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The first search for single-top-quark production from the exchange of an s-channel virtual W boson
using events with an imbalance in the total transverse energy, b-tagged jets, and no identified leptons is
presented. Assuming the electroweak production of top quarks of mass 172.5 GeV/c? in the s channel, a

.61

cross section of 1.12f8_57 (stat 4 syst) pb with a significance of 1.9 standard deviations is measured. This
measurement is combined with the result obtained from events with an imbalance in total transverse

+0.37

momentum, b-tagged jets, and exactly one identified lepton, yielding a cross section of 1.36773,
(stat + syst) pb, with a significance of 4.2 standard deviations.

DOI: 10.1103/PhysRevLett.112.231805

The top quark was discovered at Fermilab in 1995 [1,2]
through top-antitop-quark-pair production. This process is
mediated by the strong interaction and results in the largest
contribution to the top-quark-production cross section in
hadron colliders. The top quark can also be produced singly
via the electroweak interaction involving the Wb vertex
with a W boson and a b quark. The study of single-top-
quark production is particularly interesting because of the
direct dependence of the cross section on the magnitude of
the Wtb coupling. Furthermore, electroweak single-top-
quark production from the exchange of an s-channel virtual
W boson is of special interest since possible deviations
from the standard model (SM) expectation could indicate
evidence for non-SM particles such as higher-mass partners
of the W boson (W’') or charged Higgs bosons [3].
Examples of SM single-top-quark-production processes
dominating at the Tevatron are shown in Fig. 1.

FIG. 1. Feynman diagrams for electroweak single-top-quark
production: (a) leading-order ¢ channel, (b) next-to-leading-order
t channel, and (c) leading-order s channel.

PACS numbers: 14.65.Ha, 12.15.Ji, 13.85.Ni

Single-top-quark production was observed at the
Tevatron in 2009 [4-6]. However, s-channel production
has yet to be observed independently. While single-top-
quark production through the 7-channel exchange of a W
boson, first observed by the DO experiment [7], was
established in Large Hadron Collider (LHC) proton-proton
collisions [8.,9], the s-channel process has an unfavorable
production rate compared to the background rates at the
LHC. The DO Collaboration reported the first evidence of
s-channel single-top-quark production [10] measuring a
cross section of 1.10f8.'33f (stat + syst) pb, with a signifi-
cance of 3.7 standard deviations. More recently, CDF also
obtained 3.8 standard deviation evidence using events
containing one isolated muon or electron, large missing
transverse energy (£7) [11], and two jets, at least one of
which is identified as likely to have originated from a
bottom quark (b tagged) [12]. This sample is referred to as
the Zvbb sample. To add acceptance to the data set with
identified leptons, CDF uses, for the first time, events with
large E£7, two or three jets of which one or more are b
tagged and no detected electron or muon candidates. This
sample of events is referred to as the E;bb sample and
contains s-channel single-top-quark contributions where
t - Wb — v and ¢ is an electron or a muon that is not
identified in the detector or a tau that decays hadronically.
In this Letter, the search for s-channel single-top-quark
production in the E;bb sample is reported. Most of the
techniques developed for the low-mass Higgs boson search
[13] in the same data sample are exploited, including the
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HOBIT b tagger [14]. By combining the results of the two
searches, an improved sensitivity to s-channel single top
production from the 9.45 fb~! of integrated luminosity
from the full CDF II data set is obtained.

In the E;bb analysis, events are accepted by the online
event selection (trigger) that requires £7 > 45 GeV or,
alternatively, £7 > 35 GeV and two or more jets with
transverse energy Ey > 15 GeV. The efficiency associated
with this selection is obtained from data and is applied
to the Monte Carlo simulated samples to reproduce the
efficiencies of the data. The parametrization of the trigger
efficiency [15] significantly improves the modeling of
the trigger turn-on outside the fully efficient region, as
verified using data control samples. Off-line, events con-
taining identified electrons or muons are excluded and
E; > 35 GeV is required after correcting measured jet
energies for instrumental effects [16]. Events with two or
three high-E; jets are selected, and the two jets with the
largest transverse energies Ej' and E} are required to
satisfy 25 < E}} <200 GeV and 20 < E} < 120 GeV,
where the jet energies are determined from calorimeter
deposits corrected by track momentum measurements [17].
Some of these events consist of single-top-quark candidates
in which the tau lepton from the + - Wb — zvb decay is
reconstructed as a jet in the calorimeters. To increase the
acceptance for events with an unidentified 7 lepton, events
in which the third-most energetic jet satisfies 15 < E} <
100 GeV are accepted. Because of the large rate of
inclusive quantum chromodynamics (QCD) multijet (MJ)
production, events with four or more reconstructed jets,
where each jet has transverse energy in excess of 15 GeV
and pseudorapidity [11] || < 2.4, are rejected. To ensure
that the two leading-E7t jets are within the silicon-detector
acceptance, they are required to satisfy || < 2, with at least
one of them satisfying || < 0.9.

