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Abstract

Generation of high-order harmonics has emerged as a powerful technique for the
generation of broadband coherent radiation in the EUV regime. This has lead to the
development of table-top EUV sources that can produce attosecond pulses. These
pulses can serve as a probe to resolve atomic attosecond dynamics and image atomic
orbitals and molecular motion. Due to high spatial and temporal coherence, high-
order harmonic radiation can also be used to seed free electron lasers, which allow
the generation of high-intensity X-ray radiation that can be used for imaging bio-
molecules.

Since the first observation of high-order harmonics, effort has been made to ac-
curately model both the generation and the characterization of attosecond pulses.
Work on the modeling of high harmonic generation can be divided into two parts: (a)
description of the interaction between the JR pulse and atoms that leads to emission
of attosecond pulses (the single atom response) and (b) modeling of the propagation
of attosecond pulses by accounting for macroscopic phase matching effects. In this
work, we will focus on the single atom response which can be calculated either by
numerically solving the time dependent Schr6dinger equation (TDSE) or through the
semi-classical three step model (TSM).

In Chapter 2, the theory of light-atom interaction will be reviewed with the fo-
cus on the calculation of the dipole trasition matrix element (DTME) in the strong
field formalism. It will be shown that the choice of the basis states - Volkov states
and Coulomb Volkov states - to describe electrons in the continuum is crucial to the
accuracy of DTME calculation. In Chapter 3, the TSM will be derived from the
Schr6dinger equation by using the saddle point approximation. Through this deriva-
tion, the quantum mechanical laser-atom interaction is reduced to a semi-classical
model comprising of ionization, propagation and recombination . The numerical
scheme for solving the TDSE will be discussed. It will then be used to demonstrate
the generation of isolated attosecond pulses from non-sinusoidal sub-cycle pulses. The
results of ADK and non-adiabatic ionization models will be compared with that from
numerical TDSE, and then used to calculate the harmonic spectra in the tunneling
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and multi-photon ionization regimes.
The recombination step of the TSM, which plays a crucial role in determining

the qualitative shape of the high-order harmonic spectrum, will be investigated in
Chapter 4. A commonly observed feature of Argon's high-order harmonic spectrum
is the presence of a minimum at around 50 eV called the Cooper minimum. The
minimum in the high-order harmonic spectrum has been attributed to the minimum
in the recombination amplitude. The recombination amplitude will be calculated -
in the strong field formalism - using length and acceleration form for two choices of
continuum electron wavefunction description (Volkov and Coulomb-Volkov).

Attosecond pulse characterization techniques, which are an extension of the sub-
picosecond pulse characterization technique like FROG and SPIDER, rely on the
photoionization process to transfer the amplitude and phase information of the at-
tosecond pulse to the photoelectron spectrum. For accurate pulse characterization,
it is crucial to model the photoionization process accurately. Since photoionization
and recombination are reverse processes, the improvements in the calculation of the
recombination amplitude in Chapter 4, can be used to improve the model function of
the pulse retrieval algorithm. It will be shown that the proposed improvements are
crucial for accurate characterization of low energy EUV pulses

Thesis Supervisor: Franz X. Kirtner
Title: Adjunct Professor of Electrical Engineering
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Chapter 1

Introduction

Invention of lasers as a source for bright coherent radiation, in the early 1960's, revo-

lutionized many areas of research [9]. The intensity of the laser was strong enough to

lead to nonlinear light-matter interaction such as generation of second and third har-

monics. These interactions could be described using perturbation theory. Invention

of chirped pulse amplification led to further increase in laser field strengths which

then became comparable to atomic electric fields [10].

The increase in the laser intensity was accompanied by the decrease in the pulse

duration. As shown in Figure 1-1, invention of modelocking techniques, soon after

the invention of the laser led to an exponential decrease in the pulse duration from

picoseconds to tens of femtoseconds. By mid 1980's, the modelocking techniques had

been pushsed to its limits and the dramatic decrease in pulse duration, that occured

during the previous decade, considerably waned. In order to push the pulse duration

down into the attosecond regime, a new technique of generating coherent multi-eV

broadband radiation was needed. This break through came in the form of high-order

harmonic generation process which was a result of the ability to generate laser fields

to perform nonlinear optics in the non-perturbative regime.

One of the first observation of high-order harmonic generation was when re-

searchers were trying to look into the photoelectron spectrum of Xe interacting with

intense laser fields (- 10"W/cm 2) from Nd:YAG laser (1064 nm) [11]. As high as

2 1"t harmonics were observed which were separated by twice the Nd:YAG laser fre-
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Figure 1-1: Duration of the shortest available pulse vs time. Invention of modelocking
in 1964 and high-order harmonic generation in 2000 led to dramatic decline in the

pulse duration. This figure is taken from [1]

quency. A characteristic feature of the high-order harmonic was the existence of a

broad plateau marked by a sudden cut-off. See Figure 1-2. Moreover, the plateau

was broad enough to sustain pulses in the attosecond regime.

The theoretical techniques, such as perturbation theory, that were used to describe

perturbative nonlinear optics, could not explain the high-order harmonic spectrum.

Two approaches were taken to model the high harmonic generation process. The

first was to solve the time dependent Schr6dinger equation of intense laser-atom

interaction [12]. The second was the development of a semi classical three step model

in which the quantum mechanical laser-atom interaction was reduced to ionization

of outermost electron, its propagation under the influence of the laser field and then

recombination back to the atom [13]. The three step model was able to reproduce
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harmonic intensity after the cutoff frequency. This figure is taken from [2]

the the qualitative feature - existence of odd harmonics and sharp cut-off - of the

harmonic spectrum

By Heisenberg time-energy uncertainty principle, the timescale of electronic mo-

tion is inversely proportional to the energy difference between the energy levels. In

molecules, the typical energy seperations are that of millielectronvolts which corre-

sponds to timescales of hundred femtosecond. Electronic transition in molecules has

been observed through pump-probe techniques that use femtosecond pulses [14].This

area of research, referred to as femtochemistry, led to a noble prize in 1999 to Ahmed

Zewail. The separation of energy level in atoms is of the order of electron volts. Ob-

servations of electronic transition in atom requires attosecond precision. This became

possible after the invention of high harmonic generation.
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Attosecond pulses serve as a window into the world of electrons in two ways.

The first, called high harmonic interferometry, is based on the coherent nature of

the high harmonic generation process. The ionized electron serves as a probe: the

amplitude and phase of the harmonics that are generated due to the recombination

of the electron provide a snapshot of the bound electron dynamics at the time of

recombination. This idea was used to image the outermost orbital - both amplitude

and phase - of N2. [15]. Similarly, the attosecond multi-electron dynamic of the

orbitals of CO 2 that participate in the harmonic generation process was decoded [16].

Attosecond pulses are also used in pump-probe experiments: the femtosecond pump

pulse sets the electron dynamics in motion which is then probed by the attosecond

pulse. This technique was used to measure in real time the subfemtosecond motion

of valence electrons Krypton over a multifemtosecond time span [17].

The generation of attosecond pulses also spurred the developement of attosecond

metrology techniques. These techniques rely on the photoionization process through

which the amplitude and phase information of the attosecond pulse is transferred to

the photoelectron spectrum. Once the photoelectron pulse is generated, their phase

is modulated by an IR field. By measuring the photoelectron spectrum for various

delays between the attosecond and the JR pulse, the amplitude and phase of the

attosecond pulse can be reconstructed. In pump-probe experiments it is critical to

know the duration and the spectrum of attosecond pulses.

The recombination step in the generation of attosecond pulses and the ionization

step in the characterization of attosecond pulses are very similar . While the first

involves the transition of electrons from the continuum to the bound state, the second

involves the transition of electrons from the boundstate to the continuum. Therefore

it is extremely important to ensure that the ionization and recombination steps in

the modeling of high harmonic within the strong field approximation formalism is

accurate. In this thesis these processes will be accurately modeled within the strong

field approximation. It will be shown that inability to do so can lead to significant

errors in our ability to model the generation and characterization of attosecond pulses.
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Chapter 2

Theory of laser-atom interaction

In this chapter the formalism of laser-atom interaction is reviewed. In particular,

emphasis will be laid on the derivation of the transition amplitude from the strong field

formalism. In order to get a closed analytical expression for the transition amplitude,

approximations need to be made to the exact form of the time propagator. The

accuracy of the transition amplitude depends on the manner in which the propagator,

represented by a dyson series, is terminated and the choice of the initial and final states

[18]. To illustrate this, the derivation of the first order perturbation theory will be

presented along with the claculation of the total and the differential photoionization

cross-section. Next, the formalism of strong field approximation will be presented.

This will serve as the basis for the derivation of the three step model in Chapter 3, the

recombination amplitude in Chapter 4 and the photoelectron distribution in Chapter

5.

2.1 Equations for laser atom interaction

We start with the Schr6dinger equation

d
i kb(t)) = H(t)14'(t)) (2.1)
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Here, 10(t)) is the multi-electron wavefunction. H(t) is the hamiltonian of interaction

between the laser field and the bound electrons of an atom. The hamiltonian can be

partioned into two parts: the atomic part and the interaction part:

H(t) = HO + H1 (t) (2.2)

The hamiltonian of an atom with atomic number Z is given by:

HO = E Z 1 (2.3)
1 2 rj |rj - rk|

The terms inside the bracket are the kinetic energy and the potential energy (due to

the nucleus) of the th electron. The next term is the electron-electron interaction

term. In the length gauge, the interaction of the atom with an electric field E(t) is

given by:

Z
H1(t) = -E(t)Z rj (2.4)

j=1

Solving Equation 2.1 exactly for a multi-electron atom is not possible. It is common to

use the Single Active Electron (SAE) approximation which assumes that only a single

electron in the atom is "active" and interacts with the laser and the other electrons

remain frozen. As we will see in Chapter 4, this approximation fails to account for

electron-electron correlation effects which is responsible, for example, for the giant

resonance in the harmonic spectrum of Xenon [19]. In spite of these limitations, the

SAE approximation has been used to predict experimentally measured high-order

harmonic spectra both analytically [20, 21] and numerically [12], and to model the

photoionization process [6, 22, 23].

After the SAE approximation, the total hamiltonian of a multi-electron atom

interacting with a linerly polarized electric field reduces to the hamiltonian of a one

electron atom with an effective potential Vff(r):

P2H(t) + Vj f(r) - E(t)z. (2.5)
2
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The central potential can be obtained by Hartree-Fock Theory [24] or Hartree-Fock

theory where the exchange interaction is replaced by a local density approximation

[25].

2.2 Transition Amplitude

Quantum mechanics has provided the tools to describe physical processes such as

light-atom interaction and scattering phenomena. Central to such a description is

the idea of transition amplitude - the probability (the absolute square of the transi-

tion amplitude) of transitioning to a certain state provided the initial state and the

interaction hamiltonian are known. The expression for the transition amplitude can

be obtained by writing Equation 2.1 in the integral form:

10()) = U(t, to)0(to)) (2.6)

U(t, to) is the unitary time evolution operator which leads to the time evolution of

a state from 14(to)) to 10(t)). It is the exponential of the total hamiltonian of the

system

U(t, to) = e ft H(t')dt' (2.7)

The time evolution propagator also satisfies the Schr6dinger equation:

i U(t, to) = H(t)U(t, to) (2.8)

If the total hamiltonian is partioned into the atomic part and the interaction part, as

shown in Equation 2.2, the time propagator can be written as:

U(t, to) = Uo(t, to) - i U(t, t')H1 (t')Uo(t', to)dt' (2.9)

Uo is the time propagator of the field-free atomic hamiltonian Ho, while U is the

time-propagator of the total hamiltonian H. If the interaction hamiltonian H1 (t)
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becomes zero, the time propagator reduces to the field-free propagator. The second

term on the right hand side of Equation 2.9 can be interpreted as follows: the system

evolves between to and t' as if the perturbation (which in our case is the external

electromagnetic field) does not exist; at t', the system "sees" the perturbation; after

which the system evolves under the influence of the total hamiltonian. The transition

amplitude form the initial state iV~i(to)) to a state 10(t)) is given by:

aif = (Of (t)IU(t, to)I Obi(to)) (2.10)

Thus far, no approximation has been made and the expression for transition amplitude

in Equation 2.10 is exact. Since the exact time evolution operator U appears on both

sides in Equation 2.9, a closed form for the transition amplitude (Equation 2.10)

cannot be obtained. In order to obtain a closed form for the transition amplitude,

it is common to make various approximations. These approximations are based on

an intuitive understanding of the physics of the problem at hand. In the following

sections, we will overview some of these approximations for various physical situations.

2.3 Perturbation theory

Perturbation theory is commonly used to analyze a quantum system where (HI <<

HO). It has been used to describe both time-independent perturbation, as in the

case of relativistic corrections to the Schrddinger equation such as spin-orbit cou-

pling and fine structure; and time-dependent perturbation, as in the case of an elec-

tromagnetic field causing bound-bound and bound-continuum transitions in atoms.

Understanding bound-bound transitions using the perturbation theory has been used

to calculate nonlinear optical susceptibilites [26]. Similarly, perturbatively calculated

bound-continuum transition amplitude have been used to calculate photoionization

cross section [22]. In this section, we will derive the first-order transition amplitude

for bound-bound and bound-continuum transitions; then the bound-continuum tran-

sition will be used to derive the photoionization cross section. This will be useful in

the later chapters where the high-harmonic generation process and pulse characteri-
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zation techniques are discussed.

The eigenstates J pn) of Ho constitute a complete orthonormal basis set with

eigenenergies En:

H0 lPn) = Enj pn) (2.11)

The time evolution of the unperturbed eigenstate is given by

Uo(t, to)jko) = eiEn(t-to)I(Pn) (2.12)

where Uo is the time propagator of Ho. The exact time propagator of the total

hamiltonian Ho + H(t) is given by [18]

00

U(t, to) = Uo (t, to) + U ( (t, to) (2.13)
n=1

where

n) (tt 0)= - J dt1 I 2 t -t - dtnUO(t,t1)H1 (t1 )U(t1 ,t2)H(t 2)
to to

UO (tn-_1,tn) HI(tn) UO(tn ito)

(2.14)

Equation 2.14 is very general. For laser-atom interaction, the nth term corresponds

to the absorption of n photons. In a scattering problem, the nth term refers to the

physical situation where the particle has interacted with the scattering potential n

times. In first-order perturbation theory, the expansion is limited to n = 1:

U(1)(t, to) = Uo(t, to) - i dt'Uo (t, t')H 1 (t')Uo(t', to) (2.15)
Jt

If at to, the system is in Ipo) state, then the amplitude of transitioning to Ipf) at time

t is obtained by inserting Equation 2.15 into Equation 2.10:
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i=-if dt'e'"*-- tHj"" (t't
to

Here the Hjyn(t') = (Om|Hi(t')kbn) is the transition matrix element, and

Wmn -

Em En

h

is the transition frequency

2.3.1 Bound-Bound tansition

Next, we want to understand electronic transition from one bound state to another

in an atom due to sinusoidal electric field given by:

E(t') = i (eiwot' + eC'wt').2
(2.18)

Again, SAE approximation is employed which results in an effective centro-symmetric

potential VHFS. In the spherical coordinate system, the initial and final states are

given by:

(rI 0i) = Oi(r) = (r) Ylmf (Qr) (2.19)

(r| f) = bf (r) = u f( M (Qr)

Ym is spherical harmonic whose azimuthal quantum number is I and magnetic quatum

number is m. The radial wavefunction u(r) is calculated by solving

V 2

2 + Veff (r))u(r) = Eu(r) (2.21)

Without any loss of generality, we can set to = 0.The transition amplitude then

becomes
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a = -i d t dt'(euwo1+WOt' + ei( wof)t' (2.22)
if 2 df to iwf~ot ~

where

dif = (of rI0i) = c1 j druf (r)rui(r) (2.23)

is the dipole transition matrix element (DTME). The angular integration term is

given by:

