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Abstract

High harmonic generation (HHG) is a fascinating strong-field physics phenomenon
that occurs when a laser pulse with a moderate intensity interacts with atoms and
partially ionizes the atoms. A series of harmonics are generated at similar efficiencies
and extend to a few tenth, even thousandth, order harmonics at the extreme
ultraviolet (EUV) and soft X-ray range. Such an unprecedented broadband and
coherent spectrum thus has many novel applications, one of which is to build tabletop
coherent EUV and soft X-ray sources.

The development of EUV and soft X-ray lasers is very challenging because of the
strong absorption of these wavelengths in almost all materials and the lack of
appropriate reflection optics. So far, bright coherent EUV and soft X-ray sources are
only available at several large-scale facilities, like free-electron lasers. However, the
demands for coherent EUV sources is growing due to the advances in atomic physics,
chemistry, and material science. Therefore, lab-scale EUV sources are highly desirable
for these novel applications and research opportunities, and HHG emerges as a
promising technology toward this goal.

This thesis will present my PhD work on HHG. It includes the numerical models
developed to simulate HHG either on single-atom scale or for a macroscopic medium,
the modification to the current theoretical model, the analysis of the influence of
plasma defocusing on HHG, the study of the wavelength scaling of HHG efficiency and
cutoff with visible and near-infrared (IR) lasers, and the generation of multi-mJ
ultrashort mid-IR (2.6 mJ, 39 fs, and 2 tm central wavelength) pulses at kHz
repetition rate in the aim of extending the cutoff of HHG. With the kHz mid-IR pulses,
an EUV source providing up to 108 photons/sec at 160 eV has been demonstrated,
and photons in the water window range have also been detected. At the end, a chapter
will summarize these research works and propose some possible future directions.

Thesis Supervisor: Franz X. Kdrtner

Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction to High Harmonic

Generation

1.1 High Harmonic Generation

The invention of lasers has made it possible to drive the polarization in materials with an

intense electric field to which the response of materials is no longer linear, and therefore

nonlinear optics has emerged as an essential research field. To describe nonlinear optical

phenomena, one approach is to expand the polarization P driven by the driver field E by

the following expansion [1]:

P = XE+X2 E 2 + X3E' +-.(1.1)

The above expansion has successfully explained many nonlinear optical phenomena, like

second harmonic generation [2], self focusing [3], optical parametric amplification [4], etc.

The expansion converges and is valid in the perturbative regime in which the applying field

E is smaller than some characteristic field strength Ea in the order of the internal Coulomb

field between atoms and electrons, and the strength of the q'h order nonlinear polarization

should scale as (E/E,)'y. However, as the laser technology advances, particularly with the

advent of high-energy ultrashort pulse generation techniques, the laser field strength has
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reached the internal field E, around 101~106 W/cm2 , and Eq. (1.1) does not always

converge. Nonlinear optics has come to a new regime called the strong field regime.

1 E-3 ....... KAIST 800+400 He [5]
0 KAIST400He[5

1E-4 A KAIST 800 He [5
KAIST 800+400 He [6]

1E-5 . Lund 800 Ar [71
P RIKEN 800 Ar [8)

;rJ_ I1E-4 + RIKEN 800 Xe [8]
C E RIKEN 800 Ne [8]

1E-7 4 RIKEN 800 He [8]
E* MIT 400 No [9]

I 1E-8 e MIT 400 He [9]
I u MIT 800 Ne [9]
a) 1E-9 * MIT 800 He [9

A RIKEN 1550 Ne [10]
. IE-10 v JILA 1300 Ar [11
0 4 JILA 1300 Ne [11]

IE-11 W JILA 2000 He [12]

10 100 1C0

Photon Energy (eV)

Fig. 1-1 HHG efficiencies and spectra from various driver wavelengths and gas media [5-
8]. The names are the institutes where the experiments were done, the numbers are the
driver wavelengths in nm, and the chemical formulas are the gas species used in the
experiments.

There are several interesting strong-field phenomena, and a fascinating one is high

harmonic generation (HHG). When a laser pulse is focused on a gas target with an intensity

that is comparable to the internal atomic field on the valence electrons, the gas atoms can

coherently emit a series of very high-order odd harmonics of the laser pulse at similar

conversion efficiencies, and this phenomenon is named as HHG. Fig. 1-1 shows some

HHG spectra from different gases with different driver wavelengths, and several interesting

features can be observed. First, unlike the perturbative nonlinear optics in which the

harmonic generation efficiency decreases rapidly as the harmonic order increases, the HHG

spectrum shows a very wide plateau where the harmonic efficiencies are in the same order,

and ends sharply at some cutoff photon energy beyond which the harmonic efficiency

drops to zero quickly. More specifically, in Fig. 1-1, the harmonic spectra beyond 80 eV
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clearly illustrates the plateaus and the cutoffs because it takes stronger fields to generate

such high harmonics and drives the process deeper in the strong field regime. Below 30 eV,

however, the harmonics from Xe are generated with a lower field strength that is more

related to the perturbative regime, so we can see the harmonic efficiencies decrease

significantly as the harmonic order increases, similar to the perturbative nonlinear optical

processes. Empirically, it is found that the cutoffs can be predicted by the following

formula [13]

E.,,t ~ I, +3 Up , (1.2)

where Ecof is the cutoff photon energy; Jp is the ionization potential of the atom;

u= e 2 EO (1.3)
" 4mo4

is the ponderomotive energy, i.e. the average kinetic energy (K.E.) a charged particle of

charge e and mass m can acquire in a sinusoidal electric field with amplitude Eo and

frequency coo. This cutoff energy formula will be explained in the discussion of the HHG

mechanism. The HHG spectra only show odd harmonics because of the inversion

symmetry of the gas media, and HHG only occurs with linear polarized driver pulses and

disappears with circular or elliptical polarization [14].

Although the more quantitative physics about HHG will be discussed in Chapter 2, we

briefly introduce the elegant semi-classical model of HHG here: the three-step-model

(TSM) [15]. The strong electric field of the driver pulse first distorts the atomic potential

and induces a potential barrier that can be tunneled through by the electron in the outer

most orbital with a binding energy Ip. After tunneling through the barrier, the electron is

ionized and immediately accelerated by the same intense electric field to propagate around

the vicinity of the parent atom. Because the electric field is sinusoidal, after about half a

laser cycle, some of the ionized electrons will come back to the parent atom with K.E. Ek.
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Depending on the cross-section, the electron has a chance to recombine with the parent

atom and emit a photon with energy Ek+Ip, and this is the semi-classical picture of HHG.

Therefore, the TSM consists of the following three steps: ionization, propagation, and

recombination, as summarized in Fig. 1-2.

Fig. 1-2 A schematic illustration of the TSM from [16]. (a) An intense femtosecond pulse
(yellow curve) extracts an electron wave packet by partially ionizing an atom. (b)-(c) The
electron wave packet is pulled away from the atom by the same pulse and then driven back
after a fraction of the laser oscillation cycle. (d) When the returning electron recollides with
the atom, it has a chance to recombine with the atom and emit a high-energy photon.

The K.E. Ek has the same order of magnitude as the ponderomotive energy U,. If we

solve the classical equations of motion of a charged particle in a sinusoidal electric field

and impose the following initial and boundary conditions:

1. The initial and the final positions of the particle must be zero, i.e. at the parent atom;

2. The initial velocity of the particle is zero due to the tunneling ionization;

then, we can find that the maximal returning K.E. is 3.17 U,. Therefore, according to the

TSM, the maximal photon energy emitted by HHG, which is also the cutoff of the HHG

spectrum, should be

EOff =1, +3.17U,, (1.4)
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which agrees with the experimental spectra well. If the electric field is not linearly

polarized, the ionized electron will go astray and miss the parent atom, so the

recombination will not happen. This explains why HHG cannot be observed with circular

or elliptical polarization. Beyond the semi-classical description of the TSM, a quantum

mechanical description of HHG can be found in Ref. [17], which shows the coherence and

the plateau structure of the HHG spectrum.

1.2 Applications of High Harmonic Generation

As shown in Fig. 1-1, the HHG spectrum can cover the entire extreme ultraviolet (EUV)

range (10~124 eV), so it is a good candidate for coherent EUV sources. Compared to the

large facilities of coherent EUV sources, like the synchrotron or free electron lasers (FEL),

the compact size of the HHG experimental apparatus that can fit into a normal size

laboratory as a tabletop EUV coherent source is an important advantage. Because of the

generation process, the high harmonics inherit the temporal features and the good spatial

quality from the driver laser pulses. The -1 0-fs pulse duration and the timing jitter that can

be well controlled at the driving source provide excellent temporal resolution and stability

that are difficult to achieve otherwise. The high spatial quality provides good focusing

capability to achieve high brightness [7]. Despite these advantages, the problem of a HHG-

based EUV source is the efficiency or the total photon flux. As shown in Fig. 1-1, the

efficiency is ~10-4 around 50 eV, and ~108 around 100 eV. The low efficiency limits the

applications for such a source. One combinational way to achieve high quality and high

flux is to seed other EUV sources with the HHG beam [7]. Therefore, improving the

driving source and phase-matching condition is an important issue, particularly for the

higher photon energy.
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Because of the unprecedented broad and coherent spectrum, HHG can generate very

short pulses and has started the experimental attosecond research that explores the

electronic dynamics in molecules [18]. The HHG spectrum with separated harmonics

actually corresponds to a pulse train with a repetition rate equal to a half-cycle of the driver

laser wavelength due to the odd harmonics. The applications of such dense pulse trains are

limited, and therefore an isolated attosecond pulse is desired. An isolated attosecond pulse

can be generated by driving the HHG process with few-cycle pulses [18] and applying

various gating techniques, like polarization gating [19], double optical gating [20], or

ionization gating [21]. With these gating methods, isolated attosecond pulses can be

generated with less demanding laser systems. So far, isolated attosecond pulses with pulse

durations as short as 80 as have been demonstrated [18], and many exciting attosecond

experiments have been conducted [22-24]. The current difficulty is the limited pulse energy

(-nJ). Generating VJ-level isolated attosecond pulses is one of the most important tasks in

the attosecond community, which will make the conventional pump-probe technique

possible in attosecond experiments [21], and a 1.3-tJ 500-as isolated pulse has just been

reported recently [25].

The HHG process itself also reveals a lot of information about the electronic orbitals

in the HHG spectrum that makes HHG spectroscopy a powerful tool to study atomic or

molecular structures. A famous example is the observation of the Cooper minimum of Ar

[26] and various molecules [27]. The Cooper minimum is a minimum of the

photoionization cross-section due to the destructive interference between the bound-state

and the continuum-state electron wave functions that causes a dip on the HHG spectrum.

The observations of Cooper minima in HHG spectra from various molecules can help

theorists develop more accurate models of the molecules. Another interesting HHG
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spectroscopy finding is the observation of the giant resonance of Xe HHG spectrum that

suggests HHG sometimes can be a multi-electron process rather than single-active-electron

process [28]. The orbital structure of diatomic molecules can even be tomographically

reconstructed by the HHG spectra [29]. Therefore, HHG not only serves as a novel EUV

source for cutting-edge research, the process itself also contains abundant interesting

physics to explore.

1.3 About This Thesis

This PhD work is to pursue a better understanding of HHG for the development of coherent

EUV or soft X-ray sources, and consists of both theoretical and experimental work. The

theoretical work can be further divided into the study of the microscopic and the

macroscopic phenomena of HHG respectively. Chapter 2 discusses the microscopic part

that considers how to model HHG from one single atom. The wavelength scaling of the

single-atom efficiency (SE) is discussed in depth because our experiment on the

wavelength scaling of the SE has led to a modification of current models. Chapter 3 deals

with the macroscopic part that considers the coherent summation of the high harmonics

(HH) emitted from each individual atoms. The impact of plasma defocusing is analyzed

and emphasized as a dominant factor influencing HHG efficiency. An efficient algorithm

for fully dimensional simulation of HHG is also discussed in Chapter 3. Chapter 4 and

Chapter 5 present my experimental works. Chapter 4 shows the experiments done with

Ti:sapphire-based laser systems, including the second harmonic of the Ti:sapphire

wavelength, and the optical parametric amplification (OPA) system built on it. It studies

the wavelength scaling of HHG efficiency and cutoff driven by wavelengths between 400

nm and 800 nm, which has been less explored before. Chapter 5 is devoted to our mid-

infrared (IR) optical parametric chirped pulse amplification (OPCPA) system and its HHG

results. Although mid-IR driver wavelength can extend the cutoff to the water window
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range (284-543 eV) and provide a number of interesting research opportunities, mid-IR

ultrashort pulse generation is complicated and is actually an ongoing research topic.

Chapter 6 is the conclusion of the thesis.
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Chapter 2

Microscopic Picture of High Harmonic

Generation

In this chapter, the fundamental mechanism of HHG on single atom scale is investigated,

and some numerical models are introduced to help understand and analyze HHG. An

approach using the Schr6dinger equation is considered the most direct way to study atomic

physics phenomena, including HHG. Therefore, in Section 2.1, an efficient numerical

algorithm to solve the time-dependent Schr~dinger equation (TDSE) is developed.

Although TDSE provides a fundamental and direct approach to HHG, the computation is

time-consuming, and some physics insight becomes obscured behind the numerical results.

A simplified model based on the strong-field approximation (SFA), called three-step model

(TSM), is thus introduced in Section 2.2 as a convenient substitute of the TDSE approach.

As the names suggests, TSM divides the HHG process into three steps and makes the

physics more transparent. The conversion efficiency of HHG has always been an important

topic in the study of HHG, in particular, how it changes with different driver wavelengths.

Section 2.3 discusses the wavelength scaling of HHG single-atom efficiency (SE). Section

2.4 extends the discussion of the wavelength scaling of SE to shorter driver wavelengths

for which the SFA is less applicable. A modified TSM is thus proposed to explain the
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abnormal wavelength scaling observed in our experiment. The modified TSM also solves a

divergence problem due to the conflict between the ionization model and the TSM. Section

2.5 concludes the microscopic physics of HHG discussed in this chapter.

2.1 Time-Dependent Schrodinger Equation Simulation

HHG results from the interaction between a molecule and strong laser field, so the process

should be studied by TDSE. Solving the Schr6dinger equation of a multi-electron system

has always been challenging for current computation system, and single-active electron

(SAE) approximation is thus a good start for our task: we assume only the outermost

electron is involved in the HHG process while the other electrons together with the nucleus

form an effective potential V(r), where r is the position of the outermost electron. Then,

the TDSE can be written in atomic units as:

i aI T)= (HO + Hj) T); (2.1)
at

HO= -V 2 +V(r); (2.2)
2

H, =-A(t)-p. (2.3)

Here IT) is the wave function of the active electron; H is the molecular Hamiltonian

without the laser field; H is the Hamiltonian describing the laser-electron interaction under

velocity gauge and dipole approximation; A(t) is the vector potential of the driver electric

field; p is the momentum operator. Since only linear polarized field is considered, and the

target atom for HHG is usually spherically symmetric, we can assume A(t) = iA(t) and

V(r)=V(r), and employ the azimuthal symmetry. The Hamiltonians then become:

HO =- I a 2 a)_ 2 ]+V(r); (2.4)
2 r 2 ar r r 2

H =-A(t)p =iA() ao0 sinG 0 (2.5)
I t)( Co 0 r- r 00)
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L2 is the angular momentum operator that, when multiplied on a spherical harmonic

function Y/", fulfills the following relation:

2Y|" = 1(1 +1)Y' .(2.6)

The wave function can be expanded by the eigen-vectors of Ho as

'T)=I Ic,, (t) #,exp(-o~) (2.5)
1-0 n-1

where

HO 1#nI)= Wl 1 ni); (2.6)

Kr|In,)=r-'un,(r)Y (0); (2.7)

cn,(t) is the time-varying coefficient of each eigen-state component in the expansion of the

wave function; wol is the eigen-value of the eigen-vector I4o,) of Ho; 'MAX is the largest

angular momentum considered in the computation; n1 is number of the eigen-states with

angular momentum number / included in the calculation. Because the velocity gauge

usually requires a much smaller lMAx than the length gauge to reach a converged result [30],

the velocity gauge for H is employed here. By substituting Eq. (2.7) into Eq. (2.6), we

reach the following eigen-function problem for uni(r):

1 02 1 Q+ 1 28- 2 + 2 + V(r) Un1 (r)= COWUnI (r), (2.8)
2 Or 2rI

where n distinguishes different eigen-functions with the same angular momentum number 1.

n is similar to the conventional principal quantum number although here it is allowed to be

less than 1 due to our convention. We also demand that

u,,u,,,,dr = 633,8', . (2.9)

Next we need to write down the equation of motion, i.e. the differential equations for

Cnl(t). By left-multiplying exp(iw,,t)#0, I to Eq. (2.1), we have
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d 'A "'

_ Cn, It) c,,,, (t) ex p (- O' -on, - t ,) (o,,| H, I O,,, ).(2.10 )
dtl= n'=

These are simply first-order coupled equations with matrix elements K#n1 H, q#,-). Because

of azimuthal symmetry, the magnetic quantum number is always 0, and the spherical

harmonics Y,' become Legendre polynomials with a constant pre-factor. With the help of

the recursive relations and the orthogonality of Legendre polynomials we can derive the

following expression for the matrix elements in Eq. (2.10):

(onI| H, I,,) )= iA (t) D ,, (2.11)

where

D,,, I -lu cr + l'5 u - u11r + l'u/

(2.12)

and

C1 (2.13)
(21+ 1)(21'+ 1)

are independent of A(t). Then,

cn, It) A(t )Dnl, ,,.ex p [_(- C~n - oj,/ ) t] CnT (t ). .4
cit 1±1n'=1

Eq. (2.14) can be solved by the Runge-Kutta method. The eigen-states U will not be called

during the computation, which is therefore efficient for both memory and speed.

