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Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in
high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation
along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge
separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we
present the results of the beam-energy dependence of the charge correlations in Au + Au collisions at
midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV from the STAR
experiment. After background subtraction, the signal gradually reduces with decreased beam energy and
tends to vanish by 7.7 GeV. This implies the dominance of hadronic interactions over partonic ones at lower

collision energies.

DOI: 10.1103/PhysRevLett.113.052302

A strong interaction is parity even at vanishing temper-
ature and isospin density [1], but parity could be violated
locally in microscopic domains in QCD at finite temper-
ature as a consequence of topologically nontrivial configu-
rations of gauge fields [2,3]. The Relativistic Heavy lon
Collider (RHIC) provides a good opportunity to study such
parity-odd (P-odd) domains, where the local imbalance of
chirality results from the interplay of these topological
configurations with the hot, dense, and deconfined quark-
gluon plasma created in heavy-ion collisions.

The P-odd domains can be manifested via the chiral
magnetic effect (CME). In heavy-ion collisions, energetic
protons (mostly spectators) produce a magnetic field (B)
with a strength that peaks around eB ~ 10* MeV? [4]. The
collision geometry is illustrated in Fig. 1. The strong
magnetic field, coupled with the chiral asymmetry in the
‘P-odd domains, induces a separation of electric charge along
the direction of the magnetic field [4-9]. Based on data from
the STAR [10-13] and PHENIX [14,15] Collaborations
at the RHIC and the ALICE Collaboration [16] at the LHC,
charge-separation fluctuations have been experimentally
observed. The interpretation of these data as an indication
of the CME is still under intense discussion; see, e.g.,
Refs. [13,17,18] and references therein. A study of the beam-
energy dependence of the charge-separation effect will shed
light on the interpretation of the data.

The magnetic field axis points in the direction that is
perpendicular to the reaction plane, which contains the
impact parameter and the beam momenta. Experimentally,
the charge separation is measured perpendicular to the
reaction plane with a three-point correlator y = (cos(¢; +
¢ —2Wgp)) [19]. In Fig. 1, ¢ and Ugp denote the
azimuthal angles of a particle and the reaction plane,
respectively. In practice, we approximate the reaction plane
with the “event plane” (Vgp) reconstructed with measured
particles and then correct the measurement for the finite
event plane resolution [10-12].

This Letter reports measurements of the three-point
correlator y for charged particles produced in Au+ Au
collisions. 8 events were analyzed at the center-of-mass
energy /syy = 62.4 GeV (2005), 100M at 39 GeV
(2010), 46M at 27 GeV (2011), 20M at 19.6 GeV
(2011), 10M at 11.5 GeV (2010), and 4M at 7.7 GeV

PACS numbers: 25.75.-q

(2010). Events selected with a minimum bias trigger have
been sorted into centrality classes based on uncorrected
charged particle multiplicity at midrapidity. Charged
particle tracks in this analysis were reconstructed in the
STAR time projection chamber [20], within a pseudor-
apidity range of || < 1 and a transverse momentum range
of 0.15 < py <2 GeV/c. The centrality definition and
track quality cuts are the same as in Refs. [21], unless
otherwise specified. Only events within 40 cm of the center
of the detector along the beam direction were selected for
data sets at \/syy = 19.6-62.4 GeV. This cut was 50 and
70 cm for 11.5 and 7.7 GeV collisions, respectively. To
suppress events from collisions with the beam pipe (radius
3.95 cm), only those events with a radial position of the
reconstructed primary vertex within 2 cm were analyzed.
A cut on the distance of closest approach to the primary
vertex < 2 cm was also applied to reduce the number of
weak decay tracks or secondary interactions. The exper-
imental observables involved in the analysis have been
corrected for the particle track reconstruction efficiency.
In an event, charge separation along the magnetic field
(i.e., perpendicular to the reaction plane) may be described