The MJ background events most often contain £;
generated through jet energy mismeasurements. Neutrinos
produced in semileptonic b-hadron decays can also
gontribute to the £ of the§¢ events. In both cases, the
Ey is typically aligned with E7, and events are rejected by
requiring the azimuthal separation between £; and EJ} (or
E7}, for events with a third jet) to be larger than 0.4. The
remaining MJ background has a large contribution of
events with jets from fragmenting light-flavored u, d, and
s quarks or gluons, which can be further reduced by
requiring b-tagged jets. Charm quarks, which share some
features associated with b quarks, are not explicitly
identified. Events are assigned to three independent
subsamples depending on the b-tag output of the two
leading jets. Jets with b-tag values larger than 0.98 are
defined as tightly tagged (T jet), whereas jets with outputs
between 0.72 and 0.98 are defined as loosely tagged (L
jet). The tagging efficiency and misidentification rate
applied to each jet depend on the jet E; and 7. Scale
factors for these variables are applied on a per-jet basis to

bring the b-tagging efficiencies in the simulation into
agreement with those in the data. TT events are defined as
those in which both jets are tightly tagged, TL events as
those in which one jet is tightly tagged and the other is
loosely tagged, and 17 events as those in which only one
jet is tightly tagged while the other is untagged. Events
with two and three jets are analyzed separately, leading to
six event subsamples with differing signal-to-background
ratios. This strategy enhances sensitivity and helps sep-
arate s-channel single-top-quark production enhanced in
the double-tag categories from the #-channel production
enhanced in the single-tag categories.

In order to extract the s-channel electroweak single-top-
quark signal from the more dominant background contri-
butions, the rates and kinematic distributions of events
associated with each process need to be accurately mod-
eled. The kinematic distributions of events associated with
top-quark-pair, single-top-quark, V + jets (where V stands
fora W ora Z boson), W + ¢, diboson (VV), and associated
Higgs and W or Z boson (VH) production are modeled
using simulations. The ALPGEN generator [18,19] is used to
model V + jets at leading order (LO) with up to four
partons based on generator-to-reconstructed-jet matching
[20,21] and W + c¢. The POWHEG [22] generator is used to
model 7- and s-channel single-top-quark production, while
PYTHIA [23] is used to model top-quark-pair, VV, and VH
production at LO. Each of the event generators uses the
CTEQSL parton distribution function [24] as input to the
simulations. Parton showering is simulated in all cases
using PYTHIA tuned to the Tevatron underlying-event data
[25]. Event modeling also includes simulation of the
detector response using GEANT [26]. The simulated events
are reconstructed and analyzed in the same way as the
experimental data. Normalizations of the event contribu-
tions from f-channel single-top-quark, VV, VH, and ¢f pair
production are taken from theoretical-cross-section predic-
tions [27-30], while normalization for W + ¢ production is
taken from the measured cross section [31]. For V + jets
production, the heavy-flavor contribution is normalized
based on the number of b-tagged events observed in an
independent data control sample [32]. Contributions of
V + jets and VV events containing at least one incorrectly
b-tagged, light-flavored jet are determined by applying per-
event mistag probabilities obtained from a generic event
sample containing light-flavored jets [33] to simulated
events. The MJ background [13] remaining after the full
selection criteria is modeled by applying a tag-rate matrix
derived from a MJ-dominated data sample to events in an
inclusive sample selected without b-tagging requirements
(pretag events) that, otherwise, satisfy the signal sample
selection criteria.

In order to separate the s-channel single-top-quark signal
from the backgrounds, a staged neural network (NN)
technique is employed. A first network NNgcp is trained
to discriminate MJ events from signal events. Events that

231805-4



PRL 112, 231805 (2014)

PHYSICAL REVIEW LETTERS

week ending
13 JUNE 2014

TABLE 1. Numbers of predicted and observed two-jet events in
the 17, TL, and TT subsamples. The uncertainties on the
predicted numbers of events are due to the theoretical-cross-
section uncertainties and the uncertainties on signal and back-
ground modeling. Both the uncertainties and the central values
are those obtained from the fit to the data, which incorporates the
theoretical constraints.

