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Abstract—We investigate the lossy compression of per-
mutations by analyzing the trade-off between the size of
a source code and the distortion with respect to Kendall
tau distance, Spearman’s footrule, Chebyshev distance and
`1 distance of inversion vectors. We show that given two
permutations, Kendall tau distance upper bounds the `1
distance of inversion vectors and a scaled version of Kendall
tau distance lower bounds the `1 distance of inversion
vectors with high probability, which indicates an equivalence
of the source code designs under these two distortion
measures. Similar equivalence is established for all the
above distortion measures, every one of which has different
operational significance and applications in ranking and
sorting. These findings show that an optimal coding scheme
for one distortion measure is effectively optimal for other
distortion measures above.

I. INTRODUCTION

In this paper we consider the lossy compression (source
coding) of permutations, which is motivated by the prob-
lems of storing ranking data, and lower bounding the
complexity of approximate sorting.

In a variety of applications such as college admis-
sion and recommendation systems (e.g., Yelp.com and
IMDb.com), ranking, or the relative ordering of data,
is the key object of interest. As a ranking of n items
can be represented as a permutation of 1 to n, storing
a ranking is equivalent to storing a permutation. In
general, to store a permutation of n elements, we need
log2(n!) ≈ n log2 n−n log2 e bits. In applications such as
recommendation systems, it may be necessary to store the
ranking of all users in the system, and hence the storage
efficiency of ranking data is of interest. Furthermore,
in many use cases a rough knowledge of the ranking
(e.g., finding one of the top five elements instead of the
top element) is sufficient. This pose the question of the
number of bits needed for storage when a certain amount
error can be tolerated.

In addition to application on compression, source cod-
ing of the permutation space is also related to the analysis
of comparison-based sorting algorithms. Given a group of
elements of distinct values, comparison-based sorting can
be viewed as the process of finding a true permutation
by pairwise comparisons, and since each comparison in
sorting provides at most 1 bit of information, the log-
size of the permutation set Sn provides a lower bound
to the required number of comparisons, i.e., log n! =
n log n − O (n). Similarly, the lossy source coding of
permutations provides a lower bound to the problem
of comparison-based approximate sorting, which can be
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seen as searching a true permutation subject to certain
distortion. Again, the log-size of the code indicates the
amount of information (in terms of bit) needed to specify
the true permutation subject to certain distortion, which
in turn provides a lower bound on the number of pairwise
comparisons needed.

The problem of approximate sorting has been inves-
tigated in [1], where results for the moderate distortion
regime are derived with respect to the Spearman’s footrule
metric [2] (see below for definition).

On the other hand, every comparison-based sorting
algorithm corresponds to a compression scheme of the
permutation space, as we can treat the outcome of each
comparison as 1 bit. This string of bits is a (lossy) repre-
sentation of the permutation that is being (approximately)
sorted. However, reconstructing the permutation from the
compressed representation may not be straightforward.

In our earlier work [3], a rate-distortion theory for
permutation space is developed, with the worst-case dis-
tortion as the parameter. The rate-distortion functions and
source code designs for two different distortion measures,
Kendall tau distance and the `1 distance of the inversion
vectors, are derived. In Section III of this paper we show
that under average-case distortion, the rate-distortion
problem under Kendall tau distance and `1 distance of
the inversion vectors are equivalent and hence the code
design could be used interchangeably, leading to simpler
coding schemes for the Kendall tau distance case (than
developed in [3]), as discussed in Section IV.

Moreover, the rate-distortion problem under Chebyshev
distance is also considered and its equivalence to the cases
above is established. Operational meaning and importance
of all these distance measures is discussed in Section II.
While these distance measures usually have different
intended applications, our findings show that an optimal
coding scheme for one distortion measure is effectively
optimal for other distortion measures.

II. PROBLEM FORMULATION

In this section we discuss aspects of the problem formu-
lation. We provide a mathematical formulation of the rate-
distortion problem on a permutation space in Section II-B
and introduce the distortions of interest in Section II-C.