FIG. 1 (color online). Schematic depiction of the transverse
plane for a collision of two heavy ions (the left one emerging
from and the right one going into the page). Particles are
produced in the overlap region (blue-colored nucleons). The
azimuthal angles of the reaction plane and a produced particle
used in the three-point correlator y are depicted here.
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phenomenologically by a sine term in the Fourier decom-
position of the charged particle azimuthal distribution

dN,
d¢

o« 1 4+2v;cos(Ag) +2a,sin(A¢p) +2v,co8(2Ap) +- -,
(1)

where A¢ = ¢p — Ugp, and the subscript a (4 or —) denotes
the charge sign of particles. Conventionally, v; is called
“directed flow” and v, “elliptic flow,” and they describe the
collective motion of the produced particles [22]. The
parameter a (with a_ = —a_) quantifies the P-violating
effect. However, if spontaneous parity violation occurs, the
signs of finite a, and a_ will vary from event to event,
leading to (a.,) = {(a_) =0. In the expansion of the
three-point  correlator  y = (cos(¢p; + ¢y — 2Wgp)) =
(cos(Agpy) cos(Agp,) — sin(Ag;) sin(A¢,)), the second
term contains the fluctuation term —(a,a.), which may
be nonzero when accumulated over particle pairs of
separate charge combinations. The first term ({cos(Ag,)x
cos(Ag,))) in the expansion provides a baseline unrelated
to the magnetic field.

The reaction plane of a heavy-ion collision is not known
a priori, and, in practice, it is approximated with an event
plane which is reconstructed from particle azimuthal
distributions [22]. In this analysis, we exploited the large
elliptic flow of charged hadrons produced at midrapidity to
construct the event plane angle:

1 [>C w;sin(2¢;)
Vep = 5tan” {Z o, cos(qu,-)] ’

where ; is a weight for each particle i in the sum [22].
The weight was chosen to be the p; of the particle itself,
and only particles with p; <2 GeV/c were used.
Although the STAR time projection chamber has good
azimuthal symmetry, small acceptance effects in the cal-
culation of the event plane azimuth were removed by the
method of shifting [23]. The observed correlations were
corrected for the event plane resolution which was esti-
mated with the correlation between two random subevents
(details are given in Ref. [22]).

The event plane thus obtained from the produced
particles is sometimes called “the participant plane” since
it is subject to the event-by-event fluctuations of the initial
participant nucleons [24]. A better approximation to the
reaction plane could be obtained from the spectator neutron
distributions detected in the STAR zero degree calorimeters
[25]. This type of event plane utilizes the directed flow of
spectator neutrons measured at very forward rapidity. We
have measured the three-point correlations using both types
of reaction plane estimates, and the results are consistent
with each other [12]. Other systematic uncertainties were
studied extensively and discussed in our previous publi-
cations on the subject [10,11]. All were shown to be
negligible compared with the uncertainty in determining

(2)

the reaction plane. In this work, we have only used the
participant plane because the efficiency of spectator neu-
trons detected in the STAR zero degree calorimeters
becomes low for low beam energies.

Figure 2 presents the opposite-charge (yog) and same-
charge (yss) correlators for Au + Au collisions at \/syy =
7.7-62.4 GeV as a function of centrality (O means the most
central collisions). In most cases, the ordering of yog and
7ss 1s the same as in Au -+ Au (Pb + Pb) collisions at
higher energies [10-12,16], suggesting charge-separation
fluctuations perpendicular to the reaction plane. As a
systematic check, the charge combinations of ++ and
—— were always found to be consistent with each other (not
shown here). With decreased beam energy, both yqg and
7ss tend to rise up in peripheral collisions. This feature
seems to be charge independent and can be explained by
momentum conservation and elliptic flow [12]. Momentum
conservation forces all produced particles, regardless of
charge, to separate from each other, while elliptic flow, a
collective motion, works in the opposite sense. For periph-
eral collisions, the multiplicity () is small, and momentum
conservation dominates. At lower beam energies, N also
becomes smaller, hence higher values for yog and yg. For
more central collisions where the multiplicity is large, this
type of P-even background can be estimated as —wv,/N