C1= dQYi*,,,f(Q,) cos OY,(,A) (2.24)

Using the expression,

cosO = -Yo, (2.25)

the angular integration can be expressed in terms of Wigner 3j symbol [27]

I YimI (0, #)Y12m 2 (0, 0) Y 3m3 (0, #) sin OdOcd

- /(2+ 1)(212 +1)(2 3-+ 1) (i 12 13 11 12 13 (2.26)

V ( 0 0 0 m) (771M2 M 3)

Let us analyze the time integral in Equation 2.22. The wif +w term corresponds to the

emission of a photon with angular frequency wo, while the wif -w term corresponds to

the absorption of a photon with angular frequency wo. If wif > 0, i.e., the final state

|9f) is energetically higher than the initial Jpi), then the wif + w terms is referred

to as the counter-rotating term and the wif - w term is referred to as the rotating

term. According to the rotating wave approximation (RWA), the counter-rotating

term is neglected. This has a physical meaning: the transition from an energetically

lower to an energetically higher state is more likely to occur by the absorption of

a photon (rotating term) rather than by the emission of a photon (counter-rotating

term). Vice-versa is true when wif < 0. Under the RWA, Equation 2.22 can be
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approximated by

Eo sin('")t
a ~i 2 dife n, (2.27)

where Aw = wif - wo is the detuning term. Finally, the transition probability is given

by:

if = 4dif F(t, Aw) (2.28)

where

sin 2( Aw t)
F(t, Aw) = 2  , (2.29)

2/

In the limit t -+ 0o

F(t, Aw) = 27rt6(Aw) (2.30)

2.3.2 Bound-Continuum transition

The calculation of a bound-continuum transition probability closely follows the bound-

bound transition probability. The main difference is that special care needs to be

taken to account for the continuum-spectrum of the final state. This is done through

proper normalization of the continuum states along with the correct choice of the den-

sity of states. The momentum normalized eigenstate representing an electron with

momentum k in the direction Qk is

c(r) = J ile(+ YlM(Qr)Y*(Qk) (2.31)
1=0 m=-

where usc is the radial wavefunction, 61 is the phase shift against the regular coulomb

wave (due to the short-range nature of the Veff) and o-l is the coulomb phase shift

[28]. The radial wavefunction u"(r) can be obtained by solving Equation 2.21 for

positive eigenenergies e. The probability of transitioning from 10i) to the state ?/k)
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is given by

dP = dQk J dkk2 Idc | 2F(t, Wk - wO) (2.32)

where d'c is the dipole transition matrix element for bound-continuum transition.

Similar to the case of bound-bound transition ( Equation 2.23), it can be written as

dc = ( ,)cjrjI4) (2.33)

Using the delta function relation (for w = k2

6(w - wo) = J(k - ko) (2.34)
k

and Equation 2.30, the expression for transition probability becomes

lim dP = dQk 0 ktjdkc|2. (2.35)
t-oco 4

The differential photoionization cross section, which is defined as the transition prob-

ability per unit time divided by the photon flux, is given by [23]

da - 4ir2 wk
d - 4 dk12  (2.36)

Equation 2.36 is the cross-section of absorbing a photon w and emitting an electron

in the direction Qk with momentum k. The total photoionization cross-section can be

obtained by integrating Equation 2.36 over all solid angles. Differential and total pho-

toionization cross-section will be revisited when we discuss recombination amplitudes

(Chapter 4) and attosecond pulse characterization (Chapter 5).

2.4 Strong Field Approximation (SFA)

The strong field approximation (SFA) is used to analyze the interaction of an intense

IR field with an atom. Unlike the perturbation theory, the interaction hamiltonian
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H, (see Equation 2.2) is of the same order as the atomic hamiltonian HO and therefore

the two need to be treated on the same footing. Since the IR photon energy is not

sufficient to ionize the bound electron, multiple IR photons needs to be absorbed for

ionization to occur. For example, to ionize the ground state electron of a Helium

atom, 16 photons of Ti:sapph laser (800nm) are needed. Therefore, several higher

order terms in the expansion of the exact propagator in Equation 2.13 are needed.

Although this can be done in principle, the resulting expression of the transition

amplitude becomes cumbersome and hard to calculate. This problem is circumvented

by using the intense-field many-body S-matrix theory (IMST) to obtain the strong-

field transition amplitude [29].

The main goal of the SFA is to capture the physics of the intense-laser atom inter-

action as accurately as possible while keeping the expression of transition amplitude

simple. The SFA is based on the assumption that the bound electron, owing to its

proximity to the nucleus, does not feel the IR field, and can therefore be described

using the eigenstates of the field-free atomic hamiltonian (Ho). The ionized electron,

on the other hand, does not feel the coulomb field of the nucleus and behaves like a

free electron in an JR field and is therefore described by Volkov states [13].

In this section, we will first describe the Volkov state. Then we will derive the

transition amplitude for interaction between strong IR field and atom. Finally, the

photoelectron distribution due to the interaction of an atom with a superposition of

EUV and IR field will be derived.

2.4.1 SFA based on Volkov states

A Volkov state is the eigenstate of a free electron in a sinusoidal electric field. It is

of the form

/)V+A(t)(, t) - ei((k+A(t))r-f(k,t)) (2.37)

Here A(t) is the sinusoidal vector potential and f(k, t) is the quantum phase obtained

by integrating the kinetic energy:
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f (k, t) = t dt"(k + A(t")) 2

If A(t) = 0, the Volkov state reduces to a plane wave ei(kr-wt) 2 -

evolution of the a Volkov state is given by

where

(2.38)

Time

(2.39)

(2.40)Hv(") = (k +
2

is the Volkov hamiltonian. Since the Volkov state is the eigenstate of Equation 2.40,

we get

UV(t, ') I'OkV+A(tl)(t') - e |, t'(k+A(t"))2 kV+A(t) (0) (2.41)

Interaction of an atom with strong IR pulse

We begin by writing Equation 2.5 in the velocity gauge:

H(t) = (k+ ) + V(r)
2

(2.42)

Since the interaction term is being treated on the same footing as the field free part,

Equation 2.42 can be partioned in two ways. The initial partition:

HZ(t) = HO + H j(t) (2.43)

where

k 2
I-0 = + V(r)

2

Hj(t) = k -A(t) + A
2

(2.44a)

(2.44b)
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and the final partition

f (k + A(t)) 2

Ho = 2

Hj(t) = V(r)

(2.45a)

(2.45b)

The exact time propagation operator can be expressed for both the partitions:

U (t,=to) U(t,to) - i st

U(J(tto) = Uo(tto) - i t

(2.46a)

(2.46b)

Since U'(t, to) and Uf(t, to) are equivalent, the expression of U'(t, t') can be replaced

by Uf(t, t'). By inserting Equation 2.46b in Equation 2.46a, we get

Ut(t, to) = U?(t, to) - i] Uo{(t, t')Hj(t')U (t' , to)dt' + higher order terms (2.47)

Note that Hof is the Volkov hamiltonian Hv(t) (therefore Uo' = Uv). Neglecting the

higher order terms and by dropping the superscript i, we get the expression of the

SFA propagator:

ift UvUSFA (t, to) Uo(t, to) (2.48)

The SFA transition amplitude (from the bound ground state to a free Volkov state)

is obtained by:

aSFA SFA tto)Ig (o (2.49)

Using the Volkov propagator relation in Equation 2.41 and assuming that the ground

state is orthogonal to the Volkov state, i.e., (4{(t)Uo(t, to)|49 (t)) ~ 0, the SFA
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transition amplitude becomes

a SFA - i -dte iS(k,t,t') +A(t')|H j(t')|Vg ). (2.50)
to At1j 1t'jg.(.0

The action term in the exponential is

(k + A(t")) 2 
-I( )S(k, tit1) = dt" -k+A(tl) IP(t - t'). (2.51)

SFA amplitude in Equation 2.50 has a physical description: the electron sits in the

ground state from the beginning of the interaction to t'; at t' the intense-laser causes

the transition from the ground state to the Volkov state ' (t'); then the electron

evolves as as a free-electron in a sinusoidal field. The total quantum phase accumu-

lated during the process is given by the action term.

Interaction of an atom with a superposition of EUV and IR fields

Interaction between an atom and a superposition of EUV and moderately strong IR

pulse (1010 - 1012W/cm 2) can be also be described using the SFA-Volkov formalism.

Unlike the last section - where the JR is intense enough to ionized the bound electron

through multiphoton absorption - moderately strong IR fields cannot ionized the

bound electrons. The electron ionizes from the ground state to a Volkov by one EUV

photon absorption.

Derivation of the formalism of interaction of an atom with a superposition of EUV

and IR pulse is similar to the derivation of the formalism in the last section. We make

one additional approximation: neglect the IR field in the calculation of the transition

matrix element ((/ |Hj(t')j4') in Equation 2.50) and neglect the EUV pulse in the

propagation of the electron after ionization i.e. in the calculation of the action term

(shown in Equation 2.51). Therefore, the transition amplitude in the length gauge is

given by:

aSFA __ -Skt' k+A(t')|Ex (t' -T)z|V@'). (2.52)
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The action term is the same as in Equation 2.51. Here Ex(t) is the EUV electric field

and A(t) (in Equation 2.51) is due to the IR field only. The EUV pulse is delayed by

T with respect to the IR field - the reason for doing so will become clear in Chapter 5.

Since the EUV pulse is of finite duration, we can set to -+ -oc and t -+ oo. Then the

probability distribution (square of the SFA transition amplitude) of photoelectrons is

given by

P(k, r) = dt'e-i(k,t,t')d$+A(t)Ex (t' ) (2.53)

The Volkov dipole transtion matrix element is given by:

dk+A(t') = (O/kz,)(.4

2.4.2 SFA based on Coulomb Volkov states

Thus far, we have seen two descriptions of laser-atom interaction. In the first, pertur-

bation theory was used to calculate the transition amplitude for one photon ionization

where the initial and the final states are atomic eigenstates. This formalism accu-

rately describes the ionization process where the external perturbation is weak. The

second description, based on SFA, is suitable for treating laser-atom interaction where

the external perturbation is comparable to the unperturbed hamiltonian. This for-

malism results in a simplified expression of the transition amplitude. However, as

we will see in Chapter 4 and Chapter 5, ignoring the effect of the atomic potential

on the continuum states does not accurately capture the physics of the laser-atom

interaction. This is evident due to the fact that Volkov based SFA is unable to predict

experimentally observed phenomena such as the cooper minimum [4]

The main challenge in describing the interaction of the an atom with a strong

external perturbation is the choice of the basis states. If the exact propagation oper-

ator (Equation 2.13) were used, any choice of complete basis states would be equally

valid. However, since the series expansion of the propagator is terminated to a few

terms, the choice of basis state becomes important.
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For instance, in the perturbation theory, it is assumed that the initial and the final

states are the eigenstates of the unperturbed hamiltonian. The underlying assumption

is that the external perturbation does not change the final states. In the SFA, the

initial state is described by atomic eigenstate, whereas the final state is described by a

Volkov state. In this case, the assumption is that due to strong external perturbation,

the effect of the atomic potential on the external state can be neglected.

It turns out that another set of basis states, called Coulomb-Volkov (CV) states,

are better suited to describe the electron in the continuum. It was first used to

describe the compton scattering of an electron from an atom in the presence of an

IR field [30]. As it will be shown in Chapter 4, CV states based SFA can predict the

cooper minimum in the high-order harmonic spectrum of argon and krypton. The

CV state is a product of the spatial part of the scattering eigenstate of the atom and

the temporal part of the Volkov state:

'O ±V(W) (r, t) - c(r)e -if(kt). (2.55)

Coulomb-Volkov state can be easily introduced into the SFA formalism developed

in the last section. For instance, the CV based SFA can be used to calculate the

photoelectron distribution calculated in the last section. Equation 2.53 becomes

2

P(k, r) = dt'e-iS(k,t,t')dc+v(f)Ex(t' - T) . (2.56)

The Coulomb-Volkov dipole transtion matrix element is given by

d kVA(t') = (+A(t') ) (2.57)

2.5 Comparison between Volkov and Coulomb-Volkov

dipole transition matrix element

In the previous section, CV-SFA and Volkov-SFA formalism were used to derive the

expression of the photoelectron spectrum due to ionization by an EUV pulse in the
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presence of an IR field (Equation 2.53 and Equation 2.56). The difference between

the two formalism lies in the choice of the dipole transition matrix element ( Equa-

tion 2.54 and Equation 2.57). The SFA formalism can also be used to model the

recombination of an electron with an atom - the process which leads to the emission

of a photon - in the presence of an JR field. The dipole transition matrix element of

the recombination process is the complex conjugate of the dipole transition matrix

element of the ionization process.

The calculation of the dipole transition matrix element of ionization and recom-

bination is governed by the dipole transition rule (Al = ±1 and Am = 0). For

example, after absorption of one photon, the electron in the bound p orbital, will

make a transition to either s or d orbital in the continuum (See Figure 2-1). Vice-

versa is true in the recombination process. The two ionization (recombination) paths

interfere. At energies at which the two paths destructively interfere, a minimum in

the photoionization cross section (recombination cross section in high-order harmonic

spectrum) is observed.

Next, the CV dipole transition matrix elements and Volkov dipole matrix elements

are numerically calculated and compared. One important difference between the two

matrix elements is that unlike the Volkov dipole transition matrix element, the CV

dipole matrix element is complex. As a result, as we will see in detail in Chapter 5, the

phase of the ionized photoelectron pulse is different from the EUV pulse. Therefore,

it is important to calculate not only the absolute value of the dipole transition matrix

element but also its phase. The absolute value of the coulomb-Volkov and the Volkov

transition matrix element for neon, argon and krypton are plotted in Figures 2-2 -

2-4

The dipole transition matrix element also depends on the polar angle (Qk in ex-

pansion of the continuum eigenstate as shown in the Equation 2.31 ) with respect

to the polarization axis. In the photoionization process, the polar angle determines

the angle at which the photoelectrons are observed. Experimentally, this angle is

determined by the positioning of the time of flight spectrometer with respect to the

polarization axis of the EUV and IR pulse. In reality, the time of flight spectrom-
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Figure 2-1: Cooper minimum: According to dipole transition rule (Al = ±1), an
electron from the bound p-orbital can only make a transition to a s- or d-orbitals.
The two channels can destructively interfere to lead to a minimum

eter cannot resolve photoelectrons emited from one particular solid angle. Rather,

photoelectrons emited over a range of solid angles, known as the acceptance angle of

the time of flight spectrometer, are observed. Therefore, it is important to study the

dependence of the dipole transition matrix element on the polar angle (Figure 2-5 -

2-10). In order to calculate the Volkov transition matrix element, the Volkov state

which is a plane wave, can be expanded in the spherical coordinate system (like the

scattering state in Equation 2.31 ). The momentum normalized plane wave is

1 s ikz .1uG)Y5(r).(2 e =r Ykm( r)y(Qk)r
(27r) 11=0 M=-1

(2.58)
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The radial wavefunction is given by

1 = (kr)j1 (kr) (2.59)

where ji(kr) is the spherical bessel function. The Volkov transition matrix element

can be calculated the same way as shown in Equations 2.23 -2.26.

The absolute values of the CV and Volkov dipole transition matrix element of

neon, argon and krypton have been plotted in Figures 2-2 - 2-4. Qk has been set to

zero. The minimum in the dipole matrix element can be observed. More importantly,

the position for the minima depends on the choice of the matrix element. Close to

the minima, the absolute values of the two matrix elements are very different. The

CV dipole transition matrix elements act like low pass filters: the bound electrons

have a higher probability of ionization at low energies than at high energies.
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Next, the angle dependence of the both the absolute value and the phase of the

Coulomb-Volkov dipole transition matrix are plotted for neon (Figures 2-5 and Figure

2-6) argon (Figures 2-7 and Figure 2-8) and krypton (Figures 2-9 and Figure 2-10).

