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Abstract

In this thesis we investigate novel photonic crystal devices that can be used as build-
ing blocks of all-optical circuits. We contrast the behavior of light in photonic crystal
systems and in their traditional counterparts. We exhibit that bends in photonic
crystals are able to transmit light with over 90% efficiency for large bandwidths and
with 100% efficiency for specific frequencies. In contrast to traditional waveguides,
bound states in photonic crystal waveguides can also exist in constrictions and above
the cutoff frequency. We discuss how to lower reflections encountered when photonic
crystal waveguides are terminated, both in an experimental setup as well as in nu-
merical simulations. We show that light can be very efficiently coupled into and out
of photonic crystal waveguides using tapered dielectric waveguides. In time-domain
simulations of photonic crystal waveguides, spurious reflections from cell edges can
be eliminated by terminating the waveguide with a Bragg reflector waveguide. We
demonstrate novel lasing action in two-dimensional photonic crystal slabs with gain
media, where lasing occurs at saddle points in the band structure, in contrast to
one-dimensional photonic crystals. We also design a photonic crystal slab with or-
ganic gain media that has a TE-like pseudogap. We demonstrate that such a slab
can support a high-Q) defect mode, enabling low threshold lasing, and we discuss how
the quality factor depends on the design parameters. We also propose to use two-
dimensional photonic crystal slabs as directionally efficient free-space couplers. We
draft methods to calculate the coupling constant both numerically and analytically,
using a finite-difference time-domain method and the volume current method with a
Green'’s function approach, respectively.

Thesis Supervisor: John D. Joannopoulos
Title: Francis Wright Davis Professor of Physics
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Chapter 1

Introduction

Electromagnetic waves are becoming the dominant means of transmission in long-
distance communications. Due to the larger bandwidth of photons in dielectric mate-
rials compared to electrons in metals, information can be sent using light at a much
faster rate than it can be done relying on electricity. For this reason, light transmis-
sion is expected to dominate all future communications. Presently thousands of miles
of optical fibers are being laid down to complete an infrastructure of transmitting
and routing wavepackets of light containing large amounts of information. However,
integrated circuits that process this information are mostly electronic or hybrid op-
toelectronic in nature. Even though all-optical circuits could interface naturally with
optical fibers, they are not yet available commercially. The challenge is to design
efficient, fast, reliable components for such circuits that can be integrated on a small
scale. Since the demand for large-scale integration has spawned an industry with
well-established nanoscale fabrication methods, all-optical circuits can be fabricated
with ease.

Photonic crystals offer novel ways of making integrated optical circuit components.
They are materials whose dielectric constant is periodic in space. If the parameters
of the photonic crystal are properly chosen, we can create a frequency range where
electromagnetic wave propagation is forbidden. Photonic band gap (PBG) materials
are extremely useful when designing dielectric devices to manipulate photons. In

this thesis we investigate the physics of photonic crystal systems — fundamentally
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different from their traditional counterparts — that can become building blocks of
all-optical circuits. We utilize the flexibility and control PBG materials enable us with
to design devices for use in opto-electronic or all-optical integrated circuits. Some im-
portant circuit components under consideration include waveguides, waveguide bends
and couplers, free-space couplers and lasers.

In this work we also model and numerically simulate photonic crystal devices. We
demonstrate analytial arguments by computationally implementing certain systems to
exhibit the novel properties of photonic crystals. We endeavor to design components
that are amenable for fabrication in the submicron range with currently available
nanofabrication technology. Through a combination of novel theoretical concepts
and numerical calculations, we propose optimal designs for optical circuit components
based on photonic crystals.

In Chapter 2, we demonstrate highly efficient transmission of light around sharp
corners in photonic bandgap waveguides. Numerical simulations reveal complete
transmission at certain frequencies, and very high transmission (>95%) over wide
frequency ranges. High transmission is observed even for 90° bends with zero radius
of curvature, with a maximum transmission of 98% as opposed to 30% for analogous
conventional dielectric waveguides. We propose a simple one-dimensional scattering
theory model with a dynamic frequency-dependent well-depth to describe the trans-
mission properties.

In Chapter 3, we investigate the mechanism for the appearance of bound states in
two-dimensional photonic crystal waveguides and contrast it with the corresponding
mechanism for conventional guides. It is shown that the periodicity of the photonic
crystal can give rise to frequency ranges above cutoff where no guided modes exist
in the waveguides. Such mode gaps make possible the creation of bound states in
constrictions and in bends. Bound states are found to correspond to analogous cavity
modes and it is shown that their appearance strongly depends on the lattice geometry
and cannot be described in a one-dimensional framework.

In Chapter 4, we design tapered waveguide junctions for coupling between pho-

tonic crystal and traditional dielectric waveguides and evaluate their transmission
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efficiency. While the transmission efficiency is only between 20-55% using no taper,
the tapered couplers we present have over 90% power transmission. We discuss tapers
and inverse tapers for coupling into and out of photonic crystal waveguides.

In Chapter 5, we present a novel numerical scheme for the reduction of spurious
reflections in simulations of electromagnetic wave propagation in photonic crystal
waveguides. We use a distributed Bragg reflector waveguide termination to reduce
reflection from photonic crystal waveguide ends by improving k-matching for photonic
crystal waveguided modes. We describe computational procedures and exhibit that
a significant reduction in reflection amplitude can be achieved across a large part of
the guided mode spectrum. This method enables one to reduce simply and effectively
the computational requirements in photonic crystal waveguide simulations.

In Chapter 6, we report an analysis of the operation of a new type of laser resonator
with two-dimensional distributed feedback from a photonic crystal. The gain medium
consists of an organic host doped with dyes and is deposited on lithographically
patterned Si/SiO, structures. Bragg reflections caused by the grating diminish the
group velocity of photons along some directions of crystallographic symmetry to zero,
and the resulting feedback gives rise to laser oscillations. Dispersion relations for
photons were calculated analytically and are used to interpret the laser emission
spectra.