T T T T TTT T T T T

101 62.4 GeV 19 39 Gev A
(}),_ O opposite charge
St % same charge T \Q 7
= -O—0—8- = C0—0— 0@
o - : -
g ;
>
N , , , , A , , , ,
o~ 300t ‘ ‘ ‘ HH ‘ ‘ ‘ H
=
+_ 27 GeV (% 19.6 GeV
£ :
5 2. UrQMD T 7}, b
] i opp charge o = MEVSIM
3 10k Q [l same charge . O |

10* x [y

e 46 20 080 60 40 20 0
Collision centrality (% Most Central)

FIG. 2 (color online). The three-point correlator y as a function
of centrality for Au + Au collisions at 7.7-624 GeV. Note that
the vertical scales are different for different rows. The filled boxes
(starting from the central values) represent one type of systematic
uncertainty (as discussed in the text). Charge-independent results
from the model calculations of MEVSIM [27] are shown as grey
curves. yos and ygg from UrQMD calculations [28] are also
shown as shaded bands for 27 and 39 GeV.

052302-4



PRL 113, 052302 (2014)

PHYSICAL REVIEW

week ending

LETTERS 1 AUGUST 2014

[12,26]. In Fig. 2, we also show the model calculations of
MEVSIM, a Monte Carlo event generator with an imple-
mentation of v, and momentum conservation, developed
for STAR simulations [27]. The model results qualitati-
vely describe the beam-energy dependency of the charge-
independent background.

In view of the charge-independent background, the
charge-separation effect can be studied via the difference
between yog and ygg. The difference (yog — ysg) remains
positive for all centralities down to the beam energy
~19.6 GeV, and the magnitude decreases from peripheral
to central collisions. Presumably, this is partially owing to
the reduced magnetic field and partially owing to the more
pronounced dilution effect in more central collisions.
A dilution of the correlation is expected when there are
multiple sources involved in the collision [11,29]. The
difference between yog and ysg approaches O in peripheral
collisions at lower energies, especially at 7.7 GeV, which
could be understood in terms of the CME hypothesis if the
formation of the quark-gluon plasma becomes less likely in
peripheral collisions at low beam energies [30].

The systematic uncertainties of (yog — yss) due to the
analysis cuts, the track reconstruction efficiency, and the
event plane determination were estimated to be approxi-
mately 10%, 5%, and 10%, respectively. Overall, total
systematic uncertainties are typically 15%, except for the
cases where (yos —yss) is close to 0. Another type of
uncertainty is due to quantum interference (HBT effects) and
final-state interactions (Coulomb dominated) [12], which are
most prominent for low relative momenta. To suppress the
contributions from these effects, we applied the conditions of
Apr > 0.15GeV/c and An > 0.15 to the correlations,
shown as filled boxes in Figs. 2-4. The boxes start from
the central values with default conditions and end with the
results with the above extra conditions on Ap; and Az.

Interpretation of the three-particle correlation result y
requires additional information such as a measurement
of the two-particle correlation &= (cos(¢p; —¢h,)) =
(cos(Agy) cos(Ag,) + sin(A¢, ) sin(A¢,)). The expan-
sion of § also contains the fluctuation term (a.a.) (with
a sign opposite to that in y). Figure 3 shows ¢ as a function
of centrality for Au+ Au collisions at 7.7-62.4 GeV.
Contrary to the CME expectation, dgg is above dgg in
most cases, indicating an overwhelming background, larger
than any possible CME effect. The background sources, if
coupled with collective flow, will also contribute to y.
Taking this into account, we express y and & in the
following forms, where the unknown parameter k, as
argued in Ref. [31], is of the order of unity:

y = (cos(¢py + ¢p —2Wgp)) = kv, F — H, (3)
6= (cos(¢py —¢,)) = F+ H, (4)

where H and F are the CME and background contributions,
respectively. In Ref. [31], xk = 1, but it could deviate from