An absorptive boundary must be implemented at some large radius to account for the

ionization effect that leads to a fraction of the wave function leaking away to infinity. Since

the Schr6dinger equation preserves the norm of the wave function, an artificial boundary

absorber should be implemented. In the TDSE simulation presented here, a boundary

absorber in the following form
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F(r) L+ exp r-aR (2.15)

is employed. R is the boundary of the radial coordinate, and a (<1) and # are parameters to

adjust for correct absorbing (or ionizing) behavior without affecting the wave function near

the nucleus. At the end of every computation loop calculating Eq. (2.14), the computed

wave function is multiplied by Eq. (2.15). Although this step seems involved with the

detail structure of the wave function, we can use the eigen-states unl and the boundary

absorber to construct one single matrix that maps the coefficients c,,l to the corresponding

wave function, puts on the boundary absorber, and then converts it back to a new set of

coefficient c',. The dimension of this matrix is given by the number of co,'s considered,

and no eigen-state u,, is needed during the calculation of Eq. (2.14). Fig. 2-1 (a) shows the

boundary absorber used for Ar HHG simulation and the ground state wave function of Ar.

The SAE potential is obtained from Ref. [31]. Fig. 2-1 (b) shows the decay of ground state

due to ionization.
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Fig. 2-1 (a) The boundary absorber (blue dashed) to account for ionization effects. Refering
to Eq. (2.15), R = 10 nm, a = 0.75, and # = 0.03. The flat part of the absorber has to be
broad enough to cover the vicinity of the atom whose size is determined by the ground
state wave function (red solid). The inlet shows a closer look of the radial wave function of
the 3p electron of Ar ground state. (b) The ground state population calculated by the TDSE
simulation (blue). The electric field of the driver pulse (red) has a central wavelength of
800 nm, a peak intensity of 2.7x10 " W/cm 2 and pulse duration of 35 fs at the full-width at
half-maximum (FWHM) of the intensity. lMAx= 30.

After calculating all co,,t), we have all of the information about IT) and can calculate

the instantaneous dipole moment by

d (t)= ('Ir cos 601T). (2.16)

Again, with the help of the recursive relations and the orthogonality of Legendre

polynomials, we can reach the following expression for the instantaneous dipole moment:

d~t)= Z' Re[c*,(,+,c , (2.17)

/=O 1,n

where

21+2
Z' = + + 3 runu0Q,) dr (2.18)

nn (21 + 1)(21 +3) 4 " "1n(11 d

Then, the HHG spectrum can be derived from d(t). Fig. 2-2 (a) and (b) show the HHG

spectra calculated with a flattop pulse and a Gaussian pulse respectively.
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Fig. 2-2 HHG spectra of Ar calculated by TDSE with (a) flattop and (b) Gaussian driver
pulses, as shown in the inlets respectively. For both of the driver pulses, the central
wavelengths are 800 nm, the FWHM pulse durations are 35 fs, and the peak intensities are
2.7x1014 W/cm 2.

The recipe for the numerical simulation of the TDSE can be summarized below:

1. Find a suitable SAE potential V(r) by searching literature or by developing a new model.

2. Solve the eigen-problem Eq. (2.8) for 1= 0,1,2,.- -, l, for the eigen-vectors un,(r) and

the eigen-values con,.

3. Calculate matrix elements D with Eq. (2.12) and Eq. (2.13).

4. Construct a matrix that performs the boundary absorption.

5. Calculate matrix elements z' with Eq. (2.18).

6. Solve Eq. (2.14) iteratively. At each step of iteration, apply the boundary absorber

matrix and calculate the instantaneous dipole with z' .

7. Calculate the emitted electric field from the dipole.

In step 2, one can build a very large database of the interested gas with very large 'MAx and

very large n (i.e. very large co,,j) that can be reused for different simulation tasks for the

same gas species in the future. In step 3-5, we only select moderate lmx and n (i.e. an upper

bound of actual ct,,) to build these matrices. With appropriate choices of the parameters,
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the matrices constructed in step 3-5 can be used for driver pulses with different parameters,

and this computation can be very efficient. It provides a first-principle approach for

comparison with other theoretical or numerical approaches and experimental results in the

following sections.

2.2 The Three-Step Model

Although the first-principle calculation by TDSE is appealing, its computation takes a

significant amount of time. Meanwhile, the approximated SAE potential is sometimes

difficult to acquire and may affect the accuracy of the solution of the TDSE. In this section,

we introduce an analytic formalism under the strong-field approximation (SFA) first

formulated by Ref. [17] and then improved by Ref. [32-33]. SFA assumes that once an

electron is ionized, it only sees the laser field, and the influence from the nucleus is

negligible. This assumption is good for electrons that can acquire a lot of kinetic energy

(K.E.) from the laser field and are hardly scattered by the nucleus. Again, we write down

the Schridinger equation, but in the length gauge this time for its transparent physics

meaning:

i 1jT)=(He + Hj)|T), (2.19)
at

with

HO = IV2 +V (r) ;(2.20)
2

H, =-r -E =-xE (t ). (2.21 )

The general solution of Eq. (2.19) can be written as

P (t)) = -if dt'exp [-if H (t") dt"] H, (t') exp 1-if" H (t") dt"] g)

+ exp [-if H (t") dt"j g). (2.22)
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g) is the initial ground state that satisfies

HO I g)= -I" I g), (2.23)

and

exp [-if H (t')dt' g)= exp(iIt) g). (2.24)

g) is assumed as the only bound state involved in the HHG process (therefore, SAE is

assumed implicitly). The amplitude of qT (t)) projected onto any continuum state Iv) can

be expressed as

a (t)=(v I (t)) =-if dt'(v exp [-if H(t")dt" H, (t)exp -if Ho (t")dt"] g)

(2.25)

So far, Eq. (2.25) is exact, although it is not very useful because we have not and will

not show how to calculate the operation of the complete Hamiltonian H on the wave

functions. Here comes the SFA, which assumes that the continuum state is simply a plane

wave state with a time-varying wave-vector v. Iv) completely ignores the atomic potential

V(r) and is not scattered. With the SFA, the continuum states are simple and known as the

Volkov states [34], which satisfy

(v Iexp -if, H (t") dt"] exp -if,' I(v + A (t) - A (t")) 2 dt"] Kv + A (t) - A (t')

(2.26)

If we define the canonical momentum as

p = v (t)+ A (t), (2.27)

which is in fact independent of t, then we have

a, (t)= -i Jdt'(p - A (t') H, (t') g) exp {-i dt" [(p - A (t))2 /2 +JiIt'}. (2.28)
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HHG results from a transition from one continuum state to the ground state, and the

corresponding dipole moment is

d (t) = f dpa, (t)e (g x Ip - A (t)) + c.c.. (2.29)

Since the continuum components are assumed much smaller than the ground state, here we

only consider the continuum-ground state transition and neglect the depletion of the ground

state. By substituting Eq. (2.28) into Eq. (2.29), we have

d (t)= ijd3p dt'E (t)(p - A (t') x g)(g x p - A (t))exp [-iS(p, tt')]+c.c.,

(2.30)

where

S (p, t,t')= (p -A ( ft" + 1, (t - t'). (2.31)

Eq. (2.30) says that the dipole moment at time t is a coherent summation of all possible

trajectories that transits at some moment t' from the ground state to a continuum state

indexed by a canonical momentum p.

Eq. (2.30) along with Eq. (2.31) is the integral solution of the TDSE under SFA, and

can be used for practical calculation given the dipole matrix element of the ground-

continuum transition (p - A (t') x g) . However, the fast-oscillating nature of

exp[-iS(p,t,t')] in Eq. (2.30) allows us to apply saddle point analysis to further simplify

the integral of Eq. (2.30) and acquire more physics insight from it [17]. The integral is

mostly determined by the small region around the saddle point where the first derivatives

of S(p,t,t') with respect to p and t' both vanish such that the integral can build up

coherently without suffering the fast oscillation of exp[-iS(p,t,t')]. The saddle point is

determined by
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VS(p,t,t') z=f(p, -A (t"))dt"=; (.

S(p, t,t') -(p, -A(t) -I = 0 -

Because of the sinusoidal behavior of the driver field A(t), Eq. (2.32) and

more than one saddle point solution ( t', ps). The saddle point analysis

instantaneous dipole moment at time t is determined by the electron that is

specific ionization times t' to the corresponding continuum states

(2.33)

Eq. (2.33) have

shows that the

excited at some

with canonical

momentum ps. Since (p, - A (t")) is the instantaneous velocity of the ionized electron at

time t", Eq. (2.32) simply states that only the electron trajectory that comes back to the

origin (i.e. the parent atom) contributes to the integral of Eq. (2.30) and induces HHG. This

is consistent with the physical picture of TSM introduced in Chapter 1. Eq. (2.33) states

that at the ionization time t', the initial K.E. of the electron is -1, and therefore the

velocity is a pure imaginary number /i 2 . The negative K.E. is due to the quantum

tunneling under the potential barrier, as illustrated in Fig. 2-3 (a). For small I,

' t', + i 2I /E (t 0' ), (2.34)

where t' is a real number and is the solution of Eq. (2.33) when I = 0. Im(t') can be

regarded as the time the electron spends under the potential barrier, during which the

electric field decelerates the imaginary velocity of the electron to zero. Then, the electron

tunnels out from the barrier with zero velocity at the moment of Re(t'). The physical

interpretation of the complex t' also applies to larger Ip.
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Fig. 2-3 (a) Illustration of tunneling ionization. (b) Electron trajectories in a sinusoidal
electric field with zero initial velocity and zero initial position. The horizontal axis shows
the phase of the electric field whose peak locates at phase 0 or 7C (cosine pulse). The
trajectories start with phases between 0 and -n/2 never return to the origin (pink). The
other trajectories start with phases between 0 and n/2 return to the origin at different times
with different K.E.. The highest returning K.E. is the cutoff energy.

An interesting and important feature of HHG is the existence of the long and short

trajectories of electrons. Fig. 2-3 (b) shows the trajectories of free electrons starting from

the origin with zero initial velocity in a sinusoidal electric field whose phase is shown as

the horizontal axis. The cutoff energy, which is the maximum K.E. the electron may have

at the moment of recombination at the origin, is 3.17 times the ponderomotive energy. Fig,

2-3(b) shows that for any recombining K.E. lower than the cutoff energy, there are always

two trajectories: the trajectory having earlier ionization time but later recombination time is

called long trajectory while the other is called short trajectory. For small I4, the long

trajectories ionize at phases between 0 and 0.31 rad and recombine at phases between 27C

and 4.4 rad. The short trajectories ionize at phases between 0.31 and 7c/2 rad and recombine

at phases between 4.4 and n/2. The most energetic trajectory, i.e. the cutoff, ionizes at

phase 0.31 and recombines at phase 4.4 rad. The lowest K.E. at recombination is 0 for both

trajectories.
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By employing the saddle point analysis and the Taylor expansion around zero Ip, a

simple form of the instantaneous dipole x(t) can be derived [32,33]:

x(t)= (21,) 3(2a,,, a expf-iS (p, t, , t)] (2.35)
nE(tbfl)[(t - tb)/(27r)]

where Ip is the ionization potential; w is the ionization rate that is usually calculated by the

ADK formula [35,36]; E is the driver electric field; a,,,= (gIx p--A(t)) is the

recombination amplitude; S is the action of the electron as a function of the canonical

momentum p, the ionization time tl,,, and the recombination time t that satisfy the saddle

point equations. Because there are usually multiple trajectories that start from different

ionization times but return at the same recombination time, we use a subscript n to

distinguish these trajectories. The final dipole is a coherent sum of all of these trajectories.

The (t-th,n) term in the denominator of Eq. (2.35) introduces the quantum diffusion effect

[17]: the electron wave packet expands during the free propagation in the continuum states.

As the electron wave packet expands, the increasing uncertainty of the electron position

decreases the probability the electron returns to the exact location of the parent atom to

recombine. Because of this quantum diffusion effect, only few trajectories with small

propagation time (t-th,,) are dominant in the summation of Eq. (2.35).
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Fig. 2-4 Comparison of the HHG spectra calculated by TDSE and the TSM. (a) Different
recombination amplitudes arec used in the TSM calculation. In the plane wave model (blue),
the continuum states are simply plane waves; in the scattered wave model (green), the
continuum states are assumed to be the superposition of plane waves and their scattered
waves due to the Coulomb potential. (b) HHG spectra calculated by TSM with plane wave
arec (blue), TSM with scattered wave ae, (green), and TDSE (red). The driver pulse has a
wavelength of 800 nm, a Gaussian temporal profile with a FWHM of 35 fs, and a peak
intensity of 2.7 x10 4 W/cm 2.

Fig. 2-4 shows the comparison between the TSM and the TDSE calculation result. For

TSM, the recombination amplitude arec is determined independently. A convenient way is

to assume the continuum electron wave function is simply a plane wave, ignoring any

scattering from the nucleus. However, this is only accurate for high energy electrons

(>500 eV) [37]. An improved version of arec, called quantitative rescattering theory [37],

considers the scattering due to the nucleus by assuming the continuum wave function is a

scattered plane wave, although the scattered electron wave function does not necessarily

have a connection to a plane wave. The recombination amplitudes calculated based on the

two models are plotted in Fig. 2-4 (a). Fig. 2-4 (b) applies these two recombination

amplitudes to the TSM and compares the HHG spectra with that of the TDSE.
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2.3 Wavelength Scaling of the Single Atom Efficiency

One critical feature of HHG is the strong dependence of the single-atom efficiency (SE) on

the driver wavelength A, which scales as 2-"5 )6 [35,36,38-42]. In this section, we will

discuss the origin of the scaling law of the SE of HHG. First, we clarify the definition of

the HHG efficiency for wavelength scaling. A common definition is the total HHG yield

within a certain range of photon energy from driver pulses that differ in wavelengths but

have the same number of electric field cycles and the same peak intensity [38-40]. With

this definition, a scaling of A-(5-6) has been reported for IR driver wavelengths [38-40].

However, this definition is not suitable for shorter driver wavelengths because the HHG

spectra have narrower bandwidths and sparser harmonics [43]. It is more appropriate to

compare the single harmonic yield near some fixed photon energy with the same driver

pulse energy and peak intensity [43]. To convert the former wavelength scaling relation to

the latter, one should divide the former by a factor of A2 [44]. One A factor is due to the

higher pulse energy within the driver pulses of a fixed number of cycles and longer

wavelengths [45]; the other A factor is due to the greater number of harmonics within the

fixed photon energy range for longer driver wavelengths. The differences between the two

definitions are summarized in Fig. 2-5. Here we have assumed similar efficiencies for the

harmonics within the considered photon energy range, and this is usually true for the

plateau harmonics. Therefore, the wavelength scaling of the SE found in previous works

should be restated as )-78) for single harmonic efficiency with a fixed driver pulse energy.
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Fig. 2-5 Differences between two definitions for the HHG SE. The left panel (red)
compares the total yield within a fixed range of photon energy from driver pulses with the
same number of cycles and the same peak intensity, and a scaling law of 2(5-6) has been
reported [35,36,3842]. The right panel (blue) compares the yield of one single harmonic
with the same or similar photon energy from driver pulses with the same pulse duration and
the same peak intensity, and the L(51-6) scaling law should be modified to )(7-8).

The physics behind the wavelength scaling law is explained below. If we consider

driver pulses with different wavelengths but the same pulse duration and the same peak

intensity, Eq. (2.35) shows that the intensity of the dipole strength in the time domain

scales as 3 due to the quantum diffusion effect. Therefore, the total yield of all of the

harmonics should scale as 2 if the recombination amplitudes don't vary too much within

the photon energy range. Next, the longer driver wavelength has a higher harmonic density

(proportional to V) and a broader HHG bandwidth proportional to A2 due to the cutoff

scaling, so the total harmonic number is proportional to A3, and the energy carried by each

harmonic peak has a 2-dependence according to Parseval's theorem. The 2 3 scaling of

the total yield due to quantum diffusion and the 2 proportionality due to the increasing of

the total harmonic number together give a k6 scaling and explain the major wavelength

scaling dependence of the SE of HHG. The remaining V'-2> dependence is less obvious and

requires a closer look at the action function S in Eq. (2.35).
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To understand the general feature of the wavelength scaling, we first rewrite Eq. (2.35)

as

x(t) I exp[-is(p, tt)], (2.36)
E(t,)(t -t, )1(21r)

where only the first return of the trajectory is considered, and the summation and the

subscript n are dropped. Since the photon energy is fixed in the discussion of wavelength

scaling, arec is constant and ignored. Although the w (E (tbfl)) plays an important role, we

neglect it for the time being and will include it later. The HHG spectrum can be calculated

from the Fourier transform of Eq. (2.36) by saddle point approximation:

fx(t)e""'dt-- exp[-iS(ptt,)] Ka2S 1
/. (2.37)

E(t)[(t, -t) / (27 )] at2

To illustrate the A/-dependence, one can normalize the time variables with the

corresponding phase of the driver field in Eq. (2.37). Specifically,

tb -+ ; t, -+ ; E(tb) -> EO cos#b, (2.38)
2rc 27rc

where c is the speed of light in vacuum. After some algebraic manipulation, the action S

given by Eq. (2.31) can be written as

2

S 3 4 1
3F#r,y), (2.39)

87r3 8Oc hm

where

(,#- , -cos#b)2 - sin (2#,)-sin(2b)] (2.40)

Note that Oh has an implicit dependence on #,, so the only independent variables in F are f,

and y. However, the second derivative of the action S with respect to t (or 0,) is

independent of y because of the saddle point property (Eq. (2.32) and Eq. (2.33)).