In Chapter 7, we conduct a comprehensive investigation of the lasing mechanism
in a photonic crystal slab laser with a refractive index that is periodic in two dimen-
sions. Experimental spectra of laser structures fabricated with organic gain media
are presented. It is found that lasing frequencies can be explained in terms of Van
Hove singularities in the density of modes. We also observe lasing spectra that can-
not be obtained from structures with one-dimensional periodicity, such as traditional
distributed feedback lasers. Lasing frequencies are computed using numerical tech-

niques.

In Chapter 8, we use organic gain media to fabricate a laser based on a defect
mode in a photonic crystal slab. We design a photonic crystal slab with an in-plane

pseudogap for TE-like modes that can support a defect mode with a @ estimated to
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be about 376. The effects of the design parameters on the gap size and the defect
quality factor are investigated. The mechanism for energy loss from the lasing mode
and details of the computation of the defect quality factor are also discussed.

In Chapter 9, we propose the use of two-dimensional photonic crystal slabs to
improve the directionality of output coupling from planar waveguides and distributed
feedback lasers. We present a theory underlying the operation of such structures and
design criteria for emission in desired directions. As an example, we demonstrate a
vertical coupler integrated with an organic distributed feedback laser, use computer
simulations to find its coupling constant and efficiency and then discuss its feasibility.

In Chapter 10, we calculate in a perturbation approach the coupling constants
for in-plane and out-of-plane coupling of guided modes due to a two-dimensionally
periodic refractive index variation in a dielectric slab. We rely on the volume current
method and employ the far-field form of the slab Green’s functions to obtain expres-
sions for the constants. Finally, we discuss extending the Green’s function approach

to calculate transmission through an arbitrary photonic crystal slab.
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Chapter 2

High transmission through sharp
bends in photonic crystal

waveguides

2.1 Introduction

Photonic crystals have inspired great interest recently because of their potential ability
to control the propagation of light. They can modify and even eliminate the density
of electromagnetic states inside the crystal [1, 2]. Such periodic dielectric structures
with complete band gaps can find many applications, including the fabrication of
lossless dielectric mirrors and resonant cavities for optical light [3]. In this chapter,
we demonstrate a novel method for guiding light around sharp corners, using photonic

crystal waveguides.

Two main designs are commonly employed to guide electromagnetic waves along
a line: metallic pipe waveguides which provide lossless transmission only for mi-
crowaves, and dielectric guides for infrared and visible light. Although metallic waveg-
uides can be used to steer light around tight corners, the operation of conventional
dielectric guides, based on the principle of total internal reflection, is restricted by

radiation losses to moderate curvature bends. In fact, when light is steered around
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a corner in such a guide, the radius of curvature must well exceed the wavelength of
the light even for high dielectric contrasts to avoid large losses at the corners [4]. In a
recent article, Meade et al. showed that a linear defect in a photonic bandgap (PBG)
material can support a linearly localized mode when the mode frequency falls inside
the gap [5]. Such a defect can act as a waveguide for EM waves, without relying on
total internal reflection. In this letter we further show that a PBG waveguide can
efficiently guide light around corners. The losses are very low for a wide range of
frequencies, and vanish for specific frequencies, even if the radius of curvature of the

bend is on the order of one wavelength.

2.2 Results of numerical simulations

For simplicity, we select to study a 2D photonic crystal of dielectric rods in air on
a square array with lattice constant a. Choosing the refractive index of the rods
to be 3.4 (which corresponds to GaAs at the canonical wavelength of 1.55 um) and
their radius to be 0.18a, we find that the crystal has a TM! gap which extends
from frequency w = 0.302 27c/a to w = 0.443 27c/a. One can create a single non-
degenerate guided TM mode inside the gap by removing a row of rods. Since the
waveguide has translational symmetry, a mode can be characterized by its reciprocal
space wavevector k along the direction of the guide. The band appears at a frequency
w = 0.312 27c/a when k = 0 and reaches the top of the gap when k = 0.38 27 /a.
Since the characteristics of a PBG material remain unchanged under rescaling, we
can easily assure that the guided light will be in the infrared or visible region. For
example, if we choose a lattice constant a of 0.58 um, the wavelength corresponding
to the midgap frequency will be 1.55 um.

If a bend is introduced into such a waveguide, no power will be radiated out of
the guide as light travels around the bend, since there are no extended modes into

which the propagating mode can couple. Light will either be transmitted or reflected;

!TM modes are defined as the modes for which the magnetic field is transverse to the normal
direction of the plane of translational symmetry; or equally, TM modes are the modes for which the
electric field is parallel to the axis of the dielectric columns.
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Figure 2-1: Top Panel: Schematic view of the 100a x 120a computational cell. The
field amplitude is monitored at points A and B. The guide is located five lattice
constants from the edge of the cell. Bottom Panel: Field amplitude recorded at
points A and B, as a function of time. The pulses reflected by and transmitted
through the bend, as well as the pulses reflected from the edges of the cell, are easily
discernible.
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only back reflection will hinder perfect transmission. We study the transmission and
reflection properties of waveguide bends using a vector finite-difference time-domain
program with quartic perfectly matched layer boundaries [6]. In our simulation, a
dipole located at the entrance of the waveguide creates a pulse with a Gaussian
envelope in time. The field amplitude is monitored inside the guide at two points,
one before the bend (point A) and one after (point B) as indicated in the top panel
of Fig.2-1. Although most of the light that reaches the edge of the computational
cell is absorbed by the boundaries, some light gets reflected back from the ends of
the waveguide. By using a sizable computational cell of 100 x 120 lattice constants
and by positioning each monitor point appropriately, we can distinguish and separate
all the different pulses propagating in the cell; the useful pulses, such as the input
pulse and the pulses reflected by and transmitted through the bend, and the parasite
pulses which are reflected from the edges of the cell. These pulses are clearly shown

in the bottom panel of Fig.2-1.

