. The proof consists of two parts. We first show that for all A E A,(u,),

there always exists a feasible flow over the graph ge between the queue and server

clusters. We then illustrate how the scheduling policy based on such a flow leads to

a diminishing delay, as in Eq. (3.16).

By the max-flow min-cut theorem, to check the feasibility of A, it suffices to verify

that

Z (Z~) + pdl(n)IN(H), VH c Q, (3.51)
gEH iaq 2

which is equivalent to having

E q IKII(H)|, VH c Q, (3.52)
qEH

where rq = di (n) EEq Ai. In other words, it suffices to show that

1, . .. , K n E R(ge). (3.53)
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To this end, note that

Z Kq 2 1 _2p n (3.54)
qEQ : 1+p"d(niEI 1 + p d1(n)

2 1 2 (a)
max n < - Idi(m) maxiA j u1  #, (3.55)
qEQ +p d(n) iEI + p

where step (a) follows from the assumption that un 1I-,3. With Eqs. (3.54) and

(3.55) at hand, the validity of Eq. (3.53) follows by applying Lemma 3.4 to the

expander ge, with the demand vector (K1,..., n . This proves the existence of a

feasible flow {fq,s}(q,s)EEe-

We are now ready to analyze the delay associated with the scheduling policy. Fix

q E Q. Recall the definition of Ps,,q in Eq. (3.14), the rate at which the queue cluster

q gets chosen by the servers is

1 q = d1 (n)Ps,,q
sEP/(q)

= Z di (n) f', s +p 1 +-p

seVqx) (Eq'E(s)',s 2 deg(s) 2)

= qs ~ 1+pd1(+d(n) E 1 -1
'\sE(q) Zq'Ej(s) fq',s J2 sE(q) deg(s) 2)

(a) _____de~q

> + ( Z:A- di (n)
iEq 2 dgs

(b) l-p fi
> (: + 2 d2 (n) di(n)

iEq
=Z A) + L2In-, + 1 di (n), (3.56)

where step (a) follows from the feasibility of the flow {fq,s}(q,s)eEe, and step (b) from

the fact that ge is an (an, o3)-expander, and hence deg(q) > on, and the fact that ge
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has maximum degree d2(n), and hence deg(s) d2(n).

Denote by Qi(t) the number of jobs in queue i at time t, and by Qq(t) the total

number of jobs in cluster q, i.e.,

Qq(t) = ZQi(t). (3.57)
irzq

It is not difficult to verify that, under the scheduling policy considered, the evolution

of Q(-) is identical to that of the number of jobs in system in an initially empty

M/M/1 queue with arrival rate riq = Ziq Ai, and service rate pq. 1 2 Using Eq. (3.56)

and the equation for the expected time in system in an M/M/1 queue, we have that

the average waiting time across all queues in cluster q, W, satisfies

1 1 C
E(WqIA) = E AiE (Wi) =< , (3.58)

Eieq Ai irzq pg - Aq d1 (n)

where c = j (ln-1  + 1). Since Eq. (3.58) holds for all q E Q and A E An(un), we

have completed the proof of Theorem 3.11. I

3.5 Summary and Future Research

The main message of this chapter is that a large capacity region and diminishing

delay can be jointly achieved in a system where the level of processing flexibility of

each server is small compared to the system size. We proposed several flexibility

12 Note that in the proof of Theorem 3.9, the total queue length process in a cluster evolves as
the queue length of an MIMIk queue, with k = d., whereas in this proof, Qq is compared to the
total number of jobs in system for an M/M/1 queue. This is because in a Modular architecture, an
arriving job immediately initiates service if there is server in the corresponding subnetwork that is
currently available. In contrast, in the Expanded Modular architecture, incoming jobs always wait
in the queue until they are fetched by a server.
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architectures, along with associated scheduling policies that achieve these objectives

to various degrees. At a high-level, the key features of the different architectures are

summarized as follows (see Table 3.1 for a more detailed comparison).

1. The Random Graph architecture provides, with high probability, a capacity

region that is essentially optimal, and diminishing delays for most arrival rate

vectors therein. It remains an open problem whether diminishing delays can

be achieved for all arrival rates in the capacity region.

2. With proper randomization, a Modular architecture is able to provide small

delays for "many" arrival rates, by means of a simple greedy scheduling policy.

However, for any given Modular architecture, there are always many inadmis-

sible arrival rate vectors, even if the maximum arrival rate across the queues

is of constant order.

3. The Expanded Modular architecture is capable of providing both a large capac-

ity region, and diminishing delays for all arrival rate vectors therein. However,

such robustness comes at a cost, as the the designer has to make a trade-off be-

tween the size of the capacity region and the speed at which delay diminishes.

Furthermore, our scheduling policy relies on the knowledge of the arrival rate

vector, A.

Based on our results, the Random Graph architecture appears to have the best

performance. It remains an open problem, however, whether even better performance

can be achieved. In particular, can one find an "ideal" flexibility architecture that

guarantees a large capacity region with ut, = Q(ds), and a diminishing delay for all

arrival rate vectors therein? This is formalized in the following conjecture.
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Conjecture 3.15 (Existence of "Ideal" Architectures). Suppose that d, >> 1.

There exists a constant h > 0, such that if

un/dn h, for all n > 1, (3.59)

then there exists a sequence of architectures, {gn}n>1, and associated scheduling poli-

cies, under which

E (WIA) c1 exp(-c 2 -dn), for all n 1 and A E An(un), (3.60)

where c1 and c2 are positive constants independent of n or A.

A weaker conjecture, more in line with the delay scaling we proved for the Random

Graph architecture (Theorem 3.6), would only require that E(WIA) c1 /dn, instead

of the exponential dependence on dn in Eq. (3.60).

The scaling regime considered in this chapter assumes that the traffic intensity is

fixed as n increases, which fails to capture system performance in the heavy-traffic

regime (p ~ 1). It would be interesting to consider a scaling regime in which p

and n scale simultaneously (e.g., as in the celebrated Halfin-Whitt regime [40]), but

it is unclear at this stage what exact formulations and analytical techniques are

appropriate.
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Chapter 4

The Random Graph Architecture

4.1 Virtual Queue and the Scheduling Policy

In this chapter, we provide a detailed construction of the virtual-queue-based schedul-

ing policy used in the Random Graph architecture, which will then be used to prove

Theorem 3.6 of Chapter 3. We begin by describing some high-level ideas behind our

design.

Regularity vs. Discrepancies Setting aside computational issues, an efficient

scheduling policy is difficult to design because future inputs are unpredictable and

random: one does not know a priori which part of the network will become more

loaded, and hence current resource allocation decisions must take into account all

possibilities for future arrivals and job sizes, which is difficult to carry out or analyze.

However, as the size of the system, n, becomes large, certain regularities in the

arrival processes begin to emerge. To see this, consider the case where An,i = A < 1

for all n and i, and assume that at time t > 0, all servers are busy serving some

job. Now, during time interval [t, t + Y7 ), "roughly" Any, new jobs will arrive, and
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n-y servers will become available. For this [t, t + -7 ) interval, denote by F the set of

queues that received any job, and by A the set of n-y servers who became available.

If Any, << n, these incoming jobs are likely to spread out across the queues, so that

most queues receive at most one job. Assuming that this is indeed the case, we see

that the connectivity graph gn restricted to F u A, gnIruA, is a subgraph sampled

uniformly at random among all (Any, x n-yn)-sized subgraphs of gn. When n-y is

sufficiently large, and gn is well connected (as in an Erd6s-Renyi random graph with

appropriate edge probability), we may expect that, with high probability, gnIruA

admits a matching (Definition 4.2) that includes the entire F, in which case all An-yn

jobs can start receiving service by the end of the interval.

Note that when n is sufficiently large, despite the randomness in the arrivals, the

symmetry in the system makes delay performance at a short time scale insensitive to

the exact locations of the arrivals. In other words, treated collectively, the structure

of the set of arrivals and available servers in a small interval becomes less random and

more "regular," as n -+ oo. Of course, for any finite n, the presence of randomness

means that discrepancies (events that deviate from the expected regularity) do not

completely disappear. For instance, the following two types of events will occur with

small, but nonzero, probability.

1. Arrivals may be located in a poorly connected subset of gn.

2. Arrivals may concentrate on a small number of queues.

One will need to take care of these outliers, and hope that any of their negative

impacts on performance are insignificant.

Following this line of thought, our scheduling policy aims to use most of the

resources to dynamically target the regular portion of the traffic (by assigning jobs

to servers in batches), while ensuring that the impact of the discrepancies is well
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contained. In particular, we will use a two-mode virtual queue to serve these two

objectives:

1. A "collect" mode, which targets regularity in arrival and service times.

2. A "clear" mode, which is invoked once discrepancies occur.

The queue is "virtual," as opposed to "physical," in the sense that it merely serves

to conceptually simplify the description of the scheduling policy.

Good Graph Note that the operations with the virtual queue have to fully comply

with the underlying connectivity graph, gn, which is fixed over time. We informally

describe here what key structural properties a "good" g, should possess, while the

more detailed definitions and performance implications will be addressed in subse-

quent sections, as a part of the queueing analysis. In particular, the set W-t (as

in Theorem 3.6), which consists of good graphs, is the intersection of the following

subsets of g9:

1. !9 (Lemma 4.3): gn admits a full matching. This property will be used in the

virtual queue to handle discrepancies.

2. g, (Lemma 4.11): with high probability, g, admits a large set of "flows" over

a randomly sampled sublinear-sized subgraph. This property will be used in

the virtual queue to take advantage of regularity.

3. L4 (Section 4.5) : gn has an average degree that is of the order dn. This

property is to comply with our degree constraint.

Input to the Scheduling Policy Besides n, the scheduling policy uses the fol-

lowing inputs:
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1. p, the traffic intensity as defined in Condition 3.1 in Section 3.2.2,

2. e, a constant in (0,1 - P),

3. b, a batch size function,

4. gn, the interconnection topology.

Notice that the fluctuation parameter, un, is not an input to the scheduling policy.

4.2 Arrivals to the Virtual Queue

The arrivals to the virtual queue are arranged in batches. Roughly speaking, a batch

is a set of jobs that are treated collectively as a single entity. We define a sequence

of random times {TB (k)}kEz., by letting TB (0) = 0, and for all k > 1,

TB(k) = time of the (kpbn)th arrival to the system,

where bn E Z, is a design parameter that corresponds to the size of the batch, and

will be referred to as the batch parameter. We will refer to the time period (TB(k -

1), TB(k)] as the kth batch period, which also corresponds to the interarrival times

to the virtual queue, defined as follows.

Definition 4.1. (Arrival Times to the Virtual Queue) The time of arrival of

the kth batch to the virtual queue is TB(k), and the corresponding interarrival time

is A(k) TB T(k +1) -TB (k).

Finally, we will use the n x 1 vector, M(k), to represent the content of the batch,

i.e., the pbn jobs that arrive during the kth batch period. In particular,

M 2 (k) = # of jobs arriving to queue i during the kth batch period. (4.1)
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4.3 Mode Transitions and Service Rules

This section describes the actions of the physical servers. Before getting into the

details, we first describe the general ideas. For each batch of arrivals, we will first

"collect" a number of available servers, which is approximately equal to the size of

the batch:

1. With high probability, all jobs in the batch can be simultaneously assigned to

a unique server through g,.

2. With small probability, some jobs in the batch are located in a poorly connected

subset of gn, so that they cannot be assigned to the available servers. In this

case, all jobs in the batch will be served one by one according to a fixed server-

to-queue mapping (a "clear" phase).

To implement the above queueing dynamics, we will specify the evolution of

modes and actions of the virtual queue as well as the physical servers, which will be

described in detail in the remainder of this section. Examples of some of the mode

transitions are illustrated in Figure 4-1.

4.3.1 Modes and Actions of the Virtual Queue

For the purpose of this subsection, we shall assume that each of the physical servers

is in one of two modes: STANDBY and BUSY; the mode evolution for the physical

servers will be described in the next subsection.

Mode transitions and scheduling actions for the virtual queue take place at dis-

crete times, which we will refer to as the service epochs: let Ts(O) = 0, and for all
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assignment assignment
successful failed

I IServerj .W

Service COLLECT COLLECT CLEAR CLEAR

Slots I
Ts(1) Ts(2) Ts(3) Ts([)

Event Point: e STANDBY: BUSY:

Figure 4-1: Examples of mode transitions at the physical server and service slots.

k 1,

Ts(k) = k -,-(p + e), (4.2)
n

where e is a constant in (0, 1 - p). We refer to the interval (Ts(k - 1), Ts(k)] as the

kth service slot. To see how the length of the service slot was chosen, recall that

the size of each batch is equal to pbs. The length of the service slot hence ensures

that the expected number of servers that will become available during a single service

slot is on the same order of, and strictly great than, the size of a batch.

In order to coordinate the actions of various physical servers, we will associate

with each service slot one of the two modes: COLLECT and CLEAR. Accordingly,

we will say that a service slot can be a COLLECT slot or a CLEAR slot. The first

service slot is initialized to mode COLLECT. For all k 2, the following takes place

at the beginning of the kth service slot (cf. Figure 4-1).

1. Suppose the (k - 1)th service slot is in mode COLLECT. Let A c J be the set

of servers currently in STANDBY. Suppose there is at least one batch in the

virtual queue, and let M' be the batch currently at the front of the queue.
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(a) If there exists a assignment, F, from the set of all jobs in M' to the set of

STANDBY servers, A, so that each job is assigned to a unique STANDBY

server that is connected to its arriving queue, let all servers in A to which

a job is assigned enter mode BUSY, and initiate the processing of the

assigned job. If there remain some servers in A without a job (which will

occur if IM'I <JA), let all these servers enter mode BUSY by initiating a

vacation, with a length independently distributed according to Expo (1).

This marks the departure of a batch from the virtual queue. We let the

kth service slot remain in mode COLLECT.

(b) If no such assignment exists, we let the kth service slot be in mode

CLEAR. All servers in mode STANDBY enter mode BUSY by initiating a

vacation, with a length independently distributed according to Expo (1).

If there is no batch waiting in the virtual queue, let all servers in A enter

mode BUSY by initiating a vacation, with a length independently distributed

according to Expo (1). Let the kth service slot remain in mode COLLECT.

2. Suppose the (k-1)th service slot is in mode CLEAR (actions of physical servers

during a CLEAR service slot will be described in Section 4.3.2).

(a) If all jobs in the current batch have started receiving processing from one

of the servers by the end of the (k- 1)th service slot, we let the kth service

slot be in mode COLLECT. This marks the departure of a batch from the

virtual queue.

(b) Otherwise, we let the kth service slot remain in mode CLEAR.
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4.3.2 States and Actions of Physical Servers

We now describe the actions and mode evolution of the physical servers. We first

introduce the notion of full matching over a bipartite graph, which will be used in

the description of the scheduling rules for the physical servers.

Definition 4.2 (Full Matching in a Bipartite Graph). Let g = (E, I u J) be a

bipartite graph, where II = IJI. We say that L: I -> J is a full matching of g, if L is

a bijection from I to J, and (i, L(i)) E E for all i E I.

As will become clear in the sequel, our scheduling policy will use a full matching

L to ensure that every queue will receive at least a "minimum service rate" from

some server. The following lemma modes that, with high probability, an Erd6s-

R6nyi random bipartite graph with a sufficiently high edge probability admits a full

matching. The proof consists of a simple argument using Hall's marriage theorem

and a union bound (c.f. Lemma 2.1 in [14]).

Lemma 4.3. Let p(n) = dn/n. If dn >> Inn, then there exists a sequence of sets

{Nn} , N c !n, such that limn- IPn,p(n) (On) = 1, g admits a full matching L for

all g E n, n > 0.

For the remainder of the subsection, we shall assume that the underlying connec-

tivity graph, g, admits a full matching, L.

A physical server can be, at any time, in one of two modes: BUSY and STANDBY.

The end of a BUSY mode will be referred to as an event point, and the time interval

between two adjacent event points an event period. At each event point, a new de-

cision is to be made as to which job the server will choose to serve during the next

event period, or whether the server should serve any job at all. All servers will be
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initialized in a BUSY mode, with the time till the first event point distributed as

Expo (1), independently across all servers.

Fix a full matching, L, in the connectivity graph, g. Suppose that at time t server

j E J is at an event point, and let k* be the index of the service slot (defined in Section

4.3.1) to which t belongs. Server j makes the following decisions (cf. Figure 4-1).

1. If the k*th service slot is in mode COLLECT, server j enters mode STANDBY.

2. Otherwise (the k*th service slot is in mode CLEAR), let M' be the batch at

the front of the virtual queue, and B' c I be the set of queues that still contain

an unserved job from batch M'. Let i* = min {i E B'}.

(a) If L (i*) = j, then server j starts processing a job in queue i* that belongs

to M', entering mode BUSY.

(b) Otherwise, server j goes on a vacation of length Expo (1), entering mode

BUSY.

Note that the physical servers' actions during a CLEAR service slot are de-

signed to serve all jobs in B' in a sequential fashion.

The above procedure describes all the mode transitions for a single server, except

for one case: when in mode STANDBY, a server can be ordered by the virtual queue

to start processing a job or initiate a vacation period. The rules that govern such

transitions out of the STANDBY mode have been described as a part of the actions

of the virtual queue in Section 4.3.1.

By now, we have described how the batches are formed (Section 4.2), and the

actions of the virtual queue and physical servers (Sections 4.3.1 and 4.3.2). The

scheduling policy is hence fully specified.
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4.4 Dynamics of the Virtual Queue

In this section, we analyze the dynamics of the virtual queue, as well as the resulting

delay experienced by the jobs, defined as follows:

Definition 4.4 (Delay in the Virtual Queue). The delay for a batch in the

virtual queue is the time elapsed from the batch's arrival to the virtual queue till the

time when all jobs in the batch start receiving service from a physical server.

The main idea behind the delay analysis is rather simple: we will treat the virtual

queue as a GI/GI/1 queue, and use Kingman's bound [51] to derive an upper bound

on the expected waiting time in queue. The combination of a batching policy with

Kingman's bound is a fairly standard technique in queueing theory for deriving delay

upper bounds (see, e.g., [83]). Our main effort will go into characterizing the various

queueing primitives associated with the virtual queue (arrival rates, traffic intensity,

and variances of inter-arrival and service times).

Starting with this section, we will focus on a specific batch size function of the

form

bn= Kan ln n = Kn-n-,(4.3)

where

Kn=max 1+2 d/n, 19lnn, (4.4)

and yn is defined by

yn " (4.5)
In n

We shall also assume that dn «n, and

4 2.
dn > In n. (4.6)

- p
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It is not difficult to verify, under these choices of dn and Kn, that

ninn
bn = Kn w-<< n,

dn
(4.7)

that is, the batch size is vanishingly small compared to n. Finally, we assume that

the arrival rate vector always belongs to the set An(un) (Condition 3.1), and that

Un : P dn/ln n.
8

(4.8)

4.4.1 Inter-arrival Time Statistics

We begin with a characterization of the inter-arrival-time distribution for the virtual

queue.

Lemma 4.5. The inter-arrival times of batches to the virtual queue, {A (k)}}k , are

Z.i.d., with E (A (k)) = bn/n, and Var (A (k)) < bn/n 2 .

Proof. By definition, A (k) is equal in

process with rate pn records pbn arrivals.

dom variables (sum of pbn exponentials),

Var (A (k)) = pbn - - bn/n 2 .

distribution to the time until a Poisson

Therefore, the A(k)'s are Erlang ran-

with E (A (k)) = (pbn)/(pn)=bn/n, and

4.4.2 A Breakdown of Service Times

We now turn our attention to the service times in the virtual queue, defined as

follows.

Definition 4.6. (Service Times for Virtual Queue) Consider the kth batch

arriving at the virtual queue. Define the time of service initiation, Ek, to be beginning
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of the service slot during which the batch first reaches the front of the queue, and the

time of departure, Dk, to be the end of the service slot during which the last job in

the batch starts receiving service from one of the physical servers. The service time

for the kth batch is defined to be

SM(k) =Dk -Ek.

The interval [Ek, D) is referred to as the service period of the kth batch.

Note that the definition of service times in the virtual queue takes the actual time

interval for which a batch stays at the front of the virtual queue, and rounds it up to

the smallest set of service slots that contain it. The advantage of such a definition is

that now the service times, SM(k), are i.i.d. Moreover, since this rounding procedure

does not decrease the time a batch spends at the front of the virtual queue, one can

show the resulting queueing waiting time serves as an upper bound for the actual

waiting time of the batch. This is formalized in the following lemma, whose proof

involves a simple coupling argument based on Lindley's recursion, which we omit.

Lemma 4.7. Denote by WM(k) the waiting time for the kth batch in the virtual

queue. Let W(k) be the waiting time of the kth job arriving to a GIGI/1 queue

with arrival times {A(k)}k,1 and service times {SM(k)} ,1 We have that

W(k) WM(k), Vk 1, almost surely. (4.9)

Based on our construction, the value of SM (k) is at least the length of one service

slot in mode COLLECT. If a job-to-server assignment fails to exist by the end of the

COLLECT slot, SM (k) will also include subsequent service slots in mode CLEAR,

until all jobs in the batch have started to receive service from a physical server. We
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will therefore write

SM (k) Sco + X - Se, (4.10)

where Sc,0 and Sce correspond to the lengths of the service slots in mode COLLECT

and CLEAR, respectively, and X is a Bernoulli random variable indicating the non-

existence of a job-to-server assignment, with P (X = 1) = q(gn), where q(gn) is defined

as follows. Denoting by M' the batch at the front of the virtual queue, and A the

set of STANDBY servers, at the end of the COLLECT slot, we let

q(g,) = P{M' cannot be assigned to A over g,}, (4.11)

where the probability is taken over the randomness in M' and A, but is conditional

on the underlying connectivity, gn.

We now examine each quantity on the right-hand side of Eq. (4.10). The value

of Sco0 is the simplest, as it is equal to the length of one service slot, and we have

Scoi = Ts(1) = b + ). (4.12)

We next look at Sce, the total length of the subsequent service slots in mode CLEAR

before the batch departs from the virtual queue. We shall define CLEAR period

as the collection of successive CLEAR service slots associated with a batch. Recall

from Section 4.3.2 that, during the CLEAR period, the time until the next job in

the current batch starts to receive service from a physical server is exponentially

distributed with mean 1. Because there are at most pb, jobs in a batch, conditional

on X = 1, the length of a CLEAR period, Se, is no greater than the amount of

time it takes for a Poisson process of rate 1 to record pb, arrivals, rounded to the

end of the last service slot. Arguing similar to the proof of Lemma 4.5, we have the
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following lemma. Note that the distribution of Se, does not depend on the structure

of gn, as long as gn admits a full matching (cf. Lemma 4.3).

Lemma 4.8. E (SelIX = 1) < b., and E (S2e X= 1) nb

4.4.3 Probability of Assignment Success

We now examine the value of 1-q(gn), i.e., the probability that all jobs in a batch can

be assigned to one of the STANDBY servers at the end of a COLLECT service slot.

Recall the definition of flows in Definition 3.2. As a first step, for the convenience

of notation and analysis, we will represent this job-to-server assignment as a binary

flow over gn, {fe}eEE, where fij is equal to 1 if a job from queue i is assigned to

server j, and 0, otherwise. Under this representation, assigning all jobs in the batch

corresponds to finding a binary flow over gn, which satisfies the "demand" induced

by the batch.

Note that the feasibility condition in Definition 3.2 does not require the flow {fe}

to be binary (i.e., fe E {0, 1} for all e e E), a feature necessary for our purpose, since

a job cannot be "split" by different servers. Fortunately, since the demand vector

induced by a batch is always integral, it is well known that feasibility implies the

existence of a feasible binary flow.

The following lemma is the main technical result of this section and will be used

in the next subsection to bound the value of q(gn). It demonstrates that, with

high probability, a random graph with degree dn is able to accommodate a given

flow whose maximum coordinate is approximately dn/ln n. The proof is given in

Appendix A.1.4.

Lemma 4.9. Fix p E (0,1). Let dn > 4 In n and Un < - , and fix somei- P 8 _In
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A E An(un). Then, there exists n' > 0, independent of the choice of A, so that

Pn,dn/n (gn : AER(gn)}) 1 -exp -'jPdn , (4.13)

for all n n'.

Flows on subgraphs We will now apply Lemma 4.9 to the randomly sampled

subgraph of gn, induced by the support of the batch and the set of STANDBY

servers at the end of a COLLECT service slot. By doing so, we will establish the

existence of a set of graphs, on c gn, with the following two properties (Lemma 4.11):

1. The value of q(gn) is small, for every gn E n. This property will help us upper

bound the service time SM(k), using Eq. (4.10) and the moment bounds for

Siee developed earlier.

2. The set On has high probability under the Erd6s-Renyi random graph model.

We start with some definitions. Fix m n and p' < 1. Let Sm(p') be the set of

all demand vectors Am = (Am,... , Am) such that

A < sp'm, (4.14)

1-p d~ m
max Am < 1 d m (4.15)
1!zim 8 lnn n

The definition of = is analogous to that of the capacity region, A, but is intended to

be used for a subgraph. Let Mm,n be the family of all m x m subsets of I u J, that

is, h EMm,n if and only if Ih n I=Ih n JI = m. Let m,n be a probability measure on

the product space 6m (p') x Mm,n, and let m(n) be such that m(n) -* oo as n -+ oo.
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Define

l(9, Pm(n),n) = Pm(n),n (((m(n), h) E "m X Mm(n),n: ,\m(n) # R (glh)), (4.16)

where R(gh) is the set of feasible demand vectors for the subgraph 91h (Definition

3.2). We now define On (?Pm(n),n) as the set of graphs in gn for which the value of 1

is small. In particular,

On (Im(n),n) = {g E : l(g, m(n),n) -3 }. (4.17)

Informally, this is a set of graphs which, for the given measure Vm(n),n on sub-

graphs and demand vectors, have a high probability that a random subgraph g~h

will be able to admit the random demand vector Am(n). Consistent with the general

outline of the proof given in Section 4.1, we will show (a) that random graphs are

highly likely to belong to 4 (Lemma 4.10) and (b) that graphs in On have favorable

delay guarantees (Proposition 4.14).

Lemma 4.10. (Flow Feasibility on Random Subgraphs) Suppose that dn

4 Inn, and m(n) E - , n] . With p(n) = dn/n, we have that, for any sequence

{Om(n),n : 1},

lim Pn,p(n))(On (V)m(n),n)) = 1. (4.18)

Remark on Lemma 4.10: Eq. (4.18) states that, with high probability, the Erdds-

R6nyi construction yields graphs in On. This probabilistic statement is not to be

confused with Eq. (4.17), which involves a deterministic property that holds for any

g E 9n. In Eq. (4.17), the randomness lies only in the sampling of demand vectors

and subgraphs (via 4'm(n),n). This distinction is important for our analysis, because

the interconnection topology, 9n, stays fixed over time, while the random subgraph,
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gnruA, is drawn independently for different batches.

Proof. (Lemma 4.10) Let (, H) be a random element of 'm (p') X Mm,n, dis-

tributed according to 'm(n),n (-). Let G be an (n, p (n)) random bipartite graph over

I u J, generated independently of H. Note that the distribution of G restricted to

any m(n)-by-m(n) subset of IuJ is that of an (m(n),p(n)) random bipartite graph.

We now invoke Lemma 4.9 on this random subgraph, which is of size m(n), with

average degree d' = dn m(n) and with an upper bound on the demand fluctuation

Un =1: d m(n). To verify that the ranges of values for d' and u' with respect to

m(n) satisfy the conditions in Lemma 4.9, note that

,/ 1 -p dn m (n) -1 -p d' (.9
" 8 Inn n 8 Inn

and
m(n) (a) 4 Inn 4 (b) 4

d' = de - dn- - - > ,Iln 1-p , - ' -1 n m(n), (4.20)

n 1-p'16 n-pin-

where step (a) is based on the assumption that m(n) > ' - d, and (b) on the

fact that m(n) n. Furthermore, the definition of 7m(p') (Eq. (4.14)) ensures that

the total demand in A is at most p'm(n). We thus have

E (1(G, Vm(n),n)) =P (#R (G|H)

(a) / 1-p
Sexp -4 dn

=exp 4 dn

(b n-4, (4.21)

where step (a) follows from Lemma 4.9 combined with Eqs. (4.19) and (4.20), and

step (b) from the assumption that m(n) 1 -n . Eq. (4.21) and Markov's
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inequality yield

Pn,p(n) (On) =1 P (l(Gi/)m(n),n) > n- 3 )

E (l(G, Om(n),n))

- n-31

1 --- , (4.22)
n

which converges to 1 as n -+ oo.

Using Lemma 4.10, we can now obtain an upper bound on the value of q(gn).

Lemma 4.11. Fix some An E An(un). Let p(n) = d//n, and bn = Knn/yn (cf.,

Eq. (4.3)). There exists On c 9n, with

lim Pn,p(n) (On) = 1, (4.23)

such that if gn E on, then

q(gn) < n-3.

Proof. Let m(n) = (p + -1) bn. Denote by F the support of the batch, and by

A the set of available servers who are in STANDBY at the end of the COLLECT

service slot. Let 1 be the Ir1 x 1 demand vector induced by the non-zero coordinates

of batch M(k),

As = Mi(,)(k), 1 s IrI, (4.24)

where i(s) is the sth non-zero coordinate of M(k). Define the following events.

(i) B: the event that maxi<s8 <jr As - d - L. This is the event where the

variation among the coordinates of the demand vector A is not too large.

(ii) C: the event that IAl (p + !E) bn PEEIr1. This is the event where the set of
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available servers is not too small.

Let us fix a graph gn. We can write

q(g.) =P (I 0 R (gnlruA))

<P(BnC)IP(I R(gnlr) JBnC) + (1 -IP(BnC))

<P (A 0 R (gnIr,) IB n C) + (1 - P (B)) + (1 - P(C)). (4.25)

The rest of the proof consists of the following two steps.

1. Conditioning on the occurrence of the events B and C, we apply Lemma 4.10 to

show that there exists a large set of graphs (w.r.t. P,d(n)/n(')), 0, so that given

any gn E On, with high probability, the random demand vector A is feasible over

the random subgraph gniruA.

2. We then show that the event B n C occurs with high probability.

Step 1. Let A be the m(n) x 1 vector that is an extension of A, with

As = I (4.26)

0, 1171 < s: m(n).

Note that by construction, the batch consists of pbn jobs, and hence I17 is at most

pbn, which is less than m(n). By the definition of A, we have that, conditional on

event B,

A e 'm(n) (p), (4.27)

with p' = . Similarly, conditional on event C, the size of A is at least m(n).

Therefore, there exists a random variable H taking values in Mm(n),n, so that
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P(FTcH and HnJcABnC)=1, (4

Let 'r(n),n be the distribution of (A, H) conditional on (B n C), over the set

(-m(n) (p') ,Mm(n),n). By Eq. (4.28) and the definition in Eq. (4.16), we have that

P ( 0 R (gnlrua) I B n C) s P () 0 R (gnJH IBnC=1 (gn, m(n),n 1 (4.29)

which, by the definition in Eq. (4.17), implies that

P (A 0 R (gnIruA) B n C) l (gn, m(n),n) n3, (4.30)

for any gn E On (Om(n),n)- We now let the set On in the statement of Lemma 4.11 be

the set On ('m(n),n), for the measure ?m(n),n defined earlier. According to Lemma

4.10, we have that

Pn,dn/ On) -+ 1, as n - oo, (4.31)

which establishes Eq. (4.18).

We now bound the value of P(C). We first note that |II, the number of queues

that receive at least one job from the batch, is no larger than the total number of

jobs in a batch, pbs. Then, the inequality (p + 1 6)b_ > 9 |2| is always true. It

therefore suffices to analyze the probability that IAI is large. Recall that the length

of each service slot is b' (p + E). This implies that for all j E J,

P (j E A) = 1 - exp ( (P + e) ( (+ ) b, (4.32)
(-n n

where (1 - exp (--(p + E))) is the probability of having at least one event point

for a given server during a service slot, and step (a) follows from the Taylor series
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approximation of exp(x) ~1 + x as x 4 0, and the fact that b, << n (cf. Eq. (4.7)).

We then obtain

1- P(C) =P
(

eA) (P+ 1E b)

(a ( EA : p+.
VP I(j E A)

\jEJ P+

(b) 1 "
: exp (- 2bn +

=exp (4
p )

=exp -

n -3,

whenever Kn 6 dn/n = 24 (1d+)2 d/n (cf.

Eq. (4.32) and (b) from the Chernoff bound, P (X

Eq. (4.4)). Step (a) follows from

(1 -6)p) exp (-!J2p), where

X is a binomial random variable with E (X) = p.

For the value of P(B), we have the following lemma, whose proof is given in

Appendix A.1.5.