Therefore, the second derivative of S with respect to t is
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a's a2 F
/2 I - ,(2.41)

at2 002

The squared magnitude of Eq. (2.37) gives the spectral density induced by one cycle of the

laser field, and the final single harmonic yield will be the summation of the squared

magnitude of Eq. (2.37) over the total number of cycles (~ki) multiplied by the single

harmonic bandwidth (~k%). If we assume the driver pulse has a flattop envelope and

neglect the depletion of the ground state, it is

I x(t)e''dt AE~ 2 F 1 (2.42)
cycles cos2 _ 6 )3 ( 2 6

The 2 factor in Eq. (2.42) has been explained in the beginning of this section. The

remaining dependence is related to #, and #6. Fig. 2-6 (a) shows the ionization phase (#b)

and the recombining K.E. (in terms of the ponderomotive energy U,, which is quadratically

proportional to the driver wavelength) versus the recombination phase (#,). As U increases

with the driver wavelength, the corresponding recombination phase q, and ionization phase

#h of the long (short) trajectory will increase (decrease) and decrease (increase)

respectively if the recombining K.E. is fixed. Therefore, Eq. (2.42) does not scale as A'

exactly.
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Fig. 2-6 (a) the ionization phase qh (blue) and the K.E. of the returning electron (green)
versus the recombination phase #,. The K.E. is expressed in terms of the ponderomotive
energy (U,) (b) The wavelength scaling of Eq. (2.42) for the long (green) and the short
(blue) trajectories without the ionization effect. The dashed lines are tangential to the
beginning of the two curves respectively to show the local slopes. The long and the short
trajectories asymptotically approach 2i and k2 respectively. Note, the actual scaling of the
short trajectory will change significantly after the ionization is included.

Fig. 2-6 (b) shows the preliminary wavelength scaling of HHG SE from a flattop

driver pulse before including the influence of the ionization effect. The unit of the driver

wavelength in Fig. 2-6 (b) is Xcutoff, which is the shortest wavelength to generate the photon

energy of interest at the cutoff. Fig. 2-6 (b) starts from 1.0 2Xcutoff rather than ?cutoff because

the second order derivative of the action S is zero at Xcutoff, and the curves diverge. In fact,

saddle point approximation only works for the harmonics at the plateau, and at the cutoff it

has to include the third order derivative of S. Note that, except for the dependence of the

ionization effect, expressing the driver wavelength in Xcutoff makes these scaling curves

universal for any driver wavelength range, any driver intensity, and any photon energy as

long as the TSM expressed by Eq. (2.35) is applicable. For the long trajectory, the SE

shows a sharp scaling near the cutoff and moves asymptotically to X 5, while the short

trajectory moves from a sharp scaling near the cutoff asymptotically to X-2. These

conclusions are not complete until the influence of the ionization is considered. However,

they are still helpful because they are the general part of the HHG wavelength scaling. The

27



actual scaling law can be obtained by simply including the actual ionization condition in

this general picture. Moreover, the long trajectory result does not change too much even

the ionization is included, as will be shown in Fig. 2-7.

1010
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-I L210

-
01 13

0 0.31 it/2 10 -
ionization phase 4b (rad) 10 driver wavelength (cutoff 0

Fig. 2-7 (a) Normalized ADK ionization rate with peak intensities Ii= xIO' W/cm 2,
12=2x10'4 W/cm 2 , and I3=3x101 W/cm 2 in Ar (I=l 5.76 eV) for a quarter cycle of the
driver field. The black curve shows the driver field that is a cosine function. The red curves
show the instantaneous ionization rate calculated by the ADK formula at the labeled
intensities. Trajectories ionized before and after 0.31 rad become the long and the short
trajectories respectively. (b) The wavelength scaling. The blue and the green curves are the
same as those in Fig. 2-6 (b) without the ionization effect. The red curves show the scaling
of the short trajectories with ionization effect at intensities Ii, 12, and 13. The cyan curves
show the long trajectories at Ii, 12, and 13, although they are too close to resolve. The right
triangle at the lower left corner shows an example slope of X".

Fig. 2-7 (a) shows how the intra-cycle ionization rate varies with the driver electric

field calculated by the ADK model [46] in Ar (I=15.76 eV) with intensities between

(1-3)x1014 W/cm 2 , which is typical in HHG. Because ionization is a highly nonlinear

process, the ionization rate is very sensitive to the electric field strength and changes much

faster than the cosine form of the electric field. Therefore, one can expect that as the

ionization phase b changes in Eq. (2.42), the efficiency should change as well. In

particular, since the ionization rate changes more dramatically at larger ionization phase fb,

the short trajectory is more sensitive to the ionization rate variation than the long trajectory.
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Fig. 2-7 (b) confirms this point. The wavelength scaling of the short trajectories becomes

much more dramatic while the wavelength scaling of the long trajectory does not change

too much after the ionization effect is included. In most literatures, the wavelength scaling

is studied with driver wavelengths between 0.8 ptm and 2 pim [35,36,38-42], or between

0.4 ptm and 0.8 pim [5,9,47], and the interested photon energy is in the mid-high plateau. If

the driver wavelength varies by a factor of 2-3 near the cutoff in Fig. 2-7 (b), it is not

surprising to conclude a wavelength scaling law of A(7 -8) .

2.4 Multiphoton and Non-adiabatic Effects

In this section we consider modification of the TSM driven by shorter wavelengths with

intermediate Keldysh parameter y~1. The Keldysh parameter defined as [48]

y =_VI, /2 U, , (2.43)

distinguishes strong field physics processes between the tunneling ( y <1) and the

multiphoton (y >> 1) regimes. Eq. (2.35) is derived with Taylor expansion around y =0,

and the lowest order term of y (which is purely imaginary) in the expansion of the action S

results in ionization [32,33]. This ionization can be related to the ADK formula for a more

accurate description. To study the wavelength scaling of SE using short-wavelength drivers,

the TSM needs applying carefully because the semi-classical picture in the conventional

TSM assumes that y is much less than one and neglects its influence. However, y is rarely

much less than one in many HHG experiments. When y is considered, it has been shown

that the ionization time at which an electron exits the atomic potential barrier is slightly

advanced from the semi-classical model [49]. Since the ionization time can influence the

HHG efficiency through quantum diffusion [17], this can lead to different HHG

characteristics.
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In general, the solution of the saddle point equations Eq. (2.32) and Eq. (2.33) is

complex and is denoted as T, and p [17]. The physical intuition behind Im( 7,, ) is the

tunneling time the electron experiences under the atomic potential barrier, and Re(i,, ) is

the real ionization time at which the electron exits the barrier [50]. Without doing Taylor

expansion, the exact action S is calculated with the complex saddle point, and Im(S) can be

related to the non-adiabatic (NA) ionization model wNA [51] rather than the quasi-static

ADK formula for more accurate ionization rate [52,53]. The NA ionization model also

takes finite y into account in the saddle point calculation of the ionization moment and

shows significant corrections to the intra cycle ionization of the ADK formula [51]. In

addition to the modification of the action-related terms, we consistently substitute real

ionization time th,, by the complex ionization time (CIT) 7o and reach the following form

of the modified TSM (note, Im(S) has been separated from the exponential term and

related to the ionization formula wNA [54], so only Re(S) appears explicitly):

(2I,)1/ g(Reig,,g(t,) WNA[E(Re R)
X(t,)= (i W Eex(-A, ) [ (,, , (2.44)

where g(t) is the ground state amplitude. Eq. (2.44) is the modified version of Eq. (2.35) by

including the influences from the NA ionization and the finite Keldysh parameter.

With the CIT, we expect the additional time spent under the barrier to influence the

wavelength scaling of the SE. To the first order approximation of y, we can write the

electron traveling time as [43]:

Or - p, ;t Or -p _ b (2.45)
Cosp)

For a short driver wavelength, y is large, and the imaginary part of Eq. (2.45) can thus

change the wavelength scaling. Fig. 2-8 (a) shows the magnitude of the exact traveling
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time 10, - as a function of the recombination phase #,. When the driver wavelength is

shorter and y is higher, the electron has to travel for a longer cycle (i.e. larger phase

difference 1P, - I ) relative to the driver pulse before recombining with the parent atom,

which means the traveling time is not as short as the case ignoring y. Since the HHG

efficiency favors a shorter traveling time, the increasing y makes the wavelength scaling

less dramatic when the HHG process moves from the tunneling regime to the multiphoton

regime [43]. This effect is particularly important for the short trajectories because the

traveling time is more sensitive to y with a recombination time near n/2.

1
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Fig. 2-8 (a) The magnitude of the traveling phase 1Pr -b as a function of the

recombination phase ', for several different Keldysh parameter y. (b) The wavelength
scaling of Ar SE near 32 eV calculated by Eq. (2.44) with IR driver wavelengths. The peak
intensity of the simulated driver pulses is 2.7x 10" W/cm 2, and the pulse duration is 35 fs.

We calculate the wavelength scaling of HHG SE with the modified TSM. Fig. 2-8 (b)

shows the single harmonic efficiency with IR driver wavelengths (y= 0.3-0.7), and the

result roughly agrees with the 2(7-8) scaling relation. With shorter driver wavelengths, Fig.

2-9 compares the experiment data [43] with the conventional TSM, the modified TSM, and
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the time-dependent Schr6dinger equation (TDSE) calculations. The detail of the

experiment will be presented in Section 4.3. In the conventional TSM, the ionization time

is real, and the ionization rate is calculated by the ADK formula; in the modified TSM, the

CIT and the NA ionization formula are employed. In Fig. 2-9 (b), both short and long

trajectories of the conventional TSM show more dramatic wavelength scaling than the

experimental result. In contrast, the short trajectory of the modified TSM in Fig. 2-9 (c)

agrees well with the experiment by showing a scaling of 24.. The long trajectory of the

modified TSM has a similar scaling as the conventional TSM because the long trajectory is

less sensitive to y. The sum of the two trajectories has a scaling of %4.8, so the short

trajectories are more dominant. To further confirm this scaling relation, Fig. 2-9 (d) shows

the numerical result from the TDSE by the numerical method discussed in Section 2.1 with

a model potential from Ref. [31]. The wavelength scaling is I40, also in good agreement

with our modified TSM and experimental result.
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Fig. 2-9 Wavelength scaling of single harmonic efficiency near 32 eV (a) measured by the
experiment, and calculated by (b) the conventional TSM, (c) the modified TSM, and (d) the
TDSE. In (b)-(d), the peak intensity of the simulated driver pulses is 2.7x10" W/cm 2 , and
the pulse duration is 35 fs, same as the experiment parameters. In the TSM calculation, the
short (black dot) and long (blue square) trajectories are calculated separately, and the long
trajectories are shifted by multiplying by 1.7 and 1.3 in (b) and (c) respectively for
comparison. The sums of the two trajectories in (b) and (c) scale with the driver

wavelength as 27. 10 and 24-±o3 respectively (not shown).

Including the NA ionization also influences the wavelength scaling in two ways. First,

the NA ionization has a higher ionization rate below the peaks of the driver field than the

ADK ionization, as shown in Fig. 2-10 (a). This enhances the short trajectory efficiency

and makes it more dominant in the wavelength scaling. Second, the more uniform

ionization rate close to the 7/2 phase of the driver field reduces the wavelength scaling of

the short trajectories. As the driver wavelength becomes longer, the efficiency of the short

trajectory of some fixed photon energy decreases because the corresponding electron is

ionized at a phase closer to 7/2 where the field intensity is weaker [52]. The more uniform

NA ionization reduces this effect on the wavelength scaling. With the CIT and the ADK

ionization, a wavelength scaling of 25. is obtained, and replacing the ADK by the NA

ionization further improves the model and makes it closer to the experimental result.
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Fig. 2-10 (a) The comparison of the driver electric field (black), the traveling time in the
conventional TSM (red), the NA ionization rate (blue), and the ADK ionization rate (green).
The horizontal axis shows the phase of the driver field, and the vertical axis shows the
normalized values of the four quantities. The inlet presents the same plot on a linear scale.
(b) The electron wave packet calculated with different ionization models (ADK or NA) and
different ionization time formalisms (tb,, or ).

The CIT not only improves the accuracy of the TSM, but avoids the divergence of the

TSM due to the replacement of the ADK ionization by the NA ionization. Fig. 2-10 (a)

illustrates how the divergence occurs by showing several relevant quantities. As the phase

of the driver pulse at the ionization time approaches 7c/2, the traveling time of the

conventional TSM approaches zero, while the NA ionization rate is non-zero due to the

contribution from the multiphoton ionization [51], and divergence occurs. This divergence

does not exist with the ADK ionization rate because the ADK rate approaches zero at a

much faster rate than the traveling time. Fig. 2-10 (b) further illustrates the divergence by

showing the electron wave packet that is the squared amplitude of Eq. (2.35) without the

recombination amplitude are [28,37]. The divergence occurs for the combination of the NA

ionization and the conventional real ionization time thu. When the traveling time is small, a

correction factor ig in the order of Jp- may be added to the traveling time in the
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denominator of Eq. (2.35) and Eq. (2.44) [17], which reflects the contribution of the atomic

structure to the saddle point integrals. Unless the complex t,,, is employed, however, the

electron wave packet still shows a spike even with the correction factor ie, as shown in Fig.

2-10 (b). Therefore, to apply the more general NA ionization model to the TSM, it is

necessary to employ the CIT in the TSM to avoid the divergence.

In conclusion, the wavelength scaling of HHG SE is inspected experimentally and

theoretically by visible driver wavelengths with a Keldysh parameter around unity in the

transition between the tunneling and the multiphoton ionization regimes. The experimental

result shows a less dramatic wavelength scaling than the conventional HHG with IR driver

wavelengths and is well explained by our modified TSM that incorporates the NA

ionization and the CIT from the saddle point method. For HHG close to the multiphoton

regime, the CIT can alter the electron traveling time in the TSM and make the wavelength

scaling of the SE less dramatic than HHG driven by longer wavelengths in the tunneling

regime. In addition, because the CIT removes the singularity from the traveling time in the

conventional TSM, we can replace the quasi-static ADK model by the more general NA

ionization model without divergence and obtain a modified TSM that works for a wider

range of Keldysh parameters [43].

2.5 Conclusion

The fundamental mechanism of HHG is studied in this chapter. We started from the first-

principle approach by developing an efficient algorithm to solve the TDSE. The TDSE

algorithm separates the simulation work that is independent of the applied electric field

from the field-dependent part. Therefore it is more efficient when the simulation has to

change the driver pulse frequently, for example, to run a series of simulation for different

35



driver wavelengths to study the wavelength scaling of the HHG SE, because only the field-

dependent part needs to be repeated. Ar with a SAE model potential is solved, and the

result correctly shows the ionization behavior and the cutoff of HHG. The first-principle

approach of TDSE can provide a good reference for comparison with other theoretical

approaches.

TSM is introduced as a convenient substitute to TDSE because the calculation is much

simpler and faster. Under the SFA, a solution to the TDSE in an integration form is

obtained. Then, the saddle point approximation is applied to the integral solution to further

simplify the solution. Finally, a closed-form expression of the dipole moment of HHG is

obtained with clear physical meaning of the three steps involved in HHG: ionization,

acceleration, and recombination. With this handy expression of HHG dipole moment, we

investigate the wavelength scaling of HHG SE to understand the origin of the 1-(5-6) (or

-(7-8) for single harmonic efficiency in our convention) scaling law. The major contribution

to the dramatic wavelength scaling law is from the Parseval theorem due to the increasing

numbers of harmonic peaks and the quantum diffusion. The rest dependence of the scaling

law is attributed to the electron trajectory, including the action S and the ionization rate.

The long and the short trajectories therefore show quite different wavelength scaling trends.

Last, we try to improve the TSM when the Keldysh parameter is not negligible, and

the SFA is not very accurate. Our approach is to include finite Keldysh parameter in the

saddle point equations to solve for the complex form of the ionization time. With the CIT,

the more general NA ionization model can be incorporated into the TSM to replace the

quasi-static ADK ionization model without divergence problem. The modified TSM shows

better agreement with the experiment result of the wavelength scaling of HHG SE driven
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by visible wavelengths. It also agrees well with the TDSE calculation, which doesn't rely

on SFA. Therefore, our modified TSM can work for a wider range of Keldysh parameter,

covering both of the tunneling regime and the multiphoton regime.
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Chapter 3

Macroscopic Effects: Phase-Matching

and Plasma Defocusing

Because HHG is a coherent process, the phases of the harmonics from different atoms in

the medium can significantly affect the final yield of HHG. Therefore, this chapter is

devoted to discussing the macroscopic effects of the HHG medium. Section 3.1 discusses

the fundamental concept of phase matching in HHG. In addition to the matching between

the refractive indices as the conventional nonlinear optical conversion, the Gouy phase and

the dipole phase play important roles in the phase-matching of HHG. Because HHG

partially ionizes the medium, plasma is induced in the medium and has strong impact on

the HHG process. Therefore, Section 3.2 quantitatively analyzes the influence of plasma

defocusing on HHG. The major effects include the degradation of the driver pulse intensity

and the phase-mismatching. The first two sections in this chapter also lay the foundation of

simulating the macroscopic effects of HHG, which is then combined with the TSM

presented in last chapter into a complete HHG numerical model, as will be shown in

Section 3.3 with several examples. Section 3.4 tries to answer the question: is a shorter

medium with higher pressure or a longer medium with lower pressure better, if the product

of the length and the pressure is fixed? The answer can be of practical value in choosing
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medium geometry. Section 3.5 is the conclusion of the macroscopic effects discussed in

this chapter.

3.1 Phase-Matching

Because HHG is a coherent process, phase-matching is very important for the efficiency.

The matching between the refractive indices of the driver wavelength and the HH is critical,

similar to the second or third harmonic generation. Besides, the Gouy phase is also very

important due to the very high order harmonic generation [55]. Since HHG generates

plasma during the ionization process, the refractive indices should consider the

contribution from the plasma dispersion as well, and thus the phase-matching becomes

intensity-dependent. Last, the dipole phase that the electron wave function acquires during

its propagation plays an important role in the phase-matching, too [55]. The phase-

matching of HHG driven by a multi-cycle pulse are mostly determined by the factors

mentioned above, and this section will discuss the interplay among them.