In the specific case shown in Fig.2-1, six pulses are sent down the guide, covering
different ranges of frequencies. It would be possible, in principle, to use only one pulse
with a spectrum covering the entire gap to determine the transmission properties of
the bend. However, the spatial width of such a pulse — initially small — would
increase rapidly in time, resulting in an overlap between the useful and parasite
pullses propagating in the computational cell. The pulses measured at points A and
B are Fourier transformed to obtain the reflection and the transmission coefficients
for each frequency. The results are shown in the two panels on the top of Fig.2-2. The
excellent agreement between the transmission and reflection coeflicients obtained from
the different pulses demonstrates the consistency of our approach. The transmission
and reflection coeflicients do add up to unity for every frequency in the gap, which
confirms that there is no observable radiation loss, in spite of the close proximity of the
waveguide to the edge of the computational cell. It is somewhat difficult to determine
the reflection and transmission coefficients near the cutoff frequency w = 0.312 2¢/a.
At these frequencies, the pulse comprises long-wavelength components and spreads

out as it propagates inside the guide. This widening results in overlaps among the
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Figure 2-2: Top Panel: Spectral profile of six input pulses. Center Panel: Computed
transmission and reflection coefficients for each input pulse. The fast oscillations in
transmission at low frequencies are unphysical. Bottom Panel: Electric field pattern in
the vicinity of the bend for frequency w = 0.353 2mc/a. The electric field is polarized
along the axis of the dielectric columns. White circles indicate the dielectric posts.
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useful and the parasite pulses. The separation of the overlapping pulses introduces
Gibbs oscillations.

The transmission drops sharply to zero below the cutoff frequency of the guided
mode. The transmission for frequencies w < 0.392 27rc¢/a is larger than 95%, and
reaches 100% when w = 0.353 2mwc/a. The field pattern of the propagating mode
can be observed by a CW excitation of the guided mode. We show in the bottom
panel of Fig.2-2 the electric field pattern for the case where w = 0.353 2wc/a. The
mode is completely confined inside the guide, and the light wave travels smoothly
around the sharp bend, even though the radius of curvature of the bend is on the
order of the wavelength of the light. For comparison purposes, we have calculated
the transmission through a traditional rib dielectric waveguide of refractive index 3.5
with a similar radius of curvature. The radius of curvature R was taken to be equal
to the width of the guide and the transmission was measured for a wide range of
frequencies centered around w = 0.143 2m¢/R. The power transmission was found .

not to exceed 80%.

2.3 Theoretical analysis of reflection spectra

We now propose a simple model to explain both the high transmission through the
bends and the oscillatory behavior of the transmission spectrum. Qur PBG waveguide
structure can be viewed as separate waveguide sections, one in the (01) direction and
one in the (10) direction, connected by a short waveguide section in the (11) direction.
For any given frequency w, there is a single wavevector k(w) for the guided modes in
any particular waveguide section. We label these wavevectors k;(w) for propagation
along the (01) or (10) direction, and k»(w) for the (11) direction. These wavevectors
are given by the dispersion relations shown in Fig.2-3. The dispersion relations are
determined using a frequency-domain band-structure computation code [7]. From this
figure, we can define a frequency-dependent effective refractive index n(w) = ck(w)/w
governing the wave propagation in each of the waveguide sections.

We model the transmission through the bend as a simple one-dimensional scat-
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Figure 2-3: Dispersion relation k;(w) for propagation along the (01) or (10) direction,
and kz(w) for the (11) direction. The gray regions correspond to the edges of the
bandgap. The “potential” associated with the bend is shown in the inset.

tering process in which the mode propagating with wavevector k; is scattered into
the mode with wavevector k;, then back into the mode with wavevector k;. At the
interface, we require continuity of the field and of its derivative, as we would in the
case of a plane EM wave normally incident on a boundary between materials with dif-
ferent refractive indices. By complete analogy with the one-dimensional Schrédinger
equation, we can map this problem onto that of a wave propagating in a “dielec-
tric potential”. This potential consists of three constant pieces, corresponding to
the (01), (11), and (10) propagation directions, respectively, as shown in the inset of
Fig.2-3. Our model differs from the usual one-dimensional scattering problem in that
the depth of the well, determined by the difference k?(w) — kZ(w), now depends on
the frequency of the travelling wave.

The reflection coefficient is then given by

N 2y () ka () 7™
) [““ (s Siﬂ[kz(w)L])] ' &1
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The sole parameter in equation (2.1) is the length L of the well (or of the bend). To
set this parameter, we select a single point from the computational results shown in
Fig.2-2. We choose the point at w = 0.353 2rc/a, where the reflection coefficient is
zero. Our choice of solution is L = 1.33 v/2a, which is the one closest to the physical

length of the (11) portion of the waveguide.
To test the validity of this model, we vary the length of the (11) waveguide section

and compare the reflection coefficients computed from the numerical simulations to
those obtained from equation (2.1). The value L = 1.33 v2a found above is used to
set the parameter L in each case. As we vary the bend length by integer multiples
of v/2a, the effective length L should also change by the same amount, giving L =
0.33 v/2a, 1.33 V2a, 2.33 v/2a and 3.33 v/2a for the four bends shown in Fig.2-4. The
reflection coefficients are plotted in Fig.2-4. We find good agreement between the one-
dimensional scattering model (solid line) and the numerical simulations (diamonds).
Our model correctly predicts the frequencies where the reflection coefficient vanishes,

as well as the general quantitative features of the transmission spectrum.