-20

62.4 GeV
' ' '

_r\---O Q Q000

-40

(c0s(0.-0,))]

20 * 7
/ UrQMD
40/ h
il opp charge
w, -60- O —same charge — 'AT? -
X gol 27 GeV 1o 19.6 GeV ]
=
o t t t t t
- 0 o
o ¥
-50F + o .
_ e
O opposite charge
-100- # same charge T % 1
11.5 GeV 7.7 GeV
-150, L ! ! 1 ! ! L ]
80 60 40 20 080 60 40 20 0

Collision centrality (% Most Central)

FIG. 3 (color online). The two-particle correlation as a function
of centrality for Au + Au collisions at 7.7-62.4 GeV. Note that
the vertical scales are different for different rows. The filled boxes
bear the same meaning as those in Fig. 2 and are described in the
text. MEVSIM and UrQMD calculations are also shown for
comparison.

unity owing to a finite detector acceptance and theoretical
uncertainties. We can solve for H from Egs. (3) and (4):

H* = (kv26 —7)/(1 + Kkvy). (5)

Figure 4 shows Hgs — H(yg as a function of beam energy
for three centrality bins in Au + Au collisions. v, for the
beam energies under study has been measured in our
previous publications [21]. The default values (dotted
curves) are for H=', and the solid (dash-dotted) curves
are obtained with x = 1.5 (x = 2). For comparison, the
results for 10%—60% Pb + Pb collisions at 2.76 TeV are
also shown [16]. The (Hgg — Hpg) curve for k = 1 suggests
a nonzero charge-separation effect with a weak energy
dependence above 19.6 GeV, but the trend rapidly
decreases to O in the interval between 19.6 and 7.7 GeV.
This may be explained by the probable domination of
hadronic interactions over partonic ones at low beam
energies. With increased k, (Hgg— Hpg) decreases for
all beam energies and may even totally disappear in some
cases (e.g., with k ~2 in 10%-30% collisions). A better
theoretical estimate of x in the future would enable us to
extract a firmer conclusion from the data presented.

MEVSIM calculations qualitatively reproduce the charge-
independent background for both y and J correlators, as
shown in Figs. 2 and 3, but they always yield identical
same-charge and opposite-charge correlations. To further
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FIG. 4. Hgs— Hpg, as a function of beam energy for three
centrality bins in Au + Au collisions. The default values (dotted
curves) are for H*=!, and the solid (dash-dotted) curves are
obtained with x = 1.5 (x = 2). For comparison, the results for
Au + Au collisions at 200 GeV [11] and Pb + Pb collisions at
2.76 TeV [16] are also shown. The systematic errors of the STAR
data (filled boxes) bear the same meaning as those in Fig. 2.
UrQMD calculations with « = 1 are also shown as solid shaded
bars for 27 and 39 GeV.

study the charge-separation effect, a transport model
UrQMD [28] was employed. UrQMD calculations have
finite difference between same-charge and opposite-charge
y (6) correlations, while Hgg — Hpg 1s either slightly
negative or consistent with 0. This is demonstrated for
27 and 39 GeV in Figs. 2-4.

In summary, an analysis of the three-point correlation
between two charged particles and the reaction plane
has been carried out for Au+ Au collisions at
V/Svn = 7.7-62.4 GeV. The general trend of the correla-
tions (yos and ygg), as a function of centrality and beam
energy, can be qualitatively described by the model
calculations of MEVSIM. This result indicates a large
contribution from the P-even background due to momen-
tum conservation and collective flow. The charge separa-
tion along the magnetic field, studied via (Hgg — Hog),
shows a signal with a weak energy dependence down to
19.6 GeV and then falls steeply at lower energies. This
trend may be consistent with the hypothesis of local parity
violation because there should be a smaller probability for
the CME at lower energies where the hadronic phase plays
a more dominant role than the partonic phase. A more
definitive result may be obtained in the future if we can

increase the statistics by a factor of 10 for the low energies
and if we can reduce the uncertainty associated with
determination of the value of «.
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