The definition of the wave-vector mismatching is the same as the conventional

nonlinear optics:

Akq = qk, - kq, (3.1)

where k1 and kq are the wave-vectors of the fundamental wavelength (the driver pulse) and

the q'" harmonic respectively. In most cases, the HH and the driver pulse propagate along

the same direction, so the wave-vectors can be expressed by scalar values. The wave-

vectors can be further decomposed into different components:

k = qc + P( 1- q)(n -1) -1 4p 0 e 2 - k, (3.2)
q c c P') q2C1 2mEe _

where coi is the angular frequency of the driver field; P is the pressure of the medium; Po is

the reference pressure of the medium at which the refractive index at qwo is nq; 17 is the
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ionization level defined as the fraction of ionized atoms; po is the medium density at

pressure Po; e is the elementary charge; me is the mass of electron; co the permittivity of

vacuum; k"G is the wave-vector due to the geometric phase. The pressure P is assumed toq

be dilute enough such that (nq-1) is much less than one and proportional to P.

The geometric phase results from the propagation of electromagnetic (EM) waves.

The slow-varying envelope approximation and the paraxial approximation are assumed,

and the EM wave is expressed as

Eq (r, z, t) = Aq (r, z, t) exp (ikqz-iqoqt). (3.3)

Unless specified, only linearly polarized waves propagating along z-direction with

cylindrical symmetry in the other two spatial dimensions are considered. Then, the

propagation equation of Eq. (3.3) is

aA -- = VA , (3.4)
az 2kq I

where V 2 
= V2 _2 /az 2 is the transversal Laplacian. During propagation, Eq. (3.4) causes

a change of the phase of Aq whose change rate along the propagation can be calculated by

k" ' arg A A, Im A * . (3.5)
qaz q q y az9

For a Gaussian beam with Rayleigh range ZOq, kG' -z 0 /(Z2 +Z2q) on axis. In general,

while the envelope of the driver pulse changes its shape during propagation, k(; may have
q

different and more complicated forms.

The dipole phase also plays an important role in HHG phase-matching. The dipole

phase is sensitive to the actual trajectory of the electron in the continuum states and

changes while the envelope of the driver field varies during propagation. Consider a
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trajectory ionizes at time t', recombines at time t, and emits a photon of energy hco. The

phase of this photon in atomic unit would be

#= dt" p-A (t")] 2+ +ot. (3.6)

Assume A (t) = -A, sin ((ot) for a cosine electric field and p = -A, sin (cot') for a

vanishing initial velocity. Because of the saddle point features inherited by the HHG phase,

we have

dq# a$ at a at' aepap aq5 8--- = - -t+ + + - (3.7)
dAO Ot aAO Ot' OAO ap OAO OAO OAO

After some algebraic manipulation, Eq. (3.7) becomes

-= - -- I ( sin 2A0t - -sin 2cot'+ sin ot' cos cot. (3.8)
dAO ol f 2 4 4

An effective wave-vector of the HHG field due to the variation of the envelope of the

driver field along propagation can be derived by starting from the ansatz:

ai
k = a -, (3.9)

az

where I=(012 ocAo 2/2 is the intensity of the driver field in SI unit. Then, an expression of aq

can be found as

a - (3.10)
(O, £0CA0 aA

We can substitute Eq. (3.8) into Eq. (3.10) and get

2

a =1 ( - , -,)-- sin2#.- -'sin2#5 +sinob cos , (3.11)
mehEOc (91 2 4 4

where h is the reduced Planck constant. For 800-nm driver wavelength, the a of short

trajectories is between (0-1.3)x 10- cm2/W, and the a of long trajectories is between

(1.3-2.4)x 10-4 cm 2/W. Longer driver wavelengths are much more sensitive to dipole phase
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because a is proportional to A according to Eq. (3.11). Fig. 3-1 shows a for 800-nm driver

wavelength versus the recombining K.E. of electron.

E

0.5

0 -short traj.
-- long traj.

-0.50 1 2 3
electron K.E. (Up)

Fig. 3-1 The a (Eq. (3.9)) coefficient of HHG dipole phase with 800-nm driver wavelength.

Combine these different wave-vector contributions, we reach the following expression

for the mismatched wave-vectors:

Ak q P (1-)(n, -n, )- 2 (qkG -kV)- k . (3.12)
q C PO 2 nE 0 912 q2 1 q q

When the pressure is low, phase-matching is achieved by balancing the pressure-

independent terms like the geometric phase and the dipole phase. It has been shown that a

thin gas jet can be placed behind the laser focus to achieve phase-matching [56]. For high

pressure cases, Eq. (3.12) is dominated by the balance between the refractive indices of the

neutral medium and the plasma dispersion [55]. The critical ionization level 7, is the

ionization level at which the refractive indices of the neutral medium and the plasma

dispersion cancel each other [57], and can be easily solved from Eq. (3.12):

p(e2 -n 2m oo (n, -nj) (3.13)7,r =(n -nc) 1n -n + 2 n? 0 j 2O 1- -q] e~ -1
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The last approximation in Eq. (3.13) assumes 77, < 1 and q >> 1 , which is a good

assumption in most cases. When the medium pressure is high, one should try to maintain 7j

at 7c,. Once 77 equals to qcr, Akq is independent of the pressure according to Eq. (3.12). This

is only true for one-dimensional case, and we will see that the fully dimensional calculation

(Section 3.3) shows a much more complicated scenario of phase-matching. In a fully

dimensional simulation, the driver pulse condition can change so significantly that Akq can

be maintained constant only for a very short distance. In summary, to achieve phase-

matching in HHG, one should control the laser intensity that affects 77, the medium

pressure, the focus size that influences both of the intensity and the geometric phase, and

the position of the laser focus relative to the medium such that a balance can be reached

among the phase-mismatches due to the neutral atom dispersion, plasma dispersion,

geometric phase from the laser focus, and the dipole phase inherited from the HHG process.

Because phase-matching sets an optimal intensity for HHG, the cutoff cannot be

scaled up unboundedly by simply increasing the peak intensity. Once the intensity exceeds

the critical intensity I1, at which 17 equals to 7c, at the peak of the driver pulse, phase-

matching is very difficult, and the HHG efficiency becomes poor. Therefore, the phase-

matched cutoff can be defined as the cutoff at Ir, which varies with the driver wavelength,

pulse duration, and the HHG medium. Fig. 3-2 shows the phase-matched cutoff for 6-cycle

pulses with Gaussian temporal profiles and different driver wavelengths in different HHG

media. When phase-matching is considered, the cutoff roughly scales with the driver

wavelength A as A"-" [12,57].
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Fig. 3-2 Phase-matched cutoff for 6-cycle pulses with Gaussian temporal profiles and
different driver wavelengths in different HHG media.

3.2 Plasma Defocusing

Another important macroscopic effect is the plasma defocusing effect on the driver pulse

propagation. To compensate the low single atom efficiency, particularly for the long driver

wavelength, one straight forward way is to increase the number of participating atoms by

applying higher pressure to the interaction region. For low atomic density, the efficiency is

enhanced quadratically with pressure [58], but plasma defocusing starts to become

important as the free electron density increases. This effect not only decreases the cutoff

photon energy but also shortens the interaction length for HHG. In this section, we

numerically investigate plasma defocusing on IR pulse propagation in Ne and He and

discuss how it affects HHG by defining an enhancement factor, which is a generalization of

the analysis of Ref. [59]. For different pressures, the pulse intensity and ionization level

may show quite different distributions that strongly impact the phase-matching condition

and HHG efficiency.

Our numerical analysis first calculates how an optical pulse propagates and interacts

with HHG gas media. In our situation, the model equation should include the effects of
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diffraction, self-focusing, plasma defocusing, and ionization loss. Dispersion and other

nonlinear effects can be neglected because the medium under consideration is either a short

gas jet or a low-pressure 1 cm-long gas cell. In the slowly evolving wave approximation, a

first order propagation equation adapted from Ref. [60] is employed in our model:

=a V E+i-n 2 oc E E - O Edr'- - -- E, (3.14)
az 2k 2 2c o 2ce0 Re (E) 2 at

where, E is the complex representation of the electric field; z and r are the propagation

distance and the retarded time in the retarded time frame respectively; k is the wave-vector

at the carrier frequency; V2 is the transversal Laplace operator; n2 is the nonlinear index of

refraction; or, is the plasma frequency; Ip is the ionization potential of the atom; p is the

number density of the ionized atoms. We assume that tunneling ionization is the only

ionization mechanism, and therefore, the ADK formula gives an accurate description of the

ionization rate ap/ar [46]. Since tunneling ionization depends on the phase of the electric

field, the ionization loss term contains the real part of the electric field. Because of

cylindrical symmetry, E is a function of z, r, and the radial coordinate r.

Fig. 3-3 shows the peak intensity and ionization level distribution when a 2.5-mJ, 40-

fs, 2-jim laser pulse propagates from negative z to positive z through a He jet with three

different pressures. The laser pulse is focused to an intensity of 7x10 4 W/cm 2 at the center

of the jets (z=0). As the pressure becomes higher from Fig. 3-3 (a) to (c), plasma

defocusing becomes more and more important. A drop of intensity near the center of the jet

can be seen. Such a drop of intensity hinders the pulse from efficiently ionizing the gas and

generating high harmonics. Fig. 3-3 (d)-(f) show the distribution of the ionization level (the

fraction of atoms that are ionized). The strong defocusing effect in Fig. 3-3 (f) even

prevents the pulse from approaching the center of the gas jet with a high intensity, so the
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ionization and HHG can only occur in the low pressure wing before the gas jet. This effect

decreases the advantage of using a high pressure gas jet. Fig. 3-4 shows the peak intensity

and ionization level distributions when the same pulse considered in Fig. 3-3 propagates

through a 1-cm-long helium cell with different pressures. The laser pulse is focused to the

same intensity (7x10'" W/cm2) at the center of the cell (z=0).

Peak Intensity

Ionization Level

EI
CUI

Propagation Distance Z (mm)

Fig. 3-3 Numerical results of the 2-tm laser pulse propagation toward the +z direction
through a He gas jet. The upper row shows the peak intensity when the peak pressure at the
jet is (a) 0.1 bar, (b) 1 bar, and (c) 10 bar. The Gaussian curves illustrate the relative
pressure profile of the jet. The lower row shows the ionization level when the pressure is (d)
0.1 bar, (e) I bar, and (f) 10 bar. The color scales of the intensity and the ionization level
are shown on the side.

47



Peak Intensity 1lO'
4W/CM2

A 2_tr 2 . 2 -4 -4 0 4 a 12 -2a. -4 0 4 8 12

Ionization Level

12 8 4 0 4 8 1 12 2 4 4 2 4 a 12 .12 .0 a4 4 8 12 I
Propagation Distance Z (mm)

Fig. 3-4 Numerical results of the 2-pm laser pulse propagation toward the +z direction
through a He cell. The upper row shows the peak intensity when the pressure is (a) 0.1 bar,
(b) 1 bar, and (c) 10 bar. The relative pressure is shown by the flat-top curve. The lower
row shows the ionization level when the pressure is (d) 0.1 bar, (e) I bar, and (f) 10 bar.
The color scales of the intensity and the ionization level are shown on the side.

To quantitatively discuss the influence of plasma defocusing, we introduce and

calculate the HHG efficiency for the various cases. However, solving a three dimensional

(3D) TDSE along with the 3D wave propagation is time-consuming, so we follow the

analysis of Ref. [59] and generalize it to include plasma defocusing effect. It captures and

analyzes the macroscopic properties of the HHG process, including phase-matching and

reabsorption of the harmonics, and shows excellent agreement with experiment and HHG

energy scaling [8,61]. The HHG energy of the q'" harmonic is assumed to be in the

following form:

Eq = A (q, 1 )J 27rrdr dr x

J12-w7 P (z)exp [izAkq (r, z, r)] exp[-,B (z)(L - z)]dz , (3.15)

where A is a proportional constant; j(q,AI), as a function of the harmonic order q and the

driver wavelength A/, is the SE; w=w(r,z, r) is the ionization rate given by the ADK

formula; P(z) is the medium pressure; Akq=qkl-k is the mismatch between the fundamental
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and the q'" harmonic wave-vectors; #(z) represents the absorption of the harmonics. The

integral with respect to z is due to the coherent addition of the high harmonic field

generated over the non-uniform pressure distribution P(z). The integral is over a range

from -L/2 to L/2 that is long enough to cover the medium completely. Its magnitude

squared would be proportional to the harmonic intensity generated from the point (r, r) in

the parameter space. Then, the integrals over r and r consider the HHG contribution from

every part of the driver pulse and result in the total amount of HH energy in a given

harmonic. We neglect the depletion of the ground states because the ionization level

considered here is always less than few percent. We define the integral part of Eq. (3.15) as

the enhancement factor :

1/2 -2

J27rrdrfdr J 1P(z)exp[izAk(r, zr)] exp[-p (L -z)]dz , (3.16)

because it shows how much the SE is enhanced by the total HHG medium. Then the total

HH energy can be rewritten as

Eq = A4 . (3.17)

This enhancement factor comprises the propagation effects of HHG and is proportional to

the HH energy, so it is useful for the investigation of the plasma defocusing effect.

The wave-vector mismatch Akq is important in the calculation of the enhancement

factor . For a multi-cycle pulse, phase-matching mainly depends on the neutral atom

dispersion 6ka, the plasma dispersion 6kr that is induced by the free electrons, and the

mismatches 6k, and Skd that result from the geometric phase and the dipole phase

respectively [62]. Therefore, the total wave-vector mismatch can be expressed as

Ak, = 6k.,+ 6k, +6kg+6k. (3.18)

49



The geometric and dipole phases are particularly important for longer driver wavelengths

for several reasons. Because most mid-IR OPA or OPCPA systems have to be focused

tightly (usually with a beam size smaller than 100 pim) to generate HH, and then, the Gouy

and dipole phases are not negligible. Besides, the Gouy phase is proportional to the driver

wavelength for a fixed spot size, and the dipole phase is proportional to the driver

wavelength cubed due to the longer trajectory and higher kinetic energy of electron during

propagation. Last, the wave-vector mismatch is also proportional to the harmonic order that

is larger for longer driver wavelength. Here we consider the contribution from the short-

trajectory to HHG, and the dipole phase can be written as -aI, where I is the laser intensity,

and the coefficient a,, can be calculated based on the harmonic order and the action of the

semi-classical electron trajectory [63]. In the following simulation, a, is assumed to be

5x10-" rad-cm2/W for 0.8-pim driver wavelength. For other driver wavelengths, the

coefficients are scaled with the cube of the wavelength.

OM0 0.2 1

(a) (b) (c) - Ska
-0.00.1

0.51 - k

Propagation Distance Z (mm)

Fig. 3-5 The wave-vector mismatches in a He jet at r=0 and r=O (pulse peak). The laser
pulse and medium conditions are the same as Fig. 3-3, and the medium pressures are (a)
0.1 bar, (b) I bar, and (c) 10 bar respectively. The harmonic energy considered here is
500 eV. In each plot, the blue, green, red, and yellow curves show the mismatch due to
neutral atom dispersion, plasma dispersion, geometric phase, and dipole phase respectively.
The black curve shows the total wave-vector mismatch that is the sum of the above four
curves.
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Fig. 3-6 The wave-vector mismatches in a He cell at r=0 and -=0 (pulse peak). The laser

pulse and medium conditions are the same as Fig. 3-4, and the medium pressure is (a)
0.1 bar, (b) 1 bar, and (c) 10 bar respectively. The harmonic energy considered here is

500 eV. In each plot, the blue, green, red, and yellow curves show the mismatch due to

neutral atom dispersion, plasma dispersion, geometric phase, and dipole phase respectively.

The black curve shows the total wave-vector mismatch that is the sum of the above four

curves.

Fig. 3-5 and Fig. 3-6 show and compare the four different sources of wave-vector

mismatch seen by the peak of the driver pulse (i.e. at r=0 and r==0 ) under the same driver

pulse condition and medium structure as Fig. 3-3 and Fig. 3-4 respectively. The harmonic

energy considered in both figures is 500 eV, which is the 807' harmonic of the 2-pm

driver wavelength. The refractive indices used here for the driver pulses and the harmonics

are taken from Ref. [64] and Ref. [65] respectively. At low pressure (Fig. 3-5 (a) and Fig.

3-6 (a), P=0.l bar), the geometric phase and the dipole phase are more dominant than the

other two factors, and phase-matching (Akq=O) can only be realized far behind the focus.

As the pressure becomes higher (Fig. 3-5 (b) and Fig. 3-6 (b), P=1 bar), all four

contributions are comparable, and the total Akq shows complicated behavior. Phase-

matching is achieved at some point near the center of the medium. At even higher pressure

(Fig. 3-5 (c) and Fig. 3-6 (c), P=10 bar), the total Akq basically follows the profile of the

neutral atom dispersion because the negative plasma dispersion is roughly cancelled by the

positive dipole and geometric phases.
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When the ionization level is maintained below a few percent, the neutral atom

dispersion is not affected by the plasma, but the other three phase-matching factors are still

significantly influenced by plasma defocusing. As shown in Fig. 3-3 and Fig. 3-4, the

ionization level that determines the plasma dispersion is very sensitive to the driver pulse

intensity, which drops faster due to plasma defocusing. The fast drop of the driver pulse

intensity then results in an enhanced dipole phase because the dipole phase of the short

trajectory is proportional to the negative gradient of the driver pulse intensity. The

geometric phase also changes due to the modification of the intensity profile along the

radius direction. At low pressure, the geometric phase is almost the same as the Gouy

phase of a focused Gaussian beam. When the pressure increases, and the plasma

defocusing becomes stronger, the geometric phase that results from the diffraction can be

quite different from the Gouy phase as shown in Fig. 3-5 and Fig. 3-6. Therefore, plasma

defocusing not only reduces the pulse intensity, but also influences the phase-matching. It

is difficult to control and balance all these factors around Akq=O for a long distance. Instead,

Ak, often crosses the Akq=O line with some slope. To improve the HHG efficiency in such

a situation, one should try to decrease the slope and move the crossing point to the high

density part of the medium.
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Fig. 3-7 Enhancement factor for He. (a) and (b) show the enhancement of a 1-mm He jet
and a 1-cm He cell respectively. For each driver wavelength, the curve is intentionally
shifted for clarity. The number near each curve indicates the driver wavelength in units of
ptm. For comparison, the dashed lines show a parabolic dependence on pressure.
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Fig. 3-8 Enhancement factor for Ne. (a) and (b) show the enhancement of a 1-mm Ne jet
and a 1-cm Ne cell respectively. For each driver wavelength, the curve is intentionally
shifted for clarity. The number near each curve indicates the driver wavelength in units of
pim. For comparison, the dashed lines show a parabolic dependence on pressure.