We note that the 90° bend with zero radius of curvature, as shown in the top panel
of Fig.2-4, is not described in this model by a uniformly constant potential, but by the
potential shown in the inset of Fig.2-3 with an effective length L = 0.33+/2a¢. This
length is extrapolated from the bends with lenger (11) sections. Our model accurately
predicts the existence of reflection from the bend, with transmission exceeding 95% for
guided modes below w = 0.403 2rc/a. This behavior is in marked contrast to that
of a conventional dielectric waveguide with a sharp 90° bend. Power transmission
reaches at most 30% even for a guide with a refractive index contrast of 3.5 to 1 with

its surroundings, due to large radiation losses at the corner.

The one-dimensional scattering analysis presented above relies on the existence
of a band gap along every direction in the plane of the 2D crystal. Therefore, our
analysis should also hold for 3D photonic crystals with complete omnidirectional band
gaps. By adjusting the length of the bend section, we should be able to achieve 100%
transmission through sharp bends for several frequencies. Furthermore, transmission

should remain high as long as the dispersion relations in the two different waveguides
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making up the bend do not differ considerably, that is, as long as the depth of the
“dielectric potential well” remains small.

Finally, a natural question to pose about these photonic crystal waveguides con-
cerns the possible existence of bound states localized in the vicinity of the corner.
These bound states are known to exist in other similar structures such as quantum
wires [8, 9]. In the case of photonic crystals, bound states may appear in a frequency
range where guided modes exist inside the bend section while being forbidden in the
other sections of the guide. Although this particular condition does not hold in the
waveguide structures investigated above, it is possible to alter the waveguide geome-
try in order to change the dispersion relations, thereby creating a configuration which

would support bound states.
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Chapter 3

Bound states in photonic crystal

waveguides and waveguide bends

3.1 Introduction

Bound states in waveguides, and especially in waveguide bends, have recently been the
subject of widespread theoretical and experimental investigation. Jaffe and Goldstone
proved [8] that bends, which behave like local bulges in the guide, always support
bound states in constant cross-section quantum waveguides under the condition that
the wavefunction vanishes on the boundary. Papers by Carini et al. [10, 11, 12] deal
with calculating energies of single and multiple bound states in bent quantum waveg-
uides and comparing them to results from microwave experiments. Much effort has
also been spent on finding new and calculationally efficient approaches for determin-
ing bound state energies in waveguide bends [13, 9]. Such research was ultimately
prompted by an interest in semiconductor device minituarization. Since electronic
transport properties through such quantum wires are influenced by the existence of
localized states [14, 15], having a good understanding of bound states in bends is
relevant to building small scale integrated circuits.

There is also considerable current interest in designing integrated optoelectronic
or all-optical circuits. A set of essential components in these circuits are electromag-

netic waveguides. Traditionally, two main types of guides are used in controlling the
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linear propagation of EM waves: metallic guides for microwaves and dielectric guides
for optical light. In two-dimensional structures, planar symmetry implies that the
waveguide modes can have either TM or TE polarizations.! One can then reformu-
late the problem for metallic waveguides in terms of a single scalar field. On the
boundary the field amplitude is zero for TM modes and the field derivative vanishes
for TE modes. The results of [8] thus carry over to electromagnetic waves with TM
polarization in 2-D metallic waveguides as well: any bulge or bend will generate a
bound state. We note that in the case of a dielectric waveguide with a high dielectric
contrast, the fields are similar to that of a metallic guide, so we expect that bulges
and bends in these waveguides will also generate localized states in a similar manner.
However, since these states can couple to free space modes, they will be decaying
resonances and not bound states.

As an alternative to conventional (metallic or dielectric) components, photonic
band gap (PBG) materials are well suited as building blocks of devices comprising all-
optical circuits [16, 17, 18, 5, 19]. PBG waveguides—linear defects in PBG materials—
are capable of guiding light at optical wavelengths without appreciable losses [5].
Furthermore, it has also been demonstrated that such guides can transmit EM waves
efficiently through sharp corners [19]. The question of whether bound states exist in
PBG waveguide bends arises naturally. In this paper, we study the conditions and
the mechanism for the appearance of bound states in such guides. For simplicity,
we consider only two-dimensional photonic crystals. However, the analysis presented
here applies also to three-dimensional crystals. We present general arguments on PBG
waveguide band structures, mode gaps and bound states and illustrate the arguments
with specific examples. We find that PBG waveguides, unlike conventional ones, can
possess mode gaps. These gaps make it possible for bound states to exist in bends
and in constrictions even above the cutoff frequency for guided modes. It is also
shown that the appearance of bound states in bends cannot be described in a purely

one-dimensional framework and that these states are closely related to cavity modes.

1Here TM modes are defined so that the magnetic field lies in the 2-D plane, with the electric
field normal to the plane.
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The outline of the paper is as follows. In Sec.2, the methods of calculation are
presented, and in Sec.3 PBG waveguides are studied. In Sec.4, we investigate bound

states in photonic crystal waveguides both in straight and bent waveguides.

3.2 Methods of calculation

The dispersion relations for the PBG waveguides in this paper are calculated by
solving Maxwell’s equations in the frequency domain for given dielectric configurations
[7). A supercell with periodic boundary conditions is taken as the computational
domain. The length of the cell corresponds to the periodicity of the dielectric in
the direction of the guide, whereas the width was taken to be several (usually twelve)
lattice constants. The photonic crystal simulated in this way contains parallel, evenly
spaced waveguides. We increased the distance between the guides by taking wider and
wider unit cells until the frequencies obtained for the eigenmodes no longer depended
on the cell size. In this way we ensure that the distance between the guides is
sufficient so that modes localized in the guides do not appreciably couple to each
other through the bulk. Therefore we obtain the correct frequencies for the localized
modes associated with an individual waveguide at each wavevector.