Lemma 4.12. Suppose that

1. un: 1 dn/lnn, and

2. bn= Knn , with Kn > + nn of 1  a + ) nn.

Let Mi be the number of jobs arriving to queue i' within a batch. For any a~ > 0, have

that

1-IP maxMi>
1-p d - <n- .

8 Inn n)-'
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In particular, setting a = 3 in Lemma 4.12, we have that, because K_ > Inn

(cf. Eq. (4.4)),

1 -IP(B) < -3 . (4.35)

Substituting Eqs. (4.30), (4.33), and (4.35) into Eq. (4.25), we obtain that

q(g.) P ( \ R (gn 1,,,) B1 n C) + (1 - P(B)) + (1 - P(C))

<n-3 + n-3 + n-3

.n-3. (4.36)

This completes the proof of Lemma 4.11.

4.4.4 Service Time Statistics

1:

We are now ready to bound the mean and variance of the service time distribution

for the virtual queue, using Eqs. (4.10) and (4.12), and Lemmas 4.8 and 4.11.

Lemma 4.13. (Service Time Statistics for the Virtual Queue) Fix some

0 E (0,1). Assume that gn E n, and let bn = Knn/yn.

batches, SM (k), are i.i.d., with

and Var (SM

The service times of the

K 2

(k)) < n
yn

Proof. Combining Eqs. (4.10) and (4.12) (for Sca), and Lemmas 4.8 (for Scde) and
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4.11 (for q(gn)), we have

E (SM (k)) =E (Scj) + E (X) E (Sj, IX = 1)
K =1

=( p+e --- "+ q(gn)E (ScleX = X
yn

(p+ ) K" +Cn-3_
yn yn

Kn C 1
yn n2 nI

Kn

Yn
(4.37)

where C is some positive constant. Similarly, using the fact that Sc0j is deterministic

and that E(Sce X = 1) < b2 (Lemma 4.8), we obtain that

Var (SM(k)) =Var (X -Sde)

E(XSle)

q(gn)E(SdeIX = 1)

<n-3b 2

K2
= n

This completes the proof.

4.4.5 Delay Bound for the Waiting Time in the Virtual Queue

Let WM be the steady-state waiting time of a batch in the virtual queue, as

defined in Definition 4.4. Recall that 9n is a set of graphs, where any gn E n admits

a full matching (cf. Lemma 4.3), and On is a set of graphs, where the probability of
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not having an assignment from the batch to the set of available servers at the end

of a COLLECT service slot, qn(gn), is small for any gn E g (cf. Lemma 4.11). The

following is the main result of this subsection.

Proposition 4.14. (Delays in the Virtual Queue) If gn E # n o, then

E (Wm) K K. (4.39)
yn

Proof. Recall that by Lemma 4.7, the waiting times in the virtual queue are

bounded above, almost surely, by the waiting times in a GI/GI/1 queue with inter-

arrival times {A(k)}k , and service times {SM(k)}k,. It hence suffices for us to

bound the steady-state expected waiting time of the latter. We use Kingman's

bound [51], which states that the expected waiting time in steady state for a GI/GI/1

queue, W, is bounded by E (W) 12" ._j , where I is the arrival rate, p is the traffic

intensity, and o- and o are the variances for the interarrival times and service times,

respectively. Using Lemmas 4.5 and 4.13, we have

~ 1 <n y,
E (A(k)) ~ bn Kn'

E (SM (k)) (p+e){n
E(A(k)) K p+<1,

Yn

2 l1b K.
a 2 = Var (A (k))~- " I "n ,

p n2 ny

2 K 2

yn

for all sufficiently large values of n. Using these inequalities in Kingman's bound, we

obtain

yKn K2 Kn
E (Wm) < + n-- < n--

Kn y 2 y yn
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El

4.5 Proof of Theorem 3.6

Proof. The total queueing delay of a job is no more than the time to form a batch

plus the waiting time in the virtual queue. If gn E On n o, and An E An(un), then

using Lemma 4.5 and Proposition 4.14, we obtain that, there exists no > 0, so that

E.r (WIgn, An) E (A(1)) + E (WM)

=C Kn

(a) In n
( K max {dn/n, In n} dn

K In2 , (4.40)
dn

for all n no, where C and K are positive constants that do not depend on n, gn,

and A. Step (a) follows from the fact that K = max 24 (1 + d)2 d/n, -ln n

(cf. Eq. (4.4)). Furthermore, by the weak law of large numbers, there exist En 0,

such that

limp 1- deg (G) 1+ 'En =1 (4.41)
n--oo (dn

where Gn is a (n, d//n) random graph. Let L4 = {9 E g, - deg9g) E [1 - E, 1 + 6n]}.

We have that Pn,dn/n (Ln) -+ 1 (Eq. (4.41)), PI,d/,(gn) -+ 1 (Lemma 4.3), and

Pn,d /n(Gn) -> 1 (Lemma 4.11), as n -+ oo. Let n, = gn n Gn n. It follows that

Pn,dn/n (7in) 1 - Jn, (4.42)
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for all n, for some Jn 0. Note that the definitions of gn, gn and L do not involve

the arrival rates A,, and hence Jn does not depend on An. Eqs. (4.40) and (4.42)

complete the proof of Theorem 3.6. F
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Chapter 5

Queueing with Future Information

Starting from this chapter, we shall shift our emphasis from the issue of flexible ar-

chitecture, to that of information. Our inquiries have two main motivations. The

first motivation stems from the simple fact that real-time information can be diffi-

cult to obtain. When the system size becomes large, the infrastructure needed to

support complete information sharing among all components can quickly become

prohibitively expensive. Therefore, in many large-scale flexible systems, it can be a

practical imperative that we understand whether one can devise efficient policies with

only limited information sharing, and still achieve performance that is competitive

with a centralized policy with full information sharing. This line of reasoning will

be explored in Chapter 7 in the form of designing optimal decentralized scheduling

policies for partially flexible systems.

Besides the difficulty of information sharing, there lies a more "positive" motiva-

tion towards the other side of the "information availability" spectrum. In addition to

asking what to do when information is limited, we would also like to know whether it

is possible to harness performance gains when more information becomes available.
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While there are many ways to define "more," in this report, we shall investigate

increments of information along the axis of time, that is, more information about the

future. This will be the focus of the current chapter, as well as the next.

It turns out that a moderate amount of predictive information can enable sub-

stantial performance improvements in flexible systems. We will demonstrate that, for

a class of single-queue admission control problems, the decision maker can leverage

future information about the arrivals and services to drastically reduce the heavy-

traffic delay compared to that of an optimal online policy, even when the future

information is restricted to a finite lookahead window starting from the current time

frame.

The admission control model is, in fact, closely related to our understanding

of flexible resource allocation systems, although this may not seem immediately

obvious. We will show, in Chapter 7, that the single-queue admission control model

is essentially equivalent to the problem faced by a local queue in a Partial Pooling

architecture, as described in Section 2.2. Therefore, the benefits of future information

also apply to that family of partially flexible systems.

5.1 Introduction

5.1.1 Variable, but Predictable

Two important ingredients often make the design and analysis of a queueing system

difficult: the demand and the resources can be both variable and unpredictable.

Variability refers to the fact that job arrivals or the availability of resources can be

highly volatile and non-uniform across the time horizon. Unpredictability means that

the exact type of non-uniformity is not known to the decision maker ahead of time,
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and she is obliged to make allocation decisions only based on the state of the system

at the moment, together with some statistical estimates about the future.

While the world will always be volatile, in many cases, the amount of unpre-

dictability about the future may be reduced thanks to forecasting technologies and

the increasing availability of data. For instance,

1. Advance booking in the hotel and textile industries allows for accurate demand

forecasts [31].

2. The availability of monitoring data enables traffic controllers to predict the

traffic pattern around potential bottlenecks [75].

3. Advance scheduling for elective surgeries could inform care providers several

weeks before the intended appointment [50].

In all of these examples, future demand remains exogenous and variable, yet the

decision maker can obtain some information about their realizations, ahead of time.

Is there significant performance gain to be harnessed by "looking into the future"?

In this chapter we provide a largely affirmative answer, in the context of a class of

admission control problems.

5.1.2 Admission Control Viewed as Resource Allocation

We begin by informally describing our problem. Consider a single queue equipped

with a server that runs at a rate of 1-p jobs per unit time, where p is a fixed constant

in (0, 1), as depicted in Figure 5-1. The queue receives a stream of incoming jobs,

arriving at rate A E (0,1). If A > 1 - p, the arrival rate is greater than the server's

processing rate, and some form of admission control is necessary in order to keep

the system stable. In particular, upon its arrival to the system, a job will either
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admitted * fp

p
diverted

Figure 5-1: An illustration of the admission control problem, with a constraint on
the a rate of diversion.

be admitted to the queue, or diverted. In the latter case, the job does not join the

queue, and, from the perspective of the queue, disappears from the system entirely.

The goal of the decision maker is to minimize the average delay experienced by the

admitted jobs, while obeying the constraint that the average rate at which jobs are

diverted does not exceeded p. 1

While the admission control problem is described above as a stand-alone system,

we can also interpret it as a form of interaction between two types of resources.

In particular, one can think of our problem as one of resource allocation, where a

decision maker tries to match incoming demands with either (1) a slow local resource

that corresponds to the server, or (2) a fast external resource that can process any job

diverted to it almost instantaneously. Both types of resources are constrained, in the

sense that their capacities (1-p and p, respectively) cannot change over time, due to

physical or contractual restrictions. The processing time of a job at the fast resource

is negligible compared to that at the slow resource, as long as the rate of diversion to

the fast resource stays below p in the long run. Under this interpretation, minimizing

the average delay across all jobs is equivalent to minimizing the average delay across

just the admitted jobs, since the jobs diverted to the fast resource can be thought of

'Note that as A -. 1, the rate of admitted jobs, A -p, approaches the server's capacity 1- p, and
hence we will refer to the system's behavior when A - 1 as the heavy-traffic regime.
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as being processed immediately and experiencing no delay at all.

For a more concrete example, consider a web service company that enters a

long term contract with an external cloud computing provider for a fixed amount

of computation resources (e.g., virtual machine instance time) over the contract

period.2 During the contract period, any incoming request can be either served by

the in-house server (slow resource), or be diverted to the cloud (fast resource), and in

the latter case, the job does not experience congestion delay since the scalability of

the cloud allows for multiple VM instances to be running in parallel (and potentially

on different physical machines). The decision maker's constraint is that the total

amount of diverted jobs to the cloud must stay below the amount prescribed by

the contract, which, in our case, translates into a maximum diversion rate over the

contract period. Similar scenarios can also arise in other domains, where the slow

versus fast resources could, for instance, take the form of:

1. an in-house manufacturing facility, versus an external contractor;

2. a slow toll booth on the freeway, versus a special lane that lets a car pass

without paying the toll;

3. hospital bed resources within a single department, versus a cross-departmental

central bed pool.

Connections to Partially Flexible Systems. What does the admission control

problem have to do with our study of flexibility? As it turns out, an essentially

2Example. As of September 2012, Microsoft's Windows Azure cloud services offer a 6-month
contract for $71.99 per month, where the client is entitled for up to 750 hours of virtual machine
(VM) instance time each month, and any additional usage would be charged at a 25% higher rate.
Due to the large scale of the Azure data warehouses, the speed of any single VM instance can be
treated as roughly constant, and independent of the total number of instances that the client is

running concurrently.
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equivalent decision problem arises in the Partial Pooling system that we introduced

earlier in Section 2.2, where the notion of "fast resource" manifests itself in the form

of a flexible server pool. An illustration of the Partial Pooling system is duplicated

in Figure 5-2 for convenience.

We now explain the connection informally. Recall that in a Partial Pooling sys-

tem, a fraction p of a total of n units of processing resources is fully flexible, and

takes the form of a central server pool that collectively operates at rate pn, while the

remaining 1-p fraction is inflexible and dedicated to the corresponding local queues

(Figure 5-2). Under this framework, the admission control problem studied in this

chapter is essentially the problem faced by each one of the local queues, that is, de-

ciding whether an incoming job should be queued locally, or "diverted" to a "central

queue," and ultimately served by one of the flexible servers at the central server pool

(Figure 5-3). When n is large, the central server pool operates at a significantly

faster speed than the local inflexible servers. As a result, we can expect that, as long

as each local queue diverts at a rate that is strictly less than p, the queueing delay

at the central queue vanishes as n -- oo, thus becoming the "fast resource" in our

earlier interpretation. This connection to the Partial Pooling model will be explored

in greater detail in Section 7.3.3, where the above intuition will be made rigorous.

5.1.3 Overview of Main Contributions

We preview our main results in this section. The formal statements will be given in

Section 5.3.
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queue 2

_ LQF p
Service

queue n

Figure 5-2: Illustration of the Partial Pooling model with flexible and inflexible
resources, [84].

Summary of the Problem

We consider a continuous-time admission control problem, depicted in Figure 5-1.

The problem is characterized by three parameters: A, p, and w:

1. Jobs arrive to the system at a rate of A jobs per unit time, with A E (0, 1). The

server operates at a rate of 1-p jobs per unit time, with p E (0,1).

2. The decision maker determines whether each arriving job is admitted to the

queue or diverted, with the goal of minimizing the time-average queue length3 ,

subject to the constraint that the time-average diversion rate does not exceed

p jobs per unit time.

3. The decision maker has access to information about the future, which takes the

form of a lookahead window of length w E R. In particular, at any time t,

the times of arrivals and service availability within the interval [t, t + w] are

3By Little's Law, the average queue length is essentially the same as average delay, up to a
constant factor. See Section 5.2.4.
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queue 1

queue n

Figure 5-3: Resource pooling using a central queue.

revealed to the decision maker. We will consider the following cases for w.

(a) w = 0, the online problem, where no future information is available.

(b) w = oo, the offline problem, where the entire future has been revealed.

(c) 0 < w < oo, where the future is revealed only over a finite lookahead

window.

Throughout, we will fix p E (0,1), and will be primarily interested in the system's

behavior in the heavy-traffic regime of A -> 1.

Overview of Main Results

Our main contribution is to demonstrate that the performance of a diversion policy

is highly sensitive to the amount of future information available, measured by the

value of w.

Fix p E (0, 1), and let the arrival and service processes be Poisson. For the

online problem (w = 0), we show that the optimal time-average queue length, Co ,
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approaches infinity in the heavy-traffic regime, at the rate

1
CO*'l -log _ 1- A

1- 1 -A,
as A -- 1.

In sharp contrast, the optimal average queue length among offline policies (w = 0o),

C"P, converges to a constant,

- ,p
p

as A -+ 1,

and this limit is achieved by a so-called No-Job-Left-Behind policy. Figure 5-4 illus-

trates this difference in delay performance for a particular value of p.

CL
a.

697 0.973 0.976 0.979 0.982 0.984 0.987 0.99 0.993 0.996 0.999
Traffic Intensity (.)

Figure 5-4: Comparison of heavy-traffic delay scaling between optimal online and
offline policies, with p = 0.1 and A -- 1. The value plotted is the resulting average
queue length as a function of A.

We then show that the No-Job-Left-Behind policy for the offline problem can be

modified, so that the same optimal heavy-traffic limit of 1 is achieved even with a
p
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finite lookahead window, wA, where

wA =(log 1 ), asA-+1.

This is of practical importance, because in any realistic application only a finite

amount of future information can be obtained.

Finally, we provide a matching lower bound on future information, which states

that it necessary to have

wA = Q (log I ), asA-+1 (5.1)

in order to achieve any substantial improvement over the online policy. Combined

with the upper bound on wA, this implies that system performance depends critically

on the amount of future information available.

On the methodological end, we use a sample-path-based framework to analyze

the performance of the offline and finite-lookahead policies, borrowing tools from

renewal theory and the theory of random walks. We believe that our techniques

can be substantially generalized to incorporate general arrival and service processes,

diffusion approximations, as well as observation noise. See Section 5.8 for a more

elaborate discussion.

5.1.4 Related Work

There is an extensive body of work devoted to various Markov (or online) admission

control problems; the reader is referred to the survey [80], and references therein.

Typically, the problem is formulated as a Markov decision problem (MDP), where

the decision maker, by admitting or rejecting incoming jobs, seeks to maximize a
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long-term average objective consisting of rewards (e.g., throughput) minus costs

(e.g., waiting time experienced by a customer). The case where the maximization is

performed subject to a constraint on some average cost has also been studied, and

it has been shown, for a family of reward and cost functions, that an optimal policy

assumes a "threshold-like" form, where the decision maker diverts the next job only if

the current queue length is greater than or equal to L, with possible randomization if

at level L - 1, and always admits the job if below L - 1 (cf. [12]). Indeed, our problem,

where one tries to minimize average queue length (delay) subject to a lower-bound

on the throughput (i.e., a maximum diversion rate), can be shown to belong to this

category, and the online heavy-traffic scaling result can be obtained with moderate

effort within the MDP framework.

However, the resource allocation interpretation of our admission control problem

as that of matching jobs with fast and slow resources, and, in particular, its connec-

tion to resource pooling in the many-server limit, seems to be largely unexplored.

The difference in motivation perhaps explains why the optimal online heavy-traffic

delay scaling of log__ -! that emerges by fixing p and taking A -+ 1 has not appeared
1-p

in the literature, to the best our knowledge.

There is also an extensive literature on competitive analysis, which focuses on the

worst-case performance of online algorithms compared to that of an optimal offline

version (where one knows the entire input sequence). The reader is referred to [16] for

a comprehensive survey, and the references therein on packing-type problems, such as

load balancing and machine scheduling [8], and call admission and routing [7], which

are more closely related to our problem. While our optimality result for the policy

with a finite lookahead window is stated in terms of the average performance under

stochastic inputs, we believe that the analysis can be extended to yield worst-case

competitive ratios under certain input regularity conditions.

117



In sharp contrast to our understanding of online problems, much less is known

for settings in which information about the future is taken into consideration. In

[66], the author considers a variant of the flow control problem where the decision

maker knows the job size of the arriving customer, as well as the arrival time and

job size of the next customer, with the goal of maximizing certain discounted or

average reward. A characterization of an optimal stationary policy is derived under

a standard semi-Markov decision problem framework, which is possible because the

lookahead is limited to the next arriving job. In [21], the authors consider a schedul-

ing problem with one server and M parallel queues, motivated by applications in

satellite systems where the link qualities between the server and the queues vary

over time. The authors compare the throughput of several online policies with that

of an offline policy that has access to all future instances of link qualities. However,

the offline policy takes the form of a Viterbi-like dynamic program, which, while

being throughput-optimal by definition, provides limited qualitative insight.

One challenge that arises as one tries to move beyond the online setting is that

policies with lookahead typically do not admit a clean Markovian description, and

hence common techniques for analyzing Markov decision problems do not easily

apply. To circumvent this obstacle, we will first relax our problem to be fully offline,

which turns out to be surprisingly amenable to analysis. We then use the insights

from the optimal offline policy to construct an optimal policy with a finite lookahead

window, in a rather straightforward manner.

The idea of exploiting future information or predictions to improve decision mak-

ing has also been explored in other application domains. Advance reservations (a

form of future information) have been studied in lossy networks [24, 55] and, more

recently, in revenue management [54]. Using simulations, [50] demonstrates that the

use of a one- and two-week advance scheduling window for elective surgeries can
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improve efficiency at the associated intensive care unit (ICU). The benefits of an

advanced booking program for supply chains have been shown in [31], in the form of

reduced demand uncertainties. While similar in spirit, the motivation and dynamics

in these models are very different from ours.

Finally, our formulation in terms of slow and fast resources has been in part

inspired by the literature on resource pooling systems, where one improves overall

system performance by (partially) sharing individual resources. The connection of

our problem to the Partial Pooling model in [84] is discussed in detail in Section

7.3.3. For the general topic of resource pooling, interested readers are referred to

[11, 41, 59, 60] and the references therein.

5.1.5 Organization of the Chapter

The rest of the chapter is organized as follows. The mathematical model for our

problem is described in Section 5.2. Section 5.3 contains the statements of our main

results, and introduces the No-Job-Left-Behind policy (7INOB), which will be a central

object of study for this chapter. Section 5.4 presents two alternative descriptions of

the No-Job-Left-Behind policy that have important structural, as well as algorithmic,

implications. Sections 5.5 through 5.7 are devoted to the proofs for the results

concerning the online, offline and finite-lookahead policies, respectively. The proof

for the lower bound on future information requires a fairly different style of analysis,

and will be treated exclusively in Chapter 6. Finally, Section 5.8 contains some

concluding remarks and future directions.
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5.2 Model and Setup

5.2.1 System Dynamics

An illustration of the system setup was given in Figure 5-1. The system consists of

a single-server queue running in continuous time (t E R,), with an unbounded buffer

that stores all unprocessed jobs. The queue is assumed to be empty at t = 0.

Jobs arrive to the system according to a Poisson process with rate A E (0, 1), SO

that the intervals between two adjacent arrivals are independent and exponentially

distributed with mean . We will denote by {A(t): t E R.} the cumulative arrival

process, where A(t) E Z, is the total number of arrivals to the system by time t.

The processing of jobs by the server is modeled by a Poisson process of rate 1-p.

When the service process makes a jump at time t, we say that a service token is

generated. If the queue is not empty at time t, exactly one job "consumes" the

service token and leaves the system immediately. Otherwise, the service token is

wasted and has no impact on the future evolution of the system. 4 We will denote

by {S(t): t E R.} the cumulative token generation process, where S(t) E Z. is the

total number of service tokens generated by time t.

When A > 1 - p, in order to maintain the stability of the queue, a decision maker

has the option of "diverting" a job at the moment of its arrival. Once diverted, a

job is removed from the system. Finally, the decision maker is allowed to divert up

to a time-average rate of p.

4 For our purpose, it is important to note a key assumption implicit in the service token
formulation: the processing times are intrinsic to the server, and independent of the job being
processed. For instance, the sequence of service times will not depend on the order in which the
jobs in the queue are served, so long as the server remains busy throughout the period. This
distinction is of little relevance for an M/M/1 queue, but can be important in our case, where the
diversion decisions may depend on the future. See discussion in Section 5.8.
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5.2.2 Initial Sample Path

Let {Q 0 (t): t E R+} be the continuous-time queue length process, where Q0(t) E Z+

is the queue length at time t if no diversion is applied at any time. We say that an

event occurs at time t, if there is either an arrival, or a generation of service token,

at time t. Let Tk, k E N, be the time of the kth event in the system. Denote by

{Q 0 [k]: k E Z,} the embedded discrete-time process of {Q 0 (t)}, where QO [k] is the

length of the queue sampled immediately after the kth event, 5

Q0 [k]=Q 0 (T+), kEN.

with the initial condition Q0 [O] = 0. It is well-known that Q0 is a reflected random

walk on Z,, such that for all X1 , x 2 E 2+ and k E Z,

P (QO[k + 1]= X2 IQO[k] = Xi) = P,

0,

2-Xl = 1,

X2-Xl = -1,

otherwise,

if x, > 0, and

P (QO[k + 1] = X21 QO[k] = Xi) = -P,

0,

X2 -X1 = 1,

X2 - X1 = 0,

otherwise,

(5.3)

if x 1 = 0. Note that, when A > 1 - p, the random walk Q0 is transient.

5The notation f(x+) denotes the right-limit of f at x : f(x+) = limyx f(y). In this particular
context, the values of Q0 [k] are well defined, since the sample paths of Poisson processes are
right-continuous-with-left-limits (RCLL) almost surely.
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The process Q0 contains all relevant information in the arrival and service pro-

cesses, and will be the main object of study of this chapter. We will refer to Q0 as

the initial sample path throughout the chapter, to distinguish it from sample paths

obtained after diversions have been made.

5.2.3 Diversion Policies

Since a diversion can only take place when there is an arrival, it suffices to define

the locations of diversions with respect to the discrete-time process {Q 0 [k]: kE ZE},

and throughout, our analysis will focus on discrete-time queue length processes unless

otherwise specified. Let 4D (Q) be the locations of all arrivals in a discrete-time queue

length process Q, i.e.,

<b (Q) = {k E N: Q [k] > Q [k - 1]},

and for any M c Z,, define the counting process {I(M, k): k E N} associated with

M as6

I(M, k) ={1,...,k} n Mi. (5.4)

Definition 5.1 (Feasible Diversion Sequence). The sequence M = {mi} is said

to be a feasible diversion sequence with respect to a discrete-time queue length process,

Q0 , if all of the following hold:

1. All elements in M are distinct, so that at most one diversion occurs at any

slot.

2. M c ( (Q0), so that a diversion occurs only when there is an arrival.

61X denotes the cardinality of X.
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3.
1p

lim sup -I1 (M, k): p , a. s., (5.5)
k-boo k A+(1-p)

so that the time-average diversion rate is at most p.

In general, M is also allowed to be a finite set.

The denominator A + (1 - p) in Eq. (5.5) is due to the fact that the total rate of

events in the system is A + (1 - p). 7 Analogously, the diversion rate in continuous

time is defined by

rd = (A +1 -p) -limsup 1-I(M, k). (5.6)
k--oo k

The impact of a diversion sequence to the evolution of the queue length process

is formalized in the following definition.

Definition 5.2 (Diversion Maps). Fix an initial queue length process {Q 0[k] : k E N}

and a corresponding feasible diversion sequence M = {mi}.

1. The point-wise diversion map Dp (Q0, m) outputs the resulting process if a

diversion is made to Q0 in slot m, and only in that slot. Let Q' = Dp (Q0 , m).

Then,

Q'[k] = fQ[k] - 1, if k > m, and QO[t] >O,VtE{m, ... ,k}. (5.7)

QO [k], otherwise,

2. The multi-point diversion map D (Q0, M) outputs the resulting process if

all diversions in the set M are made to Q0. Define Qi recursively by Qi =

7 This is equal to the total rate of jumps in A(-) and S(-).
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Dp (Qi-l,mi), Vi E N. Then, Q- = D (Q0, M) is defined as the pointwise limit

Q*[k] = lim Q'[k], VkE Z+. (5.8)
i:min{M,oo}

The definition of the pointwise diversion map reflects the earlier assumption that

the service time of a job only depends on the speed of the server at the moment and

is independent of the job's identity (See Section 5.2). Note also that the value of

Q** [k] depends only on the total number of diversions before k (Eq. (5.7)), which

is at most k, and the limit in Eq. (5.8) is well-defined. Moreover, it is not difficult

to see that the order in which diversions are made has no impact on the resulting

sample path, as stated in the lemma below. The proof is omitted.

Lemma 5.3. Fix an initial sample path QO, and let M and M be two feasible diver-

sion sequences that contain the same elements. Then D (Q0, M) = D (Q0 , ).

We next define the notion of a diversion policy, which outputs a diversion sequence

based on the (limited) knowledge of an initial sample path QO. Informally, a diversion

policy is said to be w-lookahead if it makes its diversion decisions based on the

knowledge of Q0 up to w units of time into the future (in continuous time).

Definition 5.4 (w-Lookahead Diversion Policies). Fix w E R+ U{oo}. Let

Ft = o (QO(s); s t) be the natural filtration induced by {Q 0 (t) : t E R,}, and F,, =

UtEz. Ft. A w-predictive diversion policy is a mapping, ,r: Z,+ R NN, such that

1. The set M =ir (Q0 ) is a feasible diversion sequence, a.s.;

2. The event {k E M} is FT,,+ measurable, for all k E N.

We will denote by Hl, the family of all w-lookahead diversion policies.
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The parameter w in Definition 5.4 captures the amount of information that the

diversion policy has about the future.

1. When w = 0, all diversion decisions are made solely based on the knowledge of

the system until the current time frame. We will refer to HO as online policies.

2. When w = oo, the entire sample path of Q0 is revealed to the decision maker

ahead of time. We will refer to H, as offline policies.

3. We will refer to flU, where 0 < w < oo, as policies with a lookahead window of

size w.

5.2.4 Performance Measure

Given a discrete-time queue length process Q and k E N, we denote by S (Q, k) E Z,

the partial sum
k

S(Q, k)= Q [l]. (5.9)
l=1

Definition 5.5 (Average Post-diversion Queue Length). Let Q0 be an initial

queue length process. Define C(p, A, 7r) E R, as the expected time-average queue length

after applying a diversion policy 7r:

C(p, A, 7r) = E lim sup s (Q*, k) , (5.10)
\ k--oo k 7r

where Q; = D (Q 0 , ,r (Q)), and the expectation is taken over all realizations of Q0 ,

and the randomness used by 7r internally, if any.

Remark: Delay versus Queue Length. By Little's Law, the long-term average

waiting time of a typical customer in the queue is equal to the long-term average

queue length divided by the arrival rate (independent of the service discipline of the
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server). Therefore, if our goal is to minimize the average waiting time of the jobs

that remain after diversions, it suffices to use C(p, A, 7r) as a performance metric

in order to judge the effectiveness of a diversion policy 7r. In particular, denote by

Taj1 E R, the time-average queueing delay experienced by all jobs, where diverted

jobs are assumed to have a delay of zero, then E(Tau) = IC(p, A, 7r), and hence the

average queue length and delay coincide in the heavy-traffic regime, as A -+ 1. With

an identical argument, it is easy to see that the average delay among admitted jobs,

Tadt, satisfies E (Tadt) = A-
1 C(p, A, 7r), where rd is the continuous-time diversion

rate under 7r. Therefore, we may use the terms "delay" and "average queue length"

interchangeably in the rest of the chapter, with the understanding that they represent

essentially the same quantity up to a constant.

Finally, we define the notion of an optimal delay within a family of policies.

Definition 5.6 (Optimal Delay). Fix w E R,. We call C,(p, A) the optimal delay

in II,, where

C,*, (p, A) = inf C (p, A,77r). (5.11)

5.3 Summary of Main Results

In this section, we state the main results of this chapter. The proofs will be presented

in Sections 5.5 through 5.7.

5.3.1 Optimal Delay for Online Policies

Definition 5.7 (Threshold Policies). We say that 7r[ is an L-threshold policy,

if a job arriving at time t is diverted if and only if the queue length at time t- is

greater than or equal to L.
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The following theorem shows that the class of threshold policies achieves the

optimal heavy-traffic delay scaling in IHo.

Theorem 5.8 (Optimal Online Policies). Fix p E (0,1), and let

L (p, A) = log 1 .
1- I - A

Then,

1. r7 L~pAis feasible for all A E (1 - p, 1).

2 . 7rWt' is asymptotically optimal in Ho as A - 1:

C (p, A, 7rk' ~, C* (p, A) ~ log ipth1-_
1 ,

1 - A
as A -+ 1.

Proof. See Section 5.5. E

5.3.2 Optimal Delay for Offline Policies

Given the sample path of a random walk Q, let U (Q, k) the number of slots till Q
reaches the level Q[k] - 1 after slot k:

U (Q, k) = min{j > 1: Q [k + j] = Q[k] - 1}. (5.12)

Definition 5.9 (No-Job-Left-Behind Policy 8). Given an initial sample path QO,
the No-Job-Left-Behind policy, denoted by IrNOB, diverts all arrivals in the set T,

where

k = {k E(Q 0 ): U (Q0, k) = o} (5.13)

8The reason for choosing this name will be made in clear in Section 5.4.1, using the "stack"
interpretation of this policy.
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We will refer to the diversion sequence generated by IrNOB as M'= {m : i E N}

where MI' = T.

In other words, irNOB would divert a job arriving at time t if and only if the initial

queue length process never returns to below the current level in the future, which

also implies that

Q0[k] QO [rnf', Vi E N, k , (5.14)

Examples of the rNOB policy being applied to a particular sample path are given in

Figures 5-5 and 5-6 (illustration), as well as in Figure 5-7 (simulation).

Q0 [n]

mm, m m 4

V

n

Figure 5-5: Illustration of applying 7rNOB to
diversions are marked by the bold arrows (in

TQ[n]

an initial sample path, Q0 , where the
red).

.. ... .

Q[O] V
-------

Mr 11

S
4

U1 m2 m 3 m4

F-1
n

Figure 5-6: The solid lines depict the resulting sample path, Q = D (Q0 , M), after

applying KNOB to Q0.
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It turns out that the delay performance of TNOB is about as good as we can hope

for in heavy traffic, as is formalized in the next theorem.

Theorem 5.10 (Optimal Offline Policies). Fix p E (0, 1).

1. The policy 7TNOB is feasible for all A E (1 - p, 1), ard 9

C (p, A,WNOB) (5.15)
A - (1 - p)

2. The policy 7TNOB is asymptotically optimal in flo as A - 1:

lim C (p, A, NOB) = limC.(p, A) -
A-K A-+1 p

Proof. See Section 5.6.