The CV dipole transition matrix element is sensitive to the polar angle. This shows,

than in experiments where photoelectron spectrum is measured using a time of flight

spectrometer, it is important to ensure that the acceptance angle is well known.

Additionally, as the acceptance angle increases, 11 = 1, m = 1) and 11 = 1, m = -1)

bound orbitals can also participate in the ionization process.

50 100 150 200 250 300 350 400
photon energy (eV)

Figure 2-5: The absolute value of the CV dipole transition matrix element of neon at
three polar angles. At 120eV, the curve for 60 degrees has a sharp minimum

44

o10 0

0-1
x
4-a
C

E

:: : : : : : : ' : : , : : : : : I : : : : : : : : ' : : : : : : : ,, * ........ * , , , * * ........* , , ,, , * , , , - -. . . . . . . . ........: *: : : : : : : :
. . . . . . . . . . . . . .. . . . . . . . . . .

. . . . . . . . . . . . . . . . .................... 0 degrees... ..................................................................
45 degrees........................I ... .......
60 de. ........ ... ............... .................... ...................................... .......... .......... .......... ......... .......... .................................................................... ..... ...... .........I .......... ......... .......... .I ...................................................................... ........ ..........................................

........ ..... ........... .......... ......... .........

..........
......... .......... ...... ......... .......... . .. .............. ...... ..... ...... .................. ................. .......................................................... ......... .. .... ......... .........

................ ...................................... ..........
. .................... .......................... ......................... ...... . .. .. ........................... .. ............ .... .... ......... ......... ................... .......... ..........................

................................................

0

o- -2

5 10
L~
--

(D
0~ -3
.C-10

04-4

-~10



8

6

4
-- O degrees

45 degrees
60 degrees

100 200
photon energy (eV)

300 400

Figure 2-6: The phase of the CV dipole transition matrix element of neon is plotted
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Chapter 3

Modeling the single atom response

When an atom is placed in an intense IR pulse, the oscillating electric field of the

latter perturbs the electron cloud. As a result of the perturbation, the atom acts like

an antenna and radiates high-order harmonics. The goal of modeling the quantum

mechanical interaction between the laser and the atom, referred to as the single atom

response, is to calculate the atomic dipole acceleration term. The atomic dipole

acceleration acts like the source term in the maxwell's equation

In this chapter, two techniques for calculating dipole acceleration, the semi-classical

three step model and the numerical time dependent Schr6dinger equation, will be

presented. Then the ionization models used in the TSM will be compared with the

ionization rates calculated from TDSE. The effect of the ionization models on the

HHG spectrum will be studied. Finally, the TDSE and the TSM will be used to

explore generation of isolated attosecond pulses by non-sinusoidal sub-cycle pulses.

3.1 Three Step Model

As the name suggests, the dynamics of an atom in a laser field that produces high

harmonic generation can be divided into three distinct steps namely ionization of a

single electron, its propagation and recombination. This is illustrated in Figure 3-1.

In step (a), the electric field (yellow line) alters the shape of the coulomb potential

allowing the electron to tunnel through the barrier. In steps (b) and (c) the electron
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travels classically in the continuum (neglecting the influence of the coulomb potential)

and returns back to the atom when the electric field reverses directions. In step (d)

the returning electron collides with the atom and may be scattered or absorbed. In

the case of the latter, its kinetic energy is released as a burst of photon energy as

shown in step (d). Next, each of the three steps of the TSM will be discussed

a b c d

Figure 3-1: Cartoon of the three steps in the Three Step Model: (a) ionization; (b,c)

propagation and (d) recombination. This Figure is taken from [1]

3.1.1 Ionization

A sinusoidal electric field with amplitude E and frequency w can ionize an atom with

ionization potential I, . It is assumed that only a single electron of the atom is ionized

while the rest of the electrons are frozen in the orbitals. This is often referred to as

the Single Active Electron Approximation (SAEA). The laser field is time dependent

and we can define an adiabaticity parameter called the Keldysh Parameter:

w = (3.1)
E

Depending upon the value of y , ionization can either be in the tunneling regime

y << 1 or in the multiphoton regime -y > 1 . In the tunneling regime, the electric

field is high and the frequency of the laser is small. The electron ionizes by tunneling

under the coulomb barrier. Multiphoton ionization occurs for small laser fields with
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high frequency. In this case, the electron absorbs many photons and gains enough

energy to overcome the ionization potential. The two limits of -Y determine which

ionization process is dominant. In reality, both of the ionization processes can co-

exist for intermediate values of -y . If the electric field is so high that it completely

suppresses the coulomb barrier allowing the electron to fly out of the atom, we refer

to it as the Barrier Suppression regime.

Ionization of an atom in the presence of a laser field has been intensively studied

[31, 32, 33] . The simplest case of ionization of an s orbital of a Hydrogen atom in the

presence of a static field was solved using the WKB method [34]. This corresponds to

-y = 0, and therefore the channel of ionization is purely tunneling. Later this idea was

extended to an arbitrary orbital of Hydrogen with effective principal quantum number

n* = Z/f(2I) , azimuthal quantum number l and magnetic quantum number m for

linearly polarized light[13] The ionization rate is

w(t) = An*,iBi,1mp (P -2(21P)3/2) 2n* Im-1 xp 2(2IP) 3/ 2  (3.2)
31EI 31EI

where

22n*
An.,l = n (3.3)

n*P(n* + I + 1)F(n* - 1)

and

Bi,1ml = (2l + 1)(l + Jm)! (3.4)
2ImI|m!(l - Im)!

In literature, it is commonly referred to as the ADK theory. E is the electric field.

The time dependent ionization rate can be found by replacing E -+ Eo cos(wt) .

This is valid as long as w << I , i.e the ground state wavefunction can adjust

itself adiabatically to the laser field perturbation. The WKB method used to derive

Equation 3.2, implies that the electron emerges with a zero velocity after tunneling.

The two limits of -y only tell us which of the two ionization regimes dominate.

In reality, multiphoton ionization and tunneling ionization co-exist. Therefore, the

ADK ionization rate will give smaller ionization rates even in intermediate values

of -y . Another method to calculate the ionization rate has been shown using the
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Landau-Dykhne method [35, 36]. Detailed discussion on Landau-Dykhne method

can be found in [37]. This method is valid in the adiabatic regime and can account

for multiphoton ionization and referred to as Nonadiabatic tunnel ionization [36]. The

non-adiabatic ionization rate is given by

w(t) = N(t)exp( - (-, 0(t)) (3.5)

where the phase dependence is given by

1 3/b-a vb+a
D(, 0) (y 2+ sin 2 + -)Inc - sin0 - ba (3.6a)

2 2V/2 2v'2y

a= 1 +-V2 - sin2o (3.6b)

b = a2 + 472 sin2 0 (3.6c)

+ a b + sn )2 (3.6d)

and the prefactor is given by

N(t) = ABimi (3, 1/2 ( 2(2I)3/2 2n-Imi-1 (3.7a)

( y3 )31EI

K= ln(y + 2+ 1) - 2+ (3.7b)

C = (1 + 12)(iml/2+3/4) + Am(W, 1) (3.7c)

C is the correction to the quasistatic limit 1 << 1 of the preexponential term [31,

32, 33]. The main difference between Equation 3.2 and Equation 3.5 is due to the

difference in the exponential term.
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3.1.2 Propagation

Once the electron appears in the continuum, it is accelerated by the sinusoidal laser

field. We assume that the field is so strong that we can neglect the influence of the

coulomb potential. This is called Strong Field Approximation (SFA). A free electron

placed in a sinusoidal electric field obtains a time average kinetic energy called the

ponderomotive energy. It is defined as

UP = (3.8)
= 4w2

According to the ADK theory of ionization, the electron appears in the contin-

uum with zero velocity. We then treat the motion of the electron in the laser field

classically. Depending on the phase of the laser field at which the electron appears

in the continuum, it may or may not return back to the atom. This is shown in the

Figure 3-2.

As we can see in Figure 3-2, some of the trajectories never return back to the

atom. The cyan line represents the trajectory that returns back with the maximum

kinetic energy. This corresponds to the highest harmonic also known as the cut-off

Wmax = 1p + 3.17Up (3.9)

Those trajectories, which are born after but return back before the most energetic

trajectory, are short trajectories. Those, that are born before but return back before

the most energetic trajectory are called long trajectories.
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Figure 3-2: Plot of the electron trajectories. A 800 nm driver field (blue sinusoid)

ionizes the electron which follow classical trajectories after birth. The most energetic

trajectory (cyan) determines the cut off of the HHG spectrum. A pair of trajectories,

short and long, return back with the same energy.

Figure 3-3 show the ratio of kinetic energy and ponderomotive energy at the time

of return as a function of birth phase with respect to the laser field (dashed line).

Except at the cut-off, one can find a pair of trajectories, long and short, that return

back with the same energy. However, they have a different phase and therefore one

can observe interference at harmonic away from the cut-off.

3.1.3 Recombination

The returning electron can recombine with the parent atom. The difference between

the kinetic energy of return and the energy of the final state is emitted as a photon.

The recombination step will be discussed in detail in Chapter 4.
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Figure 3-3: Ratio of the kinetic energy of return and the ponderomotive energy (solid
red) has been plotted against the phase of the electric field (blue dashed). The most
energetic trajectory is born about 0.38 radian after the peak of the electric field

3.1.4 Derivation of the three step model

The single electron wavefunction can be divided into the ground state and the con-

tinuum state:

1,(t)) = ag(t)e-'Pt g) + (t)) (3.10)

Here, lag(t)|2 is the groundstate population that decays due to ionization. It can

be calculate by using the ionization models presented in Equation 3.2 and Equa-

tion 3.5.The part of the wavefunction in the continuum state can be written as a

superposition of volkov states:

I W(t)) = ak(t)k + A(t)) (3.11)

By applying the volkov propagator on the ground state, the expression of the contin-

uum state becomes:
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I(t)) = -if dt'Uv(t, t')E(t')za,(t')e-IP'' g) (3.12)

The amplitude of each volkov state can be calculating by projecting the continuum

state on the corresponding volkov state: ak(t) = (k+A(t) (t)). As a result, Equation

3.12 becomes

ak (t) = -i dt'e-iS(k, ,t') E (t')ag(t')(k + A(t')IzIg) (3.13)

Equation 3.12 can be thought of in terms of Feynman paths. At the time t' the ground

state makes a transition to the vokov state Ik + A(t')) due to the electric field E(t').

Once in the volkov state, the electron evolves like a free electron in an electric field

(SFA). Since the interaction can take place at all times, one needs to integrate over

all the interaction times t' (also referred to as birth time). The quantum mechanical

phase is given by the action term S(k, t, t')

S(k, t, t') = dt"1  + 2 + -2(t - 1') (3.14)

where 17 = V2Ip + kJ and the momentum can be separated into a part parallel to

the electric field and a part perpendicular to it (k2 = k 2 + k2).

Due to fast oscillating action term, Equation 3.13 can be solved by integrating

around the saddle point ts, where the first derivative of the action is zero. The action

term (Equation 3.14 ) can be expanded around the saddle point:

a2s
S(k, t, t') S(k, , ts,) + at'2  (t - tP)2  (3.15)

The saddle point is calculated by

OS (k-+ A(t8 ,)) 2
_ -

= 2 I = 0 (3.16)
whc gsp

which gives
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kz + A(tsp) = -i (

The next step is to expand Equation 3.17 around the real part (tr,) of the saddle

point (t" - tr + it',). By fourier expansion to the first order term, Equation 3.17

becomes:

kz + A(tr,) - iE(tr )(t,) =-i (3.18)

The real and the imaginary part of Equation 3.18

kz + A(ti,) ~0
kz+AS
ti ~ I

" E(tr,

(3.19a)

(3.19b)

Equation 3.19a means that the velocity of the ionized electron in the direction of laser

polarization at the time of birth is zero. Next, each term in the right hand side of

Equation 3.15 can be expanded around tr,. The expansion of the zeroth order term

is:

S(k, t, tsp) = S(k, t, tr,) +
as 1 a 2S

at (iti,) + 2! &t2,sp t r sp tr

1 D3 S
(iti, + 3! (iti,)3 (3.20)

3! sp t P

Due to Equation 3.19a, the first and the second order can be approximated to zero.

Equation 3.20 then reduces to

S(k, t, tsp) = f dt" (kz + A(t")) 2

J-r 2

Expansion of the second order term in the right hand side of Equation 3.15 gives

a2 s
a2'S (t' - tS) 2 = -(kz + A(ts,)E(ts)(t' - tSP)2

at2 sp
(3.22)
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which when expanded around the real time t, becomes

a2 S 27 (
at'2 t - tP) (3.23)

Next, we handle the non-exponential prefactors of Equation 3.13. The dipole matrix

element for is orbital of Hydrogen is given by

(kzg) 27/2(2 I)5/4 k) 3

7r (r/ 2 + k2)
(3.24)

Equation 3.24 is expanded around the real part of the saddle point tr,. We get,

(k + A(t')Izlg) /i 2 (21)5/4 kz + A (t) E(tr )(t' - t)SP SP SP

S 2 + (k, +

Making the transformation 0 = E(t'P)r(t'

/t .27/2 (2 1) 5/4 gj
ak(t ) = - i jd9~i 1 ? a,(t,) xf 7 - (172 + 02)3

( ft (kz + A(t")) 2  r72 (t - t -
exp V ]I dt" + P

s'pt22

(3.25)

A(tr,) - E(t8 ,)r(tl - tr

,), and by using kz + A(t) ~0,

(3.26)

i t 3
3E(tr,)

- 0 77)
2E(tr,

Evaluating the following integration using Cauchy integral theorem:

-dO (272 + 02)3 2E(ti)2 1
= i2r

8E(tr )71'

Equation 3.26 is reduced to

ak (t) = a(t')f(E, rS)eis(k~t~t;P)

where

21/2 (2I )5/4
) -i E ?, 2exp7

JE(t',)|r/

3' 3/2

3JE(tr )I
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By integrating Equation 3.29 over the perpendicular momenta, it can be expressed in

terms of ADK ionization rates. The details of this derivation can be seen in Appendix

B of [38].

_(2I_)2 lw(E(tr,))
f(E, Ip) = -i (3.30)

Using ak(t), the continuum wavepacket in Equation 3.11 can be calculated. Next, the

atomic dipole acceleration is calculated by either first calculating the dipole moment

and then taking double derivative with respect to time or by directly calculating the

dipole acceleration by using the Ehrenfest theorem:

((I) = a*(t)(gjzjp(t)) (3.31a)

(t) = a*(t)(g - azV(r)yP(t)) (3.31b)

Here V is the atomic potential. The detail of calculating Equation 3.31a and Equation

3.31b, will be presented in detail in Chapter 4. To solve Equation 3.31b, we first

expand it in the momentum basis,

= a*(t) J d3 k(g| - &zV(r)|k + A(t))(k + A(t)|p(t)) (3.32a)

((t) = a*([) d3k(g| - O2V(r)lk + A(t))a(t' )f(E, rS)Pis(kt~t) (3.32b)

which can then be evaluated by taking the saddlepoint approximation with respect

to momentum

S(k, t, t;,) = S(k8 , t, tr) + V, t (k - k8 p)2  (3.33)

where V2S(kp, t, tr,) = (t - ). Finally, calculating Equation 3.32b by integrating

around the saddle point, we get:
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.. ~a*(t ja(tr _P) w( Et'_,
2(t) = 2 F/2 r(21) 1/4er/4  E -s (tr-) (3.34)

The the expression for dipole acceleration in Equation 3.34 can be thought of in terms

of electron trajectories. The dipole acceleration at time t is due to trajectories born at

tr_ and returning back to the electron at t; a(tr,_,) and w(E(t' 8 ,)) are the ground

state amplitude and the ionization rate at the time of birth; a*(t) is the ground state

amplitude at the time of return; and (t - t ,_) 3/ 2 is the quantum diffusion term.