The bound states in various PBG waveguide configurations are studied by solving
Maxwell’s equations in the time domain. The computational domain used is rectan-
gular, and is bounded by a perfectly matching layer material [20] to minimize back
reflections. Modes with a wide range of frequencies are excited by a dipole source
with a Gaussian temporal profile. The modes that remain after transient ones decay
are either bound states or slowly decaying resonances; they both show up as peaks
on the time Fourier transform of the field measured inside the waveguide. The res-
onances can easily be distinguished from bound states by noting that bound states
have an essentially infinite quality factor when a large enough supercell is used. Also,
in waveguide configurations, resonances occur at frequencies corresponding to zero
group velocity in the waveguide or in the frequency range corresponding to guided

modes, whereas bound states exist inside the mode gaps. The frequencies of all the
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bound states can be identified by using a pulse short in time. Each bound state can
be studied individually by using a long excitation pulse whose Fourier spectrum is
peaked at the bound state frequency. The electric field configurations shown in this
chapter are snapshots taken after a long time once every transient mode has decayed,

leaving only a single mode.

3.3 Guided modes in photonic crystal waveguides

Just as the regular arrangement of atoms in a crystal gives rise to band gaps, the
periodicity of the spatial dielectric distribution in a photonic crystal may prevent
electromagnetic waves of certain frequencies from propagating inside the bulk. Be-
cause of the periodicity, the modes of the electromagnetic waves in the crystal can be
expanded in Bloch functions defined by their wavevectors k. While in the photonic
band gap there are no solutions to Maxwell’s equations for an infinite crystal for any
real k, one does obtain solutions with complex k’s. These solutions will only become
physical if the periodicity of the crystal is broken by introducing a defect.

We consider a square array of parallel, infinitely long high dielectric rods in air.
The removal of a row of rods breaks the periodicity in one spatial direction. If the
parameters of the crystal are such that there is a complete band gap for wavevectors
perpendicular to the rods, then this defect can introduce modes that decay expo-
nentially away from the defect but can still be described by a wavevector pointing
along the missing row of rods. Such a defect acts like a waveguide: waves of the right
frequencies can propagate down the guide [3].

For definiteness, we assume GaAs rods of circular cross-section, with an index of
refraction of 3.4, appropriate at optical wavelengths. From now on, we restrict our
analysis to TM modes. A large TM band gap (38%) occurs when the rods have a
radius r = 0.18a, where a is the distance between two neighboring rods [3]. The gap is
centered at frequency w = 0.37 2wc/a, which corresponds to the canonical free-space
wavelength for light of 1.55 um when a = 0.57 um.

We determine the TM band structures for two different PBG waveguides in order

34



0.5
0.4
0.3 |

(a) <
0.2

Frequency (wa/2nc)

0.1

0 — P A T oo ]
0 0.1 0.2 0.3 0.4 0.5
Wavevector (ka/2=n)

(b)

Frequency (wa/2nc)

| I

0.... PURET U S S NN VT S S ra— I WS-
0 0.1 0.2 0.3 0.4 0.5

Wavevector (ka/2n)

Figure 3-1: Dispersion relations for the two photonic crystal waveguides. The geom-
etry of the waveguides is shown in the insets. The gray areas are the projected band
structure of the perfect crystal. The filled circles correspond to even modes and the
open circles correspond to odd modes.
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to illustrate their features that are different from those in conventional waveguides.
The results are shown in Fig.3-1. The horizontal axis is the wavevector in the direction
of the guide, and we show the band structure in the reduced Brillouin zone scheme.
The gray areas are the projections in the direction perpendicular to the guide of every
mode in the band structure of the perfect crystal: these are extended modes in the
crystal bulk. The modes inside the gap are localized to the row of missing rods.

In Fig.3-1.a we show the band structure for the guide created by removing a row
of rods in the (10) direction of the crystal, as shown in tne inset. We find a single
guided mode inside the band gap. The electric field of the mode has even symmetry
with respect to the mirror plane along the guide axis. The mode itself bears close
resemblance to the fundamental mode of a conventional dielectric waveguide: it has
a sinusoidal profile inside the guide and decays exponentially outside.

In Fig.3-1.b, the waveguide is made by removing three rows of rods in the (11)
direction of the crystal (see inset). There are now three guided modes inside the
gap which can again be classified according to their symmetry with respect to the
mirror plane along the guide axis. The first and the third modes are even, whereas
the second mode is odd.

It is generally true that the number of bands inside the band gap equals the
number of rows of rods removed when creating the guide. This can be understood
from a simple counting of the states in the crystal. If we decrease the dielectric
constant of a single rod in a perfect crystal, we pull up one defect state from the
dielectric band? [3, 21]. If we repeat this for a whole row of rods, we pull up N
localized states in an N X N crystal: one state at each k-point for k along the guide.
Analogously, when M rows of rods are removed, we pull up M guided modes at each
k from the dielectric band. Nevertheless, at some k’s the modes may have frequencies
outside the band gap, and the entire band may not be contained in the gap, as is the

case for instance for the lowest guided mode band in Fig.3-1.b.

2The dielectric/air bands is the photonic crystal analogue of the valence/conduction bands in
a regular crystal. For a PBG structure, it is the band below the first band gap. Decreasing the
dielectric constant of one rod is equivalent to replacing a crystal atom with an acceptor atom in an
atomic crystal.
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For small k, the dispersion relations behave like conventional guided modes in a
metallic waveguide with a cutoff: (w — weutoss) o |k|2. For these wavevectors, the
wavelength of the light is much larger then the variation in the dielectric function,
so the light only "sees” an average uniform dielectric in the direction of the guide.
However, close to the boundary of the Brillouin zone the bands level off. Because
of the discrete translational symmetry of the crystal, the dispersion relations are
repeated outside the first Brillouin zone, consequently each band is restricted to a
certain frequency range. The frequencies of the modes do not grow indefinitely with
increasing |k|, as in the case of conventional dielectric and metallic waveguides. This
means that there may arise situations where a complete frequency gap will exist
between the guided modes themselves. We term this frequency range a mode gap.

