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Abstract

Motivated by the increasing demand for more powerful and efficient optical commu-

nication systems, quantum mechanics of information processing has become the key

element in determining the fundamental limits of physical channels, and in designing

quantum communication systems that approach those fundamental limits. To achieve

higher data rates over quantum optical channels, we need to efficiently extract classi-

cal information from quantum states. However, peculiar properties of quantum states,
such as the no-cloning theorem and the non-reversible measurement process, provide

new challenges in the measurement of quantum states; in quantum information science,
there is no concept analogous to sufficient statistics in classical information science.

Therefore, to extract as much information as possible from quantum states, it is im-

portant to choose the right measurement process. In this thesis, we investigate the

fundamental question of how to design the measurement process to efficiently extract

information from quantum states.

First, we consider adaptive measurement, with which we measure each received

quantum state one at a time, and then update the next measurement process based

on the previous observations. We show that for binary hypothesis testing between two

ideal laser light pulses, if we update the adaptive measurement to maximize the com-

munication efficiency at each instant, based on recursively updated knowledge of the

receiver, then we can achieve the theoretical lower bound of the detection error probabil-

ity. Using this viewpoint, we give a natural generalization of the adaptive measurement

to general M-ary hypothesis testing problems. We also analyze the information capac-

ity with adaptive measurement, and compare the result with that for direct detection

receivers and the ultimate capacity of quantum channels (the Holevo limit).
We also investigate finite-blocklength joint receivers. The ultimate capacity of quan-

tum channels is calculated under the assumption that an infinite number of quantum

states can be collectively measured in one shot. However, this assumption becomes the

primary barrier that prevents practical implementations of capacity-achieving joint de-
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tection receivers. The maximum number of classical information bits extracted per use
of the quantum channel strictly increases with the number of channel outputs jointly
measured at the receiver. This phenomenon is called strict superadditivity, and it has
been thought of as a unique property that can be observed only in quantum channels,
but not in classical discrete memoryless channels (DMCs). In this thesis, we introduce
a new aspect of understanding strict superadditivity by comparing the performance of
concatenated coding over quantum channels and classical DMCs, for a fixed inner code
length. We show that the strict superadditivity in information rate occurs due to a
loss of information from hard-decisions at the finite blocklength. We also find a lower
bound on the maximum achievable information rate as a function of the length of the
quantum measurement.

The analysis and new insights into the measurement process of quantum states
that we develop in this thesis can be used to improve not only current quantum optical
communication systems, but also classical information processing, where the data is too
big to be handled with sufficient statistics. Our work would help develop new concepts
of efficient statistics that provide systematic ways to choose useful information among
big data while discarding the rest.

Thesis Supervisor: Professor Lizhong Zheng
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

U 1.1 Quantum Information Theory: Promises and Challenges

Q UANTUM information science studies the theory of communication and compu-

tation at the most fundamental physical level. Quantum communication sys-

tems transmit information in individual photons. As the demand for more powerful

and efficient communication systems evolves, the quantum mechanics of information

processing becomes the key element in determining the fundamental limits of physical

channels such as the optical fiber or free-space optical channels, and in designing the

quantum communication systems that approach the fundamental limits. For example,

to help maximize the efficiency of optical communication, new techniques have been

adapted that utilize a quantum mechanical phenomenon known as entanglement, which

is a bizarre form of correlation that can be explained only by quantum mechanics [3].

One of the central questions in quantum information theory is: How many classical

bits per channel use can be reliably communicated over quantum channels? In 1973,

Holevo first derived an upper bound (Holevo bound) on the capacity of quantum chan-

nels to transmit classical information [22]. In [20, 23], it was shown that the Holevo

bound is in principle also an achievable information rate if we can access the quantum

channel infinitely many times and can implement a receiver that makes joint (collective)

measurements over the infinite-length codeword blocks. The capacity of bosonic chan-

nels, a single electromagnetic field mode, subject to the constraint of average photon

number per channel use, was first derived in the absence of noise and loss in [50]. When

the average photon number per channel use per mode is S, the maximum number of

11



information bits that can be reliably communicated through the bosonic channel is

C(S) = (S + 1) log(S + 1) - £ log 9 [nats/symbol]. (1.1)

In [14], this result was generalized for the purely lossy case. The capacity of bosonic

channels is achievable by transmitting N-encoded input coherent states, i.e., ideal

(single-mode) laser light of duration T-seconds, and then by jointly measuring the

N-encoded coherent states, i.e., by collectively measuring the laser light of an entire

duration of N - T-seconds, as N -+ 00. This is again an asymptotic result, assuming

that we can store the long sequence of received coherent states until we receive the very

last quantum state, and then we can jointly process those N-quantum states.

Even though the capacity of quantum channels is proven in theory, there has been

no practical design of a quantum communication system that achieves the capacity

of quantum channels. With current quantum optical devices, we fall short of achiev-

ing that capacity. In particular, the assumption that an arbitrarily large number of

quantum states can be jointly measured is the primary barrier that prohibits practical

implementations of capacity-achieving joint detection receivers (JDRs) -especially in

the context of optical communication.

Current quantum optical technologies cannot store the large number of quantum

states without perturbation. Moreover, in general, the complexity to implement joint

detection receivers that collectively measure length-N quantum states increases expo-

nentially with N. When considering the complexity of quantum receivers, we can ask

questions as follows: How does the maximum achievable information rate increase as the

length of quantum measurements increases? Or, more fundamentally, why do we need

to detect a large number of quantum states together to achieve a higher information

rate from quantum channels?

In Chapter 5 of this thesis, we will answer the first question. Even before that,

the second question can be answered intuitively from unique properties of quantum

mechanics. First, when we receive an unknown quantum state, we cannot copy it; this

12 CHAPTER 1. INTRODUCTION



property is called no-cloning theorem [31]. Second, once we measure a quantum state

and observe its output, the quantum state is perturbed, and we cannot restore the

original quantum state, or reverse the measurement process.

These two properties of quantum mechanics highly restrict our measurement process

and make a great difference from the classical information processing: we have one and

only one opportunity to measure the originally received quantum states, and we cannot

preserve all the information in the received quantum states after we measure it. That

is to say, in quantum information science, there is no concept analogous to sufficient

statistics in classical information science. When we measure a quantum state, we can

only observe partial information about the quantum state, and we lose the rest of the

information that was originally encoded in the quantum state.

Therefore, to extract as much information as possible from quantum states, it is

important to choose the right measurement. When we measure a large number of

quantum states together, a much more general form of quantum measurements can be

allowed, compared to the case when we measure each received quantum state one at a

time. Allowing more general sets of quantum measurements may increase the amount

of information that can be extracted per received state, so that we can achieve a higher

information rate with a joint detection receiver that can measure a large number of

quantum states at one time.

In this thesis, we investigate the fundamental question of how to design the measure-

ment process to efficiently extract information from quantum states when the possible

types of measurements are restricted to particular sets of practically implementable

quantum receivers. For example, we consider a coherent receiver, which adds a feed-

back control signal to the received quantum state and then detects the merged signal by

a photon counter. The feedback control signal that is added to the currently received

quantum state can be designed based on the photon arrival histories of the previously

arrived and detected quantum states. For such a fixed structure of quantum receiver,

what is the optimal way to choose the feedback control signal to maximize the efficiency

1L3Sec. 1.1. Quantum Information Theory: Promises and Challenges
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Quantum
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Figure 1.1. Block diagram of optical communication system

of the measurement process, by using the information extracted from the previous states

to help extract new information from the next quantum state?

We will consider quantum detection/communication problems with such adaptive

measurements as well as finite block-length joint measurements, and analyze the maxi-

mum achievable performance with those restricted sets of measurements. By highlight-

ing and contrasting different properties of measurement types and their performance

bounds, we will reveal what specific properties of quantum measurements indeed make

a difference in the efficiency of extracting information content from quantum channels.

When quantum channels paired with a certain set of measurements function analogously

to a specific classical communication system, we will also use the analogy to explain

the optimal ways to extract information from quantum states with that specific type of

measurements.

* 1.2 Quantum Optical Communication System

In this section, we will present how classical information bits can be communicated

over physical quantum channels. Fig. 1.1 illustrates an optical communication system.

The optical communication system is composed of five separate functional parts, which

include an encoder, modulator, optical channel, quantum receiver, and decoder. The

message we want to convey through n-uses of a quantum channel is denoted as M E

{1, ... , enR}, where the rate of communication is R. The encoder f (-) maps the message

M into a length n-coded input symbols (codeword) Xn E Xn, i.e., f : {1, ... , e _} +

14 CHAPTER 1. INTRODUCTION



Sec. 1.2. Quantum Optical Communication System 15

xn.

The modulator then maps each input symbol X E X into a quantum state lox) of

optical fields, which can be transmitted through an optical medium (optical channel).

The optical channel conveys the optical states {#x)}, X E X and maps them to a pos-

sibly different set of states, {I .x)} E W, X E X, in a Hilbert space W. For the message

m, whose codeword is f(m) = x'(m) = (x1(m), X2(m),... , X(m)), the transmitter

sends I02i(m)), IOx2(m)),''' *I&Xn(m)) through the optical channel, and the outputs of

the quantum channel become n-quantum states, 4'xi(m)), I'x2(m)) *.. , h4'xn(m)). The

received n-quantum states for the message m can also be written as a (tensor) product

state, Pm) := 1'xI(m)) ( L| x2 (m)) 0 - 0 (bXn(m)) (E Hn®.

The quantum receiver can measure the received quantum states either one at a time

and generate outputs Yi E Y, i = 1, ... , n, or can collectively measure the length-n

product state (at one shot) and generate a super-symbol Y E Y. We can think that

Y = (Yi, - - - , YN) and Y yN for the case when the receiver detects each state one

at a time. After we generate the output symbol Y E Y from the quantum receiver, we

can decode the original message (with some probability of error) by a decoding map

g : y -+ {1, . .. , enR}. It is important to note that in the optical communication system

illustrated in Fig. 1.1, the only parts that deal with optical signals are inside the red

box, which includes the modulator, optical channel, and quantum receiver, whereas

the rest of the parts are just electrical. Therefore, we can treat the input and output

symbols X and Y in classical ways, i.e., we can compare Y with each possible X' as

many times as we want, while we have only one opportunity to measure the originally

received quantum states.

We will explain the operation of the quantum receiver in more detail. The operation

of the quantum receiver can be mathematically described by a Positive Operator-Valued

Measure (POVM), {H,}, y E Y, that satisfies

Y;> , yEY and Y y = ] in on®, (1.2)
yY



where 1 is the identity operator. When the length-n product state for the message m,

TIm), is measured by a POVM {f1 1}, y E Y, we observe y with probabilty

P(ylxil(m)) = Tr (11Y11M)(Wm|) = (1Fm|UIY|qm). (1.3)

Note that when we measure each received symbol one at a time with {fHy}, y E Y, which

operates on 7-, the probability of observing y' is decomposed into n distributions, i.e.,

n n

p(ynx1j(m)) = Jp(y1Xki(m)) = fK(oxi(m)Ipyil/xi(m)). (1.4)
i=1 i=1

When we fix the measurement {Hr,}, y E Y, for every use of the channel, or more

generally, design POVMs for the i-th symbol {f ) } so as not to depend on the previous

observations, the resulting channel is memoryless.

Note that we can generate much more general channel distributions, i.e., condi-

tional probability distributions of output symbols given input symbols, when the whole

sequence is collectively measured, as in (1.3), than in the case when each symbol is mea-

sured one at a time so that the resulting distribution is decomposed into n distributions

as in (1.4).

The communication efficiency (maximum achievable information rate) as well as

complexity to implement quantum receivers highly depends on the number of quantum

states that can be collectively measured at the quantum receiver. There exists a trade-

off between the complexity of quantum receivers, which increases exponentially with the

length of joint measurements, and the maximum achievable information rate with fixed

blocklengths of joint measurements. To illustrate this phenomenon more rigorously,

and to understand how the optical communication happens in real physics, we present

an example of an optical communication system in the rest of this section.

As one of the most common examples of optical communication systems in practice,

consider a free-space (i.e., vacuum) optical communication link with coherent state

inputs, i.e., ideal (single electromagnetic field mode) laser light. The modulator maps

16 CHAPTER 1. INTRODUCTION



Sec. 1.2. Quantum Optical Communication System 17

each input symbol X E X into a narrow-band optical pulse of duration T-seconds. For

example, when the input symbol is binary, i.e., X E {0, 1}, the modulator maps each

symbol X E {0, 1} into a base-band waveform {So(t), Si(t)}, t E [0, T), respectively.

For the length-n codeword of message m, i.e., f(m) = (x1(m), x 2 (m), .X., (m)), the

signal waveform can be written as

n

S(t) = Sx (m)(t - i - T), t E [0, nT). (1.5)
i=1

This signal waveform is shifted up to a fixed optical angular frequency Wo, and the

modulated signal is sent through the optical channel. The transmitted optical wave

(input to the optical channel) becomes

Et(t) = S(t) exp(iwt), t E [0, nT). (1.6)

When this optical wave travels through a free-space optical communication link, the

wave arriving at the receiver, denoted as Er (t), becomes an attenuated version of Et (t),

and can be written as

Er (t) = VhS(t) exp(iwt), t E [0, nT), (1.7)

where 7 E [0, 1] is an attenuation parameter depending on the distance of the commu-

nication link. Here, we have neglected the propagation delay.

For such an electromagnetic wave, the average photon number transmitted per

symbol can be calculated by

nTSjnT S(t)j2dt [transmitted photons/symbol]. (1.8)

After attenuation through the quantum channel, the mean photon number per symbol



of the received signal becomes r7 fraction of the transmitted photons, i.e.,

r (InT S(t)12dt [received photons/symbol]. (1.9)

We consider communication under the constraint of the transmitted mean photon num-

ber,
-[1 nT

E fn S (t) 12dt < 9, (1.10)

where the expectation is taken over the codewords. When we assume a constant average

power over a symbol time T, the average photon number (or energy) per symbol is

proportional to the symbol time T. Therefore, there is a one-to-one correspondence

between the symbol time and the average photon number. A shorter symbol time, T,

or equivalently a smaller average photon number per symbol, E, means that we need to

transmit a new symbol every short time interval T. In other words, after sending a signal

with a small average photon number of S, we need to immediately change the signal

according the next input symbol. Since optical devices modulate the physical signal to

transmit over quantum channels, there are inherent physical constraints on decreasing

S, or equivalently modulating the input signal in a a fast way. Moreover, decreasing the

input symbol period, T, or equivalently decreasing E, results in a low spectral efficiency

(bits/sec./Hz), since it results in wide-band communications. Therefore, it is important

to note that there are limitations in decreasing S, caused by optical devices as well as

low spectral efficiencies.

At the receiver side, if we measure the optical wave Er (t) by a photon counter, which

counts the number of photon arrivals during each symbol period of T, and denote the

number of photon arrivals during the i-th symbol time as Yi E {0, 1 ... , oo}, then the

output symbol distribution follows the Poisson process with rate So :r (LT ISo(t) 2dt)

or S :7. (f6 IS,(t)I2dt), when the i-th input symbol is Xi = 0 or Xi= 1, respectively.

18 CHAPTER 1. INTRODUCTION



Sec. 1.2. Quantum Optical Communrication System 19

Thus, the probability distribution of Y, given Xj, is

P(Yi = y1Xi = X) = (S , Y-, 1 X=0,1. (1. 11)
y.

After detecting the received optical signal S(t), by a photon counter, we get n-output

symbols Yn E yf, which are then decoded by g : Yn -+ {1, ... , enR}.

We can rewrite the maps of modulator and free space optical channel using Dirac

notation (Bra-ket notation). We can denote the signal wave {So(t), Si(t)}, t E [0, T),

corresponding to the input symbol X E {0, 1} as coherent states {lSo), IS1)} using ket

notation, where bold face is used to emphasize the fact that input states are not general

quantum states, but coherent states (ideal laser light). The coherent state 1y) can be

thought of as a vector in a Hilbert space 'R, and the average photon number of a coherent

state 1y) is equal to 1yj2 . The modulator can be written as a map X -+ lSx), X E {0, 1},

and the free space optical channel as a map iSx) + ITSx). Therefore, we can define

a new effective mapping from the input symbol X E X to channel output state ?7SX),

which includes all the effects of modulation and optical channel, as W : x -± liqS ).

The measurement of this quantum state by a photon counter can also be described by

a POVM {fl}, y E {0, 1, ... ,oo}, with IIly) = ly)(yj where ly) is a (photon) number

state (Fock state).

Now we can ask questions as follows: What is the maximum achievable information

rate (under the mean photon number constraint of E) when we measure each coherent

state by a photon counter? Can we achieve the capacity of this channel, which is written

in (1.1), with a simple photon counter?

In [6], we show that the maximum achievable information rate with a photon counter

(direct detection) is

CDD (E) = I log - S log log (- () [nats/symbol] (1.12)
E S



as S -- 0, which falls short of approaching the capacity of the bosonic channel,

1
C(S) = (S + 1) log(S + 1) - S log S = S log + E + o(S) [nats/symbol] (1.13)

as S -- 0. For the calculation of these capacities, it is assumed that the attenuation

parameter over the communication link, r = 1. This is one example showing that the

capacity of a quantum channel, which is proven to be achievable in quantum information

theory, is not easily achievable with practical quantum receivers of optical communica-

tion. Even though the two capacities make a difference only in the 2 ,d dominant term,

this difference matters greatly in the practical design of optical communication systems

when we consider the trade-offs between photon information efficiency (bits/photon)

and spectral efficiency (bits/sec./Hz), as will be shown in Chapter 4. These discrep-

ancies between theoretical limits and practically achievable performances are observed

very often in quantum communication/detection problems.

That motivates us to ask new questions as follows: under practical assumptions

on the quantum receiver, how well can the system perform (in terms of information

rate for communication problems, or detection error probability for quantum detection

problems)? What properties of specific sets of quantum measurements in fact generate

improvements in performance, by increasing the efficiency in extracting information

from quantum states? In this thesis, we will shed some light on these new kinds of

questions.

* 1.3 Adaptive Measurement

Our first consideration regards adaptive measurement, which is the most general form

of the length-1 quantum measurement. With adaptive measurement, we measure each

received quantum state one at a time, and then update the next measurement based on

the previous observations. Compared to the joint measurements over a large number

of quantum states, it is much easier to physically implement adaptive measurement.
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Assume that we receive a sequence of length-n unknown quantum states, IV/xi) 0

L4X2 ) (. 9 ' ' V) E Hn', for xi E X, i = 1,..., n. We want to identify (xi,x 2 ,.. , Xn)

by measuring these quantum states with an adaptive measurement. We measure each

state one at a time, and then design the next measurement based on the outputs

of the previous observations; the i-th received state, Io/i), is measured by a POVM

{fy(y- 1 ) }, yi E Yi, that depends on the previous observations y'- 1 . The resulting

channel distribution can be written as

n n

P (yn IXn) = p(yI X, Iyi- 1) - r O iIli i-1) 1 xi). (1.14)

Note that the resulting channel distribution is not as general as the one in (1.3), which

can be generated by the joint measurement over n-symbols; however, this channel can

have memory, which may help increase the efficiency in extracting information from

quantum states, compared to that of the memoryless channel in (1.4), which is generated

by (non-adaptive) product measurements.

Then, how can we utilize this ability of adaptive measurement to increase the ef-

ficiency in extracting classical information from quantum states? What is the best

performance we can achieve with adaptive measurement in quantum detection and

communication problems?

There have been many attempts to show the performance bounds on adaptive mea-

surements [1, 10, 40]. For example, in [10], the binary hypothesis testing between two

coherent states (ideal laser lights) with adaptive measurement is considered. According

to the two hypotheses H = 0, 1, either the complex waveform So(t) or Si(t), t E [0, T), is

transmitted with prior probabilities {po, p1} respectively. The theoretical lower bound

of detection error probability (the Helstrom bound) of this problem over all possible

quantum detectors is calculated in [21] as

p = (1 - 1 - 4popi 1 f Iso(t Is 1(t)- t) . (1.15)



Surprisingly, this theoretical lower bound turns out be achievable even with a very

simple receiver structure (the so-called Dolinar receiver), which can adaptively update

its feedback control signal based on previous photon arrivals. Therefore, for the binary

hypothesis problem between two coherent states, we can achieve the theoretical lower

bound of detection error probability with adaptive measurement. Unfortunately, this

result does not generalize to detection problems with more than two hypotheses.

However, in [4], an example of 9-ary hypothesis testing among length-2 orthogo-

nal states has been provided, in which the states can be perfectly distinguished with

a length-2 joint measurement, but can never be reliably distinguished by any type of

product measurements, even if the observers are allowed to update the next measure-

ment based on the previous observations. Therefore, we know that the answer for the

question of whether or not there exists an adaptive measurement that can perform as

well as the optimal joint measurement varies, depending on the number of hypotheses

and the possible input states for the hypothesis testing. However, there had been no

general theory to show for which problems, there exist adaptive measurements that can

perform as well as the optimum joint measurement, and for which, there does not.

In this thesis, we derive the necessary and sufficient conditions for adaptive mea-

surement to perform as well as the optimum joint measurement for M-ary hypothesis

testing problems. This result can be either a guide to derive the optimal adaptive

measurement, or to prove the nonexistence of the adaptive measurement achieving the

theoretical lower bound of detection error probability (the Helstrom bound) for a cer-

tain class of hypothesis testing. By using this result, we show that the Dolinar receiver

in [10] is the exact physical translation of the mathematical description for the optimal

adaptive measurement that satisfies the necessary and sufficient conditions to achieve

the Helstrom bound in (1.15).

We also re-derive the Dolinar receiver for binary hypothesis testing, with the aim

of maximizing communication efficiency at each instant, based on recursively updated

knowledge of the receiver. Using this viewpoint, we give a natural generalization of the
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Dolinar receiver to general M-ary hypothesis testing problems. We also analyze the

information capacity with adaptive measurement, and compare the result with that of

direct detection receivers and arbitrary quantum receivers (the Holevo limit), using the

appropriate scalings in the low photon number regime.

U 1.4 Joint Measurement: Superadditivity of Quantum Channel Coding

Rate

We then turn our attention to the finite blocklength joint detection receiver (JDR). In

particular, we investigate the maximum achievable information rate with finite block-

length quantum measurements. The length of quantum measurements N is now inde-

pendent of the overall length of the quantum codeword, which is denoted as N, > N.

The JDR measures each sub-block of N received symbols. In order to reliably decode

the message encoded over N, symbols, the receiver collects NC/N classical outputs gen-

erated by measuring each N-symbol sub-block, and then applies the optimum classical

decoding algorithm over the collected outputs from many such sub-blocks.

The overall operation, depicted in Fig. 1.2, is a concatenated coding system. Each

sub-block of N symbols is generated by an inner code of length N and rate R. There is

also an outer code of length n = NC/N and rate r that is decoded by a classical outer

decoder. The inner encoder, the quantum channel, and the quantum joint-detection

receiver can be collectively viewed as a discrete memoryless superchannel with eNR

inputs and outputs, with transition probabilities p , j, k E {1,..., eNR} induced by

the choice of the inner code and the JDR that collectively measures sequences of N

quantum symbols1 . We denote the maximum mutual information of the superchannel

attainable by an optimal choice of a length N inner code and a length N JDR, as:

CN := max max I (pj, P(j) (1.16)
P3 {N-symbol inner code-measurement pairs}

'Note that this inner joint-detection quantum decoder may in principle need more than eNR classical
outcomes to attain the maximum mutual information possible over all choices of inner codes and
quantum measurements.



(N)
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Figure 1.2. Concatenated coding over a classical-quantum channel

where I (p p() is the classical mutual information of the channel distribution p(N)

with the input distribution pj.

As the outer code length n goes to infinity, we can reliably send en, messages as long

as r < CN. Since the length of the overall concatenated code is N, = nN, the maximum

achievable information rate at a finite N becomes (log en,)/(nN) = r/N < CN/N.

Therefore, CN/N is the maximum achievable information rate at a finite length N of

joint measurements. The question we pose is: How does CN/N scale with N?

By definition, CN is superadditive in N, i.e., CN + CM < CN+M, and its limit

limNoc CN/N = C where C is the Holevo capacity [23]. Moreover, it is known that for

some examples of input states, strict superadditivity of CN can be demonstrated [24, 33].

For example, for a binary channel with inputs {Io), I 11i)} with I(0oI/i)| = 7,

C = - [(1 - y)/2]log [(1 - -y)/ 2 ] - [(1 + -y)/2]log [(1 + y)/2]

C, = [ 1 - V"/1 - -y2) log (1 _ V/1 _ -y2) + (I1+ V/1 - -y2) log (I1+ V/1 - -y2) /2.

(1.17)

We can see that C1 < C for every 0 < y < 1, meaning CN/N is strictly increasing in

N, with limit equal to C as N - oo.

However, the calculation of CN, even for the binary alphabet, is extremely hard for

N > 1 because the complexity of optimization increases exponentially with N. In this

thesis, we provide a lower bound on CN for finite N, for quantum channels. A new

framework for understanding the strict superadditivity of CN in quantum channels will

also be provided, which is different from the previous explanation of the phenomenon
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by entangling measurements and the resulting memory in the quantum channel [35].

Moreover, under the new framework, the superadditivity of CN, which has been mostly

thought to be a unique property observed in quantum channels but not in classical dis-

crete memoryless channels (DMCs), can be understood as a more general phenomenon

that happens even in classical DMCs when the concatenated code is used with an inner

decoder that makes a hard-decision at a finite inner code blocklength.

* 1.5 Thesis Outline

The rest of this thesis is divided into four major parts. In Chapter 2, we will briefly

summarize background on quantum information theory, with the focus on the quantum

hypothesis testing, and communication (sending classical bits) over quantum channels.

We will present the previously known theoretical bounds on performance for the quan-

tum detection and communication problems. For the quantum detection problem, we

will summarize the results in [21], which prove the theoretical lower bound (the Hel-

strom bound) on the average probability of detection error for M-ary hypothesis testing

over quantum states. We also present the Holevo capacity for classical communication

over quantum channels [20,23], the maximum achievable information rate over quan-

tum channels, under the assumptions of infinite uses of quantum channels as well as

the ability to jointly measure the overall block of quantum states.

In Chapter 3, we study the quantum detection problems with adaptive measure-

ments. We derive the necessary and sufficient conditions for the adaptive measurement

to perform as well as the optimum joint measurement. Based on this result, we derive

the adaptive measurement that achieves the Helstrom limit for the binary hypothesis

between n-copy of quantum states. Moreover, we show that the Dolinar receiver, which

is a simply structured receiver that has been known to achieve the Helstrom limit for

discrimination between binary coherent states, exactly translates what the optimum

adaptive measurement mathematically describes into a realizable receiver with only a

photon counter and feedback control system.