3.2 Numerical Time Dependent Schrodinger equa-

tion

We can solve the Time Dependent Schrddinger Equation of the atom-laser interaction

numerically. Since the wavelength of the electric field is much longer than the trajec-

tory of the electron, dipole approximation (E(r, t) ~ E(t)) can be made. This means

that magnetic field (V x E = -) is ignored. Then the Schr6dinger Equation in

length gauge for the wave function and coulomb gauge for the electromagnetic field

can be written as

i '(rt) = + Veff(r) -E(t) .r (rt) (3.35)
at 2

TI(r, t) is the ground state wavefunction, Vff(r) is the effective potential as defined in

Equation 2.5. Solving Equation 3.35 involves discretizing the Schr6dinger equation in

space and then propagating it in time. Let us look at each of these steps separately.

3.2.1 Discretization in Space

The presence of coulomb singularity can make the discretization of space in our prob-

lem a tricky affair. Smoothing the singularity is commonly used to circumvent this

problem. This involves replacing the singularity at r = 0, which is proportional to

1/r, by either Z/(r + a) [39] or Z//r 2 + a 2 [40] . However, smoothing the singular-
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ity can give incorrect photon yield by orders of magnitude. This is because of the

different analytic behavior of the potential close to the origin is critical to the calcu-

lation of recombination amplitude [411. According to the TSM, the amplitude of the

emitted radiation is proportional to double derivative in time of the recombination

amplitude [42]. If the returning electron is assumed to be defined by a plane wave,

then calculation of the recombination amplitude is equivalent to finding the Fourier

transform of the first excited state (first excite state ~ rog(r)) [41].

arec(k) = (glzjeik) 2 ) 3 2  drVl* u(r)zeikz (3.36)

The Fourier transform of a function is sensitive to the discontinuities in the derivative

of the function. In the absence of any derivative discontinuity, the transform decays

exponentially for large k . If a discontinuity is present, the transform decays like

a power law whose exponent is determined by the order of the derivative of the

discontinuity [41]. Since the coulomb singularity is responsible for the discontinuity

in the first derivative of the wave function, it is important that we treat it carefully.

Singularity in our problem can be handled using Asymptotic Behavior Correspon-

dence (ABC) [43]. Cylindrical co-ordinate system is used as symmetry considerations

can help reduce the three dimensional problem to a two dimensional problem. In

cylindrical co-ordinate system laplacian operator is

D2f 1 (92f 1 &f (92f (.7

Af = + - + - + (3.37)a2, P 2 a20 p jop a2Z

Substituting f = the laplacian becomes

a2q 1 (92f 92q g q
Ag =- + - + a;+ - (3.38)

&2p p2a2g 0 2z 4p2

It should be noted that the cylindrical symmetry breaks down if the laser field is not

linearly polarized or the ground state does not have cylindrical symmetry.
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3.2.2 Calculation of ground state

Once we have set up the discrete Hamiltonian, the next step is to find the ground

state. Ground state is found using the Imaginary Time Propagation (ITP) method

[44]. We map time t - i-r and propagate a random guess for ground state using the

Schr6dinger equation in imaginary time:

S =(r, -) H 4(r, -) (3.39)
dT

A random guess of the initial state 'P(r, 0) can be written as a superposition of the

eigenstates of the hamiltonian

TI(r, 0) = Zcoi (3.40)

Inserting Equation 3.40 in Equation 3.39, the time evolution of each eigenstate is

(r) = erEi4 i() (3.41)

Ground state has the smallest energy and therefore the more energetic eigenstates

decay exponentially faster

V4i (T) -7-r(Ej-Eg) (3.42)
Pg (T)

3.2.3 Propagation in time

Once we have found the discrete ground state, the next step is to propagate this state

in time in the presence of the perturbative electromagnetic field. The Schr6dinger

equation is a parabolic partial differential equation. There are several techniques to

march the solution of a parabolic PDE in time. They can be divided into two broad

categories

Implicit Schemes: These schemes are unconditionally stable but can be numer-

ically expensive because they involve matrix inversion. Examples of Implicit schemes

are Crank Nicolson and Backward Euler.
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Explicit Schemes: These schemes have conditional stability and are relatively

inexpensive numerically. However, due to conditional stability, time and space dis-

cretization has to be carefully chosen to prevent the simulation from becoming unsta-

ble. Examples of Explicit schemes are Forward Euler and Leapfrog method. For our

numerical simulation we use the latter. Expanding the wave function in the eigen-

states of the atomic hamiltonian ('J(r, t) = cj(t)V$j(r)), the Schr6dinger equation

for each state becomes:

Cn+1 _ Cn-1

2t = -iEc (3.43)

Superscript n represents the time step. To calculate the time step n+1 , hamil-

tonian needs to be applied on the time step n . To find the stability of the numerical

scheme, the time evolution operator S , such that cn+1 - Sc . So the characteristic

equation for Equation 3.43 is

(S 2 + 2iAtES - 1)cn = 0 (3.44)

with solutions o1/ 2 = -iEAt ± /1 - (EAt)2 . Of the two solutions, only 0-2 is stable

provided 10-2 1 < 1. In other words, EAt < 1. Therefore the largest eigenenergy in the

simulation determines the largest time-step in the simulation. Since we know from

TSM, the largest energy in our simulation is the cut-off energy, we can choose the

right time-step accordingly.

To get a rough idea of the stability condition in our problem, we neglect the

atomic potential. Then the Hamiltonian reduces to a laplacian or the kinetic energy

operator. In the matrix formalism, it is a tri-diagonal matrix A (which has 2 as the

diagonal and 1 as the the off-diagonal term.) The discretized Schr6dinger equation is

qj+l _ pn-1 = -i A T (3.45)

Eigenvalues of tri-diagonal matrix with diagonal b and off-diagonal a is given by

Ej = b + 2a cos(Q). The above equation along with EAt < 1 gives the stability

condition
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4At < 
(3.46)

AX2<

In our code we use a stronger stability condition of At = 0.05Ax2 . Reflection

from the boundaries is prevented by using absorbing boundary conditions [45]. Once

the wavefunction is calculated as a function of time, dipole moment can be calculated

using the Ehrenfest theorem.

3.3 Results

3.3.1 Study of ionization rates

Two analytical expressions of describing the ionization of Hydrogen by a 800 nm IR

field have been discussed. The first is the ADK method (Equation 3.2) and the second

is the Non-adiabatic (NA) ionization (Equation 3.5). The ground state amplitude can

also be numerically calculated by projecting the time dependent wavefunction on the

numerically calculated ground state:

aNTDSE (t) )g p(t)) 2 (3.47)

We compare the analytical ionization rates with Equation 3.47 in two regimes: (a)

tunneling regime ('y = 0.5), Figure 3-4 and (b) multiphoton ionization regime (-y = 1)

Figure 3-5. In the tunneling regime, the ADK formula overestimates the ionization

while the NA and NTDSE models predict almost the same ionization rates. In the

multiphoton ionization regime, both the NA and the ADK theories predict a higher

ionization rate than the NTDSE.

3.3.2 Effect of the interplay of multiphoton and tunneling

ionization on HHG spectrum

In this section, the effect of the choice of the ionization model on the HHG spectrum

is investigated. As it was evident from the comparison of ionization models in the
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Figure 3-4: Ionization from Hydrogen by 800 nm IR pulse with electric field E
0.104 au. This corresponds to a keldysh parameter of -y = 0.5.

previous section, the two ionization models used in the three step model greatly differ

from each other in the regime where multiphoton ionization becomes important (7 ~

1). At the wings of the driver pulse, the electric field is small and as a result, -y becomes

large. Similarly, as the wavelength of the driver pulse decreases, -y increases. In Figure

3-6, the ionization rate calculated using the ADK and the non-adiabatic model (here

referred to as YI) are compared for a 400 nm driver pulse with y - 1 (Panel a). In

Panel (b), the respective HHG spectra are compared. Similar comparison is made in

Figure 3-7, for 800 nm driver pulse with -y ~ 0.52. Once again, we find that the NA

ionization model predicts greater ionization rates than the ADK model and this effect

is strong when -y - 1 (for shorter wavelength driver and at the wings of the IR pulse.)

Due to the difference in ionization rates, the HHG spectra also differ from each other.

To further illustrate the dependence of the HHG spectrum on the ionization model,

the spectrograms of HHG spectrum generated by 400 nm and 800 nm driver pulses
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Figure 3-5: Ionization from Hydrogen by 800 nm IR pulse with electric field E =

0.057 au. This corresponds to a keldysh parameter of -y = 1

are calculated and compared. The spectrograms are calculated using a short-time

Fourier transform with a Gaussian window function which has a FWHM of 58 as. As

we can see in Figure 3-8, the spectrograms generated by 800 nm are insensitive to

the choice of the ionization model. However, for 400 nm driver pulse, the difference

between the two model is evident, particularly in the wings of the driver pulse.
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Figure 3-6: Ionization rates and spectral intensities of single-atom response of He

when using the YI (gray) and ADK (red) theory for 400 nm, 26 fs, 1 mJ driver pulses

with a beam waist of 30 micrometers. This corresponds to (-y ~ 1). The insets show

the ionization rates for the wings of the fields and the spectral intensities for the

low-order harmonics pronounced three times This figure is taken from [3]
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Figure 3-7: Ionization rates and spectral intensities of single-atom response of He

when using the YI (gray) and ADK (red) theory for 800 nm, 35 fs, 2 mJ driver pulses

with beam waist of 40 micrometers. This corresponds to (-y ~ 0.52). The insets

show the ionization rates for the wings of the fields and the spectral intensities for

the low-order harmonics pronounced two times. This figure is taken from [3]
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Figure 3-8: Spectrogram of the HHG spectrum from 800 nm driver pulse using (a)

ADK and (b) YI ionization rates, respectively. Both models (YI and ADK) predict

similar low-frequency photon intensity in the wings of the driver pulse. This figure is

taken from [3]
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Figure 3-9: Spectrogram of the HHG spectrum with 400 nm driver pulse using (a)

ADK and (b) YI ionization rates, respectively. The YI model predicts a much higher

low-frequency photon intensity in the wings of the driver pulse than does the ADK

model. This figure is taken from [3]
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3.3.3 Isolated attosecond pulse generation

The pulse synthesizer developed in our lab can generate unique sub-cycle driver pulses.

The intensity profile of these sub-cycle pulse lasts for less than a cycle. As a result,

ionization can occur only at a few peaks and therefore, it is possible to generate iso-

lated attosecond pulses. In order to demonstrate this, we numerically solve the TDSE

of the interaction between the subcycle waveform (shown in panel (a) of Figure 3-10 )

with peak intensity of 6 x 10" W/cm2 . From the time dependent wavefunction, dipole

acceleration is calculated using the Ehrenfest theorem. The spectrogram ( Figure 3-

10b) is calculated using a short-time fourier transform with a gaussian windowing

function of 58 as FWHM.

To gain more insights into the results given by the 3D TDSE simulation, we also

calculated the ionization dynamics using the ADK formula (the red curve in Figure

3-10a) and the classical electron trajectories (overlaid on top of the spectrogram in

Figure 3-10b). Electron trajectories from three ionization events, which are labeled

in numbers, are calculated and those trajectories that return to the ionized atom are

shown in Figure 3-10b. For visualization purpose, electrons ionized by the electric field

with strength weaker than half of the maximum peak are neglected since they have

negligible contribution to the HHG emission, as confirmed by the TDSE simulation.

In HHG, quantum diffusion and ionization rate are two competing factors in deter-

mining the ratio between radiation from long and short electron trajectories. While

quantum diffusion always favors the short trajectories, when the HHG process is

driven by conventional sinusoidal electric-field waveforms, stronger ionization rate for

the long trajectories results in significant radiation from electrons of both trajectories.

For the example shown in Figure 3-10b, where a sub-cycle waveform is used, the differ-

ence in travel time between long and short trajectories is increased. In addition, the

ionization contribution to short trajectory radiation is boosted. Overall, quantum

diffusion dominates and effectively eliminates the radiation from long trajectories,

resulting in isolated soft x-ray pulse generation solely from short trajectories.

The peak intensity (6 x 1014 W/cm2 ) is chosen such that the total ionization is
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below the critical ionization level in helium. This intensity can be reached with a

beam diameter of 27 micrometers (1/e 2). The transmission and dispersion of the Sn

filter used for Figure 3-10c are taken from [REF See REF 4 of supplement]
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Figure 3-10: TDSE simulation results of interaction between sub-cycle driver with
helium. (a) Ionization dynamics (red) induced in helium by a linearly polarized
electric-field waveform (black) assuming a peak intensity of 6 x 10" W/cm2 . (b)
Spectrogram of the HHG superimposed with the calculated classical trajectories. Re-
turning trajectories from three ionization events (2: main pulse; 1,3: satellite pulses)
are shown for clear interpretation of the spectrogram. The synthesized pulse isolates
the ionization process to a half optical cycle, and a continuum spectrum spanning
more than 250 eV can be achieved. The isolated soft X-ray pulse has the same sign
of chirp over 80% of the spectrum so the compression setup can be simplified. (c) Iso-
lated sof X-ray pulse plotted in the time domain before (pink) and after (black line)
a 100 - nm thick Sn filter. The Sn filter is chosen for its ability to block the strong
IR driving field and the nonlinearly chirped low-photon-energy spectral content, and
its good transmission in the soft X-ray range. The filtered isolated soft X-ray pulse
has a FWHM duration of 150 as. This figure is taken from [46]
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3.3.4 Carrier envelop phase dependence of high-order har-

monic spectrum

Recently, coherent synthesis of multi-color broadband spectra has enabled the gener-

ation of phase controlled sub-cycle pulses [46, 47]. The capability of optimizing the

shape of the electric-field waveform of non-sinusoidal pulses, through modification of

its carrier and envelope, most notably the carrier-envelope phase (CEP) relationship,

enables control of strong field laser-atom interaction for XUV spectroscopy and at-

tosecond pulse generation. Although HHG from few-cycle to two-cycle pulses as well

as periodic trains of non-sinusoidal pulses has been amply explored [48, 49, 50, 51],

the case of sub-cycle pulses has so far only received limited attention. In this sec-

tion, we compare calculations for HHG driven by sub-cycle and 1.5-cycle pulses that

illuminate extreme carrier-envelope phase (CEP) sensitivity of the cut-off energy and

provide enhanced control for generation of attosecond pulses.

It has been theoretically shown that the electron recollision energy can by con-

trolled by shaping the electric field waveform within an oscillation period [51]. As the

FWHM driver pulse approaches the sub-cycle regime, the electric field envelope varies

rapidly from one half cycle to another and thereby facilitates strong CEP dependence

within a single optical cycle. Fingerprints of CEP dependence such as frequency

shifting of the harmonics close to cut-off and change in the shape of the cut-off itself

have been observed only for few cycle pulses. As we move towards sub-cycle pulses

(2 - 3 fs, 800 nm), the CEP effects are more dramatic. In this section, we identify

and explore two of these effects: change in the cut-off shape and energy and imple-

mentation of ground-state depletion gating for isolated attosecond pulse generation.

The discussion is based on the single atom response using the Three Step Model in

the single active electron approximation [38]. To keep the dynamics simple, we used

a Gaussian shaped pulse ensuring that there is no unphysical dc component.

The CEP dependent harmonic spectrum of Argon for a 2 fs (Figure 3-11 a) and a

4 fs (Figure 3-11 b) driver pulse at 800 nm and a peak intensity of 8.9 x 1014 W/cm 2

are shown. For the 4 fs pulse, the cut-off is made up of discrete harmonics for only
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a small range of CEP values from 0.27 to 0.57. For other CEP values a smooth

continuum is observed at the cut-off, indicating an isolated attosecond pulse when

properly filtered. The cut-off is a continuum when the CEP dependent electric field

waveform creates the most energetic photons in a single optical half-cycle. For the 2 fs

pulse, a broad continuum at the cut-off is always observed. Additionally, the energy

of the cut-off drops sharply by about 100 eV as we sweep the CEP form 0.27 to 7.