Fig. 3-7 shows the calculated enhancement factors for a He jet and a He cell for six

different driver wavelengths and varying pressure. In Fig. 3-7 (a), there are sharp

transitions at about 0.1 bar, because at this pressure a transition from phase-mismatched

HHG to phase-matched HHG occurs. At low pressure (<0.1 bar), Gouy phase and dipole
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phase dominate, and the phase-matching point where Akq=0 is located far behind the gas

jet. Therefore, phase-matching cannot be achieved with low density media density, and the

HHG efficiency is poor. When the pressure is low, Akq doesn't change much with the

increasing pressure. Therefore the HHG efficiency still increases quadratically with the

medium pressure although it is not phase-matched at all. Once the pressure is high enough

(>0.1 bar), the neutral atom dispersion is able to compensate the other phase-matching

factors and results in a phase-matching point within the gas jet. Correspondingly the

enhancement factor , and with it the HHG efficiency, increase drastically. This transition

phenomenon is less sharp for shorter driver wavelengths due to the smaller Gouy and

dipole phases and smaller harmonic orders. With higher medium density, the strong plasma

defocusing and reabsorption start to limit the HHG efficiency and result in a saturation

feature with optimal medium pressure for . In Fig. 3-7 (b), the basic features of a He cell

are similar to those of a He jet except that the optimal pressure is lower due to a longer

interaction length. Fig. 3-8 shows the enhancement factor for Ne. The same sharp

transition can be seen at lower medium pressures because Ne has larger neutral atom

dispersion. Compared to He, the larger reabsorption of Ne limits the optimal pressure to

lower values than those of He.

The calculated optimal pressures in Fig. 3-7 and Fig. 3-8 show excellent agreement

with experiment. For 0.8-pm driver wavelength, Fig. 3-7 and Fig. 3-8 show optimal HHG

efficiency at a few hundreds mbar for gas jets and a few tens mbar for Ne cells. These are

typical values applied in experiment [5,58]. To further verify our model, we simulate the

experiment in Ref. [8]. As shown in Fig. 3-9, the calculated optimal pressures for He and

Ne are 25 mbar and 18 mbar respectively, which are close to the experimental pressures at

26 mbar and 13 mbar. To show that these optimal pressures are closely related to plasma
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defocusing, we also calculate the enhancement factor without any plasma defocusing, as

shown by the dashed curves in Fig. 3-9. The dashed curves are calculated by neglecting the

impacts of refractive index and losses due to plasma onto the driver pulses. The intensity

distribution and the ionization level provide the information to calculate the enhancement

factor, as shown in Fig. 3-9. The sharp turn on the dashed curve in Fig. 3-9 (b) is due to

strong phase mismatching. The initial intensity is too high and generates too much plasma

that causes very strong phase-mismatching. This phase-mismatched HHG has a coherence

length [59] comparable to the medium length when the pressure is 10 mbar. When the

pressure is higher than 10 mbar, the coherence length becomes shorter, and the

enhancement cannot benefit more from the higher pressure. In Fig. 3-9 (b), plasma

defocusing decreases the intensity to an appropriate level for phase-matching, so the

enhancement can be larger than for the case without plasma-defocusing. Beyond 0.8-pm

HHG experiments, our 1.6-tm result also matches Ref. [10] well. The Ne jet in Ref. [10] is

optimized at 0.76 bar that is close to our optimal pressure at 1 bar for a Ne jet. Determining

the working pressure is important to the design of the vacuum system and the choice of

appropriate gas geometry. The numerical analysis on plasma defocusing provided here

gives the necessary information as well as the maximum enhancement due to the

macroscopic propagation effects of the medium, and is therefore of great practical

importance.
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Fig. 3-9 Enhancement factor for 0.8-ptm driver wavelength with high pulse energy and
loose focusing. For (a) He, a 130-mJ pulse is focused into a 5-cm-long gas cell with
590-pim beam radius. For (b) Ne, a 50-mJ pulse is focused into a 4-cm-long gas cell with
360-jpm beam radius [8]. The solid curves consider plasma defocusing, while the dashed
ones don't.

In conclusion, we quantitatively analyzed the influence of plasma defocusing and

phase-matching on HHG for different driver wavelengths by defining and comparing the

enhancement factor that considers macroscopic characteristics including plasma

defocusing, reabsorption of harmonics, and phase-matching. Our numerical result shows

good agreement with experiment and provides an easy way to calculate and explain HHG

performance without referring to the complex microscopic behavior of strong field

dynamics and the atomic parameters. Although increasing the medium pressure can

partially make up the severe loss of SE with longer driver wavelengths, the compensation

is still limited by the plasma defocusing.

3.3 Fully Dimensional Simulation

A fully dimensional HHG simulation that takes into account most physics related to a real

HHG experiment is developed by combining the macroscopic factors (phase-matching and

pulse propagation) presented in this chapter with the single-atom response discussed in

Chapter 2. Since the HHG efficiency is very low, there is little backward interaction from
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the HH on the fundamental driver field. In other words, the propagation of the fundamental

driver pulse can be calculated independently by Eq. (3.14), and the driver field distribution

E(r,z, r) at any spatial-temporal point (r,z,r) is calculated and saved before any computation

related to HHG. Next, for each spatial point (r,z), the driver electric field e(r) is a function

of time, and the HH generated at (rz) is determined solely by e(r) and can be calculated by

Eq. (2.35) of the TSM. The last step is to convert the HH dipole moment to HH electric

field, propagate it through the medium, and integrate the HH fields over (rz).

The bottleneck of the entire computation project is to calculate Eq. (2.35) for a given

e(r) efficiently. A routine that takes e(r) as the input and outputs the HH dipole x(r) as a

function of time will be called frequently. The temporal grid size of x(r) has to be much

smaller than the grid size required for the driver pulse propagation because the wavelength

of the HH can be as short as few nm while the driver wavelength is usually in the order of

tm, which means that the minimal temporal grid size has to be 2 to 3 orders finer for HH

calculation than for driver pulse propagation. Therefore, a huge number of temporal grids

will be needed. Another challenge is the mapping between the recombination time tr and

the ionization time tb. Since t, is also the temporal coordinate shared by the other variables

in the simulation, it is usually represented by a set of predetermined uniform grids for

convenience. Therefore, th, as a nonlinear function of t, should be solved from the saddle

point equations Eq. (2.32) and Eq. (2.33). It is time-consuming to calculate th for a given tr

by searching the root of a nonlinear function.

Fortunately, many variables needed for single-atom response calculation can be easily

rescaled for any sinusoidal driver field. In other words, most of the work solving Eq. (2.32)

and Eq. (2.33) can be done before the simulation runs. For a sinusoidal driver field
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E(t) = Eocos(ot) with a constant amplitude Eo, the saddle point equations Eq. (2.32) and Eq.

(2.33) tell us to find a trajectory that starts with vanishing initial velocity at the ionization

time tb and returns to the origin at the recombination time tr. The acceleration a, the

velocity v, and the position d of the trajectory at t, are

a(t,)= E, cos(0,); (3.19)

v(t,)= EU 0sin (#,) - sin (Oh)]; (3.20)

d (t,)=- [cos(#,.)- cos(0)] - (0 -- #, )sin (h), (3.21)

where

0, = ot,; (3.22)

= tb. (3.23)

Setting Eq. (3.21) to zero, we can solve Oh as a function of #,, as shown in Fig. 2-6 (a). The

action S, which is the kernel of Eq. (2.35), can also be calculated by

S= EO2 2 _ [COS (#,)- {cOS(#b ]2 [1 sin (2,)- sin (20b)] (3.24)
2co0 (, _ p 2 2 4(#, -#h)

where the dependences on Eo, and co are factored out in front of a function of (#h, #') that is

general to any individual cycle of the driver pulse. The central idea to calculate x(l) from

e(r) is to identify each cycle of e(v) along with its amplitude Eo and frequency Co (the

frequency actually changes during propagation because of plasma blue shift), appropriately

rescale the quantities involved in Eq. (2.35) (E(tb), (t-tb), S) with Eo and Co, and calculate

x(r) cycle-by-cycle rather than point-by-point. Interpolation is needed to match #, to r since

the instantaneous frequency co may be altered by the plasma blue shift effect. The idea can

be generated to electric field of the following form:

E = E (1+ aO,)cos (#,) (3.25)
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to account for the envelope variation within one cycle as long as the variation is not too

dramatic for linear approximation. The coefficient a will be determined for each cycle

individually.

To demonstrate the fully dimensional calculation, we consider several cases of HHG

in Ar gas jets with Gaussian pressure profile and 2-mm FWHM jet length. The pulse

duration and the central wavelength of the driver pulses are 35 fs and 800 nm respectively

for all of the cases, but the pulse energy and the focus spot size are different. The peak

pressure of the gas jet also varies. The parameters are summarized in Table 3-1. Basically,

Case 1 is very close to the optimal condition for HHG in Ar, and we increase the peak

intensity or the medium pressure in Case 2-4 to see how plasma defocusing spoils the

conversion efficiency. In Case 5 and Case 6, the peak intensities are the same as Case 1,

but the pulse energies and the focus spot sizes are adjusted to demonstrate the effect of

loose focusing. In HHG experiment, the relative position between the laser focus and the

gas jet position is also important, but this degree of freedom is neglected here for simplicity.

Table 3-1 Simulation Parameters for Fig. 3-10, Fig. 3-11, Fig. 3-12, and Fig. 3-13

Case Pulse Energy (mJ) Peak Pressure (mbar) Focus Spot Size (pm)

1 1 100 90

2 1 100 90/12

3 1 200 90

4 2 100 90

5 2 100 90/1

6 0.5 100 90/J
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Fig. 3-10 The peak intensity distribution of (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, (e)
Case 5, and (f) Case 6 listed in Table 3-1. The horizontal axes show the coordinate along
the propagation dimension in mm, and the vertical axes show the radial coordinate in jim.
The white contours show the pressure profile of the gas jet. The unit of the color scale is
W/cm 2.
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Fig. 3-11 The ionization level of (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5,
and (f) Case 6 listed in Table 3-1. The horizontal axes show the coordinate along the

propagation dimension in mm, and the vertical axes show the radial coordinate in prm. The
white contours show the pressure profile of the gas jet. The color scale indicates the
fraction of ionized atoms.
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Fig. 3-12 The spatial profiles of the 131 (20.2 eV), 21S (32.6 eV), 2 7th (41.9 eV), and 3 3 "d
(51.2 eV) harmonics of (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f)
Case 6 listed in Table 3-1. The horizontal axes indicate the radius in pim, and the vertical
axes show the normalized HH intensities. The dotted black curve is the spatial profile of
the focused driver pulse, which is Gaussian.
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Fig. 3-13 The HHG spectra of (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and
(f) Case 6 listed in Table 3-1. The horizontal axes show the photon energy in eV, and the
vertical axes show spectral energy density in J/eV. Note that the scales of the vertical axes
are different. The spectra are obtained by integrating over the radius.
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Fig. 3-10 shows the peak intensity distribution, and strong plasma defocusing effect

can be clearly seen from the asymmetric distribution around the focus at z=). Fig. 3-11

shows the ionization level after the pulses completely pass through the medium. In Fig. 3-

11 (b) and Fig. 3-11 (d), a significant portion of the gas is totally ionized due to the twice

higher intensity than the other cases. In the other cases, the ionization level is around 0.2-

0.4, and thus the ionization level at the peak of the pulse should be about half, i.e. 0.1-0.2.

Note that at the center of the gas jet (z=0) where the medium is the most dense, the

ionization level is even lower such that the ionization level is close to the critical ionization

level 0.04 for Ar. Fig. 3-12 shows the spatial profiles of several selected harmonics. In fact,

the spatial profiles are not good because of the complicated phase-matching process and

dipole phases, particularly for the cases with higher peak intensity (Fig. 3-12 (b) and Fig.

3-12 (d)). Most of the complex structure on the spatial profile is related to the long

trajectory. In a real experiment, the long trajectory HHG diverges much faster during

propagation than the short trajectory, and thus the far field is mainly composed of the short

trajectory that has better spatial quality.

Fig. 3-13 shows the HHG spectra for the six cases. In Fig. 3-13 (a)-(d), the driver

energy is 1 mJ, but Fig. 3-13 (a) shows much better efficiency than Fig. 3-13 (b)-(d) due to

the moderate intensity and medium pressure. Fig. 3-13 (e)-(f) have the same peak intensity

and pressure as Fig. 3-13 (a), but Fig. 3-13 (e) has 2 mJ while Fig. 3-13 (f) has only 0.5 mJ.

Although the harmonic intensity in Fig. 3-13 (e) looks similar to Fig. 3-13 (a), the

harmonic lines in Fig. 3-13 (e) are actually wider, and the total HHG yield is twice higher

than Fig. 3-13 (a) after integrating over the entire bandwidth. This means that the

efficiency of HHG has reached some saturation value that does not vary too much as the

driver pulse energy increases. However, the efficiency of Fig. 3-13 (f) is clearly worse than

Fig. 3-13 (a), and the total yield of Fig. 3-13 (f) is only 37%, rather than 50%, of that of Fig.
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3-13 (a), after integrating over the spectrum. The degraded efficiency is due to the tighter

focusing and the stronger Gouy phase that impedes the phase-matching. The spectra in Fig.

3-13 have incorporated the scattered-wave recombination amplitude shown in Fig. 2-4 (a).

One important problem of the simulated HHG spectra is the discrepancy between the

experiment-measured absolute efficiency and the absolute HHG efficiency calculated here.

Fig. 3-13 (a) shows a peak efficiency of -10 8 while experiment has reported an efficiency

of 106. It is unusual that a theoretical efficiency is lower than the experimental value by

several orders. In fact, as shown in Fig. 3-5 and Fig. 3-6, phase-matching condition is

difficult to maintain for a long distance in the fully dimensional simulation, although many

experiments have claimed that phase-matching is achieved. Since HHG is a complicated

coherent process with strong reabsorption from the medium, it is not easy to identify the

phase-matching feature from other density-dependent effects, like the reabsorption.

Meanwhile, the measurement of the absolute photon flux in the EUV and soft X-ray regime

is not easy, and most HHG experiments only report the relative dependence of HHG signal

on experimental parameters or show HHG spectra in arbitrary units. Nevertheless, we

cannot rule out the possibility that something important has been neglected in the

simulation work, or even some hidden new physics is at play.

3.4 Medium Length

One interesting question is the comparison between HHG media with different lengths but

same pressure-length product (PLP). In a phase-matched situation, the total yield is

proportional to the PLP squared, so the medium length makes no difference as long as the

PLP is constant. However, phase-matching and plasma defocusing can make things

complex [55]. Under the same peak intensity, a medium of higher pressure must have more

free electrons and induce more diverging phase on the driver pulse wave-front. On the
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other hand, however, the shorter medium length can mitigate the diffraction effect and

reduce the impact of the plasma defocusing. It is not obvious which situation suffers less

plasma defocusing and gives better efficiency. This section tries to show that shorter

medium with higher pressure may be more favorable under certain conditions.

Because of reabsorption and vacuum pumping issues, HHG targeting at EUV regime

usually uses medium with pressure no more than few hundred mbar, and the most critical

term in the wave propagation equation is the plasma defocusing according to previous

calculation. Under slow varying envelope approximation, the propagation equation can be

written as:

= - i ik ) P (3.26)
Oz 2k 2 C02

where A is the slowly-varying amplitude of the driver pulse; z is the propagation distance; k

is the wave-vector of driver pulse; V2 is the Laplacian on the transverse spatial coordinate;

(o, is the plasma frequency; co is the driver frequency. If A= A(r,z,r) with radius

coordinate r and local time r is a solution to Eq. (3.26), then A N =A (4rNvzr) satisfies:

= - V TAN i/c No , (3.27)
Oz 2k 2w 2

which happens to be the propagation equation for a medium with N times higher pressure.

Here we assume that the change of the wave-vector k is negligible when the pressure

changes, and this is true for dilute gas. Therefore, we can conclude that the propagation

behavior is invariant for a medium with N times higher density if we scale down the

propagation dimension by a factor of N and the beam size by a factor of the square root of

N respectively. Because the peak intensity is constant, the pulse energy will become N

times smaller, too. Table 3-2 lists three cases to illustrate the idea. In Case 1 and Case 2,
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the pulses are expected to propagate in the same way except for a scaling factor N=2. Case

1 and Case 2 should suffer the same amount of plasma defocusing, and the HHG flux of

Case 2 will be exactly 50% of Case 1 because Case 2 only has 50% driver pulse energy of

Case 1. In other words, Case I and Case 2 have the same HHG efficiency.

Table 3-2 Parameters for Medium Length Comparison

Case Energy (mJ) Focus Size (pm) Medium Length (mm) Pressure (mbar)

1 2 90 2 100

2 1 90/V 1 200

3 2 90 1 200

The medium is Ar gas jet with Gaussian pressure profile. The medium length is the FWHM
of the jet, and the pressure is the peak pressure at the center of the jet.

O 30 40 50
photon energy (eV)

A X 10
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Fig. 3-14 (a) HHG spectra of Case 1 (blue) and Case 2 (Red). The two spectra have exactly
the same shape except for an overall scaling factor of 2. (b) HHG spectra of Case 1 (blue)
and Case 3 (pink).