A. Notation
Let Sn denote the symmetric group of n elements. We

write the elements of Sn as arrays of natural numbers with
values ranging from 1, . . . , n and every value occurring
only once in the array. For example, σ = [3, 4, 1, 2, 5] ∈
S5. This is also known as the vector notation for permu-
tations. For a permutation σ, we denote its permutation



inverse by σ−1, where σ−1(x) = i when σ(i) = x.
and σ(i) is the i-th element in array σ. For example,
the permutation inverse of σ = [2, 5, 4, 3, 1] is σ−1 =
[5, 1, 4, 3, 2]. Given a metric d : Sn × Sn → R+ ∪ {0},
we define a permutation space X (Sn, d).

Throughout the paper, we denote the set {1, . . . , n} as
[n], and let [a : b] , {a, a+ 1, . . . , b− 1, b} for any two
integers a and b.

B. Rate-distortion problem
In this section we define the rate-distortion problems

under both average-case distortion and worst-case distor-
tion.

Definition 1 (Codebook for average-case distortion). An
(n,D) source code C̄n ⊆ Sn for X (Sn, d) under average-
case distortion is a set of permutations such that for a σ
that is drawn from Sn according to a distribution P on
Sn, there exists a encoding mapping fn : Sn → C̄n that

EP [d(fn(σ), σ)] ≤ D. (1)

The mapping fn : Sn → C̄n can be assumed to satisfy

fn(σ) = arg min
σ′∈C̄n

d(σ′, σ)

for any σ ∈ Sn.

Definition 2 (Codebook for worst-case distortion). The
codebook for permutations under worst-case distortion
can be defined analogously to Definition 1, except (1)
now becomes

max
σ∈Sn

d(fn(σ), σ) ≤ D. (2)

We use Ĉn to denote a (n,D) source code under the
worst-case distortion.

Throughout the paper we focus on the case that P is
uniformly distributed over the symmetric group Sn.

Definition 3 (Rate function). Given a source code Cn and
a sequence of distortions {Dn, n ∈ Z+}, let A(n,Dn) be
the minimum size of Cn, and we define the minimal rate
for distortions Dn as

R(Dn) ,
logA(n,Dn)

log n!
.

In particular, we denote the minimum rate of the codebook
under average-case and worst-case distortions by R̄ (Dn)
and R̂ (Dn) respectively.

As to the classical rate-distortion setup, we are inter-
ested in deriving the trade-off between distortion level Dn

and the rate R(Dn) as n→∞. In this work we show that
for the distortions d(·, ·) and the sequences of distortions
{Dn, n ∈ Z+} of interest, limn→∞R(Dn) exists.

C. Distortion measures
For distortion measures, it is natural to use the distance

measure on the permutation set Sn, and there exist many
possibilities [4]. In this paper we choose a few distortion
measures of interest in a variety of application settings,
including Spearman’s footrule (`1 distance between two
permutation vectors), Chebyshev distance (`∞ distance
between two permutation vectors), Kendall tau distance
and the inversion-`1 distance.

Given a list of items with values v1, v2, . . . , vn such
that vσ−1(1) � vσ−1(2) � . . . � vσ−1(n), where a � b
indicates a is preferred to b, then we say the permutation
σ is the ranking of these list of items, where σ(i)
provides the rank of item i, and σ−1(r) provides the
index of the item with rank r. Note that sorting via pair-
wise comparisons is simply the procedure of rearranging
v1, v2, . . . , vn to vσ−1(1), vσ−1(2), . . . , vσ−1(n) based on
preferences from pairwise comparisons.

Given two rankings σ1 and σ2, we measure the total
deviation of ranking and maximum deviation of ranking
by Spearman’s footrule and Chebyshev distance respec-
tively.