Remark 5.11. Heavy-traffic "Delay Collapse." It is perhaps surprising to observe

that the heavy-traffic scaling essentially collapses under 7TNOB: the average queue

length converges to a finite value, 2P, as A -+ 1, which is in sharp contrast with

the optimal scaling of ~ log_1 1 for the online policies, given by Theorem 5.8 (see

Figure 5-4 for an illustration of this difference). A "stack" interpretation of the

No-Job-Left-Behind policy (Section 5.4.1) will help us understand intuitively why

such a drastic discrepancy exists between the online and offline heavy-traffic scaling

behaviors.

Also, as a by-product of Theorem 5.10, observe that the heavy-traffic limit scales,
9 1t is easy to see that iTNOB is not a very efficient diversion policy for relative small values of

A. In fact, C (p, A, lNOB) is a decreasing function of A. This problem can be fixed by injecting

into the arrival process a Poisson process of "dummy jobs" of rate 1 - A - e, so that the total rate

of arrival is 1 - e, where e ~ 0. This reasoning implies that (1 - p)/p is a uniform upper-bound for

C*(p, A), for all A E (0,1).
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1
lim C (p, A) ~ , asp-+ 0.
A-1-1 p

(5.16)

This is consistent with an intuitive notion of "flexibility": delay should degenerate

as the system's ability to divert away jobs diminishes.

1 1000 2000 3000
Time (n)

4000 5000 6000

Figure 5-7: Example sample paths of Q0 and those obtained after applying r L(pA)

and 7rNOB to Q0 , with p = 0.05 and A = 0.999.

5.3.3 Policies with a Finite Lookahead Window

In practice, infinite prediction into the future is certainly too much to ask for. In

this section, we show that a natural modification of IrNOB allows for the same delay

to be achieved, using only a finite lookahead window, whose length, wA, increases to

infinity as A -+ 1. 10

1OIn a way, this is not entirely surprising, because the 7rNOB policy leads to a diversion rate of
A - (1 - p), and there is an additional p - [A - (1 - p)] = 1 - A unused diversion rate that can be
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Denote by w E R, the size of the lookahead window in continuous time, and

W(k) E Z, the window size in the discrete-time embedded process QO, starting from

slot k. Letting Tk be the time of the kth event in the system, then

W(k) = max {l E Z,: Tl < T + w}. (5.17)

For x E N, define the set of indices

U (Q, k, x) = min{j E {1, ... ,}:Q [k + j] = Q[k] - 1}. (5.18)

Definition 5.12. (w-No-Job-Left-Behind Policy) Given an initial sample path

Q0 and w > 0, the w-No-Job-Left-Behind policy, denoted by ,rNOB, diverts all arrivals

in the set JW, where

41W = {k E 4D (Q0 ) U (Q 0, k, W(k)) = oo},

which corresponds to the set {j E {1,...,x} : Q [k + j] = Q [k] -1} in Eq. (5.18) being

empty.

It is easy to see that -7ro is simply 1rNOB applied within the confinement of a

finite window: a job at t is diverted if and only if the initial queue length process

does not return to below the current level within the next w units of time, assuming

no further diversions are made. Since the window is finite, it is clear that W , T

for any w < oo, and hence C (p, A,wNB) C(pAlrNOB) for all A E (1 - p). The

only issue now becomes that of feasibility: by making decisions only based on a finite

lookahead window, we may end up deleting at a rate greater than p.

exploited.
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The following theorem summarizes the above observations, and gives an upper

bound on the appropriate window size, w, as a function of A. 11

Theorem 5.13. (Optimal Delay Scaling with Finite Lookahead) Fix p E

(0, 1). There exists Ch > 0, such that if

1
wA !ch ln , VAE(1-p,1), (5.19)

1 - A

then 7NOr is feasible, and

NO-P

C N(p, A,7B) C (p, A,7rNOB) = ,(-p)' (5.20)

Since C*, (p, A) C* (p, A) and C*, (p, A) C (p, A, rw'B), we also have that

lim C,*,, (p, A) = lim C* (p, A) = . (5.21)A-1 A-1 00

Proof. See Section 5.7.1.

Theorem 6.1 sends a strong positive message, that is, a substantial delay improve-

ment can still be harnessed even if the lookahead window is of finite length, as is

the case in nearly all practical applications, as long as w scales faster than Ch ln -,

as A -+ 1. On the other hand, in applications where future information is much

more limited, can one still hope to leverage future information to achieve non-trivial

performance gain over the online policies?

Unfortunately, the answer is, largely, "no." Our next result states that if the

amount of future information is smaller even by a constant factor, then not only will

the delay be infinite in the heavy-traffic regime, but the delay scaling will essentially

"Note that Theorem 5.13 implies Theorem 5.10 and is hence stronger.
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be no better than that of an online policy. The proof of the theorem requires a fairly

different set of tools than that employed to establish other results in this chapter,

and will be given in Chapter 6.

Theorem 5.14 (Necessity of Future Information). Fix p E (0,1). There exist

c1 > 0 and A E (1 -p, 1), so that if

1
wx < cl In , VAE(,1), (5.22)

1 - A

then

C*, (p, A) = E (In A, as A-+ 1. (5.23)

Together, Theorem 5.13 and 5.14 suggest that the performance of the admission

control problem depends critically on the amount of future information available,

and in particular, on how the length of the lookahead window, wA, scales relative to

the critical value of E (in 1-A).

Figure 5-8 provides a graphical summary of Theorems 5.8 through 5.14. Note

that the constants in the scaling are not being differentiated.

Remarks on the Information Lower Bound. There are several interesting

implications of Theorem 5.14. First, by virtue of being a lower bound for the case

where the decision maker is given the exact realization of the future input over the

lookahead horizon, Theorem 5.14 automatically extends to settings where predictions

can be noisy or corrupted, as is typically the case in practical applications.

From an operational point of view, although Theorem 5.14 invalidates the use-

fulness of future information in certain regimes, it is nevertheless reassuring to know

that a simple online policy could do almost as well as any sophisticated prediction-

guided policy, even when the amount of predictive information available grows with
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the traffic intensity. Moreover, the theorem does not rule out the possibility of mean-

ingful prediction-guided policies when future information is limited; it only implies

that our search for such scenarios should aim at more moderate, constant factor per-

formance improvements over online policies. In fact, numerical results in [93] on a

similar admission control model suggest that sizable performance gains can still be

achieved, even with limited and noisy predictive information.

C (p, X),X-+1

E n 1 1x)

i-p

p

(a)
(b')

[ (c)

o 0L o4-1
'-'4

Figure 5-8: Optimal delay scaling in the heavy-traffic regime, as a function of the

length of the lookahead window, w\. The blue (a), red (b), and black (c) segments

correspond to the regimes established by Theorems 5.8, 5.14, and 5.13, respectively.

Delay-Information Duality Our results imply an interesting conservation law,

or dual relationship, between delay and future information: from Eqs. (5.19) and

(5.23), we see that the sum of the delay (C* (p, A)) and information (wA) must be
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of order f2 (In 11), as A -+ 1. Put in another way, future information that is of

order E (log 1-) is sufficient to achieve a finite delay limit, and one has to suffer

E (log 1 ) in delay, if there is only (just a bit) less future information (Figure 5-8).

Even though such conservation seems to suggest that there is no "free lunch"

to be had, the ability to understand and make such trade-offs can still be useful,

because depending on the application, future information may be significantly less

costly than delay, or vice versa.

5.4 Interpretations of 7rNOB

We present two equivalent ways of describing the No-Job-Left-Behind policy 7FNOB-

The stack interpretation helps us derive the asymptotic diversion rate of IrNOB in a

simple manner, and illustrates the superiority of lUNOB over an online policy. Another

description of IFNOB using time-reversal shows us that the set of diversions made by

lFNOB can be calculated efficiently in linear time (with respect to the length of the

time horizon).

5.4.1 Stack Interpretation

Suppose that the service discipline adopted by the server is that of last-in-first-out

(LIFO), where it always fetches a task that has arrived the latest. In other words,

the queue works as a stack. Suppose that we first simulate the stack without any

diversion. It is easy to see that when the arrival rate A is greater than the service

rate 1 - p, there will be a growing set of jobs at the bottom of the stack that will

never be processed. Label all such jobs as "left-behind." For example, Figure 5-5

shows the evolution of the queue over time, where all "left-behind" jobs are colored
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with a blue shade. One can then verify that the policy INOB given in Definition

5.9 is equivalent to deleting all jobs that are labeled "left-behind," hence the term

"No-Job-Left-Behind." Figure 5-6 illustrates applying INOB to a sample path of Q0 ,

where the ith job to be diverted is precisely the ith job among all jobs that would

have never been processed by the server under a LIFO policy.

One advantage of the stack interpretation is that it makes obvious the fact that

the diversion rate induced by INOB is equal to A-(1-p) < p, as stated in the following

lemma.

Lemma 5.15. For all A > 1 - p, the following statements hold.

1. With probability one, there exists T < oo, such that every service token generated

after time T is matched with some job. In other words, the server never idles

after some finite time.

2. Let Q = D (QM MP). We have

lim sup -I (M*, k) < , a.s., (5.24)
k-1oo k - +1-p

which implies that 7rNOB is feasible for all p E (0, 1) and A E (1 -p, 1).

Proof. See Appendix B.1.1 El

"Anticipation" vs. "Reaction"

Some geometric intuition from the stack interpretation shows that the power of 7rNOB

essentially stems from being highly anticipatory. Looking at Figure 5-5, one sees that

the jobs that are "left behind" at the bottom of the stack correspond to those who

arrive during the intervals where the initial sample path QO is taking a consecutive
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"upward hike." In other words, 7rNOB begins to divert jobs when it anticipates that

the arrivals are just about to get intense. Similarly, a job in the stack will be "served"

if Q0 curves down eventually in the future, which corresponds IFNOB's ceasing to

divert jobs as soon as it anticipates that the next few arrivals can be handled by the

server alone. In sharp contrast is the nature of the optimal online policy, 7r [(,A)

which is by definition "reactive" and begins to divert only when the current queue

length has already reached a high level. The differences in the resulting sample paths

are illustrated via simulations in Figure 5-7. For example, as Q0 continues to increase

during the first 1000 time slots, 1rNOB begins deleting immediately after t = 0, while

no diversion is made by -r?' during this period.

As a rough analogy, the offiine policy starts to divert before the arrivals get busy,

but the online policy can only divert after the burst in arrival traffic has been realized,

by which point it is already "too late" to fully contain the delay. This explains, to a

certain extent, why 1rNOB is capable of achieving "delay collapse" in the heavy-traffic

regime (i.e., a finite limit of delay as A -+ 1, Theorem 5.10), while the delay under

even the best online policy diverges to infinity as A -+ 1 (Theorem 5.8).

5.4.2 A Linear-time Algorithm for 7TNOB

While the offline diversion problem serves as a nice abstraction, it is impossible to

actually store information about the infinite future in practice, even if such infor-

mation is available. A natural finite-horizon version of the offline diversion problem

can be posed as follows: given the values of Q0 over the first N slots, where N finite,

one would like to compute the set of diversions made by 7FNOB:
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assuming that QO[k] > QO[N] for all k N. Note that this problem also arises in

computing the sites of diversions for the KNOB policy, where one would replace N

with the length of the lookahead window, w.

We have the following algorithm, which identifies all slots on which a new "min-

imum" (denoted by the variable S) is achieved in Q0 , when viewed in the reverse

order of time.
A Linear-time Algorithm for 7rNOB

S +- QO[N], and MN +- 0

for k = N down to 1 do

if QO[k] < S then

MN +- MN u {k + 1}

S -QO[k]

else

MN + MN'

end if

end for

return MN
It is easy to see that the running time of the above algorithm scales linearly with

the length of the time horizon, N. Note that this is not the only possible linear-time

algorithm. In fact, one can verify that the simulation procedure used in describing

the stack interpretation of 7rNOB (Section 5.4), which keeps track of which jobs would

eventually be served, is itself a linear-time algorithm. However, the time-reversed

version given here is arguably more intuitive and simpler to describe.
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5.5 Optimal Online Policies

Starting from this section and through Section 5.7, we present the proofs of the

results stated in Section 5.3.

We begin with showing Theorem 5.8, by formulating the online problem as a

Markov decision problem (MDP) with an average cost constraint, which then enables

us to use existing results to characterize the form of optimal policies. Once the family

of threshold policies has been shown to achieve the optimal delay scaling in H0 under

heavy-traffic, the exact form of the scaling can be obtained in a fairly straightforward

manner from the steady-state distribution of a truncated birth-death process.

5.5.1 A Markov Decision Problem Formulation

Since both the arrival and service processes are Poisson, we can formulate the problem

of finding an optimal policy in I 0 as a continuous-time Markov decision problem with

an average-cost constraint, as follows. Let {Q(t) : t E R,} be the resulting continuous-

time queue length process after applying some policy in Ho to Q0 . Let T be the lth

upward jump in Q and r the length of the lth inter-jump interval, Ti = T - T_1 . The

task of a diversion policy, 7r E H0 , amounts to choosing, for each inter-jump interval,

a diversion action, al E [0, 1], where the value of a, corresponds to the probability

that the next arrival during the current inter-jump interval will be diverted. Define

R and K to be the reward and cost functions of an inter-jump interval, respectively,

R(Q, al, Ti) = -Q, - r, (5.25)

K(Qi, ai, ri) = A(1 -a,)-ri, (5.26)
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where Q1 = Q(T). The corresponding MDP seeks to maximize the time-average

reward 12

Er (E 1 R(Qj , al ,7-1))
Rir = lim inf ( R , (5.27)

while obeying the average-cost constraint

r E, ( 1 K(Q, ai, ri))
C,=lim sup 1= E<P. (5.28)

k-+oo Er ( 1= 7- )

To see why this MDP solves- our diversion problem, observe that R?. is the negative

of the time-average queue length, and C, is the time-average diversion rate.

It is well known that the type of constrained MDP described above admits an

optimal policy that is stationary [5], which means that the action a, depends solely

on current state, Q1, and is independent of the time index 1. Therefore, it suffices

to describe 7r using a sequence, {bq :qE Z,}, such that a, = bq whenever Q, = q.

Moreover, when the state space is finite' 3 , stronger characterizations of the bq's have

been obtained for a family of reward and cost functions under certain regularity

assumptions (Hypotheses 2.7, 3.1 and 4.1 in [12]), which are satisfied in our model

(Eqs. (5.25) and (5.26)). Theorem 5.8 will be proved using the next known result

(adapted from Theorem 4.4 in [12]):

Lemma 5.16. Fix p and A, and let the buffer size B be finite. There exists an
2
1t is possible to show that in the online setting, the average cost and reward defined here are

interchangable with those in Eqs. (5.10) and (5.5), respectively.
13 This corresponds to a finite buffer size in our problem, where one can assume that the next

arrival is automatically diverted when the buffer is full, independent of the value of al.
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optimal stationary policy, {b*}, of the form

1,q <L* -1,

b*= q = L*- 1,

0, q ! L*,

for some L* E Z, and E [0,1].

5.5.2 Proof of Theorem 5.8

Proof. (Theorem 5.8) In words, Lemma 5.16 states that the optimal policy admits

a "quasi-threshold" form: it diverts the next arrival when Q(t) L*, admits when

Q(t) < L* - 1, and admits with probability when Q(t) = L* - 1. Suppose, for the

moment, that the statements of Lemma 5.16 also hold when the buffer size is infinite,

an assumption to be justified by the end of the proof. Denoting by 7r* the stationary

optimal policy associated with {b*}, when the constraint on the average diversion

rate is p (Eq. (5.28)). The evolution of Q(t) under r* is that of a birth-death process

truncated at state L*, with the transition rates given in Figure 5-9, and the time-

average queue length is equal to the expected queue length in steady state. Using

standard calculations involving the steady-state distribution of the induced Markov

process, it is not difficult to verify that

C(p, A, 7r'*- C C(p, A, 7r*) : C (p, A, 7ri') (5.29)

where L* is defined as in Lemma 5.16, and C(p, A, 7r) is the time-average queue length

under policy ir, defined in Eq. (5.10).

141



i-p i-p i-p i-p

Figure 5-9: The truncated birth-death process induced by ir.

Denote by {f : i E N} the steady-state probability of the queue length being equal

to i, under a threshold policy 7rfh. Assuming A * 1 - p, standard calculations using

the balance equations yield

~A~
p A 1 ,V1 si<L (5.30)

and p4 = 0 for all i L + 1. The time-average queue length is given by

L

C (p, A, 7rLs = AL -p
i=1

( 1 )(L+1 1) - L + LOL(9 - 1)], (5.31)

where 9 = . Note that when A > 1 - p, p4 is decreasing with respect to L for

all i E {0, 1, ... , L} (Eq. (5.30)), which implies that the time-average queue length is
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monotonically increasing in L, i.e.,

L
C(p, A,ir[+ 1) - C(p, A,lrf) =(L + 1) - + Zi- (pL+1 - pL

i=o

(L=L+ 1) -PL!! + L - 1-p+1 -L1

=p1 E i A

>0. (5.32)

It is also easy to see that, fixing p, since we have that 0 > 1 + 6 for all A sufficiently

close to 1, where 6 > 0 is a fixed constant, we have

C(p,A,r[)= Q+1 - - _ ~L, asL-+oo. (5.33)9 h L+1 - 1 0L 19L+1 -

Since diversions only occur when Q(t) is in state L, from Eq. (5.30), the average

rate of diversions in continuous time under lr is given by,

rd (p, A,7rLh, )A 7rL = A A _+. (5.34)

1-P

Define

L(x,A) =min{LEZ+:rd(p,A,r[, ) X}, (5.35)

that is, L(x, A) is the smallest L for which 7rF remains feasible, given a diversion rate

constraint of x. Using Eqs. (5.34) and (5.35) to solve for L(p, A), we obtain, after
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some algebra,

L (p, A) = og ~I log , as A -* 1, (5.36)

and, by combining Eq. (5.36) and Eq. (5.33) with L = L (p, A), we have

C(p, A,7r (p)) ~ L(p, A) ~ loge 1 , as A -* 1. (5.37)
Irth 1-P 1 -A'

By Eqs. (5.32) and (5.35), we know that 7rL'' achieves the minimum average

queue length among all feasible threshold policies. By Eq. (5.29), we must have that

C (p, A, rL(PA)-1): C(p,A,ir*) C (p, A,4rPA)), (5.38)

Since Lemma 5.16 only applies when B < oo, Eq. (5.38) holds whenever the buffer

size, B, is greater than L(p, A) but finite. We next extend Eq. (5.38) to the case of

B = oo. Denote by v; a stationary optimal policy, when B = oo and the constraint

on average diversion rate is equal to p (Eq. (5.28)). The upper bound on C(p, A, 7r*)

in Eq. (5.38) automatically holds for C(p, A, v*), since C(p, A, 7r[ LpA)) is still feasible

when B= oo. It remains to show a lower bound of the form

C(p, A, v*) >! C (p, A, 7rg - 5.9

when B = oo, which, together with the upper bound, will have implied that the

scaling of C(p, A, 7r (p'A)) (Eq. (5.37)) carries over to v*,

C(p, A, v*) ~ C(p, A, r(pA)) ~ log 1  1, as A -+ 1, (5.40)
1-P 1 - A'
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thus proving Theorem 5.8.

To show Eq. (5.39), we will use a straightforward truncation argument that relates

the performance of an optimal policy under B = oo to the case of B < 00. Denote by

{b*} the diversion probabilities of a stationary optimal policy, V, and by {b*(B')}

the diversion probabilities for a truncated version, v*(B'), with

b*(B') = 1 (q & B') -b,*

for all q 0. Since v* is optimal and yields the minimum average queue length, it is

without loss of generality to assume that the Markov process for Q(t) induced by v*

is positive recurrent. Denoting by {p4} and {p(B')} the steady-state probability of

queue length being equal to i under v* and v*(B'), respectively, it follows from the

positive recurrence of Q(t) under v, and some algebra, that

lim p*u(B') = p4, (5.41)
B'-oo

for all i E Z, and

lim C (p, A, v;*(B')) = C (p, A, v). (5.42)

By Eq.(5.41) and the fact that b*(B') = b* for all 0 < i < B', we have that 14

00

im rd (p, A, v*(B')) = lim A Z p(B') - (1 - b*(B')) = rd (p, A, v*) p. (5.43)
B __W BI4-00 i=O

It is not difficult to verify, from the definition of L(p, A) (Eq. (5.35)), that

lim L(p + 6, A) L(p, A) - 1,
6-0

14Note that in general, rd (p, A, vp*(B')) could be greater than p, for any finite B'.
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for all p, A. For all 6 > 0, choose B' to be sufficiently large, so that

C (p, A, v;*(B')) C (p, A, v*) + 6, (5.44)

L (A, rd (p, A, vp*(B'))) L(p, A) -1, (5.45)

Let p' = rd (p, A, v*(B')). Since b*(B') = 0 for all i B'+1, by Eq. (5.45) we have

C (p, A, v*(B')) C (p, A,7r*), (5.46)

where 7r* is the optimal stationary policy given in Lemma 5.16 under any the finite

buffer size B > B'. We have

(a)
C (p, A, v) + 6 C (p, A,v *(B'))

(b)

> C (p, A,7r*,)

:C (p, A, 'rth' , (5.47)

where the inequalities (a) through (d) follow from Eqs. (5.44), (5.46), (5.38), and

(5.45), respectively. Since Eq. (5.47) holds for all 6 > 0, we have proven Eq. (5.39).

This completes the proof of Theorem 5.8.

5.6 Optimal Offline Policies

We prove Theorem 5.10 in this section, which is completed in two parts. In the first

part (Section 5.6.2), we give a full characterization of the sample path that results

under the policy 7TNOB (Proposition 5.18), which turns out to be a positive recurrent
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random walk. This allows us to obtain the steady-state distribution of the queue

length under IFNOB in closed-form. From this, the expected queue length, which is

equal to the time-average queue length, C (p, A, INOB), can be easily derived and is

shown to be - . Several side results we obtain along this path will also be used

in subsequent sections.

The second part of the proof (Section 5.6.3) focuses on showing the heavy-traffic

optimality of IrNOB among the class of all feasible offline policies, namely, that

lim..1 C (p, A, rNOB) = limA,1 C*, (p, A), which, together with the first part, proves

Theorem 5.10 (Section 5.6.4). The optimality result is proved using a sample-path-

based analysis, by relating the resulting queue length sample path of 7rNOB to that

of a greedy diversion rule, which has an optimal diversion performance over a finite

time horizon, {1,... , N}, given any initial sample path. We then show that the dis-

crepancy between 1rNOB and the greedy policy, in terms of the resulting time-average

queue length after diversion, diminishes almost surely as N -+ oo and A -- 1 (with

the two limits taken in this order). This establishes the heavy-traffic optimality of

'INOB-

5.6.1 Additional Notation

Define Q as the resulting queue length process after applying 7lNOB

Q = D (Q 0, M"').

and Q as the shifted version of Q, so that Q starts from the first diversion in Q,

Q[k] = Q[k + m"], k E Z+. (5.48)
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We say that B = {d,..., u} c N is a busy period of Q, if

Q[d -1]= Q[u]= 0, and Q[k] > 0 for all kE f{d,..., u -1}. (5.49)

We may write B = {dj,... , u} to mean the jth busy period of Q. An example of a

busy period is illustrated in Figure 5-6.

Finally, we will refer to the set of slots between two adjacent diversions in Q (note

the offset of mi),

Ei = - , mT + 1- m', ... , mT- 1 -7},(5.50)

as the ith diversion epoch.

5.6.2 Performance of the No-Job-Left-Behind Policy

For simplicity of notation, throughout this section, we will denote by M = {mi : i E N}

the diversion sequence generated by applying 7INOB to Q0, when there is no ambiguity

(as opposed to using M' and m?). The following lemma summarizes some important

properties of Q which will be used repeatedly.

Lemma 5.17. Suppose 1 > A > 1 - p > 0. The following hold with probability one.

1. For all k E N, we have Q[k] = QO[k + m1 ] - I(M, k + m1 ).

2. Fix some k E N. We have k = mi - m1 for some i, if and only if

Q[k] = Q[k - 1] = 0, (5.51)

with the convention that Q[-1] = 0. In other words, the appearance of two

consecutive zeros in Q is equivalent to having a diversion on the second zero.
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3. Q[k] E Z, for all k E Z,.

Proof. See Appendix B.1.2 E

The next proposition is the main result of this subsection. It specifies the prob-

ability law that governs the evolution of Q.

Proposition 5.18. {Q[k]: k E Z,} is a random walk on Z, with Q[O] = 0, and, for

all k E N and x 1 , x 2 E Z+,

P(Q[k+1]= X2 Q[k] =X2) =

if x 1 >0, and

P (Q[k +1] = x2 I Q[k] = xi) =

1-P,A+1-p'

A
A+1-p,

0,

I -A1p

A+1-p'

0,

X- 1 = 1,

X-= -1,

otherwise,

2 -1 = 1,

x 2 - X1 = 0,

otherwise,

if xi = 0.

Proof. For a sequence {X[k]: k E N} and s, t E N, s < t, we will use the short-hand

X31 = {XIS],I .. ., X[t]}.-
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Fix k E N, and a sequence (q,..., qk) C Z'k. We have

IP (Q~k ] = q[ k] Q =- -q*-)

k
= k E P (Q [k] = q[k] IQ -1 q k-1, 7 I= t, m1+1  k + t1)

= 1 (-i 1

t1 5k-1+tl

- (m 1 = tim 1+1  k + t ~ = qI-) (5.52)

Restricting to the values of tis and q[i]s for which the summand is non-zero, the

first factor in the summand can be written as

P (Q[k] = q[k] Qk- 1 - q- 1, mi = tl, m1j 1  k + t1 )
1 m1 ik1 ki1

=P (Q[k + mi] =q[k] Qm+-1 qk-1,mi =ti, mi k+ t)

P(Q[k+ t1]= q[k] + 1 Q0 [s + t i ] = q[s] + I ({tj}' 1 , s + tj) I s k - 1,

and mir Q0 [r]

P (Q(k + t1] =q[ k] + 1 QOk - 1 + t1] = q[k - 1] + 1, and min Q(r,] ! 1 , (5.53)
rqmk+t

where Q was defined in Eq. (5.6.1). Step (a) follows from Lemma 5.17 and the

fact that t1  k - 1 + ti, and (b) from the Markov property of Q0 and the fact

that the events {minr!k+ti Q0 [r] l}, f{Q[k + t i ] = q[k] + l}, and their intersection,

depend only on the values of {Q 0 [s]: s> k + t1}, and are hence independent of

{Q 0 [s]: 1 s s< k - 2 + ti} conditional on the value of Q0 [t 1 + k -1].

Since the process Q lives in Z+ (Lemma 5.17), it suffices to consider the case of

150



q[k] = q[k - 1] + 1, and show that

P(QO[k+t1] =q[k-1] +1+l Q0 [k-1+t1 ] =q[k-1]+l,

and min Q0[r] 1)
r !k+t1

=1-p (5.54)
A+ 1-p'

for all q[k - 1] E Z+. Since Q[mi - m1 ] = Q[mi - 1 - mi] = 0 for all i (Lemma 5.17),

the fact that q[k] = q[k - 1] + 1 > 0 implies that

k < m1 +i - 1+ mi. (5.55)

Moreover, since Q0 [mj1+ - 1] = 1 and k < m1+1 - 1 + mi, we have that

q[k] > 0 implies Q0[t] = 1, for some t k + 1 + mi. (5.56)

We consider two cases, depending on the value of q[k - 1].

Case 1: q[k - 1] > 0. Using the same argument that led to Eq. (5.56), we have

that

q[k - 1] > 0 implies Q0 [t] = 1, for some t k + mi. (5.57)

It is important to note that, despite the similarity in conclusions, Eqs. (5.56) and
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(5.57) are different in their assumptions (i.e., q[k] versus q[k - 1]). We have

P(Qo[k+ti] =q[k-1]+1+l QO[k-1+ti] =q[k-1] +1,

and min Q0 [r]>2!
r :k+tj

=P Q (k+t1] = q[k -1] +1+1Q (k- -I+ t1] = q[k -1] +1,

and min Q0[r]=l)
r2!k+tl

P (QO[2] = q[k - 1]+ 1 QO[1] = q[k - 1], and min Q0 [r] = 0

(c) 1 -P

A+1-p'
(5.58)

where (a) follows from Eq. (5.57), (b) from the stationary and space-homogeneity of

the Markov chain QO, and (c) from the following well-known property of a transient

random walk conditional to returning to zero.

Lemma 5.19. Let {X[k] : k E N} be a random walk on Z+, such that for all x 1 , x 2 E

Z+ and k E N,

q,

P (X[k + 1] = X2 I X[k] = X2) = 1 1-

0,1

q,

X2 - X1 = 1,

X2 - X1 = -1,

otherwise,

if x, > 0, and

q,

P (X[k +1]= X2 IX[k]= x)= 1 -, q

0,

X2- 1= 1,

X2 - = 0,

otherwise,
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if x, = 0, where q E (1, 1). Then for all X1 , x 2 E Z+ and k E N,

1-q,

P(X[k+1]=X2 X[k]=xi,minX[r]=0 = q,r 0k+,

X2- X1 =1,

2- X1 =-1

otherwise,

if x, > 0, and

P (X[k+1] =X2 X[k] =x1, min X[r] =) = q,
\ r2k+1

0,1

X2- X1 = 1,

x 2 -X 1 = 0,

otherwise,

if x1 = 0. In other words, conditional on the eventual return to 0 and until that

happens, a transient random walk obeys the same probability law as a random walk

with the reversed one-step transition probabilities.

Proof. See Appendix B.1.3.
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Case 2: q[k - 1] = 0. We have

P(QO[k +t 1 ] = q[k -1] +1+l Q0 [k -1+t 1 ] = q[k -1] +l,

and min Q0O[r]>l
r?!k+t1

P(Qo[k+t1]= 1+1, and min QO[r]=l1QO[k -1+t1]= 1,
\ r>k+t1

and min Q[r] >l)
r2 k+t1

(P(QO[2]=2, and minQ 0[r]=1 Q0 [1]=1, and minQ0[r]21 ,r>2 r22

=X, (5.59)

where (a) follows from Eq. (5.56) (note its difference with Eq. (5.57)), and (b)

from the stationarity and space-homogeneity of Q0 , and the assumption that 1 1

(Eq. (5.52)).

Since Eqs. (5.58) and (5.59) hold for all x 1, l E Z+ and k 2 m, + 1, by Eq. (5.52),

we have that

(+1--P, q[k] - q[k - 1] = 1,

P(Q[k] =q[k] Q{-=- =- 1 , q[k] -q[k-l] = -1, (5.60)

0, otherwise,

if q[k - 1] > 0, and

IX, q[k] - q[k - 1] = 1,

P (Q[k] = q[k] Qk-1 = q-1 = k 1 -, q[k] - q[k - 1] = 0, (5.61)

0, otherwise,
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if q[k - 1] = 0, where x represents the value of the probability in Eq. (5.59). Clearly,

Q[0] = Q 0[mi] = 0. We next show that x is indeed equal to , which will have

proven Proposition 5.18.

One can in principle obtain the value of x by directly computing the probability

in line (b) of Eq. (5.59), which can be quite difficult to do. Instead, we will use an

indirect approach that turns out to be computationally much simpler: we will relate

x to the rate of diversion of 7rNOB using renewal theory, and then solve for x. As a

by-product of this approach, we will also get a better understanding of an important

regenerative structure of IrNOB (Eq. (5.67)), which will be useful for the analysis in

subsequent sections.

By Eqs. (5.60) and (5.61), Q is a positive recurrent Markov chain, and Q[k]

converges to a well defined steady-state distribution, Q[oo], as k -+ oo. Letting

ri= P (Q[oo] = i), it is easy to verify via the balance equations that

x(A + 1 - p) 1- p -1
7ri = 7r 1 , (1 P Vi > 1, (5.62)

and since Zj o ri = 1, we obtain

ro = X .A) (5.63)

Since the chain Q is also irreducible, the limiting fraction of time that Q spends in

state 0 is therefore equal to 1ro :

1 k1
lim - fIJ (Q[t] = 0) = =ro0= (5.64)
k-ook t=1 1+ -A(1)

Next, we would like to know many of these visits to state 0 correspond to a diver-
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sion. Recall the notion of a busy period and diversion epoch, defined in Eqs. (5.49)

and (5.50), respectively. By Lemma 5.17, k corresponds to a diversion if any only if

Q[k] = Q[k - 1] = 0. Consider a diversion in slot mi. If Q[mi + 1] = 0, then mi + 1

also corresponds to a diversion, i.e., mi + 1 = mei. If instead Q[mi + 1] = 1, which

happens with probability x, the fact that Q[mis+ -1] = 0 implies that there exists at

least one busy period, {d,... , u}, between mi and mi+1 , with d = mi and u mi+1 -1.

At the end of this period, a new busy period starts with probability x, and so on.