The fully dimensional simulation introduced in last section confirms this observation

precisely by showing two HHG spectra that have exactly the same shape except for an

overall constant factor of 2 in Fig. 3-14 (a). Case I here is the same as the Case 4 in Table
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3-1, so its peak intensity and ionization level distributions can be found in Fig. 3-10 (d) and

Fig. 3-11 (d) respectively. Even the intensity is so high that a significant portion of the gas

jet is 100% ionized, the rescaling relation is still preserved in Fig. 3-14 (a), which lends

strong support to the analytical conclusion and the accuracy of the fully dimensional

simulation at the same time. The plasma defocusing of Case 3 must be less than Case 2

because of the larger beam size under the same medium condition. Furthermore, Case 3

also suffers less Gouy phase due to looser focusing. Therefore, the HHG efficiency of Case

3 should be higher than Case 2 in principle. Logically, one can always split the 2-mJ pulse

energy of Case 3 into two halves and repeat the experiment of Case 2 twice, so the

efficiency of Case 3 cannot be lower than Case 2. A comparison relation among the HHG

efficiencies of the three cases is thus established: Case 1 = Case 2 Case 3.

Fig. 3-14 (b) compares the HHG spectra from Case I and Case 3, but the efficiency of

Case 3 is actually lower. This is because in the three cases discussed here, there has been

too much plasma, and the phases are almost random. Loose focusing can reduce the plasma

defocusing and enhance the HHG efficiency only when the phase mismatch is not too

chaotic. However, the difference of the two spectra in Fig. 3-14 (b) shows that the HHG

spectrum is sensitive to the experimental conditions, and the matching of the spectral shape

in Fig. 3-14 (a) is not a coincidence. Since the advantage of loose focusing has been

demonstrated by comparing the Case 5 and Case 1 of Table 3-1 in last section, so we can

conclude that a shorter but denser HHG medium will give a better efficiency. Last,

although Eq. (3.26) only considers the diffraction and the plasma term, it can be

generalized by including other terms proportional to the medium density, like the self-

focusing, without changing our conclusion.
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Care should be taken at the boundary of a gas cell. Assume the gas cell is isolated

from the vacuum chamber by a wall with an orifice on it at z=O, and the pressure

continuously drops from the +z side to -z side, as illustrated in Fig. 3-15. Practically, when

the cell pressure is doubled, the pressure profile usually changes from the lower blue curve

in Fig. 3-15 to the higher blue curve with the same pressure decay length. However, our

rescaling argument requires the decay length to be scaled down by a factor of 2 as well.

Therefore, the correct rescaled pressure profile should be the red one in Fig. 3-15 which

can be achieved by decreasing the orifice size. When the medium pressure is high, the

decay length outside the orifice is important because it may defocus the driver pulse

significantly before it enters the cell.

2
high pressure

correctly scaled
1.5 pressure

(n Plow pressure

0.5-

0

-10 -5 0 5 10
Distance (a.u.)

Fig. 3-15 Illustration of length scaling of the HHG medium.

3.5 Conclusion

The phase-matching of HHG is more complicated and more difficult than the conventional

lower harmonic generation because the much higher harmonic order makes the process

extremely sensitive to not only the refractive index of the medium but also the geometric
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phase of the driver pulse and the dipole phase due to the excursion of the electron.

However, the most difficult part is the control over the plasma. We numerically investigate

the influence of plasma defocusing in HHG by solving the first-order wave equation in an

ionized medium and defining an enhancement factor to quantitatively analyze the influence

of plasma defocusing. While degrading the driver pulse intensity, plasma also has a strong

impact on HHG phase-matching. Although the high energy photons generated by longer

driver wavelength suffer much less reabsorption, however, increasing the medium density

only has a limited enhancement of the efficiency due to the stronger plasma defocusing at

higher medium density. Although plasma defocusing is complicated and makes the HHG

process less straightforward, by rescaling the variables in the wave equation, we can show

that a better confined medium, i.e. a shorter medium with higher density, should be more

favorable for HHG.

Combining the macroscopic factors with the single atom response of HHG, a fully

dimensional HHG simulation model is built. Our model includes the diffraction, the

ionization, and plasma defocusing in the driver pulse propagation along with other minor

effects like self-phase modulation and the loss due to ionization and the acceleration of the

electron. The single atom response is calculated by the TSM. To speed up the computation,

the driver pulse is assumed not in the few-cycle regime. Then, all of the kinematic

variables needed for the TSM can be normalized with the driver intensity and the driver

frequency, and the computation of the single atom response is improved from a time-

consuming point-to-point process to an efficient cycle-by-cycle process. The algorithm

allows us to simulate a fully dimensional case of HHG within a reasonable amount of time.

However, the calculated absolute efficiency is a few orders of magnitudes less than the

experiment result, and this discrepancy requires a careful examination in the future.
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Chapter 4

High Harmonic Generation Driven by

Ti:Sapphire Based Lasers

The typical intensity required for HHG around 10'"-10 " W/cm 2 can be easily achieved by

commercially available Ti:sapphire lasers nowadays, so laser systems based on Ti:sapphire

technology, including the 800-nm femtosecond pulses directly from Ti:sapphire lasers, its

second or third harmonics, and optical parametric amplification (OPA) systems pumped by

Ti:sapphire lasers, have been prevalent in HHG experiment. In this chapter, three

experiments done with Ti:sapphire lasers will be discussed. Section 4.1 compares the HHG

results from 400-nm and 800-nm driver pulses to show the significant enhancement of

HHG efficiency using shorter driver wavelength. Because the HHG efficiency is enhanced

at the cost of the HHG cutoff, Section 4.2 studies the wavelength scaling of HHG cutoff

driven by shorter wavelengths in the visible regime generated by an OPA that is pumped

by the second harmonic of a Ti:sapphire amplifier and has a tunable signal wavelength.

The same tunable OPA system is also used to study the wavelength scaling of HHG

efficiency, and the experimental results have been discussed in Section 2.4. In Section 4.3,

more detail about the experiment design will be presented. Section 4.4 will give a

conclusion about these experiments with Ti:sapphire lasers.
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4.1 Comparison between 400nm and 800nm Driver Wavelengths

Efficient HHG driven by short wavelength (visible) will be of significant impact on many

applications requiring high-flux EUV sources in the range of 30-100 eV. For example,

~92 eV (~13.5 nm) photons are being paid much attention to because of the existence of

high-quality EUV mirrors based on Mo/Si multilayer coatings [8]. This short wavelength

radiation is intensively pursued for next-generation EUV lithography as well as seeding of

free electron lasers and x-ray lasers. High-flux EUV sources can greatly help attosecond

metrology mostly utilizing photoelectron time-of-flight spectrometers that require hours of

acquisition due to the limited number of photons per shot currently available. To

quantitatively confirm the effectiveness of HHG-based high-efficiency EUV sources, we

experimentally study HHG in Ar, Ne, and He gases using a 2-mm-long pulsed gas jet with

400-nm and 800-nm driver pulses.

For the experiments at two different driver wavelengths [9], we used 1 -kHz, 800-nm,

35-fs driver pulses with pulse energies up to 5-mJ, and 400-nm driver pulses obtained via

second harmonic generation (SHG) in a 150-pm-thick beta-barium borate (BBO) crystal.

The 800-nm pulses were focused into the gas jet to a spot with a beam waist of 40 ptm (l/e

radius of the electric field) focused by a spherical mirror with 100-cm focal length. The

BBO crystal was placed between the focusing mirror and the gas jet for SHG and the

remaining 800-nm pulse was removed by two dichroic mirrors. We obtained 1 -mJ pulses

centered at 400 nm with 18-nm of bandwidth that were focused into the gas jet to a spot

with a beam waist of ~30 pm. The estimated duration of the 400-nm pulses was 26 fs

corresponding to 18 optical cycles.

72



10-4

10- * Ne

W~ 10-7
w~o~7  I - -:1(a)

1.0 Ar (b)

0.5

C60.0

E 1.0 Ne(C)

0.5

0.0
S1.0 He (d)

0.5

20 30 40 50 60 70 80
Photon Energy (eV)

Fig. 4-1 HHG driven by 400-nm wavelength, 1-mJ, 26-fs driver pulses: (a) conversion
efficiencies for Ar, Ne, and He using a 2-mm gas jet positioned 1 cm before the focus for
Ar and at the focus for Ne and He; (b), (c), (d) HHG spectra respectively for Ar, Ne and He.

The HHG efficiencies and spectra obtained using 400-nm driver pulses in Ar, Ne and

He are summarized in Fig. 4-1. The laser peak intensity at the focus is estimated to be

-2.7x 10'" W/cm 2 for the ImJ pulse. Fig. 4-1 (a) shows the conversion efficiency into a

single harmonic order measured using a calibrated x-ray detector (AXUV100, IRD, Inc.)

for the Al-filter transmission range (20-70 eV). The observed conversion efficiencies at the

cutoff for the different gases are around 1 x 10- at 34 eV for Ar, 1 x 10-6 at 53 eV for Ne,

and 1 x 10-7 at 71 eV for He, respectively. The backing pressures of the pulsed gas jet are

50 mbar, 300 mbar, and 2 bar for Ar, Ne, and He respectively. The corresponding high

harmonic spectra from Ar, Ne, and He, used for efficiency calculations, are shown in Fig.

4-1 (b)-(d), respectively. Peak efficiencies of almost 1 x 1 0-4 at 28 eV are reached for Ar,

1 x 10- 5 at 28 eV for Ne, and 1 x 10- 5 at 53 eV for He.
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Fig. 4-2 HHG driven by 800-nm wavelength, 35-fs driver pulses: (a) conversion
efficiencies for Ar (0.6 mJ), Ne (2.0 mJ), He (2.0 mJ) using a nozzle length L =2 mm
positioned 1 cm before the focus for all the gases; (b), (c), (d) HHG spectra respectively for
Ar, Ne and He.

Fig. 4-2 summarizes the HHG conversion efficiencies and corresponding spectra in

the range of 20-110 eV driven by 800-nm, 35-fs pulses with energies of up to 2 mJ. Fig. 4-

2 (a) is obtained from the efficiency measurements for the low energy range (20-70 eV)

covering the Al-filter transmission window and high energy range (60-110 eV) covering

the Zr-filter transmission window. Different backing pressures of 50 mbar, 300 mbar and

2 bar are used for Ar, Ne and He, respectively, and the laser peak intensity at the focus is

-2.3x10"5 W/cm 2 with 2mJ pulses (-6.8x10"4 W/cm2 for 0.6 mJ). The efficiencies at the

same EUV wavelength are about 2-3 orders of magnitude lower for the 800-nm driver

pulses in comparison with the 400-nm driver pulses, but the cutoff energy is considerably

increased to beyond 100 eV for He. As can be observed from Fig. 4-2 (a), the HHG
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conversion efficiency at the cutoff is reduced to I x 10-7 at 45 eV for Ar, 1 x 1 0-7 at 88 eV

for Ne and 1 x 10- 8 at I10 eV for He.

In the entire experiment, the HHG efficiency optimization is achieved by scanning gas

pressure, nozzle position, and laser energy. For Ar the nozzle position is -7 mm before the

focus for both 400-nm and 800-nm drivers, whereas for Ne and He the nozzle is positioned

at the focus for both wavelengths. However, the HHG efficiency is not very sensitive to the

nozzle position within the Rayleigh range (~6.3 mm for 800 nm and ~7.1 mm for 400 nm)

before focus. The energy dependence of the total efficiencies achieved with He over the

full Al window are shown in Fig. 4-3 (a) for 400 nm and Fig. 4-3 (b) for 800 nm pulses,

respectively. This conversion efficiency is obtained directly from the XUV diode

photocurrent, multiplied by quantum efficiency and divided by Al-filter transmission and

driver energy. The transmission and quantum efficiency at the center wavelength of the Al

window are used to compute the total efficiency. Thus, these efficiency plots are not

spectrally calibrated, unlike Fig. 4-1 and Fig. 4-2, but show the relative conversion

efficiency versus laser intensity. Fig. 4-3 indicates that significant conversion starts at an

intensity of few times 1014 W/cm 2 and saturates for >10" W/cm2 . This saturation is also

observed for Ar and Ne starting at lower intensities. It is interesting that good conversion

efficiencies can be obtained for peak intensities of >10" W/cm 2 at which the ionization

becomes substantial. This is attributed to spatial effects of the beam. First, the HHG

efficiency is high in the center of the beam and then the high-efficiency region becomes an

annulus around the center shifting into the wing of the Gaussian beam for increase in

efficiency, leaving the overall efficiency achieved roughly equal. Second, the beam size is

increased at higher intensity (>10" W/cm 2 ) due to the plasma-induced self-defocusing [55].
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Fig. 4-3 Relative total conversion efficiency in He versus laser peak intensity with (a)
400-nm and (b) 800-nm drivers over Al window. This is obtained by (XUV diode
photocurrent x quantum efficiency) / (transmission of Al filter x pulse energy), where the
quantum efficiency and transmission at the center of the Al window are used.

In summary, we present an experimental study of HHG with short 400-nm and long

800-nm wavelength driver pulses. When all of the macroscopic parameters are optimized,

the single harmonic efficiency of 400-nm driver pulses are almost three orders of

magnitudes higher than the 800-nm driver pulses, higher than the difference from the SE.

This is because the phase-matching process is much easier for shorter driver wavelengths,

and the plasma dispersion also has less impact on the short wavelength pulses. Therefore, a

coherent EUV source based on HHG driven by visible wavelengths is promising [9].

4.2 Cutoff of HHG Spectrum in the EUV Regime with Visible Driver Wavelengths

In last section, we have demonstrated that the visible drivers are particularly suited for the

generation of high-flux EUV radiation, because of the higher conversion efficiencies than

IR drivers. Besides, the cutoff energy falls within the optimal range for the free-electron

laser (FEL) seeding makes HHG driven by visible wavelengths a potential FEL seeding

source [7]. As previously discussed, the improvement of the conversion efficiency is at the
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expense of the cutoff energy. Therefore, in this section, we study the cutoff of the HHG

spectra because it is related to limit of the application scope. We present experimental

results utilizing an OPA system whose signal wavelength is tunable between 470 nm and

640 nm [66]. The visible pulses from the OPA are focused into a He gas jet to

experimentally study the scaling laws for the cutoff energy of HHG, extending the results

from the IR to the visible wavelengths range.

Ti:Sap
800nmm
6mJ

gratinrg

EUV
spectrometer

High
Harmonics

toroidal mirror

thin film -100 J

gas jet

HHG chamber

Fig. 4-4 Schematic of the experimental setup, composed of a three-stage OPA pumped by a
commercial Ti:sapphire amplifier, the HHG setup, and an EUV spectrometer. WLG: white
light generation; MCP: microchannel plate; CCD: charg-coupled device.

Fig. 4-4 shows the experimental setup. We built a three-stage OPA [66] from a

commercial chirped pulse amplification system that delivered 1 -kHz, 35-fs, 6-mJ pulses

with 800-nm central wavelength. The signal of the three-stage OPA that would drive the
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HHG could be continuously tuned between 470 nm and 650 nm (Fig. 4-5 (a)) by rotating

the phase matching angle of the BBO at OPA 1. The pulse energy within the tuning range

was -200 ptJ and the pulse duration was 34-39 fs as measured by self-diffraction method

with a 0.15-mm-thick BBO (Fig. 4-5 (b)) [67]. The beam quality was good with an M2

value of 1.9, as shown in Fig. 4-5 (c). The driver pulse was then delivered into the vacuum

chamber to generate HH with a pulsed gas jet. The generated HH was refocused by a

toroidal mirror into the spectrometer equipped with a microchannel plate (MCP), as shown

in the lower part of Fig. 4-4. The gas jet was generated by a piezoelectric pulsed valve

synchronized with the laser system at 1 kHz. After the HHG process, the residue driver

pulse was filtered out by a 0.5-iim-thick Al or Be thin film that transmit 20-70 eV and 50-

110 eV respectively.
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C 0,
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(TL 33 fs) 550 600

Wavelenth (nm)
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Fig. 4-5 (a) OPA spectra of the signal with different center wavelengths. The white light
continuum (WLC) spectrum is also shown as a dashed line. (b) The pulse duration
measurement of one of the OPA signal. The measured pulse duration (34 fs) is close to the
transform limited (TL) pulse duration (33 fs) calculated from the spectrum. (c) CCD image
of the OPA signal focused with a 25-cm focusing lens.
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Because He has the highest ionization potential and therefore the highest cutoff, we

study the HHG from a He gas jet using the OPA. Fig. 4-6 (a) shows the HHG spectra

obtained with four different driver wavelengths. Fig. 4-6 (b) shows the experimental cutoff

as green squares, while the blue dashed line shows the linear fitting curve on logarithmic

scale (X' 7 +0 2) which stays within the range of the phase-matched cut-off relation ('-4-' 7)

observed in the IR region [12,57]. The absolute value of the cutoff energy is difficult to

optimize due to the low energy of the OPA driver pulses. The pulse energy available at the

gas jet is about 120 J, and the OPA pulses has to be focused tightly to reach an intensity

high enough to observe a HHG signal. Such a tight focus has the drawback of poor phase

matching due to the Gouy phase and limited interaction volume within the medium.

E 125
(a) (b)400n (b) Simnulation:

100m

0. 524nmn
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Fig. 4-6 (a) Experimental HHG spectra from He gas jet driven by different wavelengths. (b)
Wavelength scaling of HUG cutoff in He. Green squares: experimental data; blue dashed
line: linear fit on logarithmic scale; black triangles: simulation with the experimental
parameters; red circles: simulations with higher pulse energies and medium pressure to
avoid phase-mismatching from the Gouy phase.