Definition 4 (Spearman’s footrule [2]). Given two per-
mutations σ1, σ2 ∈ Sn, the Spearman’s footrule between
σ1 and σ2 is

d`1 (σ1, σ2) , ‖σ1 − σ2‖1 =

n∑
i=1

|σ1(i)− σ2(i)| .

Definition 5 (Chebyshev distance). Given two permuta-
tions σ1, σ2 ∈ Sn, the Chebyshev distance between σ1

and σ2 is

d`∞ (σ1, σ2) , ‖σ1 − σ2‖∞ = max
1≤i≤n

|σ1(i)− σ2(i)| .

The Spearman’s footrule in Sn is upper bounded by⌊
n2/2

⌋
and the Chebyshev distance in Sn is upper

bounded by n− 1.
Given two list of items with ranking σ1 and σ2, let

π1 , σ−1
1 and π2 , σ−1

2 , then we define the number of
pairwise adjacent swaps on π1 that changes the ranking
of π1 to the ranking of π2 as the Kendall tau distance.

Definition 6 (Kendall tau distance). The Kendall tau
distance dτ (σ1, σ2) from one permutation σ1 to another
permutation σ2 is defined as the minimum number of
transpositions of pairwise adjacent elements required to
change σ1 into σ2.

The Kendall tau distance is upper bounded by
(
n
2

)
.

Example 1 (Kendall tau distance). The Kendall tau
distance for σ1 = [1, 5, 4, 2, 3] and σ2 = [3, 4, 5, 1, 2]
is dτ (σ1, σ2) = 7, as one needs at least 7 transpositions
of pairwise adjacent elements to change σ1 to σ2. For
example,

σ1 = [1, 5, 4, 2, 3]

→ [1, 5, 4, 3, 2]→ [1, 5, 3, 4, 2]→ [1, 3, 5, 4, 2]

→ [3, 1, 5, 4, 2]→ [3, 5, 1, 4, 2]→ [3, 5, 4, 1, 2]

→ [3, 4, 5, 1, 2] = σ2.

Being a popular global measure of disarray in statistics,
Kendall tau distance also has natural connection to sorting
algorithms. In particular, given a list of items with values
v1, v2, . . . , vn such that vσ−1(1) � vσ−1(2) � . . . �
vσ−1(n), dτ

(
σ−1σ, Id

)
is the number of swaps needed

to sort this list of items in a bubble-sort algorithm [5].
Finally, we introduce a distortion measure based on

inversion vector, another measure of the order-ness of a
permutation.

Definition 7 (inversion, inversion vector). An inversion
in a permutation σ ∈ Sn is a pair (σ(i), σ(j)) such that
i < j and σ(i) > σ(j).



We use In(σ) to denote the total number of inversions
in σ ∈ Sn, and

Kn(k) , |{σ ∈ Sn : In(σ) = k}| (3)

to denote the number of permutations with k inversions.
Denote i′ = σ(i) and j′ = σ(j), then i = σ−1(i′)

and j = σ−1(j′), and thus i < j and σ(i) > σ(j) is
equivalent to σ−1(i′) < σ−1(j′) and i′ > j′.

A permutation σ ∈ Sn is associated with an inversion
vector xσ ∈ Gn , [0 : 1] × [0 : 2] × · · · × [0 : n − 1],
where xσ(i′), 1 ≤ i′ ≤ n− 1 is the number of inversions
in σ in which i′ + 1 is the first element. Mathematically,
for i′ = 2, . . . , n,

xσ(i′ − 1) =
∣∣{j′ ∈ [n] : j′ < i′, σ−1(j′) > σ−1(i′)

}∣∣ .
Let π , σ−1, then the inversion vector of π, xπ ,

measures the deviation of ranking σ from Id. In particular,
note that

xπ (k) =
∣∣{j′ ∈ [n] : j′ < k, π−1(j′) > π−1(k)

}∣∣
= |{j′ ∈ [n] : j′ < k, σ(j′) > σ(k)}|

indicates the number of elements that have larger ranks
and smaller item indices than that of the element with
index k. In particular, the rank of the element with index
n is n− xπ (n− 1).