In Chapter 4, we show that for the binary hypothesis testing between two ideal laser

light pulses, if we update the adaptive measurement to maximize the communication

efficiency at each instant, based on recursively updated knowledge of the receiver, then

we can perform as well as in the case when we can collectively measure the received

laser light of an entire duration. In this viewpoint, the Dolinar receiver for the binary

hypothesis testing can be re-derived. Based on this viewpoint, we consider the general-

ization of the Dolinar receiver for M-ary hypothesis problems. We also analyze capacity

with coherent receivers (generalized Dolinar receivers), and compare the results with

those for direct detection receivers and arbitrary quantum receivers (the Holevo limit),

using the appropriate scalings in the low photon number regime.

In Chapter 5, we analyze superadditivity-the phenomenon that the maximum ac-

cessible information rate per channel use strictly increases as the number of chan-

nel outputs jointly measured at the receiver increases-at the maximum information

rate achievable over a pure-state classical-quantum channel. We analyze the rate vs.

complexity trade-off by considering the capacity of the classical discrete memoryless

superchannel induced under a concatenated coding scheme, where the quantum mea-

surement acts exclusively on the length-N inner codewords, while allowing arbitrary

classical outer-code complexity. We prove a general lower bound on the maximum

accessible information per channel use for a finite-length joint measurement, and ex-

press it in terms of V, the quantum version of channel dispersion, and C, the channel

capacity. The superadditivity is observed even in the capacity of a classical discrete

memoryless channel (DMC) in a concatenated coding scheme due to loss of information

from hard-decisions by the inner decoder over blocklength N. We develop a unifying

framework, within which the superadditivity in capacity of the classical DMC and that

of a classical-quantum channel can both be expressed by V/C 2 , a quantity that we show

is proportional to the inner-decoder measurement length N that is sufficient to achieve

a given fraction 0 < a < 1 of the capacity.

Chapter 6 contains our conclusions and suggestions for future work.
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Chapter 2

Background

* 2.1 Quantum Hypothesis Testing

The theory of quantum hypothesis testing was first developed and established by Hel-

strom in the 1970's. In this section, we briefly summarize the important results of [21]

and present a simple and concrete example of quantum binary hypothesis testing.

Imagine an optical communication system transmitting messages chosen from an

alphabet of M different symbols. For each symbol in the alphabet, the transmitter

produces a different optical signal of duration T seconds. The optical signals are mod-

ulations of the electromagnetic field, produced by a laser and lasting no longer than T

seconds.

A receiver detects the light incident on its aperture A. We suppose that the receiver

is synchronized with the transmitter so that it can identify the beginning and end of

the transmitted signal. During the interval, the receiver observes the light incident and

based on this observation decides which one of the M signals was transmitted.

The optical signal that arrives at the aperture of the receiver during the observation

interval [0, T) can be described by a set of M density operators P1, P2, . .. , pM for each

of the M possible transmitted signals. We denote the Hilbert space where M different

density operators stay by 'W. The observation procedure at the receiver can be speci-

fied by a Positive Operator-Valued Measure (POVM), a set of M detection operators

27



Mi, H2, ... , flM. These operators should satisfy

M

>1H3j= n; H ;>0 forVjE{1, ... , M}, (2.1)
j=1

i.e., they are non-negative Hermitian operators resolving identity in 'R.

Let us consider the M-ary hypothesis testing problem. There are M hypotheses

about the state of a quantum system, where the ith hypothesis Hi indicates that the

system is in the state pi. When the quantum system is observed by a set of detection

operators HI, H 2 , .. ., HIM, one and only one of the outputs is going to click. When we

observe a click for a detection operator Hi, our guess for the true hypothesis becomes

Hj. From the laws of quantum mechanics, the conditional probabilities that the output

corresponding to H3 clicks when Hi is true is

Pr(jli) = Tr(rljpi), i~j = 1, .. .-, M. (2.2)

Let us denote the prior probabilities of hypothesis Hi by pi for i = 1, . . . , M. The cost

of choosing hypothesis Hj when Hi is true is denoted as Cji. Then the average cost of

the M-ary hypothesis testing specified by the detection operator {H 1} is

M M

C = [ piC iTr(Hjpi) = Tr ( jW3  (2.3)
i,j=1 (j=1

where the Hermitian risk operators Wj are defined by

M

Wj = piCji p. (2.4)
i=1

We want to minimize (2.3) under the constraints (2.1). This optimization resembles

linear programming, except that operators are involved instead of functions. The neces-

sary and sufficient conditions for the optimum {H} that minimizes (2.3) was provided

in [51] as follows.
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Lemma 2.1. The optimum detection operator {U 2 } should satisfy

(W - F)j = I1 (W - F) = 0, j = 1, 2, ... , M, (2.5)

Wj - r > o, j = 1, 2, .I M, (2.6)

with the Lagrange operator

M M

F =Z iW = Winz (2.7)

required to be Hermitian.

For a special cost function of Ci = -6ij where

6i' (2.8)
0, i fj

the average cost function C is equal to -1 + p, where Pe is the average probability of

detection error, i.e.,
M

Pe = 1 - YpiTr(ripi). (2.9)
i=1

Therefore, for this cost function, a set of detection operators that minimizes C does

minimize the average probability of error, pe The equations for the optimum detection

operators (2.5)-(2.7) can be simplified for this cost function as

Ij (F - pj p) = 0, j = 1, 2, ... , M, (2.10)

F-pjp 0, j = 1, 2,..., M, (2.11)

M M

F = Epilipi = Zpipii, (2.12)

i=1 i=1

with the change of sign of the Lagrange operator F.

For general quantum states, it is very difficult to solve the equations for the optimum



detection operator (2.5)-(2.7). In the rest of this section, we focus on the case where

the quantum system is in a pure state, i.e., j0i) E N under each hypothesis Hi, i =

1, 2,.. . , M, and provide important properties of the optimum detection operators for

this case. The density operators for pure states are

pA = 10i)(0l. (2.13)

When these M vectors 10i) are linearly independent, they span an M-dimensional

subspace NM of the Hilbert space N of the quantum system. Even though the optimum

detection operator {fl,} should be a set of non-negative Hermitian operators resolving

the identity in N, these operators can also be confined to operating on NM since the

components of Hi7 outside of NM do not change the conditional probability Pr(jji).

To verify this argument, let GM be a projector onto NM, and write each operator

of {H} as

1I3 = GMjGM + (1 - GM)H, GM + GMIj(1 - GM) + (1 - GM)fl,(l - Gm). (2.14)

Then

Pr(jli) = Tr(pilj,) = (Oi llIji) = Tr(pkH9), where 11' :=GMHiGM (2.15)

since (1 - Gm)|I Ok) = (k1|(1 - Gm) = 0.

The condition for the detection operator to resolves identity in N can thus be gen-

eralized to
M

S f+(1-GM)=n1, (2.16)
j=1

for { } in Nm. Since (1 - Gm) has no effect on the conditional property for the

detection of the pure states in NM, we can confine our analysis to the subspace NM

spanned by the pure states {10)}.

For M linearly independent pure states pi = 4j)(0i 1, when the simple cost function
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Cii = -6ij, which minimizes the average error probability, is adopted, the optimum

detection operator {Ui} E RM satisfying the conditions (2.10)-(2.12) has a simple

structure of orthonormal projectors in RM. This fact was first proved by Kennedy in

[27]. Moreover, it was shown that such orthonormal projectors are uniquely determined

in Wm [28].

Lemma 2.2. For M linearly independent pure states pi =|i)(bi|, the optimum de-

tection operator {U3 } that minimizes the average error probability is the set of M or-

thonormal projectors, i.e.,

Hi = Iwj)(wP1 (2.17)

where {wj)} is a set of orthonormal vectors spanning WM. Therefore, it satisfies

1-irij = 6ijr~i = 6gg ng. (2.18)

The set of orthonormal measurement vectors {Iw)} satisfying (2.10)-(2.12) is uniquely

determined.

Even though this result does not directly provide a solution {H} for the equations

(2.10)-(2.12), this makes it much easier to find the optimum detection operator since

we can now assume that {IjU} are orthonormal projectors.

Based on Lemma 2.2, it is straightforward to find the optimum measurement vectors

that minimize the probability of error for binary hypothesis testing problems. When

po = I/o) KOoI and pi = 10i)(i1 for hypotheses Ho and H 1 , respectively, the pure states

can be written as

10o) = cos O|x) + sin 01y), (.9

V'i) =cos Ojx) -sin 01y).

for the orthonormal basis { Ix), Iy)} of the 2-dimensional subspace spanned by the two

input states {1o), 1i)}.

Then, the orthonormal projectors flo = Iwo)(woI and 1 = Iwi)(wiI can be parame-



terized by # and can be expressed as

Iwo) = cos 0|x) + sinq#ly),
(2.20)

Iwi) = cos (# - Ix) + sin (0 - ) ly) = sin 01x) - cos 01y).

The average probability of error for these measurement vectors is

Pe =po I ifolWi)12 + pi l( Iwo)12

=Po (cos 0 sin # - sin 0 cos 0)2 + P1 (cos 0 cos # - sin 0 sin $)2 (2.21)

=po sin 2 (0 - 0) + P1 cos 2 (0 + 0).

By taking the partial derivative of pe with respect to #, it can be shown that the

optimum #* should satisfy

P1 cos(q$* - 0) sin(#* - 0) _ sin 2#* cos 20 - sin 20 cos 2#*
PO cos(#* + 0) sin(#* + 0) sin 2#* cos 20 + sin 20 cos 2#*'

which is equivalent to

sin 20* = (po + p1) sin 20 sin 20

v(Po + p1)2 sin2 20 + (P0 -i) 2 cos2 20 41- APoPi cos2 20V1 - -4poICOS20' (2.23)
cos 20* = (po p) sin 20 _ (po - pi) cos 20

( Po + p1) 2 sin 20 + (po - p1) 2 cos 2 20 1 - APop1 cos 2 20

The minimum average error probability at #* is

* 1 - '1 - 4popIcos 2 20 1 - -l - 4popK1'(Oo 101) (2.24)
Pe 2 2

For M-ary hypothesis testing, M > 2, even for pure states, it is very difficult

to find the explicit form for the optimum measurement vectors and to calculate the

minimum average error probability. Only for the special cases where there exists a

certain symmetry between the pure states, was it known how to find the optimum

measurements and the resulting pe [21].
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N 2.2 Capacity of Classical-Quantum Channel: Holevo capacity

In this section, we consider the problem of sending classical bits over quantum channels

W : x -+ lo), x E X where {4o)} -E W. We will first present the quantum version

of typical subspaces and of the asymptotic equipartition property (AEP). Based on

these tools, we will present the achievability proof of the Holevo capacity, first shown

in [20, 23].

Suppose we use a quantum channel W : x - lox) with x E X chosen with prob-

abilities px. The density operator of the output of this quantum channel becomes

P = ExEX pxIOx)(oxI in R . For N uses of this quantum channel, the density operator

for the N-sequence of channel outputs can be written as p - P ... p in WON.

The N-fold tensor product Hilbert space WON can be decomposed into two subspaces:

a "typical" subspace A and the perpendicular subspace A-'. The typical subspace is

defined as a subspace spanned by a set of eigenstates of p N whose eigenvalues -yi satisfy

2-N(H(p)+6) < 2 -N(H(p)-6) (2.25)

for an arbitrarily small 6 > 0, when H(p) is the von Neumann entropy of the density

operator p, i.e., H(p) = -Tr(plog p). Note that this definition of typical subspace

resembles that of classical typical subspace, when we interpret the eigenvalues of pON

as the probabilities of observing the output sequence corresponding to each eigenstate.

From this definition of typical subspace, we can derive the following three properties.

Let HA denote the projector onto the typical subspace A, and dimA denote the number

of dimensions in the typical subspace.

1. For an eigenstate in the typical subspace A, its eigenvalue -y satisfies

1
H(p) - 6 < - log'y < H(p) + 6.

N

2. For an arbitrarily small E > 0, Tr (LIAPONHA) > 1 - c, for N sufficiently large.
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3. The dimension of A satisfies

(1 - e) 2 N(H(p)-6) < dimA < 2 N(H(p)+6) (2.26)

The first property can be directly derived from the definition of the typical subspace

in (2.25). The second property can be proven by using the law of large numbers. The

third property can be derived from the first and the second properties. We will use

these properties to prove the achievability of the Holevo capacity.

The following theorem summarizes the result of the classical capacity of quantum

channels W : x -+ lox), shown in [20,23].

Theorem 2.3. Consider a classical-quantum channel W : x - |ox). For every rate

R < C, there exists a length-N and rate-R code that can be decoded by a set of length-N

joint measurements with Pe -+ 0 as N -+ oc. The converse has also been proved in [22].

The Holevo capacity C is

C = max -Tr(p log p) = max H (p)
Px Px

where p = Ec px|ox )(ox|.

Proof. We present the proof of this theorem from [20]. Let us first introduce some

notations related to the quantum codewords of length N and rate R codes. First,

denote the total number of messages as M := 2 NR. The encoder f :{1, .. , M} -± XN

maps each message into a length-N codeword. The codeword for the j-th message can

be written as f(j) = (X1(j), . .., XN(j)) where xij(j) E X for i = 1, . . . , N. After sending

each coded symbol through the classical-quantum channel W : x - lox), the received

length-N sequence of states can be written in a density operator form,

Sf() := IX 1(o) 1( ) 0 .0 1 kN)(N W)/XN(j)I (

34
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When we denote Ibf(p) I OX(i)) ( ... ( IO/NU)'

Sf (j) = I@f w) (of(j) (2.28)

Let us define a matrix T such that its j-th column is 1f(j)). When 4'f()), j E

{1, ... , M} stay in a d-dimensional Hilbert space, the singular value decomposition of

IF can be represented as

T = (gf(i)), L /f(2)), .. I ,f(M))) = UEVt, (2.29)

where U and V are unitary matrices of size d x d and M x M, respectively, and E is

a d x M rectangular diagonal matrix with non-negative real numbers on the diagonal.

The operator Vt is the Hermitian conjugate of V. We also denote the Gram matrix, F,

and the Gram operator, G, of IF as

F =q /t = V(EtE)Vt, (2.30)

G =p tp = U(EEt)Ut.

Note that F and G are positive operators.

Now, we will introduce Square Root Measurements (SRM) {H}, with which the

M encoded quantum states are measured. The SRM is defined as a rank-one operator

such that

r1j = IWj) P = (G-1/2) Sf(j) (G-1/2) = (G-1/2I2sf(j))) f(j)IG-1/2) (2.31)

where

G- 1/ 2 = U ((EyEt)-1/2) Ut, (2.32)

and (EEt)-1/2 is formed by replacing every non-zero diagonal entry of EEt with one

over the square root of each entry. Note that the defined measurement {flj} satisfies

Ij > 0, for all j E {1,..., M}, and ZE g j = 11.



When we define a matrix Q such that its j-th column is the j-th measurement vector

Pjy),

Q = (Iwi), Jw2 ).... , JWM)) = G-1/2 = U(EEt)-1/2Eyt = UE(EtE)-1/2Vt. (2.33)

Then, (k,j)-entry of QtTI becomes (wkoIf(j)) and

QtxI = V(EtE)-1/ 2 (EtE)Vt = V(Et E)1/ 2Vt = p1/2. (2.34)

Therefore, the probability that the decoder chooses the k-th message by the SRM, when

the j-th message is the true one, which is denoted as p ), is

P = J(Wkjkf(j))2 , (2.35)

where V/k,j denotes the (k, j)-entry of p1/2. It means that under the SRM, once we

have the geometric structure of the encoded quantum states, which is represented by its

Gram matrix F, the distribution of the measurement outputs, given the true message,

can be directly calculated from ]1/2.

From (2.35), the average probability of decoding error becomes,

M M

Pe =jj Z2) = 4M Z(1 - VY 3 ,j)(1 + \/Ij) (2.36)
j=1 j=1

Since vt3 ,j = (cjjjf(j)) = (V/(j)IG-1/2 ) with the positive operator G-1/ 2 , and

Ek- 1 | I\tk j12 = 1, the resulting vj, j = 1,..., M, are positive numbers in [0,1].

Therefore, we can bound Pe as

M
Pe ( -M j _ , j) = M - Tr (r1/2 (2.37)

j=1

When Ai denotes the eigenvalues of IF = Tet with the decreasing order, i.e., A, ! A22
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Pe < M - Tr (r1/2 = Z(Ai - vA), (2.38)

since E Ai = M. By using

V/ ;> -X - -22 for x > 0, (2.39)
2 2

we can further bound P, as

(2.40)

The last equality in (2.40) is from the fact that when eigenvalues of F are Ai, i =

1, ... , M, the eigenvalues of F - I are Ai - 1. Then, the Hilbert-Schmidt norm of F - I,

which is Ei Ej7k Ii, 12, is equal to the sum of squared eigenvalues of F - I.

Now, we use the random coding technique and the quantum AEP to show the

existence of a length-N and rate-R < C code for which the right-hand side of (2.40)

converges to 0 as N -+ oc.

When we generate M-codewords independently according to the distribution px =

i= Pi, the magnitude squared of Fr, 3 averaged over the random code C is

Ec[lFi,j 12 .Pf(i) Pf(j) ((f (i) Ibf(j)) 4(of (j)I/f(i)))
i,j

(2.41)

=Tr Epf(i) V~f(i))(,Of(i)l Pf(j) Kf(j))(VI(j)I = Tr ((p&N 2

where p = , 10, (0 ,

Assume that the received codeword is first projected onto the typical subspace A

of pON, and then measured by the SRM defined for the projected codewords, i.e.,
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{HAK$f(i))}, i = 1, . .. , M. For the Gram matrix F = 4 ijt whose i-th column of T is

HAL'/f(i)), we can show that

Ec[ Fij 2] E Pf(i) . Pf(j) . ((Of(i) IA I'f (j)) (Of (j) IA IOf(i)))
j (2.42)

=Tr ( A pNi2nA) < 2 -2N(H(p)-6) . 2 N(H(p)+6) - -N(H(p)-36)

by using the fact that IIA commutes with pON, and the bound for eigenvalues in the

typical space (2.25) and the dimensionality of the typical space (2.26).

Using (2.42) and (2.40),

EC[Pe] < - EZjEC[ij 2] < (M - 1) 2 N(H(p) (2.43)

This bound shows that for M - 2NR, there exists a code of length N and rate R >

H(p) -36 such that it can be decoded by the SRM with P approaching to 0 as N -+ oc.

Since this result is true for any input distribution px, it shows that the maximum

achievable rate R is greater than C - 36, i.e., R > maxp, H(p) - 36 = C - 36 when the

code blocklength N -+ oc. E



Chapter 3

Quantum Hypothesis Testing with

Adaptive Measurements

* 3.1 Introduction

Discrimination between non-orthogonal quantum states is one of the key tasks in quan-

tum information theory for communication over quantum channels. When we have a

quantum system set to be in one of the quantum states { $,)} E R with probability px,

x E X, what is the optimal way to measure the system in order to generate a correct

guess of the true state with minimum probability of error? And what is the resulting

minimum probability of error? In [21], Helstrom answered these fundamental questions

by deriving the necessary and sufficient conditions for the optimum measurements to

satisfy, and he also calculated the resulting minimum probability of detection error in

terms of the inner product between the possible states { J)} E -R and their proba-

bilities px, x E X. We call this minimum error probability the Helstrom limit. Even

though the necessary and sufficient conditions derived by Helstrom often do not result

in a constructive answer for the optimum measurements, for the special cases such as

binary hypothesis testing (BHT) or ternary hypothesis testing with symmetric states,

we can indeed derive the optimum measurement vectors represented in terms of the

possible set of quantum states {I) } in the Hilbert space R.

However, even for the case when we can find the optimum measurement vectors from

the necessary and sufficient conditions, there still remain difficulties in implementing
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a quantum receiver that can perform as mathematically described by the optimum

measurements. In particular, when we consider the binary hypothesis testing with

N-copy of a quantum state that is either 10o) or I), i.e., BHT between ION)

10o) 0 ... 0 Izo) and ION) := 11) 0 ... 10i), the optimum measurement can be

represented as a superposition of these N-tensor product states, and thus the optimum

measurements are not product states, but entangling measurements (joint measurements

over N-received quantum states). Since the physical implementation of entangling

measurements over N quantum states is in general much complicated, the mathematical

description for the optimum measurement does not directly translate into a physical

realization of a receiver achieving the Helstrom limit.

As a way to resolve such difficulties in the practical implementation of quantum

receivers, adaptive measurement has been widely considered. Adaptive measurement

is a special type of product measurement with which we measure each state one at a

time and use the outputs of the current and previous observations to update the next

measurement. Since it is much easier to implement product measurements compared

to entangling measurements, if any kinds of product measurements, including adaptive

measurement, can perform as well as the optimal entangling measurement derived by

Helstrom's conditions, then we prefer to use the adaptive measurement to implement

quantum receivers. The question is then whether there exists an adaptive measurement

that can achieve the Helstrom limit for the general M-ary hypothesis testing. This

question has been partly answered for special cases. For example, it has been known that

it is indeed possible to achieve the Helstrom limit with an adaptive measurement for the

previously introduced BHT problem for the N-copy of a quantum state [1]. Acin et al. in

[1] showed that an adaptive measurement that minimizes the interim probability of error

step by step achieves global optimality for the BHT, i.e., the Helstrom limit. However,

in [4], an example of 9-ary hypothesis testing between a set of length-2 orthogonal

states is provided, which can be perfectly distinguished with a joint measurement over

the length-2 states, but can never be reliably distinguished by any type of product
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measurements, even if the observers are allowed to update the next measurement based

on the previous observation, i.e., with adaptive (product) measurement. Therefore,

we know that the answer for the question of whether or not there exists an adaptive

measurement that can perform as well as the optimal entangling measurement varies

depending on the number of hypotheses and the possible input states for the hypothesis

testing. However, there had been no general theory to show for which problems, the

adaptive measurement can achieve the Helstrom limit, for which, it cannot.

In this chapter, we derive the necessary and sufficient conditions for the adaptive

measurement to achieve the Helstrom limit. This result can be either a guide to de-

rive the optimal adaptive measurement, or to prove the non-existence of the adaptive

measurement achieving the Helstrom limit for a certain class of hypothesis testing. By

using this result, we show that the adaptive measurement suggested in [1] for the bi-

nary hypothesis testing between N-copy of a quantum state indeed meets the necessary

and sufficient conditions for the optimal adaptive measurement. Moreover, for general

M-ary hypothesis testing, we provide an important property for the optimal adaptive

measurement to satisfy in order to achieve the Helstrom limit. We connect our analysis

for the optimum adaptive measurement with the well-known Dolinar receiver [10], which

is shown to achieve the Helstrom limit for any two coherent states, by showing that the

operation by the Dolinar receiver is the exact physical realization of the mathematical

description for the optimal adaptive measurement.

E 3.2 Preliminaries

In this section, we will consider M-ary hypothesis testing and state the necessary and

sufficient conditions for the adaptive measurement to achieve the theoretical lower

bound on the detection error probability. With prior probabilities pi, i = 1,... ,

a quantum system is set to be in state pi = 1I0)(0iI according to hypothesis Hi. The

quantum states 10i) are vectors in a Hilbert space 71. By measuring the quantum sys-

tem, we want to discriminate between the possible input states and make a correct



guess for the true hypothesis with minimum probability of error. The quantum mea-

surement can be written as a set of positive operators, {Ii}, j = 1, ... , M, that resolve

identity in R, i.e., Z:I Ili = 1. When we observe an output of the measurement Hj,

we choose Hj as a guess for the true hypothesis. We will denote such events as Hj,

j E {1, ... , M}. The conditional probability of observing the measurement outcome

corresponding to Hj, when Hi is the true hypothesis, is equal to

P 0j1i) :=Pr (H. I H) = Tr (113 pi) = (0iIli I 0j). (3.1)

The resulting probability of detection error is then

M

Pe Zpi ( - p(iji)) = 1- piTr (Hipi) . (3.2)

We need to find a set of positive operators {Il } that minimizes pe under the constraint

of H > 0, j E {1, ... , M}, and E _1 Hj = 1. In [21], a set of equations for the solution

of this optimization is provided as:

Hf(F-pjp)=0, j=1,2,...,M, (3.3)

F - pPj 0, j = 1, 2,.. ., M, (3.4)

for F = Mpiipi = pipili.

Note that {fl 3 } that satisfies these conditions may not be unique, and it is not

straightforward to derive a closed-form solution for the optimum measurement operator

{f, } from these conditions.

However, for the case when the state vectors { 1,j) } E R are linearly independent, a

particular structure of {i}, which makes it easier to find a closed solution satisfying

(3.3)-(3.4), has been found in [27] and [28]. When pure states 1 ), , -... , l0M) are

linearly independent, regardless of the dimension of W, these states stay in the M-

dimensional subspace UM spanned by {I)}. For this case, the measurement operator
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{ Llj} can be confined to operating on UM as the components of Llj outside of UM do not

affect the conditional probabilities p(jli); when Pum is a projector onto the subspace

Um, for 11 = Puf ljPu,

p(jli) = Tr(lljpi) = Tr(11'pi). (3.5)

From [27], it was known that for the detection operator {H }, which is confined to oper-

ating on UM, to satisfy the optimality conditions (3.3)-(3.4), it should be an orthonor-

mal projector. Moreover, such orthonormal projective measurement {H} is uniquely

determined [28]. The following lemma summarizes these important properties of the

optimum { }.

Lemma 3.1. To discriminate M linearly independent pure states |bi) with minimum

error probability, the optimum detection operator { H}, which is confined to operate on

UM, should satisfy

f'1H = kilJl', (3.6)

and such an optimum detection operator is uniquely determined on UM.

* 3.3 Multiple-Copy States Discrimination with Adaptive Measurements

Let us consider M-ary hypothesis testing with N-copy of a quantum state, which is set

to be in Iji) E W according to the hypothesis Hi with prior probability pi, i = 1, . .. , M.

Since N-copy of a quantum state 40i) can be viewed as an N-fold tensor product state

ION) : 'i) - 0 - i), this problem is equivalent to the M-ary hypothesis testing

with possible states LON) E NON, i = 1,. . . , M. The optimum measurement {Hi} for

this M-ary hypothesis testing should satisfy (3.3)-(3.4) for p2 = 14 )(0fNl. When we

confine the measurement operator to the M-dimensional subspace IM c W7 N, spanned

by {fON)}, from Lemma 3.1, the optimum measurement becomes a set of orthonormal

projectors, which are uniquely determined. Since the optimum measurement, which

often results in entangling measurement (joint measurement), is hard to implement,



we instead consider product measurements in WON, which can be adaptively updated

based on the previous observations.