In summary, a diversion epoch Ei consists of the slot mi - mi, plus Ni busy periods,

where the Ni are i.i.d, with15

N1 = Geo(1 - x) - 1, (5.65)

and hence
N

IEZI = 1 + Z Bij7 (5.66)
j=1

where {Bi, : ij E N} are i.i.d random variables, and Bij corresponds to the length

of the jth busy period in the ith epoch.

Define W[t] = (Q[t], Q[t + 1]), t E Z,. Since Q is Markov, W[t] is also a Markov

chain, taking values in Z+2 . Since a diversion occurs in slot t if and only if Q[t] =

Q[t - 1] = 0 (Lemma 5.17), IEiJ corresponds to excursion times between two adjacent

visits of W to the the state (0, 0), and hence are i.i.d. Using the Elementary Renewal

Theorem, we have
1 1

lim -I (M, k)= , a.s., (5.67)
k-+oo k E(IE1I)(

by viewing each visit of W to (0, 0) as a renewal event and using the fact that exactly

one diversion occurs within a diversion epoch. Denoting by R- the number of visits to

15 Geo(p) denotes a geometric random variable with mean .
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state 0 within Ej, we have that R, = 1+ Ni. Treating R, as the reward associated with

the renewal interval Ej, we have, by the time-average of a renewal reward process

(c.f., Theorem 6, Chapter 3, [33]), that

1 kE (R1) E (N1) + 1lim - R(Q[t] = 0) = =(- a s. (5.68)
k-+, k t= E (JE1 I) E (JEil) '

by treating each visit of Q to (0,0) as a renewal event. From Eqs. (5.67) and (5.68),

we have
limk.oo 1I (M, k) _ 1

=iy k1-X. (5.69)
limk-.oo k 't=.1 f (Q It] =0) E(N1)

Combing Eqs. (5.24), (5.64) and (5.69), and the fact that E(N 1 ) = E(Geo(-x))-1 =

- i , we have
A-(1-p) A+1-p

-. 1 + x -= 1-x) (5.70)
A+1-p A-(1-p)'

which yields

x = .P (5.71)
A+1-p

This completes the proof of Proposition 5.18.

We summarize some of the key consequences of Proposition 5.18 below, most of

which are easy to derive using renewal theory and well-known properties of positive-

recurrent random walks.

Proposition 5.20. Suppose that 1 > A > 1 -p > 0, and denote by Q[oo] the steady-

state distribution of Q.

1. For all i E Z+,

P(Q[O] =i)= 1- -P ip) (5.72)
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2. Almost surely, we have that

1 k 1-
lim - Q[i] = E (Q [oo]) =.(5.73)
k-+00 k 4 1-p)

3. Let E+ = {m', m"+ 1, ..., mi 1 - 1, mi}. Then the IEi| are i.i.d, with

1 _A+1-p

E (|EiI) 1 I A(l-p (5.74)
liMk_, II (M'Q', k) A -( - p)'

and there exists a,b > 0 such that for all x E R,

P (E I x) a exp (-b -x). (5.75)

4. Almost surely, we have that

1'*' ~A-(1-p) , (5.76)
* E1 -EI) A + 1-p '

as 2 - oo.

Proof. Claim 1 follows from the well-known steady-state distribution of a positive

recurrent reflected random walk, or equivalently, the fact that Q[oo] has the same

distribution as the steady-state number of jobs in an M/M/1 queue with traffic

intensity p = 'AP. For Claim 2, since Q is an irreducible Markov chain that is positive

recurrent, it follows that its time-average coincides with E (Q [oo]) almost surely.

The fact that the Eis are i.i.d was shown in the discussion preceding Eq. (5.67) in

the proof of Proposition 5.18. The value of E (1E1I) follows by combining Eqs. (5.24)

and (5.67).

Let Bi, be the length of the jth busy period (defined in Eq. (5.49)) in Ei. By

158



definition, B1 ,1 is distributed as the time till the random walk Q reaches state 0,

starting from state 1. We have

P (B1 ,1 x X) s P E X s -1
(j=1

where the Xj's are i.i.d, with P (X 1 = 1) = - and P (X 1 = -1) = , which,A+1-p 5A+1-p

by the Chernoff bound, implies an exponential tail bound for P (B1 ,1  x), and in

particular,

lim GB1,1(0) = 1, (5.77)
0o

By Eq. (5.66), the moment generating function for 1E11 is given by

GIE1i1() =E (exp (c I1E1 ))

=E (exp (c (i + Bj,)))( (j=1
=E (e') -E (exp (N1 -GB,,,(6))

=E (e') GN1 (In (GB1,1 (E))) , (5.78)

where (a) follows from the fact that {N 1 } u {B 1 , j E N} are mutually independent,

and GN1 (X) = E (exp (x -N1 )). Since N1 = Geo(1 - x) - 1, limxjo GN1(X) = 1, and by

Eq. (5.77), we have that limejo GIEI(E) = 1, which implies Eq. (5.75).

Finally, Eq. (5.76) follows from the third claim and the Elementary Renewal

Theorem.
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5.6.3 Optimality of the No-Job-Left-Behind Policy in Heavy

Traffic

This section is devoted to proving the optimality of 1rNOB as A -+ 1, stated in the

second claim of Theorem 5.10, which we isolate here in the form of the following

proposition.

Proposition 5.21. Fix p E (0,1). We have that

lim C (p, A, rNOB) = lim C:, (p, A).
A-1 A-1

The proof is given at the end of this section, and we do so by showing the

following:

1. Over a finite horizon N and given a fixed number of diversions to be made, a

greedy diversion rule is optimal in minimizing the post-diversion area under Q

over {1, . .., N}.

2. Any point of diversion chosen by 7rNOB will also be chosen by the greedy policy,

as N -+ oo.

3. The fraction of points chosen by the greedy policy but not by IrNOB diminishes

as A -+ 1, and hence the delay produced by 1rNOB is the best possible, as A -> 1.

Fix N E N. Let S (Q, N) be the partial sum S (Q, N) = 1 = Q [k]. For any

sample path Q, denote by A (Q, k) the marginal decrease of area under Q over the

horizon {1,..., N} by applying a diversion at slot k, i.e.,

Ap (Q, N, k) = S (Q, N) - S (Dp (Q, k) , N),
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and, analogously,

A (Q, N, M') = S (Q, N) - S (D (Q, M') , N),

where M' is a diversion sequence.

We next define the notion of a greedy diversion rule, which constructs a diversion

sequence by recursively adding the slot that leads to the maximum marginal decrease

in S(Q, N).

Definition 5.22. (Greedy Diversion Rule) Fix an initial sample path QO, and

K, N E N. The greedy diversion rule is a mapping, G (Q0 , N, K), which outputs

a finite diversion sequence MG = {mG: 1 i K}, given by

mG E arg max Ap (Q0, N, m),
mE<}(Q 0 ,N)

G E arg max Ap(QgG,N,m), 2<l<:K,ml mE4b(Q 1 ,N)

where D (Q, N) = D (Q) n {1,..., N} is the set of all locations in Q in the first N

slots that can be diverted, and Q1 = D (Q0, {mg:1 i l}). Note that we will allow

MG = oo if there is no more entry to divert (i.e., 4 (Q1-1) n {1, .. . , N} = 0).

We now state a key lemma that will be used in proving Theorem 5.10. It shows

that over a finite horizon and for a finite number of diversions, the greedy diversion

rule yields the maximum reduction in the area under the sample path.

Lemma 5.23. (Dominance of Greedy Policy) Fix an initial sample path QO,
horizon N E N, and number of diversions K E N. Let M' be any diversion sequence

with I(M', N) = K. Then,

- S (D (QO, M) , N) > S (D (QO, MG) , N) ,
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where MG = G (QO, N, K) is the diversion sequence generated by the greedy policy.

Proof. By Lemma 5.3, it suffices to show that, for any sample path {Q[k] E Z,: k E N}

with IQ[k + 1] - Q[k]j = 1 if Q[k] > 0 and IQ[k + 1] - Q[k] E {0, 1} if Q[k] = 0, we

have

S(D(Q,M') ,N) Ap(Q,N,mG) + min S(D(Q1G,i) ,N). (5.79)
lAf1=1-1,

IC'T(D(QMG),N)

By induction, this would imply that we should use the greedy rule at every step of

diversion up to K. The following lemma states a simple monotonicity property. The

proof is elementary, and is omitted.

Lemma 5.24. (Monotonicity in Diversions) Let Q and Q' be two sample paths

such that

Q[k] Q'[k], VkE {1,..., N}.

Then, for any K > 1,

min S (D (Q, M) , N) min S (D (Q', M), N). (5.80)
IMI=K, IMI=K,

Mc4(Q,N) McP(Q',N)

and, for any finite diversion sequence M' c <D (Q, N),

A (Q, N, M') A (Q', N, M'). (5.81)

Recall the definition of a busy period in Eq. (5.49). Let J(Q, N) be the total

number of busy periods in {Q[k] :1 < k N}, with the additional convention Q[N+

1] 2 0 so that the last busy period always ends on N. Let B = {dj,... , u3 } be the

jth busy period. It can be verified that a diversion in location k leads to a decrease
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in the value of S(Q, N) that is no more than the width of the busy period to which

k belongs (c.f., Figure 5-6). Therefore, by definition, a greedy policy always seeks to

divert at each step the first arriving job during a longest busy period in the current

sample path, and hence

A(Q,N,G(Q,N,1)) = max 1B31. (5.82)
1 j J(Q,N)

Let

J*(QN)=arg max 1Bj1.
1jsJ(Q,N)

We consider the following cases, depending on whether M' chooses to divert any job

in the busy periods in J*(Q, N).

Case 1: M'n (ujEJ*(Q,N)Bj) * 0. If dj* E M' for some j* E J*, by Eq. (5.82), we

can set mG to dj*. Since mG E M' and the order of diversions does not impact the

final resulting delay (Lemma 5.3), we have that Eq. (5.79) holds, and we are done.

Otherwise, choose m* E M'n Bj- for some j* EJ*, and we have m* > dj*. Let

Q'= Dp (Q, m*), and Q = Dp (Q, dj*).

Since Q [k] > 0, Vk E {dj,*...,uj* -1}, we have Q[k] = Q[k] - 1 Q'[k], Vk E

{dj*,..., uj* - 1}, and Q'[k] = Q[k] = Q[k], Vk ( {d3 ,. .. ,u* - 1}, which implies

that

Q[k] Q'[k], VkE {1,..., N}. (5.83)

Eq. (5.79) holds by combining Eq. (5.83) and Eq. (5.80) in Lemma 5.24, with K = 1-1.

Case 2: M' n (ujEJ*(Q,N)Bj) = 0. Let m* be any element in M', and Q' =

Dp(Q,m*). Clearly, Q[k] > Q'[k] for all k E {1,...,N}, and by Eq. (5.81) in
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Lemma 5.24, we have that 16

A (Q, N, M'\ {m*}) > A (Dp (Q, m*) , N, M'\ {m*}). (5.84)

Since M' n (ujEJ*(Q,N)Bj) = 0, we have that

AP (D (Q, M'\ {m*}) , N, mG) = max lBl> Ap (Q, N, m*). (5.85)1 1! jsJ(Q,N)

Let A = mG u (M'\ {m*}), we have that

S(D (Q, k), N)

= S (Q, N) - A (Q, N, M'\ {m*}) - Ap (D (Q, M'\ {m*}), N, mi)
(a)
< S(QN) - A (Dp (Q,m*), N, M'\ {m*}) - Ap (D (Q, M'\ {m*}), N, m)

(b)
< S(QN)-A(Dp(Qm*),N,M'\{m*})-Ap(Q,N,m*)

= S(D(Q,M'),N),

where (a) and (b) follow from Eqs. (5.84) and (5.85), respectively. This shows that

Eq. (5.79) holds (and in this case the inequality there is strict).

Cases 1 and 2 together complete the proof of Lemma 5.23.

We are now ready to prove Proposition 5.21.

Proof. (Proposition 5.21) Lemma 5.23 shows that, for any fixed number of diver-

sions over a finite horizon N, the greedy diversion policy (Definition 5.22) yields the

smallest area under the resulting sample path, Q, over {1,... , N}. The main idea

16For finite sets A and B, A\B = {a E A: a f B}.
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of proof is to show that the area under Q after applying 7rNOB is asymptotically the

same as that of the greedy policy, as N -+ oo and A -- 1 (in this particular order of

limits). In some sense, this means that the jobs in M* account for almost all of the

delays in the system, as A -+ 1. The following technical lemma is useful.

Lemma 5.25. For a finite set S c R, and I E N, define

f(S,l) = sum of the 1 largest elements in S

Let {Xi : 1 i k} be i.i.d random variables taking values in Z+, where E (X 1 ) < oo.

Then for any sequence of random variables {Hk : k E N}, with Hk < ak a.s. as k -* oo

for some a E (0,1), we have

lim sup f ({Xi : 1: i s k}, Hk) s E (X1 -ff (X1 : FX (a) ,a. s., (5.86)

where F (y) = min {x E N : P (X 1  x) < y}.

Proof. See Appendix B.1.4.

Fix an initial sample path Q0 . We will denote by M*' = {m : i E N} the diversion

sequence generated by lrNOB on QO. Define

d (k) = k - max JEiJ (5.87)
1!si!I(M'1' ,k )

where Ei is the ith diversion epoch of M"', defined in Eq. (5.50). Since QO[k]

Q[mi] for all i E N, it is easy to check that

AP (D (Q0 ,{m :1 j i -1}), k, m ) = k - m +1,
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for all i E N. The function I was defined so that the first I(MW, l(k)) diversions made

by a greedy rule over the horizon {1,... , k} are exactly {1, ... , l(k)} n M*. More

formally, we have the following lemma.

Lemma 5.26. Fix k E N, and let MG = G(Qo,k,I(M",d(k))). Then mg = m'

for all i E {1,..., I (Mp , l(k))}.

Fix K E N, and an arbitrary feasible diversion sequence, M, generated by a policy

in I,.. We can write

I (K, mi) =I (M*, d (m"")) + (I (M*, m*) - I (M"", d (m*)))

+ (I (PI, m) -I(M *,m4))

=I (M", d (m')) + (K - I (M, d(m )))

+ (I(A,m*)-I(MWm.))

=I (M*, d (mi)) + h(K),

where

h(K) = (K - I (M, d (m"))) + (I (I, m") - I (M', m')).

We have the following characterization of h.

Lemma 5.27. h(K) < _ - K, as K -+ oo, a.s.

Proof. See Appendix B.1.5

Let

MG'k = G (Q0 , k, I(k, k)),

166

(5.89)

E

(5.90)

(5.88)



where the greedy diversion map G was defined in Definition 5.22. By Lemma 5.26

and the definition of MG,k, we have that

M* n {1, ... ,) d (,m')} Ic KG.

Therefore, we can write

MG,m =( { , ) G

where MK = MGm4\ (M' n

nition, by Eq. (5.88),

{1,...,d (mf)}). Since IMG,mKI = I (A, m*) by defi-

M I = h(K). (5.93)

We have

(5.94)

where (a) is based on the dominance of the greedy policy over any finite horizon

(Lemma 5.23), and (b) follows from Eq. (5.92).

Finally, we claim that there exists g(x) : R -+ R+, with g(x) -+ 0 as x -+ 1, such

that

lilm SUP
K--oo

g(A), a.s. (5.95)
K
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Eqs. (5.94) and (5.95) combined imply that

S (D (QO, M*),7 mT)
C (p, A,7rNOB) =lim sup T

K-+oo MK

S (D (QO, 1 ),7 mxp)
g(A) + limrsup T ,

K--)oo MK

=g(A) + lim sup S(D a.s., (5.96)
k-+oo k

which shows that

C (p, A,7rNOB) ! g (A) + inf C (p, A, 7r).

Since g(A) -+ 0 as A -- 1, this proves Proposition 5.21.

To show Eq. (5.95), denote by Q the sample path after applying 7 rNOB,

Q=D(Q0 , M'),

and by V4 the area under Q within Ei,

Mi+1-1
V%= Z Q[k].

k=mT

An example of Vi is illustrated as the area of the shaded region in Figure 5-6. By

Proposition 5.18, Q is a Markov chain and so is the process W[k] = (Q[k], Q[k + 1]).

By Lemma 5.17, Ei corresponds to the indices between two adjacent returns of the

chain W to state (0,0). Since the ith return of a Markov chain to a particular state

is a stopping time, it can be shown, using the strong Markov property of W, that the

segments of Q, {Q[k] : k E Ei}, are mutually independent and identically distributed
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among different values of i. Therefore, the Vi's are i.i.d. Furthermore,

(a) (b)
E (V ) <) E (JE1|2 < 00, (5.97)

where (a) follows from the fact that IQ[k+1]-Q[k] 1 for all k, and hence 14 E2

for any sample path of Q0 , and (b) from the exponential tail bound on P(IEIJ x),

given in Eq. (5.75).

Since the value of Q on the two ends of Ej, mi and m*1 -1, are both zero, each

additional diversion within Ej cannot produce a marginal decrease of area under Q of

more than Vi (c.f., Figure 5-6). Therefore, the value of A (D (Q0 , MT), m%, MKG) can

be no greater than the sum of the h(K) largest 14's over the horizon k E {1, ... , mi}.

We have

A (D (QO, M P),7 M ,~MKG
lim sup ' KM

K-+oo MK

K
=lim sup f ({ : 1 4:i K}, h(K)) ,

K-+oo inK

-limnsup f({14 : 1 < i<K} ,h(K)) - (+1 -q)

Kb)1- A-pQ

E (i f (i ! V (A - (1 - p) A - (1 - q) (-8

where (a) follows from Eq. (5.76), and (b) from Lemmas 5.25 and 5.27. Since E (V1 ) <

oo, and F2,(x) -+ oo as x -- 0, it follows that

E( .II() - A 1 )-)A 0,
VA-(1-p)

as A -+ 1. Eq. (5.95) is proved by setting g(A) = E (v 1 - r (X 1  V1 ( 1--q.

This completes the proof of Proposition 5.21. 0

169



Why not use Greedy?

The proof of Proposition 5.21 relies on a sample-path-wise coupling to the perfor-

mance of a greedy diversion rule. It is then only natural to ask: since the time

horizon is indeed finite in all practical applications, why don't we simply use the

greedy rule as the preferred offline policy, as opposed to rNOB?

There are at least two reasons for focusing on rNOB instead of the greedy rule.

First, the structure of the greedy rule is highly global, in the sense that each diversion

decision uses information of the entire sample path over the horizon. As a result,

the greedy rule tells us little on how to design a good policy with a fixed lookahead

window (e.g., Theorem 5.13). In contrast, the performance analysis of IrNOB in

Section 5.6.2 reveals a highly regenerative structure: the diversions made by IFNOB

essentially depend only on the dynamics of Q0 in the same diversion epoch (the

Ei's), and what happens beyond the current epoch becomes irrelevant. This is the

key intuition that led to our construction of the finite-lookahead policy in Theorem

5.13. A second (and perhaps minor) reason is that of computational complexity. By

a small sacrifice in performance, FNOB can be efficiently implemented using a linear-

time algorithm (Section 5.4.2), while it is easy to see that a naive implementation of

the greedy rule would require super-linear complexity with respect to the length of

the horizon.

5.6.4 Proof of Theorem 5.10

Proof. (Theorem 5.10) The fact that IrNOB is feasible follows from Eq. (5.24) in

Lemma 5.15, i.e.

1 , A-(1-p) p as
lim sup -I (M"' , k) < < , a.s.

k--oo k - A+1-p A+1-p
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Let {Q[k] :k E Z,} be the resulting sample path after applying INOB to the initial

sample path {Q 0 [k]: k E Z,}, and let

Q[k] = Q [k + mrl, Vk E N,

where mf is the index of the first diversion made by IFNOB. Since A > 1 - p, the

random walk Q0 is transient, and hence mT < oo almost surely. We have that,

almost surely,

C (p, A, rNOB) = lim -
k-+oo k i=1

1 11 k
= lim Q[i] + lim - Q[i]

k-+)oo kk-->oo k

i- 1-(5.99)
A - (1 -p)'

where the last equality follows from Eq. (5.73) in Proposition 5.20, and the fact that

m, < oo almost surely. Letting A -+ 1 in Eq. (5.99) yields the finite limit of delay

under heavy traffic:

lim C (p, A, rNOB) =lim -p

Finally, the delay optimality of 1rNOB in heavy traffic was proved in Proposition

5.21, i.e., that

liM C (A, A, 7rNOB) -.*(,A
A-+1 A-+1

This completes the proof of Theorem 5.10. E
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5.7 Policies with a Finite Lookahead

5.7.1 Proof of Theorem 5.13

Proof. (Theorem 5.13) As pointed out in the discussion preceding Theorem 5.13,

for any initial sample path and w < oo, an arrival that is diverted under the INOB

policy will also be diverted under rwOB. Therefore, the delay guarantee for 7rNOB

(Theorem 5.10) carries over to rwB, and for the rest of the proof, we will be focusing

on showing that 7rKNO is feasible under an appropriate scaling of wA. We begin by

stating an exponential tail bound on the distribution of the discrete-time predictive

window, W(A,k), defined in Eq. (5.17),

W(A, k) = max{l E Z, : Tk,, Tk + wA}.

It is easy to see that {W (A, mf): i E N} are i.i.d, with W (A, m') distributed as a

Poisson random variable with mean (A + 1 - p)wA. Since

P(W (A,m'y) 2x) s P E X ,

where the X, are i.i.d Poisson random variables with mean A + (1 - p), applying the

Chernoff bound, we have that, there exist c, d > 0 such that

(W(A, m) 2 -wx P ) c -exp(-d -wA), (5.100)

for all WA > 0.

We now analyze the diversion rate resulted by the KrNOB policy. For the purpose of

analysis (as opposed to practical efficiency), we will consider a new diversion policy,
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denoted by ow-\, which can be viewed as a relaxation of 7r'-O\.

Definition 5.28. Fix w E R,. The diversion policy U-W is defined so that for each

diversion epoch Ej, i E N,

1. if |E I W (A, m?), then only the first arrival of this epoch, namely, the arrival

in slot mXPis diverted;

2. otherwise, all arrivals within this epoch are diverted.

It is easy to verify that aW can be implemented with w units of look-ahead, and

the set of diversions made by o- is a strict superset of IrF)B almost surely. Hence,

the feasibility of uU-A will imply that of 7rNOB.

Denote by Di the number of diversions made by o-wA in the epoch Ej. By the

construction of the policy, the Di are i.i.d, and depend only on the length of Ej and

the number of arrivals within. We have17

E (D1) : 1+ E [jEjj - f (jEjj W (A, m )
1[ ( A+1 -p

: 1+ E IjEjj I |E( 2 \ )]

(W(AmD 
A+1-P.+ E (jEj)-P W( <m2 W 2

+ Z - a-exp(-b-)) + -c -exp(-d- w (.)

(a)
< 1+ h -wA -exp(-l -wA), (5.101)

for some h, 1 > 0, where step (a) follows from the fact that I' l - exp(-b -1) =

0 (k -exp(-b k)) as k -+ oo.

17For simplicity of notation, we assume that ~P -w is always an integer. This does not change
the scaling behavior of WA.
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Since the Di are i.i.d, using basic renewal theory, it is not difficult to show that

the average rate of diversion in discrete time under the policy cwA is equal to E(Di)

In order for the policy to be feasible, one must have that

E(D 1 ) - E(D 1 ) p
E(E1 ) A - A + 1 -p

By Eqs. (5.101) and (5.102), we want to ensure that

pA >1+ h- WA -exp(- -w),
A - (1 -p)

which yields, after taking the logarithm on both sides,

1 1 1[A - (1 -p)]- h* -WA
W\ A 1 log + i log (5.103)

b 1-A b 1-P

It is not difficult to verify that for all p E (0, 1) there exists a constant Ch > 0 such

that the above inequality holds for all A E (1 -p, 1), by letting wA = Ch log(1'). This

proves the feasibility of ox, which implies that 7r"o, is also feasible. This completes

the proof of Theorem 5.13. 0

5.8 Summary and Future Research

The main objective of this chapter was to study the impact of future information

on the performance of a class of admission control problems, with a constraint on

the time-average rate of diversion. Our model is motivated as a study of a dynamic

resource allocation problem between slow (congestion-prone) and fast (congestion-

free) processing resources. It could also be viewed as the decision problem faced by

a local queue for flexible sysems in the Partial Pooling family (cf. Section 2.2), where
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a fraction p of the system's resources are fully flexible, while the remaining resources

are dedicated. Our main results show that the availability of future information can

dramatically reduce the delay experienced by admitted jobs: the delay converges

to a finite constant even as the traffic load approaches the system capacity ("heavy-

traffic delay collapse") if and only if the decision maker is allowed a sufficiently large

lookahead window (Theorems 5.13 and 5.14).

There are several interesting directions for future exploration. We believe that

our results can be generalized to cases where the arrival and service processes are

non-Poisson. We note that the 7UNOB policy is indeed feasible for a wide range

of non-Poisson arrival and service processes (e.g., renewal processes), as long as

they satisfy a form of strong law of large numbers, with appropriate time-average

rates (Lemma 5.15). It seems more challenging to generalize the results on the

optimality of irNOB and the performance guarantees. However, it may be possible to

establish a generalization of the delay optimality result using limiting theorems (e.g.,

diffusion approximations). For instance, with sufficiently well-behaved arrival and

service processes, we expect that one can establish a result similar to Proposition

5.18 by characterizing the queue length process that results from IrNOB as a reflected

Brownian motion in R,, in the limit of A -- 1 and p -* 0, with appropriate scaling.

Another interesting variation of our problem is the setting where each job comes

with a prescribed size, or workload, and the decision maker is able to observe both the

arrival times and workloads of jobs up to a finite lookahead window. It is conceivable

that many analogous results can be established for this setting, by studying the

associated workload (as opposed to queue length) process, while the analysis may be

less clean due to the lack of a simple random-walk-based description of the system

dynamics. Moreover, the server could potentially exploit additional information

of the jobs' workloads in making scheduling decisions, and it is unclear what the
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performance and fairness implications are for the design of admission control policies.

There are other issues that need to be addressed if our offline policies (or policies

with a finite lookahead) are to be applied in practice. A most important question

relates to the impact of observation noise to performance, since in reality the future

seen in the lookahead window cannot be expected to match the actual realization

exactly. We conjecture, based on the analysis of INOB, that the performance of both

IUNOB, and its finite-lookahead version, is robust to small noises or perturbations

(e.g., if the actual sample path is at most e away from the predicted one). The

policy's robustness under prediction noise have been demonstrated via simulation in

[93], while it remains to thoroughly verify and quantify the extent of the impact of

noise, either empirically or through theory. Also, it is unclear what the best practices

should be when the lookahead window is very small relative to the traffic intensity

A (i.e., w «log ) In this regime, our lower bound (Theorem 5.14) does not fully

preclude the possibility of finding effective prediction-guided policies that improve

upon an optimal online policy. Our work [93] explores, in the context of admission

control for Emergency Departments, some of these issues, such as the impact of

prediction noise and that of a short lookahead window, but the picture is far from

complete.
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Chapter 6

Necessity of Future Information

This chapter is devoted to the proof of the future information lower bound of Theorem

5.14, introduced in Chapter 5, which is re-stated below.

Theorem 6.1 (Necessity of Future Information, rep. of Theorem 5.14).

Fix p E (0,1). There exist cl > 0 and A E (1 - p,1), so that if

1
w,\: clln , VAE (A, 1), (6.1)

1- A

then

C*, (p, A)= In , as A-1. (6.2)

Despite having identical modeling assumptions, the proof techniques used for

Theorem 6.1 are quite different from those employed to establish the achievability

results of Theorem 5.10 and 5.13 in Chapter 5. This is due to the fact that, in

order to establish a lower bound, instead of analyzing one policy (e.g., 7No), we

will now need tools to characterize the performance of all feasible policies. The core

of our arguments hinges upon a relationship between diversion decisions and future
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idling of the server, over a certain subset of input sample paths. This relationship is

then used in conjunction with the excursion probabilities of a transient random walk

to demonstrate that the system manager must maintain a relatively large queue

length, when the amount of future information is limited. We believe that this

line of arguments is fairly robust to changes in modeling assumptions, and can be

generalized to prove information lower bounds for other dynamic resource allocation

problems.

Organization The remainder of the chapter is organized as follows. In Section

6.1, we contrast our proof techniques with methods from the literature on Markov

decision processes. Section 6.2 reviews the modeling assumptions, and introduces

the necessary mathematical formalism. The proof of Theorem 6.1 is given in Section

6.3, with an outline of the proof ideas provided at the beginning of the section.

We conclude the chapter in Section 6.4 and examine potential directions for future

research.

6.1 Related Research

Theorem 6.1 can be viewed as a generalization of the Markov optimal admission

control problem that has been studied in the literature [801, and it is interesting to

highlight some of the differences in analytical approaches. Optimal policies in the

Markov setting (wA = 0) are known to often admit a threshold (or control-limit) form,

such as the one analyzed in Theorem 5.8, where a diversion is made only if the current

queue length reaches a fixed threshold. To prove the optimality of these policies, one

would typically analyze the Bellman equations of the corresponding Markov decision

process (MDP) in order to establish a set of monotonicity properties in the policy
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space, e.g., that the cost-to-go function associated with a threshold policy would be

dominated by those associated with policies that divert with non-zero probabilities

when the queue is small (c.f. [94]). Successive application of such monotonicity

properties can then narrow the policy space down to only those with a threshold

form.

Unfortunately, such arguments employed in the Markov setting do not seem to

carry over easily when the lookahead window is taken into account. While our setting

can still be casted as an MDP by incorporating events during the lookahead window

into the state, the structure of the state space is now considerably more complex (and

increasingly so as we let wA -* oo), and it is no longer clear if any monotonicity prop-

erty continues to hold. Our proof techniques circumvent this additional complexity

by focusing on the "macroscopic" sample-path characteristics of the system, instead

of the more refined details of the Bellman equations. As a trade-off, our analysis is

more coarse by nature, and it provides neither a characterization of the multiplica-

tive constant in the delay scaling, nor a concrete diversion policy that achieves the

information lower bound (which, fortunately, has been given in Chapter 5).

Our work is also similar in spirit to the techniques of information relaxation and

path-wise optimization for MDPs [19, 27, 69]. In this case, one considers a relaxed

version of the original MDP, where the decision maker has access to realizations

of the future input sample paths. This relaxed problem is often simpler to solve

and simulate than the original stochastic optimization problem, and hence can be

used, for instance, as a performance benchmark for evaluating heuristic policies. Our

work is different from this literature in several aspects. Most notably, we focus on

rigorously understanding the stochastic dynamics involved in the relaxed problem

with future information, and how performance scales with respect to the length of

the lookahead window, as opposed to using the relaxed problem to approximate the
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performance of an optimal online policy, which is well understood in our setting.

x X-p
admitted p

P 0
diverted

Figure 6-1: An illustration of the queueing admission control problem (rep. of Figure
5-8).

6.2 Model and Notation

We now present the mathematical formalism and modeling assumptions that will

be used throughout the remainder of the chapter. We first review the admission

control model, described in Section 5.2 of the preceding chapter. We shall, however,

introduce some new notation to facilitate the analysis in this chapter. For instance,

we will no longer work with the initial queue length, Q0 , and instead focus on a

equivalent representation, S, which captures arrival-service discrepancies over finite

intervals. A illustration of the model is reproduced in Figure 6-1 for convenience

System Dynamics. The system runs in continuous time, indexed by t E R,. There

is a queue with infinite waiting room, whose length at time t is denoted by Q(t).

The input to the system consists of two independent Poisson processes:

1. A, with rate A, which corresponds to the arrival of jobs;

2. S, with rate 1 -p, which corresponds to the generation of service tokens.

When an event occurs in A at time t, we say that a job has arrived to the system,

and the value of Q(t) is incremented by 1, if the job is "admitted" (see below for the
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description of admission policies). Similarly, when an event occurs in the process S at

time t, we say that a service token is generated, and the value of Q(t) is decremented

by 1, if Q(t) > 0, and remains at 0, otherwise.1

Denote by AuS the point process that consists of the union of the events in A and

S. For our purposes, it is more convenient to work with the sequence {(Zm, Rm)

m E N}, where

Zm = time of the mth event in A u S, (6.3)

and Rm encodes the type of the mth event, with

= 1, if the mth event is in A (arrival), (6.4)
-1, if the mth event is in S (service token).