Example 2. Given 5 items such that v4 � v1 � v2 �
v5 � v3, then the inverse of the ranking permutation is
π = [4, 1, 2, 5, 3], with inversion vector xπ = [0, 0, 3, 1].
Therefore, the rank of the v5 is n−xπ (n− 1) = 5−1 =
4.

It is well known that mapping from Sn to Gn is one-
to-one and straightforward [5].

With these, we define the inversion-`1 distance.

Definition 8 (inversion-`1 distance). Given two permuta-
tions σ1, σ2 ∈ Sn, we define the inversion-`1 distance, `1
distance of two inversion vectors, as

dx,`1 (σ1, σ2) ,
n−1∑
i=1

|xσ1
(i)− xσ2

(i)|. (4)

Example 3 (inversion-`1 distance). The inversion vector
for permutation σ1 = [1, 5, 4, 2, 3] is xσ1

= [0, 0, 2, 3], as
the inversions are (4, 2), (4, 3), (5, 4), (5, 2), (5, 3). The
inversion vector for permutation σ2 = [3, 4, 5, 1, 2]
is xσ2

= [0, 2, 2, 2], as the inversions are
(3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2). Therefore,

dx,`1 (σ1, σ2) = d`1 ([0, 0, 2, 3], [0, 2, 2, 2]) = 3.

As we shall see in Section III, all these distortion
measures are related to each other.

Remark 1. The `1, `∞ distortion measures above can be
readily generalized to weighted versions to incorporate
different emphasis on different parts of the ranking.

In particular, using a weighted version that only puts
non-zero weight to the first k components of the permu-
tation vector corresponds to the case that we only the
distortion of the top-k items (top-k selection problem).

III. RELATIONSHIPS BETWEEN DISTORTION
MEASURES

In this section we show all four distortion measures
defined in Section II-C are closely related to each other.

A. Spearman’s footrule and Kendall tau distance
Theorem 1 (Relationship of Kendall tau distance and `1
distance of permutation vectors [2]). Let σ1 and σ2 be
any permutations in Sn, then

d`1(σ1, σ2)/2 ≤ dτ (σ−1
1 , σ−1

2 ) ≤ d`1(σ1, σ2). (5)

B. `1 distance of inverse vectors and Kendall tau distance
We show that the `1 distance of inversion vectors and

the Kendall tau distance are closely related in Theorem 2,
and Theorem 3, which helps to establish the equivalence
of the rate-distortion problem later.

The Kendall tau distance between two permutation
vectors provides upper and lower bounds to the `1 dis-
tance between the inversion vectors of the corresponding
permutations, as indicated by the following theorem.

Theorem 2. Let σ1 and σ2 be any permutations in Sn,
then for n ≥ 2,

1

n− 1
dτ (σ1, σ2) ≤ dx,`1 (xσ1

,xσ2
) ≤ dτ (σ1, σ2) (6)

The proof of this theorem is relatively straight-forward
and hence omitted due to space constraint.

Remark 2. The lower bound in Theorem 2 is tight
as there exists permutations σ1 and σ2 that satisfy the
equality. For example, when n = 2m, let

σ1 = [1, 3, . . . , 2m− 3, 2m− 1, 2m, 2m− 2, . . . , 4, 2],

σ2 = [2, 4, . . . , 2m− 2, 2m, 2m− 1, 2m− 3, . . . , 3, 1],

then dτ (σ1, σ2) = n(n− 1)/2 and dx,`1 (σ1, σ2) = n/2.
For another instance, let

σ1 = [1, 2, . . . , n− 2, n− 1, n],

σ2 = [2, 3, . . . , n− 1, n, 1],

then dτ (σ1, σ2) = n− 1 and dx,`1 (σ1, σ2) = 1.

Theorem 2 shows that in general dτ (σ1, σ2) is not a
good approximation to dx,`1 (σ1, σ2) due to the 1/(n−1)
factor. However, Theorem 3 shows that it provides a tight
lower bound with high probability.