Let us focus on the following scenario: we observe one state at a time with a set of

M-measurement vectors in W, and update the next set of measurement vectors, which

will be applied to the next state, based on the output of the previous observations.

When the measurement vectors applied to the n-th copy of a state are denoted as

{In(yVn1)), . - -, wo(y 1 M))} for the previous observations y- 1 E {1,.. . ,

the resulting length-N adaptive (product) measurement can be written as

Iwi(yi)) 0 -- - wN(y )) (3.7)

for the sequence of output observations, yj E {1, ... , M}N. Note that there are total

MN-possible output sequences from this adaptive measurement for the M-ary hypoth-

esis testing. To make a decision for the M-ary hypothesis testing, we need to group

those MN-possible outputs into M different decision sets; we denote the set of y{'s

that results in the decision of the i-th hypothesis as Di for i = 1,... , M. Then the

resulting probability of error for such decision sets Di is

M

=(O I Q(YN)) Q(Y)) 1 bN). (3.8)
i=1 yNE~

Therefore, the measurement operator {fli}, i = 1, .. , M, of the adaptive measurements

with grouping of the outputs can be written as

Hi= S (yf)) (Q (y) . (3.9)
yj EDj

The questions we want to answer are as follows: to achieve the Helstrom limit with

the adaptive measurement in (3.9), what are the necessary and sufficient conditions

that the adaptive measurement should satisfy? If we can find an adaptive measurement

achieving the Helstrom limit, what is the relationship between this adaptive measure-
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ment and the optimum joint measurement in the subspace spanned by M-input states,

{ 4)N}, i = 1, ... , M? Answers for these questions are summarized in the following

lemma, and it can be proved by directly applying Lemma 3.1.

Lemma 3.2. When PuM is a projector to the M-dimensional subspace Um spanned by

{|ON )}, the projection of Us in (3.9) onto Um, i.e., H' = PUmliPum, can achieve the

Helstrom limit if and only if {Ur'} is an orthonormal projective measurement, i.e.,

f'il = 6i ',,l (3.10)

satisfying (3.3)-(3.4).

Proof. Lemma 3.1 shows that there exists a unique optimum measurement in UM,

which is a set of orthonormal projectors. Therefore, for the adaptive measurement

{fli}, operating on N D UM, to perform as well as the optimum measurement and

to achieve the Helstrom limit, the projection of { 2i} onto UM should be exactly the

same as the optimum measurement in the subspace UM. E

This lemma implies an important property of the optimum adaptive measurement

{H'I} summarized in the following lemma. Note that with adaptive measurement vectors

{ Q(yf))}, yf'j E {1,..., M}N, the probability of observing the output sequence y{,
2

given the true hypothesis H, is p(Y N = y{IH,) K< Q(y)) .

Lemma 3.3. For the adaptive measurement vectors { Q(yN))}, yj E {1, ... ,MN
which form a POVM { 2i} after grouping by Di, i = 1,..., M, to achieve the Helstrom

limit, they should satisfy

(YN - y~flH 3 ) _ ZyNEDiP - yjYH )
1(y 1 y{.fk _~ ( -1 ~jk (3.11)

pYN = J y pHg y ED y0N =yNflH

for all y N 's belonging to the i-th decision set Di, i = 1,. .. ,M, and for every jk =

1,... IM,. When we denote the event H = {yN: yj E Di}, by Bayes' rule, (3.11) can
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also be written as

p(HjIHi) _ p(HjI I Vy N z(
p(Hk,) N E D. (3.12)

pJ HHji pyN His _.e sa e or

Moreover, (3.12) implies that for any j E {1,..., M}, p( Hg{y) is the same for Vy E

Di.

Remark 3.1. An important property of the optimum adaptive measurement, which

achieves the Helstrom limit, is summarized in (3.12). One property of the optimum

adaptive measurement is that the ratio between the posterior probabilities of any two

hypotheses H, and Hk is the same for every y N that belongs to the same decision set

Di. In other words, it means that the optimal adaptive measurement should guarantee

the same quality of decision for every output y, E Di, i.e., for every y 7 that belongs

to the same decision set Di, the probability to make a right guess should be the same.

Proof. Let us denote a basis of the space Um as {Ivi)}, i = 1, . . . , M. We can represent

the basis with linearly independent input states {fION)} E UM, i =1, ... , M by Gram-

Schmidt process. First, let lvi) I:=ON@), and then let

Ivi) :1 (I4) - ( viI4 ) vi) (3.13)
1 il )( F ( =2

for i = 2,.. . , M. Then the projector Pum onto UM can be written with the basis {Ivi)}

as PuM = EMII vi)(vil.

From Lemma 3.2, we know that it is necessary that I' = PuMLiPuM should be a

rank-1 operator, i.e., 1' = lw)(Kl for some 1w) E Um. The vector 1w) E UM can be

written in terms of the basis {Ivi)} of Um, as 1w) = Z 1 ci vi) for some ci E C. From
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the definition of Hi in (3.9) and PuM

M M

i' = lVj)(Vjl E IQ (yl)) (Q (yN) . - k |)(Vk|
j=1 (Y NEDj k=1

1) 
(3.14)

V (yN) (yN ) | (v.

j,k=1 yN~

This 1' should be a rank-1 operator in UM, i.e. l' = 1w)(w for 1w) = M, cilvi),

which can also be written as

U'/ ( cilv) ( cKvk| = (cycgv)(vi|. (3.15)

( i k j,k=1

For (3.14) to satisfy the form of (3.15), the coefficients in (3.14) should also satisfy

Icjl2 - Ickl 2 = Icc*12 , which is implied from (3.15), and thus the following equations

should be satisfied

S KvQ (YN) (2 Kk Y 2

2 (3.16)

Vj (yN) (yN) o

with { Q(yN))} for i, j, k E {1 ...,M}.

From the Cauchy-Schwarz inequality, we know that the equality in (3.16) can be

satisfied if and only if

Kv (y)=j,k Kvk ( (3.17)

for all yf E Di with some constant -Yj,k E C. Then, from (3.17) and the basis {vi)}

defined in (3.13), we can show that the adaptive measurement achieving the Helstrom

limit should satisfy (3.11). This concludes the proof. -
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In the next section, we will consider binary hypothesis testing between {4ON)1 ON)I

and present the optimal adaptive measurement satisfying Lemma 3.2, and the corre-

sponding properties in Lemma 3.3.

* 3.4 Optimal Adaptive Measurements for Binary Hypothesis Testing

In this section, we will use Lemma 3.2 to derive the properties that should be satisfied

with the optimal adaptive measurement achieving the Helstrom limit for the BHT

between ION) and IOf) with prior probabilities {po, pi}. We will show that a greedy

algorithm, combined with posterior updating, gives an adaptive measurement satisfying

these necessary and sufficient conditions. Moreover, it will be shown that the Dolinar

receiver [10], which has been known to achieve the Helstrom limit for the BHT between

two coherent states, indeed physically implements the optimum adaptive measurement

by a simple receiver structure including a photon counter with feedback control signal

that is added to the received quantum state.

First, let us derive the optimum measurement operator {f1', l'} acting in the sub-

space U2 spanned by {ION), I/O)}. We can find a basis vector {jx), y)} of U2 such

that

ION) cos 61x) + sin 01y); LN{ =cos O1x) - sin 01y). (3.18)

From Lemma 3.1, the optimum measurement operators are orthonormal projectors so

that when we denote I' = Io)(ol and II' = JQ)(0Q1, the measurement vectors IQo)

and IQ1 ) are orthonormal to each other and can be written with a parameter q as

I|o) = cos 01x) + sin 01y); IQ,) = sin #Ix) - cos #1y). (3.19)

To minimize the probability of error

1

pe 1- piI(ON / I Qi) 2 = po sin 2 (0 - ) + p cos 2(0 + 0), (3.20)
i=O
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the optimum measurement vectors, or the parameter q*, should satisfy

p Cos(* 6 0) sin 2 (* _ 0)

p2 cos 2 (0* + 0) sin 2(q* + 0)P0 COS(3.21)
( bN QO 2. IONIQ 2 p (010) . p (10g)
I(ONfQo)1 2 . K2/ fQI)12  p(011) _p(11)'

The resulting minimum probability of error is

I - 1 - 4popi (oLi) 2 N (3.2
Pe (3.22)Pe 2

For 0 < I(/o|1bi)1 < 1, as N increases, the Helstrom limit, p*, can be approximated as

PC ~popI(o1) 2 N (3.23)

Note that the optimum measurement vectors {|Qo), Q 1)} that achieve this Helstrom

limit might be an entangling measurement in b12 .

U 3.4.1 Necessary and Sufficient Conditions for Adaptive Measurement

Now we will derive the necessary and sufficient conditions for the adaptive measurement,

by using Lemma 3.2, to achieve the Helstrom limit of the BHT between ION ) and IbfO).

We consider the adaptive measurement that observes each state one at a time and

generates an output yn E {0, 1} for n = 1, ... , N with the ability to update the (n + 1)-

th measurement based on the previous observations, y'. The grouping strategy for

the resulting 2N-output of the adaptive measurement, yN E {0, 1}N, is as follows: the

grouping is based on the last output YN; when YN = 0, Ho is claimed, and when YN 1,

H 1 . Therefore, the measurement operator from this adaptive measurement is

I=Q (yN-1) (K (YN-1 , i E {0, 1}, (3.24)
yN- 1

E{O,1}N-1
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where

y=wi(yi)) ( . 0 WN(Y)) (3.25)

for y, E {0, 1}. From Lemma 3.2, for the adaptive measurement in (3.24) to achieve

the Helstrom limit, the projection of Hi onto U2 should be the orthonormal projective

measurement satisfying the optimality condition in (3.21), i.e.,

Pu2 2iPu 2 = I hi)(AI i = 0, 1 (3.26)

where {|Qo), IQ1)} are the optimal measurements in U2 , satisfying (3.21), and Pu2 is

the projector onto the subspace U2 spanned by {0 1)

Since a basis {vi), Iv2)} of the 2-dimensional subspace U2 can be written in terms

of {IN), IN)I as

0 1

vi)=1), 1 0 (3.27)

we can write the projector Pu 2 with this basis, as Pu 2 = Ivi)(vi + 1v2 )(v 2 -

By plugging this Pu2, which is written in terms of {ION), ION)} , into (3.26), we

can write down the necessary and sufficient conditions for the adaptive measurement

vectors { Q(y?))}, yf~ E {0, 1}N, explicitly in terms of the input states {/) 4 )

By using

p(YiN= y, IHi) = I(Of lQ(y, ))Y

p(Hj I Hi) = P(YN = jI Hi) = S (/NI(yN-lj))I 2  (3.28)

y, E{0,1}N-1

for i, j = 0, 1, we can now rephrase (3.26) in terms of the probability distributions, as

summarized below.

Lemma 3.4. The necessary and sufficient conditions for the adaptive measurement to
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achieve the Helstrom limit for the BHT between I'b) and ip') are

2

P0 , (y1N _ -f1 0, H1) =-N_ ( c2 N P(YN =1, H0 ) (.9
p1 p(YN _ -1o, Ho) P(YN =,Ho)(

2

P0 ._Ny _ 1,H ) = _ c2 N p N =0,H ) 3. )
P1 p(yN _ -101, H p(YN 1, Ho) ' (3

P(YN 0,Ho) p(YN = 1,Ho) 3.3)

p(YN = 0, Ho) -p(YN = 1, Ho) (3.31)

for VyN- 1 E f0, 1 N-1 where c :I0 11)1, and thus CN 0 1 1 ) IN = N N

Proof. Appendix 3.A. El

Remark 3.2. From (3.29) and (3.30), respectively, it can be inferred that the optimal

adaptive measurement should satisfy

p(Ho|YN = 0) = p(Ho|Y1N y , (3.32)

p(H1|YN = 1) = p(H1 IYN _ -11)

for VyN- 1 E {0, 1}N-1, meaning that for any trajectory of y-1, the quality of the

final decision should be the same for every yfN that belongs to the same decision set.

Moreover, (3.31) combined with (3.32) implies that the optimum adaptive measurement

should satisfy

p(Ho lYN _ Y-10) = (1Y N -11)N y~~o) p(H I YIN =z
1 1) (3.33)

for y 1, zf E {0, 1}N. In other words, regardless of the final decision YN = 0, 1 as well

as the previous outputs y N1 zN-, the quality of the final decision (the probability of

making the right guess, given a length-N output sequence) should be the same.

* 3.4.2 Bayesian Updating Rules

Now the question is how to find the adaptive measurement vectors { Q (y) )}, yf E

{0, 1}N satisfying (3.29)-(3.31), which are the necessary and sufficient conditions to
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achieve the Helstorm limit. In [1], Acin et al. showed that a greedy algorithm, which

makes the locally optimal choice at each stage without considering its consequent effect

in the future stages, coupled with the posterior updating, results in the globally optimal

solution, i.e., achieving the Helstrom limit.

Consider the r-th stage optimization for r = 1, . .. , N, where the previous observa-

tions from measurements are denoted as y'~ 1 E {0, l}r-1. The posterior distributions

for the two hypotheses HO and H1 is written as {p(HolY-i yr-,),p(H|Yr-1=

y,- 1 )}. When r = 1, we just consider the prior probabilities, i.e., {po,p1}. Assume

that we choose the adaptive measurement of the r-th stage's, {w (yr-10)), w (yr-)

that minimizes the current stage's probability of error from the view of hard-decision

at the current stage, which is

pr)(yr-1) =p(HolY 1r = y ) . 1(4'o1C (yr- 1 1))1 2

pe 1 1 1(3.34)

+ p(H1|Yi- = y, 1) - 1 (b1 W (y-- 1 0))12.

To minimize (3.34), {w (yro)), wU (yrl))} should meet

p(H1|Y~r-1 _ yr1)2 1 0 C -10)2 . IV) C r-1 1)) 12
p(H1 Y- = yr- 1 )2 -(411 (yr-1O)) 2 . (-), p (yr 11)) 2

p(HoJ~r- Y, M 1(3.35)
p(yr = yr-0Ho) .p(yr yr 1 |HO)

p(Yr yr loHi) -p(Y{ = y y- 1H 1 )

In [1], it was shown that this greedy strategy achieves the Helstrom limit in (3.22) after

any N-stages.

Now we show that this strategy indeed satisfies the necessary and sufficient condi-

tions for the optimum adaptive measurement in Lemma 3.4.

Lemma 3.5. When the r-th adaptive measurement vectors {l (yW10)),jw (yr- 1 1))},

y- {, 1}r-1, are chosen to minimize the current stage's probability of error (3.34)

for every r = 1, ... , N, those vectors satisfy the necessary and sufficient conditions,

(3.29)-(3.31), to achieve the Helstrom limit.
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Proof. Appendix 3.B.

N 3.4.3 Dolinar Receiver

In this section, we will consider the BHT between two coherent states {7o), 1yi)}. A

coherent state 'y) is the quantum description of a single spatio-temporal-polarization

mode of a classical optical-frequency electromagnetic (ideal laser-light) field, where

-y E C is the complex amplitude, and leyI2 is the mean photon number of the mode. The

coherent state can be represented as a linear combination of number states In) as

2 00 n
-) e- 1 In). (3.36)

n=O

Therefore, when we measure the quantum state by a set of (photon) number state, or

Fock state, {In)(n }, n = 0, .... , oc, which can be physically implemented by a photon

counter, the output of the measurement follows a Poisson distribution with rate I} 2,

i.e.,

Pr(n-photon arrival) =. (3.37)
n!

The magnitude squared of the inner product between two coherent states { 7o), k1)}

is |(yoi 12 e--lYO-1I, and the Helstrom limit (the minimum average detection error

probability) for these coherent states is

* _ 1 - 1 - 4opiyploy)| 2  _ -/1 _4ppie3Y138
Pe 2 2 , (3.38)

where the prior probabilities are {po, pi}, respectively.

Due to a peculiar property of the coherent state, a coherent state of duration T can

be represented as a tensor product of N-copy of a weaker coherent state of duration

T/N as

kr)= @ (3.39)

N
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Figure 3.1. Coherent receiver using local feedback signal

Remember that the optimum adaptive measurement, satisfying'(3.35), achieves the

Helstrom bound for the BHT between any two length-N (idential-copy) tensor product

states {ION) ION )}. Therefore, we can apply the analysis in the previous section to the

BHT between two coherent states. This was first observed in [21.

Even before this observation, which connects the BHT between N-copy of a quan-

tum state with that of coherent states, Dolinar in [10] originally suggested a receiver

(depicted in Fig. 3.1) that achieves the Helstrom bound in (3.38), by using the adaptive

measurement techniques. Dolinar receiver basically combines a received coherent state

with a controlled feedback coherent state, and then feed the merged signal to a photon

counter. The feedback control signal can be adaptively updated based on the previous

output observations. Dolinar proved that this receiver achieves the Helstrom bound

with the feedback control signal optimized from the view of dynamic programming.

In the rest of this section, we will show that the Dolinar receiver works exactly as

does the optimal adaptive measurement as described in (3.35), for two input states

, N in the limit of N - oo. When we denote 6 =1/N, the two coherent

states can be approximated from (3.36) as

0 -Y ||2|)+yV1611) + O (6)/N_ ) ~(3.40)

712 ) = V1 - I'i12610) + -YiV1611) + 0(3)
v Nt

as N - oo. Thus the coherent state of weak energy can be approximated as a state
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staying in the 2-dimensional space spanned by the two number states {0), 1)}. It

means that when we measure such a weak coherent state, with a high probability, we

observe either 0 or 1 photon.

Two orthonormal measurement vectors for these weak coherent states can also stay

in the same 2-dimensional space and can be written as

Wo) = 1 - /3210) + 0ei ll), (3.41)

WLi) =00) - eiO V/1 - 3211)

with the basis {l0), 1l)} for two parameters /, 0 E R.

To satisfy the optimality condition of the r-th adaptive measurement in (3.35), the

parameters (,) for the r-th adaptive measurement {w(y'- 1 0)), wL(yr7 1 1))} should be

ei2- 7No yo 1- 71 2j - 7r1v-y1 0 - I I 2  (3.42)
7070V1 - 1 25 _ 77, -l /- I _, 12'

(0)2 +4 
(f37.43±4))

+ J o.w.

where

X =710r - 7ri + 0(j) ,(3.44)
vi 1 7ro7y0 - 7F171| 1

and 7ro and 7r, are posterior probabilities at the r-th step, given previous observations

y-1 E {o, 1}r-1, i.e., 7ii = p(HllY1r- = y- 1) for i = 0, 1.

Then, how can we translate this (mathematically described) optimum adaptive mea-

surement into a physical realization? The idea of the Dolinar receiver is to rotate two

input states { in the subspace spanned by {I0), 11)} to make the optimal

measurement of the rotated input states be exactly the number states { 0), 11) which

can be realized by a photon counter. The rotation of the input states { ), I)}

can be realized by a displacement operator, i.e., adding coherent state to the

55



CHAPTER 3. ADAPTIVE MEASUREMENTS

input states i = 0,1, making it . Note that this process preserves the

inner product between the two input states before and after the transformation, i.e.,

Yo- Yi) = exp(-Iyo-Y i - -Y ) K ) = .2 (3.45)

Then the question is how to design f to make the optimal measurement for the merged

input states { >LI), become {10), 11)}. From (3.41) and (3.43), we can see

that when 3 = 0, the optimum measurement becomes Iwo) = 10) and jwi) = 1). To

make 3 = 0, from (3.43), we need to make IxI - oc. When we replace -yo and '71 by

yo + f and -yi + f, it can be shown that when

e - ,070 - 7' (3.46)
7ro - 71

the denominator of x in (3.44) becomes 0, which makes x -+ oc. In other words, the

optimum adaptive measurement at the r-th step, can be implemented by the Dolinar

receiver that updates its control signal f to be (3.46) where {7ro, 7r,} = {p(HoIY- 1r =

y[1), p(H1|Y{r-1 = y[--1)}.

Our solution for the optimum feedback control signal of the Dolinar receiver, which

is derived from the view of optimum adaptive measurement, coincides with that derived

in the original paper [10] by using much more complicated dynamic programmings.

* 3.5 Conclusion

We considered the M-ary hypothesis testing problem among nonorthogonal quantum

states, when N-copy of the unknown quantum state is available. The most general

form of the measurement, including entangling measurement, can achieve the theoretical

lower bound of the detection error probability (Helstrom limit). But since it is hard to

physically implement the entangling measurement, our focus was on the performance

of the adaptive (product) measurement, with which we measure one system at a time

and then update the next measurement based on the previous observations.
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We derived the necessary and sufficient conditions for the adaptive measurement

to perform as well as the optimal entangling measurement that achieves the Helstrom

limit. We then considered the binary hypothesis testing (BHT) problem, and showed

that a greedy algorithm with posterior updating can meet the necessary and sufficient

conditions for the optimum adaptive measurement. Moreover, we showed that the

Dolinar receiver, which has been known to perform optimally for the BHT between two

coherent states, is an exact physical translation of the optimal adaptive measurement.

* 3.A Proof of Lemma 3.4

The adaptive measurement for the binary hypothesis testing can be written as

O = y1N-10 ( 1

y E{,1}N-1

ril Y1 YN-11) Q (N-1(3.47)
Hi QyN1 1

y 1 C{O,1}N-1

where the final decision happens depending on the last output YN.

When we denote the optimum measurement for {ION), IV)N) I on U 2 as { IQo), Q 1)} E

U2 , the uniqueness of the optimum measurement on the subspace U2 , stated in Lemma

3.1, implies that the measurement operators {flo, H1 } can achieve the Helstrom limit if

and only if

Qo)(ol = Pu2rfoPu2 , IQ1)Q1i = Pu 2HiPu2 , (3.48)

when Pu2 is the projective operator onto U2 . These conditions will be used to derive

more specified necessary and sufficient conditions for the adaptive measurements to

achieve the Helstrom limit.

When an orthonormal basis for the 2-dimensional space U2 is denoted as {vo), Ivi)},



the conditions in (3.48) can be written as

Qo)(QoI = (Ivo)(voj + vi)(viI)Io(Ivo)(voI + Ivi)(vi)
2N-1-_1

=|ai|2 | )(Vo| + aNbi Ivo)(vi|+ biaivi) (voI+

Q1)(QI= (=vo)KvoI + vi)(vi)IIi(Ivo)(vol + vi)(vi)
2N-1-_

|(1Ci|12 |1 V)(Vo|I + ci vo)( v1|I+ diciIv1 ){vo I +

lb 12 Ivi)(vI|)

(3.49)

ai = KQ (y'O0) Vol;

ci =K (yN-ll) vo ;

b = KQ (yN-10) vi),

di = KQ (y- 11) vi),

for the index i = _- yj . 2 j1 for each yN- 1 E {0, }1N-1.

The optimum measurement vectors { Qo), IQ1)} E U2 can be written

IQo) = 1 - c2 IvO) + ce 0jvi) (3.51)

IQ,) =clvo) - eO V/1 - c2 1vi)

for c > 0 and 0 E R, and thus

IQo)(Qol =(1 - c2 )Ivo)(vol + cV/1 - c2e-iOIvo)(vI + cV/1 - c2eiOIvi)Kvol + c2lvi)(vil

IQ1)(Q1I =c2lvo)(vol - c/1 - c2&-i&Ivo)(v1I - c 1 - c2eiOIvi)(vol + (1 - c2)Ivi)(vII.

(3.52)

These optimum measurement vectors should satisfy (3.21), which is written again below,

p _KN I Qo) 12 . I fN IQ1)12

p 0 -I(V)NQO)12 . 1ONQ 12'
(3.53)

and this optimality equation specifies the parameters c and 0 in (3.51).

where

(3.50)
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The set of adaptive measurement vectors {|Q(yN))}, yN E {0, 1}N can satisfy the

necessary and sufficient conditions in (3.49), if and only if the following three conditions

can be met.

* Pu2 f 0oP 2 and Pu2UIPu2 are rank-1 operators, i.e., we can find IQ'), IQ') such that

Pu2 lo Pu2 = Q')(Q' I and Pu2 HiPu2 =Q')(Q1I where {Q'), I )} E U 2 .

* The measurement vectors IQ'), Q') are orthonormal to each other.

" Moreover, IQ') = Ieo), IQ') = I,), i.e., it satisfies (3.53).

These conditions specify the coefficients ai, bi, ci, and di's in (3.50). Let us consider the

first condition that Pu2 HoPu2 and Pu2H1Pu2 should be rank-1 operators. The operators

are rank-1 if and only if the coefficients ai, bi, ci, and di satisfy

(2N -

i=(

2 N-

i=0

I |2 )

2 N 1

20O

b |2 )

( -1

i=0

(2N_1

i=0

(2Ni

2 )

a bi)

cidi)

2 N -1(i=0

2N_1

Y
i=0

aib*)

cid*)

2N_1

i=5

2N-1

i=5

2

2

cid*

(3.54)

From Cauchy-Schwarz inequality, for X1 , X2, .. . ,n E C and yi, Y2, ... , yn E C,

n 2 n n
Xiyi< (x ) (2 Yk2) (3.55)

i=1 (j=1 (k=1

while equality is achieved if and only if x and y are linearly dependent, i.e., xi = Y - yi,

Vi, for some y C. Therefore, (3.54) can be satisfied if and only if

b=y -ai and di =#.ci, Vi E {f, ... 1,2 N-1 - 1} (3.56)

for some y, 3 E C.

Under (3.56), the projected operators Pu2fl0 Pu2 and Pu2H1Pu2 can be written as

59



rank-1 operators as follows.

i=O
(jai 21vO) (voI+ yai 121VO)(V1 1+* jai lvi)vol + LYl2jai 12 IV,)(V1I)

2 vo) + y 3a~2 lvi)) ( ai2 (vol + 7X >3a (Vi

i=O
(lCil2 lvo)(v1 + cI2lVo)KvI + /*lC 121 I + 1021Cil2lV)(VIl)

>3ci 2vo) + 3* lci2

and thus

Q1') = a|Ivo)

QG1) = >1ci 2vo)

+ Y* 2|i~vi),

+ 0* c 2 I vi).

(3.58)

Then we put additional conditions on ai, bi, c , and di to make I'), I') to be

orthonormal to each other. It means that those coefficients should satisfy

(1 + _Y(2) jai 2 (1 + 112) ( C 12 = 1,

(3.59)

Assuming Ei Jai12 $ 0 and > c JC 2 z 0, it implies that

Vy12 = 1/ ( ail - 1, 1012= 1/(

y= -1/0*.