We will let {A(t) t E R,} be the counting process associated with {Zm}, with

J/(t) = sup{m E Z, Zm t}, (6.5)

and denote by S(s, t) the difference between the numbers of arrival and services

tokens in the interval [s, t),

S(s,t) = Rm. (6.6)
.A(s) m Af(t)-1

Note that when A * 1 - p the process {S(0, t) t E R. } is a transient random walk,

with

E(S(0, t)) = [A - (1 - p)]t. (6.7)

'When the queue is non-empty, the generation of a token can be interpreted as the completion

of a previous job, upon which the server is ready to fetch the next job. The reader is referred to

Section 2.1, for more details on the relationship between the service token model and the more

conventional assumption of exponentially distributed job sizes.
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Future Information. The notion of future information is captured by a lookahead

window. At any time t, the system manager has access to the realization of all events

in A uS in the interval [t, t + wA). Throughout the chapter, we will denote by wA the

length of the lookahead window, under arrival rate A.

Admission Policies. Upon arrival, each job is either admitted, in which case it

joins the queue, or diverted, in which case it disappears from the system immediately.

The role of a diversion policy, 7r, is to output a sequence of diversion decisions for all

events, represented by the sequence of indicator variables, {H(m) : m E N}, where

H(m) = R[{Rm = 1, and 7r chooses to divert at time Zm}. (6.8)

Given the form of future information, we will require the diversion policy to be

WA-causal, so that the decision made at time t depends only on the events in the

time interval [0, t + WA). A diversion policy is said to be feasible, if the resulting

time-average rate of diversion is at most p, i.e.,

A+1-
lim sup E E H(m) p. (6.9)

M-1oo M M=1

where the constant A + 1 - p corresponds to the total rate of events in A u S. The

objective of the decision maker is to choose a feasible policy, 7r, so as to minimize

the time-average queue length, defined by2

C(p, A,7r) = limsup E Q(Zm (6.10)
M-oo M M=1

2Throughout, f(x+) represents the limit limVIX f(y).
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6.3 Proof of Theorem 6.1

The remainder of the chapter is devoted to the proof of Theorem 6.1. We begin with

a high-level summary of the main steps involved. First, we argue that there exists

a stationary optimal policy, which makes decisions only based on the current queue

length and the content of the lookahead window (Section 6.3.1). This stationarity

will allow us to simplify the analysis by focusing on the policy's actions over a finite

time horizon.

We will prove Theorem 6.1 by contradiction, where we start by assuming that a

small average queue length is indeed achievable under an optimal stationary policy,

even with a short lookahead window, and later refute this assumption. Our main

arguments are based on the identification of a set of base sample paths (Section 6.3.2),

with the property that any feasible policy must perform poorly over these sample

paths, should the length of the lookahead window be too small. The stationarity

property described earlier will then allow us to extend this and show the policy's

failure over the infinite time horizon. It is worth noting that the base sample paths

are not typical, in the sense that their occurrences possess only vanishingly small

probability, as A -+ 1. This is because the failures of a policy under a small lookahead

window are not caused by the average behavior of the inputs, but rather by some

rare excursions of the random walk S(O, -). Though occurring with small probability,

these excursions are in some sense unforeseable under a small lookahead window,

and their existence forces an optimal policy to be overly restrained in diverting jobs

and hence yield a large average queue length.

To carry out the arguments using the base sample paths, we will exploit a key

relationship between diversions and server idling. In particular, we will demonstrate

that, without sufficient lookahead, if a constant fraction of the arrivals are diverted

183



during a specific portion of a base sample path, it will inevitably result in excessive

idling of the server not far away in the future, even as A -+ 1. However, such server

idling cannot occur in the heavy-traffic limit, since the server must be fully utilized

in order to ensure system stability. This reasoning then implies that any policy that

makes such diversions must be infeasible, or conversely, that any feasible policy must

divert very few arrivals over these segments of the base sample paths (Proposition

6.7). However, such conservatism comes at a cost, in that it leads to long episodes

during which the queue length stays at a high level (Proposition 6.9). We then argue

that the frequent appearances of such "bad" episodes will result in a large average

queue length in steady-state, which contradicts our initial assumption and hence

completes the proof of Theorem 6.1.

6.3.1 Preliminaries

Without loss of generality, we will consider only the case where the length of the

lookahead window diverges to infinity in the heavy-traffic regime, i.e.,

WA -+ OO, as A - 1. (6.11)

To see why this is justified, note that because we can always achieve the same average

queue length with a longer lookahead window, the optimal average queue length

C* (p, A) must be monototically non-increasing in wA. Therefore, any lower bound

we obtain on C* (p, A) under the assumption of Eq. (6.11) also applies to the case

where WA = 0(1). For simplicity of notation, we will drop the dependency on WX,

and denote by qA the optimal average queue length,

qA = C,(p, A), V A E (0, 1). (6.12)

184



Main Assumption. We will assume the validity of the following property through-

out the remainder of the proof, which states that it is indeed possible to achieve a

small delay whenever wA is of order Q (ln 1). Note that invalidating this assump-

tion will immediately prove the lower bound on C* (p, A) in Theorem 6.1.

Property 6.2. Fix p E (0,1). Suppose that WA > ln j, as A - 1. Then,

1
qA << In , asA-+1. (6.13)

We shall also assume that wA > in 1, as A -+ 1. Under this regime of wA, Property

6.2 implies that

qA << WA, as A -+ 1. (6.14)

State Representation and Stationary Policies

We now cast our problem as a Markov decision process, and argue that there always

exists an stationary optimal policy that depends only on the state, which consists of

the current queue length and the events during the lookahead window.

Since all diversion decisions are associated with events in A u S, it suffices to

specify the nature of future information for the event times, {Zm : m E N}. At

t = Zm, the content of the lookahead window is defined to be the vector F(m) =

(Fk(m) : k E Z,), where

Fk(m) = (Zm+k - Zm, Rm+k), 0 k K(Zm+WA) -1. (6.15)

In other words, Fk(m) specifies the time of the kth future event starting from the

current time, Zm, along with its type for all events within the lookahead window of

length WA. For future events beyond the lookahead window which we have no access
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to, we simply set the value of Fk(m) to zero:

Fk(m) = (0 , 0), k >'(Z+ wA). (6.16)

Note that according to this definition, all entries of F(m) lie within the compact

interval of [-1, wA].

Recall that Q(t) is the queue length at time t. Consider the sequence {X(m)

m E N}, where

X(m) = (Q(Zm-), F(m)). (6.17)

From this point on, we will refer to {X(m) : m E N} as the states of our system.

Stationary Policies. We say that a policy 7r is stationary, if its diversion decision

at time Zm depends only on the state, X(m), or formally, that

P (H(m) = 11 X(m)) = P (H(m) = 1 {(Z, Rk)}\(Zm+WA)), a.s. (6.18)

Since the arrivals and service tokens are generated according to Poisson processes,

the future evolution of the system starting from t = Zm conditional on the current

state Xm and diversion decision is independent of the past, and our problem can be

treated as a Markov decision process (MDP), with

1. The state space of (Z,) x ([1, wA]N), endowed with the metric of lix - yII =

E', 2-ijxj - yi j.

2. The action space of [0, 1], where an action specifies the probability of diversion,

P(Hm = 1).

3. The stochastic kernel associated with the arrival and service token processes,

as well as the queueing and diversion dynamics.
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4. The objective of minimizing an average penalty, given in Eq. (6.10), subject to

the average cost constraint, given by Eq. (6.9).

MDPs of this kind have been studied in the literature, and it is known that there

exist optimal policies that are stationary (c.f. [35, 43]), whose actions depend on the

state X(m) only. Therefore, without loss of generality, we will focus on the family

of stationary policies for the remainder of the proof of Theorem 6.1.

Given a stationary policy, 7r, the resulting state sequence {X(m) : M E N} is a

time-homogeneous Markov chain, and admits a unique steady-state distribution. We

assume that Q(0) and X(O) are initialized in their respective steady-state distribu-

tions. In this case, it is not difficult to show that {Q(t): t E R,} is stationary and

ergodic, so that the time-average queue length is equal to the expected queue length

in steady-state, i.e.,

E (Q(t)) = E (Q(0)) = C(p, A, 7r), t E R,. (6.19)

and, similarly, the sequence of diversion decision {Hm : M E N} is stationary and

ergodic, with

E (E'M 1 H(mn))
E(Hm) = E(H 1 ) = lim sup , ( H Vm E N. (6.20)

M-oo M

Define the process {L(t) : t E R,}, where

L(t) = I{Q(t) 2qA}, t E R+. (6.21)

The following lemma follows from the stationarity of Q(-), and applying Markov's

inequality to Q(0).
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Lemma 6.3. Fix p E (0,1). For all A E (1 - p,0), we have that

1
E(L(t)) = P (Q(0) 2q,\) > - Vt E R+, (6.22)

2

under any optimal stationary policy.

In the remainder of the proof, we will show that there exists cl > 0 such that

if wA c in A, then Eq. (6.22) cannot be true under any sequence of optimal

stationary policies, unless Q*(A, wA) > ln j--!-. This would invalidate Assumption 6.2,

hence proving the lower bound on C* (p, A) in Theorem 6.1.

6.3.2 Base Sample Paths

We now describe a set of base sample paths which will serve as the basis of our

subsequent analysis. In later sections, we will show that, roughly speaking, the non-

negligible chance of occurrence of such sample paths will "force" any feasible policy

to be overly conservative in diverting jobs, should wA be too small.

Let B E R, be a quantity whose value will be specified in the sequel. We define

the following time markers, whose positions relative to each other are illustrated in

Figure 6-2.

U1 = WA,

U2 = U1 + B = wA + B,

U3 = U2 + w\ = 2WA + B,

The set of base sample paths is defined as the intersection of the events El through

S5, described as follows. Let E, ( and < be positive constants.
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Figure 6-2: This figure illustrates the macroscopic behavior of the base sample paths.
The blue segment represents a period of sustained upward drift of S(0, -), and the red
segment that of a downward drift. The two black segments, each with length equal
to that of the lookahead window, serve as a "buffer,"1 ensuring that the ac-tions of
the diversion policy before the segment are independent from the evolution of S(0, -
afterwards.

1.- Event E1, parameterized by E and C, requires that the sample path of S(0, -

stays close to its expected behavior during the interval [U1, U2):

S, = { IS (U1, t) - [A - (I - p)]tl : et + (, for all t E [U1, U2)}1, (6.23)

When E is small, this implies that S(0, -) undergoes a consistent upward drift

during [U1, U2). Event E, is illustrated by the blue line segment in Figure 6-2.

2. Event E2 requires that the queue length at t = 0 is not too large compared to

the optimal average queue length,

E2 = {Q(0) < 6q,\}. (6.24)
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3. The events 83 and E4 put some restrictions on the amount of upward excursion

of S(O, -) during the intervals [0, U1) and [U2 , U3), respectively,

93 = {S(0, U1) 2wA}, (6.25)

84 = {S(U 2 ,U3) 2wA}, (6.26)

The main purpose of E3 and S4 is to serve as "buffers" to induce a certain

independence property, which will be useful for subsequent analysis: since the

lengths of [0, U1 ) and [U2 , U3 ) are both equal to that of the lookahead window,

the actions of the diversion policy before each interval are independent from

the evolution of S(0, -) after it. The two events are illustrated by the black line

segments in Figure 6-2.

4. Finally, the event E5 requires that S(0, -) will undergo a substantial downward

excursion soon after U3, as is illustrated by the red dotted line segment in

Figure 6-2. Let Z be the stopping time

Z = inf{z ER, : S(U 3, U3 +z)<-[6qA+[A-(1-p)-e]B+(+4w]}, (6.27)

and E5 is defined by putting an upper bound on Z:

165 = {Z: O#WA} .(6.28)

The right-hand-side of the inequality in the definition of Z was chosen so that,

conditional on the joint occurrence of 8 through 84, a downward excursion in

S(0, -) of such magnitude is guaranteed to deplete the queue by time U3 + Z.

As will become clearer in the next section, this depletion will help us connect
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diversions to future idling of the server.

Note that the events El, E3, E4, and .6 concern the input sample path S(O, -) only,

and are independent of the diversion policies, while E2 also depends on the choice of

diversion policy.

Having described the events that together characterize the base sample paths, we

next illustrate some of their statistical properties. The first lemma shows that the

events E through £4 can occur with fairly high probabilities. The proof is given in

Appendix C.1.1.

Lemma 6.4. 1. Fix E > 0. For all 0 E (0,1), there exists ( > 0, so that for all

A > 1 - .p

inf P (Ei) 9 . (6.29)
B>O

2. Under optimal stationary policies, P (E2) = P(Q(O) 6q) i, for all A E

(i -p,i1).

3. lim_.1 P (£3) = limA_, P (£4) = 1.

The next lemma shows that the event £5 occurs with a small yet non-negligible

probability. The proof is given in Appendix C.1.2.

Lemma 6.5. Fix k, q, > 0, ande E (0, min{(, A - (1 - p)}). Suppose that B = kw,

and qA «WA, as A -+ 1. There exists -y > 0, such that

P (£5) > exp (-ywA) , as A -+ 1. (6.30)

Finally, the following independence properties among the events will be useful.

The proof is given in Appendix C.1.3.
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Lemma 6.6. For a feasible diversion policy, the following hold.

1. The events E1, E3, E4 and E5 are independent.

2. The event E2 is independent from E1, E4, and E5, but not necessarily from E3.

3. Denote by Y the number of diversions in the interval [U 1, U2), i.e.,

Y = Z H(m). (6.31)
K(U1)msAJ(U 2 )-1

Then, Y is independent of S.

6.3.3 From Diversions to Server Idling

The goal of this subsection is to show that, if wA is small, then the number of diver-

sions made during the the interval [U 1, U2), i.e., the random variable Y (Eq. (6.35)),

must also be appropriately small, under any optimal stationary policy. To achieve

this, we will exploit a connection between Y and the idling of the server at a later

time.

The intuition is perhaps best seen pictorially, as depicted in Figure 6-2. Condi-

tional on the occurrence of the events E1 through S, and supposing that no diversion

has been made, the queue length process Q(t) would have "followed" the trajectory

depicted in the figure and reached zero by time U3 + #wA. Suppose now that a large

number of diversions are made during the interval [U 1, U2 ) (line segment in blue).

Then, the depletion of the queue implies that there must be an extended period of

server idling prior to U3 + #wA. Such idling, if it persists even as A -+ 1, can be

problematic and will be shown to contradict the feasibility of the diversion policy.

This in turn implies that the number of diversions in [U 1, U2) must be small.
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The next proposition is the main result of this subsection, which formalizes the

above intuition. There is however one adjustment: instead of conditioning on all

five events, which has vanishingly small probability due to the presence of S, we

will condition only on E1 and S2, which occur with high probability. To do so, we

will exploit several independence properties among the events, as in Lemma 6.6, and

show that the impact of S(O, -)'s downward excursion described by E4 is unavoidable

when wA is too small, even without explicit conditioning on S.

Proposition 6.7. Fix k > 0, and let B = kwA. There exists c > 0, so that if

1
wA s c ln as A -+ 1, (6.32)1 - A

then for all r > 0,

limP (Y T TB i n S 2 ) = 0, (6.33)
A-1

under any sequence of optimal stationary policies, where Y is the number of diver-

sions during [U1, U2), defined in Eq. (6.31).

Proof. We say that a service token generated at time t is wasted, if there is

currently no job in the queue, i.e., Q(t) = 0. Let {J(t) : t E R,} be the counting

process of wasted service tokens, i.e.,

J(t) = # of wasted service tokens in [0, t). (6.34)

For the sake of contradiction, assume the following is true: if wA > ln -I as A - 1,

then there exist r > 0, and a sequence of optimal stationary policies, {lrA}, under

which

lim inf P (Y rBjIS n E2) = q > 0. (6.35)
A-1
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The following lemma is a key ingredient of the proof, and states that the number of

wasted tokens must be substantial. The proof is based on the intuition explained in

the passages above Proposition 6.7, and is given in Appendix C.1.4.

Lemma 6.8. Fix k > 0, and let B = kw\. Suppose Eq. (6.35) is true for some

sequence of optimal stationary policies, {17r}. Then, there exist a,-y > 0 (whose

values can depend on k) such that

E (J(awA)) :, w\ exp (-ywA), (6.36)

as A -+ 1, under {rx}.

Consider an optimal stationary policy. Denote by 7(t) the counting process

representing the number of diversions in [0, t), i.e.,

N(t)
7(t) = 2 H(m). (6.37)

m=1

By the stationarity of {H(m) : m E N} (Eq. (6.20)) and definition of Ar(t) (Eq. (6.5)),

it is not difficult to show that, for all t > 0,

E (W (t)) 1 Ar(t)
t =E H(m) =(A+1-p)E(H(1))

(A + 1 - p)E ('Mj H(m))
=limsup M (6.38)

M-oo M

By definition, we have that

Q(t) = Q(0) + S(0, t) + J(t) - 71(t), Vt E R+. (6.39)

Taking expectation on both sides of the above equation, and letting t = awA, where
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a is given as in Lemma 6.8, we have that

E(W(awA))
awA

(E (S (0, awA)) + E (J(
awA

awA))+ E(Q(0)) - E(Q(awA))) - p

(a) 1
[A - (1 -p)] -p+ -lE (J(awA))awA

(b) 1
> (A - 1) + -wA exp (-YwA)

awA

> exp (-7wA) - (1 - A),

where -y is given in Lemma 6.8. Step (a) follows from the fact that E(Q(0)) =

E(Q(awA)) by the stationarity of Q(.), and (b) from Eq. (6.36).

Letting WA = cIn -, with c = 1/ 2 -y, we have that

exp (-7wA) > /1 - A, as A -+ 1.

Combining Eqs. (6.40) and (6.41), we have that

E (W (awA\)) -~'7(-pB7
aWA p > \1 - A - (1 - A) > \1 - A,

aw,\
as A -- 1.

In particular, this implies that there exists A' E (1 - p, 1), such that

E(-(awA)) 
> ,

awA
VA E (A', 1).

Since the stationary diversion policies we consider are feasible, we must have that

E(7(t)) (a) .s
hlm sup

t M-)oo

(A + 1 - p)E (EM, H(m)) (b)

M
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for all A E (1 - p, 1), and t > 0, where (a) and (b) follow from Eqs. (6.38) and (6.9),

respectively. This leads to a contradiction with Eq. (6.43), which invalidates the

assumption made in Eq. (6.35), and hence proves Proposition 6.7. E

6.3.4 Consequences of Too Few Diversions

Proposition 6.7 tells us that, under optimal stationary policies, the number of diver-

sions in [U 1 , U2 ) must be small when wA is small. Building on this observation, we

now focus on policies that divert "very few" jobs during [U 1 , U2 ), i.e., with Y scaling

sub-linearly with respect to B, and show that they will necessarily lead to a large

expected queue length in steady-state. The following proposition is the main result

of this subsection.

Proposition 6.9. Fix p E (0, 1). There exists cl > 0, so that if

1
WA c In 1, as A -+1, (6.45)1 - A

then
1

lim sup E (L(0)) 5 -. (6.46)
A-1 3

under any sequence of optimal stationary policies.

Proof. We will assume that B = kwA, with k = 24, and that WA < c ln 1, where

cl is equal to the constant c in Proposition 6.7 for the corresponding value of k.

Consider an optimal stationary policy, with a resultant average queue length of

qA. We will prove the claim by showing that if S1 n E2 occurs and the number of

diversions made in [U 1 , U2 ) is small (cf. Eq. (6.33)), then, for a "long time" after

U1 , the queue length will stay at a high level (i.e., Q(t) > 2qA). Recall that Y is
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the number of diversions made during the period [U 1 , U2 ). We have the following

inequality, derived from the queueing dynamics:

Q(t) Q(U 1)+S(U1 ,t)-Y, VtE [U 1,U2), (6.47)

where the equality holds if Q(t) > 0 for all t E [U 1 , U2 ). By the definition of E1

(Eq. (6.23)), Eq. (6.47), and the fact that Q(U 1 ) 0, we have that

P(Q(t) [A- (1-p)-c]t-(-Yg1 nE 2 ) = 1, VtE [U 1 ,U2 ). (6.48)

Let V be the last time in [U 1 , U2) when the queue length is less than 2qA,

V = sup {t E [0, B) : Q(U + t) 2q}. (6.49)

Applying the definition of V in the context of Eq. (6.48) yields that

P V ( (2qA+ Y +(+1) Si n 2 =1. (6.50)

( 1
A(1 - p)-cI

Recall from Proposition 6.7 that, conditional on 91 n E2 and assuming wA 5 c ln 1,

Y must be sub-linear in B = kwA. In particular, by Eq. (6.33), we have that, for all

T > 0,

limP (Y rkWA IS n E2) = 1. (6.51)
A-+1

Combining Eqs. (6.50) and (6.51), and the fact that WA - oo as A -* 1, we have that,

there exists v > 0, such that for all T > 0,

P(V vqA+TrkwAjlnS 2)=1-6(A), VAE (1-p,1), (6.52)
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where 6(-) is a function with limx_ 1 6(x) = 0. In other words, conditional on E, n £2,

Q(t) will reach the level of 2qx soon after U1, with high probability. Translating this

into the expected value of V, we have that

lim sup 1 E(V)
A--1 U 2

lim sup -- (E(V 1 1 n 62)P(E1 n £2) + U2(1 - P(. 1 n £2)))
A--1 U2

(a) P(Ei n E2)
< (1 - P(E1 n E2)) + lim sup (vqg + -rkwA + U25(A))

A-1 U2

(1 - P(£1 n £2)) + kwA £2)
U2

(1 - P(E1 n E2)) + k + 1 P( n 2)

s(1 - P(E1 n E2)) + -rP(£E n E2)

where (a) follows from Eq. (6.52), and (b) from the assumptions that qA wA and

limA_1 6(A) = 0, and (c) from the fact that U2 = B + wA = (k + 1)wA. We now connect

the behavior of E(V) to that of E(L(0)) = P(Q(0) 2qA), as follows.

lim sup E (L(0))
A--1

(a) 2? limrsupE( f L(t)dt
x_-1 2 0~

(b) 1 U1+V
=lim sup E - L(t )dt

- (1 )2 t=
(C) U1 VU + E(V)
< limsup ) = limsup

A-1 \ U2  A-1 U2

(d) WA + lim supE(V)
(k + 1)wA A-.1 U2

(e) 1
< + P(E 1 n E2)r + ( - P(1 n E2))

S+ 7- + (1 - P(E1 n E2)) (6.54)
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where step (a) follows from the stationarity of Q(-) and hence that of L(-). Step (b)

follows from the that L(t) = 0, for all t E [U 1 + V, U2 ), which is a consequence of the

definition of V in Eq. (6.49). Step (c) is based on the fact that L(t) < 1, a.s. Steps

(d) and (e) follow from the fact that B = kwA, and Eq. (6.53), respectively.

By Claim 3 of Lemma 6.4, and Claim 1 of Lemma 6.6, we have that

5
lim inf P (E1 n S 2 ) = lim inf P (S1 ) P (E2) -9, (6.55)

A--K A-1 6

where 9 is given in Eq. (6.29). Set r = k = 24, and let ( be sufficiently large so that

9 10/9. We have that

5 9
limsup(1 - P (E1 n S2)) 1 - - - =1/4. (6.56)

\-1 6 10

From Eq. (6.54), we have that

1 1 11 1
lim sup E (L(0)) - +,r + (1 - P(Ei n S2)) -- + - + - = - (6.57)

A- k 24 24 4 3

which completes the proof of Proposition 6.9. E

6.3.5 Proof of Theorem 6.1

We now complete the proof of Theorem 6.1. Assuming the validity of Property 6.2,

Proposition 6.9 asserts that there exists cl > 0, so that if wA : cl ln i as A -+ 1, we

must have that limsupA_ 1 E(L(0)) 1/3 under any sequence of optimal stationary

policies. However, this contradicts the requirement that E(L(0)) 1/2, given in

Eq. (6.22), which holds independently of the validity of Property 6.2. Therefore, we

conclude that Property 6.2 must be invalid.
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The invalidity of Property 6.2 establishes the lower bound in Eq. (6.2). In par-

ticular, we have that, if WA cl in A, as A -+ 1, then

1
C*,(p, A) > In 1 A as A -+ 1. (6.58)

Finally, we show that this lower bound is achievable, i.e., that

C*,(p, A) < In , as A - 1, (6.59)

when wA < ciln . To this end, we invoke Theorem 5.8 in Section 5.3.1, which shows

that a deterministic queue-length-based diversion policy can achieve the scaling of

Eq. (6.59), even when WA = 0.3 This completes the ptoof of Theorem 6.1. El

6.4 Summary and Future Research

For a certain class of queueing admission control problems, we showed that a non-

trivial amount of future information is necessary in order to achieve superior heavy-

traffic delay performance compared to an online policy. Our proof exploited certain

excursion properties of a transient random walk, which allowed us to connect a pol-

icy's diversion decisions to subsequent system idling. Because this line of argument

relies mostly on the macroscopic properties of the input sample paths, our techniques

and resulting insights seem to be fairly robust and can potentially be generalized to,

for example, a setting where the arrival and service token processes are non-Poisson.

3As is described in the proof Theorem 5.8, the scaling in Eq. (6.59) can be achieved by the
following simple threshold policy: divert the arrival if and only if the current queue length is equal
to a threshold value x, where x is set to be the smallest value such that the resulting diversion rate
is no more than p. Since the queue length process under this policy is simply a birth-death process
truncated at state x, it is easy to verify, via a direct calculation of steady-state probabilities of
Q(t), that q\ ~ n i, as A -+ 1.
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In light of the upper and lower bounds on future information provided by Theo-

rems 5.13 and 6.1, respectively, an immediate open question is whether the constants

Ch and cl in the scaling of wx coincide. The granularity of our proof technique does

not appear to be sufficient to answer this question, which likely demands a finer

analysis.
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Chapter 7

Decentralized Partial Resource

Pooling

In the last two chapters, we have seen that having additional future information

can significantly improve delay performance in flexible systems. In this chapter, we

shall continue the investigation of information, but shift our attention from the axis

of time to that of space. In particular, we would like to know if it is possible to

design efficient scheduling policies in a partially flexible system, which use only local

information, and achieve performance that is on par with an optimal centralized

scheme that relies on complete information sharing across all parts of the system.

Our investigation will be carried out within the family of Partial Pooling flexible

systems, described in Section 2.2, where a fraction p of the system's total processing

resources (servers) are fully flexible and are able to serve jobs of all types, while the

remaining processing resources are dedicated and can only serve a specific job type

(Figure 7-1).

The Partial Pooling model was first proposed and analyzed in prior work of the
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author [84, 91], where we showed that even a small amount of flexibility or resource

pooling can bring significant performance benefits. Specifically, in the limit as the

size of the system, n, tends to infinity, when no flexibility is available and all servers

are dedicated, corresponding to the case of p = 0, the steady-state average queue

length across the system scales as

1
E(Q) ~ , as A-> 1. (7.1)

In sharp contrast, when a fraction of the servers is fully flexible, corresponding to

the case of p > 0, the average queue length, under an optimal scheduling policy used

by the flexible server pool, scales as

1
E(Q) ~ log_ as A -+ 1. (7.2)

1-P 1-A'

This demonstrates that even a small amount of resource pooling can lead to expo-

nential improvement in the system's delay scaling in the heavy-traffic regime.

However, in order for the superior delay improvement in Eq. (7.2) to be harnessed,

the resource pooling architecture proposed by [84] requires a non-trivial amount of

state information about all parts of the system. In particular, the scheduling policies

adopted by the flexible servers in Figure 7-1 is that of longest-queue-first (LQF): upon

the completion of a previous job, a flexible server has to fetch a new job from one

of the longest queues in the whole system. As the size of the system grows large,

obtaining real-time system-wide state information can become increasingly expensive

and difficult, if not entirely impossible.

The main contribution of the current chapter is to show that efficient resource

pooling can be achieved in a decentralized manner, in a system with a constant
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queue 1

queue 2

_LQF p
Servce

queue n

Figure 7-1: Partially centralized resource pooling architecture, from [84, 91].

fraction of flexible servers. Specifically,

1. We construct a class of decentralized scheduling policies, where the scheduling

decision for a job arriving to queue queue i depends only on the length of queue

i at the time of the job's arrival. We show that the optimal delay scaling in

Eq. (7.2) can be achieved under this decentralized architecture. In a nutshell,

instead of having the flexible servers "pull" jobs from the longest queues, the

decentralized policies work by "pushing" (or diverting) arriving jobs to the pool

of flexible servers if and only if the length of the local queue exceeds a certain

threshold, hence eliminating the need of global state information when making

scheduling decisions.

2. To analyze the delay under decentralized policies, the core of our argument

rests upon a "Merging theorem," which yields an exponential tail bound on

the steady-state queue length distribution of a queue, whose arrival process

consists of the superposition of n independent sub-streams, in the limit when

the number of sub-streams and the service capacity of the queue tend to in-

finity simultaneously (Theorem 7.2). This result is then used to show that the
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queueing delay experienced by jobs that are sent to the flexible server pool is

vanishingly small, in the limit as the system size tends to infinity.

It is well known that, under appropriate scaling, the superposition of n in-

dependent "well-behaved" stationary point processes converges to a Poisson

process locally (i.e., over finite-length time intervals), as n -+ oo. Therefore,

one may expect that the resulting queue length process, induced by sending

the merged arrival process into a queue, should also resemble the one induced

by an Poisson arrival process. However, the local convergence of the arrival

process to a Poisson process does not automatically carry over to the behavior

of the resulting queue length process, and it also says little about what happens

to the queue length in steady-state. The Merging theorem essentially makes the

above intuition rigorous, and it does so by characterizing the resulting queue

length distribution in steady-state.

3. In addition to achieving decentralized scheduling, the framework and analysis

developed here will allow us to generalize the results of [84, 91] along sev-

eral directions, for instance, to handling non-exponential arrival and service

time distributions (phase-type), as well as analyzing systems with non-uniform

arrival rates.

4. Finally, the results in this chapter can be used to formally establish the equiv-

alence between the admission control model studied in Chapters 5 and 6 with

that of the Partial Pooling model. As a result, essentially all policies and

performance guarantees (with future information or without) provided in the

proceeding chapters apply to the flexible architectures in the Partial Pooling

family as well.
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Organization The remainder of the chapter is organized as follows. In Section 7.1,

we state our main result on decentralized resource pooling, Theorem 7.1. We also

give a proof of the result, while assuming the validity of a key property concerning the

asymptotic expected length of the central queue. This property turns out to be the

special case of a more general phenomenon concerning a queue fed with superposition

of finite-state Markov-modulated arrival sub-processes, which we shall state as a

"Merging theorem" in Section 7.3 (Theorem 7.2), whose modeling setup is provided

in Section 7.2. We give two additional applications of the Merging theorem, in which

we generalize the Partial Pooling model to non-Poisson arrival and service processes

(Section 7.3.2), and rigorously establish a connection between the admission control

problem with future information studied in Chapters 5 and 6 to that of Partial

Pooling (Section 7.3.3). Section 7.4 reviews some prior research that is related to the

Merging theorem. The rest of the chapter is devoted to the proof of of the Merging

theorem, with a proof outline given in Section 7.5.

7.1 Decentralized Optimal Pooling

We state in this section our main result concerning decentralized resource pooling

architectures. Before we do so, we shall first review the modeling assumptions for

flexible architectures in the Partial Pooling family, depicted in Figure 7-1.

The system consists of n local queues, where each queue receives incoming jobs

at rate A according to an Poisson process. There are in total n units of processing

resources, which take the form of either flexible or dedicated servers, both modeled

using service tokens (cf. Section 2.1), as follows:

1. A fraction p of the total processing resources are fully flexible, and forms the

flexible server pool. The server pool is modeled by a Poisson process that
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generates flexible service tokens at rate pn. When a flexible service token

is generated, it can be used to "serve" a job in any of the n queues, making it

depart from the queue immediately. If all queues are empty, the service token

will be "wasted".

2. The remaining fraction 1 - p of the resources are dedicated or inflexible. The

dedicated resources are modeled by n local servers attached to the local queues.

Each local server is modeled by a Poisson process that generates inflexible

service tokens at rate 1--p, and the service tokens generated by the ith local

server can only be used to serve a job currently waiting in queue i, making the

job depart immediately. If queue i is empty, the service token will be wasted.

queue

queue 2

pn

queue n

Figure 7-2: Modified Partial Pooling architecture with a central queue.

Under this modeling setup, scheduling refers to the allocation of service tokens.

For an inflexible token, the task is straightforward, because the token can only be

used to serve a job from the corresponding local queue. For a flexible token, however,

the decision is not so simple, because there are now up to n local queues to choose
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from: which queue needs the token the most?

Centralized Longest-Queue-First Policy An intuitive scheduling policy is the

so-called longest-queue-first (LQF) policy, where a flexible service token is always

used to serve a job from one of the longest queues in the system. The LQF policy in

[84, 911 achieves the log 1 heavy-traffic delay scaling (see Eq. (7.2)). Moreover, it

was shown in [84, 91] that the LQF policy is also optimal in a very strong sense: the

resulting queue length processes under the LQF policy are stochastically dominated

by (i.e., "smaller than") those induced by any other causal scheduling policy (which

does not uses any future information).