Theorem 3. For any π ∈ Sn, let σ be a permutation
chosen uniformly from Sn, then

P [c1 · dτ (π, σ) ≤ dx,`1 (π, σ)] = 1−O (1/n) (7)

for any positive constant c1 < 1/2.

Proof: See Section V-A.

C. Spearman’s footrule and Chebyshev distance
Let σ1 and σ2 be any permutations in Sn, then

d`1 (σ1, σ2) ≤ n · d`∞ (σ1, σ2) , (8)

and additionally, the scaled Chebyshev distance lower
bounds the Spearman’s footrule with high probability.

Theorem 4. For any π ∈ Sn, let σ be a permutation
chosen uniformly from Sn, then

P [c2 · n · d`∞ (π, σ) ≤ d`1 (π, σ)] = 1−O (1/n) (9)

for any positive constant c2 < 1/3.

Proof: See Section V-B.



IV. RATE DISTORTION FUNCTIONS

In this section we build upon the results in Section III
and prove the equivalence of lossy source codes under
different distortion measures in Theorem 5, which lead
to the rate distortion functions in Theorem 6.

Theorem 5 (Equivalence of lossy source codes). Under
both average-case and worst-case distortion, a following
source code on the left hand side implies a source code
on the right hand side:

1) (n,Dn/n) source code for X (Sn, d`∞) ⇒ (n,Dn)
source code for X (Sn, d`1),

2) (n,Dn) source code for X (Sn, d`1) ⇒ (n,Dn)
source code for X (Sn, dτ ),

3) (n,Dn) source code for X (Sn, dτ ) ⇒ (n, 2Dn)
source code for X (Sn, d`1),

4) (n,Dn) source code for X (Sn, dτ ) ⇒ (n,Dn)
source code for X (Sn, dx,`1).

Furthermore, under average-case distortion, a following
source code on the left hand side implies a source code
on the right hand side:

5) (n,Dn) source code for X (Sn, d`1) ⇒
(n,Dn/(nc1) +O (1)) source code for X (Sn, d`∞)
for any c1 < 1/3,

6) (n,Dn) source code for X (Sn, dx,`1) ⇒
(n,Dn/c2 +O (n)) source code for X (Sn, dτ ) for
any c2 < 1/2.

The proof is based on the relationships between various
distortion measures investigated in Section III and we
present the details in Section V-C.

We obtain Theorem 6 as a direct consequence of
Theorem 5.

Theorem 6 (Rate distortion functions for distortion mea-
sures). For permutation spaces X (Sn, dx,`1), X (Sn, dτ ),
and X (Sn, d`1), and for 0 < δ ≤ 1,

R̄(Dn) = R̂(Dn) =

{
1 if Dn = O (n)

1− δ if Dn = Θ
(
n1+δ

)
.

For the permutation space X (Sn, d`∞) and 0 < δ ≤ 1,

R̄(Dn) = R̂(Dn) =

{
1 if Dn = O (1)

1− δ if Dn = Θ
(
nδ
)
.

Proof: For achievability, we note that the achievabil-
ity for permutation spaces X (Sn, dτ ) and X (Sn, dx,`1)
under worst-case distortion is provided in [3, Theorem 6
and 8], which state that

R̂(Dn) =

{
1 if Dn = O (n)

1− δ if Dn = Θ
(
n1+δ

)
, 0 < δ ≤ 1

.

The achievability for other permutation spaces then fol-
lows from Theorem 5.

For converse, we observe observation that for uniform
distribution over Sn, the rate-distortion functions for
X (Sn, dx,`1) is the same under average-case and worst-
case distortions, as pointed out in [3, Remark 2]. Then
the converse for other permutation spaces follows from
Theorem 5.