)
vi) ) (X o 1 l+0 X cil2(vi I

(3.57)

IcI2) - 1,
(3.60)
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By using the fact that Ei lail2 + Ej I 12 = 1, these conditions can be written as

_ 1- (Zi lail2 )

(E i Jail 2 )
( IaiI2)

1 -( i lai2
(3.61)

Now the last condition that ai, bi, ci, and di, Vi should satisfy is for the resulting

measurement vectors {I') IQ'1)} E U 2 , which can be written as

Q1') = 2avo) + y

)= ( 1-51aivo)

= 1 - lailvo)

5 lai~lvi)) XZ a~i~vo)

+ * a1 ailv )

+ Vailvi)) ,

the optimality condition (3.53) should hold.

In order to write that optimality condition in terms of the input states {ITo):

JON), Jpl) := l<{)}, we first pick an orthonormal basis of U2 as follows.

vo) = TO) ,
1

lvi) = - (IT) - (K'oI'Ii)L o))
I/ |(qjO 1)J2

(3.63)

For such a basis

N-1 ) T = P (010)1 Ic 12 2ail1 = P(110).

(3.64)

Moreover, the following inner product relationships hold.

(IFo lvo) = 1, (Kolvi) = 0; (3.65)

(F1ivo) = (i1|'o), (Kivi) = 11 - I('1OF o) 2 .

(3.62)

Jail2 KQE
N1

lailvi)



Using these relationships and

|GO)= /p(0|0)1x) - /p(1|0)1y), IQ1) = V1/p(10) 1) + \/p(00)|y),

it can be shown that

(IFoQO) = /p(00)(Io1vo) -

(4oIQ1) = /p(10)( IF01vo) + p(010)(Io 1vi) = V/p(1-0),

('i I O) = /p(0|0)(IIvo) - vp-(l10)(TI'Iv1)

= P(O|0)('1|''o) - /p(1jO)/1 - |(*1|qo)2

(P10'1) = /p(l10)(IFivo) + /p(010)( I vi)

= /p(1I0)(*1|qfo) + v/p(OO)/1 - I(i|lo)w2

Now we will show that (I IQ') is equal to

s/p(01) =

From the definition of bi and the basis jvi),

bi K (yf-10) v) =
S(y -10) i) - (,0|'1,) KQ (yN-10) - Vo)

1- K(,1Ii o)I2

which implies that

(Q(yN-I0)I1) = (V 1) K (yN-1 0) 's)+ 1 - (41 Io)|2 -b2.

From the definition of ai, and bi = y - ai -(1) a,

(3.69)

(3.70)

K (IFo 1i) - /1 - I|(1 Io) 2 (010)) ai. 3.

(3.66)

(3.67)

V/p(01), which is

2
(3.68)
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/p (1-10) (IF 1vi1) = /p (0-10),

(Q(yN-10)ql

(Q(yN-10)|xp1) = (3.71)



When we sum up the magnitude squared of this term over all yN-1

2

-1

= KIFOIT)

= (OFIT1) - 1 - (I -, o I 2

F ~ 2 Z ai12

2

Ap(0 0 )

= Vp(0I0)(KoITI) - p(ljO) 1 | - K''i'Jo)12

Therefore, by using this relationship and (3.67), it is shown that

N-1 2
-p(1l). (3.73)

N-1
Y1

Moreover, from 1('|G')|2 + |(Q1 1,

(3.74)

By using (3.67), (3.73) and (3.74), the optimality condition in (3.53) can be written as

pj _(''oQ3)I2 . K 'og)1 2  p(olo) . p(110)
2o |1(,F1| 'o)2 . J Tl -/1 2 p(oll) .p(111) (.5

In summary, the necessary and sufficient conditions for the adaptive measurements

to achieve the Helstrom limit can be transformed to

" bi =yaj, di = Oci,

" -y = - p(Io)/p(00),

Vi{o,- , 2 N-1 -

/ = fp(00)/p(110) for basis Ivo) and Ivi) in (3.63)

(3.72)
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When we combine the first and second conditions, for basis Ivo) and lvi) in (3.63),

K(y N-iO) 0 = o - P(010)

(y N-1i) ( I TO) + (1 - (9I0IT )
P(olo)
p(ljO)

)
)

(3.76)

for all yN-1 E {O N-1.

Therefore, the necessary and sufficient conditions for the adaptive measurements

can be summarized as in (3.29)-(3.31), i.e.,

P0 P(yN N-i =

P1 (1N 1 0 , HO)
p, pN = N-i

p 1__ -y11, H1) =_
P1 N 1, Ho)

(N _ (1 2N)

(CN _+ (1 - c2N)

N = 1, Ho)

P(YN = ,H 0) )2

P(YN = 0, Ho)

P(YN = 1, Ho)

P(YN = 0, Ho) -P(YN = 1,HO) 1

P(YN = 0, H) -P(YN = 1, Hi)

for Vy N- 1 E f0, 1IN-1 where c := I(Vol14)1, and thus cN - I 4,o1 IN _I 4NIN)1.

M 3.B Proof of Lemma 3.5

The adaptive measurement suggested in [1] follows a greedy algorithm paired with the

posterior updating, and it satisfies

(p(HiIYjr-1 _ -1 2

(p(HolY-I = y--1))2

p(Yr = OIHo, Y{- 1 = yr-1) p(Y = r-Ho, Y[r 1 _-1)

p(Yr =OH,Y-i = y1H-1 ) -p(Yr = 1|H 1,Yr-i -. y1)

(3.77)

2
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for every r = 1, - , N and Vy'- 1 E {0, 1}r-1. From this updating rule, it can be shown

that

p(Y{ = yV a, Hb) = r-' _ 1 , H ) I + (-l )a+b

p(xlr-1 = yr- 1 , Hb) + (1 - 2C2 )p(y 1rl _
x R(yrV1 ) y

where a, b E {0, 1} where c := ,0oI1)1. As stated in [1], (3.78) also implies that

popi2r[p(Y{r y[,Ho)+p(Y{ y[,H)] 2 -p(Yr = y[, Ho).p(Y{ = yrH1) = 0 (3.79)

for any y' E {O, 1}r. We can show it by mathematical induction. First, we can check

that (3.79) is true for r = 1, since

p(Y = a, Ho) = -O
2

p(Y = a, HI) =
2

+ (-)a po + (1 - 2c 2 )pl
+1 1 - 4popic 2

ap1 + (1 - 2c 2 )po

( 1) - 4popic
2 )

for a E {0, 1}, from (3.78). Assume that (3.79) is true for r, and then show that it is

also true for (r + 1). From (3.78),

p(Y{ = y', Ho)
2

+ p(Y{ = y', H1)
2

=p(Y{' = y', Ho)(
2

-1)a (1 - 2popic 2 (r+1)) + 1 - 4popic 2 (r+1)

V1 - 4popic2 (r+1)

-(-1)a2pOpic
2(r+1)

/1 - 4popic 2 (r +1)

-1)a2popic
2 (r+1)

I1 - 4popic 2(r+l)

p(Y{ = yr, H 1 ) -(-1)' (1 - 2popic 2 (r+1)) +
2 

V popi'U1'-

1/1 - 4popic 2 (r+1)

r+1)

(3.81)

(3.78)

(3.80)

p(Yf a, Ho)

p(Y{ a, H1)
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From this, we can directly show (3.79) is true for (r + 1). Therefore, (3.79) is true for

every integer r.

We will also show that (3.78) is equivalent to (3.77). Since it is straightforward

to derive (3.78) from (3.77), here we will only show the reverse way of derivation, i.e.,

(3.77) from (3.78). For r = 1, by using (3.80), it can be shown that

p(Y = 0, Ho) -p(Yi = 1, Ho)

p(Y = 0, H)- p(Y =1, H) (3.82)

For r > 1, from (3.81),

p(Yr+l = yr0, HO) .p(Y1r+l = y1, Ho) = p(Y1r+l - yr0, H1 ) .p(y1r+l = yrl, H1).

(3.83)

Therefore, (3.77) is equivalent to (3.78) for every r E {1, . .. , N}.

We will show that if (3.79) can be satisfied, it also meets the the necessary and

sufficient conditions (3.29)-(3.31) to achieve the Helstrom bound. Since (3.79) is derived

from (3.78), which is equivalent to (3.77), it implies that if (3.77) is true, then the

necessary and sufficient conditions (3.29)-(3.31) are satisfied.

From (3.79), it can be directly shown that

P(y1N __N-10, HO) _1-2pop, C2N + V 4poplc2N

P(yN _N-10, H ) 2pop, N

A 1 N=-i1, HO) _ 1- 2pop1c 2 N _ _4popIc
2N

p(YN N- 2popc 2N
=z 1  1,H1 )2pop~cN

which also implies

p(YN = 0, H) _ 1 - 2pop1 c2N + 1 - 4poplc2N

P(YN = 0, H) 2popic2N (3.85)
p(YN = 1, H) _ 1 - 2popic2 N - 1 _ 4pOpIc2 N

p(YN =1, H1) 2pop 1c2N
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By multiplying these two probabilities, (3.31), which is

P(YN = 0, Ho) - P(YN = 1, Ho)

P(YN = 0, H) - P(YN = 1, HI)
-1

can be first shown.

From p(YN = 0, HO)+ p(YN = 1, HO) = po and p(YN = 0, H1 )+ p(YN = 1, H 1) = p1,

the second equation of (3.85) can be written as

PO - P(YN = 0, Ho) _

P1 - PYN =0, HI)

1 - 2pop1c2 N _ 1 -_ 4pOpic 2 N
2poplc 2N

which is equivalent to

2 pop 1 c2N (Po - P(YN = 0, H))

(P1 -pYN = 0, H 1)) (1 - 2pop1 c2N 1 _ 4pOp1c2N)

By using this and the first equation of (3.85), we get

P(YN = 0, Ho) = P
2

P(YN = 1, Ho) =p P
2

( 1 +
1 2pIc2N

1 - 4popic2 N

1 - 2plc 2N

V1 - 4popic2N

The ratio between these two probabilities becomes

P(YN = 1, Ho)

P(YN = 0, Ho)

/1 - 4popic 2N - (1 - 2pjc2N)

/1 - 4popic2N + (1 - 2pIc2N)

1 - 2pc2N (1 + po - pc2N) _ (1- 2pc2N) 1 -4pop 1 c2N

2p2c2N(1 - c 2N)

From (3.84) and (3.89), we can show that (3.29) and (3.30) are satisfied., i.e.,

p( N - N-1 0 , H 1) =
p(yN _ -1 0 , Ho)

(cN _ -_ P2 (YN = 1,H)C2N) 0,Ho)

(3.86)

(3.87)

(3.88)

(3.89)

P1
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Po p N =N-i1 (N0H ) 2
1__ Y1- 1,H 1 ) = CN __ _C2N) P(N = 0, HO)

P1 P(N Ni -11, Ho) P(YN = 1, Ho)

To show the equality, we use the following.

1 1
2c2N 1 - 4pop1c2N

P1 P1

2 1 - 2pOp 1c2N _ 2 p2c4N - 2plc2N

Pi 2

- 2C2N -1 - 4poplc2N
P1 Pi1-

2 1 - 2poplc 2N _ 2 pc 4N - 2plc2N

Pi 2

_ (1 - 2pyc2N 1 _ 4popic2N

(3.90)

+ (1 - 2pic2N) 1 - 4popc 2 N

which is true since the left-hand side terms are positive (because V1 - 4popic 2N >

1 - 2pic2N > 0), and the squared of left-hand sides are equal to the squared of the

right-hand side terms, respectively.

Therefore, the adaptive measurement that satisfies (3.77) also meet the necessary

and sufficient conditions of the Helstrom bound.
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Chapter 4

Capacity of Coherent Detection

* 4.1 Introduction: Detection of Optical Signals

We start by describing the optical channel of interest. Over a given period of time

t E [0, T), we first consider a constant input to the channel, which is a coherent state,

denoted by IS), where S E C. Here, coherent state can be understood as simply the

light generated from a laser. In a noise-free environment, if one uses a photon counter

to receive this optical signal, the output of the photon counter is a Poisson process, with

rate A = IS12, indicating the arrivals of individual photons. Clearly, one can generalize

from a constant input to have S(t), t E [0, T), which results in a non-homogeneous

Poisson process at the output. The cost of transmitting such optical signals is naturally

the average number of photons, which is equal to f6f S(t)I2 dt. Here, without loss

of generality, we set the scaling factors on the rate and photon counts to 1, ignoring

issues with linear attenuation and efficiency of optical devices. Such receivers based on

photon counters that detect the intensity of the optical signals are called direct detection

receivers, and the resulting communication channel is called a Poisson channel. The

capacity of the Poisson channel is well studied [38, 49].

Since a coherent state optical signal can be described by a complex number S, it

is of interest to design coherent receivers that measure the phase of S, and thus allow

information to be modulated on the phase. The following architecture, proposed by

Kennedy, is a particular front end of the receiver, the output of which depends on the

phase of S.
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Photon counter
Input Light: S S+l ~ Poisson (IS+ )

Local signal: I mixer (beam splitter)

Figure 4.1. Coherent Receiver Using Local Feedback Signal

In Figure 4.1, instead of directly feeding the input optical signal IS) to the photon

counter, a local signal 11) is mixed with the input, to generate a coherent state IS + l),

and the output of the photon counter is a Poisson process with rate IS+112. Note that

1 can in principle be chosen as an arbitrary complex number, with any desired phase

difference from the input signal S. Thus, the output of this processing can be used to

extract the phase information in the input. In a sense, the local signal is designed to

control the channel through which the optical signal IS) is observed.

Kennedy used this receiver architecture to distinguish between binary hypotheses,

i.e., two possible coherent states corresponding to waveforms So(t), Si(t), t E [0, T),

with prior probabilities iro, 7r,, respectively, using a constant control signal 1. This work

was later generalized by Dolinar [10], where a control waveform l(t), t E [0, T) was used.

The waveform 1(-) is chosen adaptively based on the photon arrivals at the output. It

was shown that the resulting probability of error for binary hypothesis testing is

Pe= 1 ( - /- 47ro7rie-fI So(t)-S1(t)2dt (4.1)

Somewhat surprisingly, this error probability coincides with the lower bound opti-

mized over all possible quantum detectors, the Helstrom limit [21]. The optimality of

Dolinar's receiver is an amazing result, as it shows that the minimum probability of er-

ror quantum detector for the binary problem can indeed be implemented with the very
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simple receiver structure in Figure 4.1. Unfortunately, this result does not generalize

to problems with more than two hypotheses.

The goal of the current chapter is twofold. We are interested in finding a natural

generalization of Dolinar's receiver to general hypothesis testing problems with more

than two possible signals. In addition, we would like to consider using such receivers to

receive coded transmissions, and thus compute the information rate that can be reliably

carried through the optical channel, with the above specific structure of the receiver

front end. In the following, we will start by re-deriving Dolinar's design of the control

waveform 1(t) to motivate our approach.

U 4.2 Binary Hypothesis Testing

We consider the binary hypothesis testing problem with two possible input signals,

ISo(t)), IS 1(t)), under hypotheses H = 0, 1 respectively, and denote iro(t) and 7r 1 (t) as

the posterior distribution over the two hypotheses, conditioned on the output of the

photon counter up to time t. For simplicity, we assume that So, Si E R. Generalization

to the complex-valued case will be straightforward. Based on the receiver knowledge,

we choose the control signal 1(t), to be applied in an arbitrarily short interval [t, t + A).

After observing the output during this interval, the receiver can update the posterior

probabilities to obtain ro(t + A) and 7r,(t + A), and then follow the same procedure to

choose the control signal in the next interval, and so on. As we pick A to be arbitrarily

small, we can restrict the control signal 1(t) in such a short interval to be a constant

1. In the following, we focus on solving the single step optimization of 1 in the above

recursion, and drop the dependence on t to simplify the notation.

We first observe that the optimal value of 1 must be real, as having a non-zero imag-

inary part in 1 simply adds a constant rate to the two Poisson processes corresponding

to the two hypotheses, and does not improve the quality of observation. We write

A = (S-+1)2, i = 0, 1 to denote the rate of the resulting Poisson processes. Over a very

short period of time, the realized Poisson processes can have, with a high probability,
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e-AA

1e-AA

H=1 Y=1

Figure 4.2. Effective binary channel between the input hypotheses and the observation over a A
period of time

either 0 or 1 arrival, with probabilities e-AA, 1 - e-AiA, respectively. 1 Over this short

period of time, the receiver front end can be thought of as a binary channel as shown

in Figure 4.2. Note that the channel parameters As's depend on the value of the control

signal 1. Our goal is to pick an 1 for each short interval such that they contribute to the

overall decision in the best way.

The difficulty here is that it is not obvious how we should quantify the "contribution"

of the observation over a short period of time to the overall decision making. An intuitive

approach one can use is to choose 1 that maximizes the mutual information over the

binary channel. For convenience, we write the input to the channel as H and the output

of the channel as Y E {0, 1}, indicating either 0 or 1 photon arrival. The following result

gives the solution to this optimization problem.

Lemma 4.1. The optimal choice that maximizes the mutual information I(H; Y) for

'One has to be careful in using the above approximation of the binary channel. As we are optimizing
over the control signal, it is not obvious that the resulting A%'s are bounded. In other words, the mean
of the Poisson distributions, ALA, might not be small. The assumption of either 0 or 1 arrival, and
the approximation in the corresponding probabilities, can be justified in two senses: First, a practical
photon detector can easily sense whether or not any number of photons arrives during a time interval
A, but cannot exactly count the number of photon arrivals, especially as A -* 0. So, the binary output
channel model is much more practical than the Poisson output channel model. Second, when we want to
maximize the ability to distinguish between two hypotheses H = 0, 1, we essentially need to distinguish
between the signal amplitudes So and S, through photon arrivals. Adding the feedback control signal
1 -+ oo does not help in distinguishing So and S1. In this sense, we can reason that the optimum 1
would not make Ai unbounded.
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the effective binary channel is

S_ Soiro - S171. (4.2)
71 - 70

With this choice of the control signal, the following relation holds:

1o = r . (4.3)

Remark 4.1. Note that the optimal choice of 1 that maximizes the mutual information

I(H; Y) is exactly the same as the choice of 1 in (3.46) that is optimized with a totally

different view of minimizing instant detection error probability. It turns out that for

"binary" hypothesis testing, the feedback control signal 1 that maximizes mutual infor-

mation of the corresponding channel coincides with that of minimizing detection error

probability at each instant. This is not generally true for M-ary (M > 2) hypothesis

testing.

Proof. Appendix 4.A L

The relation in (4.3) gives some useful insights. If 7ro > 711, we have Al > A0 ,

and vice versa. That is, by switching the sign of the control signal 1, we always make

the Poisson rate corresponding to the hypothesis with the higher probability smaller.

In the short interval where this control is applied, with a high probability we would

observe no photon arrival, in which case we would confirm the more likely hypothesis.

For a very small value of A, this occurs with a dominating probability, such that the

posterior distribution moves only by a very small amount. On the other hand, when

there is indeed an arrival, i.e., Y = 1, we would be quite surprised, and the posterior

distribution of the hypotheses moves away from the prior. Considering this latter case,

the updated distribution over the hypotheses can be written as

Pr(H = 11Y = 1) _ 7r -AA ]_ (A 0( 7 A
+- + O(A).

Pr(H = 0Y = 1) 7ro AoA 7r1
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The posterior distribution under the case of 0 or 1 arrival turns out to be inverse to

each other as A -+ 0. In other words, the larger one of the two probabilities of the

hypotheses remains the same no matter if there is an arrival in the interval or not. As

we apply such optimal control signals recursively, this larger value progresses towards

1 at a predictable rate, regardless of when and how many arrivals are observed. The

random photon arrivals only affect the decision on which is the more likely hypothesis,

but do not affect the quality of this decision. The next lemma describes this recursive

control signal and the resulting performance. Without loss of generality, we assume

that at t = 0, the prior distribution satisfies wro ;> 7r,. Also we let N(t) be the number

of arrivals observed in [0, t).

Lemma 4.2. Let g(t) satisfy g(0) = ro/7r and

g(t) = g(0) -exp [j t (SO(t) - Sl(t))2 (g(T) + 1)-
.1 g (T) - I

The recursive mutual-information maximization procedure described above yields a con-

trol signal

l*(t) = lo(t) if N(t) is even

11(t) if N(t) is odd

where

_) SI(t) - So(t)g(t) So t) - S1(t)g(t)
g(t) - I g(t) - I

Furthermore, at time T, the decision of the hypothesis testing problem is H = 0 if N(T)

is even, and H = 1 otherwise. The resulting probability of error coincides with (4.1).

Proof. Appendix 4.B [-

Figure 4.3 shows an example of the optimal control signal. The plot is for a case

where Si(t)'s are constant on-off-keying waveforms. As shown in the plot, the control
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Figure 4.3. An example of the control signal that achieves the minimum probability of error.

signal 1(t) jumps between two prescribed curves, lo(t), li(t), corresponding to the cases

iro(t) > ii(t) and wro(t) < 7ri(t), respectively. With the proper choice of the control

signal, each time when there is a photon arrival, the receiver is so surprised that it flips

its choice of H. However, g(t) = max{7ro(t), 7r,(t)}/ min{7ro(t), 7ri(t)}, indicating how

much the receiver is committed to the more likely hypothesis, increases at a prescribed

rate regardless of the arrivals.

U 4.3 Generalization to M-ary Hypothesis Testing

The success in the binary hypothesis testing problem reveals some useful insights for

general dynamic communication problems. Regardless of the physical channel that one

communicates over, one can always have a "slow motion" understanding of the process

by studying how the posterior distribution over the messages evolves over time. Over

the process of communications, this posterior distribution, conditioned on more and

more observations of the receiver, should move from the prior towards a deterministic

distribution, allowing the receiver to "lock in" on a particular message. This viewpoint

is more general than the conventional setup in information theory, and particularly

useful in understanding dynamic problems, as it is not based on any notion of sufficient

statistics, block codes, or any predefined notion of reliability. As we measure how far

75Sec. 4.3. Generalization to M-ary Hypothesis Testing



the posterior distribution moves at each time, we can quantify how the communication

process at each time point contributes to the overall decision making.

The optimality result in Lemma 4.2 is, however, difficult to duplicate for general M-

ary problems. Of course, we can always mimic the procedure, to choose the control sig-

nal that maximizes the mutual information over an M-input-binary-output channel at

each time. The result does not always give the minimum probability of error in general.

The reason for that is intuitive. There is a fundamental difference between maximizing

mutual information and minimizing the probability of error. In other words, on a gen-

eral M-ary alphabet, a posterior distribution with a lower entropy does not necessarily

have a lower probability of detection errors. These two coincide only for the binary case,

since the posterior distribution over two messages lives in a single-dimensional space.

In general, the goal of decision making favors the posterior distributions, over the mes-

sages, with a dominating largest element; maximizing mutual information, however,

does not distinguish what kind of information is conveyed.

Consequently, it is hard to define a metric on the efficiency of communication over

a time interval in the middle of a communication session that precisely measures how

well this interval serves the overall purpose. Even if one can define a precise metric, it

is often hard to imagine that the analytical solution of the optimal control signal or the

resulting performance can be computed from optimizing such metrics. Moreover, such

metrics should be time-varying, depending on how much time is left before the decision

is made. Intuitively, at an early time point (i.e., when a longer time remains before a

final decision needs to be made), since the current observation will be combined with a

lot more information yet to come, we are more willing to take any kind of information,

and hence it makes sense to maximize mutual information. On the other hand, as the

deadline of decision making approaches, the system becomes much "pickier" in choosing

information to extract from measurements, and demands only the information that

helps the receiver to lock in to one particular message. Thus, the control signal should

be optimized accordingly.

76 CHAPTER 4. CAPACITY OF COHERENT DETECTION



To test this intuition, we restrict our attention to the family of Renyi entropy. Renyi

entropy of order a of a given distribution P over an alphabet X is defined as

H0 (P) 1 log Pa

It is easy to verify that as a -+1, Ha(P) is the Shannon entropy, and as a -+ o,

HOC(P) = - log (maxxex P(x)), which is a measure of the probability of error in guess-

ing the value of X, with distribution P, as X = arg maxx P(x).

Now for general M-ary hypothesis testing problems, we consider a recursive design

of the control signal 1 similar to that introduced in section 4.2, except that at each

time, rather than maximizing the mutual information over the effective channel, which

is equivalent to minimizing the conditional Shannon entropy of the messages, we instead

minimize the average Renyi a entropy , i.e., we solve the optimization problem

min EPy(y) - H,(PHIYy())- (4.4)
y

Intuitively, for a E [1, oc), the larger a is, optimization in (4.4) tends more in favor

of posterior distributions that are concentrated on a single entry. Smaller values of

a, on the other hand, correspond to receivers that are more agnostic to what type of

information is obtained. A good design should use smaller values of a at the beginning

of the communication session (when a longer time remains before the final decision

is made), and increase a as a shorter time remains before the final decision. In the

numerical example in Figure 4.4, to illustrate the point, we compare the cases where

a is chosen to be fixed to be either 1 or 100 throughout the time t E [0, T]. Our

intuition says that choosing a smaller a is desirable, when we have enough time to

collect information before the final decision. On the other hand, when we need to make

a final decision immediately, a larger a is preferable. We observe that using a = 1 gives

better performance if T is longer, and choosing a larger a yields better error probability

when T is small. This experiment confirms our intuition.
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Figure 4.4. Empirical average of detection error probability (after 10,000 runs) for ternary hypothesis
testing, using control signals that minimize the average R6nyi a-entropy for different values of a;
Ternary inputs {15),1-6),13)} are used with prior probabilities p = {0.5, 0.4, 0.1}.

E 4.4 Coded Transmissions and Capacity Results

We now turn our attention to the problem of coded transmissions over the optical

channel with coherent receivers. We are interested in finding the classical capacity of

such channels, i.e., the number of information bits that can be modulated into the

optical signals, and reliably decoded with the receiver architecture shown in Figure 4.1.

We are particularly interested in the case where the average number of transmitted

photons is small, and hence a high photon efficiency, in bits/photon, is achieved.