Conversely, now one can uniquely infer the CEP of a sub-cycle pulse by looking at

the cut-off of the harmonic spectrum. This is qualitatively different from the method

employed in [48], where the shape of the cut-off was used to determine the CEP. Since

there is only a single ionization event, harmonics are not observed rather we see an

interference pattern between the long and short quantum trajectories. Figure 3-11c

and Figure 3-11d show the electric field waveforms of the 2 fs sub-cycle pulse for CEP

values of 0.47 and 0.87, respectively. The green curve shows the energy versus time

plot of the returning trajectories and the electric field values where they are born is

highlighted in red. When the CEP value changes from 0.47 to 0.87, the electric field

following the ionization event gets suppressed and therefore the electron trajectories

return back with lower kinetic energy resulting in a red-shifted HHG spectrum.

The aforementioned behavior of the cut-off changes dramatically once again, when

the electric field becomes strong enough to deplete the ground-state ( Figure 3-12).

For the sub-cycle pulse of peak intensity 2 x 1015 W/cm 2 and zero CEP ( Figure 3-

12a) a smooth continuum centered at 45 eV is observed while at 0.57 CEP, harmonic

radiation is suppressed due to ground-state depletion (Figure 3-12d). For the 4 fs

pulse (Figure 3-12b), the harmonics between 40 eV and 80 eV show only a weak

CEP dependence. The drop in cut-off energy for both cases is due to ground-state

depletion before the most energetic electrons return to the atom. For the sub-cycle

pulse (Figure 3-12a), there is an additional effect: interference between short and

long trajectories within a single half cycle has disappeared because the ground-state

is completely depleted by the time the long trajectories return. Importantly, this

intra-cycle ground-state depletion allows for shaping of the isolated attosecond burst

spectrum and temporal duration. In contrast to the 2-cycle case where ground-
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state depletion has been used to generate isolated attosecond pulses [REF8] where

depending on CEP one or two attosecond bursts of XUV photons are generated,

with sub-cycle pulses, isolation of a single pulse takes place uniformly, and the CEP

can be used to control attosecond pulse properties. Most notably, pulse emission is

completely suppressed for CEP around 0.57r.
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Figure 3-11: CEP dependent harmonic spectrum at 800 nm for a laser pulse of du-
ration (a) 2 fs pulse and (b) 4 fs pulse at peak electric field 8 x 1014 W/cm2 . (c) and
(d) show the electric field waveform (blue) and the kinetic energy versus time plots
of the trajectories (green) for CEP of 0.41 and 0.87r respectively. The electric field
corresponding to the birth of the trajectories is marked in red
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Figure 3-12: CEP dependent harmonic spectrum at 800 nm for a laser pulse of dura-
tion (a) 2 fs pulse and (b) 4 fs pulse for peak electric field 1 2 x 1015 W/cm . In (c)
and (d) the 2 fs electric field waveform (blue) and ground- state population (green)
for CEP values of 0 and 0.57w respectively
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Chapter 4

Recombination Amplitude

4.1 Introduction

The three step model (TSM) is commonly used to describe the dynamics of an electron

in the strong field regime, which is responsible for generation of high-order harmonics

[13] . In this semiclassical description, the dynamics of a single electron is simplified

into three distinct steps: ionization, propagation and recombination (back to the

orbital of origin in the parent atom or molecule). The amplitude of the harmonic

dipole is determined by a product of the amplitudes of each of the three steps [42].

In the TSM, it is assumed that while the first two steps are affected by the strong IR

field; the recombination step, which leads to the generation of high-order harmonics,

is not affected by the strong IR field. It has been shown that the qualitative shape of

the plateau in the HHG spectrum almost exclusively depends on the recombination

amplitude [52, 19, 53]. Additionally, the recombination step serves as a probe that

imprints information about electronic orbital [15], atomic attosecond dynamics [17,

54] and molecular motion [55] onto the harmonic spectrum. The central role that

the recombination step plays in the aforementioned experiments serves as a strong

motivation for a systematic study of the recombination amplitude of noble gases

commonly used in HHG.

The recombination amplitude describes the transition of the returning electron

back into the atomic orbital from where it originated. The strength of this transition
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is given by a dipole transition matrix element that depends on the wavefunction used

to describe the returning electron. Since, it is not possible to calculate the exact

many-body eigenstates of the electrons in the atom, one needs to resort to various

approximations to describe the electronic wavefunction. A key assumption made in

the TSM is that only a single electron participates in the HHG process while the ion

core remains frozen. In this picture, the electron from the outermost valence orbital

aligned along the laser polarization tunnel ionizes and upon return recombines to

the same orbital. This is called the single active electron approximation (SAEA)

(See Equation 2.5). In this chapter, we use an effective atomic potential (VHFS) to

calculate the bound and continuum eigenstates. The effective atomic potential is

obtained from the Hartree Fock Slater (HFS) model which employs a local density

approximation for the exact exchange interaction [25]. An important consequence

of approximating the exact manybody eigenstate with the eigenstates of VHFS while

using the exact hamiltonian in the acceleration form, is that the form invariance of

the dipole operator is lost, i.e., the recombination amplitude depends upon whether

the dipole operator is in the length, or in the acceleration form [56].

Another important assumption made in the TSM is that after ionization the elec-

tron moves only under the influence of the laser field without any interaction with

the Coulomb potential of the ion core. The rationale behind this assumption, often

referred to as the strong field approximation (SFA), is that in strong-field processes

like HHG, the ionized electron can travel hundreds of Bohr radii away from the atom.

Therefore, its trajectory, for the most part, is that of a free electron in an external

electric field which can be described by Volkov states (plane waves with timedepen-

dent momentum) [57]. The basic assumptions of SFA are: (a) neglect the laser field

for the calculation of bound states and (b) neglect the core Coulomb potential for

the calculation of the continuum states [58]. A recently measured HHG spectrum of

Ar is shown to have a deep minimum (related to the Cooper minimum of its photo-

electron spectrum) that is independent of the laser intensity or wavelength [4, 59].

See Figure 4-1. This Cooper minimum of the HHG spectrum can be theoretically

reproduced if the ionized electron is defined by outgoing scattering eigenstates [60]
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(which are the continuum eigenstates of the effective potential VHFS) rather than

plane waves while keeping the bound states as eigenstates of fieldfree Coulomb po-

tential [4]. This indicates that while the first assumption of SFA appears to be valid,

the second assumption is not accurate. Hence we are motivated to use the outgoing

scattering eigenstates rather than the plane (Volkov) waves in the calculation of the

recombination amplitudes of all noble gases used in HHG.
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Figure 4-1: Experimentally observed HHG spectrum of Argon for different JR inten-
sities: (a) 2.5 x 1014W/cm 2, (b) 2.9 x 1014W/cm 2 and (c) 3.5 x 1014W/cm 2 . The
position of the minimum is independent of the JR intensity. This figure is taken from

[4]
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Since photorecombination and photoionization cross sections have the same dipole

transition matrix element, the recombination amplitude can be compared with the

extensively studied photoionization cross section (PICS). Like the cooper minimum

in the HHG spectrum, a cooper minimum has also been observed in the total pho-

toionization cross section of argon. See Figure 4-2. Interestingly, the positions of

the two minima are almost energetically identical. This suggests that the theoretical

techniques applied to calculate photoionization from an atom can be applied to calcu-

late the recombination process inspite of the presence of a strong IR field in the latter

case. The mathematical relation between the recombination amplitude and the PICS

will be discussed in detail in this chapter. The central potential model with a single

active electron has also been used to calculate the PICSs in the extreme ultravio-

let regime (0 - 100eV) [22] and xray regime [61] which are in qualitative agreement

with experimental results. However, this simple model does not take into account

interchannel coupling needed to explain the PICS of 3p shell in Ar and 4d shell in

Xe [621. Techniques such as Rmatrix theory [63], random phase approximation with

exchange (RPAE) [64] incorporate interchannel coupling as a perturbation, while the

relativistic random phase approximation (RRPA) [65, 66], in addition, also includes

the relativistic effects. PICSs calculated using the RRPA match very well with the

experimental measurements [67]. As we will see, it is possible to calculate the pho-

torecombination cross section (PRCS) from PICS. In principle, by comparing the

PRCS obtained from RRPA with the PRCS obtained from our recombination ampli-

tude calculation, one can discuss the limitations of the central potential model with

a single active electron. However, due to lack of nj resolved PICS data from RRPA,

we compare the differential photoionization cross section from our theory with that

from RRPA.

In this chapter, we extensively investigate the recombination amplitudes of the

commonly used noble gases in HHG. We show that the recombination amplitude ver-

sus emitted photon energy critically depends upon the choice of the wavefunction

used to describe the returning electron as well as the form of the dipole operator. In

some cases, the square of the absolute value of the recombination amplitude can differ
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by two orders of magnitude because the Cooper minima are located at different ener-

gies. This is critical when predicting the efficiency of HHG process and in attosecond

pulse generation at certain photon energies. In order to show the limitation of the

central potential model, we compare the PICSs calculated using our recombination

amplitudes with PIGS obtained from the RRPA. This chapter is structured as follows:

first we derive the recombination amplitude and show how to calculate PRCS from

PIGS. Then, the results are discussed and compared with the PIGS data calculated

using RRPA [68].
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4.2 Derivation of the Recombination Amplitude

In the TSM formalism, the expression for the dipole moment and dipole acceleration

of an atom interacting with intense IR field are:

2(t = 24r2,ii b(tnb(t))b(t) w(E(tnbMt)) an-iSn (t) (4)

nt) =E(tnb(t)(t - tn 2 re

= 2 4 r(2I4)es b(tnb(t))b(t) w(E(tnb(t))) iS(t) (4.2)

n E(tnb(t)(t - tnb)2

We briefly review the terms in this expression: ((t) and 7(t) are the dipole moment

and the dipole acceleration terms respectively; E(tnb) is the electric field of the IR

field at the time of birth of the nth trajectory; w is the ionization rate that depends

on the electric field at the time of birth; b(t) and b(tnb(t)) are the ground state

amplitude at the time of birth and at the time of return of the trajectory; Sn(t) is the

action; [p is the ionization potential of the atom. The expressions for dipole moment

(Equations 4.1) and dipole acceleration ( Equation 4.2) differ only by the form of the

recombination amplitude: the length form alen gives the dipole moment while aacn

gives the dipole acceleration. We would expect that due to form invariance, taking

the second derivative of Equations 4.1 would reproduce Equations 4.2. However, due

to the various approximation made ( single active electron approximation, strong field

approximation, saddle point approximation) in order to obtain the three step model,

the form variance is lost.

The recombination amplitude or the dipole matrix element of transition from a

momentum normalized free state |X'k)to the bound state |ixg) can be written in the

length and the acceleration form:

aen(k) = ('I gl Zk) (4.3)

aacn( k) = ('Pg| - OVzl'Pk) (44
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When used in the TSM, Equation 4.3 gives the dipole moment and Equation 4.4

gives the dipole acceleration [20].The recombination amplitude in the length and the

acceleration form are related by:

({ gI - aVzl'Jk) = Wgk('Pg ZI'k) (4.5)

where

Wgk = + I, (4.6)

is the energy of the photon emitted after recombination, k is the momentum of the

ejected electron and I is the ionization potential. Although we use an effective

Hartree-Fock-Slater potential VHFS to calculate the electronic eigenstates, for the

calculation of the recombination amplitude in the acceleration form, the exact multi-

electron potential used in Equation 2.3 is used. Since the electron-electron interaction

term cancels out, we get

{@g| - aVzIPk) = -ZN('Pgl Z Jqk) (4.7)

where ZN is the atomic number. Validity of Equation 4.5 is predicated upon the

usage of exact many-electron wavefunction for bound and free states.

We begin the calculation of the recombination amplitude by expanding the plane

wave in the spherical co-ordinate system as an infinite sum of free spherical waves.

For simplicity, it is assumed that the ionized electron moves along the z-direction.

This allows us to limit the expansion to spherical waves with m1 = 0. Then the

momentum-normalized plane wave and the ground state, projected on the r space

become

00

(r = ) E= a k Yo(Q,); a, =+(4.8)1=0 2k 7r

(r@g) -= Y(Q); (4.9)
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The radial part 7 1 is proportional to the momentum-normalized spherical Bessel func-

tion of the first kind:

Uk= -j1 (kr) (4.10)
7

Yio(Q,)is the spherical harmonic with zero magnetic quantum number. The radial

part of the ground state orbital is calculated by solving the Hartree-Fock-Slater eigen-

value problem using a generalized pseudospectral method [69, 70] on a non-uniform

grid. Recombination amplitudes for the plane waves are calculated by inserting Equa-

tion 4.8 and Equation 4.9 in Equation 4.3 for the length form, and Equation 4.4 for the

acceleration form. The calculation is simplified because the summation over all an-

gular momenta is reduced to the terms that satisfy the dipole selection rule Al = ±1.

Then, the recombination amplitude of a plane wave into the outermost orbital of He

11 = 0, mi = 0) in the length and acceleration form are given by Equation 4.11a and

Equation 4.11b respectively. For other noble gases where the outermost orbital is

11 = 1, mi = 0), the recombination amplitude of the plane wave in the length and the

acceleration form are given by Equation 4.11c and Equation 4.11d respectively.

ap1  -

alen(k) = a1c1 (ugfrjuP) (4.11a)

a(IP(k) = -aic1ZN(ugj-1 IU 1  (4.11b)

aen .(k) = aoco(ugIrjuP1) + a2c2(u 1~rluk) (4.11c)

agal(k) = -aocoZN(ugj IUP1) - a2c2ZN (ugI-1Iu) (4.11d)

Here, a1 is the coefficient of expansion as shown in Equation 4.8 , cl = (Y =0I cos 0 Ym=O)

is the angular part of the integral and ug(r) is the radial part of the ground state

orbital. Using cos 0 = Y10 , we can express cl in terms of Wigner 3j symbol [27]:
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I Y1mi (0, 5)Y12m2 (0, 0)Y 3m 3 (0, #) sin 0d~d

(21 + 1)(212 + 1)(213 + 1) 12 13 ( (4.12)

4V 4 0 0 0 m) (M 2 M3)

For a spherically symmetric potential, the outgoing scattering eigenstate can be

obtained by replacing the radial part of the free spherical wave up in Equation 4.11 by

the radial part of the corresponding partial wave e(61+0')uck [34]. The radial part of the

continuum states is solved by the fourth-order Runge-Kutta method on a uniform grid

[22, 71] using the Hartree-Fock-Slater potential to calculate the ground state. Similar

to the case of the plane wave, the recombination amplitude in the length and the

acceleration form of the outgoing scattering eigenstate for He (Equation 4.13a and

Equation 4.13b) and other noble gases (Equation 4.13c and Equation 4.13d) are:

ale(k) = cIrIu") (4.13a)

1
a'c (k) = -ajcZNei(+i) (U 1 -u (4.13b)

(k acoe(o±Uo)(ugIr Iuso) + a2 c2e(+o2)(ug~rlu ) (4.13c)

a (k) = -aocoZNei( 6 0+oo) I ) a2 c ZNei( 6
2+C2) d

In the asymptotic limit, the radial part of the partial wave and the free spherical

waves become:

8 2 IT
Uka - - sin(kr - - rfn2kr + oa + 61) (4.14)

r-+oo 7r 2

Uk1 r - sin(kr - ) (4.15)
r-+oo qjr 2

In the asymptotic limit, the radial part of the partial wave (Equation 4.14) and the

radial part of the free spherical wave (Equation 4.15) differ by a phase shift which is
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composed of three terms: the r dependent phase term is due to the long-range nature

of the Coulomb potential, o is the Coulomb phase shift and 61 is the phase shift

against the regular coulomb wave (due to the short-range part of the HFS potential

VHFS ) [28]. The two terms in Equation 4.13c and Equation 4.13d correspond to s

and d partial waves that satisfy the dipole transition rule for the bound p orbital. In

Figure 4-3, the length form radial transition matrix element of the s wave ((ug1rlusc))

and d wave ((ugjrju')) are plotted. Interplay between the two terms determines the

minimum in the recombination amplitude, which manifests itself in the commonly

observed Cooper minimum in Ar [4, 59, 72].
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Figure 4-3: The radial dipole transition matrix elements for the s wave and the d
wave. After 26eV, the s- and the d-wave have opposite sign. This leads to a minimum
in the recombination amplitude and therefore a minimum in the HHG spectrum.
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4.3 Results and Discussion

In Figure 4-4, the square of the absolute values of the recombination amplitude -

calculated using plane waves and outgoing scattering eigenstates and dipole moment

in both the length form and the acceleration form - have been plotted for Ar and

Kr. In order to compare the length and the acceleration forms, the former has been

multiplied by a pre-factor as shown in Equation 4.5. Calculations using the plane

waves and the outgoing scattering eigenstates differ by almost two orders of magnitude

around the experimentally measured Cooper minima (- 50eV for Ar and - 85eV for

Kr) because the locations of the minima predicted by the plane wave are way off from

the experimentally measured values. The results are also dependent on the form of

the dipole operator: for outgoing scattering eigenstates, the minima for the length

and the acceleration forms are located at 44 eV and 86 eV respectively for Argon,

and 68 eV and 235 eV respectively for Krypton. The plane wave fails to reproduce

the experimentally observed minima irrespective of the form of the dipole operator.