Remark 3. Because the rate distortion functions under
average-case and worst-case distortion coincides, if we
require

lim
n→∞

P [d(fn(σ), σ) > Dn] = 0 (10)

instead of E [d(fn(σ), σ)] ≤ Dn in Definition 1, then the
asymptotic rate-distortion trade-off remains the same.

Theorem 5 indicates that for all the distortion measures
in this paper, the lossy compression scheme for one
measure preserves distortion under other measures, and
hence all compression schemes can be used interchange-
ably under average-case distortion, after transforming
the permutation representation and scaling the distortion
correspondingly.

For the vector representation of permutation, com-
pression based on Kendall tau distance is essentially
optimal, which can be achieved by partitioning each
permutation vector into subsequences with proper sizes
and sorting them accordingly [3]. For the inversion vector
representation of permutation, a simple component-wise
scalar quantization achieves the optimal rate distortion
trade-off, as shown in [3]. In particular, given D =
cn1+δ, 0 < δ < 1, for the (k − 1)-th component of
the inversion vector (k = 2, · · · , n), we quantize k
points in [0 : k − 1] uniformly with mk = dkn/(2D)e
points, resulting component-wise average distortion Dk =
D/n and overall average distortion =

∑n
k=2Dk ≤ D,

and log of codebook size logMn =
∑n
k=2 logmk =∑n

k=2 log dkn/(2D)e = (1− δ)n log n−O (n) .

Remark 4. This scheme is slightly different from the one
in [3] as it is designed for average distortion, while the
latter for worst-case distortion.

Remark 5. While the compression algorithm in
X (Sn, dx,`1) is conceptually simple and has time com-
plexity Θ (n), it takes Θ (n log n) runtime to convert a
permutation from its vector representation to its inversion
vector representation [5, Exercise 6 in Section 5.1.1].
Therefore, the cost of representation transformation of
permutations should be taken into account when selecting
the compression scheme.

V. PROOFS

A. Proof of Theorem 3
To prove Theorem 3, we analyze the mean and variance

of the Kendall tau distance and `1 distance of inversion
vectors between a permutation in Sn and a randomly
selected permutation, in Lemma 8 and Lemma 9 respec-
tively.

We first state the following fact without proof.

Lemma 7. Let σ be a permutation chosen uniformly from
Sn, then xσ(i) is uniformly distributed in [0 : i], 1 ≤ i ≤
n− 1.

Lemma 8. For any π ∈ Sn, let σ be a permutation chosen
uniformly from Sn, and Xτ , dτ (π, σ), then

E [Xτ ] =
n(n− 1)

4
, (11)

Var [Xτ ] =
n(2n+ 5)(n− 1)

72
. (12)



Proof: Let σ′ be another permutation chosen inde-
pendently and uniformly from Sn, then we have both
πσ−1 and σ′σ−1 are uniformly distributed over Sn.

Note that Kendall tau distance is right-invariant [4],
then dτ (π, σ) = dτ

(
πσ−1, e

)
and dτ (σ′, σ) =

dτ
(
σ′σ−1, e

)
are identically distributed, and hence the

result follows [2, Table 1] and [5, Section 5.1.1].

Lemma 9. For any π ∈ Sn, let σ be a permutation chosen
uniformly from Sn, and Xx,`1 , dx,`1 (π, σ), then

E [Xx,`1 ] >
n(n− 1)

8
,

Var [Xx,`1 ] <
(n+ 1)(n+ 2)(2n+ 3)

6
.

Proof: By Lemma 7, we have Xx,`1 =∑n−1
i=1 |ai − Ui| , where Ui ∼ Unif ([0 : i]) and

ai , xπ (i). Let Vi = |ai − Ui|, m1 = min {i− ai, ai}
and m2 = max {i− ai, ai}, then

P [Vi = d] =


1/(i+ 1) d = 0

2/(i+ 1) 1 ≤ d ≤ m1

1/(i+ 1) m1 + 1 ≤ d ≤ m2

0 otherwise.