The capacity of the same channel without the constraint in the receiver architecture

is studied in [23, 37]. It is shown [14] that the capacity of the channel is given by

CHolevo(V) = (1 + 9) log(1 + 8) - 8 log 8 nats/channel use (4.5)

where 8 is the average number of photons transmitted per channel use. To achieve this

- a=1
- - --a=100

-I-
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data rate, an optimal joint quantum measurement over a long sequence of symbols must

be used. In practice, however, such measurement is very hard to implement. We are

therefore interested in finding the achievable data rate when a simple receiver structure

is adopted. Nevertheless, (4.5) serves as a performance benchmark. In the regime of

interests where 8 -+ 0, it is useful to approximate (4.5) as

CHolevo () = log + 8 + o(8). (4.6)

As another performance benchmark, we also consider the capacity when a direct

detection receiver is used. The capacity of this channel is studied in [38, 49], and the

regime of low average photon numbers is studied in [29]. For our purpose of performance

comparison, we actually need a more precise scaling law of performance. The following

lemma describes such a result.

Lemma 4.3 (Capacity of Direct Detection). As E -+ 0, the optimal input distribution

to the optical channel with direct detection is on-off-keying, with

|0), with prob. 1 - p*
S) =

| VS-p*), with prob. p*

where limeo =- 1, and the resulting capacity is

CDD (S) = Slog - log log - + 0(8). (4.7)

Proof. Appendix 4.C. ]

Comparing (4.6) and (4.7), we observe that the two capacities have the same leading

term. This means as 8 - 0, the optimal photon efficiency of log(1/8) nats/photon can

be achieved even with a very simple direct detection receiver.

In practice, however, the two performances have significant differences. For example,

if one wishes to achieve a photon efficiency of 10 bits/photon, one can solve for 8

79Sec. 4.4. Coded Transmissions and Capacity Results



CHAPTER 4. CAPACITY OF COHERENT DETECTION

that satisfies C(S)/E = 10 bits/photon in both cases, and get 8 Holevo 0.0027 and

&DD = 0.00010. The resulting capacities (bits/channel use), or (equivalently) spectral

efficiencies, also differ by more than one order of magnitude. This example indicates

that although (4.6) and (4.7) have the same limit as F -+ 0, the rates at which this limit

is approached are quite different, which is of practical importance. Similar phenomena

have also been observed for wideband wireless channels [45, 52].

As a result, the 2nd term in the capacity results cannot be ignored. In fact, any

reasonable scheme with coherent processing should at least achieve a rate higher than

that with direct detection, and thus should have the leading term as . log -. It is the

second term in the achievable rate that indicates whether a new scheme is making a

significant step towards achieving the Holevo capacity limit. In the following, we will

study the achievable rates over the optical channel with receiver front end as shown in

Figure 4.1, and evaluate the performance according to this scaling law.

The problem of coded transmission and finding the maximum information rate that

can be conveyed through an optical channel with a coherent processing receiver is in

fact easier than that of hypothesis testing, even though there are exponentially many

possible messages. One first observation is that when communicating with a long block

of N symbols, there is no issue of a pressing deadline of decision for most of the time.

Therefore, it makes sense to always use the mutual information maximization to decide

which control signal to apply. A straightforward generalization of the Dolinar receiver

can be described as follows:

First, at each time instance i E {1, ... , N}, the encoding map can be written fi
{1, 2, ... , M = 2 NR} - Xi E X, where Xi is the symbol transmitted in the ith use of

the channel. This map ensures that Xi has a desired input distribution Px, computed

under the assumption that all messages are equally likely, i.e., jR 1{m : fA(m) = X1 =

Px (X), VX E X.

The receiver keeps track of the posterior distribution over the messages. Given

PMYi--1 (. 1yi 1), which is the distribution over the messages conditioned on the previous

80



observations, the effective input distribution P (x) = Zmf(mx PMjy-1 (mly'- 1 ) can

be computed. Using this as the prior distribution of the transmitted symbol, one can

apply the control signal that maximizes the mutual information.

Upon observing the output Poisson process in the ith symbol period, denoted as

Y = yj, the receiver computes the posterior distribution of the transmitted symbol

P (x) = PxIy, (xIy) 2 , and uses that to update its knowledge of the messages:

PMlyi (mly') = PMlyi-1(mly -1) . ,(X)

for all m such that fi(m) = x.

Repeating this process, we have a coherent-processing receiver based on updating

the receiver knowledge. There are two further simplifications that make the analysis of

this scheme even simpler.

First, we observe that with exponentially many messages, for a dominating fraction

of the time when the block code is transmitted, the receiver's knowledge, Pylyi, is

such that the probability of any message, including the correct one, is exponentially

small. Thus, with a random coding map fi, P, is very close to Px. Thus, the step of

updating the receiver's knowledge is in fact not important. This assumption starts to

fail only when the receiver starts to lock in a specific message, i.e., when PMlyi(m) is

not exponentially small for some m. It is shown in [7] that the fraction of time when

this happens is indeed very small, and can thus be ignored when a long-term average

performance metric such as the data rate is of concern.

Second, suppose we choose the optimal input distribution, which maximizes the

photon efficiency, over a short period A of time. After using this input for A time,

the receiver would update the posterior distribution, which makes the effective input

distribution on X deviate from the optimum. This is undesirable. One can avoid this

problem by using very short symbol periods. That is, after transmitting for a very short

2We omit the conditioning on the history Y'-1 here to emphasize that the update is based on the
observations in a single symbol period.
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time period, the transmitter should re-shuffle the messages so that the distribution of

the transmitted symbols, conditioned on the receiver's knowledge, is re-adjusted back

to the optimal choice. This is precisely the same argument we used regarding classical

communication over wide-band channels. As a result, we do not have to worry about

updating the receiver's knowledge and the control signals even within a symbol period.

Instead, we are interested only in the photon efficiency over a short time period. In

other words, we can focus only on a thin slice on the left end of Figure 4.4.

Based on these observations, we state our results in the photon efficiency of the

optical channel of interest.

Theorem 4.4. For the optical channel with a receiver front end as shown in Figure

4.1, and sequentially updated control signals, suppose that the transmitted symbols are

drawn from a finite alphabet, i.e., at each time the transmitted optical signal |Xi) is

chosen from Xi E X C C, with IXI finite. Then the achieved photon efficiency is upper

bounded by

() <log- - loglog- +o(1). (4.8)

Proof. Appendix 4.D. E

This says that essentially the achievable photon efficiency with coherent receivers is

not significantly different from that of direct detection receivers.

This theorem is a useful step in understanding more general coherent receivers, with

joint processing of multiple symbols. Here, we describe a general optical receiver with

classical processing as follows. Let the codeword transmitted by a sequence of coherent

states IXi) X 2) ... IXN), where each Xi is drawn from a finite alphabet. The receiver

forms JYI), Y2),..., YM) and uses a photon counter to observe them separately. Each

Yj is formed by a linear passive mixing of the Xi's and an arbitrary control signal lj:

N = 1 aijXi + lj, where aij satisfy Ej Iaj 12 < 1, Vi and Ei Ia .12 1, Vj, which

ensure the physical constraint of energy conservation and the fact that duplication



or noiseless amplification of coherent states are not possible. The mixing parameters

and the control signals can be decided sequentially based on the earlier observations.

Following the spirit of Theorem 4.4, we state the following conjecture.

Conjecture 4.1. The achievable photon efficiency by an optical receiver with classical

processing satisfies (4.8).

While this conjecture is negative by nature, it is of practical importance. It im-

plies that in order to achieve the photon efficiency predicted by the Holevo limit, it is

necessary to resort to quantum processing that introduces non-classical states, such as

entangled or squeezed states. The approach of mixing coherent states and applying a

local control signal would not yield significant improvement in photon efficiency.

* 4.5 Conclusion

We studied the general coherent-state hypothesis testing problem and the capacity of

the pure-loss optical channel with a coherent processing receiver (a receiver that uses

coherent feedback control and direct detection). We described the Dolinar receiver

with the intention of optimizing the communication efficiency at each instant, based on

recursively updated knowledge of the receiver. Using this viewpoint, we gave a natural

generalization of the design to general M-ary hypothesis testing problems. We analyzed

the information capacity with coherent receivers, and compared the result with that of

direct detection receivers and of arbitrary quantum receivers (the Holevo limit), using

the appropriate scalings in the low photon number regime.

While Theorem 4.4, is a negative result by its nature, it is of practical importance. It

implies that in order to achieve the photon efficiency predicted by the Holevo limit, it is

necessary to resort to complicated quantum processing that may include entanglement

or squeezing. The approach of mixing coherent states and applying a local control signal

would not yield significant improvement in terms of photon efficiency. However, the

proposed sequential receiver designs and the adaptive feedback control of the receiver

can be applied for more general dynamic communication problems.
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* 4.A Proof of Lemma 4.1

For input distribution {lro, iri}, the mutual information between the binary input H

and the binary output Y is

I(H; Y)

7rO (e AOz

+ 1 (e-A

e
log 7oeA + 7rle-XA +

7roe ~A a + 7rie-AlA

(1 - e-1\0A) log

+ (1 e log

1 eAOA

- 7oeAOA - 7rle-iA)

1 - e-Al

1 - 7roe- A - Arie-A A) .
(4.9)

As A -+ 0, it can be approximated as

I(H; Y) = (7roAo log Ao + 7riAi log Al - (7roAo + riAi) log(7oAo + 7rA) A + O(A2 ).

(4.10)

To find the optimum feedback control signal 1 that maximizes I(H; Y), we take the

derivative of I(H; Y) over 1.

d I(H; Y) = (I (H; Y))-
dl

+ d I(H;

= (7ro log A0 - 7ro log(iroAo + 7riAi)) 2 A0A

+ (7r, log A, -7r, log(7roAo + 7r1A 1)) 2 A + O(A')

= 2A (7ro VA (log Ao - log(7ro Ao + 7rA1)) + 7ri A1 (log A1 - log(7ro Ao + 7ri A1)))

+ O(A 2 )

(4.11)

Note that when

_ Soro - S(4r.2

7r1 - 7O

Y))
d)
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and thus when 7roVA = 7riVA, the first term of d I(H; Y) becomes 0 since

ro A0 o (log AO - log(7ro Ao + ir1A1)) + 7ri 'A (log A1 - log(7roAo + iriAi))

S o - log 7 iAi) 2
=ro Ao -log ( + 2 -0.

(4.13)

Therefore, the feedback control signal 1 in (4.12) maximizes I(H; Y).

* 4.B Proof of Lemma 4.2

Without the loss of generality, we assume that 7ro ;> 7r, and let g(0) = 7ro/7ri. To

understand how the optimum 1(t) should be updated over time, let us first assume that

So(t), Si(t), and 1(t) do not change during every A-interval, i.e., for t E [k -A, (k+1)- A),

k E {0, 1, . . . , }. We will make A -+ 0 afterward. Let Yk E {0, 1} indicate whether or

not photons arrive during t E [k A, (k + 1) -A). When Yo = 0,

p(H = 0|Yo = 0) _,1o

p(H = 1IYo = 0) 7ir

As shown in Lemma 4.1, the optimum 1(0) is

1(0) = So(0)7ro
Wt1

When we plug this value into (4.14),

p(H = OjYo = 0) _ro

p(H = 11Yo = 0) -i
exp [(SoM(0) - SIM)~2. g(0) + 1

g(O) - I

For this case p(H = 0|Yo = 0)/p(H = 1|Y = 0) > 1.

When photons arrive during the first A-interval, i.e., Yo = 1, the posterior distribu-

tion over the hypotheses can be written as

p(H = OJYo = 1) _roi
p(H = 1|Yo = 1) ri

p(Yo = 1|H = 0)

p(Yo = 1IH = 1)
iro 1 - e(So(O)+j(0))

2 A

7ri 1 - (S1(O)+J(O))2

p(Yo = 0|H = 0)
p(Yo = 0H = 1)

70

71

- Si(0) 7r1

- 7T0

(4.14)

(4.15)

(4.16)

(4.17)
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As A - 0,

p(H = 01Yo = 1) _ iro (So (0) + l(0))2 + 0(A) = + 0(A). (4.18)

p(H = lYo = 1) 7ri (S1(0) + l(0))2 7r

The posterior distribution under Yo = 0 in (4.16) and Yo 1 in (4.18) turns out be

approximately the inverse of each other as A -9 0. Therefore, when we denote the

posterior distributions of H = 0 and H = 1 at time t as 7ro(t) and ri(t), respectively,

g(t) := max{7ro(t)/7r1(t), iri(t)/7ro(t)} (4.19)

is uniquely determined regardless of the photon arrival history during [0, t). Thus, for

ease of calculation of g(t), we will assume no photon arrivals during [0.t), and evaluate

the ratio between the posterior distributions of the two hypotheses.

First of all, from (4.16),

g(A) = ' exp (SO (0) - S,(0))2 - + A . (4.20)
7Wi I g() -1

If we assume no photon arrival for the next (N - 1)-intervals, i.e., Y = - = YN-1 = 0,

then g(k - A) = p(H = 0 oyk-1 = 0)/p(H = 11Yk-1 = 0), and we get the following

recursive equation for g(N -A),

ro N-12 9
g(N -A) =- exp 0 (So(k -A) - SI(kA] A)) .A (4.21)

7r1 1k=0 o A

By taking A -+ 0,

[f t (2 .g()1 1
g(t) =- -exp (So(7) - Si(T)) 2d,]

Iri L g(T) -1 (4.22)

=g(0) -exp [f ((So() - S(T)) 2 g(-F)+> d,]
J ~g() - I
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The optimum feedback control signal at time t is equal to

= So7o(t) - S17 1 (t) (4.23)
7r1 (t) - 7To(t)

Note that whenever a photon arrives, iro(t)/7r1(t) gets flipped. Therefore, starting from

7ro > 7r1 , when the number of photon arrivals until time t, which is denoted as N(t),

is an even integer, then iro(t) > 7r,(t) so that g(t) = 7ro(t)/7ri(t). If N(t) is odd, then

7ri(t) > iro(t), which results in g(t) = iri(t)/7ro(t). Therefore,

1*(t) = lo(t) if N(t) is even

li(t) if N(t) is odd

where

Si(t) - Sot)g(t) So(t) - SI(t)g(t)
10 t) g(t) - I11t g(t) - 1

Furthermore, the decision of the hypothesis testing problem is H = 0 if N(T) is

even, and H = 1 otherwise. The average probability of error is then equal to Pe =

min{ro(t), 7ri(t)}, and by the definition of g(t),

Pe = 1 .(4.24)
1 + g(t)

It can also be shown that

g(t) = (1 + (0)) - + + g() (1 + g(0))2e2m(t) - 4g(0)em(t) (4.25)
2g(0) 2g(0)

with m(t) = fo'(So(7) - S1(T)) 2dT is the solution for g(t) in (4.22). And the resulting

Pe is

Pe 1 1 = I I - V/1 - 47 07rie-fot(so()s 1(T))2l . (4.26)
1 +g(t) 2
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* 4.C Proof of Lemma 4.3

The converse part of this lemma, i.e., that any finite alphabet input distribution to the

optical channel with direct detection can never achieve information rates greater than

1 1
slog- - slog log - + O(E), (4.27)

can be inferred from the converse proof of Theorem 4.4, which considers a more general

receiver type, which makes the direct detection just a special case. Therefore, here we

will only prove the achievability of the capacity in (4.27) with on-off-keying.

With the on-off keying input

0), with prob. 1 - p

I 0p), with prob. p,

the mutual information of the binary input and output channel generated by direct

detection can be written as

HB (1 - P + e~- P) - p - H B (e_

=-(1-p+e -p) log (I-p-e P)-P(1-e log (p (1 - e- (4.28)

+ p e P log (P. e ) + p (i - elog ( - e))

where HB(p) = -p log p - (1 - p) log (1 - p).

For lim-o P = 1, we can approximate
2 109

21
eg_(/E) (log(1/S))2

E
1-p+e .p= 1- +o(E), (4.29)

p-e P =EF+ O .



And by using these approximations, we can show that

HB 1 - P+ C- -P p 9 =1 log -E + O(S), 40HB1pe 1 )slg~+os,(4.30)

p-HB e i ='Eloglog+O(s),

and thus

HB ( -p+ e- p) - p- HB (ef = E log -E log log 9 (). (.1

Therefore, with on-off keying inputs and direction detection, we can achieve

11
CDD() > E log- - 9logl0g 1 +0(E). (4.32)

SE

* 4.D Proof of Theorem 4.4

Let us first calculate the maximum mutual information of the binary input channel

under the average photon number constraint of S. We want to find the binary input

{So), S 1 )} with prior distribution {1 - p,p} that satisfies (1 - p)jSo1 2 + pIS112 
- g

while maximizing

max I(H; Y) =HB (i - (1 -p)eISo+| 2 _ -|+S12
1 (4.33)

- (1 - p)HB (I - e-So+12) - pHB (I - e-IS1+12)

where 1 is the feedback control signal of the Dolinar receiver. Note that here we assume

the binary output of the photon counter, i.e., it only distinguishes whether or not

any positive number of photons arrives. This assumption may not hurt the resulting

information rate, under the assumption of average photon number per symbol, E -+ 0.

We assume that 0 < p < 1/2. Since we are highly limited in terms of the average

photon number S while having freedom to choose the feedback control 1 without any

bound, the mean of the optimum input amplitudes {So, S,} should be 0. Therefore,
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{So, Si } should satisfy the following two equations,

(I - p) So + p - Si = 0, (434)

(1 - p) -So 2 + p IS,1 2  5,

whose solution can be written as

So= ,S* = . (4.35)
so* - p I P .

From Lemma 4.1, it was shown that the optimum 1 that maximizes binary input/output

mutual information of the Dolinar receiver is

(1 - p)SO - pS* _ -2/E -p - (I - p) (4.36)
p-(1-p) 2p-I

Therefore, the resulting effective photon arrival rates of the two hypotheses become

A0 :=ISO + 112= -F
(1 - p)(1 - 2p) 2 ' (437)

Al :=S,3 + 112 = ,1A'
p(1 - 2p) 2 1

respectively. If the prior probability of H1 , p, is a constant number in the range of

(0, 1/2), then both A0 , A1 -+ 0, as E -+ 0. However, we will shortly see that the optimum

p that maximizes the mutual information depends on S, and goes to 0. Then the

question is how fast p goes to 0, and whether A0 , A1 -+ 0 at the optimum p. To answer

this question, we will first write out the mutual information of the binary input/output

channel with the Dolinar receiver as a function of the parameter p, the prior probability

of H 1 . We will denote the corresponding mutual information as I(p).

I(p) =HB (1 - (1 - p)e~Ao + peAl) - (1 - p)HB(1 - e AO) - pHB(1 - e-\) (4.38)

for A0 and A1 in (4.37).



Now let us assume that A0 , A, -+ 0 as S --+ 0. Under this assumption, we will

find the optimum p* that maximizes I(p), and then will verify this assumption. When

Ao, A1 -+ 0,

1- (1 -p)e- -- pe-A, = ((1 - p)Ao + pA1)

2(1 - 2p) 2

1 - e-O =Ao - AO + O(AO)

(1 - p)( 1 - 2p) 2

1 - eAl =A 1 - 2A + O(AI)

(I -p) -S E
p(l - 2p) 2 ( 2

(1 1

(p3 + (I - p)3 )

p(1 - p)(l - 2p)2J

- 1 - p (1 -2 (l-p)(l-,'

(1 - p) +
p(l - 2p)2 )

P 2

P) 2 )+ O

S83)

By using these approximations and additionally, HB(X) -X log x+X+0(X 2 ) as x -+ 0,

1
(1 - 2p) 2

x log ((
(1- 2p)2

(1 - 2p) 2

HB (I - eAo)

(I1
(1
1

(1 - p)(l - 2p) 2

(p 3 + (1- p)3) \

p(1 - p)(1 - 2p)2

2
(P3 + (1 - p) 3) g
p(l - p)(l - 2p)2

(p + (1 _-p)3) S_
p(1 - p)(l - 2p)2J)

(I1

+0 (logE +'E),

2

(I1x log ((1

(1 - p)(1 - 2p)2

1
(1 - p) ( - 2p)2

p. - 1

(1 - p)A 2pA 2

(1 - p)AO + pAiJ
+ O(A + pAI)

(4.39)
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HB ( I-- (I - Ple-A - pe-A

( -- P ( - 2 ) + 0 (P3 . ,63 log(p - E) + (P .-S)2)2
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HB (I - eA)

(I - p) -S

p(l - 2p) 2

(1 - p) -S
p(l - 2p)

2 (i

2

2

(1 - p)
p(l - 2p) 2

(1 - p)8
p(l - 2p) 2

(1 - p)8

p(l - 2p) 2

Therefore,

I(p) =HB (I - (1 - P) eAo + peAl) - (1 - p)HB(1 - eA0) - pHB(1 - eA')

(1- p + p2)
p(l - p)(1 - 2p)3)

1+6p ) 1
log I

p

log1 +
p

(0 ( 8gp

o (L,3log L,
£ )

g62

-

(4.40)

The derivative of 1(p) can then be approximated as

(4.41)

and it can be checked that when p = { log j, it satisfies -I(p) E-+ 0 as

8 - 0. At p = log , we can also validate that A0, A1 -+ 0 as 8 - 0, i.e.,

Ao = -+0,

(4.42)

2= 2(1- (log )
log (1-log )2

When we plug the optimum p* = ( log I into (4.40),

8
1 -

1 - 8log
1 + 3 log 2

logg
log log

+ o () i /o

= log S 1=Elg-8Elog log~ ± 0 (8).

Therefore, (4.43) is the maximum mutual information of the binary coherent states

s2

2
s2

2

d . g2 1
d ()) + 22 ->log,

dp p 2p p

I(p*) = (
(4.43)
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lg (1 - ) S) - I

(p(I - 2p)2 (2

+S3 log S + .2Ps 3 2

(1 -2p

(I - 2p

2 (1- c log })(1 - !log 1) 2
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{ So), IS,)} under the average photon number constraint of S, when the received coher-

ent state is measured by the coherent receiver.

Now, we generalize this result to M-ary input states. We will use mathematical

induction to show that we cannot exceed the mutual information in (4.43) even when

we generalize the inputs to M-ary coherent states, satisfying the same average photon

number constraint of S. Let us define RM(8) as the maximum mutual information

of the optical channel with the coherent receiver that detects a state drawn from the

M-ary input states under the average photon number of 8. In (4.43), we showed that

R 2 (S) = S log -- 1og10g +O(8). (4.44)

Now, we assume that for a finite M,

RM(S) = S log - -log log - +O(), (4.45)

and then we will prove that

RM+1 (8) = Slog - -log log - + O(). (4.46)

By mathematical induction, this proof will imply that for any finite M, (4.45) is true,

and thus the achievable photon efficiency with coherent receivers is not significantly

different from that of direct detection receivers.

First, for a given feedback control signal 1, without loss of generality, we arrange

(M + 1)-input states {SI), IS2), - -., SM+1)}, such that it satisfies

|So + 112 < S, + 112 < ... < SM + 112_ (4.47)

We denote the prior probabilities of the input states as {P1, P2, , PM+1}. The binary



output distribution of the channel becomes

(M+1

PY = {ZPi(M+1
i=1A

. e-Si+11 2 1 pi s eIS+|2 } (4.48)

and the resulting mutual information of the M-ary input channel becomes

M+1-z(
i=1

pHB (e--S+112) (4.49)

Now let us define two random variables N 1 , N 2 from H as follows.

0, if H =1,...,M

, =Io.w.N

Since H and (N 1 , N 2 ) are bijective, by chain rule,

H,

0,

if H = 1,...,M

o.w.

I(H; Y) = I(N1 , N2 ; Y) = I(Ni; Y) + I(N2 ; YIN1). (4.50)

= 1) + PM+1 . I(N2 ; YINi = 0)

M

-E
j=1

H B
( Pi )HB

eSj+112))

(4.51)

since I(N2 ; YIN = 0) = 0. The average number of effective photons used to encode

the information in N 2 , which will be denoted as £2, equals

M

£2 =sj - 2

j=1 i=1 A

(4.52)

Note that

I(N2; YIN,) =

=( pi -
i=1 )

p I(N 2 ;YlN 1

(HB
j=1

P3

( 
P

:i=i Pi)

- e-S +112 )
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M+1

I (H, Y) = H, y (pi - IS,+11
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where S = Z , the mean of the M-signal amplitudes. When we calculate the

effective photon numbers, we subtract S from Sj, since we can make any common offset

to the signals {Sj} by adding the desired amount to I without any cost. From (4.51)

and the definition of RM(S),

(4.53)

On the other hand, the mutual information between Ni and Y becomes

M+1

HB (Pi . e-s

- (Pi HB

2+112 
)

M

=( e-IS+|2- PM+1 -HB (eISM±1+ 12

j=1 i4

(4.54)

The channel distribution of pYIN 1 is

PYIN 1 =0 =

PYFN1 =1 =

j=

1 - -"Ml

e-ISM+1+112  if Y = 0

1 - e-ISM+1+1I2 if Y

if Y = 0

if Y =1

where the input distribution pNi =f = 1 P, PM+1}-

Now let us define a new channel 9YjNi such that

e- S+112  if Y =0

qYIN1~o= -2
- e ±-S+11 2  if Y 1

qYIN 1 =1 = PYN 1=1, Y E {0, 1}

I(NI;Y) =

(4.55)

(4.56)

(4.57)

(4.58)

M

1-(N2; YIN,) < pi -Rm(E2).
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for E =- -S.. The average number of photons for the channel distributions qyIN 1i= 1 Pi
under the input distribution pN is denoted as E, and calculated below:

M

Ai = Ig 5 + PM+1 . ISM+,1 2 (4.59)

From the definition of R 2 (E),

I(qyIN 1, PN) < R 2 (81). (4.60)

Now we will show that

I(PYIN1, PN) < I(qyIN 1, PN1), (4.61)

which will imply I(N; Y) in (4.50) is less than

I(N1; Y) < R2 (E1). (4.62)

We will use the following lemma for this step.

Lemma 4.5. For a binary input/output channel Wyjx with the input distribution px

{po, p1}, let the channel distribution conditioned on Y = 1 be Wylx= 1 = {ti, 1 - t1}

and on Y = 0 be Wylx=o = {to, 1 - to } while to > ti. Then, the mutual information of

this channel, parameterized by to, f(to) := I(px; Wyjx), monotonically decreases as to

goes to t 1 .