While the longest-queue-first policy yields optimal performance, one of its ma-

jor drawbacks lies in the demanding information requirement: each allocation

decision for flexible service tokens involves knowing, in real-time, which queues are

currently the longest. This requires the flexible servers to be constantly commu-

nicating with all local queues in real-time, which can become overly expensive or

exceedingly difficult to implement, as the system size n grows large. This begs the

question: can we avoid the hurdle posed by a growing need for information, and still

achieve performance comparable to that of the LQF policy?

7.1.1 Main Result: Decentralized Resource Pooling

Our main result shows that it is indeed possible to circumvent the informational

challenges: there exists a decentralized scheduling policy that uses only "local" queue

length information, and yet still achieves the same optimal heavy-traffic delay scaling

as that of the LQF policy.

Before we explain how this can be done, however, the notion of "decentralization"
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needs to be better defined. To do so, we shall consider a slightly modified Partial

Pooling architecture, depicted in Figure 7-2, with the following features.

1. A central queue will be attached to the flexible server pool, whose length at

time t is denoted by Qn(t). All flexible service tokens generated in the server

pool will be used exclusively to serve jobs that are currently in the central

queue.

2. A job in a local queue can be diverted to the central queue at any time, starting

from the time of its arrival to the system, as long as it has not yet been served

by an inflexible service token produced by the local server.

Under this modified Partial Pooling model, the scheduling policy becomes a di-

version policy, which is now concerned with determining whether, and when, a job

should be diverted to the central queue. We say that a scheduling policy, #, is de-

centralized, if the decision of diverting a job at queue i at time t depends only on

the value of Qi(t) (the length of the ith queue), and centralized, if it depends on the

lengths of all n queues at the time.1

It is important to note that switching to the modified Partial Pooling model does

not alter our model significantly: as far as the total number of jobs in system is

concerned, which determines our main metric of average delay, the modified Partial

Pooling model with a central queue (Figure 7-2) is actually equivalent to the original

model (Figure 7-1):

1. The modified model is able to simulate the dynamics of the original model by

simply ignoring the existence of the central queue. To do so, we can design the

diverting policy in a way, so that a job from queue i is diverted to the central

'Because the system is Markovian, it is not difficult to show that the value of Qi(s) for s < t is
not helpful once Qi(t) is known.
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queue at time t under the modified model, if any only if a flexible token is

produced at time t, and would have been allocated to serve a job from queue

i. In other words, the central queue is never used.

2. Conversely, the original model can also simulate the modified model, given any

diversion policy. To do so, we shall "mark" a job, whenever a diversion would

have been made in the modified model. The scheduling policy in the original

model then simply allocates a flexible service token to any job in system that

is currently "marked." Effectively, the "marking" simulates the membership at

the central queue, without physically moving the jobs from their corresponding

local queues.

We now state the main result of this chapter, which establishes the existence of

a decentralized scheduling (diversion) policy for the modified Partial Pooling model,

which, as n -+ oo, achieves the optimal heavy-traffic delay scaling, as in Eq. (7.2).

Theorem 7.1 (Optimal Decentralized Resource Pooling). Fix p E (0,1). For

every A E (1 - p, 1) and n E N, there exists a decentralized scheduling policy, so that

pE(Qn) log A_ + 2+ cA/n, (7.3)
T1-lA

where c is a positive constant that depends on A, but not on n, and Qn is the steady-

state normalized total queue length, i.e.,

Q= - + Qi), (7.4)

where the Qi's and Qn are the steady-state queue lengths for the local and central

queues, respectively. In particular, Eq. (7.3), together with the lower bound given by
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the optimal scaling in Eq. (7.2), implies that

1
lim sup E(Qn) ~ log_1 _ , as A -+ 1. (7.5)

n-.oo 1-P 1 -A

In addition to the advantage of having a decentralized scheduling policy, Theorem

7.1 also provides a quantitative strengthening of the results [84, 91], by showing that

the speed of convergence of E(Qn) is of order 0(1/n). In [84, 91], the analysis of

the LQF policy in the limit of n -+ oo was carried out using a fluid model and weak

convergence methods, and no rate of convergence is provided. 2

It is important to note that the centralized LQF policy remains optimal in the

modified Partial Pooling model. The decentralized scheduling policy used in Theorem

7.1 is in fact sub-optimal for a finite-sized system (small n), or when the system is

under loaded (A bounded away from 1). However, Theorem 7.1 ensures that this

sub-optimality diminishes as n -+ oo and A -* 1 (in this order).

7.1.2 Proof of Theorem 7.1 - Part I

We now give a "partial" proof to Theorem 7.1. The proof is partial, in that we

shall postpone the proof of one important claim, Condition (b), till Section 7.3.1,

where our main technical result, the "Merging theorem," will have been introduced.

Leaving this claim aside, the rest of our proof is self-contained, and captures the

main intuition on how the decentralized scheduling policy is designed.

We shall find a decentralized scheduling policy that satisfies the following two

conditions.
2 Technically speaking, the convergence results of [84, 91] were stated in an almost-sure sense, and

do not directly imply the convergence in expectation. However, extending them to the convergence
of expectation is not difficult.
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Condition (a). The steady-state queue length at local queue i, E(Qi), satisfies

E(Q) logA +2, (7.6)
1-, 1 -A

for all i E{1,...,n}.

Condition (b). The steady-state queue length at the central queue, E(Qn), stays

bounded by some constant, CA, as n -+ oo, i.e.,

lim sup E(Q") CA. (7.7)
n-+oo

Note that, because
-1 1

E(Q) = E(Q") + ,E(Qi) , (7.8)
n

the validity of both conditions will directly imply that of Eq. (7.3), hence proving

Theorem 7.1.

For Condition (a), we will use a simple threshold rule as our decentralized schedul-

ing policy: a job arriving to queue i at time t will be immediately diverted to the

central queue if

Qb(t-) [g. ] +1, (7.9)
1-P 1 -A]

otherwise, the job will join queue i and ultimately be served by an inflexible service

token from the local server. The resulting scheduling policy is clearly decentralized

by definition. It also trivially guarantees the validity of Condition (a), because the

length of queue i under this policy never exceeds [log Ix. A] +1.

We would like to argue that Condition (b) also holds for this threshold-hold

based scheduling policy, that is, after feeding the n streams of job diversions into

the central queue, the resulting steady-state queue length Qn maintains a bounded
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expected value as n -+ oo. A simple calculation shows that the total rate at which

jobs are sent to the central queue is less than pn, guaranteeing stability. However,

the boundedness of E(Qn) is no longer so straightforward, because the process of job

diversions under the threshold rule is no longer Poisson. To to show that Condition

(b) is indeed true for the threshold-based policy, and in fact, for a more general class

of diversion policies, we will need to establish a technical result, which we refer to

as the "Merging theorem." The validity of Condition (b) will be shown in Section

7.3.1.

7.2 Model for Merging Thoerem

We describe in this section the queueing model for our main technical result, the

Merging theorem (Theorem 7.2). The setup is fairly reminiscent of, and motivated

by, the Partial Pooling architecture under a decentralized threshold-based scheduling

policy, as described in Section 7.1.2. However, the arrival processes considered in the

Merging theorem is a bit more general.

We consider a sequence of systems indexed by the system size, n E N, illustrated

in Figure 7-3. The nth system contains an infinite buffer, or queue, whose length at

time t is denoted by Qn(t). When the context is clear we shall omit the dependency

on n and write Q(t) instead.

The queue is served by a single server running at speed n. We shall use the service

token model to describe service dynamics (see Section 2.1). Let {Sn(t) : t E R,} be

the counting process associated with the service token generation in the nth system.

We assume that Sn is a time-homogeneous Poisson process with rate n. When an

event occurs in Sn at time t, we say that a service token is produced, and the length
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A"n(t)+ MMEn

W,(t)Q"(t)

Figure 7-3: Queueing model for Theorem 7.2. The arrival process in the nth sys-

tem, An, is the superposition of n independent Markov modulated Poisson processes
(MMPP), each modulated by a finite-state Markov process, Wi.

of Q is decreased by 1 if Q(t-) > 0, and remains unchanged otherwise.

Arrivals to the queue in the nth system is represented by a counting process

{An(t) : t E R,}. The process A" is the superposition of n independent Markov-

modulated Poisson processes (MMPP):

A"n(t) = Z Aj(t), Vt E R,. (7.10)
i=1

where each Ai is modulated by an independent Markov process with identical tran-

sition dynamics. For this reason, we will refer to An as the merged arrival process.

The underlying modulating Markov process for Ai takes values in a finite state

space, {1,... , M}, whose state at time t is denoted by W(t). We assume that the

Wis are uniformized, with a transition rate of across all states, and that P is

the transition matrix for the embedded discrete Markov chain. We will denote by

7r = (7r1 , ... , 7rM) the steady-state distribution of W1, where 7r, is the probability

of the process being at state w. Without loss of generality, we assume that the
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steady-state probabilities are non-zero, i.e.,

min r = 7r > 0. (7.11)

A finite modulating rate r, is associated with each state w E {1,..., M}, so that

at time t, Ai generates arrivals at rate rw if W(t) is equal to w. We assume that the

modulating rate of W in steady-state is less than 1, i.e.,

M
Zwrrw = p <1. (7.12)
W=1

This is an important, and necessary, assumption. Note that the long-term time-

average rate of arrivals from An is equal to np, which is less than the server speed,

n, if any only if p < 1.

Finally, we will let W(t) be the vector consisting of the states of all modulating

Markov processes,

W (t) = (W1 (t),7 ..., jW(t)), t ER.. (7.13)

With this representation, it is not difficult to check that the evolution of the system

is Markovian with respect to the vector

X(t) = (Q(t), W(t)), Vt E R+. (7.14)

7.3 Merging Theorem and Applications

We state below the main technical result of this chapter, the Merging theorem. We

then apply it to devise optimal decentralized scheduling policies for partially flexible

resource pooling.
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Theorem 7.2 (Merging Theorem). Consider the systems described in Section 7.2

and Figure 7-3. Denote by Qn the steady-state queue length distribution in the nth

system. For any p E (0, 1), there exists 9 > 0, so that, for all n E N,

P (Q" > X) exp(-Ox), Vx E N. (7.15)

As an immediate corollary of Theorem 7.2, we have that, for all p E (0, 1), the

steady-state expected queue length remains bounded, as n -+ oo.

Corollary 7.3. Fix p E (0,1). We have that

lim sup E (Q") < 00. (7.16)
n-*o

7.3.1 Proof of Theorem 7.1 - Part II

With Theorem 7.2 at hand, we are now ready to complete the proof of Theorem 7.1

in Section 7.1.2, by filling in the missing piece, the validity of Condition (b).

Fix p E (0, 1). Define

L(A) = log-.- P , A E(1 - p,1). (7.17)
1 -P 1 - A

Recall from Section 7.1.2, that we will be emplying a threshold-based scheduling

policy, so that a job arriving to queue i is diverted to the central queue if any only

if the length of queue i is at L(A) + 1. Condition (b) states that, under this policy,

the resulting length of the central queue in steady-state satisfies

lim sup E(Q") c , (7.18)
12-40

216



where cA is a positive constant that depends on p and A, but is independent from n.

We will invoke Theorem 7.2 to show that Eq. (7.18) holds. Because the arrivals

to the central queue is the superposition of all diverted jobs from the n local queues,

it suffices for us to show that each stream of diverted jobs is a finite-state MMPP.

Moreover, we will have to show that the steady-state modulating rate is strictly

less than p, so that the traffic load at the central server, which has capacity pn, is

bounded away from 1.

It is not difficult to verify that the point process corresponding to the diversions

from each local queue is an MMPP with a finite number of underlying states. In

particular, the state space of the modulating Markov chain corresponds to the set of

all possible values that a local queue may take on under the threshold policy, that

is, {O, 1, ... , L(A) + 1}. Because an arrival to queue i is diverted to the central queue

with probability 1 when Qi is in state L(A) + 1, and none is diverted otherwise, in

the terminology of Section 7.2, the state-dependent modulating rates of the MMPP

for the diversion process at queue i are given by

A, w=L(A)+1, 79
rw{ 0, o.w. (7.19)

It remains to verify that the steady-state modulating rate of this MMPP is strictly

less than p. Note that because the flexible server pool operates at speed pn, this is

equivalent to the requirement that p be strictly less than 1 in Theorem 7.2. (Note

that p depends on A, but is independent of n.) To this end, we note that the threshold

policy used at each local queue is identical to the L-threshold policies used in the

admission control problem of Chapter 5. Therefore, we invoke Theorem 5.8 in Section

5.3.1, which states that the L-threshold policy with L = L(A) = [logx A results
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in a steady-state rate of diversion that is at most p, i.e., feasible for the admission

control problem. It is not difficult to show that the diversion rate is strictly decreasing

as a function of the threshold, and therefore, increasing the threshold by 1 from L(A)

ensures that the steady-state rate of diversion from each queue is strictly less than

p. We have hence verified all conditions for Theorem 7.2 to be applicable. This

validates Eq. (7.18), which, in turn, proves Theorem 7.1.

7.3.2 Generalizations of Partial Pooling

The Merging theorem, combined with the use of decentralized scheduling policies,

also allows for analyzing several generalizations of the Partial Pooling architecture,

which would have been very difficult to do using the fluid-model framework adopted

in [84, 91]. At a high level, the main benefit comes from the fact that, under a decen-

tralized scheduling policy, the dynamics of the n local queues become independent

from each other. As a result, if the expected queue length of the central queue can

be shown to stay bounded as the system size grows using the Merging theorem, then

the delay experienced by the jobs being routed to the central queue is negligible. We

have hence reduced the problem of analyzing the dynamics of n (potentially cou-

pled) queues, in the case of a centralized policy, to that of a single queue that runs

independently from the rest of the system.

For instance, consider the generalization where the arrival process, as well as the

generation of service tokens at the local server, are both finite-state MMPPs (i.e.,

phase-type processes). The fluid model of [84, 91] can no longer be used to analyze

the behavior of the LQF policy, because the lengths of the local queues are not

Markovian under the phase-type arrival and service processes. On the other hand,

the threshold-based scheduling policy described in Section 7.1.2 remains somewhat
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tractable, by noting that the the resulting diversion process can still be formulated as

a finite-state MMPP, by incorporating the phases of the arrival and service processes

into the state of the underlying modulating process. Therefore, when the threshold

is sufficiently large, Theorem 7.2 continues to be valid in characterizing the behavior

of the central queue. We conclude that the expected delay experienced by jobs at

the central queue becomes negligible as n -+ oo, and it suffices to simply understand

the delay experienced at one local queue. Due to the phase-type nature of the arrival

and service processes, the dynamics of a local queue is now more complex than in

the Poisson paradigm. Nevertheless, its steady-state distribution is still considerably

more tractable compared to that of all n queues under a centralized scheduling policy,

and we conjecture that an optimal heavy-traffic queue length scaling of ~ log 1-1

holds for this setting as well.

For another generalization, consider a Partial Pooling system where the arrival

rates are non-uniform. The fluid model used in [84, 91] heavily relies on the sym-

metry brought by the uniform arrival rates, and again does not apply to this set-

ting. Similar to the previous example, we may again try applying a decentralized

threshold-based diversion policy. The local queues are again decoupled, and fairly

easy to characterize. Unfortunately, the current version of the Merging theorem,

which requires the individual sub-arrival-process to be i.i.d., does not directly ap-

ply to this case, because the rates of the diversion processes from the local queues

are no longer uniform, as a result of the non-uniform arrival rates. Still, proving a

more general version of the Merging theorem, where the individual MMPPs can be

independent but not necessarily identical, could resolve this issue, and it appears to

be a more tractable approach than analyzing a centralized policy under non-uniform

arrival rates.
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7.3.3 From Admission Control to Partial Pooling

Theorem 7.2 can also be used to rigorously establish the connection from the admis-

sion control problem (Figure 7-4), introduced in Chapters 5, to the Partial Pooling

model (Figure 7-2). In particular, we claim that essentially all diversion policies

studied in Chapter 5 can be used as decentralized diversion scheduling policies for

the modified Partial Pooling model, so that the resulting steady-state length of the

central queue, Qn, satisfies

lim sup E(Q") cA, (7.20)
n-+oo

where cA > 0 is a constant independent of n. This further implies that, as n -- oo,

the queue delay scaling derived in Chapter 5 is also achievable in the Partial Pooling

model.

X-pp
admitted

P 0
diverted

Figure 7-4: An illustration of the admission control problem first introduced in
Chapter 5, rep. of Figure 5-1.

For the L-threshold online policies used in Theorem 5.8, the validity of Eq. (7.20)

has already been established in the proof of Theorem 7.1 in Section 7.3.1.

We now look at the the rNOB offline diversion policy give in Theorem 5.10. First,

the rate of diversion under the IrNOB policy is equal to p - (1 - A) < p (Lemma

5.15), which satisfies the requirement of p < 1 in Theorem 7.2, since the rate of the

flexible server pool is pn. We would next like to verify that the diversion process

under the IrNOB policy is a finite-state MMPP. From Lemma 5.17 and Proposition
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5.18, we know that the resulting (local) queue length process after applying IrNOB

is a positive-recurrent random walk, and a diversion is made if any only if when an

arrival occurs while the random walk is in state 0. Hence the diversion process is a

MMPP, with the random walk being the underlying modulating process, W(-), and

modulating rates

r =A.-I(w=0), wEN. (7.21)

However, because the random walk can be unbounded, the state space of W is no

longer finite, and the Merging theorem cannot be applied to IrNOB directly.

Fortunately, the unbounded-nature of the random walk is fairly easy to fix. We

can consider a version of the offline diversion policy for the admissions control prob-

lem, which is a "hybrid" between the threshold policy and IFNOB-

Definition 7.4 (7rNOB with Upper Threshold). Fix L E N. The L-rNOB policy

is defined by the following diversion rule. A job arriving to the queue is diverted if

and only if at least one of the following holds:

1. The job would would be diverted under the lFNOB policy;

2. The current queue length, Q(t-), is at least L.

It is not difficult to show that the L-7rNOB effectively puts, at L, an upper bound-

ary to the recurrent random random induced by the 7rNOB policy. As a result, it

can be shown that the modulating Markov chain for each diversion process is now a

random walk with two boundaries, at 0 and L, with the same transition rates for all

other states in {1,... , L - 1}, as given in Proposition 5.18. The modulating rates are

now given by

rw=A-I(w=0orL), wEN. (7.22)
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The addition of the upper boundary resolves the issue of an unbounded state space,

but it also increases the rate of diversion from p- (1- A). To ensure that the diversion

rate is still below p, we simply set the L to be sufficiently large, so that the steady-

state probability of the random walk being in state L, which decreases exponentially

as a function of L, is well below (1 - A)/A. By now, we have satisfied all conditions

of the Merging theorem, which in turn allows us to establish Eq. (7.20).

We expect it to be possible to extend the above analysis to policies with a finite-

lookahead window, by treating the content of the lookahead window as a part of the

state-space of the modulating process. The detailed arguments will likely be more

technical and complicated, since the number of events observed in a finite lookahead

window is itself a random variable. We will leave such extensions to future research.

7.4 Related Research

We highlight some connections between Theorem 7.2 and the existing queueing litera-

ture. Queues with arrival processes that are a superposition of multiple sub-processes

arise frequently in practice, and have been extensively studied in the literature. To

get a sense of why such system can be difficult to analyze, notice that although the

family of G/G/1 queues, whose arrival process is a renewal process, can be analyzed

via the celebrated Kingman's inequality [51], the renewal assumption quickly breaks

down when it comes to superposition processes. In facts, the superposition of even

two renewal processes will no longer be a renewal process, unless both sub-processes

are Poisson [71].

A number of techniques have been developed to understand the performance of

queues with superposition processes. These include methods that aim to approximate

superposition arrival processes with renewal processes [4, 78], heavy-traffic analysis
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for queues with superposition arrival processes [89], exponential tail bounds based

on certain martingale inequalities [28], and matrix-analytic methods for the special

case where the arrival sub-processes are phase type [30]. However, it appears difficult

to extend these results to the regime of Theorem 7.2. One main reason is that many

of the existing bounds provide performance estimates for cases where the number

of arrival sub-processes, n, is fixed, and do not explicitly deal with the asymptotic

behavior of the steady-state queue length distribution as the n intends to infinity.

More closely related to our work is a body of literature on large deviation princi-

ples (LDP) for queueing systems, in which the same scaling regime as Theorem 7.2 is

considered. Here, one is concerned with a queue whose arrival process is the super-

position of n independent sub-processes, and whose server speed is n. Assuming that

the overall traffic intensity stays bounded away from 1, and all arrival sub-processes

satisfy some form of LDP, one would like to conclude that, as n -+ co, the resulting

steady-state queue length should admit a certain LDP as well. This type of scal-

ing is known in that literature as the many-flow scaling [17, 74, 90], which is also

related to the notion of effective bandwidth [49]; the reader is referred to [34], and

the references therein, for an overview of the topic. A crucial difference between this

literature and Theorem 7.2 is that, typically, the LDP is established for the scaled

queue length process, Qf/n, where Qn is the steady-state queue length in the nth

system. In particular, the LDP is of the form

1
n

when n is large, where J(.) is a certain positive rate function (cf. Chapter 7 of [34]).

The value of P(Qn/n > x) is a relevant quantity in the LDP literature, because it

translates into the probability of buffer overflow when the buffer size scales linearly
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in n. However, dividing Qn by n makes the bound too weak for our purpose, in

that it does not allow us to obtain limsup,. E(Qn) < 00. Closer to the regime

of Theorem 7.2, the work of [20] addresses the overflow probability of steady-state

workload under a finite buffer size that does not scale with n. The authors show

that, assuming a certain LDP on the sub-processes, for a fixed x 0, the probability

P(Un > X) converges to P(Un > x) as n -+ oo, where Un and Un are the steady-state

workload of the nth system (similar to Qn in our setup), and the workload under a

Poisson arrival process with the same average rate, respectively. Still, because the

convergence result of [20] applies for a fixed x, it does not imply the boundedness of

E(Qn) as n tends to infinity, which would need such convergence to hold uniformly

over all x E N. Compared to Eq. (7.23) and the result of [20], the bound in Theorem

7.2 applies to the unscaled queue length, Qn, and it does so uniformly over all E N,

i.e.,

log P(Q" > X) < -Ox, for all x and n. (7.24)

While we believe that it is possible to adapt some of the above-mentioned methods

to establish and potentially extend Theorem 7.2, this is, however, beyond the scope

of the current report.

7.5 Outline of Proof for Theorem 7.2

The remainder of the chapter is devoted to the proof of the Merging theorem, Theo-

rem 7.2, and in this section we outline the main steps involved. For any fixed n, the

merged arrival process, A"(-), is a Markov-modulated Poisson process, whose instan-

taneous rate at time t is equal to the sum of the modulating rates from across all the

Wis. The main intuition is that, because all Ws are ergodic and independent from
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each other, one may expect that, in the limit of n -+ oo, the empirical distribution of

the Wi(t)s will become concentrated around its steady-state distribution after some

finite time. When such concentration occurs, the rate of the superposition arrival

process, An(_), shall not deviate too much from np, where p is the modulating rate

of W1 in steady state, and the resulting queue length process at the central queue

should be comparable to that of an M/M/1 queue with arrival rate pn and service

rate n.

To apply the above intuition in characterizing the steady-state behavior of the

system, we will argue as follows.

1. We will focus on the evolution of queue length on a set of evenly spaced discrete

time markers, {tk}. The length of the time slots between adjacent tks is not

arbitrary, and will be chosen appropriately to suit the needs of the subsequent

analysis.

2. Using the concentration of W(.) around its steady-state distribution, we argue

that the rate of An(.) is no greater than (p + E)n, for some small e > 0, for a

significant portion of the time slot. As a result, we show that the displacement

of Q(-) over a time slot, A[k] = Q(tk) - Q(t_1), is "well behaved", in that

A[k] satisfies a condition of negative drift on its expected value, as well as

an exponential upper bound on the its tail probabilities, both of which are

independent of the system size, n.

3. Finally, we employ a well-known result of Hajek [39], and conclude that the

conditions on A[k] imply that the steady-state distribution of {Q(tk) :k E N}

satisfies the exponential tail bound in the form of Eq. (7.15), which then carries

over to the steady-state of Q(-).
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There are two main issues to be addressed in this line of argument. First, the

empirical distribution of W(t) may not start in a state that is close to -r, and over

a long time horizon, it may repeatedly escape from the neighborhood of 7r, albeit

with small probability. To address this issue, we shall incorporate the "mixing"

properties of the W(.) into our analysis, by arguing that the empirical distribution

of W(-) quickly converges to ir during each time slot, regardless of the state of W at

the beginning of the time slot. Second, during the periods of time when the empirical

distribution of W(.) happens to be far from 7r, the rate of A"(-) could exceed the

total service capacity by an amount that is of order O(n), which would lead to a

fast buildup of Q(-). It is hence necessary for us to establish a strong quantitative

bound on the level of concentration of W(.) around its steady-state distribution that

is exponential in n, which is then used to show that the impact of such queue length

buildup can be effectively controlled, due to its rare chance of occurrence.

The main part of our proof is further divided into two sections, which deal with

the dynamics of W(.) and Q(-), respectively.

1. In Section 7.7, we show that, with high probability, the empirical distribution

of W(t) becomes concentrated around the steady-state distribution of 7r af-

ter some finite time (Lemma 7.9), and that it remains close to 7r thereafter

(Proposition 7.10), both with exponentially high probability as a function of

n.

2. The concentration results on W(-) are then used in Section 7.8 to analyze the

evolution of the queue length process, Q(-). Here, we show that the queue

length displacement A[k] always admits an exponential tail bound that is

independent of n (Proposition 7.14), as well as that the expected displacement

E(A[k]) is less than a negative constant, whenever Q(t_1) is greater than a
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fixed threshold (Proposition 7.16).

7.5.1 Notation

For a vector x = (xi,...,x, ), we will denote by lixij. the l norm of x: lixiK =

maxi in lxii. Suppose that the coordinates of x take values in {1,.. , M}. We denote

by h(x) = (hi(x),..., hm(x)) the empirical distribution induced by x, represented

by the associated empirical probability mass function (PMF),

1n
h,,,(x) = - $I (Xj = W), Vi E {f .. M}. (7.25)

n j=1

For a random variable X taking values in a finite set, we will denote by d(X) its

PMF: d.(X) = P(X = w).

When necessary, we may use the notation W(w, t) to denote the value of Wi(t)

given the initial condition Wi(0) = w. We will denote by f(x-) the left limit: f(x-) -

limytx f (y).

7.6 Probability Preliminaries

Let X and Y be real-valued random variables. We write X>Y to mean that X

stochastically dominates Y, i.e.,

P(Y c) > P(X c), Vc E R. (7.26)
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Similarly, let Y be measurable with respect to the --algebra B, we write (Y I B) -X

to mean that

P (Ys c IB) P (X: c), VcER, with probability 1. (7.27)

We next define the notion of stochastic dominance between two counting pro-

cesses. Consider two counting processes A and A', where A(t) is the total number of

events that have occurred in [0, t]. We say that A stochastically dominates A' over

[0, t], denoted by A>A', if there exist counting processes B and B', defined on the

same probability space, so that

1. B and B' have the same finite-dimensional distributions as A and A', respec-

tively.

2. P (B(s) - B(v) B'(s) - B'(v)) = 1, for all 0 s < v t.

The following basic fact will be useful.

Lemma 7.5. Fix t E R,. Let A and A' be the counting processes associated with two

non-homogeneous Poisson processes, whose instantaneous rates at time s are U(s)

and U'(s), respectively. If P (U(s) U'(s), Vs E [0, t]) = 1, then A>A' over [0, t].

The next two lemmas concern the stochastic dominance between queue lengths,

which are derived from the dominance in arrival processes and initial conditions,

respectively.

Let QA,s(qo, t) be the number of jobs at time t, for a queue with cumulative

process arrival and service token processes {A(t) : t E R,} and {S(t) : t ER,},

respectively, given an initial queue length of qO. The following lemma states the

simple fact that dominance in the arrival processes implies the dominance of queue

length, given the same service token process and initial queue length.
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Lemma 7.6. Fix t E R, and qo E Z,. If Ao,t>At,, then

QA,s(qo, s)>QA,s(qo, s), Vs E [0, t]. (7.28)

The following elementary lemma states a form of stochastic dominance between

queue lengths that is induced by differences in the initial queue length.

Lemma 7.7 (Impact of Initial Queue Length). Let A and S be arbitrary arrival

and service token processes. For any a, b E Z, and t > 0, we have that, almost surely,

QA,s(a, t) QA,s(a + b, t) QA,s(a, t) + b. (7.29)

Finally, the following useful lemma states that the tail probabilities of a Poisson

random variable admit an uniform exponential upper bound in the regime above its

mean. This can also been seen as a quantitative statement of how a Poisson random

variable stays close to its mean.

Lemma 7.8 (Uniform Tail Bound of Poisson Distribution). Let Xan be an

Poisson random variable with mean an, where a > 0. For any 3 > a, there exists

9 > 0, so that

P(Xan > x) exp(-Ox), Vn E N, x > On. (7.30)

In addition, we have that

lim E ((Xa - On)+) = 0, (7.31)
n-400o

where (x)+ " max{x,0}.

Proof. See Appendix D.1.2.
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7.7 Evolution of the Modulating States

We study in this section the dynamics of the modulating states, W, and present

two main technical results. The first result states that, starting from any initial

condition, the empirical distribution h(W(t)) shall become close to the steady-state

distribution of W (.), 7r, after some finite time, with exponentially high probability as

n -+ oo. Note that the exponentially dependence of the probability on n stems from

the fact that the individual chains are independent. The proof of the proposition is

given in Appendix D.1.1.

Proposition 7.9. Fix f > 0. There exist 8-, yi, and y2 > 0, so that, for all s 9,

sup P(jlh (W(wo, s)) - irl e) 72exp(-yin), Vn EN. (7.32)
WOE{1,...,M}

The second result states that, if the process W is initialized in a state whose

empirical distribution is "close" to ir, then it will remain "close" through out a

compact interval, with exponentially high probability as n -+ oo.

Proposition 7.10 (Exponential Concentration over Finite intervals). Define

S as

SE = {w E {1, ... ,M}" : I1h(w) - 7r-j. s e} (7.33)

For any J and u > 0, there exist c, 01, and /2 > 0, such that

sup P sup 11 h (W (wo, t)) - 7r 11. > 6 0 1 exp(-,32n), V n E N. (7.34)

Proof. The proof involves two main steps. We first argue that it suffices to prove

our claim over a set of appropriately spaced discrete time markers, as opposed to

the continuous time interval. We then use a concentration result for a fixed time, in
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combination of a union bound, to show the desirable concentration of W at all such

time markers.

Define a set of (deterministic) discrete time markers,

Tk = - k, k E Z+, (7.35)
10

where is the continuous-time transition rate of the (assumed uniformized) Markov

process W(-), and let

k = max{k: Tk u}= ]. (7.36)

The motivation for the definition of the Tks is that we want the total number of state

transitions during the interval [Tk-_, Tk) to be small compared to Jn. Specifically,

let

Hk = # of state transitions in [Tk-l, T), Vk E Z+, (7.37)

and define L to be the event where the number of state transitions in [Tk_1, T) is

less than Jn/2 for all k up to k, that is

£C= max Hk Jn/2}. (7.38)

Because each state transition changes the empirical distribution h(W(t)) by at most

1/n (in the l sense), we have that, conditional on L, the value of h(W(t)) in

[T_1, Tk) can deviate from h(W(Tk-_)) by at most 6/2, for all k E {1,...k, k}. There-

fore, by the triangle inequality, we have that, conditional on L,

sup I1h(W(wo, t) -7r sup 11h(W(wo, T) -k7r + 6/2. (7.39)
Ot!u 1 k!fk

The above arguments imply that it suffices for us to show the following, which
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we shall carry out in detail in the remainder of the proof:

1. The empirical distribution of W at Tk, h(W(wo, Tk)), remains close to 7r for

all k up to k with high probability.

2. The event L occurs with high probability.

We first show that, for any k > 0, there exist e, a, and b > 0, such that

sup P sup I1h (W(wo, Tk)) - 7r.I> 6/2 aexp(-bn), Vn EN, (7.40)
woeSe \Osks~

To this end, the following lemma is useful, which states that, for a fixed time t,

h(W(wo, t)) stays close to 7r with high probability, if h(wo) is sufficiently close to

7r.

Lemma 7.11. For any t > 0, there exists c > 0, so that for any e E (0, r/2], there

exist a and b > 0, so that

sup P (11h (W(wo, t) -7r)I. > cc) aexp(-bn), Vn EN. (7.41)
WOES,

Proof. See Appendix D.1.3.