Category 1T TL T
t-channel single top 161 £31 108 +£2.1 92417
1t 243 £24 84.8+93 924+84
Diboson 285 £+ 26 513+46 372434
VH 126 = 1.4 6.6 £ 0.8 7.6 +£0.8
V + jets 6528 £2048 694 £216 220+69
MJ 8322+ 180 928 £59 300 + 32
Signal 86.2+47.7 41.8+£232 4594253
Total prediction 15557 £2056 1733 £224 663 £76
Observed 15312 1743 686

satisfy a minimal requirement on the NNgcp output
variable are further analyzed by a function NN, derived
from the outputs of two additional NNs, NNy, and NN,
designed, respectively, to separate the signal from V + jets
(and the remaining MJ events) and #7 backgrounds.

The NNgcp discriminant is trained using MJ data events
for the background sample. Since the kinematic properties
associated with the presence of a W boson in the s-channel
single-top-quark and W + jets production processes are
very similar, in contrast with those of events originating
from MJ production, W + jets events are used for the signal
sample. The discriminant is trained separately for the two-
jet and three-jet samples using 12 to 15 kinematic, angular,
and event-shape quantities for the input variables. By
requiring a threshold on NNqcp, the multijet contribution
is reduced by 88% while keeping 85% of the signal. The
observed and estimated event yields after the NNgcp
requirement are shown in Tables I and II.

The two additional networks NNy, and NN are
trained for events that satisfy the minimum requirement
on the NNqcp output variable. The first NNy, is trained
to separate the s-channel single-top-quark signal from
V + jets and the remaining MJ backgrounds. In the train-
ing, a simulated signal is used, while the background
sample consists of pretag data events that satisfy the
requirement on NNqcp reweighted by the probability for
an event to be b tagged (tag-rate probability) as derived
from the tag-rate matrix. The NNcp requirement changes
the pretag data composition, enhancing the V 4 jets con-
tribution and selecting MJ events with properties closer to
those expected for V + jets events. The background model
obtained by reweighting these events via the tag-rate
probability accounts for both the V 4+ jets and MJ event
contributions, allowing for more straightforward training
of the NNy;e. The second NNj; is trained to separate the
s-channel single-top-quark from ¢f production using

TABLE II. Numbers of predicted and observed three-jet events
in the 17, TL, and TT subsamples.

Category 1T TL TT
t-channel single top  82.2 £ 15.8 75+£15 6.8 +1.3
1t 597 £ 60 118 +13 110 £ 10
Diboson 108 £+ 10 157+ 1.5 8.8£0.8
VH 6.0 £0.7 1.9+£0.2 22402
V + jets 1610 = 505 165 £ 51 50+ 16
MJ 1818 £49 188 £ 15 559+7.6
Signal 4577+£253 1544+85 162+£89
Total prediction 4220 £ 511 495 £55 234 420
Observed 4198 490 237

simulation for both components. Variables which describe
the energy and momentum flow in the detector and angular
variables are used in the training of the NNy, and NN;;
discriminants. The final discriminant NNg;, is defined as
the quadrature sum of the NNy and NN; output
variables, both weighted by an appropriate weight opti-
mized to improve the sensitivity in each analysis subsam-
ple, taking into account the differing background
contributions. Figure 2 shows the predicted and observed
shapes of the NN;, output variable for each of the six event
subsamples.

The modeling of SM backgrounds is tested in several
control samples. A first (EWK) control sample is defined
containing events with at least one charged lepton that,
otherwise, satisfy the selection criteria. This sample is
independent from the signal sample and is sensitive
primarily to top-quark-pair, V + jets, and, to a lesser extent,
VV production. A second (QCD) control sample contains
events that do not meet the minimal requirement on the
NNqcp output variable but, otherwise, satisfy the selection
criteria. This event sample dominated by MJ production is
used to validate the data-driven MJ background model and
obtain scale factors ranging from 0.7 to 0.9 for normalizing
modeled contributions to the 77, TL, and 17 event
subsamples. Comparisons of modeled and observed dis-
tributions for multiple kinematic variables, including those
used as inputs to the NNgcp, NNyjes, and NNz are used to
validate the accuracy of the model.