This suggests that using a plane wave to describe the returning electron is a poor

approximation which has also been demonstrated in the calculation of HHG spectra

from molecules using quantum rescattering theory [27]. Hence, for the rest of the

paper, we will only focus on outgoing scattering eigenstates.

For outgoing scattering eigenstates, we have compared the square of the absolute

values of the recombination amplitude of various noble gases. In Figure 4-5 and

Figure 4-6 these comparisons are shown for the length form and for the acceleration

form respectively. The plots of different gases vary significantly as a function of the

emitted photon energy. This information is crucial in determining the choice of gas

for HHG in a particular energy range. The effect of the choice of the dipole form

on the recombination amplitude of a given gas can be observed by comparing the

plots in Figure 4-5 and Figure 4-6. For He and Ne, the results are quantitatively

similar. As we move to heavier gases, the effect of the choice of the dipole form

on the recombination amplitude becomes evident due to form-dependent minima.

Therefore, we need to determine which form of the dipole moment is more suitable
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in the modeling of HHG.

In modeling of HHG using the TSM, the acceleration form is often preferred be-

cause in the calculation of macroscopic propagation of HHG, the dipole acceleration

is proportional to the polarization term in Maxwell's Equation. Usage of the length

form would require taking a double time derivative which can become numerically

cumbersome in 3-D modeling of the HHG process . Two reasons have been put forth

in favor of the acceleration form. First, it has been shown that the high harmonic

spectrum of hydrogen obtained from TSM is in better agreement with exact time de-

pendent Schr6dinger equation when the recombination amplitude in the acceleration

form is used [20]. Second, experimentally observed scaling of HHG intensity with

the atomic number of the noble gas has been explained using acceleration form in

its exact form as shown in Equation 4.5 [21]. Due to the presence of atomic number

ZN in Equation 4.5, heavier atoms will have a higher recombination amplitude and

therefore a stronger HHG radiation.

In both of the aforementioned studies (ref [20] and [21] ), preference for the accel-

eration form stems from the fact that the returning electron is described by a plane

wave rather than an outgoing scattering eigenstate. For hydrogen, when an outgoing

scattering eigenstate is used to describe the returning electron, the recombination

amplitude is form invariant. Similarly, PICS calculated using outgoing scattering

eigenstate (of the effective central potential) and length form, increases for heavier

gases [22]. Since PRCS is proportional to PICS (Equation 4.22), the former should

also increase for heavier gases which explains the increase in HHG yield with atomic

number. Hence, it is unclear if the acceleration form is inherently better than the

length form. As discussed in the introduction, the lack of form invariance is due to the

limitations of the SAE model based on a central potential. Since this approximation

is extensively used to model HHG, it is important to know which of the two dipole

forms can better reproduce the experimental results and in which energy regimes. In

order to do so we will compare the total PICS obtained from our HFS model with

the total PICS obtained using RRPA.
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Figure 4-4: Square of absolute values of the Recombination Amplitude of Argon

and Krypton for Plane Wave (PW) and Scattering Eigenstate (SC) in Length Form

(LF) and Acceleration Form (AF): green dashed (PW-LF), black dashed (PW-AF),

green solid (SC-LF) and black solid (SC-AF). In order to compare the length and the

acceleration form, the former has been multiplied by W,4 (See Equation 4.6)
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Figure 4-5: Square of the absolute value of the recombination amplitude for outgoing

scattering eigenstates in the length form.

93



2 Acceleration Form
0 ........................... ..............I ...............

....... .................. ........... ......................... ............................... -H e.... ......................................................................... .....I ....................... ...............
............................................ ............... N e

....... ................ ... A r1 0 .. .................. ........... ....... ........................ .................. K rV . .................................................. ............................... ...............
A .....

Xe
0 1 Owl..... ...... A1 0 ............. 6

Cq 0 1: .... ..... ll!o ....... ...... ....
'0 .. ........................ . ............. .....

.................
.... ... ....... ..... ............... ............... ...............
.... .... ...... ....... .. ................I .......1 4,3, t ............
.... .. ....... ... ..... ......... ....... ,* ..................

10\1...... ....
1 0 7: ......

...... ............. ..........
.. . . . . . . . . . . . . ... . I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
.. . . . . . . . . .is . . I . . . . . . . . . . . . . . . . . . . . . . . . . \ I - I . . . . . . . . .. . . . . . . . . . . . . . ..
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..N . . ... . . . . . . . . . . . .. . . . . . . . . . . . . I -
. . . . . . . . . .t . . ... . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . .. . . . . . . . . . . . . . ..

. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . .. . . . . . . . . . . . ..

-21 0 . . . . . . . . . . ... . . . .. .. . ... . . .. . . . . . . . . . . . . . .. . . . . . . . ... .
. . . . . . . . . . . . . . . . . . . . . . . . . : : . . . . . . .. . . . .............

. . . . . . .. .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . ..
. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . .. . . . . . . . . . . . . . ..

. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . .. . . . . . . . . . . . . . ..

10-3
0 100 200 300 400 500

emitted photon energy w (eV)

Figure 4-6: Square of the absolute value of the recombination amplitude for outgoing

scattering eigenstate in the acceleration form.
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4.4 Accuracy of recombination amplitude calcula-

tion

In this section, we want to check the accuracy of our calculation of the dipole tran-

sition matrix element as shown in Equation 4.13. We want to ensure that the radial

wavefunctions u"j and ug; and the partial wave phase shifts 61 and u- have been accu-

rately calculated. In order to do so, we need to compare our results with other single

active electron studies in the literature. Since the recombination matrix element is

the complex conjugate of the ionization matrix element, our results will be used to

calculate photoionization cross section which will be compared with those available

in the literature.

Data for total photoionization cross section of various elements for selected photon

energies is provided in [6]. The total photoionization cross section is obtained by

integrating the differential photoionization cross section (Equation 2.36) over all solid

angles. It is given by [22]

- = (2 + Ne (la2_1 + (I + 1)Ct±+) (4.16)01 3c(21 + 1) Ni( -1

where u is the total photoionizaton cross section of the Ith orbital, ae+1 = (ugrlu-c 1 ),

ai_ -= (ugIrIu 1), Nei is the total number of electrons in the lth orbital, W is the

photon energy and k is the ionized electron's momentum. It is independent of the

azimuthal quantum number m, because total photoionization is calculated by aver-

aging over all the possible initial states [28]. For I = 1 (p orbital), the initial states

are 11 = 1, mi = 0), 11 = 1, mi = 1), and 11 = 1, m1 = -1). The 3 in the denominator

of the prefactor is due to averaging over these three states. The total photoionization

cross section is independent of the partial wave phase shifts.

The total photionization cross section is the cross section of absorbing a photon

and emitting an electron in any direction. The differential photoionization cross

section, which is the cross section of absorbing a photon and emitting an electron in

a solid angle Qk, is given by:
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dO4 4rk 2wk
dk - | cl1cl+1Y 1*,(Qk) + -cl1_ 1yimY, Y (Qk) 

2  (4.17)

where c1 1 = (YimI Cos OYi±i,m,) and Yi, (Qk) is the spherical harmonic. The total

and the differential cross section are related by:

dJ/m = ~(1 + AIm(E)P2(cos(0k))) (4.18)
dQk 4r(.8

where, 01m, is the energy dependent asymmetry parameter and P2(cos(Ok)) is the

second-order Legendre polynomial. The polar angle 0 k is the angle between the laser

polarization and the direction of the ejected electron. Due to the dipole approximation

Equation 4.18 is independent of the azimuthal angle 0. Since we are interested in

ionization along the laser polarization, Ok is set to zero. The asymmetry parameter

0imI, which depends on the partial wave phase shifts, is given by [73].

l(l - 1)a2 1 + (1 + 1)(l + 2)af+1 - 61(1 + ) cos(A) (
1- =+ 1l+1aJJJJCS (4.19)(21 + 1)[lac_1 + (1 + 1)a2+1

where A = (o-1 1 + 61+1) - (o1 _1 + 611) is the difference between the partial wave

phase shifts. Note that Equation (2) of Ref [cooper zaire] has a an erroneous factor

of 3 in the denominator. In order to verify of our recombination amplitude calcu-

lation (within single active electron approximation), we need to compare both the

total photoionization cross section and the asymmetry parameter obtained from our

calculation and that provided in [73]. The comparisons are showed for argon, krypton

and xenon in Figures 4-7 to 4-12

96



102

101

C)
0I

100

10-1

10 2

Argon
..........: : : : .....................! ......... .. .. .. ...................................... ............... ....... Our Calculation.............. ..........' ' .... .......

.. .................................. 0 R e fe re n c e

......... .. ...................................................... ................................... ............................................ ................ ............................ ........................................................................ .........
.............. ........ ............................. ..............

.............. ...... ............................... ........................... ......... ... ..................I .......... ..................................... ........................................................ ................ ... ......I ................ ...............
....................................... ............................

.........................I .. .................................................. ................ ............. ..... .......................................... ................ ............................ ....................................................................... ...............
................ ................ ............................ .............

0 100 200 300
photon energy (eV)

400 500

Figure 4-7: The total photoionization cross section of the outermost 1 = 1 orbital of
argon. Data from [6] is represented by red circles; our calculation is plotted in a blue
line. We get an excellent match. This suggests that our calculations for the radial
wavefunctions (u and u.) are consistent with [6] (Mb: Megabarns)
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Figure 4-8: The asymmetry parameter (beta) for argon is plotted using the data

in [6] (red circles) and compared with our data (a blue line). A very good match

is obtained.
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Figure 4-9: The total photoionization cross section of the outermost 1 = 1 orbital of

krypton. Data from [6] is represented by red circles; our calculation is plotted in a

blue line. We get an excellent match. This suggests that our calculations for radial

wavefunctions (u" and ug) are consistent with [6] (Mb: Megabarns)k
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is obtained.

calculated.

This suggests that the partial wave phase shift (J, + a-) is accurately

100

2

1.5F

CU
1IF

0.5F

-- Our Calcu
SReferenCE

lation

0[

100 400 500



Xenon
10.

.......................- -.. O ur C alculatio n
02 0 Reference

10

10

-1

. ... ................ .......... :..:...........

101 0-

0 100 200 300 400 500
photon energy (eV)

Figure 4-11: The total photojonization cross section of the outermost 1 = 1 orbital

of xenon. Data from [6] is represented by red circles; our calculation is plotted in a

blue line. We get an excellent match. This suggests that our calculations for radial
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Figure 4-12: The asymmetry parameter (beta) for xenon is plotted using the data

in [6] (red circles) and compared with our data (a blue line). A very good match

is obtained.
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4.5 Validity of the active electron approximation

Since the accuracy of our calculation within the SAEA formalism is established, we

next want to investigate the limitations of the SAEA itself. Experimentally, the total

PICS of noble gases has been extensively studied [74, 5]. The differential and total

PICS has also been measured for 2s and 2p orbitals of Ne [75], and 3s and 3p orbitals

of Ar [76]. Theoretical calculation of the total PICS and the asymmetry parameter

has been done using non-relativistic random phase approximation (RPA) and RRPA

[68]. While RPA is quite successful in the calculation of total PICS, it fails to ac-

curately calculate the partial cross section and the asymmetry parameter where the

relativistic effects are important [66]. RRPA, on the other hand, includes correlation

effects and relativistic spin-orbit coupling and reproduces the experimentally mea-

sured asymmetry parameters [77]. Moreover, it also exhibits form invariance [68].

Therefore, we compare the total photoionization cross section from our theory with

that obtained from RRPA [68].

In [68], partial PICS o' of Ar, Kr and Xe have been calculated, where J is the

total angular momentum is a constant of motion in the presence of spin-orbit cou-

pling. Partial PICS calculated using SAEA om, are in the 1, m.) basis where I is the

orbital angular momentum and m, its component along momentum direction. For

our purposes, we need to compare, the differential PICS (along the 0 k 0 direction)

in oI basis [0o(2u=1,m=-1 + =1,, + i0[=1,m,=i)] with the differential PICS

in oj basis [ao,=o o= 3 /2 + I=1/2)

The differential PICSs calculated from our model have been compared to the

differential PICSs obtained from RRPA in Figure 4-13, Figure 4-14 and Figure 4-

15 for Ar, Kr and Xe respectively. PICS calculated using the length form and the

RRPA results agree fairly well for Ar and Kr. In the case of Xe, the RRPA predicts the

experimentally observed "giant resonance" [19]. Our model, based on SAE and dipole

moment in the length and acceleration forms, cannot capture this effects because it

does not take into account the inter-channel coupling where the conventional TSM

breaks down. This tells us that the TSM with a single active electron, which has
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served so well in predicting the qualitative shape of the HHG spectrum, cannot be

used in high-harmonic spectroscopy when multi-electron effects become important.