In light of Lemma 7.11, we have that there exist c, a', and b' > 0, so that

sup P(Ilh(W(wo,t)-wr)I. >6/2) a'exp(-b'n), VnEN, kE {1,...,I}. (7.42)
WOESe
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which further implies that,

sup P sup 11h (W(wo, Tk)) - irII. > 6/2
WOESE 15k!jk

(a)
sup Z:(jh(W(wo,Tk))

W0 ESe k=1

Z sup P(Ijh(W(wo,Tk)) - 7rI. > 612)
k=1 WOES,.

ka'exp(-b'n), Vn E N,

where step (a) follows from the union bound. This proves Eq. (7.40), by setting

a = ka' and b = b'.

We next turn to the probability of event L (Eq. (7.38). The total number of state

transitions in [Tk - 1, Tk), Hk, is a Poisson random variable with

6 Sn
E(Hk) = n T1 = ni - ,= 16 Vk E N, (7.44)

10 10

where is the rate of transition for each chain. We have that, there exists 0 > 0, so

that

1 - P()=P ma Hk> Jn/2)

(a) ^-
ZP(H>Sn/2)

k=1

(b)
< K* exp(-O6n/2)

='Y exp(-y 2n), Vn E N, (7.45)

where 7, = K*61 and -2 = 026/2. Step (a) follows from a union bound, and (b) from
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Lemma 7.8 and the fact that E( )= <1 for all n E N.

We are now ready to prove the main claim of Eq. (7.34). Let Z be the complement

of L. We have that, for any 3 and u > 0, there exist E, a, b,y 1 , and y2 > 0, so that for

all wO E SE,

P supI1h(W(wo, t))-7rK.> )
\tE[0,U]

=P sup Jjh(W(wO,t))-,7r||.>J;,C +P sup Jjh(W(wo~t))-7rjj.>J;Z
\tE[0,U] ( tE[0,U]

: P sup |jh (W(wo, t)) -gr||. >Jo; C + P(Z)

(a)(
P sup I1h(W(wo, tk))-7rK. >3/2; +P )0.k K*

1P (sup I1h(W(wo, tk)) -wIK,> 3/2 + P )
\0:!k:K*

(b)
aexp(-bn) +iP(Z)

(c)
a exp(-bn) + -y1 exp(--y2n), Vn E N, (7.46)

where step (a) follows from Eq. (7.39), and steps (b) and (c) from Eqs. (7.43) and

(7.45), respectively. This concludes the proof of Proposition 7.10, by setting #1 =

max{ay 1} and 82 = min{b,7 2}

7.8 Evolution of the Queue Length

In this section, we will use the concentration results for W developed in Section 7.7,

to analyze the evolution of the queue length process, Q. We will focus on the values
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of Q only over a set of discrete time markers:

tk = Bk, k E Z+, (7.47)

where B is a constant, whose value will be specified in the subsequent analysis. We

will refer to the interval [tk_1, tk) as the kth time slot. The main quantity of interest

is the displacement of Q between during one time slot,

A[k] = Q(tk) - Q(tk-1). (7.48)

In particular, the main results in this section will establish that (1) the distribution

of A[k] always admits an exponential tail bound that is independent of n (Proposi-

tion 7.14), and (2) that the expected displacement E(A[k]) is less than a negative

constant, whenever Q(tk_1) is greater than a fixed threshold (Proposition 7.16).

Most of our analysis in this section will heavily rely on h(W(t)) being close to

7r when n is large, which will, in turn, translate into a tractable behavior of A[k].

However, due to stochasticity inherent in any finite system, h(W(t)) could always

escape from ir's neighborhood. Therefore, we shall further divide each time slot into

two sub-slots, [tk_1, Uk1) and [Uk_1, tk), whose lengths are B1 and B 2, respectively,

where Uk_ denotes the end point of the first sub-slot in the kth slot:

B1 =Uk-1 - tk-l, (7.49)

B 2 =tk - Uk_, (7.50)

B =B 1 + B 2. (7.51)

The first sub-slot will serve as a "buffer," so that by the end of it, h(W(t)) is
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guaranteed to be sufficiently close to 7r with high probability, regardless of its value

at the beginning of the interval, tk_1. We may then expect that h(W(t)) remains

close to 7r throughout the remainder of the second sub-slot, as is formalized in the

following definition and subsequent lemma.

Definition 7.12. Denote by Wg the "good" event concerning the process W(.) during

the interval [t-1, tk), where

W9 = sup Ijh(W(wo,t))-7rI|, 4, (7.52)
tEs[t k-l+B1,tky]

and by Wg its complement.

The following lemma states that the event W9 occurs with high probability. The

proof follows from combining Propositions 7.9 and 7.10.

Lemma 7.13. Fix p E (0,1) and B 2 > 0, and let the length of the kth interval be

B = B 1 + B2. For any 6 > 0, there exist B1, 1, and (2 > 0, so that for all B 1 > B1,

sup P (WgIW(tk1) = wo) ( exp(-( 2n), Vk, n E N. (7.53)
WOE{1,...,M}n

Proof. See Appendix D.1.4. l

Below is the first main technical result of this section, which establishes an expo-

nential tail bound on the distribution of A[k], whenever the lengths of both sub-slots

are sufficiently long.

Proposition 7.14 (Exponential Tail Bound for A[k]). There exists a choice of

i1 and j 2 > 0, so that for all B1 B 1 and B 2  i2, we have that

(A[k]IX(tk-1)):sZ, Vk E N, (7.54)

236



where Z is a random variable with E (eAz) = d < oo, for some constant A > 0.

Proof. Fix e > 0, and denote by r* the largest modulating rate across all M states

of chain W1(-)

r* = max ri, (7.55)

and let

R = Bi(e + r*), (7.56)

Note that, because e > 0, the definition of R is ensures that the value of Rn is greater

than the expected total number of arrivals in An during an interval of length B 1, by

at least en, regardless of the state of W.

We will develop upper bounds on the distribution of A[k] by considering two

separate cases, depending on the occurrence of the event Wg. We first consider the

case where Wg occurs. Denote by AI(t) the instantaneously rate of An(.) at time t.

Because r* is the maximum modulating rate across all M states of W1, we have that

A n(t) : r*n, Vt E [tk_1, Uk_1).- (7.57)

By the definition of WV, it is not difficult to verify that conditional on W,

An(t) p'n, Vt E [uk_1, tk), (7.58)

where

p' = p + Mjr*, (7.59)

and 3 is the constant in the definition of W (cf. Eq. (7.52)). The two upper bounds

in Eqs. (7.57) and (7.58) are illustrated in Figure 7-5-(a).
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Figure 7-5: Illustrations of total arrival rates during one time slot.

Qualitatively, Eqs. (7.57) and (7.58) suggest that, conditional on W9 , it suffices

to think of the arrival process An as having a high rate of r*n during the first sub-

slot, and a relatively moderate rate of p'n during the second sub-slot. Analyzing

the resulting queueing dynamics from these two distinct phases can be, however,

a bit cumbersome. Therefore, we shall argue next that it suffices to consider a

homogeneous arrival process throughout the entire time slot [tk_1, tk), whose rate is
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an appropriate average of the upper bounds in Eqs. (7.57) and (7.58). Define , as

r* B1 + p'B2
B + 2 (7.60)

The following lemma states that, conditional on W,, a system in which the arrival

process during the kth time slot is a homogeneous Poisson process of rate p'n, as

illustrated in Figure 7-5-(b), yields a larger queue length at time tk.

Lemma 7.15. Fix n E N. Denote by A a homogeneous Poisson process of rate p'n,

independent of all other randomness in the system. Then

(Q(tk) Q(tk-1) =jVV) 4 QA,sn (jt), Vj Z+, (7.61)

where QA,S(j, t) represents the length of a queue at time t with j jobs at t = 0, under

an arrival process A and service token process S.

Proof. Fix n E N. Let H be a Poisson process whose instantaneous rate is r*n

and ,n during the interval [0, B 1 ) and [B 1 , B 2 ), respectively (cf. Figure 7-5-(a)). By

Lemma 7.6 and Eqs. (7.57) and (7.58), we have that

(Q (tk) IQN-_1) = j, Wg) 1< QH,S' ,(j, B), (7.62)

for all j E Z+. Hence it suffices to demonstrate that

QH,Sn (j, B) < QA.n(j, B), Vj E N. (7.63)

We shall prove Eq. (7.63) by showing a more general result. Fix T > 0. Let Y and

U be two Poisson processes, with instantaneous rates ry(t) and ru(t), respectively,
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Figure 7-6: The cumulative rates for processes A (solid)
interval [0, B). The instantaneous rates for H and A
and 7-5-(b), respectively.

so that

fry (s)ds > fru (s)ds,

and H (dashed), during the
are given in Figures 7-5-(a)

Vt E (0, T), (7.64)

and

I

T T
ry (s)ds = foru (s) ds. (7.65)

In particular, note that Eqs. (7.64) and (7.65) are satisfied by the rates of H and A,

with Y = H and U = A (cf. Figure 7-6). The claim is that for any point process S

that is independent from Y or U, we have that

Qy,s(j, T) < Qu,s(j, T), Vj E Z+. (7.66)

We will show Eq. (7.66) via the following coupling between Y and U. Let {Xi :
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i E N} be a sequence of i.i.d. Exponential random variables with E(X 1 ) = 1. Define

the counting processes

Y'(t) = max k :Xi f ry(s)ds t E [0,T], (7.67)

and

U'(t) = max k: >j f ru(s)ds ,t E [0, T], (7.68)

By construction, Y' and U' admit the same finite-dimensional distribution as Y and

U, respectively. By Eq. (7.64), we have that

P (Y'(t) > U'(t) , Vt E [0, T]) = 1, (7.69)

where the probability is measured with respect to the random

implies that, with probability one,

Y'(T) - Y'(t) =aU'(T) -Y'(t)

(b)
< U'(T) - U'(t), Vt E [0, T],I

where step (a) follows from

ready to establish Eq. (7.64)

d
Qy,s(j, T) = sup

tE[O,T]

(a)
4 sup

tE[0,T]

=QU,s(

ness in {Xj}. This

(7.70)

Eq. (7.65), and step (b) from Eq. (7.69). We are now

By Lindley's recursion, we have that

[jI(t = 0) + (Y'(T) - Y'(t)) - (S(T) - S(t))]

[jI(t = 0) + (U'(T) - U'(t)) - (S(T) - S(t))]

(7.71)
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where step (a) follows from Eq. (7.69). This proves Eq. (7.64), which in turns proves

our claim, by letting Y = H, U = A, and S = Sn. 0

With Lemma 7.15 at hand, we are now ready to show an exponential tail bound

on the distribution of A[k], conditional on W.. Let 6 be sufficiently small so that

p' = p + Mjr* < 1. (7.72)

Let B 1 = 25 1 , where i 1 is defined as in Lemma 7.13 given the above choice of 6. Set

B to be sufficiently large, so that

-r* B1 + p'B2
P =r- < 1, VB 2 > f 2, (7.73)

B1 + B2

and let B 2 = 2f 2. We have that, for any n 1,

(A[k] |Q(tk_1) = j,w 9) = (Q(tk) - Q(tk_1) Q(tk_1) = W, ,W)

=(Q(tk)IQ(tk-1) j, Wg) - j
(a)

< QA,Sn(i B2) -
(b)

SQA,sn(0, B2) +j-j

(c)
< G(p), (7.74)

where A is a Poisson process of rate n, and G(=>) is a geometric random variable

with parameter p, i.e.,

P(G(fi) x) = , VX e Z,. (7.75)

Step (a) follows from Lemma 7.15, and (b) from Lemma 7.7. For step (c), note that

under arrival process A and service token process Sn, the queue length process evolves
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as the total number of jobs in system for a M/M/1 queue with traffic intensity pi. We

then invoke the elementary fact that, in an initially empty M/M/1 queue with traffic

intensity p < 1, the total number of jobs in system at any time t > 0 is stochastically

dominated by its steady state distribution, which is geometrically distributed with

parameter p.

We now turn to the case where the event W9 does not occur. Let R* be defined

as

R* = Bir* = B1 max ri. (7.76)

Note that R* is strictly less than R (Eq. (7.56)). We shall use the following trivial

upper bound

(Q(tk) I X(tk-1), g)Q(tk_1) + XR*n, (7.77)

where XR*f is a Poisson random variable with mean R*n, independent of Q(tk-l).

Eq. (7.77) corresponds to the case where all arrival processes are generating arrivals

at the maximum rate of R* (cf. Figure 7-5-(c)), and there is no service during the

interval [tk_1, tk).

Having covered the two cases depending on whether Wg occurs, in Eqs. (7.74)

and Eq. (7.77), respectively, we are now ready to establish the main upper bound

on A[k]. Fix k E N. Since we had set B1 = 2B 1 , by Lemma 7.13, there exist (1 and

(2 > 0, so that

sup P (Wg I W(t1) = wO) (1 exp(-( 2n), Vn E N. (7.78)
WOE{1,...,M}n

243



We have that

P(A[k] > X I X(tk-1))=IP(A[k] X IX(t-1),7)P(WIX(tk-1)

+ P (A[k] XIX(tk_1), Wg)P(WY X(tk1))

(a) 
-IX t-)P(XR-, X)P (W9 I X(tk1)

+ P (A [k] ! X I X(tk-1),7 W~g(Wg X(tk-1))

(b)
< P(XR-, x)P (g I X(tk_1)) + P (G(fi) x)

=P(XR-, x)P (g IX(tk-1)) + #x, (7.79)

where step (a) follows from Eq. (7.77), and (b) from Eq. (7.74) and the fact that

P(W9 X(tk.1)) 1. For the first term in Eq. (7.79), we have that there exist (1, (2,01,

and 62 > 0, such that

P(XR-, > X)P (V I X(tk1))

_ (I(x R n) + P(XR-n > X)I(x> n)) P (I X(t_1))
( a ) n)P (- I X(tk_1)) + 01 exp(-9 2 x)I(X > Rn)

(b)
(1 exp(-( 2n)I(x Rn) +01 exp(-0 2x)I(x > Rn)

<(1 exp - X I(x Rn) + 1 exp(-9 2X)I(x> Rn)

+ 61) exp (- min{( 2 /R,6 2 }X), Vn E N, (7.80)

where step (a) follows from Lemma 7.8 with a = R* and ? = , and the fact that

f > R*, and (b) from Eq. (7.78) and the assumption that B 1 > 31. Substituting
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(7.80) into Eq. (7.79), we obtained that

P (A[k] X I X(tk_1)) P(XR*-, X)P ( I X(tk1)) + fix

5((1 + 61) exp (- min{( 2 /R, 02 }X) + fix

71 exp(-Y 2 x), (7.81)

where -y = (1+01+ 1 and 72 = min{( 2 /R, 02, ln(1/fi)}. We have thus proven Proposition

7.14, by letting Z be such that P(Z x) = 7y1 exp(-y 2x) for all x 2 0, and A = -2/ 2 . 0

The next proposition is the second main technical result of this section, which

states that the expected displacement E(A[k]) is negative and bounded away from

zero, whenever Q(tk_1) exceeds a fixed threshold.

Proposition 7.16 (Conditional Negative Drift of A[k]). Fix p E (0,1), and

B1 2 B 1 , where 1 was defined in Proposition 7.14. There exists B 2 , q, d, and no > 0,

such that

E(A[k] W(tk1), Q(tk_1) = j) -d Vk E N, (7.82)

for all j > q, n no, and almost all realizations of W(tk_1).

Proof. We shall use a line of arguments similar to that in the proof of Proposition

7.14. First, consider the case where the event Wg occurs. Set B 1 > B1 and B2 > f 2

as in Proposition 7.14. We have that

E (A[k] Wg, Q(tk-1) = j) =E (Q(tk) I Wg, Q(tk_1) = j) -

<E (QASf(j, B2)) - j, (7.83)

where A is a homogeneous Poisson process with rate fin, with p = r*Bi+p'B2 < 1

(Eq. (7.73)), and the inequality follows from Lemma 7.15.
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We next recall an elementary fact: denote by QM(t) the total number of jobs in

system at time t in an M/M/1 queue with arrival rate p < 1 and service rate 1, and

by E(QM) its expected value in steady state. Then there exist d and b > 0, so that

if the systems starts with j jobs at t = 0, with j > E(QM), we have

E(Q M (t)IQ M (0) =j) j-d, Vt !b. (7.84)

Note that QAs. evolves as the number of jobs in system for an M/M/1 queue with

with arrival rate 1 n and service rate n. Scaling time by a factor of n, we see that

the distribution of QA,.S. (j, B2) is the same as the number of jobs in system for an

M/M/1 queue with arrival rate fi and service rate 1 at time nB2, with j jobs initially.

Applying Eq. (7.84) to (7.83), we have that there exist E2, q and d > 0, so that for

any B2 > b2, we have that

E (A[k] I Wg, Q(tk-1) = j) :5E (QA,sn (j, B2)) -j

5 (j-_ d) -j

3
2 d, (7.85)

for all n > , and j > q.

In the case where the event W. occurs, we will use the trivial upper bound:

E(A[k] W(tk1),,W9 Q(tk1) = j) r*Bn + j, Vj E Z, n7 EN, (7.86)

where r*Bn corresponds to the expected number of arrivals in [tk_1, tk), assum-

ing all arrival processes remain in the state with the highest modulating rate, r*

(cf. Eq. (7.55)).
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Combining Eqs. (7.85) and (7.86), we have that, whenever B1 > B 1 and B 2 > B 2,

E(A[k] W (tk_1 ), Q (t_1) = j)

=E(A[k] W(tkA), Wg, Q(tk1) = jA (Wg I W(tk_1), Q(tk_1) = j)

+ E(A[k] I W(tk_1),4 9 , Q(tk_1) = j)P (VW W(tk1), Q(tk_1) = j)
(a) 3--

- q+ E(A[k] IW(tk1.),Wg Q(tk1) = j)P (W W(tk_1), Q(t_1) i)

2(b) 3 -.-

- ~q+ r* BnP(W,|W (tk_1),Q(tk_1) = j)
(c) 3
_ - q + r*B(in exp(-(2n), (7.87)

for all j > q and n E N. Steps (a) and (b) follow from Eqs. (7.85) and (7.86),

respectively, and (c) from Lemma 7.13. Since for all ( > 0, we have that n exp(-(n) -+

0 as n -* oo, we conclude from Eq. (7.87) that there exists no > 0, such that

3
E(A[k] IW(tk-1),Q(tk-1) = j) - d + R*B(in exp(-(2n) -d, (7.88)

2

for all j > q and n > no, which proves Proposition 7.16.

7.9 Proof of the Merging Theorem

We now complete the proof of Theorem 7.2. Let {Y : k E Z} be a sequence of

random variables defined on a probability space (QF,P), adapted to an increasing

sequence of --algebra, {.Fk : k E Z,}, where Y is Fk-measurable. We we will use the

following well-known result, adapted from [39], which establishes an exponential tail

bound on the steady-state distribution of {Yk}.

Proposition 7.17 ([39]). Suppose Yo = 0, and that the following conditions hold.
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Condition (a). There exists a random variable Z and a constant A > 0, so that

E(eAz)< oo, and

(Yk - Yk1 I Pk) :Z, Vk E Z,. (7.89)

Condition (b). There exist constants C and Ed > 0, so that

E (Yk -Yk1+ Ed;Q[k] > C .Fk) 0, Vk E Z+. (7.90)

Then, there exist 61,02, and ko > 0, so that, for all k k0,

P (Yk x) 90exp(-9 2X), VX E R+. (7.91)

Fix B1  B 1 and B 2  max{ B 2 , i 2 }, where B1 and i 2 were defined in Proposition

7.14 and f 2 in Proposition 7.16. We now apply Proposition 7.17 to our setting, by

letting Y = Q[k]. In our case, Q[k] is measurable with respect to the u--algebra

generated by X(tk), and Conditions (a) and (b) in Proposition 7.17 are satisfied

because of Propositions 7.14 and 7.16, respectively. We then obtain that there exist

k0, 1, and 02 > 0, so that for all k ko,

P (Q(Bk) x) 01 exp(-0 2x), Vx E R. (7.92)

It is easy to verify that, for any n E N, the Markov process X is irreducible and

aperiodic. As a result, the positive recurrence of the discrete chain {Q(Bk) : k E

N}, which is implied by Eq. (7.92), also implies the positive recurrence, and hence

ergodicity, of the continuous-time process {Q(t) : t E R+}. The ergodicity of Q(.)
combined with Eq. (7.92) proves Theorem 7.2.
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7.10 Summary and Future Work

In this chapter, we studied the role of real-time state information in the Partial

Pooling flexible architecture analyzed in [84, 91]. We demonstrate that, in the regime

of n - oo, it is possible to use a class of decentralized scheduling policies and achieve

the same optimal heavy-traffic delay scaling as the centralized longest-queue-first

(LQF) policy analyzed by [84, 91].

The decentralized policy is based on diverting incoming jobs from local queues to

a central queue by comparing the local queue length to a fixed threshold. Jobs in the

central queue are served exclusively by the flexible server pool. Our main technical

contribution goes into characterizing the resulting steady-state queue length at the

central queue. To do so, we prove a Merging theorem (Theorem 7.2), which yields

an exponential tail bound on the steady-state queue length distribution of a queue,

whose arrival process is the superposition of n independent sub-streams, in the limit

where the number of sub-streams and the service capacity of the queue tend to

infinity simultaneously.

The Merging theorem also opens up new possibilities for generalizing the original

Partial Pooling model in different ways, such as allowing for phase-type arrival and

service processes at the local queues (Section 7.3.2), and potentially, for analyzing

systems with non-uniform arrival rates. Similar arguments using the Merging theo-

rem also allowed us to rigorously interpret the admission control problem (both with

and without future information) as the decision problems faced by the local queues

in the Partial Pooling model (Section 7.3.3), and hence carrying the performance

guarantees developed for the admission control model in Chapter 5 to the Partial

Pooling model.

At a higher level, the use of the Merging theorem and the architecture with
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a central queue provides a simpler, and somewhat deeper, conceptual picture of

flexibility's role in the effectiveness of Partial Pooling models. In effect, the Merging

theorem allows us to decouple the local resource allocation decisions from that of

the flexible server pool. Viewed from this angle, we see that in a large-scale system,

the presence of a small fraction of fully flexible processing resources translates into

the ability to simply divert a fraction of the incoming arrivals from each of the local

queues. The threshold policy, or one that takes into account future information,

ensures that such diversions are exercised only when there is a sufficient indication

of congestion.

The current version of the Merging theorem applies only to cases where the sub-

arrival processes are finite-state Markov-modulated Poisson processes, all with the

same average rate. An interesting and relevant question deserving further study is

whether the Merging theorem can be extended to incorporate more general stationary

point processes as sub-arrival processes, and with possibly different rates. Such

extensions would allow us to analyze Partial Pooling systems with more general

arrival processes, and scenarios where the arrival rates are non-uniform (Section

7.3.2), both of which may be more relevant for practical applications. We believe

that an approach similar to ours, by showing a strong concentration bound for the

"states" of the sub-arrival processes, is promising. However, the arguments can be

more difficult, because one would have to track a more complex state evolution than

that induced by a collection of finite-state Markov chains.
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Chapter 8

Concluding Remarks

The present report is centered around the role of partial flexibility in large-scale

dynamic resource allocation problems. Our results demonstrate that, with an appro-

priate architecture, scheduling policy, and adequate amount of (future) information,

a system with even a little flexibility can often significantly outperform its inflexible

counterpart in terms of delay and capacity, and sometimes be almost as good as a

fully flexible system.

Some of the open problems that concern specific models have been stated at the

end of the corresponding chapters. Instead of restating them here, we will focus on

some higher-level issues that could be interesting directions for future research.

Fundamental Limitations of Partial Flexibility. While most of our present

investigation points towards the power of partially flexible systems compared to in-

flexible systems, it is equally important to understand whether there are fundamental

limitations of partial flexibility, too. In particular, are there situations in which a

system with limited flexibility performs significantly more poorly than a system in

which flexibility is abundant? More generally, does there exists a non-trivial level of
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flexibility that is necessary and sufficient for achieving desirable performance?

One such consideration has already surfaced as a main open problem in our study

of the Sparse Flexibility architectures in Chapters 3 and 4. We have seen that in

the fully flexible system (e.g., an MIMIn queue), an optimal average delay scaling

can be achieved for any arrival rate vector that satisfies the rate condition, under

any work-conserving scheduling policy (cf. discussions in Section 3.1). In contrast,

obtaining parallel results for partially flexible systems appears to be substantially

more difficult, and we have not been to do so for any of the three proposed partially

flexible architectures. Our delay guarantees for the Random Graph and Random

Modular architectures hold only in a probabilistic sense (cf. Theorems 3.6 and 3.9),

i.e., for most arrival rate vectors in An(un), while the Expanded Modular archi-

tecture provides a worst-case delay guarantee at the expense of a reduced capacity

region (cf. Theorem 3.11). Roughly speaking, these difficulties suggest a potential

fundamental limitation of partially flexible systems: that a large capacity region in

a partially flexible system necessarily comes at the expense of a weaker worst-case

delay guarantee (although we conjectured otherwise, cf. Conjecture 3.15).

Flexibility in time. The types of flexibility that we have studied are built into the

system spatially, in the form of servers that can process different type of demands,

and are fixed over time. However, there is also a temporal aspect of flexibility, which

we have not covered with the existing models. For instance, one could consider

flexible systems where

1. The flexibility of a resource or demand may vary over time. Such scenarios

could arise, for instance, in the modeling of human systems, where the skill

sets of the agents gradually broaden over time as a result of learning.
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2. The times of arrivals or service availability can be adjusted, within certain

constraint, around their original realizations. For instance, the decision maker

may be able to encourage a job to arrive earlier than its original time of arrival

(advancement), or "store" a service token for a short amount of time after it

has been generated, to be used for serving a job that comes at a later time

(inventory).

Analogous to the types of questions raised in this report, one may ask whether

a small amount of flexibility across the time horizon has a significant impact on

system performance.

Flexibility in multi-stage systems. This report is solely concerned with parallel

resource allocation systems, where a job immediately departs from the system after

it has been processed by a server. This family of models, however, does not capture

many multi-stage service systems, where a job needs to receive service from multiple

servers sequentially before departing (e.g., queues in tandem).

In the context of multi-stage systems, we have the additional possibility of having

flexibility across different stages of the system. For instance, for a system with a

sequence of queues in tandem, each server may be able to process jobs from different

stages. Does having flexibility help in such systems, and how does performance vary

with respect to the number of "stages" that a server is able to process? The dynamics

induced by the sequential nature of a multi-stage system appears to be significantly

different from those considered in the present report, and we suspect that to answer

these questions one would likely need a very different set of analytical techniques

and problem formulations.
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Appendix

Appendix: Queueing System

Architectures with Limited

Flexibility

A.1 Additional Proofs

A.1.1 Proof of Lemma 3.4

Proof. Fix A = (A,..., A,) E A,(u,), and let g, be an (-y/un,un)-expander, with

-y > p. By the max-flow-min-cut theorem, and the fact that all servers have unit

capacity, it suffices to show that

(A.1)ZAj: IKM(S)I, VScI.
iES

We consider two cases depending on the size of S.
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1. Suppose that JS n. By the expansion property of gn, we have that

K (S) unjSI E Ai, (A.2)
iES

where the second inequality follows from that fact that Ai un for all i E I.

2. Suppose that ISI > j-n. We have

S(S) (a) (b)
( y7n pn Z Ai , (A.3)

iES

where step (a) follows from the fact that S must contain a subset of size -n,

and step (b) from the assumption that LjEI Ai pn.

This completes the proof. E

A.1.2 Proof of Lemma 3.12

Proof. For any S c I and T c J, define BS,T as the event that all neighbours S in G

are contained in T. Since G is an an (n, dn/n) random bipartite graph, we have that

P (Bs,T) = (1 - dn/n)(n~TI)Is!. (A.4)

To show that G is an expander, it suffices to verify the expansion properties of all

subsets of I with size no greater than ^-1n. Using Eq. (A.4) and the union bound,
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we have

1 - P (G is an ( ,)-expander)

=P (3S c I,S| 5 -n,| (S) I On|[
\ On

13n

(a) 2 (e)' (me)OnS

8=1~ ( 8 )/n

(1 - dn/n)(n-8ns)s

(I - dnIn) (n-,ns)s

= exp (s [2#2 (In n - In s + 1) + (n - #ns) In (1 - dn/n)])

n

E exp (s [20n (lnn + 1) + (n - Ons) In (1 - d/n)])
S=1

(b) On

< Eexp (s [23 In n -
s= 1

On

: exp (s [2/3 Inn -
S=1

(n - /ns)dn/n])

(n - -yn)dn/n])

n

S=1

exp (- dn)

1 - exp (- 1-1dn)

< exp ' ~2 )

n- (A.5)

where step (a) follows from the bound (") k ) and the fact that on > 1, step (b)

from the approximation that ln(1 + x) ~ x as x t 0, step (c) from the assumption
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that On = 1dn ln-' n. This completes the proof.

A.1.3 Proof of Lemma 3.10

Proof. Lemma 3.10 is a consquence of the following standard result (c.f., [6]), by

letting a# = p + j(1 - p) = 1.

Lemma A.1. Fix n > 1, 3 1 and a3 < 1. There exists an (a,#)-expander with

maximum degree d, if

d 1+log2 +(#3+1)log 2 e(0+112 (A.6)d~~ 109 +#+. (.-log 2 (a#3)

A.1.4 Proof of Lemma 4.9

Proof. Let G be an (n, dn/n) random bipartite graph. We will prove the lemma

by a counting argument combined with the union bound. By the max-flow min-cut

theorem, A E R(G) is equivalent to having

Z Aj s |M(S)|, VS c I. (A.7)
iES

Fix A E An(un), and let

PW d/n. (A.8)

We consider two cases, depending on the size of S.
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1. JS pn/un. Since maxi i 1 Ai = un, we have, via the union bound, that

P (ZAi > IAr(S)| G P (IM(S)1:5 UnISI)

< P (Ar(S) c B)
BcJ,

IBI=uISI

=(u 1) _ -pn)(n-Un|SISI.

2. jSI > pn/Un. Since LEI Ai = pn, we have that

p ( Ai > IJ'(S)I )0 ( V (S) 5 pn)
(iES

Z P(M(S)c B)
BCJ,

IBI=pn

( -p )(1-p)nlSl.

(A.9)

(A.10)

Combining the two cases, we have that

P(A 0 R(G))

=P (]ScI,

SE P Z
SCI \iES

E P EA>T(S)
|S|!2P/Un

such that Z Ai
iES

(a) n (n n ( _ P)(n-uns+l)s +
:s=1 3 klUne )(

s=pn/un+1 ( (n
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(b) pn/u. n) I
Z exp s 1+ In -+ uns (1+ In n - ln(uns)) )exp(-(in (n-uns)s
5=1 -S -Pn

+ exp s (1+In ) +pn(1+lnn-nn -Inp) -exp(- In )(1-p)ns
s=pn/un+1 ~ 1-n)

Pn/Un (n
E exp 2slnn+2Unsn (--In )(n-uIs)s
s=1 Un 1 ~Pn( I

+ Z exp 2slnrn+p(1+ln(1/p))n-s n 1 )(1-p)n)
s=pn/un+1 -l

Pn/Un n
Z exp (-s [(n (n - Uns) - 2Unn - - 2 In n
s=1 1 ~n U n i

+ 00___(.)

+ exp -S [n (1 - p)n - p(1+n(1/P)) - - 21nn (A.11)
S=pn/un+[ -n S

where step (a) follows from Eqs. (A.9) and (A.10), and step (b) is based on the fact

that (") ( = exp(k(1 + Inn - In k)). We now verify that the exponents in the

summands in Eq. (A.11) are negative. For the first exponent, we have that whenever

S E {,... pn/Un},

(in (n - uns) - 2Un In ( - 2 nn( 1 - n)
(a) 1 (n
> (In 1 ) (1 - p)n - 2Un In(2-) - 2nmn

n-pn 2n
n - n n) -nn
n-do un

=(1 - 1p)nln 1+ dn) 2un In- - 2mnn
n - dn (Un)

()(1 - p)dn - 2UnInn2- 2Inn

(d) -p n
> -d - 2un In-

(e) 1 p
dn. (A.12)

4
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where step (a) on is based on the assumption that s pn/un, step (b) on the

definition that pn = d//n, step (c) on the fact that dn << n, and that ln(1 + x) ~ x

as x . 1, step (d) on the assumption that d - I inn, and step (e) on the fact that

1«un < 1 - d.8 Inn*

For the second exponent in Eq. (A.11), we have that whenever s E {pn/Un + 1, ... , n},

In (1 - p)n - p(l + In(1/p))-n - 2lnrn
1 Pn

(a) ___

:(1 -p)n ln - 1 +- Un -21n n
1 -Pn pe/

(b) ip ( 1
( -d' - (1+ un -2inn

2 \ pel

2

> -d, (A.13)
4

where step (a) is based on the assumption that s pn/Un, and the fact that

maxE(o,1) pIn . = l/e, step (b) on the fact that p, = dn/n, d, n, and In(1 + x) ~ x

as x . 1, and step (c) on the assumption that Inn << dn and un < m-<dn8 In

Substituing Eqs. (A.12) and (A.13) into Eq. (A.11), we have that, for all suffi-

ciently large n,

P(A (R(G)) s Z exp -s _[(n (n - Uns) - 2Un In - - 2n n
=1 I

+ E exp -s n (1 - p)n - p( + n(1/p))- - 2lnn]
s=pn/u+l- Pn 1

00

<Zexp -s1 4 pdn

exp (- 'dn), (A. 14)
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where the last step follows from the fact that d -+ oo. Since Eq. (A.14) holds for

any A E An(un), this completes the proof of the lemma. L

A.1.5 Proof of Lemma 4.12

Proof. There is a total of pb, arriving jobs in a single batch, and for each arriving

job
A- A- n <1 -p d

P (job arrives to queue i) = -- < ", (A.15)
Z1 sgi 1 Ai pn pn 16pn lnn'

for all i, where the last inequality follows from the assumption that un 1- .