Proof. Let us denote the channel distribution Wyjx with the parameter to as a matrix

Wto := .t For to > to / ti, Er E [0, 1) s.t. r - Wto + (1 - r) - Wt,
ti 1 - f

Wt. Since mutual information I(px, Wyjx) is convex in Wyix, f(to) is convex in

to. Therefore, r- f(to) + (1 - r) . f(ti) > f(t'). Since f(ti) = 0, the convexity gives

f(to) > r-f(to) f(t'), i.e., f(to) is a monotonically decreasing function into as to ti

goes closer to t1 . D
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If the following inequalities hold

M

eISM+1+112 < 2 P e-I Sj+l12  e _W+ 1
I, (4.63)

j=1 Eini A)

then by using Lemma 4.5 and the definition of the previously introduced channel distri-

butions PYIN 1 and qyjN1, we can prove (4.61). In (4.63), the first inequality is valid from

our assumption in (4.47). The second inequality is also valid since e-1+112 is concave

in x when Ix +11 2 < 1/2, and we are interested in the regime of Ix+l1 2 -+ 0. Therefore,

we have shown that (4.62) is true. By combining (4.62) and (4.53),

I(H; Y) = I(Ni; Y) + I(N2 ; YIN 1 ) < R 2 (8i) + (+ ) Rm(92) (4.64)

where 6i and E2 are (4.59) and (4.52), respectively. Also note that

M M M

1 + p -2 = ( i -|12 + PM+1' ISM+1 2 2 Si _ S
i=i) i=1

A )(2. S 2 + S,1 2 - 2SjS)+ pM+1 . SM+1 2  (4.65)

M+1

i=1

The second equality holds since 2 ( pisi) S = 2 ( Pi) 2 from the definition

of S.

Therefore, when we denote Si = (1 - a) - and E2 = a S. /# for # := 1 Pi) <1

and some a E (0, 1), the upper bound of I(H; Y) in (4.64) becomes

I(H; Y) < R 2 ((1 - a) - E) + 3 -RM (a - S/#).
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From (4.44) and the assumption (4.45),

1 1
I(H; Y) < ((1 - a)E) log ((1 - - ((1 - a)E) log log (1

((a S/0) log - (a - 9/0) log log + 0(S) (4.67)
(a-E/)(-E/)13 (( 15f o 11 +0S

=log - log log - + 0(8).

This inequality holds for every (M+1)-ary input states with pi > 0, for i = 1, ... , M+1,

under the average photon number constraint of S. Therefore,

I I
RM+1(S) log - - log log - + 0(s), (4.68)

and by induction, (4.45) holds for any finite M. This concludes the proof of Theorem

4.4.



Chapter 5

Superadditivity of

Quantum Channel Coding Rate

with Finite Blocklength

Quantum Measurements

U 5.1 Background

How many classical bits per channel use can be reliably communicated over a quantum

channel? This has been a central question in quantum information theory in an effort

to understand the intrinsic limit on the classical capacity of physical quantum channels

such as the optical fiber or free-space optical channels. The Holevo limit of a quantum

channel is an upper bound to the Shannon capacity of the classical channel induced

by pairing the quantum channel with any specific receiver measurement [20,23]. The

Holevo limit is in principle also an achievable information rate, and is known for several

important practical channels, such as the lossy bosonic channel [14]. However, a receiver

that attains the Holevo capacity, must in general make joint (collective) measurements

over long codeword blocks. Such measurements cannot be realized by detecting single

modulation symbols followed by classical post processing. We call this phenomenon

of a joint-detection receiver (JDR) being able to yield a higher information rate (in

99
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error-free bits communicated per channel use) than what is possible by any single-

symbol receiver measurement, as superadditivity of capacity1 . There are several JDR

measurements that are known to achieve the Holevo capacity-the square-root mea-

surement (SRM) [20], Helstrom's minimum probability of error measurement [21], the

sequential-decoding measurement [15, 47], the successive-cancellation decoder for the

quantum polar code [17,46], and a two-stage near-unambiguous-detection receiver [42].

There are a few characteristics that are common to each one of these measurements.

First, the size of the joint-detection measurement is tied to the blocklength of the code,

i.e., the measurement must act on the entire codeword and hence its size must increase

with the length of the codeword. Second, none of these measurement specifications

translate readily to a realizable receiver in the context of optical communication. Since

it is known that a simple laser-light (coherent-state) modulation achieves the Holevo

capacity of the lossy bosonic channel [14], almost all the complexity in achieving the

ultimate limit to the reliable communication rate lies at the receiver. Finally, none of

these capacity-achieving measurements tell us how the achievable information rate in-

creases with the size of the receiver measurement. Since the complexity of implementing

a joint quantum measurement over N channel symbols in general grows exponentially

with N, it is of great practical interest to find how the maximum achievable informa-

tion rate (error-free bits per channel use) scales with the size N of the joint-detection

receiver (while imposing no constraint whatsoever on the classical code complexity).

In this chapter, we shed some light on this, for classical communication over a quan-

tum channel using a pure-state alphabet-the so-called pure-state classical-quantum

(cq) channel (the lossy bosonic channel being an example)-by proving a general lower

'We would like to clarify that the more prevalent use of the term superadditivity of capacity refers
to the scenario when a quantum channel has a higher classical communication capacity when using
transmitted states that are entangled over multiple channel uses [19]. For the bosonic channel, it was
shown that entangled inputs at the transmitter cannot get a higher capacity [14]. However, one can
get a higher capacity on the bosonic channel-as compared to what is possible by any optical receiver
that measures one channel output at a time-by using entangling (or joint-detection) measurements at
the receiver. As the number of symbols over which the receiver acts increases, the capacity steadily
increases. In this dissertation, we use the term superadditivity in this latter context, and provide a
general bound on the scaling of the capacity with the length of the joint measurement. This usage of
the term was first adopted by Sasaki, et. al. [36].



bound on the finite-measurement-length capacity.

Finally, we would like to remark on an important difference between our results

in this chapter and the finite-blocklength rate over a cq-channel derived using second-

order asymptotics (channel dispersion) [30,43]. The latter techniques explore how the

achievable rate RN/N (bits per channel use), at a given decoding error threshold c,

increases when both the code length and the measurement length increase together. We

consider the asymptotic capacity CN/N (error-free bits per channel use), while imposing

a constraint on the receiver to make collective measurements over N channel outputs,

but with no restriction on the complexity of the classical outer code.

* 5.2 Introduction and Problem Statement

The classical capacity of a quantum channel is defined as the maximum number of infor-

mation bits that can be modulated into the input quantum states and reliably decoded

at the receiver with a set of quantum measurements as the number of transmissions N,

goes to infinity. Consider a pure-state classical-quantum (cq) channel W : x - lox),

where x E X is the classical input, and {|IO)} E N are corresponding modulation sym-

bols at the output of the channel. One practical example of a pure-state cq channel

is the single-mode lossy optical channel X, : a -+ IV/ia), where a E C is the complex

field amplitude at the input of the channel, r/ E (0, 1] is the transmissivity (the fraction

of input power that appears at the output), and |Jja) is the quantum description of

an ideal laser-light pulse, a coherent-state2

In refs. [20,23], it was shown that the classical capacity of a cq channel W is given

by

C = max Tr(-p log p), (5.1)
Px

2 1t is important to note here the difference between a classical channel and a classical-quantum
channel. There is no physical measurement that can noiselessly measure the output amplitude \/ija.
Any specific choice of an optical receiver-such as homodyne, heterodyne or direct-detection-induces
a specific discrete memoryless classical channel p(3 1a) between the input oz and the measurement result
,3. The Shannon capacity of this classical channel, for any given measurement choice, is strictly smaller
than the Holevo capacity of the cq channel A'.
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where p = E Px (x) lx) (ox. The states lox), x E X, are normalized vectors in

a complex Hilbert space W, (Oxl is the Hermitian conjugate vector of lox), and p is

a density operator, a linear combination of the outer products lox)(Oxb with weights

Px(x). The capacity can also be written as C = maxpx S(p), where S(p) = Tr(-p log p)

is the von Neumann entropy of the density operator p.

For an input codeword (xi, . -- , xNJ, the received codeword is a tensor product

state, [0XI) 0 ... 0 VXNc), which is jointly detected by an orthogonal projective mea-

surement in the Ne-fold Hilbert space WON,. When the received codeword is projected

into the orthogonal measurement vectors { )}, k E IC, which resolve the identity, i.e.,

Ek k'D) (4k = 11, in WON,-, the classical output k is observed with probability equal

to the magnitude squared of the inner product between the received codeword state,

1PX1) (0 O 0 - XN), and the measurement vector <D) corresponding to the output k.

The orthogonal projective measurement is designed to decode the received codewords

with as small error probability as possible. For any rate R < C, a block code of length

N, and rate R, generated by picking each of the N, symbols of eNeR codewords ran-

domly from the distribution Pk that attains the maximum in Eq. (5.1), paired with an

appropriate quantum measurement acting jointly on the received codeword in ONc

can attain an arbitrarily small probability of error as N, -* oc [15, 20, 23, 42].

To achieve this capacity, however, a joint detection receiver (JDR) needs to be im-

plemented, which can measure the length-Nc sequence of states jointly and decode it

reliably among e NC possible messages. The number of measurement outcomes thus

scales exponentially with the length of the codeword N. Hence, the complexity of

physical implementation (in terms of number of elementary finite-length quantum op-

erations) of the receiver in general also grows exponentially with Nc. Considering this

exponential growth in complexity, one might want to limit the maximum length N < N,

of the sequence of states to be jointly detected at the receiver, independent of the length

of the codeword N. However, there is no guarantee that such quantum measurements

of fixed blocklengths can still achieve the ultimate capacity of the quantum channel.
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Figure 5.1. Concatenated coding over a classical-quantum channel

Our goal in this chapter is to study the trade-off between information rate and re-

ceiver complexity, for classical communication over a quantum channel. We investigate

the maximum number of classical information bits that can be reliably decoded per use

of the quantum channel, when quantum states of a finite blocklength N < N, are jointly

measured, with no restriction on the complexity of the overall classical code (N, -+ oc).

As the number of channel outputs N jointly measured increases, the maximum number

of classical bits extracted per use of the channel increases. We call this phenomenon

superadditivity of the maximum achievable classical information rate over a quantum

channel. After the receiver detects the quantum states, it can collect all the classi-

cal information extracted from each block of length N, and then apply any classical

decoding algorithm over the collected information to decode the transmitted message

reliably. To explain how it works, we introduce the architecture of concatenation over

a quantum channel in Fig. 5.1.

In the communication system depicted in Fig. 5.1, a concatenated code is used to

transmit the message M over the quantum channel. For an inner code of length N

and rate R, there can be a total of eNR inputs to the inner encoder, J E {1, ... , eNR.

The inner encoder maps each input J to a length-N classical codeword, which maps

to a length-N sequence of quantum states at the output of the quantum channel. The

quantum joint-detection receiver measures the length-N quantum codeword and gen-

erates an estimate K E {1, . . . , e NR} of the encoded message J 3 . For a good inner

3Note that, in general, in order to attain the maximum mutual information of the superchannel
induced by the inner code-decoder pair, the number of outputs of the inner decoder may need to be
greater than eNR [9,40]. But we will stick to the case when the output of the inner decoder makes a
hard decision on the input message.
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code and joint measurement with N large, the estimate would generally match the

input message. But for a fixed N, the error probability may not be close to 0. The

inner encoder, the classical-quantum channel, and the inner decoder (the joint detec-

tion receiver), collectively forms a discrete memoryless superchannel, with transition

probabilities p (N):= Pr(K = k =J We define the maximum mutual information of

this superchannel, over all choices of inner codes of blocklength N, and over all choices

of inner-decoder joint measurements of length N as:

CN := max max I(p, p (N). (5.2)
Pj {N-symbol inner code-measurement pairs} k

A classical Shannon-capacity-achieving outer code can be used to reliably commu-

nicate information through the superchannel of the maximum mutual information CN.

When an outer code of length n and rate r is adopted, the total number of messages

transmitted by the code is enr enN(r/N). Since the overall length of the concatenated

code, which is composed of the inner code and the outer code, is N, = nN, the total

rate of the concatenated code is R, = r/N. By Shannon's coding theorem, for any

rate r < CN, there exists an outer code of length n and rate r such that the decoding

error can be made arbitrarily small as n -+ oc. Therefore, the maximum information

rate achievable by the concatenated code per use of the quantum channel can approach

CN/N.

From the definition of CN, superadditivity of the quantity, i.e., CN1 + CN2

CN1+N2, can be shown. This implies the existence of the limit limN~,0 CN/N. Holevo

[24] showed that the limit is equal to the ultimate capacity of the quantum channel,

limN-, 0 CN/N = C = maxp, S(p). Therefore, CN/N is an increasing sequence in N

with its limit equal to the capacity.

The question we want to answer is: How does the maximum achievable information

rate CN/N increase as the length of the quantum measurement, N, increases?

On the receiver side, since quantum processing occurs only at the quantum decoder

for the inner code of a finite length N, the complexity of the quantum processing only
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depends on N, but not on the outer code length n. Therefore, the trade-off between

the (rate) performance and the (quantum) complexity can be captured by how fast

CN/N increases with N. It is known that for some examples of input states, strict

superadditivity of CN can be demonstrated [16,24,33]. However, the calculation of

CN, even for a pure-state binary alphabet, is extremely hard for N > 1 because the

complexity of optimization increases exponentially with N. The concatenated coding

scheme described above was considered in [18] for the lossy bosonic channel, where some

examples of inner codes and structured optical joint-detection receivers were found for

which CN/N > C1 holds for a binary coherent-state modulation alphabet.

Instead of aiming to calculate the exact CN, in this chapter, a lower bound of

CN/N, which becomes tight for large enough N, will be derived. From this bound,

it will be possible to calculate the inner code blocklength N at which a given fraction

of the ultimate capacity is achievable. A new framework for understanding the strict

superadditivity of CN in quantum channels will also be provided, which is different

from the previous explanation of the phenomenon by entangled measurements and the

resulting memory in the quantum channel [35].

The rest of the chapter is outlined as follows. In Section 5.3, examples of quantum

channels where strict superadditivity C1 < C holds, will be demonstrated. The main

theorem that states a lower bound on CN/N will be given in Section 5.4 with examples

to show how to use the main theorem to calculate a blocklength N to achieve a given

fraction of the capacity. The theorem will be proved in Section 5.5. Thereafter in Section

5.6, the effect of superadditivity due to finite-blocklength inner-code measurements in

a concatenated coding architecture will be compared between a quantum channel and a

classical discrete memoryless channel. An approximation of the lower bound of CN/N

will also be provided by introducing a quantum version of channel dispersion V, with a

unifying picture encompassing quantum and classical channels. Section 5.7 will conclude

this chapter.
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* 5.3 Strict Superadditivity of CN

Before investigating how CN/N increases with N, we will show examples where strict

superadditivity of CN can be shown, i.e., C < C. As discussed before, given a set

of input states {1-)}, x E X, C can be calculated from Holevo's result by finding

the optimum input distribution that maximizes the von Neumann entropy S(p) =

Tr(-plog p) where p = E Px(x) I ox)(ox l. Calculating C1 on the other hand requires

finding a set of measurements as well as an input distribution to maximize the resulting

mutual information, where the measurement acts on one channel symbol at a time. For

general input states, this is a hard optimization problem, since the measurement that

maximizes C1 may not be a projective measurement, and could be a Positive Operator

Valued Measure (POVM)-the most general description of a quantum measurement-

and furthermore the optimum POVM could have up to lX (IXI + 1) /2 outcomes [9,40].

However, for binary pure states {Io), I V)1)} of inner product I(0oi1'i)1 = -y, C1 and C

can be calculated as simple functions of the inner product -y = (4o 1)j, and strict

superadditivity can be shown, as summarized below [24].

The first step to calculate C for the binary input channel is to find the eigenvalues

of p under an input distribution {1 - q, q}. For p = (1 - q)1o)(4'oI + qLi)( 0i1, the

eigenvectors of p have a form of 1bo) + 10i) with some # that satisfies

P(k0o) + 011)) = U(0o) + 010i)) (5.3)

with eigenvalues -. By solving the equation, we obtain the two eigenvalues as:

= (1 - \/1 - 4q(l - q)(1 - 2) , and

2 ( 1 4y() (5.4)
-2 =1 + -/ -4 - ) ( -I2)2 etp

and the resulting von Neumann entropy,

S(p) = Tr(-p log p) = -o-1 log-1 - 0 2 log 0'2 , (5.5)



where |(OoL1)I = -y. From this equation, it can be shown that S(p) for the binary

inputs is maximized at q = 1/2, and the resulting capacity of the binary channel,

C = maxS(p) = - Y log - lo g .+- (5.6)
Px 2 2 2 2

For the binary channel, C1 is attained by the equiprior input distribution and a binary-

valued projective measurement in the span of {1o), 10i)}-the same measurement that

minimizes the average error probability of discriminating between equally-likely states

10o) and 1i). The derivation of C1 for the binary case can be found in [24], and is

given by:

V /1 -_y2 I+ 11 _y 2o

C1= 2 log(1 I)-,/Ig2) + 2 log(1 1 _y2). (5.7)

The capacity C is strictly greater than C1 for all 0 < -y < 1, which demonstrates the

strict superadditivity of CN for all binary input quantum channels.

In the rest of this section, we will consider the superadditivity of CN in quantum

channels with an input constraint, in the context of optical communication. The con-

straint will be the mean energy of input states. A coherent state 1a) is the quantum

description of a single spatio-temporal-polarization mode of a classical optical-frequency

electromagnetic (ideal laser-light) field, where a E C is the complex amplitude, and |a12

is the mean photon number of the mode. Since the energy of a photon with angular fre-

quency w is E = hw with h = h/27r where the Planck constant h = 6.63 x 10 3 4 m 2kg/s,

the average energy (in Joules) of the coherent state 1a) of a quasi-monochromatic field

mode of center frequency w, is h~a12w. Note that the mean photon number la12 is a di-

mensionless quantity. Therefore, for quasi-monochromatic propagation at a fixed center

frequency w, an average energy constraint on the input states (or equivalently, an av-

erage power constraint with a fixed time-slot width) can be represented as a constraint

on the average photon number per transmitted state. For example, if the modulation

constellation comprises of the set of input states {ai), a2),..., IaK)}, an average en-
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ergy constraint hwE per symbol transmission can be expressed as a constraint on the

prior distribution {pi, , PK }, with

K

Alal 2 <, (5.8)
i=1

where 9 is the maximum mean photon number per symbol.

The important question of how many bits can be reliably communicated per use

(i.e., per transmitted mode) of a pure-loss optical channel of power transmissivity 17 E

(0, 1], under the constraint on the average photon number per transmitted mode E, was

answered in [14]. It was also shown that product coherent state inputs are sufficient

to achieve the Holevo capacity of this quantum channel. Since a coherent state la) of

mean photon number E = la 2 transforms into another coherent state Ixiia) of mean

photon number TIE over the lossy channel, we will henceforth, without loss of generality,

subsume the channel loss in the energy constraint, and pretend that we have a lossless

channel (, = 1) with a mean photon number constraint E[lal 2 ] £ per mode (or per

'channel use'). The capacity of this channel is given by [14]

C(E) = (1 + E) log(1 + S) - E log E [nats/mode], (5.9)

and it is achievable with a coherent-state random code with the amplitude a chosen from

a circulo-complex Gaussian distribution with variance 8, p(a) = exp[-la 2/E]/(7rE).

The number of information bits that can be reliably communicated per photon-

the photon information efficiency (PIE)-under a mean photon number constraint per

mode, 8, is given by C(9)/E (nats/photon). From (5.9), it can be shown that in order

to achieve high PIE, 8 must be small. In the 8 -+ 0 regime, the capacity (5.9) can be

approximated as

C(E) = slog - +,E + o(E), (5.10)

which shows that PIE ~ - log 8 for E < 1. Thus there is no upper limit in principle to
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the photon information efficiency.

We will now show that in the high-PIE (low photon number) regime, this ulti-

mate capacity is achievable closely even with a simple Binary Phase Shift Keying

(BPSK) coherent state constellation { I VC), - V) }, which satisfies the energy con-

straint with any prior distribution. The inner product between the two coherent states,

= (aK#)I = exp[-Ia -81 2 /2]. Therefore,

(/-/)= exp[- 2E]. (5.11)

By plugging -y = exp[-25] into (5.6), we obtain the capacity of the BPSK input con-

stellation,

CBPSK (S) =Slog +E+o(E), (5.12)

which is equal to C(E) for the first- and second-order terms in the limit E -* 0.

We now ask, for binary coherent-state inputs under the same constraint on the mean

photon number per mode E, how high an information rate is achievable when each mode

is detected one-by-one, i.e., N = 1. The maximum capacity of the bosonic channel with

a binary-input with mean photon number constraint E, and a N = 1 measurement,

will be denoted as C1,Binary(E). For BPSK input states, by using (5.7), the maximum

achievable rate at N = 1 is

C1,BPSK(S) =2E + o(s) (5.13)

Thus, PIE of the BPSK channel caps off at 2 nats/photon for N = 1, while for N large,

achievable PIE - oc as 9 -+ 0.

C1,Binary(E) can be calculated in the regime E - 0 by finding the optimum binary
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inputs {ao), ai)} with distribution {1 - q, q} that satisfies the average constraint,

(1 - q)jaoI 2 + qla 1 12 < (5.14)

The following lemma summarizes the result.

Lemma 5.1. The optimum binary inputs for N = 1, are ao = -q*/(1 - q*) and

a1 = -IE - (1 - q*)Iq* with

q* = log g,(5.15)

and the resulting C1,Binary(S) is

C1,Binary (E) = slog -,E log log + O(S). (5.16)

Proof. Appendix 5.A. D

Compared to the ultimate capacity (5.10) with the same energy constraint, the

first-order term of C1,Binary(E) is the same as that of C(S). But, the difference in the

second-order term shows how much less capacity is achievable at N = 1 even with the

optimized input states. In [6], we showed that (5.16) can be achieved using an on-

off keying modulation { 0), 1a) } and a simple on-off direct-detection (photon counting)

receiver. Therefore, in the context of optical communication in the high-PIE regime, all

of the performance gain from the complex quantum processing in the JDR is captured

by the difference between the second-order terms of Eqs. (5.10) and (5.16). In the low

photon number regime, this difference in the second-order term can have a significant

impact on the practical design of an optical communication system [18]. It would

therefore be interesting to ask how large a JDR length N is needed to bridge the gap in

the second-order term. To answer this question, we will need the general lower bound

on CN that we develop in the following section.
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* 5.4 Lower Bound on CN

In this section, a lower bound is derived for the maximum achievable information rate at

a finite blocklength N of quantum measurements. By using the result, it will be possible

to calculate a blocklength N at which a given fraction of the Holevo capacity of a pure-

state cq channel can be achieved. Therefore, this result will provide a framework to

understand the trade-off between the (rate) performance and the (quantum) receiver

complexity, for reliable transmission of classical information over a quantum channel.

Theorem 5.2. For a pure-state classical-quantum (cq) channel W : x - |ox), x E X,

the maximum achievable information rate using quantum measurements of blocklength

N, which is CN/N as defined in (5.2), is lower bounded by

ON> max I - 2 e-NE(R) R - log 2 , (5.17)

where

E(R) max max (- log Tr(pl+s)) - sR , (5.18)0<s< Px /

with p = EC Px (xI x)(OxI.

By using this theorem, for the BPSK input channel, a blocklength N can be calcu-

lated at which the lower bound of (5.17) exceeds certain targeted rates below capacity.

In the previous section, it was shown that there is a gap between C1,BPSK()/ 8 in (5.13)

and CBPSK(E)/E in (5.12) as E - 0:

1,BPSK(S) =2 + o(1),

CB S K(S)= log 1 + 1+ 0(1).

We saw that the capacity of the BPSK alphabet is as good as that of the optimum con-

tinuous Gaussian-distributed input as N goes to infinity, i.e., CBPSK(E) is the same as

C(8) in the first two order terms. However, at the measurement blocklength N = 1, a

BPSK constellation cannot even achieve the maximum mutual information of the opti-
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mum binary input channel, C1,Binary(V) in (5.16), and the PIE caps off at 2 nats/photon.

Therefore, the performance of the BPSK channel depends significantly on the regime of

N. We will now find how much quantum processing is sufficient in order to communicate

using the BPSK alphabet at rates close to its capacity.

The following corollary summarizes an answer for the question. Note that for the

BPSK inputs {IVE), I-OE)}, any input distribution satisfies the energy constraint of

5. Consequently, we can directly apply Theorem 5.2 to the BPSK channel-while

automatically satisfying the energy constraint-even though the theorem itself does

not assume any energy constraint.

Corollary 5.3. For the coherent state BPSK channel with the energy constraint of S

where E 5 0.01, in the regime of N > S-1 (log(1/9)),

CN,BPSK ((I - 2 eNE(R*)) R* _ log2 (5.19)
N -\ N '

where

R* S5 log I log (NE log(NS))

E(R) = -log 1 + e-2 )1+s + -2E) 1+S - sR, for

log log(1/,) - log(R - 5)
log(1/5)

Remark 5.1. AsS -+ 0, the lower bound of CN,BPSK/N in (5.19) can be simplified for

5- 1 (log(1/E)) N <5-2 as

CN,BPSK og - lo (N lo(N))
N - V NE

(5.20)

E log(1/s) +
F/rt log(NE/)) 1g(1/9)

For a narrower range of N such that S-1 (log(1/.F)) 2 < N < S-2, the lower bound can



be further simplified as

CI BPKI log (NE log (NE))
C'I >F log - g-1 ++o(S). (5.21)

N -Ng N1

From (5.20), it can be shown that at

N = 2E-1 (log(1/S)) 2 (log log(1/E)) , (5.22)

CN, BPSK > Slog1 - S log log + ( E log log (5.23)
N - og oog

Therefore, for the above range of N, the coherent state BPSK channel can attain the

PIE at least as high as C1,Binary(S)/E for the first- and second-order terms, which is

the maximum achievable PIE at N = 1 with a binary-input with mean photon number

constraint F.

Moreover, from (5.21), it can be shown that at

N = S-1 (log(1/S)) 2 (log log(1/)) 2 , (5.24)

CN, BPSK > Elog + E + o(V). (5.25)
N - g 8  1

Note that for the above range of N, the lower bound already approaches CBPSK (e) to the

first two orders, which is the maximum information rate achievable using BPSK with

an arbitrarily large length of quantum processing.

Proof. Appendix 5.B.

Let us apply these results for the case when the average photon number transmitted

per symbol, 8, is 0.01. Using the result of (5.19), the photon information efficiency

achievable by the BPSK channel is plotted as a function of N in Fig. 5.2. For S = 0.01,

the inner product y := |( El--V)| = exp[-28] = e- 0 .0 2 . By plugging y into (5.6)

and (5.7), and dividing the resulting capacities by E, the PIE at an arbitrarily large

N is 5.55 nats/photon, and at N = 1, is 1.97 nats/photon. Therefore, as N increases
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Figure 5.2. A lower bound of photon information efficiency of the BPSK channel, CN/(NE), at
S = 0.01 for the finite blocklength N.

from 1 to oc, the PIE of the BPSK channel should strictly increase from 1.97 to 5.55

nats/photon, and hence the gain in PIE from a joint measurement of an arbitrarily

large length can be maximally 3.58 nats/photon. From the lower bound of PIE in Fig.