2 Photoionization Cross section of Argon
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Figure 4-13: Argon's differential Photoionization cross sections (PICSs) calculated

using outgoing scattering eigenstates with dipole moment in the length form (solid

blue) and the acceleration form (dotted red); and RRPA (dashed black). PICS

obtained from the length form is in better agreement with the RRPA calculation

(la.u2 = 28Mb)
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2 Photoionization Cross section of Krypton
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Figure 4-14: Krypton's differential Photoionization cross sections (PICSs) calculated

using outgoing scattering eigenstates with dipole moment in the length form (solid

blue) and the accelaration form (dotted red); and RRPA (dashed black). PICS ob-

tained from the length form is in good agreement with RRPA calculation in 30 eV

to 80 eV range. In the same range, the acceleration form is off by about 4 orders of

magnitude (1a.u 2 = 28Mb)
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Photoionization Cross section of Xenon
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Figure 4-15: Xenon's differential Photoionization cross sections (PICSs) calculated

using outgoing scattering eigenstates with dipole moment in the length form (solid

blue) and the accelaration form (dotted red); and RRPA (dashed black). PICS ob-

tained from the dipole form is in good agreement with RRPA calculation. In the same

range, the acceleration form is off by about 4 orders of magnitude (1a.u 2 = 28Mb)
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4.6 Photorecombination cross sections

From the recombination amplitude, the photorecombination cross section (PRCS) for

recombining into the orbital 11 = 1, m, = 0) (11 = 0, m, = 0) for He) can be calculated

by [27]

Oor R 47 2 W3
en = I| as (k)12  (4.20)

O0kO0n c3k e

aor R 47r2W

O 4k Q = k Iag (k)| 2  (4.21)

Here, c is the speed of light, k is the momentum of the returning electron, and w is the

angular frequency of the released photon. Qn and Qk are solid angles in the direction

of polarization of emitted photon and electron momentum respectively. The reverse

of the recombination step described in the previous section is the process where a

photon with polarization along a solid angle Q, ionizes an electron in the polarization

direction from the outermost orbital ( l = 0, m. = 0)for He, 1 = 1, m., = 0) for other

noble gases). Due to this symmetry, the cross sections of the two processes are related

by principle of detailed balancing [34]:

w 2 k R I - -kDQri(4.22)W~g agka k2C2 aoki9Q

where w is the photon frequency, and k is the electron momentum and OR is the

photorecombination cross section and a, is the photoionization cross sections respec-

tively. In order to apply the above relation to calculate the PRCS from the total

PICS we need (a) the total PICS which is the contribution of the polarization-aligned

outermost orbital, and (b) the differential PICS which is the photoionization cross

section of emitting an electron in a given solid angle. The differential PICS can be

calculated using [19]
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4.7 Conclusion

We have calculated the recombination amplitude, in the length and the acceleration

form of the dipole operator, for both plane waves and outgoing scattering eigenstates

of atomic HFS potential. We have shown that the plane wave approximation fails to

predict the Cooper minima of Ar and Kr. However, these features can be reproduced

when the outgoing scattering eigenstates with the dipole moment in the length form

are used. We have also shown that the dipole moment in the length form is better

than the acceleration form in the calculation of recombination amplitude for certain

energies depending upon the noble gas. The comparison with the PICS obtained

from existing RRPA calculations reveals that the SAE model has its limitations and

more sophisticated theoretical tools are needed to explain the HHG spectrum over all

energy range.
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Chapter 5

Attosecond Pulse Characterization

5.1 Introduction

The development of mode-locking techniques [78] led to the generation of picosecond

pulses. Over the years, the pulse duration has been reduced from picoseconds to

attoseconds. See Figure 1-1. Advent of ultrashort pulses has enabled the study of

ultrafast process that were not accessible before. In these applications, it is important

to measure the temporal duration of the pulses. Unlike nanosecond pulses, which

can be resolved using photodetectors or oscilloscopes, characterization of ultrashort

pulsed requires novel metrology techniques in which the ultrashort pulse - which is

the shortest known event - is used to measure itself. Ultrashort pulse metrology can

be performed in the time domain where the intensity profile is retrieved [79], or in the

time-frequency domain where both the intensity and the phase profile are retrieved

[80, 81] [82]

5.2 Ultrashort Pulse Characterization Techniques

The time-domain pulse characterization techniques are based on taking an autocor-

relation trace of the optical pulse. This involves splitting the pulse, delaying one with

respect to the other and recombining them in a nonlinear crystal to generate second

harmonics. By measuring the second harmonic signal on a photodetector as a func-
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tion of the delay, and by guessing the shape of the pulse, the optical pulse duration

can be retrieved. Development of ultrabroadband sources led to the generation of

few-cycle pulses, with pulse duration of less than 5 fs [83]. For such short pulses it is

important to know not only the intensity profile but also the electric field. In order to

fully characterize optical pulses, i.e., measure both the intensity and the phase profile

and therefore reconstruct the electric field, time-frequency retrieval techniques have

been developed [80, 81] [82].

The time-frequency retrieval techniques are based on the idea that characterization

of a pulse in the frequency domain is equivalent to that in the time domain. Therefore,

by measuring both the spectral intensity and the spectral phase, the electric field of

the optical pulse can be reconstructed. The time-frequency retrieval techniques can

be divided into two broad categories: a)Frequency resolved optical gating (FROG)

techniques and b) spectral interferometry technique like SPIDER and 2DSI.

5.2.1 Frequency Resolved Optical Gating

The FROG is an autocorrelation measurement in which the output signal is spectrally

resolved by replacing the photodetector by a spectrometer. As a result, instead of an

autocorrelation trace a spectrogram is obtained. The expression of the spectrogram

is given by:

S(w, T) = j P(t)G(t - T)eiwtdt 2 (5.1)

where P(t) is the optical pulse and G(t - T) is the gate function delayed by T. Since in

autocorrelation and FROG, the pulse and the gate function are the electric pulse to be

characterized, P(t) is replaced by E(t) and G(t-T)is replaced by E(t-T). Notice that

the spectrogram is simply the modulus square of the fourier transform of the product

of pulse and gate function (P(t)G(t - r)). This is crucial, as we will later see, in the

efficient implementation of retrieval algorithms. Since the spectrometer measures the

intensity spectrum of the second harmonics, Equation 5.1 can be rewritten as:
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IFROGG(W, T) = E(t)E(t - T)e-'dtf2 (5.2)

Several variants of FROG that utilize a different nonlinear process, (like third har-

monic generation) or geometry exist. In each of these variants, the pulse and the gate

function are different, i.e., E(t)E(t - T) is replaced by E(t)IE(t - T)12 in polarization

gating FROG, E(t) 2E*(t - T) in self-diffraction FROG, and E(t) 2 E(t - r) in third

harmonic generation FROG [84].

From the intensity spectrogram, the pulse and the gate pulse can be retrieved

using the principle components generalized projections algorithm (PCGPA) [85] or

the standard least square generalized projection algorithm (LSGPA) [7]. These are

iterative-fourier-transform based algorithms that involve guessing the pulse and the

gate functions in the time domain, generating a spectrogram by numerical integration

of Equation 5.2, forcing the intensity of the spectrogram to be that of the experimen-

tally measured spectrogram and retrieving the new pulse and gate function using the

least squares method (for LSGPA) or the power method (for PCGPA). These itera-

tions are continued until the solutions of the pulse and the gate functions converge.

A summary of the retrieval algorithm is shown in Figure 5.3. Since the expression of

the spectrogram (Equation 5.1) looks like a fourier transform, fast FFT methods can

be applied at every iterative step. This helps in significantly speeding up the retrieval

algorithm.
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Figure 5-1: LSGPA and PCGPA retrieval algorithm. Step 1: Guess the pulse and the
gate in the time domain and multiply the two for various delays. Step 2: Generate
a spectrogram by taking a fast fourier transform of the result from Step (1). Step 3:
Force the magnitude of the spectrogram to match that either the measured spectro-
gram or the spectrogram obtained through numerical integration. Step 4: Take the
inverse fourier transform of the spectrogram. Step 5: Use the Least Square method
for LSGPA or Power method for PCGPA to obtain the pulse and the gate terms.
Repeat Steps 1-5 till convergence is achieved. This figure is taken from [7]
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5.2.2 Spectral Interferometric techniques

The spectral interferometric techniques like spectral phase interferometry for direct

electric-field reconstruction (SPIDER) [80] and two-dimensional spectral shearing in-

terference [82] determine the spectral phase by the interference of spectral compo-

nents separated by a shearing frequency. Spectral interferometric techniques do not

require the generation of a spectrogram and the retrieval algorithm is non-iterative

and therefore fast. On the flip side, spectral interferometric techniques require a very

well characterized reference pulse.

SPIDER is a self-referencing technique where the optical pulse is split into three

copies: one copy is chirped and therefore stretched; the other two copies are delayed

by - with respect to each other and then recombined with the stretched pulse. It

is important for the chirped pulse to be long enough so as to overlap both the two

delayed pulses. The superposition of the three pulses is sent through a nonlinear

crystal. See Figure 5.2.2. The delayed pulses overlap with different frequencies of the

chirped pulse, and therefore different frequency shifts due to the interaction with the

crystal. The frequency shift of the spectrum of one pulse with respect to the other is

referred to as spectral shearing. For a delay T and a spectral shearing 9, the intensity

profile is

ISP(W, T) = 8(c4(W) + 8(W +- Q) eir 12. (5.3)
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Figure 5-2: Experimental setup of SPIDER. The pulse to be measured is split in two

copies. The first copy is chirped by sending it through a pulse stretcher. The second

copy is split into two pulses which are delayed with respect to each other. The three

copies are combined in a SHG crystal. The second harmonic spectrum is measured

using a spectrometer The figure is taken from http : 11www.swampoptics.com
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5.3 Attosecond Pulse Characterization techniques

The advent of high-order harmonic generation led to the generation of extreme ultravi-

olet (EUV) pulses with attosecond pulse duration [86]. The pulse retrieval techniques,

which worked well for femtosecond pulses, could not be used for attosecond pulses.

The reason being that unlike femtosecond pulses, whose intensities are strong enough

to produce second harmonics , intensities of attosecond pulses are very low. There-

fore, attosecond pulse characterization needs to rely on the interaction of low intensity

EUV radiation with matter. The natural candidate for such an interaction is the pho-

toionization process which had been studied for decades [71, 22]. Like FROG, where

the amplitude and phase information of the optical pulse is transferred to the inten-

sity spectrogram of the second harmonic, the amplitude and phase information of the

attosecond pulse is transferred to the photoelectron spectrum. The photoionization

step occurs in the presence of an IR which acts like a phase modulator: the phase of

the photoelectron wavepacket oscillates as the delay between the two pulses is varied.

A spectrogram is constructed by measuring the photoelectron energy spectrum as a

function of the delay. From the spectrogram, the attosecond pulse is retrieved by fit-

ting the experimental data with a model function of the ionization and the streaking

processes [87, 88, 89, 90, 7].

modulation
with laser field Gas

SpectrometerAttosecond photo Electron

pulse ionization wave-packet

Figure 5-3: General scheme of attosecond metrology experiment. A superposition of
attosecond pulse and IR pulse generates an electron wavepacket by photoionizing gas
atoms. The energy distribution of the electron wavepacket is measured by a time of
flight spectrometer. Figure is taken from [8]
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The EUV attosecond pulse characterization is a two step process: a) generation of

a spectrogram and (b) retrieval of the EUV pulse (and the IR in some cases) from the

spectrogram. The spectrogram is experimentally obtained by splitting the IR pulse;

the first copy (called the drive) generates the attosecond pulse; the second copy is

delayed using a time delay stage; finally the attosecond pulse and the delayed JR

pulse are combined. The drive pulse is blocked using a filter. See Figure 5.3.

For the purpose of analysis, the spectrogram can also be numerically generated

either by solving the time-dependent schr6dinger equation of the interaction of an

atom by a superposition of an attosecond and an IR pulse, or by integrating a simpli-

fied model function such as the one given in Equation 5.4. The spectrogram is then

used in a retrieval algorithm to obtain the attosecond pulse (and sometimes the IR

pulse). A good way to test the accuracy of a retrieval algorithm is to retrieve the

EUV pulse from a numerically generated spectrogram and then compare it with the

EUV pulse used to generate the spectrogram.

Several attosecond pulse characterization techniques have been developed [87,

88, 89, 90]. Attosecond pulse characterization techniques can broadly be divided

into two categories: (a) streaking techniques like frequency resolved optical gating

for complete reconstruction of attosecond bursts (FROG-CRAB); b) perturbative

techniques like Reconstruction of attosecond harmonic beating by interference of two-

photon transitions (RABBITT) [88], phase retrieval by omega oscillation filtering

(PROOF) [89] and the improved-PROOF (iPROOF) [90]. These techniques are an

extension of the femtosecond pulse characterization techniques. In fact, as we will see

in this chapter, a concerted effort has been made - sometimes at the cost of accuracy

of the retrieval algorithm - to ensure that the expression for photoelectron distribution

in the FROG-CRAB resembled the expression for the intensity of second harmonics in

FROG. The streaking and perturbative attosecond characterization techniques differ

only by the JR intensity and the model function used in the retrieval algorithm.
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Figure 5-4: Experimental setup for attosecond pulse characterization. The JR pulse
is split into two parts. One part, called the drive is used to produce the attosec-
ond pulse through high-order harmonic generation process in argon. The aluminum
foil selectively blocks the drive pulse. The second part, called the streak pulse is
delayed using a piezoelectronic translation stage and then recombined with the at-
tosecond pulse using a drilled mirror. The superposition of the streak pulse and the
attosecond pulse is shone on a jet of argon atoms. The energy distribution of the
photoelectrons generated through this interaction is measured by the time of flight
(TOF) spectrometer.

5.3.1 FROG-CRAB

The FROG-CRAB characterization is based on the simplified version of the strong

field approximation (SFA) where the photoelectron and the attosecond pulse spectra

are related by only an energy shift equal to the ionization potential of the gas. In other

words, the photoionization process acts like a filter which downshifts the spectrum of

the attosecond pulse by the ionization potential of the atom The bound state of the

electron is a field-free atomic eigenstate and the continuum state is a Volkov state.

( A volkov state is the eigenstate of a free electron in an electric field.) In spite of

being several orders of magnitude weaker than the IR pulse, the attosecond pulse

photoionizes the bound electrons. The reason being that a single EUV photon can

ionize the outermost electron as opposed to several IR photons that are needed for

photoionization. For a given delay r between the EUV pulse and the IR pulse , the

probability of detecting an electron with final momentum k is [8]. (The details of
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the derivation of Equation 5.4 is provided in Chapter 2)

P~k'r j dti(k (+I

P(k, -r) = dte- )dVA(t)EX(t - T)ei(W+)t (5.4)

Here, Ex(t - r) is the delayed EUV pulse and W = k 2 /2 is the kinetic energy of the

photoelectron, and dvk+A(t) (k + A(t) zI 9 ) is the Volkov transition matrix element

The IR dependent phase modulation term is given by:

(t) = f dt'(kA(t') + A2 (t') (5.5)
it 2

For an IR laser field EL(t) = Eo(t) cos(wLt), 0(t) can be written as

o(k, t) = 1 (t) + p 2 (t) + p 3(t) (5.6)

where

01() = j dt'Up(t') (5.7a)

P2 (t) = - 2k U (t) cos(wdt) (5.7b)
WL

P3(t) = UWt sin(2wLt) (5.7c)
2 WL

where

U EO(t)2  (5.8)

is the ponderomotive potential.

In the FROG-CRAB retrieval algorithm, two assumption are made to simplify

Equation 5.4. First the volkov dipole transition matrix element dv is set to one.

Second, the momentum k in the phase modulation term (Equation 5.5) is replaced

by ko, the central momentum of the photoelectron spectrum. This is referred to as

the central momentum approximation. These approximations allow the expression of

the photoelectron distribution (Equation 5.4) to be written as a fourier transform:
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P(k,T ) = j dte-i(ko)Ex(t - T jei(W+I)t 2. (5.9)

Equation 5.9 resembles the expression of the FROG spectrogram (see Equation 5.1)

where Ex (t) is the pulse and e-iw(ko,t) is the gate. As a result, the retrieval algorithms

that are used in FROG can be used here. Actually, the motivation behind making

the approximations was to ensure that the already existing FROG algorithms could

be used.