Therefore, the distribution of Mi is stochastically dominated by the binomial random

variable M = Bino(pbn, 1 . d), with

E (M) = pbn 1
16pnr

dn
In n

1 1-p d 
2 8 In n

Let b. = K" ""-f, with K P j(a +1)In n. We have that

P (M i - p
8

d4 bn
In n n

1 - p dn bn
: ( 1 8 In n n

=P (M C 2E (A?))
(a) /
< exp E (1)

1
=exp(3

= exp

(b)
< n-(a+ ,

i-p
8

24 Kn

dn bn
Inn n)
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where step (a) follows from the Chernoff bound, P (X (1 + 6)p) exp(-'2p),

where X is a binomial random variable with E (X) = p and E > 0, and step (b) from

the condition that K., 24 (a +1) Inn. Using a union bound, Eq. (A.17) yields that

PImaxMi -p dn bn
1 i I 8 Inn n

1- p d bn

< i I 8 Inn n

<n. - -(a+l)

=n-Cf. (A.18)

This completes the proof of Lemma 4.12. E
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Appendix B

Appendix: Queueing with Future

Information

B.1 Additional Proofs

B.1.1 Proof of Lemma 5.15

Proof. (Lemma 5.15) Since A > l-p, with probability one, there exists T < oo such

that the continuous-time queue length process without diversion satisfies QO(t) > 0

for all t > T. Therefore, without any diversion, all service tokens are matched with

some job after time T. By the stack interpretation, 7rNOB only diverts jobs that

would not have been served, and hence does not change the original matching of

service tokens to jobs. This prove the first claim.

By the first claim, since all subsequent service tokens are matched with a job
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after some time T, there exists some N < oo, such that

Q[k] = Q[N] + (A[k] - A[N]) - (S[k] - S[N]) - I (MWI, k), (B.1)

for all k N, where A[k] and S[k] are the cumulative numbers of arrival and service

tokens by slot k, respectively. The second claim follows by multiplying both sides

of Eq. (B.1) by , and using the fact that limk.oo !A[k] _ and limk.o- }S[k]=

+j a.s., Q[k] 0 for all k, and Q[N] < oo a.s.

B.1.2 Proof of Lemma 5.17

Proof. (Lemma 5.17)

1. Recall the point-wise diversion map, Dp (Q, k), defined in Definition 5.2. For

any initial sample path QO, let Q1 = Dp(Q 0 , m) for some m E N. It is easy

to see that, for all k > m, Q'[k] = QO[k] - 1, if and only if QO[s] 1 for all

s E {m + 1,..., k}. Repeating this argument I(M, k) times, we have that

Q[k] = Q[k +mi] = Q0 [k + mi] - I (M, k + mi), (B.2)

if any only if for all 1 E {1...., I(M, k + ml)},

Q[s] l, for all sE {mj+1,...,k+m}. (B.3)

Note that Eq. (B.3) is implied by (and in fact, equivalent to) the definition of

the mj's (Definition 5.9), namely, that for all 1 E N, QO[s] 1 for all s mi + 1.

This proves the first claim.

2. Suppose Q[k] = Q[k - 1] = 0. Since P (Q0 [t] # QO[t - 1] 1 QO[t - 1] > 0) =
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1 for all t E N (c.f., Eq. (5.2)), at least one diversion occurs on the slots

{ k - 1 + mi, k + m 1 }. If the diversion occurs on k + m1 , we are done. Sup-

pose a diversion occurs on k - 1 + i. Then QO[k + m 1 ] QO[k - 1 + m 1 ], and

hence

Q0 [k + mi] = Q[k - 1+ mj]+ 1,

which implies that a diversion must also occur on k + i, for otherwise Q[k]=

Q[k - 1] + 1 = 1 * 0. This shows that k = mi - mi for some i E N.

Now, suppose that k = mi - mi for some i E N. Let

k, = inf {k E N: Q[k]= l, and Q[t] >!l, Vt ! k}. (B.4)

Since the random walk QO is transient and the magnitude of its step size is at

most 1, it follows that k, < oo for all 1 E N a.s, and that m, = k1 , V1 E N. We have

Q[k]

= Qo[k + in1 ] - I (M, k + mi )

=Q 0 [mi] - I (M, mi)

= Qo[k.] - i

=0, (B.5)

where (a) follows from Eq. (B.2), and (b) from the fact that ki = mi. To show

that Q[k - 1] = 0, note that since k = mi - mi, an arrival must have occurred

in QO on slot mi, and hence QO[k -1 + m 1 ] = QO[k + m 1 ] - 1. Therefore, by the
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definition of mi,

Q 0 [t] -Q[k-1+mi]=(Q 0 [t]-QO[k+m1])+1>O0, Vt :k+mi,

which implies that k-1 = mi-1 -mi, and hence Q[k-1] = 0, in light of Eq. (B.5).

This proves the claim.

3. For all k E Z+, we have

Q[k] =Q [mI(M,k+mi) - n1 ] + (Q[k] - Q [MI(M,k+mi) - M1 )

= Q[k] - Q [mI(M,k+mi) - M1]

= Qo[k + m1 ] - Q0 [MI(M,k+mi)]

=0, (B.6)

where (a) follows from the second claim (c.f., Eq. (B.5)), (b) from the fact that

there is no diversion on any slot in {I (M, k + mi ) ,... , k + m 1 }, and (c) from

the fact that k + m, I (M, k + mi) and Eq. (5.14).

B.1.3 Proof of Lemma 5.19

Proof. (Lemma 5.19) Since the random walk X lives in Z+ and can take jumps of

size at most 1, it suffices to verify that

P(X[k +1]=x+1 X[k]=x 1 , minX[r]=O) =1-q,
r2!k+1
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for all x 1 E Z,. We have

P(X[k+1] =x +11X[k] =x 1 , min X[r] =0

P(X[k+1] =x,+1,min-k+1X[r]=0 X[k] =x 1 )

P (minr k+lX[r] = 0 X[k] = x 1 )

()P (X[k + 1] = x1 + 1 X[k] =xi) -P (mink+l X[r] = 0 X[k + 1] =x + 1)

P (minr.1+l X[r] = 0 X[k] = xi)

(b) h(xi + 1) q - -(B.7)
h(xi)

where

h(x)=P minX[r]=0 X[1]=X ,

and steps (a) and (b) follow from the Markov property and stationarity of X, re-

spectively. The values of {h(x) : x E Z+} satisfy the set of harmonic equations

h(x) = q-h(x+1)+(1-q)-h(x-1), x> 1, (B.8)
q -h(1)+1-q, X=0,

with the boundary condition

lim h(x) = 0. (B.9)

Solving Eqs. (B.8) and (B.9), we obtain the unique solution

h(x) = ,1 x )
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for all X E Z,. By Eq. (B.7), this implies that

P(X[k +1]=x,+1 1X[k]= xi, min X[r] = o)
\ r>k+1 l

= -
q,

q

which proves the claim.

B.1.4 Proof of Lemma 5.25

Proof. (Lemma 5.25) By the definition of F2 and the strong law of large numbers

(SLLN), we have

I (c)) = E (f (Xi Fx (a))) < a, a.s. (B.10)

Denote by Sk,l set of top I elements in {Xi : 1 i k}. By Eq. (B.10) and the fact

that Hk 5 ak a.s., there exists N > 0 such that

P 13N, s.t. min Sk,Hk F (a), Vk NI = 1,

which implies that

limsup f ({Xi : 1 < i < k}, Hk)
k-+oo

1
lim sup

k-+oo

k
±Xi
i=1

(B.11)

where the last equality follows from the SLLN. This proves our claim. 0
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- (Xi ! FX (e))
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B.1.5 Proof of Lemma 5.27

Proof. (Lemma 5.27)

We begin by stating the following fact:

Lemma B.1. Let {Xi : i E N} be i.i.d random variables taking values in R, such

that for some a,b > 0, P (X 1  x) a - exp(-b -x) for all x 0. Then

max Xi = o(k), a.s.,
1 igk

as k -+ oo.

Proof.

limP maxXi
k-oo 1 i!k

2 \.
- lnk =limP X1b k-1oo \

2 Ikk
b

lim (1 - a -exp(-2ln k))k
k-+oo

=lim 1-a( a0 k2
k-noo ~k2J

= 1. (B.12)

In other words, maxl i!k Xi , j In k a.s. as k -+ oo, which proves the claim. L

Since the IEjI's are i.i.d with E (1E 11) = AP (Proposition 5.20), we have that,

almost surely,

K-1

q/ = E IEj ~ E (IE1I) -K=
i=O

A+1-p
-(-K,

A -- p)
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by the strong law of large numbers. By Lemma B.1 and Eqs. (5.75), we have

max 1Ei = o(K), a.s., (B.14)

as K -+ oo. By Eq. (B.14) and the fact that I(M*, m') = K, we have

K-I(M"', d (m" )) =K - I (M K MX - axEIl
\ 1 isK /

(a)
< K - I (M*P, m'p) + max JEij

-max IEjI
1 i iK

=0 (K), a.s., (B.15)

as K - oo, where (a) follows from the fact that at most one diversion can occur in a

single slot, and hence I(M, k + m) I(M, k) + m for all m, k E N. Since M is feasible,

I (In, k) < - k, (B.16)

as k -+ oo. We have,

h(K) = (K - I (MD, d (m~p))) + (I (K[, m1 ) - I (M', m"))

(K - I1 (M*,I d (m"))) + - mxp - K
A+1-p

(b) p A+1-p -1 -K
A+1-p A-(1-p) '

1-A
-1 -K, a.s.,

A -(1 -p)'

as K -+ oo, where (a) follows from Eqs. (B.13) and (B.16), (b) from Eqs. (B.13) and

(B.15), which completes the proof. E
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Appendix C

Appendix: Necessity of Future

Information

C.1 Additional Proofs

C.1.1 Proof of Lemma 6.4

Proof. Recall from Eq. (6.6) that S(s, t) is defined as the difference between the

numbers of arrivals and service tokens in [s, t). Since the arrival and service tokens

processes are independent Poisson processes with rate A and 1 - p, respectively, it is

not difficult to verify that

S(st) d Z Xm, (C.1)
m=1
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where N,,, is a Poisson random variable with mean (A+1-p)(t-s), which corresponds

to the total number of events in [, s), and the Xms are i.i.d., with

{1, w.p. I (C.2)
-1, otherwise,

By Eq. (C.1), and the fact that limB,,, N8 B= A + 1 -p almost surely, Claim 1

follows from a variation of the standard Functional Law of Large Numbers (FLLN)

for the sum of bounded i.i.d. random variables. Claim 3 follows from the Weak Law

of Large Numbers applied to the sum of i.i.d. Poisson random variables, and our

assumption that WA -+ oo as A -- 1 (Eq. (6.11)). Finally, Claim 2 follows from the

Markov's inequality, in the same way as in Eq. (6.22), by noting that E(Q(O)) = q\

under a optimal stationary policy.

C.1.2 Proof of Lemma 6.5

Proof. Based on the stationarity of A and S, and the assumption that B = kwA and

qA << wA, it suffices for us to show, that for any a, b > 0, there exists -y > 0

P (S(O, awA) -bwA) > exp(-ywA), as A -+ 1. (C.3)

By definition, the distribution of S(O, t) can be written as

S(O, t) = At - D(l-p)t, (C.4)

where AXt and D(l-p)t are independent Poisson random variables with mean At and

(1 -p)t, respectively. The following lemma follows from the standard large-deviation
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principles of Poisson random variables, and its proof is omitted.

Lemma C.1. Let D, be a Poisson random variable with mean x. Then, for all

c1 > 0, there exists c2 > 0, such that

P (Dx c1x) > exp(-c 2 x), as x -- oo. (C.5)

Combining Lemma C.1 and the fact that wA -+ oo as A -+ 1, we have that there

exists 7 > 0, such that

P (D(l-p)awA (b + 2a)wA) > exp(-ywA) (C.6)

as A -+ 1. We have that

P (S(0, awA) -bwA)

IP ({AAaw, < 2awA} n {D(1 -)aw (b + 2a)wA})

=P (AAaw, < 2awA) P (D(l-p)awA 2 (b + 2a)wA)

(b)
> P (AxawX < 2AawA) P (D(_p)aw, (b + 2a)wA)

(c) 1
> P (D(l-p)awA (b + 2a)wA)

(d)
>1 exp(--YWA), (C.7)

as A -+ 1, where step (a) follows from the independence between AAaw, and D(1-p)awA,

(b) from the fact that A < 1, (c) from the Markov's inequality, and (d) from Eq. (C.6).

This proves Eq. (6.5), and hence Lemma 6.5. F1
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C.1.3 Proof of Lemma 6.6

Proof. For Claim 1, observe that each of the event concerns only the behavior of

the arrival and service token processes over an interval, and that these intervals are

disjoint from each other. Claim 1 follows by noting that both A and S are Poisson

processes and hence memoriless. For Claim 2, because the policy has access to a

lookahead window of length wA, the queue length at time t is hence .FttvA measurable,

where F is the natural filtration induced by the input processes. The claim follows

again from the memoryless property of Poisson processes. Claim 3 follows from the

same arguments as for Claim 2.

C.1.4 Proof of Lemma 6.8

Proof. Consider the sequence of optimal stationary policies, {7rX}. Let # be defined

as in Eq. (6.28). Fix q5> 0, and let

(a)
K=U 3 + \w = (k + #+ 2)w\, (C.8)

where step (a) follows from the fact that U3 = B + 2wA and B = kwA. The main idea

for the proof is based on the following observation: conditional on nEi, the queue

length process, Q(t), would have reached zero before time K, even if no diversion

had been made in [0, K) (illustrated in Figure 6-2). Therefore, each diversion made

in [U 1, U2) will necessarily lead to a waste service token in [0, K), and hence

P(J(K) T TB n5 5S) P(Y TBJ n5 E9). (C.9)
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We next give a lower bound on the above probability, as follows:

IP(J(K)rB 1T1nE 2)

2P (J(K) rB, n=3 jI Ei n.62)

=P (J(K) rB nj 1L.) P (n A I EI n.62)

(a) B E)P(n5 jin8 2 )

=P (Y ! rB, n .Fl j 1i n 62)

=P (g) P (Y rB, E3fnl 4 11 n E2)

>P (E4) (P (Y T TB IE n E2) + P ( 3 I n,62) + P (4 1 n6 2 )-2)

P (4s) (P (Y T rB IE, n. 2) + P ( 3 11 n E2) +

=P (6s) (P (Y -rB 1

IP(S 4)+ P (E1 n 2 ) - 1
P E 2)

n 2) + P (E3) + E)

where step (a) follows from Eq. (C.9), and (b) and (c) from the independence between

95 and E1 n E2, and between E3 and E1 n 82, respectively (Lemma 6.6). We have also

used the inequality that P (A n B) I P (A) + P(B) -1, for any events A and B.

By Claim 3 of Lemma 6.4, we have that

lim P (E3) = lim P (E4) = 1.
A-+I \-+I

(C.11)

Combing the assumption (Eqs. (6.35))

liminf P (Y rB I E1 n E2 ) =q>O. (C.12)
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with Eqs. (C.10) and (C.11), we have that there exists A E (0, 1), such that

P (J(K) rB E1 n,62) P (&5) P (Y rB 1 1 nE 2 )

P (4S) q,

for all A e (I, 1). We have that

E(J(K)) rB-P(J(K) rB)

TrB -P (J(K) rB, E n E2 )

=TB -P(J(K) Tj TB I E1 n E2) P (l n 2 )

(a)
> BP (E) P (E n E2 )

(b)

>BP(E5 )

c)

for some -y > 0, as A -+

1 and 2 of Lemma 6.4

Lemma 6.6), i.e., that

1, where step (a) follows from Eq. (C.13), (b) from Claims

and the independence of the events E1 and E2 (Claim 1 of

(C.15)

and (c) from Lemma 6.5. This proves Lemma 6.8, by setting a = k + < + 2. L
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Appendix D

Appendix: Decentralized Partial

Resource Pooling

D.1 Additional Proofs

D.1.1 Proposition 7.9

Proof. Because each Markov chain Wi(-) is ergodic and has a finite number of states,

we have that Wi(t) converges to its steady-state distribution as t -+ 00, uniformly

across all states. In particular, there exists 9> 0 such that

sup lid (Wj(w, s)) - irK c/2, Vs !. (D.1)
WE{1,...,M}

Fix s 9. Since all chains are independent, by the Chernoff bound, we have that

there exist w, and w2 > 0, such that for all w E {1, ... M},

sup P (Ihw(W(wo, s) - 7rl E) w, exp(-w 2n), Vn E N. (D.2)
WOE{1,...,M}n
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Applying the union bound to the above equation over all states yields that

sup P (11h (W(wo, s)) -w r|, ! c)
WOE{1,...,M}n

< sup P( sup Ih,(W(wo,s)-7rw| ce
WoE{1,...,M}n WE{1,...,W}

M

< sup E P (Ihw(W(wo, s) - 7rw Ic)
WOE{1,...,M}n W=1

<Mw1 exp(-w 2n), Vn E N, (D.3)

which proves our claim, by setting -y1 = Mwi, and 72 = w 2 - l

D.1.2 Lemma 7.8

Proof. For all n E N, we can write Xan as the sum of n i.i.d. Poisson random variables

{Y: 1< j n}
n

Xan = , Y, (D.4)
j=1

where E(Y) = a. From the basic theory of large deviations for the sum of i.i.d. Pois-

son random variables, we have that, for all -y > a

P ( Y > )yn exp(-a(7)n), Vn E N, (D.5)
\j=1/

where la(-) is the Legendre transform of the moment-generating-function of Y, which

is a Poisson distribution with mean a,

l(y) = y(ln(y/a) - 1) + a. (D.6)
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Note that for all a > 0, l(-y) > 0 for all 'y> 0, and its derivative is given by

d = In 2, (D.7)
dTy a

which is greater than zero for all -t > a and strictly increasing in -y. We hence

conclude that, for all ~ > a, there exists c > 0, so that

1-(X) ! c-Y, V-Y > ~7, (D.8)

which, when substited into Eq. (D.5), implies that

P EY >yn : exp (-cyn), V7 2 ~, n EN. (D.9)
\j=1/

Fix x #n. By Eqs. (D.9) and (D.4), where we let ~ = /, and y = x/n = #+ /3n,

we have that there exists c > 0, so that

P (Xa x)

P (Y + x(j=1
=P FY> 0 + x n

(a) / / x -I n
< exp -C + n)

exp (-cx) Vx On, n E N. (D.10)

where step (a) follows from Eq. (D.9), and the fact that /3+ 0 # > a. This proves

the claim in Eq. (7.30). Eq. (7.31) follows from Eq. (7.30) directly via an elementary

calculation. E
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D.1.3 Lemma 7.11

Proof. Let Ni be the number of events occurring to chain i during [0, T1). Since all

W(-) are uniformized, we have that the Nj are i.i.d. Poisson random variables with

mean t.

Fix j E Z, and wO E S,. Let f3 = P(N1 = j). Denote by C,, c {1,..., n} the set

of chains that:

1. are in state w at time 0, and

2. made j state transitions by time t,

and let IC,WI be its cardinality. Note that there are nh.(wo) chains in state w at

0, and each of them has a probability of fj to have made j state transitions. Based

on this reasoning, we know that ICj,,'I is a binomial random variable with parameter

(nh,(wo), fj). Furthermore, since wO E SE, we have that

Ihw(wo) - rI c. (D.11)

We conclude that, by the Chernoff bound, for any el > 0, there exists a2 , so that

P ||Cj',. - 7rwfjnl> eff + el) exp(-a2n), Vn E N, j E {f . j*}, W E {f .. ,W}

(D.12)

Recall that P is the transition matrix for the embedded discrete-time Markov

chain of Wi. By the definition of Cj,,, for all i E Cjw, Wi(t) is distributed according

to

P (Wi(t) = X) = (P)W,,, (D.13)

where (Pi),, is the entry on the wth row and xth column of the matrix Pi, and

Wi(t) is independent from all other chains. Let Djw,, be the number of chains in
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Cj,. whose state at time t is x, i.e.,

Dj,,, = E I(W(t) = x). (D.14)
iEc,1

We have, from Eq. (D.13), that for each realization of ICpwA, Djw,, has a binomial

distribution with parameters (jCsj,w, (P)w,x). Combining this fact with Eq. (D.12),

we can show, via a Chernoff bound, that for all e, E2 > 0 and wO E SE, there exists

a 3 > 0, so that

P 1Dj,, - 7rwfj(Pj)wn > Cfj(Pj)wx + 62 W(0) = wo) exp(-a 3n), (D.15)

for all n EN, j E {1, ... , j*}, and x,w E {1,..., M}. Letting E2 = c, and using the fact

that f3 (P3)w,x 1, Eq. (D.15) can be further simplified to yield that, for all E > 0

and wO E S,, there exist a3 > 0, so that

P 1 Dj,w,, - 7rafj (Pi)W,xnl > 2EI W(O) = wo) : exp(-aan), (D.16)

We next argue that, with high probability, most chains have no more than a

certain number of transitions. Let

= min{j : P(N 1 > j) x/10}. (D.17)

Since the Nis are i.i.d. Poisson random variables, by the Chernoff bound, there exists

9 > 0, such that

P ( I(Nj j*) (2X/10)n exp(-On), Vn E N. (D.18)
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or, equivalently, that

p E Z Ci,w (2X/10)n )exp(-n),
\ W=1 j~j*+1

We have that

1n
hv(W(t)) = I(Wi(t) = v)

n i=1

- E Dw,,,
n w=1 j o

+ -
+- E E
(n W=1j2j*+1

Because EM 1

that

Z3 3 *+1 Dw,v, Ywf=l Ej2!*+ 1 Cw,j, by Eq. (D.19) and (D.20), we have

( M j*

nW=1 j=O
DWVj ) 2X/10) exp(-On), Vn E N. (D.21)

We now combine Eq. (D.21) and (D.16) via the union bound, over all choices of w
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Vn E N. (D.19)

(D.20)(1 M '

n W=1 j=0

p ( hv(W (wo, t)) -



and j. Using the fact that f3 (Pi),, < 1, we have that, for all E > 0 and wO E SE,

- (E j* 7r fj(Pj) : 2X/ 10 + 2M
w=1 j=1 WI*

(a) W M P
< P hv(W(wo, t)) - - z z

(I ~ (n =1j=1

(j* +1)E)

D wj ) 2X/10)

- E rWfjPi)
W=1 j=1

(1 M j'
- - EDw,,j

n W= I j=O v)

2M(j*+ 1)E W(0) = W)

2X/10)

(c)
< exp(-On) + M

vi exp(-v 2n),

(j* + 1) exp (-a 3 n)

(D.22)

where vi = 1 + M(j* + 1) and v2 = min{O,a 3 }. Step (a) follows from the triangle

inequality, (b) from the union bound, and (c) from Eqs. (D.16) and (D.21).

Recall that 7r is the steady-state distribution for W 1, and hence we have, for all

V E {1, ... ,M} and j E Z,, that

M
E 7rw(Pj)w,v = 7rv,
W=1

(D.23)
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1 M j*

Z Z Dwjv= )

(b)
< P (hv(W (wo,7 t))

M j* 1
+ E E P -Dw,v,j - rf(s.,2c W(O) = WO)

w=1 j=1 (In ) rfjpE~

P (Ihv(W (woI t))



which yields that

M j* j*

ZE 7refj(Pj)w, = Z f3
w=1j=O j=O

=Irv Z fj = wrP (N1  j*)
j=1

(a)
E [(1 - X/10)7rv , rv], I (D.24)

where step (a) follows from the definition of j*, in Eq. (D.17). From Eq. (D.22) and

(D.24), we have that

P (Ihv(W(wo, t)) - rvIl 3 x/10 + 2M(j* + 1)E)

+P((E E 7rwfj(Pi)w,) -lro x/1o
(W=1 j=1

<vi exp(-v 2n) + exp(-On)

< max{vi, 1} exp(- min{O, v2 }n). (D.25)

Applying a union bound to Eq. (D.25) over all choices of v, and setting X = E, we

conclude that, for all c > 0, there exists vi, v2 and 0 > 0, so that

P (llh(W(wo, t)) - irKj. [3/10 + 2M(j* + 1)]E)

M
ZIP (Kh(W(woI
v=1

t)) - 7rvl [3/10 + 2M(j* + 1)]E)

Mmax{vi, 1} exp(-min{0, v2 }n), (D.26)

for all n E N. This proves our claim, by letting a = M max{vi, 1}, b = min{0, v2}, and
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E E 7rW fj(Pi
W=1 j=1

m
Z 7rv(Pj )W,V

W=1

<P (Ihv(W (wo, It)) - )., WI)I 2X/10 + 2M(j* + 1))



c= 3/10+2M(j*+1). E

D.1.4 Lemma 7.13

Proof. Because the Markov chains {Wi(-)} are time-homogeneous, it suffices to prove

our claim for k = 1. Fixwo E {1,..., M}n. Let SE ={wE{1,..., M}n:11h(w) - wrI e},

as defined as in Eq. (7.33). We have that, for all E (0, 1),

P( ~W(tk-1) = wo)

=1 -P sup Ijh(W(wo,t)) -7rI.: 6IW(tkl)=wo
\tE[B1 ,B1 +B2 )

(1-P(ah(W(woB)-7rjj. s 6) inf P( sup Ih(W(t) - irj.K 6 W(B1) =w
SW'ESV \tE[Bi,Bi+B 2 )

S(1 - P (jjh(W(wo, B1) - 7rjj.: 6))

+ 1- inf P( sup h(W(t) -7rj.I 61 W(B) = w'
WESV \tE[BI,BI+B2)//

=P (Ijh(W(wo, B 1 ) - wrII. > J) + sup P sup I|h(W(t) - irjj.> J W(B 1 ) =w'
w'Estb \tE[BI,Bi+B 2 )

(D.27)

where step (a) follows from the Markov properties of the Wi. By Proposition 7.10,

for any 6 > 0, there exist , 1 and 02 > 0, so that

sup P ( sup Ih(W(t) - 7r|. > 5 1W(B1) = w'
w'ESV tE[B1 ,B1 +B 2 )

sup P sup Ih(W(t)-7r|.I>J W(0)=w'
W'ESt 6 \tE[O,B 2 )

</#1 exp(-2n), Vn EN, (D.28)
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where in step (a) we used the time-homogeneity of the Markov chains {Wi(-)}. By

Proposition 7.9, for all and 6 > 0, there exists B1,y 1 and y2, so that for all B1 B1,

(D.29)

Substituting Eqs. (D.28) and (D.29) into Eq. (D.27), we have that, for all B2 and

6 > 0, there exists 0, 1, #2,71 and 72 > 0, so that

P( %W(tk-1)=WO)

P (Ih(W(wo, B1) -7r||. > 6) + sup P
W'ESC

6

/31 exp(-02n) + 71 exp(-72n),

which holds for all wo. This

Vn E N,

sup |Ih(W(t) -7r||. > 5 W(B1) = w'
tE[B1,(D)

(D.30)

proves our claim, by letting (1 = max{# 1, 'i} and

(2 = min{2, y2}.

Lemma D.1. For all j E Z+, we have that

(QM (t) QM (0) = j, T0  t) gMW.

For the case of To > t, we claim that, for all t 0,

P (QM(t) 1 Q'(0) = j, To > t) IP (j + At 1) ,

which follows from the fact that, by definition,

P(QM(t) At+ijQM(O)=j)=i1, vt

Vl E Z+,

, a.s.
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(D.31)

(D.32)

(D.33)

P (Ilh(W(wo, B1) -grll. > () s y1exp(-7y2n), Vn EN.



We have that, for all t 0

P (To > tIQM(O) = an)

=P inf A, - Ss 8 -an

P (At - St -an)

=P( XP' - Yt) -an), (D.34)

where the X r's and Yts are independent Poisson random variables, with mean tp'

and t, respectively. In particular, E(Xtp' - Yt) = -(1 - p')t. Since p' < 1, by the

Chernoff bound, we have, from Eq. (D.34), that for all b > a/(1 - p'), there exists

> 0, so that

P (To > b I QM(O) = an) p ( (X -Yb)> an) exp(-n), (D.35)

for all n E N.

We have that

P (QM (b) i QM (0) = an)

1P (QM(b) 11 QM(O) = an, To b) P (To b I QM(O) = an)

+ P (QM(b) 11 QM(O) an, To > b) P (To> b QM(O) = an)

(a)(QM l) (QM M(:) (Q > 1) + P (QM(b) 11 QM(O) = an, To > b) P (To > b IQM(O) =an)

P (QM > 1) + P (Ab an + 1) P (To > b I QM( 0 ) = an) , (D.36)

where steps (a) and (b) follow from Lemma D.1 and Eq. (D.32), respectively. For

the second term in Eq. (D.36), we fix b = 2a/(1 - p') > a. There exist #, 01 and 62 > 0,
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so that for all n e N,

P (Ab an + l)P (To > b I QM(O) = an)
(a)
< P (Ab an + 1) exp(-V@n)

=P ((Ab 2bp'n+ l - (2bp'- a) n) exp(-Vn)

I(1 (2bp' - a)n) + I (1> (2bp' - a)n) 91 exp(-9 21)) exp(- n)

ci exp(-c 2 1) Vl E Z+, (D.37)

where ci = max{1,0 1} and c2 = min{/(bp' - a),6 2}, where step (a) follows from

Eq. (D.34), and (b) from Lemma 7.8, and the fact that Ab is a Poisson random

variable with mean bp. Combining Eqs. (D.36) and (D.37), and the fact that Q" is a

geometric random variable and admits an exponential bound on its tail probabilities,

we have that there exist hi, h2 > 0, such that

P (QM (b) lIQ"(0) = an)

P (Qm 1) + ci exp(-c 21)

<hi exp(-h 2l) + c1 exp (-c 2 1)

< max{hi, ci} exp( - min{h 2 ,c 2 }l), VlE Z+. (D.38)

This proves our claim, by letting ui = max{hi, c1 } and u2 = min{h 2, c2 }. II

D.1.5 Lemma D.1

Proof. It is not difficult to show that, for all integers x and y that satisfy x y > 0,

(Q M (t) QM () =x) (Q (t)IQ M (0) = y), Vt 0. (D.39)
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By initializing QM(O) with the steady distribution, QM, and letting y = 0, we have

that, for all t > 0,

P(QM > l)
00

= P (Q M (t) 1 QM (O) = x) P (QM = x)
X=O
00

IP (QM(t) fQM (O) = 0)P(Q' = x)
X=O

=P(QM(t) MIQM(o) = ) E Z+. (D.40)

Fix j E Z.. Since QM(-) is a time-homogeneous (strong) Markov process and To

a stopping time, To is independent of the evolution of QM(t) = QM(To + t), t > 0.

Therefore, we have that

(QM(t) I QM (0) = j, T0  t) d (Q(T,) I Q(0) = 0), (D.41)

where To be a random variable, independent of the evolution of QM(-), with distri-

bution To' (t - To j To t). Combing Eqs. (D.40) and (D.41), we have that, for all

t 0,

P (QM (t) QM (0) = j, To t)

(9 (QMa') 11 QM(O) = 0)

=f P (QM(s) 1 QM(O) =0) IT; (ds)

(W -
< f P (Q' 1) pIT(ds)

=P (QM 1), Vl E Z+, (D.42)
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where p,; is the probability measure induced by To. Step (a) follows from Eq. (D.41),

(b) from the independence between To and the evolution of QM(-), and (c) from

Eq. (D.40). This proves our claim.
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