To show the cutoff energy improvement with higher pulse energies, we numerically

study HHG by applying the fully dimensional simulation introduced in Section 3.3. Fig. 4-

6 (b) shows the simulation of the cutoff energy at the experimental conditions (black

triangles) and the simulation with much higher pulse energy and medium pressure to avoid
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the adversary phase-mismatch from the Gouy phase (red circles). The simulations show

that with more pulse energy than possible with the current OPA, higher cutoff energies are

reachable. This happens because one can use higher peak intensities without focusing the

driver pulses tightly. Phase-matching, which is particularly critical for higher energy

photons, also becomes easier with looser focusing due to a lower Gouy phase. As shown in

last section, the experimental cutoff of 400-nm driver is 71 eV with higher pulse energy

(1 mJ). In this work, the cutoff scaling of HHG is investigated with a continuously tunable

OPA at low pulse energy.

Because of the low driver energy, the single harmonic conversion efficiency in the

plateau region is only -10-', corresponding to ~10 4 photons/shot at 100 eV, from the

589-nm driver wavelength. To show the improvement in efficiency with higher pulse

energies, we simulate the efficiency for three different He gas jet pressures, as shown in

Fig. 4-7. In the simulation, the total efficiency between 80 eV and 90 eV for a 589-nm

driver pulse is compared. The pulse duration is the same as in the experiments, 34 fs, and

the peak intensity is fixed at 7.7x 10 " W/cm2 (same as the experimental value) by changing

the beam size accordingly. Fig. 4-7 shows that, as the pulse energy increases from 120 jJ

to few mJ, the simulated efficiency improves by 2 or 3 orders of magnitude due to the loose

focusing and the longer interaction length (up to 10-(6~7) in the example considered here).

Before reaching the asymptotic value, the efficiency curves show some oscillatory behavior

due to phase-matching effect. Further optimization of the gas jet position in the simulation

may result in efficiencies higher than those shown in Fig. 4-7, but this doesn't affect the

main conclusion that a looser focusing can help phase-matching and give an improvement

by a few orders of magnitudes.

80



10

. $ ... ,200 mbar

103 -. 500 mbar - - -.

102

a 10 50 mbar

10
Experiment

101 1 1 1 1
0 1 2 3 4 5

Driver pulse energy (mJ)

Fig. 4-7 The calculated HHG efficiencies in helium for different driver pulse energies and
different pressure values show that one can improve the efficiency by several orders of
magnitudes by using more energetic driver pulses.

The cutoff of HHG in He driven by visible wavelengths is studied because of the

interest in efficient HHG with shorter driver wavelength. A X' .702 experimental scaling

law of the cutoff is obtained, which can be an important guideline for choosing the driver

wavelength for a given photon energy. As shown by the simulation, the cutoff can be

further extended by increasing the driver pulse energy to the mJ level, and the efficiency

can be enhanced to around 10-(46), which is sufficient for the seeding of an EUV free

electron laser.

4.3 Wavelength-Scaling of Single-Atom Efficiency

The wavelength scaling of HHG SE is important not only for building an efficient laser

source, but for understanding the physics of HHG itself. Although there have been many

theoretical works and experiments devoted to the wavelength scaling of HHG SE using IR

driver wavelength, the scaling with shorter driver wavelengths in the visible regime has not

been systematically explored yet. For driver wavelengths shorter than 800nm, the scaling
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has been studied by comparing the efficiencies with one near-IR driver wavelength and its

second harmonic [5,9,47]. Although the second harmonic shows a dramatic enhancement

of HHG efficiency, a systematic experiment employing more wavelengths is still necessary

to experimentally map out the detailed wavelength scaling. Therefore, the OPA system

presented in last section with signal wavelengths tunable in the visible range serves as an

excellent tool to study the wavelength scaling of HHG SE.

A fundamental difference between HHG driven by IR and visible wavelengths is the

ionization process, which can be distinguished by the Keldysh parameter y(cf. section 2.4).

In the TSM discussed in Section 2.2, the solution of the Schridinger equation is expanded

around y= 0, and gives the useful formula for HHG dipole moment Eq. (2.35). However, y

is rarely much smaller than one in many HHG experiments. When y is considered, it has

been shown that the ionization time at which an electron exits the atomic potential barrier

is slightly advanced from the semi-classical model [49]. Since the ionization time can

influence the HHG efficiency through quantum diffusion [17,32], this can lead to different

HHG characteristics. To study this difference, visible driver wavelengths are more suitable

than IR because y is higher for shorter wavelengths at a given intensity. The effect due to

non-negligible y has been discussed in Section 2.4, where the theory shows good

agreement with HHG experiment performed around y~ 1. In this section, the detail of the

HHG experiment will be presented.

As shown in Section 3.2 and Section 4.1, the macroscopic experimental conditions

have to be carefully controlled in order to extract the information of the SE without the

interference from macroscopic factors [42]. The total yield of the q" harmonic can be

expressed as [43]:
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Sq=Cf dr 27rdr 12dz pexp(izAk,)exp - (L-z) (4.1)

where C is a proportional constant; r is the time in the co-moving frame of the driver pulse;

r is the radial coordinate; z is the propagation direction; 4 is the SE; p is the medium

density; L is the medium length; Akq is the wave-vector mismatch; o- is the absorption

cross-section of the harmonic. To directly relate the measured yield Sq to the SE, we need

to fix all of the parameters in Eq. (4.1) except . Therefore, the driver pulses must have the

same pulse duration and focal beam waist. With the same pulse energy, the peak intensity

is fixed as well. We also need to make the HHG phase-matched by keeping AkqL < 7r.

In the experiment, the driver wavelengths included three visible wavelengths from our

OPA system (Fig. 4-4) and 800nm from the Ti:sapphire amplifier. The OPA signal was

continuously tunable between 470 and 650 nm with 34-39-fs pulse duration, similar to the

35-fs pulse duration of the 800-nm pulse. We fixed the focal beam waists at 26±2 pm by

controlling the entrance iris before the focusing lens and measured the beam waists by the

knife edge method. The similar temporal and spatial conditions of these driver pulses

minimized the difference in the temporal and radial integrals in Eq. (4.1). The pulse

energies were -90 pJ at the focus, corresponding to a peak intensity of

(2.7±0.2)x10"4 W/cm2 . The corresponding Keldysh parameters were 0.7-1.1. The HHG

medium was an Ar jet from an exit orifice with 1 mm diameter. Characterized by a Mach-

Zehnder interferometer, the Ar density was 3x10'" cm-3 . The H H signals were detected by

an EUV spectrometer equipped with an MCP.

In addition to the driver pulse conditions, another important macroscopic aspect is

phase-matching. Fortunately, phase-matching is much easier to achieve for shorter driver
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wavelengths because of the lower harmonic order and the smaller Gouy phase [45]. The

phase-mismatch for a multi-cycle driver pulse may result from the neutral atom dispersion,

the plasma dispersion, the Gouy phase, and the dipole phase [45,55,68]. With moderate

peak intensities in the experiment, the neutral atom dispersion and the plasma dispersion

were roughly balanced, and the residual phase-mismatch was mainly due to the Gouy

phase, which could be cancelled by placing the gas jet behind the laser focus to induce an

appropriate amount of dipole phase [56]. To achieve phase-matching, we selected the short

trajectory by scanning the gas jet position and maximizing the target HH signal. To check

phase-matching, we measured the pressure dependence of the 21 st harmonic of the 800-nm

driver wavelength, which was the highest harmonic order in our experiment and therefore

the most difficult one for phase-matching. As shown in Fig. 4-8 (a), when the pressure was

low, the HH signal showed a quadratic dependence on the medium pressure. Thus, we

ensured phase-matching between the HH and the driver pulse within the interaction length.

After controlling the macroscopic parameters and optimizing the phase-matching, we

can directly relate the measured HH signal to the SE. We compare the 13 th, 15 1h, 7 th d

21S harmonics of the 524, 589, 633, and 800-nm driver wavelengths respectively. All of

these harmonics have similar photon energy at around 32 eV, as shown in Fig. 4-8 (b). We

calculate the total HH yield within each specific harmonic peak by integrating the spectrum

over the ±wo neighborhood of the peak, where wo is the driver frequency. The HHG

efficiency of each specific harmonic peak is plotted in Fig. 4-8 (c), and shows a wavelength

scaling of -(4 7*1 0), less dramatic than the X(7-8) scaling observed with IR driver

wavelengths. We attribute this difference to the larger Keldysh parameter and the deviation

from a pure tunneling process, as has been explained by our modified TSM in Section 2.4.

84



50 -:110

(a) (C)
40- --

S30-
0 10

520 - -

x4.7+-I.O) 10. experiment.
pressure 0.

n I I .C, -21
0 0.1 0.2 0.3 U10 5O0 600 700 800
Gas Jet Pressure (bar) Driver Wavelength (nm)

1cl 1000 - 524

4 ---- 633
100 - 800

.ID 10

26 28 30 32 34 36 38

Photon Energy (eV)

Fig. 4-8 (a) The pressure dependence of the 21 harmonic of the 800-nm driver pulse. The
arrow indicates the pressure set in the wavelength scaling experiment for the other driver
wavelengths. (b) The HHG experiment spectra, where the arrows indicate the optimized
phase-matched harmonics to compare. (c) The integrated signal of the individual
harmonics indicated by the arrows in (b).

4.4 Conclusion

This chapter discusses several experimental projects done with the Ti:sapphire amplifier

with an emphasis on the study of HHG driven by visible driver wavelengths. The

wavelength scaling of HHG SE shows a significant enhancement of efficiency with shorter

driver wavelength. The enhancement becomes even more dramatic because of several

macroscopic effects including the higher ionization level, lower harmonic order, smaller

Gouy phase, and easier phase-matching. After optimizing the experimental conditions, we

show almost three orders of magnitudes of efficiency enhancement in He when the driver
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wavelength changes from 800 nm to 400 nm. This improvement in efficiency will make

HHG a much more promising EUV source for <100 eV applications.

Pumped by the second harmonic of the Ti:sapphire amplifier, an OPA with tunable

signal wavelength between 470 and 650 nm, -200 pJ, 34-39-fs pulse duration is built to

study HHG driven by visible wavelengths. With careful control of the macroscopic

experiment conditions as well as the phase-matching, we measured the wavelength scaling

of the HHG SE in Ar at 32 eV, and observed a less dramatic scaling relation X-47*1-0. , as

compared to the X-7-8) scaling of single harmonic efficiency derived by the conventional

TSM. This discrepancy has been explained by our modified TSM in Section 2.4. The cutoff

in He is roughly between 60 eV and 100 eV as the driver wavelength increases from

400 nm to 618 nm, and a wavelength scaling law of~X1.711. 2 is observed. Because the pulse

energy is small, and tight focusing is required to reach the necessary intensity, the phase-

matching condition is poor and decreases the cutoff. The numerical simulation shows that

with multi-mJ energy, the cutoff can be extended by -20 eV, and the efficiency can be

improved by several orders of magnitudes, as already observed by our experiment with

1-mJ 400-nm driver pulse. The tunable signal wavelength makes the HH energy

continuously tunable, which makes our OPA useful for seeding FEL in the <1 00-eV range.
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Chapter 5

High Harmonic Generation Driven by

Mid-Infrared Ultrashort Pulses

In order to extend the cutoff of HHG further into the soft X-ray regime, longer driver

wavelengths in the mid-infrared are considered according to the cutoff scaling law Eq.

(1.3). However, the wavelength scaling law of the HHG SE also predicts a poor efficiency

for longer driver wavelengths, so high repetition rate and high pulse energy mid-IR

becomes necessary to generate a reasonable HHG photon flux for applications. OPCPA,

given its potential to scale up the pulse energy, is the best candidate for such high power

mid-IR source. Section 5.1 shows our kHz, multi-mJ, 2.1-pm OPCPA system. To achieve

multi-mJ pulse energy in OPCPA, a high energy picosecond pumping source is

indispensable, and Section 5.2 shows the cryogenic Yb:YAG pumping system that can

generate 56-mJ, 17-ps pulse at 1.03 ptm. The multi-mJ 2.1-pim pulse is focused into a gas

cell with Ar or Ne to generate HH. Section 5.3 shows the HHG result.

5.1 Optical Parametric Chirped Pulse Amplification

HHG driven by mid-IR wavelength has been proven to be the most reliable way achieving

tabletop water-window soft X-ray [10,12] or even keV source [69]. The extended cutoff
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provides new opportunities in attosecond pump-probe studies, high-harmonic spectroscopy,

recollision physics, selective X-ray spectroscopy, and biological or nanoscale imaging

applications. However, the unfavorable wavelength scaling of the HHG SE (cf. Section

2.3) makes high-flux HHG extremely difficult with the mid-IR driver wavelength.

Although the much smaller reabsorption at high photon energy allows the use of high

density medium to compensate for the poor SE, the plasma defocusing effect (cf. Section

3.2) becomes a serious issue in high density medium. Recently, phase-matched HHG

covering the water window range with an efficiency of ~10-('-9) has been experimentally

demonstrated in Ne and He [10,12] using 10-Hz, multi-mJ OPA sources pumped by a

Ti:sapphire laser. However, the photon flux is only 106 photons per second over 1%

bandwidth while an imaging application would require a flux two orders of magnitudes

higher than this number [70]. OPA [71] and OPCPA [72] with sub-mJ pulse energy at kHz

repetition rate have been reported and show cutoff up to -300 eV. However, the photon

flux has not been reported. Therefore, multi-mJ driver pulse energy and kHz repetition rate

are keys to achieving high photon flux HHG in the soft X-ray range.

OPCPA is considered one of the most promising mid-IR driving sources for HHG

because of the broadband amplification that can support few-cycle pulses and the high

energy scalability at high repetition rate [73]. The basic idea of OPCPA is to amplify a

chirped seed pulse by OPA pumped by a high energy picosecond pulse, and then

compressed the amplified chirped pulse back to the short duration [74]. Compared to the

chirped pulse amplification (CPA) technique, OPCPA has several advantages: tunable

central wavelength, broader amplification bandwidth, higher single-pass-gain to reduce the

B-integral, low amplified spontaneous emission, good amplified beam quality, low thermal

effects due to no population inversion [75]. Thanks to the rapid progress in the

development of high power picosecond pulse technology [76-78], high energy pump
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becomes available for OPCPA to scale up the signal pulse energy and generate high flux

HH. This section will introduce our OPCPA system.

Nd;YLF Cryogenic Yb:YAG CPA
S'ectrum system (1029 nm) at I kHz Pump 2

Nd:YLF CPA system_
(1047 nm) at I kHz 35 mJ

T Pump I
- DFG+

2.1 prn0. 15 mJ -7 Energy
1OPA 1control

Ti:Sapphire c
oscillator DFG MgO:PPLN 0.85 mJ

MgO:PPLN
MgO:PPSLT 35 pJ

OPA 2

Brewster-angle Si
Suprasil 300

Compressed pulse -2mJ

Fig. 5-1 Optical layout of the ultrabroadband 2.1 -pm three-stage OPCPA system. The inlet
shows the octave-spanning spectrum of the oscillator and the usages of the spectral
components.

The OPCPA system is shown in Fig. 5-1. The Ti:Sapphire oscillator first generates an

octave-spanning spectrum covering 600-1200 rum from which the 650-nm and the 940-nm

portions of the oscillator spectrum are mixed in a MgO-doped periodically poled lithium

niobate (MgO:PPLN) to generate ~pJ ultrabroadband (-500 nm at -10dB) seed pulses with

central wavelength at 2.1 pm by difference frequency generation (DFG). The 1047-nm and

the 1029-nm portions of the oscillator spectrum are sent to the Nd:YLF CPA system and

the cryogenic Yb:YAG CPA system respectively to amplify and are then used as the

pumps of the three OPCPA stages later. After the DFG stage, the seed pulse is stretched to

-5 ps by an anti-reflection (AR) coated 30-mm-long Si block and amplified to -2 pJ in
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OPAl that is pumped by the 1047-nm, 0.15-mJ, 12-ps pulses from the Nd:YLF system.

After OPAl, the seed is further stretched to ~9 ps by an acousto-optic programmable

dispersive filter (AOPDF; Dazzler, Fastlite) before being amplified in OPA2. OPA2 is also

pumped by the Nd:YLF system with 0.85-mJ, 12-ps 1047-nm pulses. The seed is amplified

to -35 pJ by OPA2. Ultrabroadband amplification is achieved by means of a degenerate

OPA in periodically poled lithium niobate (MgO:PPLN) and periodically poled

stoichiometric lithium tantalite (MgO:PPSLT) crystals. The details of the first two OPCPA

stages are described in Ref. [74].

The -35- J pulse from OPA2 is further stretched to ~17 ps with an AR coated 50-

mm-long Si block and then amplified in a 5-mm-long type-I BBO crystal pumped by

35-mJ, 17-ps, 1029-nm pulses from the cryogenic Yb:YAG system, which will be

discussed in next section. The beam sizes of both seed and pump pulses are adjusted

independently by telescopes to minimize the superfluorescence. At optimal performance,

the seed energy is amplified to 2.6 mJ at OPA3 with a gain of ~102 at a pump intensity of

30-50 GW/cm 2 . A beam pointing stabilizer for the Yb:YAG pump beam is installed to

actively stabilize beam pointing at the BBO crystal due to air fluctuation along the beam

path. As a result, the pump-beam position fluctuation is ~70 pim over ~3.0 mm of beam

diameter at the BBO crystal. The spectral bandwidth of the amplified pulses is 407 nm at

FWHM centered at 2.1 jim, as shown in Fig. 5-2 (a).
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Fig. 5-2 (a) The spectrum of the multi-mJ 2.1 -pm pulse. (b) The autocorrelation
measurement of the pulse duration of the multi-mJ 2.1-pim pulse.

The multi-mJ 2.1 -pm pulse is then compressed by two Brewster-angled Suprasil 300

blocks with a total path length of 620 mm near the HHG chamber. The compressed pulse

duration is 39 fs, measured by an interferometric autocorrelator (Fig. 5-2 (b)), while the

transform-limited pulse duration is 29 fs. The compression efficiency including loss in the

delivery optics (7 silver mirrors) between OPA3 and the HHG chamber is -80%, and the

maximum energy available for the HHG experiment is -2 mJ. The carrier-envelope phase

(CEP) of the 2.1 -pim pulses is passively stabilized [74] although the stability is not

measured because of the relatively long pulse duration of -6 cycles, making CEP effects

negligible in the HHG process.