The gate term e-si(kot) acts like a time-domain phase modulator. To understand

the effect of this phase modulation, the phase is expanded around the delay r:

1
p(ko, t) = p(ko, r) + p'(ko, T)(t - T) + 2p"(ko, T)(t - T)2 ..- (5.10)

As we know from well known fourier properties, the first-order derivative of the phase

modulation term (cp'(ko, T)) will result in a frequency shift and the second-order

derivative (p"(ko, T)) will change the width of the photoelectron spectrum. Next,

the first- and the second-order effects are analyzed by taking the first and second

derivative of Equation 5.6. For simplicity it is assumed that the IR field is sinusoidal

and therefore the time-dependence of Eo(t) (and hence the time dependence of the

ponderomotive potential) is dropped. The first-order term is

'(ko, -F) = Up + 2k o 'U- sin(wLT) + Up cos(2WLT). (5.11)

Typically, the Up term is much smaller than the kinetic energy of the photoelec-

tron. The ponderomotive potentials for 800nm IR fields with intensities 1011 W/cm2,

1012 W/cm2 and 1013 W/cm2, are 0.006 eV, 0.059 eV and 5.329 eV respectively.

These are much smaller than the typical photoelectron energies. Therefore

p'(ko, T) 2ko U sin(wLr) (5.12)

The spectral shift is a sinusoidal function of delay T and oscillates with the IR fre-

quency. Now applying the same analysis on the second-order term, we get:
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p"(ko, T) ~ 2kowL OU COS(WLT)

To illustrate the effects of the first- and second-order effects of the phase mod-

ulator, photoelectron spectrograms are calculated by integrating Equation 5.4 for

Argon. Two transform-limited EUV pulses, centered at 45 eV and 105 eV, generate

a photoelectron wavepacket whose central energy is downshifted by 15 eV - the ion-

ization potential of argon . 800 nm 1R pulses with peak intensity of 101 W/cm2 and

1014 W/cm2 are used to streak the electron wavepacket. The volkov dipole transition

matrix element is set to 1. Since the spectrograms are generated through numeri-

cal integration, the central momentum approximation is not used in generating the

spectrum.

The modulation of the central energy of the photoelectron pulse (as a function of

EUV-JR delay) is proportional to the central energy of the EUV pulse and the streak

intensity of the IR pulse. This is in tune with Equation 5.12. Also, as predicted by

Equation 5.13, the full width half maximum of the photoelectron spectrum becomes

more prominent for higher JR intensity.
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Modeled Trace

-2 0 2
Delay (fs)

Figure 5-5: Photoelectron spectrogram obtained by numerical integration of Equation

5.4. The gas used is argon (Ip ~ 15 eV). The EUV pulse is transform limited, centered

at 45 eV with a cos2 shape and spectral extent of 30 eV. The streaking IR pulse has

a duration of 8 fs, is centered at 800 nm and has a peak intensity of 5 x 1011 W/cm2
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Modeled Trace
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Figure 5-6: Photoelectron spectrogram obtained by numerical integration of Equation

5.4. The gas used is argon (I, ~ 15 eV). The EUV pulse is transform limited, centered

at 45 eV with a cos2 shape and spectral extent of 30 eV. The streaking IR pulse has

a duration of 8 fs, is centered at 800 nm and has a peak intensity of 5 x 1012 W/cm 2
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Modeled Trace
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Figure 5-7: Photoelectron spectrogram obtained by numerical integration of Equation

5.4. The gas used is argon (I, ~ 15 eV). The EUV pulse is transform limited, centered

at 105 eV with a cos2 shape and spectral extent of 30 eV. The streaking IR pulse has

a duration of 8 fs, is centered at 800 nm and has a peak intensity of 5 x 1011 W/cm 2
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Modeled Trace
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Figure 5-8: Photoelectron spectrogram obtained by numerical integration of Equation

5.4. The gas used is argon (I0, ~ 15 eV). The EUV pulse is transform limited, centered

at 105 eV with a cos2 shape and spectral extent of 30 eV. The streaking JR pulse has

a duration of 8 fs, is centered at 800 nm and has a peak intensity of 5 x 1012 W/cm 2

5.3.2 PROOF

The pulse duration of shortest attosecond pulses reported has steadily declined and

therefore the spectra have become broader. As the ratio of the attosecond pulse

bandwidth to the central momentum increases, the central momentum approximation,

used in FROG-CRAB, is no longer valid. Phase retrieval by omega oscillation filtering

(PROOF) works without the central momentum approximation. If the EUV pulse is

centered at high energies then Equation 5.6 is approximated by
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2k Up k Uy'p(k, t) ~- k Cos(wLt) = - p (eiWLt + eiWLt) (5.14)
WL WL

Additionally, if k U << WL then

eip(k,t) ~1 - iy'(k, t) = 1 + i 2U (eiwLt + e-iWLt) (5.15)
WL

When the expression for the approximate phase modulator is inserted in the expres-

sion of the photoelectron spectrum (Equation 5.4) we get

P(k, T) = j dt (I + k- (eiwLt+-iwL)) Ex(t - r)ei(W+Ip)t . (5.16)
C-Oo WL

Writing the attosecond pulse in the frequency domain F(Ex(t)) = Ex(w), and using

some standard fourier properties:

F(Ex(t - r)) = Ex(w)e'Wr (5.17a)

_F(Ex(t - F)eiwLt) = EX (W + WL)e(W+WL)T (5.17b)

F(Ex(t - T)e-iWLt) = Ex(W - wL)ei(WWL)T (5.17c)

Equation 5.16 can be written as

.W k VUpiWW) WW) 2
P(k, r) = x (w)e + kU (SX(W + wL)e(L + 8 X(W - WL)e .

WL

(5.18)

where w = k + IP. In the frequency domain, the attosecond pulse is complex and

can be written as Ex(w) = |&x(w)jeiO().The photoelectron spectrum (Equation 5.18)

varies with the delay r, and can be written as a sum of three fourier components: a

constant term, a term oscillating with frequency WL and a term oscillating with the

frequency 2 WL:
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P(k, T) = Po(k, 7) + PWL (kr) + P2 WL(k,) (1

where

Po(k,T) = &EX(W)12 + k 2  Ex (LO + WL) 2 + X (W - WL) 2 (5.20a)
L

PWL (k,7) = 2 .A-M (Cw) x (w + WL)e ± (W)EX (W - WL)e (5.20b)

P2WL(k,-r)=2 2RE (X(W~-WL)k(W+wL)ei2wT) (5.20c)
L

The PoL (k, T) term can be filtered out from P(k, T) by using a band pass filter

centered at WL. Due to interference between the spectral components, PWL(k, T) has

the following form:

PWL (k, T) = A(w) sin(r + a). (5.21)

where a is dependent on the spectral phase #(w) (Sx(w) = jEx(w)jeO(w)). Equation

5.21 does not necessarily have an analytical form, so #(w) can be retrieved by mini-

mizing the least square error function between the measured and guessed phase angle

[89]

5.4 Limitations of the existing techniques

Two attosecond pulse characterization techniques have been discussed, both of which

are based on the strong field approximation (SFA) in which the ionized electron is

described by a volkov wave. However, in order to make the pulse retrieval feasible,

the volkov dipole transition matrix element (DTME) has been neglected ( i.e. d±

has been set to one in Equations 5.4 and 5.16). Even if it were included, would

the physics of the photoionization process be accurately captured? In the previous

chapter on recombination amplitude, we saw the limitations of using plane waves - a

volkov state is a plane wave whose momentum can change with time - to describe the
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recombination step. It is shown that by replacing the plane wave by the scattering

eigenstate of the atomic potential, qualitative features like the cooper-minimum in

the high-order harmonic spectrum of Argon could be reproduced. This suggests that

the physics of the photoionization process, which is the reverse of the recombination

process, will be better captured if the photoelectrons were described using scattering

states.

In what follows, we employ a more sophisticated SFA where the photoelectron is

described using a coulomb-volkov state. As we will show, this captures the physics of

the photoionization process while keeping the expression of the photoelectron spec-

trum (Equation 5.4) to resemble that of a FROG Spectrogram. We show that without

our improvement, characterization of low-energy EUV pulses can have significant er-

ror. Finally, we also propose a simple method for reducing the errors for the existing

FROG-CRAB algorithm

A technique called improved-PROOF (iPROOF) has been developed that ac-

counts for the dipole transition matrix element (DTME) in the retrieval algorithm by

explicitly describing the laser-assisted photoionization process within the first- and

second-order perturbation theory [90]. One main advantage of the FROG-CRAB

technique over the interferometric techniques like PROOF and iPROOF is that the

temporal profile of both the attosecond pulse and the IR field can be retrieved simul-

taneously. This can be a limitation in pump-probe experiments where both the IR

and the EUV pulse need to be characterized.

5.5 Coulomb Volkov improved FROG-CRAB

5.5.1 Improvement in the FROG-CRAB model function

A coulomb volkov state is a mixture between the spatial part of an incoming scat-

tering eigenstate of the atom and the temporal part of a Volkov state: XIFV(r, [) =

fsC (r)e-iSk M [30]. The incoming scattering state is given by
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k~ = E E ii1+0uk(r) Ym(Qr) Yl (Qk) (5.22)
Vk ) 1 (=-5. 2

and the bound atomic state is given by

,g (r) - r Y(Q,); (5.23)

Using the dipole selection rule ( Al = ±1 and Am = 0 ), dA(t) can be calculated

in spherical coordinates. For Ne, Ar, Kr, and Xe we get

daCV =cOe-i6Oo+aO)(gru)Y*Ok
-ci( 6 2o ) (g I )o((5.24)

c2 ei 6 2+o2) (ugrluc2)Y2*(Qk)

The two right-hand-side terms of Eq.(3) represent the transition from the bound p

orbital to the s and the d orbitals of the continuum state respectively. The coefficient

cl = (Y10 1 cos OIYIo) is the angular integral. Since only electrons ejected along the z

direction are observed in the experiment, Qk is set to zero. Inserting Equation 5.24

in the standard photoelectron distribution (Equation 5.4), we get the coulomb volkov

modified expression

Pcv(k, -r) = dte-i'(kt)dcv A(t)Ex(t - T)ei(W+I)t . (5.25)

In Figure 5-9, the magnitude and phase of the CV DTMEs of Ne, Ar, Kr and Xe

have been plotted against the photon energy of the EUV pulse. The photoelectron

spectrum of an atom, in the absence of an IR field, is obtained by multiplying the EUV

spectrum by the DTME and then downshifting the spectrum by the corresponding

ionization potential. As shown in Figure 5-9, the atom acts like a filter: for high

energies, the response is flat; however, for low energies, the atom behaves like a

low pass filter that imparts a nonlinear phase on the photoelectron pulse. Thus, its

transfer function causes the amplitude and phase of the photoelectron pulse to differ

from that of the EUV pulse.
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CV states have been used successfully to model Compton scattering by bound

and free electrons [30]. The CV improved SFA has been used to model the Cooper

minimum in the HHG spectrum of Ar which is attributed to the minimum in the

recombination amplitude [91, 4]. Since the recombination of an electron and ion in

the presence of an IR field is the reverse of ionization in the presence of IR field, this

motivates our use of the CV improved SFA for FROG-CRAB.

To emphasize this, we have simulated the photoelectron pulse generated from ar-

gon by transform-limited (TL) EUV pulses (cos2 shape with 30eV span) centered at

30eV, 45eV and 60eV. In Figure 5-10(a-c), the magnitude and phase of the DTME

is plotted. The spectral range corresponding to each of the three EUV pulses are

highlighted. The generated photoelectron pulses is shown in Figure 5-10 (d-f). For

comparison, the respective TL photoelectron pulses are shown. In Figure 5-10 (d),

due to the second-order dispersion, which is apparent from the parabolic shape of the

phase around 30eV, the photoelectron pulse is broadened. The EUV pulse centered
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at 45eV experiences first- and third-order phase dispersion, which results in a pho-

toelectron pulse which is time-shifted. A side-lobe is formed due to an interference

between the high and low frequencies in the photoelectron wavepacket (Figure 5-10

(e)). Finally, the EUV pulse centered at 60eV sees a nearly flat phase and amplitude

response, and, as a result, the photoelectron pulse remains transform-limited (Figure

5-10 (f)).
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Figure 5-10: In (a), (b) and (c) the EUV spectral bandwidths (yellow) are super-
imposed on the magnitude (green) and phase (blue) of dcv of Ar. In (d),(e)and(f),
the corresponding normalized photoelectron pulses (red) and TL photoelectron pulses
(black) are shown.
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5.5.2 Improvement in the retrieval algorithm

Next, the limitations of the least squares general projection algorithm (LSGPA) [7],

which sets the DTME to 1, are studied. The streaking pulse in our simulation is

centered at 800nm, has a pulse duration of 8fs FWHM, and a peak intensity of

2.5 x 1012W/cm 2. For the transform limited EUV pulse used in Figure 5-10(a) (200as

full width at half maximum (FWHM)), we produce two spectrograms. The first

(Figure 5-11a), ignores the DTME dispersion by setting dev+A(t) = 1, while the second

(Figure 5-11b) resembles a realistic spectrogram where dav+A(t) is replaced by d[ .

Two notable differences between the two spectrograms are the presence of spectral

breathing as a function of delay, and a broadening of the bandwidth in Figure 5-11b,

signifying the chirp and spectral shaping due to the DTME's inclusion. Next, we

analyze the EUV pulse retrieved from the realistic spectrogram using the LSGPA.

We find that the retrieved EUV pulse in this case (Figure 5-12a, blue circles) differs

significantly from the actual EUV pulse (Figure 5-12a, solid line).
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Figure 5-11: Comparison of simulated spectrograms (normalized) by numerical in-
tegration of Eq.(1) where dv = 1 (a) and where the DTME is set to dcvk+A(t) k+A(t)
(b).

To improve the retrieval, one would need to include the DTME inside of the

LSGPA. However, the LSGPA, being based on Fourier transforms, is not compatible

with nonseparable functions of energy and time. It can be shown that, when the EUV

pulse is much shorter than one cycle of the IR, the DTME in Eq. (1) can be approxi-
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mated by dCVA(T), and the phase modulator term by 9 (t, k) ~ (T, k)+ s'(T, k)(t - r)

where so' is the derivative of the phase with respect to t. After making these approxi-

mations and using a few Fourier transform properties, Equation 5.25 can be rewritten

as

P(k, T) dt+ + e (5.26)

where P(t) = F l(dc)Ex(w + In)), Ex(w) is the frequency domain form of the

EUV pulse, and ei(w(r~ko)+w'(Tko)t) e (t"k) is the time-shifted phase-gate. This

result is similar to that obtained in [92]. Given this expression, one finds that any

FROG retrieval algorithm will retrieve F(t), i.e. the photoelectron pulse, rather than

the EUV pulse. Thus, the EUV pulse can be obtained by simply dividing out the

DTME in the frequency domain.

Applying this analysis to the retrieved pulse in Figure 5-12a (blue circles) reduces

the root mean squared error (RMSE) from .078 to .0092, nearly an order of magnitude

improvement. The qualitative nature of the pulse is also improved (see Figure 5-12a)

as the side-lobe seen in the retrieved pulse (due to the third-order phase dispersion of

the DTME) does not exist in the corrected pulse (pink triangles). In order to test the

effect of the EUV pulse duration on the accuracy of this correction, a pre-chirped EUV

pulse with a group delay dispersion (GDD) of 0.043fs 2, which stretches the pulse to

a duration of 700as FWHM (Figure 5-12b), is used to generate a spectrogram (not

shown). Despite the attosecond pulse having a duration of more than one quarter of

the IR cycle, the RMSE was again significantly reduced from 0.122 to 0.040.
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Figure 5-12: Pulse retrieval for a TL and a chirped pulse (GDD of 0.043 fs2 ) . The
actual pulse (solid black) is compared to that retrieved without DTME correction
(blue circles) and with DTME correction (pink triangles).

5.6 Conclusion

In conclusion, an improved FROG-CRAB method has been shown that includes a

more accurate model of the physics of the photoionization process. It has been em-

phasized that the FROG-CRAB method retrieves the amplitude and phase of the

photoelectron pulse rather than the EUV pulse, which can be a source of significant

error. Therefore, for an accurate retrieval of the EUV pulse, the dispersion of the

DTME needs to be included in the retrieval algorithm, especially for EUV pulses

with photon energies close to the ionization potential. If the EUV pulse is much

shorter than a cycle of the streaking pulse, the former can be retrieved by simply

dividing the retrieved photoelectron spectrum by the complex DTME, providing a

correction with insignificant computational expense. It should be emphasized that if

the accuracy of the DTME is further improved - for instance, by the inclusion of the

long-range coupling between the photoelectron pulse and atom [93] - it can easily be
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incorporated in our retrieval technique.
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