5.2, it can be seen that at N = 2400, a PIE of 3.0 nats/photon can be achieved, and at

N = 9100, 4.0 nats/photon is achievable. The lower bound is not tight in the regime

of very small N, but it gets tighter as N increases, and approaches the ultimate limit

of PIE as N -+ oo.

Let us compare this exact lower bound with the approximated results from the

scaling laws. From the first two order terms of the approximations in (5.13), (5.16),

- Lower bound of PIE
* Exact PIE at N=1

- (N=2400, PIE=3OO) - -

'(N 1, PIE=.97) -

3.5



Sec. 5.5. Proof of Theorem 5.2 115

and (5.12), a few reference points of PIE are calculated at E = 0.01.

CBPSK(S)/S o log(1/E) + 1 = 5.61 nats/photon

C1,BPSK(E)/ 8 ~ 2.00 nats/photon (5.26)

C1,Binary()/S ~ log(1/S) - log log(1/S) = 3.08 nats/photon

We can see that these approximations of PIE for the BPSK channel at N = 1 and

N = oc are very close to the exact calculations. Moreover, it shows that when the

optimum binary input for N = 1 is used rather than the BPSK, the PIE of about 3.1

nats/photon is achievable even at N = 1. The estimated length of N to make the lower

bound of CN,BPSK be equal to the first two order terms of C1,Binary, CBPSK, are N = 2777

and N = 4946, respectively, from (5.22) and (5.24) calculated at E = 0.01. In Fig. 5.2,

we showed that at N = 2400, a PIE of 3.00 nats/photon, which is close to C1,Binary(S)/S,

is achievable. Therefore, the estimate of N from (5.22) is quite accurate at E = 0.01.

However, at N = 4946, the exact lower bound of PIE is still 3.67 nats/photon, which

is 1.88 nats/photon away from the maximum achievable PIE with an arbitrarily large

length of quantum processing. Therefore, the estimate of N in (5.24) is not very tight

for S in the order of 10-2, but it will get tighter for smaller E since it is calculated

based on the assumption of S -± 0.

* 5.5 Proof of Theorem 5.2

Theorem 5.2 will be proved based on two lemmas that will be introduced in this section.

Note that in the definition of CN in (5.2), both the choice of the N-symbol inner code-

JDR measurement pair, from which the superchannel distribution p is determined,

as well as the probability distribution over the inputs of the superchannel must be

optimized, in order to find the maximum mutual information of the superchannel.

The complexity of this optimization increases exponentially with N, and hence this

optimization problem is intractable. Instead of trying to calculate the exact CN, we

provided a lower bound of CN in the finite regime of N, which can be written as a simple



116 CHAPTER 5. QUANTUM CHANNEL CODING RATE WITH FINITE BLOCKLENGTH MEASUREMENTS

optimization over single-letter input distribution. Therefore, we can easily calculate the

lower bound of CN/N for any finite N.

The proof of Theorem 5.2 is based on two ideas: First, instead of tracking the exact

superchannel distribution p , which depends on the detailed structure of the length-N

inner code and joint measurement, we focus on one representative quantity derived from

(N that can be easily analyzed and optimized. Second, among superchannels that have

the same value of this representative quantity, we find a superchannel whose mutual

information is the smallest. The representative quantity is the average decoding error

probability of the inner code, under a uniform distribution over the inner codewords,

defined as
eNR

peeNR (N) (5.27)
j=1 k:Aj

where R is the rate of the inner code. We first summarize previous works that investi-

gated upper and lower bounds of Pe over N-symbol inner code and JDR measurement

pairs, and then provide a lower bound on the maximum mutual information of super-

channel with a fixed pe. Theorem 5.2 will be proved by combining these two results.

U 5.5.1 Upper and Lower Bounds on the Average Probability of Error

In ref. [24], Holevo showed the following upper bound on pe for a code of length N and

rate R.

Lemma 5.4. [Holevo] For a pure-state classical-quantum (cq) channel W : x -+ |x),

x E X, there exists a block code of length N and rate R that can be decoded by a set of

measurements with the average probability of error satisfying

pe < 2exp[-NE(R)], (5.28)

where, for p = x Px (x)Ix)(ox|,

E(R) = max max (- log Tr (pl+s)) - sR . (5.29)
O~s 1 [PXJ



Proof. For reader's convenience, the proof of this lemma is summarized in Appendix

5.C.

Note that this

decay rate of this

independent of N

input distribution

Let us discuss

exponential decay

result holds for any positive integer N. Moreover, the exponential

upper bound on pe is characterized by the exponent E(R) that is

and can be calculated from the optimization over the single-letter

Px.

the tightness of the upper bound in (5.28), in terms of the rate of

as N -+ oc. From a lower bound on pe, it will be shown that

1
lim sup - log pe = E(R)

N-*oo N
(5.30)

at high rates of R, i.e., Ro < R < C for a certain RO. For a classical discrete memoryless

channel (DMC), a lower bound for the average decoding error probability of a block

code was first derived by Shannon-Gallager-Berlekamp in [39], and the bound is termed

sphere packing bound. The sphere packing bound decreases exponentially with the

blocklength, and the exponent is tight at high rates below the capacity of the channel.

For quantum channels, a meaningful lower bound for pe had not been established

until very recently. In [8], a quantum analogue of the sphere packing bound was first

provided based on the idea of Nussbaum-Szkola mapping, introduced in [32] as a tool

to prove the converse part of the quantum Chernoff bound for binary hypothesis testing

between two quantum states. The main result of [8] is summarized below.

Lemma 5.5 (Sphere packing bound for quantum channels). When we transmit classical

information over a pure-state classical-quantum (cq) channel W : x -+ |$x), x E X, for

every length N and rate R code, the average probability of error

Pe > exp[-N(Esp(R - e) + o(1))]

117Sec. 5.5. Proof of Theorem 5.2

(5.31)
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for every e > 0, where, forp= E Px(x)I'x)('x 1,

Esp(R) = sup max (-log Tr (pl+s)) - sR. (5.32)
s>O \ PX

From the lower and upper bound of pe in (5.28) and (5.31), we can see that when

E(R) = Esp(R), the exponent is tight and (5.30) holds. The rates where E(R) = Ep(R)

are in Ro K R K C where Ro is the rate at which the optimum s to achieve Esp(Ro) in

(5.32) equals to 1.

* 5.5.2 Equierror Superchannel

Now, among superchannels that have the same value of pe, we find a superchannel

whose mutual information is the smallest. An equierror superchannel, which was first

introduced in [11], is defined with the following distribution:

(N) f -Pe, k = j (5.33)Pkj (eNR

This channel assumes that the probability of making an error is equal for every input,

and when an error occurs, all wrong estimates k $ j are equally likely. Therefore, this

channel is symmetric between inputs, and is symmetric between outputs except for the

right estimate, i.e., k = j. Due to the symmetry, the input distribution that maximizes

the mutual information of this channel is uniform. The resulting maximum mutual

information of the equierror superchannel,

max I(pj,p()) = NR - p, log (eNR - ) - HB5(Pe)
Pj k~j(5.34)

> (1 - pe)NR - log 2,

where HB (p) = -p log p - (1 - p) log(1 -p).

We will now show that the mutual information of the equierror superchannel is

smaller than that of any other superchannels with the same average probability of
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error, Pe.

Lemma 5.6. For any p( with a fixed pe defined in (5.27),

max I pjp) > m axI (P ) (5.35)

for the equierror superchannel, p with the same pe.

Proof. For a random variable X that is uniformly distributed over eNR inputs, and the

conditional distribution Pylx(klj) := p ,

max I (p N)) >I(X; Y) = NR - H(XIY). (5.36)

From Fano's inequality, we have

H(X|Y) <HB (Pr(X 4 Y)) + Pr(X ' Y) log(eNR _ 1)

=HB(Pe) + pe log (eNR _

By combining the above two inequalities,

Max I (pp) >NR pelog(eNR 1) - HB(Pe)
Pj (j, kjj e 19 ((5.37)

= maxI (pN,)).

Then, by the definition of CN and Lemma 5.6, when there exists an inner code of

length N and rate R that can be decoded by a set of length N measurements with an

average error probability pe,

I (N)
ON > max iPk;) > (1 - pe)R - . (5.38)
N pj N N

By combining Lemma 5.4 with (5.38), Theorem 5.2 can be proven.
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U 5.6 Interpretation of Superadditivity: Classical DMC vs. Quantum Chan-

nel

In Section 5.3, we demonstrated strict superadditivity of CN, i.e., CN + CM < CN+M,

for binary-input quantum channels with and without an energy constraint. We provided

a general lower bound on CN/N for a fixed N in Theorem 5.2, which made it possible

for us to understand the trade-off between the maximum achievable information rate

and the complexity of quantum processing at the receiver as N, the length of the

JDR, increases. Previously, the superadditivity of CN has been thought of as a unique

property that can be observed only in quantum channels, but not in classical DMCs.

One popular interpretation of this phenomenon is that a set of length-N entangling

quantum measurements can induce a classical superchannel that has memory over the

N channel uses (despite the fact that the underlying cq channel x -+ Ihb) is memoryless

over each channel use). The Shannon capacity of this induced classical channel (with

memory) can be higher than N times the Shannon capacity of the classical memoryless

channel induced by any symbol-by-symbol receiver measurement. This capability of

inducing a classical superchannel by harnessing the optimally-correlated quantum noise

in the N-fold Hilbert space is what increases the number of information bits extractable

per modulation symbol, when a longer block of symbols is detected collectively while

still in the quantum domain.

Despite the fact that the above intuition of why superadditivity appears in the ca-

pacity of classical-quantum channels is somewhat satisfying, this viewpoint does not

provide enough quantitative insight to fully understand the phenomenon. In this sec-

tion, we will introduce a new aspect on understanding strict superadditivity of CN by

comparing the performance of concatenated coding over quantum channels as we ana-

lyze here, and concatenated coding over classical DMCs as studied by Forney [11], for

a fixed inner code length N.
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(N)
Superchannel Pk~j

Decoded

Me e coder eInner Channel Inner Outer message

M (n,r) (N,R) PYIX dedr dcdr M

Figure 5.3. Concatenated coding over a classical DMC

* 5.6.1 A Unifying Framework to Explain Superadditivity of CN

Fig. 5.3 illustrates a concatenated coding architecture over a classical DMC. Compared

to Fig. 5.1, the quantum channel is replaced with a classical DMC PyIx, and in

place of a quantum joint-detection receiver, we now have a classical inner decoder.

Forney introduced this concatenated coding architecture for a classical DMC to analyze

the trade-off between (rate) performance and (coding) complexity for communication

over a classical DMC [11]. Forney analyzed the performance by evaluating the error

exponent achievable with a concatenated code, and also examined how the decoding

complexity increases as the overall length of the concatenated code, N, = nN increases.

It is obvious that when the inner decoder generates a sufficient statistic of the channel

output and forwards it to the outer decoder, there is no loss of information, so that the

performance of the concatenated code can be as good as an optimum code, even within

the restricted structure of code concatenation. Despite the fact that the performance

remains intact, the decoding complexity increases exponentially with the overall length

of the code. On the other hand, it was shown in [11] that even if there is some loss of

information at the inner decoder by making a hard-decision on the message of the inner

code, as the inner code blocklength N goes to infinity, the capacity of the underlying

classical DMC can be achieved with the concatenated code. Moreover, the overall

complexity of the decoding algorithm is significantly reduced to be almost linear in the

length of the concatenated code. The loss of information at the inner decoder, however,

degrades the achievable error exponent over all rates below capacity.

The above result can be proved by analyzing a lower bound on the performance of
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the concatenated codes over the classical DMC. To get the lower bound, the equierror

superchannel defined in (5.33), whose mutual information is smaller than that of any

other superchannel with the same pe, is used. The average probability of error p,

from decoding at the inner decoder can be analyzed by using the error exponent of the

classical DMC PyIx in [13]. It is shown that an optimum inner code with the minimum

decoding error can achieve pe as low as

Pe = exp[-N(E(R) + o(1))] (5.39)

as N -* oc, when

E(R) = max max (Eo(s, Px)) - sR (5.40)
O<s<1 Px

with
- - 1+s

EO(s, Px) :=-log Px (X)PyiX (y1X)1/1' (5.41)

By using the pe in (5.39) and analyzing the performance of the equierror channel, it

can be shown that the capacity of the DMC, which is C = maxpx I(Px, Pyix), can be

achievable by the concatenated code as both the inner code blocklength N and the outer

code blocklength n go to infinity, even when the inner decoder makes hard-decisions on

estimating the inner code messages, and discards all the rest of the information about

the channel output.

Let us clarify the difference between the concatenated code over the classical DMC

and that over the quantum channel. When a likelihood detector is used at the classical

inner decoder, after decoding the most likely codeword given a received channel output,

the classical inner decoder can still have the information about which codeword is

the second mostly likely one, and how much less likely it is compared to the first

one, etc. On the contrary, for the quantum channel, once the quantum states are

measured by the quantum detector, it certainly results in a loss of information since

after the measurement, the quantum state of the inner codeword is lost, and in turn
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all the information that was encoded in the quantum states is destroyed, except for

the hard guess of the inner codeword message that the JDR generated. Therefore,

different from the classical inner decoder, which has an option to maintain a sufficient

statistics of the channel outputs with the cost of complexity, a loss of information at the

quantum detector is not avoidable4 . For the quantum channel, the trade-off between the

achievable information rate and the complexity of quantum processing can be analyzed

by observing how CN/N increases with N. In contrast, for the concatenated code over

the classical DMC, the trade-off between performance and complexity is analyzed by

assuming a certain type of loss of information at the inner decoder that makes the

decoding complexity increase almost linearly with the overall blocklength of the code,

and by showing how the error exponent of the overall code is degraded by the loss of

information at the inner decoder, under the assumption of a large enough inner code

blocklength N.

We now ask a new question for the concatenated code over the classical DMC, similar

to the one we asked for the quantum channel: When the inner decoder makes a hard

estimate of messages of the inner code at a finite blocklength N, how does the maximum

achievable information rate (error-free bits per use of the underlying DMC) with the

concatenated code increase as N increases (with no restriction on the complexity of the

outer code)?

For the inner decoder that makes the hard-decision at a finite blocklength N of

the inner code, the maximum achievable information rate by the concatenated code is

4 We should caveat this statement by the fact that the quantum JDR acting on the inner codeword
does not have to generate a hard output on the inner code message. In fact, it is known that the number
of outcomes in the POVM that maximizes the accessible information for M linearly independent pure
states, grows as O(M 2 ) [9]. In our case, M = 2NR. Nonetheless, even such a POVM is a harder-decision
measurement than having access to all the message likelihoods. In recent years, some quantum decoding
techniques have been developed-such as the sequential decoder [15] and the quantum successive-
cancellation decoder for a quantum polar code [17,46]-that achieve the Holevo capacity, which make
weak (partially-destructive) measurements on the received codeword, and retain the post-measurement
states for further conditional quantum processing. Recently Wilde et al. used a quantum version of the
likelihood ratio test, originally proposed by Fuchs and Caves [12]-another non-destructive quantum
measurement-in an attempt to build an efficient decoder for the quantum polar code [48]. However,
all these weak non-destructive quantum measurements are very hard to realize.
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CN/N where,

CN = max max I(p, P (N) (5.42)
Pj {N-symbol inner code-decoder pairs} k

for the superchannel distribution p (N) which is determined by the decoding algorithm,

given an inner code. By using Lemma 2, it can also be shown that when there exists a

code of length N and rate R whose probability of decoding error is pe,

ON >( 1 - pe)R - log2 (5.43)
N N

Moreover, in [13], it is shown that for the classical DMC PyIx, there exists a code of

length N and rate R whose probability of error p, is bounded by

Pe < exp[-NE(R)] (5.44)

with E(R) in (5.40). By combining (5.43) and (5.44), the following theorem can be

proved for the maximum achievable information rate of the concatenated codes over

the classical DMC at a finite N.

Theorem 5.7. With a fixed inner code blocklength N,

N>mx I - e-NE(R) R log 2, (5.45)
N ma- R

with E(R) as defined in (5.40).

Note that the lower bound on CN/N in (5.45) strictly increases with N, and it has

exactly the same form as that for the quantum channel in (5.17) except for the difference

in E(R) and a constant multiplying e-NE(R). As a result, we can observe a phenomenon

similar to the superadditivity of CN in the quantum channel, even in the classical DMC

when the inner decoder makes hard-decisions at a finite blocklength. The reason why

CN is away from the capacity of the channel C for a finite inner code blocklength N
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is because the hard-decision at the inner decoder results in a significant amount of

loss of information, which even hurts the rate of the communication. Moreover, as

N increases, the quality of the hard-decision is improved, which makes it possible to

achieve a higher information rate. Therefore, the superadditivity of CN can now be

interpreted as a degradation of the performance by the loss of information at the inner

decoder that makes the hard-decision at a finite blocklength. This new understanding

can also be applied to explain the same phenomenon observed in the quantum channel

by replacing the role of inner decoder with a quantum joint-detection receiver that

makes hard-decisions on finite blocks of quantum states.

* 5.6.2 An Approximation of the Lower Bound on CN

We will simplify the lower bound of CN by finding an approximation of the error

exponent E(R) for the quantum channel and for the classical DMC. Using the simplified

lower bound, it will be possible to compare the quantum channel and the classical

channel by calculating the inner code blocklength N required to achieve a given fraction

of the ultimate capacity of each channel. To avoid confusion, from this point on, a

function for the quantum channel will be written with a superscript (q) and that for

the classical DMC with a superscript (c); for example, E(q)(R) and E(c)(R).

The error exponent of the classical DMC, E(c) (R) in (5.40), can be approximated

by the Taylor expansion at the rate R close to the capacity C as

E(c)(R) = (R - C)2 + o ((R - C)3), (5.46)

with a parameter V(c), where

2

V = Z PXPYIX log PyIx - ppYI log PyIX (5.47)
X Py X Py

for the capacity achieving input distribution p, := P (x) and the corresponding ca-

pacity achieving output distribution py := P (y) according to the channel pyIl :=
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Pylx(ylx). In (5.47), V(c) is the variance of log(pylx/py) under the distribution pxpyIx,

and was termed the channel dispersion in [34].

Similarly, the error exponent of the quantum channel, ECq)(R) in (5.18), can be

approximated with a parameter V(q), which is a characteristic of the quantum channel

similar to the channel dispersion of the classical DMC. The definition of V(q) depends

on the average density operator p, which fully characterizes the classical capacity of

the pure-state quantum channel. For a set of input states {2bx)}, when P is the

optimum input distribution that attains the capacity of the quantum channel C =

maxp, Tr(-plog p) where p = xE Px(x) IO)($b , the parameter V(4) is defined by the

eigenvalues of the density operator p at Px = P . Let us denote the eigenvalues of p

by uj, i = 1, ... , J where J is the dimension of the space spanned by the input states

{lx )}. From the fact that p is a positive operator and Tr(p) = 1, it can be shown that

each ui > 0 for all i and Zi_ 1 oi = 1. Then, V(q) is defined as a variance of the random

variable - logo- where - E {o-i} with probability distribution {.. .... , u-J}, i.e.,

So(- log 2 .) (5.48)

By the Taylor expansion of E(q)(R) in (5.18) at the rate R close to C, it can be shown

that

E (q)(R) = (R - C)2 + o ((R - C)3). (5.49)
2V(q)

Therefore, both the error exponent of the classical DMC and that of the quantum

channel can be approximated as a quadratic term in the rate R with the quadratic

coefficient inversely proportional to the dispersion of the channel. Since the lower

bound on CN as well as the approximated error exponent E(R) have similar forms for

the classical DMC and for the quantum channel, it is possible to compare the classical

DMC and the quantum channel by a common simplified lower bound on CN, which can

be written with the parameter V and C as follows.

Theorem 5.8. For both a classical DMC and a pure-state classical-quantum channel,
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when the channel dispersion V and the capacity C satisfy i) NC -+ 0 as N -+ o and

ii) V -C is finite, the maximum achievable information rate at the inner code blocklength

N is lower bounded by

CN >CV (NC2 log 2 V lglog (NC2
N C 1  NC2 oNV N ( og :C2V

(5.50)

Proof. The quadratic approximation of E(R) can be used to find a simplified form for

a lower bound on CN/N. Both for the quantum channel and the classical channel, CN

is lower bounded by

N> mx I - 2 e-NE(R) R - log 2N, (5.51)
N - mR \.( NJ

using Theorems 5.2 and 5.7. Then, for a fixed rate

V NC2 loN C2
R =Clog N- (5.52)

whose derivation is omitted in this chapter, the approximated error exponent at R* is

E(R*) 1log NC2 log NC2
E * =2N (V V )

VC V C2 NC 2  3/2 (5.53)
+0 C2 (log (NO logN

N O 2  o yV

It can be checked that under the assumptions of i) / -* 0 and ii) V - C is finite,

the term in O(-) in (5.53) approaches 0, which results in

e-NE(R*) V (1+0(1)). (5.54)
NO2 log (NC2/V)

By plugging (5.52) and (5.54) into the lower bound (5.51), CN/N can be bounded
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as shown in (5.50). E

Remark 5.2. From the lower bound of Theorem 5.8, we can see that the inner code

blocklength N at which the lower bound is equal to a given fraction of the capacity is

proportional to V/C 2.

Since the same bound on CN/N as in (5.50) holds both for the quantum and the

classical channels, using the parameter V/C 2 , we can compare the behaviors of the

quantum channel and the classical DMC. For the BPSK quantum channel, by using the

two eigenvalues of p at P , which are o = (1 - e-28 )/2 and -2 = (1 + e- 2 6)/2, the

channel dispersion and the capacity can be calculated as

VBPSK =S log ) (1+ 0()), and

(5.55)

CBPSK =I log + + o(s).

Then, VBPSK CBPSK ~ 1/9 for the low photon number regime where 8 -+ 0. For

the classical additive white Gaussian noise (AWGN) channel in the low-power regime

where SNR -+ 0, VAWGN/C WGN can be calculated by using the result of [34], and it is

4/SNR. For both channels, V/C 2 is inversely proportional to the energy to transmit

the information per channel use. This means that as the energy decreases, in order to

make the lower bound meet a targeted fraction of capacity, it is necessary to adopt a

longer inner code.

E 5.7 Conclusion

The Holevo capacity of a classical-quantum channel, i.e., the ultimate rate of reli-

able communication for sending classical data over a quantum channel, is a doubly-

asymptotic result; meaning the achievability of the capacity C has been proven so far

for the case when the transmitter is allowed to code over an arbitrarily large sequence

of quantum states (spanning N, channel uses), and when the receiver is assumed to

be able to jointly measure quantum states of the received codewords, also over N,



channel uses, while N, -+ oc. However, the assumption that arbitrarily large number

of quantum states can be jointly measured is the primary barrier prohibiting practical

implementations of joint detection receivers-particularly in the context of optical com-

munication. Our goal in this chapter was to separate these two infinities: the coding

blocklength N, (a relatively inexpensive resource), and the length of the joint detection

receiver, N < N, (a far more expensive resource), and to evaluate how the capacity

CN, constrained to length-N joint measurements (but no restrictions on the classical

code complexity), grows with N. We analyzed superadditivity in classical capacity

of a pure-state quantum channel while focusing on the quantitative trade-off between

reliable-rate performance and quantum-decoding complexity. In order to analyze this

trade-off, we adopted a concatenated coding scheme where a quantum joint-detection

receiver acts on finite-blocklength quantum codewords of the inner code, and we found a

lower bound on the maximum achievable information rate as a function of the length N

of the quantum measurement that decodes the inner code. We also observed a similar

phenomenon for a classical discrete memoryless channel (DMC), and explained how a

classical superadditivity in channel capacity occurs due to a loss of information from

the hard-decision at the inner decoder of finite blocklength N. We developed a unifying

framework, within which the superadditivity in capacity of the classical DMC and that

of the pure-state quantum channel can be compared with a parameter V/C 2 (where

V is the channel dispersion, and C is channel capacity), which is proportional to the

inner-code measurement N that is sufficient to achieve a given fraction of the capacity.

* 5.A Proof of Lemma 5.1

C1,Binary(E) is the maximum mutual information of binary input channels {Io), ai)}

under the average photon number constraint, (1 - q)JaoI2 + qla1| 2 < E. In [41], it is

shown that

(5.56)C1,Binary(E) = max HB(q) - HB(p)
(1-q)aoJ2 ±qJa1=2=8

129Sec. 5.A. Proof of Lemma 5.1
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where HB(x) = -x log x - (1 - x) log(1 - x), and

1 - - 4q(1 - q)e-ao-a)
1 = 2

We first find the optimum input states {ao), ai)} for a fixed q and then will find q that

maximizes (5.56). In [41], it was shown how to find the optimum input states given a

fixed q, but we summarize the steps again for reader's convenience.

For a fixed q, the input states that maximize C1,Binary(8) should minimize HB(p).

Since HB(p) is an increasing function in p for 0 < p < 1/2, and p in (5.57) gets smaller

as lao - a 1
2 increases, we need find inputs ao, al E C that maximizes lao - a 1

2 under

the energy constraint (1 - q)laol 2 + qjai12 < E for a given q. To maximize lao - ail 2

under the photon number constraint,

al = -kao (5.58)

for a real number k > 0 that satisfies

(1 - q)laol 2 + qla12  (1- q + k2 -q)jaol 2  8. (5.59)

The optimum k that maximizes f(k) lao - 1 12 = (1 + k) 2 lao l2 = ((1 + k) 2 S) 7(1 _

q+ k2 - q) can be found from
Of(k) 0, (5.60)

Ok

and the solution is k* = (1 - q)/q. Therefore, the optimum inputs and the resulting p

in (5.57) become

at =VE - q/(1 - q)

a* = V-IE - (1 - q)/q (5.61)

P* =I - 1 -4q(1 - q) exp - )) /2
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Now, C1,Binary(&) can be written as

C,Binary(S) max HB(q) - HB(p*) (5.62)
q

for 0 < q < 1/2.