Hence,

E [Vi] =

m1∑
d=1

d
2

i+ 1
+

m2∑
d=m1+1

d
1

i+ 1

=
2(1 +m1)m1 + (m2 +m1 + 1)(m2 −m1)

2(i+ 1)

=
1

2(i+ 1)
(m2

1 +m2
2 + i)

≥ 1

2(i+ 1)

(
(m1 +m2)2

2
+ i

)
=
i(i+ 2)

4(i+ 1)
>
i

4
,

Var [Vi] ≤ E
[
V 2
i

]
≤ 2

i+ 1

i∑
d=0

d2 ≤ (i+ 1)2.

Then,

E [Xx,`1 ] =

n−1∑
i=1

E [Vi] >
n(n− 1)

8
,

Var [Xx,`1 ] =

n−1∑
i=1

Var [Vi] <
(n+ 1)(n+ 2)(2n+ 3)

6
.

With Lemma 8 and Lemma 9, now we show that the
event that a scaled version of the Kendall tau distance is
larger than the `1 distance of inversion vectors is unlikely.

Proof for Theorem 3: Let c1 = 1/3, let t = n2/7,
then noting

t = E [c ·Xτ ] +
∣∣Θ (√n)∣∣Std [Xτ ]

= E [Xx,`1 ]−
∣∣Θ (√n)∣∣ Std [Xx,`1 ] ,

by Chebyshev inequality,

P [c ·Xτ > Xx,`1 ] ≤ P [c ·Xτ > t] + P [Xx,`1 < t]

≤ O (1/n) +O (1/n) = O (1/n) .

The general case of c1 < 1/2 can be proved similarly.

B. Proof for Theorem 4
Lemma 10. For any π ∈ Sn, let σ be a permutation
chosen uniformly from Sn, and X`1 , d`1 (π, σ), then

E [X`1 ] =
n2

3
+O (n) , Var [X`1 ] =

2n3

45
+O

(
n2
)
.

Proof: See [2, Table 1].
Proof for Theorem 4: For any c > 0,

cn · d`∞ (π, σ) ≤ cn(n − 1), and for any c2 <
1/3, Lemma 10 and Chebyshev inequality indicate
P [d`1 (π, σ) < c2n(n− 1)] = O(1/n). Therefore,

P [d`1 (π, σ) ≥ c2n · d`∞ (π, σ)]

≥ P [d`1 (π, σ) ≥ c2n(n− 1)]

= 1− P [d`1 (π, σ) < c2n(n− 1)]

= 1−O (1/n) .

C. Proof for Theorem 5
Proof: Statement 1 follows from (8).

Statement 2 and 3 follow from Theorem 1. For state-
ment 2, let the encoding mapping for the (n,Dn) source
code in X (Sn, d`1) be fn and the encoding mapping in
X (Sn, dτ ) be gn, then

gn(π) =
[
fn(π−1)

]−1

is a (n,Dn) source code in X (Sn, dτ ). The proof for
Statement 3 is similar.

Statement 4 follow directly from (6).
For Statement 5, define Bn(π) ,

{σ : c1 · n · d`∞ (σ, π) ≤ d`1 (σ, π)} , then Theorem 4
indicates that |Bn(π)| = (1 − O (1/n))n!. Let C̄′n be
the (n,Dn) source code for X (Sn, dx,`1), πσ be the
codeword for σ in C′n, then by Theorem 4,

E [d`∞ (πσ, σ)] =
1

n!

∑
σ∈Sn

d`∞ (σ, πσ)

=
1

n!

 ∑
σ∈Bn(πσ)

d`∞ (σ, πσ) +
∑

σ∈Sn\Bn(πσ)

d`∞ (σ, πσ)


≤ 1

n!

 ∑
σ∈Bn(πσ)

d`1 (σ, πσ) +
∑

σ∈Sn\Bn(πσ)

n


≤ Dn/(nc1) +O (1/n)n = Dn/(nc1) +O (1) .

The proof of Statement 6 is analogous to Statement 5.
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