To measure the signal contribution, the sum of contri-
butions to the NNj;, distribution is fitted to the observed
data, accounting for statistical and systematic uncertainties.
The dominant systematic uncertainties arise from the
normalization of the V + heavy-flavor background contri-
butions (30%), differences in b-tagging efficiencies
between the data and simulation (8%—-16%), and mistag
rates (20%-30%) [14]. Other uncertainties are on the 7
(3.5%), t-channel single-top-quark (6.2%), VV (6%), VH
(5%), and W + ¢ (23%) cross sections [27-31], initial- and
final-state radiation (2%), normalizations of the QCD
multijet background (3%—7%), luminosity measurement
(6%) [34], jet-energy scale (1%-6%) [16], trigger

sig
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FIG. 2 (color online). Predicted and observed final discriminant
distributions in the signal region for (a) 17 two-jet, (b) 17 three-
jet, (c) TL two-jet, (d) TL three-jet, (e) TT two-jet, and (f) TT
three-jet event subsamples.

efficiency (1%-3%), parton distribution functions (2%),
and lepton vetoes (2%). The shapes obtained by varying
the tag-rate probabilities by 1 standard deviation from
their central values are applied as uncertainties on the
shapes of the NN, output distribution for the MJ back-
ground. Changes in the shape of the NN, distribution
originating from jet energy scale uncertainties are also
incorporated for processes modeled via the simulation.

A likelihood fit to the binned NN, distribution is used
to extract the s-channel single-top-quark signal in the
presence of SM backgrounds. The likelihood is the product
of Poisson probabilities over the bins of the final discrimi-
nant distribution. The mean number of expected events in
each bin includes contributions from each background
source and s-channel single-top-quark production, assum-
ing a top-quark mass of 172.5 GeV/c?. To extract the
signal cross section, a Bayesian method is employed [35].
A uniform prior probability in the non-negative range for
the s-channel single-top-quark-production cross section
times branching fraction and truncated Gaussian priors
for the uncertainties on the acceptance and shape of each
process are incorporated in the fit. Results from each of the
six search subsamples are combined by taking the product

of their likelihoods and simultaneously varying the corre-
lated uncertainties.

The measured s-channel single-top-quark cross section in
the E;bb sample is 1.12f8"5671 (stat + syst) pb. The probability
of observing a signal as large as the observed one or larger
that results from fluctuations of the background (p value) is
determined using pseudoexperiments to be 3.1 x 1072,
corresponding to a significance of 1.9 standard deviations.
The median expected significance assuming that a signal is
present at the SM rate is 1.8 standard deviations.

This result is combined with the result of a similar search
in the Zvbb sample [12]. In that search, candidate events
were selected by requiring exactly one reconstructed muon
or electron in the final state. Hence, no such events are
included in the E;bb analysis described above. Four
independent tagging categories, according to the score of
the HOBIT tagger on the two leading jets (tight tight 77,
tight loose T'L, single tight 17, and loose loose LL) were
analyzed separately. Events were also divided into three
independent samples based on different categories of
reconstructed leptons. To further discriminate the signal
from all other backgrounds, neural networks were
employed. These NNs were optimized separately for each
tagging and lepton category. Correlated systematic uncer-
tainties were treated as described above for the Erbb
search. Finally, a binned-likelihood technique was applied
to the final NN output to extract the s-channel single-top-
quark cross section. The significance of the result from the
Zvbb channel was 3.8 standard deviations, and the mea-
sured cross section was 1.417047 (stat + syst) pb, assuming
a top-quark mass of 172.5 GeV/c>.

The two analyses are combined by taking the product of
their likelihoods and simultaneously varying the correlated
uncertainties, following the same procedure explained
above. The uncertainties associated with the theoretical
cross sections of the 7, t-channel electroweak single-top-
quark, VV, and VH production processes, the luminosity,
the b-tagging efficiency, and the mistag rate are considered
fully correlated between the two searches. The combined
measurement results in an s-channel single-top-quark-
production cross section of 1.36f8_‘§; pb, consistent with
the SM cross section of 1.05 £ 0.05 pb [28]. The combined
background-only p value is 1.6 x 107>, which corresponds
to a signal significance of 4.2 standard deviations. The
median expected significance is 3.4 standard deviations.

In summary, we perform for the first time a search for
s-channel single-top-quark production in the E;bb chan-
nel. The result is combined with that of a search in the
£vbb channel [12] to strengthen the reported evidence for
s-channel single-top-quark production, leading to an
improvement of more than 10% on the uncertainty of
the measured cross section.
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