Such mode gaps do exist for the waveguide in Fig.3-1.b: a small complete gap
between the first and second guided mode bands, between points C and D. A larger
gap for even symmetry modes can be seen between points C and E. In the case shown
in Fig.3-1.a, there is also a frequency range, below the cutoff, with no guided modes
or extended modes, between points A and B.

In the Appendix, we present a group theoretical analysis on the origins and on the
presence and absence of mode gaps in PBG waveguides. The arguments presented

can facilitate the design of waveguide configurations with suitable mode gaps.

3.4 Bound states in photonic crystal waveguides

In this section we investigate how the existence of mode gaps affect the bound state
spectrum. As in conventional waveguides, one can try to create a bound state in a
PBG waveguide in two different ways: by altering either the width or the curvature

of the guide. First we consider what happens if only the guide width changes.

3.4.1 Bound states in straight guides

In a metallic waveguide, a wavepacket trapped in a constriction has a larger transverse

momentum than any guided mode, so its frequency will be higher than the cutoff
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frequency (if a cutoff exists). Such a state would decay into open channels in the
guide. Therefore to create a bound state in a metal guide, one has to put a bulge into
the guide, because bound states can only exist below the cutoff frequency for guided
modes. If we view the guide with a bulge as three waveguide sections: two semi-
infinite sections and one of finite length, the above requirement translates in terms
of the dispersion relations for the two types of waveguide sections as follows: the
existence of bound states requires the existence of guided modes for the finite guide
section within the frequency range where no guided modes exist in the semi-infinite

section.

As in conventional guides, it is possible to find bound states in photonic crystal
waveguides with a bulge as well, except that we have the additional restriction that
the state lie inside the band gap. If the bottom of the first guided mode is higher in
frequency than the lowest frequency of the band gap, bound states can be created by
increasing the width of the guide by, for instance, removing another row of rods in one
section of the guide. However, in PBG waveguides, one also has an unconventional
choice: we can look for a state in the gaps between the guided modes. As long as a
part or all of a guided mode for the finite section falls into the mode gap, there is
a possibility that bound states can exist within that frequency range. We illustrate
this point in the following.

A guide with a mode gap for the rectangular array of rods can be formed by taking
out four rows of rods in the (11) direction of the lattice. The band structure for the
guide is shown in Fig.3-2.a. We find four guided modes inside the gap. Because of the
symmetry of the dielectric function of the guide, the modes can again be classified
as even or odd with respect to a glide plane operation consisting of a translation by
a//2 parallel to the guide axis and of a reflection across the axis. The filled circles in
the figure correspond to even modes, and the open circles to odd modes. The upper
two bands, having different symmetries, do cross. The two odd modes repel each
other, creating a mode gap from w = 0.390 27c/a to w = 0.417 2rc/e.

In order to emphasize the contrast between PBG and conventional waveguides,

we use a narrow constriction as the finite section to form a bound state: the guide in
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Figure 3-2: Dispersion relations for the two PBG waveguides shown in the insets.
The gray areas are the projected band structure of the perfect crystal. The filled
circles correspond to even modes and the open circles correspond to odd modes.
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Figure 3-3: Optimizing the radius of the rods for the emergence of bound states.
Horizontally hatched area: frequency range of the mode gap for the guide in Fig.3-
2.a. Vertically hatched area: frequency range covered by the guided mode of the
guide in Fig.3-2.b. Black shaded area: overlap of the two frequency ranges. The gray
areas are the projected band structure of the perfect crystal.

the (11) direction consisting of only one missing row of rods. Fig.3-2.b displays the
band structure of this guide. The single mode in the gap is even with respect to the

mirror plane, and covers a frequency range from w = 0.384 27c/a to w = 0.388 2r¢/a.

For the rod radius used so far (r = 0.18a) the mode gap and the guided mode do
not overlap. However, we can tune r so that the guided mode of the narrow guide
falls inside the mode gap of the wide guide. Fig.3-3 shows the frequency range of
the mode gap (horizontal hatch) and that of the guided mode (vertical hatch) as a
function of the radius of the rods. In the black shaded area the two frequency ranges
overlap. The optimal radius is found to be r = 0.12a for the creation of bound states.
Fig.3-4 shows the two band structures at this value of r superimposed on one another.
The entire guided mode band of the guide chosen as the constriction falls inside the

mode gap, thereby enabling the creation of a bound state in the constriction.

By choosing a configuration such that the constriction has length 31/2a, we indeed
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Figure 3-4: Overlap of the dispersion relations for the two guides in Fig.3-3 when the
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modes. The gray areas are the projected band structure of the perfect crystal.

find a bound state at w = 0.411 2mwc/a. The electric field of the mode is displayed
in Fig.3-5. We note that, in general, a dielectric defect in a metallic waveguide gives
rise to a completely different field distribution for the defect mode. In that case,
most of the field lies inside the high dielectric region, whereas in our case most of the
field is confined to the inside of the narrow guide section. Since the mode is close in
frequency to the mode gap edge, the decay constant « is small (x ~ 0.27/a), 3 and
the electric field decays slowly in the semi-infinite section. Nevertheless, it is a bona
fide bound state whose counterpart would be impossible to obtain in conventional

waveguides.

3We can estimate the value of x by analytic continuation of the function w(k) to imaginary k. If
close to mode gap edge, w(k) = wo—alk|?, then at the bound state frequency wy, x = /(w1 — wo)/a.
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Figure 3-5: Electric field for the bound state at = = 0.411 27¢/a in a constriction of
length 3a. Most of the field power is concentrated in the constriction itself. White
circles indicate the dielectric rods.