5.2 Cryogenic Yb:YAG System

The promising energy scaling toward high repetition rate in the kHz regime of OPCPA

heavily relies on a high power picosecond pump source [78]. Therefore, new high power

picosecond sources based on Yb:YAG gain medium at 1029 nm have been explored. A

thin-disk Yb:YAG amplifier with 3-kHz repetition rate, 25-mJ pulse energy, and -1-ps

pulse duration has been reported [76], and recently enabled the generation of 1.2-mJ,
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2.1-pim OPCPA pulses [79]. The amplification to more than 40-mJ pulse energy at

1029 nm from the Yb:YAG thin-disk amplifiers have also been reported very recently [77].

Yb:YAG is an excellent candidate of high power picosecond laser gain medium because of

several favorable properties: broad absorption band at 940 nm and long upper-state life

time support accumulation of substantial population inversion pumped by high-power laser

diode; high thermal conductivity helps prevent optical damage due to thermal lensing; low

quantum defect (9%) leads to high conversion efficiency and low thermal load. The main

drawback of Yb:YAG is the high saturation fluence at room temperature (~9 J/cm 2), which

can be lowered by cryogenically cooling and transforming Yb:YAG from a quasi-three-

level system to a four-level system [78]. The cryogenic temperature also further improves

the thermal optical property of Yb:YAG. In this section, we will present our cryogenic

Yb:YAG system that delivers 17-ps pulses with >50-mJ pulse energy at 1029 nm central

wavelength to pump OPA3 in Fig. 5-1.
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1029 nm

Cryo-Yb:YAG single-pass Cryo-Yb:YAG 2-pass amplifier
amplifier

Crystal I
beam DM In Dewar

Crystal 2 monitor LD
in Dewar (260 W) DM

HR

AD( A0W TFP 0 3.6 mm

DM beamWOM4
W/ monitor Q/ )1.

Mj D -2.2 rnm HR
HR D = -4.4 mm 30mJ

56 mJ (42 mJ, 17 ps after compressor)

Fig. 5-3 Optical layout of the kHz picosecond cryogenic Yb:YAG CPA laser. Crystal 1,
1%-doped, 10-mm-long Yb:YAG; Crystal 2, 2%-doped, 20-mm-long, Yb:YAG; D,
diameter; HR, high reflector; DM, dichroic mirror; TFP, thin-film polarizer; k/2, half
waveplate; k/4, quarter waveplate; LD, laser diode at 940 nm.

The system layout of the cryogenic Yb:YAG CPA laser system is illustrated in Fig. 5-

3. The 1029-nm portion from the spectrum of the same Ti:sapphire oscillator that seeds the

OPCPA system is pre-amplified by two Yb-doped fiber amplifiers, stretched by a chirped

volume Bragg grating (CVBG) pair to -560 ps with 0.7-nm bandwidth, and then amplified

by a kHz regenerative amplifier to 6 mJ. After magnified by a telescope in beam size, the

6-mJ pulse is then sent to a two-pass amplifier whose gain medium is a I %-doped 10-mm-

long Yb:YAG crystal attached tightly to a Dewar cooled by liquid nitrogen to 77 K. The

telescope at the entrance plays an important role to control the beam size to match the

pump beam size for optimal performance of amplification and to avoid self-focusing

triggered by the amplified intense pulse. The self-focusing effect should be minimized to

preserve the good spatial quality as well as to protect the optics. The Yb:YAG is pumped

by a 240-W fiber-coupled cw -940-nm laser diodes, and -75% of the pump energy is
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absorbed by the crystal. After the two-pass amplifier, the beam is amplified to 30 mJ and

sent to another single-pass amplifier for further amplification. Again, the beam size is

adjusted by another telescope. Because of the thermal gradient inside the Yb:YAG crystal,

the amplified beam suffers a little astigmatism. Therefore, a periscope is set at the entrance

of the single-pass amplifier to compensate the astigmatism by introducing thermal gradient

in the other dimension when the pulse enters the second Yb:YAG crystal. The gain

medium of the single-pass amplifier is a 2%-doped 20-mm-long Yb:YAG crystal cooled to

77 K inside a Dewar. The pump source is the same as the two-pass amplifier, but -95%

pump energy is absorbed by the crystal due to the higher doping. The maximum energy

after the single-pass amplifier is 56 mJ. Fig. 5-4 (a) and Fig. 5-4 (b) show the output beam

profiles of the two-pass and the single-pass amplifiers respectively. The amplified pulse is

compressed to 17 ps (Fig. 5-4 (c)) using a multi-layer dielectric grating pair with a

throughput efficiency of 75%, delivering a maximum compressed energy of 42 mJ.

Although the maximum pulse energy is 42 mJ, only 35 mJ is used to pump the OPCPA to

avoid superfluorescence.

FWHM

Fig. 5-4 The beam profiles of the outputs of (a) the two-pass amplifier and (b) single-pass
amplifier respectively. The circular fringes in the beam profiles are the measurement
artifact from neutral density filters. (c) The pulse duration measurement of the compressed
1.03-ptm pulse. At is the FWHM of the envelope of the electric field, and the FWHM of the
intensity is At/Ni .
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5.3 HHG Results

The 2.1-ptm pulse is focused into a gas cell with two differential pumping stages to

generate HH. The gas cell has a simple structure as shown in Fig. 5-5. It stacks five 1/4"-

thick 1.33" CF flanges together with four drilled blank copper gaskets in between. The

middle three CF flanges with 1/4" gas feedthrough tubes connected on the side walls

function as the front differential pumping stage, the gas cell, and the back differential

pumping stage respectively. The differential pumping stages help keep the background

pressure of the chamber below 10-2 mbar while the pressure inside the gas cell may be as

high as -1 bar during experiment. The blank copper gaskets have apertures drilled at the

centers with desired diameters. In our gas cell, the diameters are either 0.5 mm or 0.6 mm,

as indicated in Fig. 5-5.

Gas inlet

differential pumping differential pumping

4,=0.5mm
+2 =0.6mm

+2

Fig. 5-5 The gas cell with two differential pumping stages. j and 42 are the diameters of
the apertures on the blank copper gaskets between the CF flanges.

The 2.1 -[tm beam is focused at the center of the gas cell with a peak intensity of

~-3x10'" W/cm 2. Fig. 5-6 shows the HHG spectrum from Ar at a pressure of -200 mbar

with a cutoff around 190 eV. Unlike the HHG spectra driven by near-FR or visible

wavelengths (cf. Chapter 4), the harmonic peaks in Fig. 5-6 are not resolved. The poor
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resolution could be due to the grating of the spectrometer that cannot resolve the high

energy photons well, especially when the harmonic peaks are much closer for longer driver

wavelengths. The soft X-ray photon flux is measured by a calibrated X-ray photodiode.

The photon flux at 160 eV from Ar HHG is -2 x 108 photons/s over 1% bandwidth. The

driver energy of 2.1 ptm used in these measurements is 0.9 mJ. The shape of the HH

spectrum in the range of >50 eV basically follows the transmission curve of Ar, which

indicates that the soft X-ray flux is limited by the reabsorption of the HHG medium.

8000

7000

c 6000

5000 Al filter
00

4000

3000 -
Zr filter

2000
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40 60 80 100 120 140 160 180 200 220 240
photon energy (eV)

Fig. 5-6 HHG spectrum from Ar (black), and the transmission curves of Al (blue) and Zr
(red) filters [80].

To generate water window HHG, the gas in the gas cell is switched to Ne because it

has higher ionization potential to sustain higher electric field without generating too much

plasma. The intensity at the focus is -5 x 10 " W/cm2 with 1.5-mJ pulse energy at the focus.

A calibrated photodiode with Ti and carbon coatings is used to detect the photon flux. In

addition, two 0.5-tm-thick Ti foils are placed before the photodiode to block the residue of

the driver pulse. Therefore, the photodiode should be only responsive to soft X-ray photons

between 200-450 eV, as the response curve shows in Fig. 5-7 (a). After the optimization of

the input beam size and the focus position, the photodiode shows an optimal signal of
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photon flux when the Ne pressure in the gas cell is ~1.2 bar. Unfortunately, our toroidal

mirror is contaminated by carbon generated by the ionizing vacuum gauge, and thus

photons with energy higher than 200 eV are not transferred to the spectrometer. According

to the simulation spectrum (Fig, 5-7(b)) with the experimental parameters, the photodiode

signal that takes into account the photodiode response and the transmission of the Ti filters

corresponds to a photon flux of~106 photons/s over 1% bandwidth around 350 eV.

1.4 X 10 1016

1.2 (a) _ (b)
008

00

0 6 E0.4o 4)

S0..
C0..2

0.2-

0 200 400 600 90"0 250 300 350 400 450
photon energy (eV) photon energy (eV)

Fig. 5-7 (a) The combined response of the photodiode to different photon energy. The
response curve has taken into account the coating layers on the photodiode and two
additional 0.5-pim-thick Ti filters. (b) The simulated HHG spectrum of Ne with the
experiment parameters.

In summary, we have demonstrated a 2.6-mJ, 39-fs, kHz, 2.1 -ptm OPCPA system,

pumped by 35-mJ, 12-ps, 1029-nm pulses from the cryogenic Yb:YAG amplifier, and

high-flux soft X-ray HHG via cutoff extension to 190 eV in Ar. Measured by a calibrated

photodiode, the photon flux is ~2 x108 photon/s over 1% bandwidth at 160 eV from Ar. A

HHG signal between 300 eV and 400 eV is also observed with 1.2 bar Ne by another

calibrated photodiode with selective coatings and filters to measure 200-450 eV signal. The

photon flux is ~106 photon/s over I% bandwidth at 350 eV, although spectra can not be

measured for the time being. This system would be a promising light source for soft X-ray

attosecond science as well as biological imaging applications.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis has covered several topics about HHG. An efficient numerical algorithm to

calculate the TDSE for HHG is developed. The feature of the TDSE algorithm is to

decompose the radial wave-function by the eigen-functions of the radial part of the TDSE,

and simply compute the time-varying coefficients for each eigen-function rather than the

detailed structure of the eigen-functions. With a pre-computed library of the eigen-

functions of the atom of interest, the algorithm is particularly suitable for testing many

different driver waveforms on the same atom, e.g. studying the wavelength scaling

characteristics or optimizing the driver waveform for some specific purpose. We next study

the TSM with an emphasis on the wavelength scaling of single-atom efficiency (SE). The

physical meaning of the 2i78) scaling law for single harmonic efficiency is explained:

quantum diffusion accounts for V); the increasing number of the harmonic peaks accounts

for another V); the rest 2- dependence is related to the ionization and recombination

phase of the electron and the relative position of the photon energy on the plateau.

While the TSM is supposed to work in the tunneling regime with a negligible Keldysh

parameter, we study the wavelength scaling of HHG SE experimentally and theoretically
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with visible driver wavelengths and a Keldysh parameter around unity in the transition

between the tunneling and the multiphoton ionization regimes. The experimental result

shows a less dramatic wavelength scaling than the conventional HHG with IR driver

wavelengths and is well explained by our modified TSM that incorporates the non-

adiabatic (NA) ionization and the complex ionization time (CIT) from the saddle point

method. For HHG close to the multiphoton regime, the CIT can alter the electron traveling

time in the TSM and make the wavelength scaling of the SE less dramatic than HHG

driven by longer wavelengths in the tunneling regime. In addition, because the CIT

removes the singularity from the traveling time in the conventional TSM, we can replace

the quasi-static ADK ionization model by the more general non-adiabatic (NA) ionization

model without divergence and obtain a modified TSM that works for a wider range of

Keldysh parameters.

The influence of plasma defocusing on HHG is another important topic of this thesis.

We quantitatively analyzed the influence of plasma defocusing on HHG for different driver

wavelengths by defining and comparing the enhancement factor that considers

macroscopic characteristics including plasma defocusing, reabsorption of harmonics, and

phase-matching. Geometric and dipole phases that are important in the phase-matching of

HHG driven by IR or longer wavelengths are also included. Our numerical result shows

good agreement with experiment and provides an easy way to calculate and explain HHG

performance without referring to the complex microscopic behavior of strong field

dynamics and the atomic parameters. Although increasing the medium pressure can

partially make up the unfavorable SE with longer driver wavelengths, the compensation is

still limited by plasma defocusing. The pulse propagation employed in the study of plasma

defocusing here is then combined with the TSM into a fully dimensional HHG simulation

program that takes into account most known physics relevant to HHG. The most critical
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approximation made in the simulation is the assumption of multi-cycle pulse and the linear

approximation of the driver field envelope. By appropriately normalizing the kinematic

variables with the driver pulse intensity and the frequency, an efficient algorithm to

calculate the TSM dipole response is developed and speeds up the fully dimensional

simulation of HHG significantly.

Ultrashort pulses generated from a Ti:sapphire amplifier is the easiest way to generate

HH nowadays, and several experiment projects in this thesis are carried out with our multi-

mJ Ti:sapphire amplifier. HHG efficiencies driven by the Ti:sapphire wavelength 800 nm

and its second harmonic 400 nm are compared. While the wavelength scaling of HHG SE

predicts a significant enhancement of SE with the shorter driver wavelength, the actual

enhancement can be even larger because shorter driver wavelength is favored by several

macroscopic factors including the higher ionization level, lower harmonic order, smaller

Gouy phase, and easier phase-matching. Three orders of magnitudes of efficiency

enhancement has been observed around 50 eV in He when the driver wavelength is

shortened from 800 nm to 400 nm. An OPA system with tunable signal wavelength

between 470 nm and 650 nm is built and pumped by the 400-nm pulse generated from the

Ti:sapphire amplifier. We used this system to study the wavelength scaling of the SE and

the cutoff of HHG driven by visible wavelengths. While the cutoff is consistent with the

scaling law found with the near- and mid-IR driver wavelengths, the SE shows a different

behavior that can be explained by our modified TSM.

In order to extend the cutoff further into the soft X-ray range, an OPCPA system that

generates 2.6-mJ, 39-fs, kHz mid-IR (2.1 Vim) pulse is developed. The last OPA stage of

the OPCPA system is pumped by a cryogenic Yb:YAG system that generates 56-mJ, 17-ps,

1.029-rim pulse. The two systems are synchronized by seeding from the same oscillator.
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OPCPA is known for its energy scalability and the support of high-repetition-rate operation

with a high power external pump, which are essential for high-flux soft X-ray generation

by HHG. The mid-IR pulse is focused into a differentially-pumped 6mm-long gas cell to

generate HH. The HHG spectrum from ~200-mbar Ar shows a cutoff around 190 eV and a

photon flux -2 x108 photon/sec over 1% bandwidth around 160 eV. With 1.2-bar Ne in the

gas cell, our photodiode dedicated to 200-450-eV photon measurement detects a photon

flux ~106 photon/sec over 1% bandwidth around 350 eV. Although we have not measured

the HHG spectrum of Ne yet, a spectrum around 350 eV is expected by the fully

dimensional simulation with the experiment parameters. A HHG-based source driven by

mid-IR ultrashort pulses at kHz repetition rate has thus been demonstrated.

6.2 Future Work

One important problem to solve about the simulation work is the discrepancy between the

HHG efficiencies calculated by the fully dimensional simulation and measured by the

experiment. Surprisingly, the calculated efficiency is lower than the experimental result by

a few orders of magnitudes. If we track the wave-vector-mismatch Ak between the driver

pulse and some harmonic order along the driver pulse propagation, we can find that Ak

experiences dramatic change during the propagation that suggests phase-matching over a

certain distance is almost impossible. The Ak changes much faster for longer driver

wavelength because of the extremely high harmonic order. Even at low pressure conditions,

the geometric phase and the dipole phase can kill the phase-matching condition for mid-IR-

driven HHG as long as plasma defocusing shows up. The failure to achieve phase-

matching in simulation is considered the major reason for the efficiency discrepancy,

although we cannot rule out the possibility of incorrect recombination amplitudes used in
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the simulation or any new hidden physics. So far, there is not any theoretical work

carefully comparing the absolute efficiency with experiment to the best of our knowledge.

For the experiment, it will be great to acquire HHG spectra from Ne driven by the

mid-IR pulse to confirm that our OPCPA has generated HH in the water window range

(284-543 eV). The water window is defined by the two absorption edges of carbon (284 eV)

and oxygen (543 eV), so a water window photon sees strong absorption from carbon (and

thus proteins) but good transmission from oxygen (and thus water). On this ground, the

water window radiation can be very useful for high resolution (<5 nm) bio- molecule

imaging because of its short wavelength. Furthermore, the excellent spatial and temporal

qualities due to the natur of HHG also provide high brightness by tight focusing and

precise timing, which offers great potential for femtosecond and attosecond study of atomic

and molecular and condentsed matter dynamics.

Once the generation of water window photon flux is confirmed, the next things to do

is to improve the photon flux to 108 photon/sec over 1% bandwidth, which has been shown

to be enough for microscopy application [70]. In Ref. [10], the 1.55-jim driver pulses with

2.2-mJ pulse energy and 40-fs pulse duration are focused on a Ne gas jet having a pressure

of 0.76 bar and a width of 2 mm. The focus intensity is estimated as 3.5x 1014 W/cm2 , and

the measured cutoff is around 400 eV. The generated photon flux is 2.5 x 106 photons/shot.

In Ref. [12], the 2-jpm driver pulses with 2.4-mJ pulse energy and 40-fs pulse duration are

focused into a I cm-long hollow core waveguide with 12-bar of He. The reported cutoff is

520 eV, and the photon flux at 1% bandwidth around 450 eV is 10' photons/shot, which

corresponds to a single harmonic efficiency of 8x10-". Since our OPCPA generates 2.6-mJ
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39-fs 2.1-tm pulse at 1 kHz, there should be room to improve the efficiency to generate

sufficient photon flux for water window soft X-ray experiment.
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