Define I(q) := HB(q) - HB(p*). The optimum q* maximizing I(q) should satisfy

aI(q)/Oqjq=q = 0. However,

oBl(q) 1 -o q -1 - P*
I - q(5.63)

1-2q 1

(1 - 2p* 1 q) xp - q

and 01(q)/0q = 0 does not have a closed form solution. Instead, by focusing on the low

photon number regime where S -+ 0, we can find an approximate solution for q*, and

calculate C1,Binary(S) for the first and second order terms. First, it will be shown that

01(q) > 0 and 1(q) < 0, (5.64)aq -~ '(log
q- log q=(oj

which implies that the optimum q* is between

S log Z q* < log 1 (5.65)

Let us write down the approximation of 01(q)/0q as E - 0. When <log j q <

(log -), by Taylor expansion, each term in (5.63) can be approximated as

exp (- =q) 1 - F/q + &2 /(2q 2 ) + O(S q 3 ),

p* = q (1 - E/qo + E 2 /(2q 2 ))+O(S 2)1

log = log(1/q) - q + O(q 2 ),
q

1 _g = _ log(1/q) + S/q - 'E2/(2q
2 ) + (E3 3)

P
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1- 2q

I1+ = 1+,E/q+ O(S).1(1 - q)

By using these approximations, it can be shown that 01(q)/0q in (5.63) can be written

as
0I(q) S2 I(S g s 3

aq 2q2 q q q3
log - . (5.66)

Now, it can be checked that when q = (E

2
= log

log

2

glog(1/S)) /2,

1 1
log log

2 5

=2 + o(1) > 0,

and when q = (S log(1/S)) /2,

0I(q)
o0q

2

(log p)2

(/g2

±0 ( 1

(log 1)2

2 log log C

(log })2

log log

(5.68)

) <0.

(

(lg 2

Therefore, (5.65) is verified.

Now, we will write q* = (log j)Q for some 1/2 < a < 1, and then will find a* that

maximizes I(q). Let us find the approximation of I(q) as S -+ 0. By using the Taylor

expansion for HB(x) = -x log x + x + 0(x 2 ) as x -+ 0,

HB(p*) = -q log q+9 log q- (S2 log q)/(2q) + q + O(g),

0I(q)
aq 1 (5.67)

2

log

(5.69)



and thus

I(q) =HB(q) - HB(P*)

= - E log q + (S2 log q)/(2q) + 0(E).
(5.70)

At q = q* = ( (log }),

I(q) =Slog - E(log) 1 - - ae log log + O(S).

It can be easily checked that 0I(q)/Oa = 0 when a = 1 from

0I(q)/Oa = S log log I - log) (5.72)

Therefore, the optimum q* = ( (log }) and by plugging a = 1 in (5.71),

C1,Binary =max I(q) = I(q)la=1

=Slog -- S log log + O(E).
(5.73)

* 5.B Proof of Corollary 5.3

For the BPSK inputs {V/), -x/)} with input distribution {1 - q, q}, two eigenvalues

of the density operator p = (1 - q)/ 5)(vTE I + qI-V/ )(- vI are

0-1 = ( - V1

U2 (1 + 1

- 4q(1 - q)(1

- 4q(1 - q) (1

- e4) /2,

-- e-4E /2

from (5.4) and -y = I( - )= I -2F

It can be easily checked that the optimum q that maximizes

- log Tr(pl+S) _log (1+S ++S) (5

(5.71)

(5.74)
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is equal to 1/2 by using the symmetry between q and 1 - q in (5.74).

When a and 0-2 at q = 1/2 are denoted as -* and a-,

o =(1 - /2

0- =*(1 + C 2F)/2.

(5.76)

Then, the error exponent E(R) in (5.18) for the BPSK inputs can be written as

E(R) =max max (- log Tr(pl+s)) - sR
O<s<1 Px

= max (- log ((-*)1+s + (or)'+s) - sR)
O<s<1

(5.77)

A closed form solution for the optimum s that achieves E(R) cannot be found. Instead,

by using the assumption of the low photon number regime, i.e., < 1, we pick the

following s' and find a lower bound of E(R).

log log(1/F)-log(R-S) _
log(1/E)

S' := 1,

0,

(5.78)

R>C

where R, = E + E2 log(1/S) and C = S log(1/g) + S. When we define

E(R) (- log ((0 *)1+s' + (tr2)1+S') - s'R) , (5.79)

the error exponent E(R) is lower bounded by E(R) for every R, i.e.,

E(R) > E(R). (5.80)

Therefore, the lower bound of CN/N in (5.17) from Theorem 5.2 can be further lower



bounded by using f(R) as follows.

> mx (1 - 2 e-NE(R) - log 2

N - R N(5.81)

> ma (1 - 2 e-N(R) _ log 2

A closed form solution of the optimum R that maximizes the lower bound in (5.81)

cannot be found, but again by using the assumption that S < 1, we pick

1 ( log (NE log(NE))
R* = slog I ( NE )+ E (5.82)

for N > E-1 log(1/E). It can be shown that for S < e- 2 ~~ 0.13, the chosen rate R* is

in R, < R* < C where N > E-1log(1/E), and thus s' at R = R* belongs to the first

case in (5.78). To show this, we use the fact that for NE > 2,

log (NE log(NE)) <0.85 (5.83)
0 < NE ;.8,(.)

which can be validated by numerical calculations using a computer. Since we assume

that N > E-1 log(1/E), if log(1/E) > 2, i.e., S < e-2, then NE > 2. Moreover, if

log(NE log(NE)) < (5.84)
NE

then R* in (5.82) stays in the range of R, < R* < C. From (5.83), the inequality in

(5.83) holds for S < 0.15.

Therefore, for E < min{0.15, e-2 e-2,

N> ( - 2e-N-(R*))* _ log 2 (5.85)N 1 . I - N

in the range of N > E-1 log(1/E). By numerical calculations, we checked that the lower

bound of (5.85) strictly increases with N if E < 0.01. Even though the lower bound
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itself is valid for E < e-2, since R* and s' were chosen based on the assumption that

8 < 1, the lower bound becomes meaningful in the sense that it strictly increases with

N for small range of 8. Therefore, we state the corollary with the assumption that

8 < 0.01. The corollary is proven.

Now, we will show the approximation of (5.85) as 8 -+ 0. For 0 < s < 1, by using

Taylor expansion,

(9*)l+s =1 - (1 + s)8 + (1 + s)(2 + s) .2 + O(83),
2 (5.86)

(Or*)l+s _1+S - (1 + s)e2+s + (3+s).

By using these approximations and Taylor expansion of log(1+x) = x+O(x2) as x -+ 0,

- log ((u*)1+s + (e)1+s) (1 + s)E - 81+s + 0(2). (5.87)

Then, for s = s' in the range of Rc < R < C,

E(R) = (1 + s')E - 91+s' - s'R + 0(E2)

_(R - ') 1 (l 8 ± ~ l 1 O82(5.88)
- (R- E)log (R -SE) + log log log -1) + S + O(E2). (8)
log(1/8) 9ok ) g o o 8  + )

Now, at R = R*,

E(R*) =8 - (I + log (i - f) - v/ log (I - ) + O(82) (5.89)

where

- log (NE log(NE))
fN8 (5.90)

In the range of N E-1 log(1/E), i.e., NE > log(1/8), the resulting f -+ 0 as 8 -+ 0,

and thus it can be approximated as

E(R*) =(F - f)/2 + O( . + 82). (5.91(5.91)



If we further restrict the range of N such that

E- 1 log(1/E) < N < E-2, i.e., log(1/E) < NE < E- 1,

E(R*) becomes

(R*) =
log (NE log(NE)) +(O

NE \N}
(5.92)

as E -+ 0. Therefore,

NE(R*) = log VNE log(NE) + 0(1)

-N =1 (5.93)
e-N(R*) 0 (

N E log(NE)

By using this result, the lower bound of CN/N in (5.85) can be simplified as

CN 1 lo(NElo(NE))) Elog(i/E) A-
>F - E NE l) log(gN ) 1 (1/E)

(5.94)

in the range of N such that E-1 log(

of N where E- 1 (og(1/E)) 2 < N <

simplified as o(E), and thus

ON 1
> Elg I ~

1/E) < N < E- 2 . Moreover, for a narrower regime

E-2, the term 0 £og(1/s) + can be

log (NE log (NE)) + O(S).
NE (5.95)

N 5.C Proof of Lemma 5.4

Let us first introduce some notations related to the quantum codewords of length-N

and rate-R codes. The encoder f : {1, ... , M:= 2 NR} - XN maps each message into

a length-N codeword. The codeword for the j-th message can be written as f(j) =

(Xi(j), ... , XN(j)) where xi(j) c X for i = 1, ... , N. After sending each coded symbol

through the classical-quantum channel W : x -+ |ox), the received length-N sequence
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of states can be written as a density operator form,

SPA3 ) I'X1(0))(/X1() 0. 0 1bX N (A)K4XN() . (5.96)

When we denote I Of (p) I Oz 1(A) ( ... IXN(A),

Sf(j) = Ibf(j)K ( (j) . (5.97)

Let us define a matrix T such that its J-th column is lof(j)). When 0f(j)), E

{1, ... , M} stay in a d-dimensional Hilbert space, the singular value decomposition of

T can be represented as

T' = ( (1) K 1), 1Of(2)),- , kLf(M))) = UEVt, (5.98)

where U and V are unitary matrices of size d x d and M x M, respectively, and E is a

d x M rectangular diagonal matrix with non-negative real numbers on the diagonal. V

is the Hermitian conjugate of V. We also denote the Gram matrix, F, and the Gram

operator, G, of T as

F =TX14 = V(EtE)Vt,

G =TtT = U(EEt)Ut.

Note that F and G are positive operators.

Now, we will introduce Square Root Measurements (SRM) {fl 1 }, with which the

M encoded quantum states are measured. The SRM is defined as a rank-one operator

such that

Ij = Iwj)( I = (G-1/2) Sf(j) (G-1/2) = (G-1/2|if(j))) ((/f(j)IG-1/2) (5.100)
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where

G -/2 = U ((E Et)-1/2) Ut, (5.101)

and (EEt)-1/2 is formed by replacing every non-zero diagonal entry of EEt with one

over the square root of each entry. Note that the defined measurement {H1 } satisfies

IIj ;>0, for allj E{1,...,M}, and ! 1HIj = 1.

Define a matrix Q such that its j-th column is the j-th measurement vector Pw),

Q = (Iwi), w2 ),...-, IM)) = G-1/2V = U(EEt)-1/2EVt = UE(EtE)-1/ 2Vt. (5.102)

Then, (k, j)-entry of QtJi becomes (klof(j)) and

Qtl = V(EtE)-1/ 2 (EtyZ)Vt = V(Et)1/ 2Vt =1/2. (5.103)

Therefore, the probability that the decoder chooses the k-th message by the SRM, when

the j-th message is the true one, which is denoted as p (N) is

(N= I(wk f(j))12 = IV k,j 12 (5.104)

where Vkj denotes the (k, j)-entry of ]1/ 2 . It means that under the SRM, once we

have the geometric structure of the encoded quantum states, which is represented by its

Gram matrix F, the distribution of the measurement outputs, given the true message,

can be directly calculated from ]1/ 2

From (5.104), the average probability of decoding error becomes,

IM M

P 1 - jj 2) = I Z(1 - \/Yjj)(1 + \/tj,j) (5.105)
j=1 j=1

Since \/ 3j,j = (wj|/f(j)) = (Of(j)JG-1/ 21f(j)) with the positive operator G-1/2, and

E- I k,j.12 = 1, the resulting i/j,j, j = 1, ... , M, are positive numbers in [0, 1]

We will show an existence of a length-N and rate-R code of which the average
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probability of error under the SRM satisfies

Pe52-NE (R),Pe 2

where

E(R) = max max (- log Tr (p+s))
O<s<1 Px

for p = > Px(x)4,0)(4'xI as stated in Lemma 5.4.

We can further bound Pe in (5.105) as

2M
Pe Z (1

j=1

- Tr(F1I/2)) = (M - Tr(G1/2)).

Note that all the eigenvalues of G1/2 are positive. Therefore, using the following in-

equality,

2f ;> 2x - min{(x2 - x), 2x}, X > 0, (5.109)

(5.110)-2Tr(G/ 2 ) < -2Tr(G) + min{Tr (G2 - G) , 2Tr(G)},

Pe 5 2 + 1 (-2Tr(G) + min{Tr (G2 - G) , 2Tr(G)}). (5.111)

Assume that the M-codewords are independently generated according to the dis-

tribution Px(1) = I$_1 Px(xi). The expectations of G and G2 - G over the random

(5.106)

- sR) (5.107)

(5.108)

we have

and thus

- VTF-,j) = (M



code are

M ON =MO
E [G]=E [|Vfij) | = M (Px(x)|x)(x|) = Mp0 N

j=1 X

M 
M

E[G 2 - G] =E[ f(j))(Of(j)IIOf(k))(Of(k) M (f(j))( )
j,k= j= 1  (5.112)

M

E :E[Of (j3))(Of (j) IIOf(k)) (Of(k)II
j=1 k~j

=M(M - 1)(p N)2.

The expected P, over the random code is then

E[Pe] < 2 - 2Tr(p®N) + min {(M - l)Tr ((pON) 2 ) ,2Tr(PON)}. (5.113)

When we denote the eigenvalues of p as or, m = 1,... , r, where r is the rank of

p, the eigenvalues of pON, which will be denoted as an, n = 1, ... ,r N, are product

of N numbers each of which is chosen from {ui,..., -r} There are total rN such

combinations, so that the number of eigenvalues of p N is rN. By using the notations

of the eigenvalues,

r N rN

E[P] : 2 - 2 1 an + Ymin (M - 1) (an)2 2Un (5.114)
n=1 n=1

Now, by using min{x, y} < xyl-s, for x, y > 0 and every s E [0, 1],

min {(M - 1) (an)2 2an} < (M - 1)21-sa+s < 2(M - 1)8sa1+s, (5.115)

and hence
rN rN

E[Pe] < 2 - 2 an + Z 2(M - 1)an+s. (5.116)
n=1 n=1
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Now from Tr(pON) 1 N

rTN

E[P] < 2(M - 1)8 EOn+s
n=1

Finally by using

(5.117)

rN

Z n+s =

n=1

= (Tr(p1+s))N

E[Pe] < 2(M - 1)8 (Tr(p1+s))N <2 exp I - N (- log Tr(pl+s) -

since M-1 < eNR. This bound is true for all input distributions Px and every s E [0, 1],

so that

IE[Pe] < 2 e-NE(R) (5.120)

for E(R) in (5.107). Moreover, E[Pe] < 2 e-NE(R) over the random code implies an

existence of a code whose average error probability Pe < 2e-NE(R). It concludes the

proof of Lemma 5.4.

we have

(5.118)

sR) , (5.119)



Chapter 6

Conclusion

* 6.1 Summary of Main Contributions

Due to the peculiar properties of quantum mechanics, such as the no-cloning theorem

and the non-reversible measurement process, the extraction of classical information

from quantum states faces new challenges that are not encountered in classical infor-

mation processing. To calculate the fundamental limits of communication efficiency

in quantum channels, it is usually assumed in previous theories that a large number

of quantum states can be collectively measured at one time. However, this assump-

tion, in fact, becomes the primary barrier that prevents practical implementation of

capacity-achieving joint detection receivers.

The purpose of this thesis is to study the performance limits of quantum channels

under practical assumptions of quantum receivers, by investigating the fundamental

question of how to design the measurement process to efficiently extract information

from quantum states, when the possible types of measurements are restricted to par-

ticular sets of practically implementable quantum receivers.

In Chapter 3, we consider adaptive measurements, with which we measure each re-

ceived quantum state one at a time, and then update the next measurement process

based on the previous observations. We analyze the performance of adaptive mea-

surements for quantum detection problems. We derive the necessary and sufficient

conditions for adaptive measurement to perform as well as the optimal entangling mea-

surement that achieves the theoretical lower bound of detection error probability, the
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Helstrom limit. We show that for binary hypothesis testing (BHT), the greedy algo-

rithm that minimizes the detection error probability at each instant, with the updated

posterior probabilities, can meet the necessary and sufficient conditions for the optimum

adaptive measurement. We show that the Dolinar receiver, which has been known to

perform optimally for the BHT between two coherent states, indeed is a physical trans-

lation of the optimal adaptive measurement.

In Chapter 4, we provide one more different viewpoint to derive the Dolinar receiver.

We show that for the binary hypothesis testing between two ideal laser light pulses, if

we update the adaptive measurement to maximize the communication efficiency at each

instant, based on recursively updated knowledge of the receiver, then we can perform as

well as in the case when we can collectively measure the received laser light of an entire

duration in one shot. In other words, for the BHT, the adaptive measurement that

maximizes the communication efficiency in each instant also minimizes the detection

error probability at that moment. Using this viewpoint, we give a natural generalization

of the design to general M-ary hypothesis testing problems.

We also analyze the information capacity with adaptive measurement, and compare

the result with that of direct detection receivers and of arbitrary quantum receivers (the

Holevo limit), using the appropriate scaling laws in the low photon number regime. Our

analysis shows that if we measure each state one at a time, we cannot approach the

ultimate capacity of quantum channels, the Holevo limit, even with the capability to

use the previous observations to update the measurement process.

Finally, in Chapter 5, we analyze superadditivity-the phenomenon that the maxi-

mum accessible information per channel use increases strictly as the number of channel

outputs jointly measured at the receiver increases-over a pure-state classical-quantum

channel. We analyze the rate vs. complexity trade-off by considering the capacity of

the classical discrete memoryless superchannel induced under a concatenated coding

scheme, where the quantum measurement acts exclusively on the finite length inner

codewords, while allowing arbitrary outer-code complexity. We prove a general lower
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bound on the maximum accessible information per channel use for a finite-length joint

measurement, and express it in terms of V, the quantum version of channel dispersion,

and C, the channel capacity. The superadditivity is observed even in the channel capac-

ity of a classical discrete memoryless channel (DMC) in a concatenated coding scheme

due to loss of information from hard-decisions by the inner decoder over blocklength

N. Under this observation, we develop a unifying framework in which superadditiv-

ity in capacity of the classical DMC and that of a classical-quantum channel-in the

above sense-can both be expressed by a parameter V/C 2 , a quantity that we show is

proportional to the inner-decoder measurement length N that is sufficient to achieve a

given fraction a of the capacity.

The analysis and new insights into the measurement process of quantum states that

we develop in this thesis can be used to improve current quantum optical communica-

tion systems and to help understand the fundamental mechanisms of the extraction of

information from quantum channels.

* 6.2 Suggestions for Future Research

We conclude by discussing some possible extensions of the work presented in this thesis.

* 6.2.1 Adaptive Measurements for M-ary Hypothesis Testing

In Chapter 3.3, we derive the necessary and sufficient conditions for adaptive mea-

surements to achieve the Helstrom bound. These conditions imply that the optimum

adaptive measurement should guarantee the same quality of decision in terms of prob-

ability of error, for every output sequence that belongs to the same decision set, as

shown in Lemma 3.3. For binary hypothesis testing between multiple-copy states, a

greedy algorithm, which minimizes the detection error probability from the view of

hard-decision at the current stage, combined with posterior updating, can achieve these

conditions. Moreover, the Dolinar receiver, which adds a feedback control signal to the

received quantum state, and measures the combined signal with a photon counter, is
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an exact physical translation of the optimum adaptive measurement.

Then, how can we generalize this result, and find the optimum adaptive measure-

ment for M-ary hypothesis testing? For the binary case, since the posterior probabili-

ties over two hypotheses stay in a single-dimensional probability space, it is not hard to

balance the quality of decision, for two possible outputs of adaptive measurement, by

adjusting the adaptive measurement based on posterior updating at each stage. More-

over, the control signal of the Dolinar receiver provides enough degree of freedom to

tune the adaptive measurement to guarantee the symmetric evolvement of the posterior

distribution regardless of how many photons arrive at the output of the photon counter.

However, this is no longer true for more than binary hypothesis testing. Since the

posterior probabilities over M-ary hypotheses stay in (M - 1)-dimensional space, there

are basically infinitely many directions in which the posterior distribution can evolve at

each instant. To minimize the average probability of error while guaranteeing the same

quality of error for every possible output sequence belonging to the same decision set,

we need to find the direction on the probability space in which the posterior distribution

can make the biggest move at each instant toward one of the vertices, while balancing

the progress over possible outputs of measurement. Finding such a direction is a very

hard optimization problem. One of the promising ways to solve such a problem is to use

the local approximations of information measures such as Kullback-Leibler divergence

on the probability space, as suggested in [25]. However, it is important to note that

the solution from the local approximation does not always result in a globally optimum

solution.

The physical implementation of the optimum adaptive measurement also encounters

a new challenge for M-ary hypothesis testing. To implement an adaptive measurement

that has the ability to evolve the posterior distribution to a particular direction on the

(M-1)-dimensional probability space, we need a receiver that has (M--1)-parameters to

adjust at each instant. However, the Dolinar type of receiver has only one parameter,

i.e., the complex amplitude of control signal, to tune over time. Therefore, we need
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to resort to other optical devices, for example, squeezers, to provide enough degree of

freedom for a receiver to tune its adaptive measurement for more than binary hypothesis

testing.

* 6.2.2 Quantifying the Efficiency of Measurement Process: Time-Varying

Metrics

In Chapter 4.3, we discuss a generalization of the Dolinar receiver for M-ary hypothesis

testing. In particular, we consider the family of Renyi entropy, which is a general class

of entropy to measure the efficiency of communication, to design the control signal of

the Dolinar receiver. We argue that the order of Renyi entropy to optimize the control

signal of the Dolinar receiver should be time-varying, and provide intuitions to choose

the right order, depending on how much time is left before the final hard-decision.

To illustrate this point, we show numerical simulation results of empirical error

probability for a ternary hypothesis testing problem. For simplicity, we compare two

cases where the orders are fixed to be either 1 or 100 throughout the simulation time.

Using these simulation results, we confirm our intuition: when we have enough time to

collect information before the final decision, at the beginning of communication, it is

desirable to choose a smaller order to maximize the mutual information of the channel

generated by the Dolinar receiver. On the other hand, when we need to make a final

decision immediately, a larger order is preferable.

It is an interesting yet challenging research problem to find and analyze the proper

time-varying measure with which we can optimize the efficiency for the measurement

process of quantum states. For example, finding the optimum order of Renyi entropy

at each instant is very hard, since we need to quantify how the currently collected infor-

mation will affect the quality of the final decision. One potential starting point might

be to select a set of discrete numbers for the possible candidates for the orders of Renyi

entropy and also to divide the simulation time into a few "phases" of communication,

depending on how much time is left before the final hard-decision. Then, with this

147



discrete setup, we can use dynamic programming to find the best sequence of orders

of Renyi entropy that gives the minimum average probability of error among all the

possible combinations. We can compare the resulting average probability of error with

the Helstrom limit. It would also be interesting to consider the asymptotic decreasing

rate of average probability of error as time goes to infinity, and compare the results

under this asymptotic regime.

* 6.2.3 Adaptive Sampling/Querying for Classical Inference Problems

The insights that we provide in Chapters 3 and 4 can also be applied for adaptive

sampling and querying in classical inference problems. For example, let us consider a

target localization problem with adaptive querying. Assume that we want to find the

location of a target in d-dimensional space by querying an oracle who knows the exact

location of the target. The type of question we can ask an oracle is whether or not

the target is located within a particular region of the d-dimensional space. We observe

a noisy version of the oracle's answer. For example, when the oracle's answer is 1,

which indicates "yes," we observe 1 with probability p, and 0, which indicates "no,"

with probability 1-p. When the oracle's answer is 0, we observe 1 with q and 0 with

1 - q. Our goal is to minimize the mean squared error of the target location after a

fixed number of queries. This kind of problem has been widely studied in previous

literatures [5, 26, 44].

We want to find the best adaptive querying strategy that minimizes the mean

squared error. Based on the previous noisy answers from the oracle, we need to de-

sign the next query to extract as much useful information as possible to minimize the

squared error by using the oracle's next answer. Even though the final goal is to min-

imize the mean squared error, this cost function is hard to track and analyze in the

course of adaptive querying. Consequently, in previous literatures, it has instead been

widely adopted to design the adaptive querying to minimize the conditional entropy of

posterior distribution over the target location. However, as pointed out in Chapter 4.3,
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minimizing the conditional entropy of posterior distribution does not always give the

best performance in terms of minimizing the probability of error or other general error

functions.

A better way to approach this problem is thus to use the time-varying metrics in

designing the query, depending on how many queries we have a chance to address to the

oracle before the final decision is made. We can again use the family of Renyi entropy

with different orders. When we have enough chances to ask the oracle about the target

location, at the very beginning, it would be preferable to design queries with which we

can maximize the mutual information between the posterior distribution of the target

location and the noisy answer from the oracle. However, as the deadline for the final

localization approaches, it would be preferable to choose a larger order of Renyi entropy

to concentrate the measure of the posterior distribution in a more localized region.

Therefore, the insights that we develop in Chapter 4.3 and further discussions in

Chapter 6.2.2 can be applied to much more general setups of not only quantum, but

also classical adaptive inference problems.

* 6.2.4 Finite Blocklength Joint Measurement: Converse Bounds

In Chapter 5.4, we provide a lower bound on the maximum achievable information

rate, CN, of a quantum channel W -+ x -+ 1i/x), x E X, at a finite blocklength N of

quantum measurements under concatenated coding. To calculate the exact CN, we need

to find the best superchannel that can be generated by a finite blocklength inner code-

joint measurement pair. Since the complexity of this optimization problem increases

exponentially with the blocklength N, instead of trying to calculate the exact CN, we

provide a lower bound on CN in Theorem 5.2.

The proof of this lower bound is based on two ideas: First, instead of tracking

the exact superchannel distribution, which depends on the detailed structure of the

length-N inner code and joint measurement, we focus on one representative quantity,

the average probability of error of the inner code, pe, calculated from the superchannel
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distribution, that can be easily analyzed and optimized. Second, among superchannels

that have the same value of pe, we find a superchannel whose mutual information is the

smallest.

The natural question to ask next is how to find an upper bound on CN in the

finite regime of N, and how close the lower and upper bounds would be. One promising

approach is again to focus on the representative quantity, pe, of superchannels, and then

to find a superchannel whose mutual information is the largest among those having the

same value of pe. In [11], the so-called "telltale" superchannel distribution is provided,

whose mutual information is the largest among every superchannel (with the same

Pe) that satisfies the symmetry in its channel distribution between every input, and

also between every output except the right estimate. Because of this assumption of

symmetry, the telltale superchannel might not be the superchannel of the largest mutual

information among every superchannel with the same pe. However, we can use the

characteristics of this superchannel and attempt to extend it even for non-symmetric

superchannels, in order to find an upper bound of CN-
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