3.4.2 Bends in waveguides

Let us now turn our attention to bends in photonic crystal waveguides. Like straight
waveguides with a bulge. bent waveguides can also be viewed as one finite and
two semi-infinite waveguide sections of different wavevectors and dispersion relations

r
I

joined together. 19]. By analogy to the straight waveguide. we can create a bound
state in a bend by joining three sections. the two semi-infinite section having a mode
gap and the finite section having a guided mode in that mode gap. As an example.
we show a 180° bend in Fig.3-6. where each of the three sections are identical to the
three sections in Fig.3-3. We indeed find a bound state in the waveguide bend. at
~ = 0.411 27¢/a. Note that the localized electric field of this mode is nearly the same
as that in Fig.3-3.

We again emphasize that in a metallic waveguide with this bend configuration a
state inside such a narrow bend section would have a higher transverse momentum
than the lowest guided mode of the semi-infinite section. This state then would decay
by coupling into guided modes. This does not happen in the PBG case. even though
the finite section is roughly two and a half times narrower than the semi-infinite
sections. The bound state also lies closer to the guided modes than to the bulk

modes in frequency. so the decay constant for the state is smaller in the guide that
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Figure 3-6: Electric field for the bound state at w = 0.411 27¢/a in the 180° bend.
White circles indicate the dielectric rods.

in the bulk. This implies that, from an experimental point of view, coupling into this

bound state would be easier through the guide than through the bulk.

In order to investigate further the mechanism for the appearance of bound states
in bends, we need a configuration that allows for a number of bound states to exist.
Such a configuration preferably would consist of a finite section, whose guided mode
covers most of the bulk gap, and of two semi-infinite sections, each possessing a guided
mode band with a narrow bandwidth. We create one such configuration by removing
one row of rods from the square array in the (10) and the (11) directions, respectively.
The guides and their band structures at r = 0.18a are shown on Fig.3-7 superimposed

on one another. The dispersion relations indeed satisfy our requirements.

As the length L (indicated by the arrow in the inset) of the bend section is changed,
we observe bound states of different frequencies. When L = 2a, we find three bound
states, two even and one odd mode with respect to the mirror plane. The dielectric
function and the electric field for these states is shown on the left panels of Fig.3-8.

We note that the highest frequency mode is above the upper cutoff frequency of the
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Figure 3-7: Overlap of two band structures inside the photonic band gap. Black line:
zuided mode for the guide in the (1,0) direction with one row of rods removed. Gray
iine: guided mode for the guide in the (1,1) direction with one row of rods removed.
Gray area: extended modes in the crystal.

guided mode of the infinite guide section. Such a mode would not exist in analogous

conventional waveguide structures, where there can only be a lower cutoff.

These bound states resemble cavity modes. Indeed, after removing the semi-
infinite guide sections on both sides of the bend, we obtain similar eigenmodes at
frequencies almost identical to the bound state frequencies. These modes are shown

on the right panels of Fig.3-8.

We present two arguments to explain the close correspondence between bound
states in PBG guides and cavity modes. In a metallic waveguide the boundary con-
ditions for a TM bound state are E = 0 at the guide boundaries. The bound state
frequencies are determined by matching the decaying solution outside the bend to
the field inside the bend. By closing off the bend section, we require that the field
be zero at the ends of the bend section, so the frequencies of the cavity modes may
differ considerably from those of bound states. In the case of photonic crystals, zero

boundary conditions are not required at the guide edges, because there are exponen-
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Figure 3-8: Left panels: electric fields and frequencies of the three bound states inside
the gap for the bend with length of the bend section L = 3a. Right panels: electric
fields and frequencies of the corresponding cavity modes.
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tially decaying solutions in the crystal bulk. Thus the mode-matching requirement
at the ends of the open bend (decaying field into the guide) does not differ greatly
from the boundary condition for a cavity mode (decaying field into the bulk).

Another reason for the small shift in the frequencies when the waveguide is closed
off is the following. To calculate the TM modes of a 2D photonic crystal structure

with dielectric function ¢(r), one can solve the following eigenvalue equation for the

scalar electric field E(r):

(5 + ) B0 = 080 1)

by minimizing the energy functional:

[ Z5E*(r) (&+ & ) E(r) dr
2 [E(r)? dr

(3.2)

If the waveguides are open, the solution E(r) is small outside the bend section
since the bound states decay exponentially into the guide. Changing ¢(r) in that part
of the guide by closing off the bend section then causes only a small perturbation in

the quantity in the numerator, so the frequencies change only minimally.

For shorter bend sections, we find the following bound states: for L = 2a, w =
0.330 2wc/a (even), w = 0.379 2wc/a (odd); for L = a, w = 0.344 2mc/a (even), all
corresponding to cavity modes (the fields are not shown). By analogy, we might expect
the 90° bend (L = 0) to have one bound state, in the bend corner, corresponding to
the cavity mode for one missing rod in an otherwise perfect crystal. Yet, instead we
find two bound states, neither of which is localized in the corner. One of the states is
even and the other one is odd with respect to the mirror plane, as shown on the left
panels of Fig.3-9. Both states are localized at the two vacancy sites v/2a away from

the corner.

This anomalous behavior is due to the fact that the frequency of the mode for
the single rod cavity is w = 0.385 27¢/a, which falls in the guided range of the semi-

infinite sections of the guide. (This is reasonable, because this cavity mode locally
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Figure 3-9: Left panels: electric fields and frequencies of the two bound states in-
side the gap for the 90 bend. Right panels: electric fields and frequencies of the
corresponding cavity modes.
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is similar to the guided mode for wavelength A = 2v/2a, or, for k¥ = m/+/2a.) This
cavity mode couples with the guided modes, and it shows up as a resonance in the
bend corner.

The two bound states instead correspond to the coupled cavity modes shown on
the right panels of Fig.3-9. The cavity is composed of two vacancies, with their
centers separated by two lattice constants. As pointed out earlier, each vacancy by
itself supports a cavity mode at w = 0.385 2mwc/a, which would lie in the guided
range of the infinite sections of the guide. However, since the vacancies are in close
proximity with each other, there is a finite coupling between them, which in turn split
the otherwise degenerate levels into an odd and an even bound state, with frequencies
that respectively fall just below and just above the guided mode frequency range.
Such unconventional bound states demonstrate that bound state creation in PBG
waveguide bends cannot always be described in a one-dimensional framework, and

they can strongly depend on dielectric function.

3.5 Summary

We have shown that the periodicity of the photonic crystal waveguide gives rise to
mode gaps between different guided modes. Such mode gaps make it possible to
create bound states in a waveguide with a constriction and in bends. Bound states
in PBG bends closely correspond to cavity modes. We have also observed that the
existence of certain bound states can critically depend on the geometry of the bend in
question and cannot always be predicted using arguments based on one-dimensional

models.

3.6 Appendix

In this part of the chapter, we demonstrate how it is possible to give a simple expla-
nation of the main qualitative and quantitative characteristics of the PBG waveguide

dispersion relations, including the appearance of mode gaps. We show that the differ-
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ent types of mode gaps in band structures seen earlier arise from simple symmetries of
the dielectric function. The following group theoretical analysis allows one to design

waveguides with suitable mode gaps easily.

As we have seen, photonic crystal guided mode fields resemble modes in conven-
tional waveguides. So, in order to find the band structure for PBG guides, we start
out with the exactly solvable case of TM modes in a straight hollow two-dimensional
metallic waveguide. First we consider a metallic waveguide of width b, on which we
have imposed an artificial periodicity d. For TM modes, Maxwell’s equations for the
electric field E = E(z,y)e™* yield:

( o 9

2
32T a—y;) E(z,y) = %E(x,y) (3.3)

with boundary conditions E(z,y) = 0 at y = +b/2. Because of the periodicity in
the z-direction, we can classify the modes by their wavevector k = (2r/d)k&. One
possible set of basis functions for this k is {€2(*+F)™=/dsin[mmr(y/b + 1/2)]}, with
l =0,£1,%£2,... and m = 1,2,3,.... Each function in the set corresponds to an

eigenvalue with w = (27rc/d)\/ (I + )2 + m?/4v?, where v = b/d is the relative width

of the waveguide.

The dispersion relations for the metallic waveguide are altered in two ways in
PBG guides. Firstly, the bands that are outside the first Brillouin zone fold back
because the periodicity is no longer artificial. Secondly, bands crossing may repel
each other when continuous translational symmetry is lost as the metallic boundaries
are replaced by the PBG material. Yet, discrete translational symmetry is always
retained, as well as symmetry under a certain point group G, which depends on the

dielectric function of the guide.

First, let us consider guides that are invariant u~der G = {E, 0,,0,,}. E here is
the identity operator, o, and o, are reflections across the z- and the y-axes, respec-
tively, and I is inversion through the origin. (Such are the guides in Fig.3-1) Since
the periodicity is only in the z-direction, the irreducible Brillouin zone is a line from

I' (k = 0) through A (0 < k£ < 1/2) to X (k = 1/2). For A, the point group is
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{E, 0y}, so the guided modes can be divided into ones that are even or odd under o,.
At both of the high symmetry points I' and X the point group is just G, which has
four irreducible one dimensional representations.

Keeping the symmetry under o, in mind, we choose the unit cell such that the
centers of the rods at the guide edge are at £ = 0. In vacuum, a pair of degenerate
modes at X consists of an even and an odd mode under o,. They always have the
same symmetry under o,. The odd mode has a node at + = 0 whereas the even one
has a maximum there. Since in the PBG guide the even mode has a higher fill factor!
than the odd one, it must have a lower frequency. In this way the degeneracy of the
modes at X is removed, and the level splitting creates mode gaps at the Brillouin
zone edge.

The left panels of Fig.3-10 show the band structures calculated from symmetrizing
the basis function set, with the actual dispersion relations for three PBG guides to
the right of each plot.

The periodicity d and the relative width v used in the three calculations are
inidicated on the plots. The black lines denote even modes, and the gray lines denote
odd ones. Having taken into account the fact that degenerate modes repel each other,
a remarkable similarity can be seen between the corresponding band structures in the
frequency range of the band gap.

In this work, we also investigated another type of guide, shown in Fig.3-3.a. This
guide is invariant under a different group of symmetry operations
G = {E,{o:|f},{0,|f}, I}, where f is the fractional translation equal to d/2 #. Be-
cause the group is now non-symmorphic, the point group size doubles at X, and we
obtain five irreducible representations. The degenerate pairs of the basis functions at
X always belong to the same two-dimensional irreducible representation. This rep-
resentation is compatible with the sum of an even and an odd representation along
A. The essential degeneracy at X is due to the non-symmorphicity of the symmetry

group and is not influenced by the specific features of the dielectric function, therefore

4The fill factor is defined as the ratio Thigh dielectric/ Ierystal: Where Iv = [, E(r)D(r)dr. High
fill factor means that a lot of field is in the high dielectric, so the frequency of the mode is low.
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Figure 3-10: Left panels: Dispersion relations calculated from symmetrizing a set
of basis functions for the symmetry group G. The relative widths are taken to be
v =1, v =2, and v = 2, respectively. Right panels: band structures for the PBG
waveguides displayed in the insets. The gray areas are the projected band structure
of the perfect crystal. Black lines: even modes, gray lines: odd modes.

51



0.8
0 7
g g
g k]
D= E
2 2
3 ]
g 2
4 3
e w
L A P Y o PR PU ST SR T NS L 1
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Wavevector (kv2a/2n) Wavevector (kv2d/2x)
0.8
0.5
T 04 )
A g :
2 0.3 g ]
> > ]
€ 02 s ]
g g 1
o ]
E 0.1 w 0.1 - d =Ba b
0 et N T " Leaa deehembad. 0 :4.;‘ 1 I J 1 —a ]
0 0.1 0.2 0.3 0.4 0.5 [} 0.1 0.2 0.3 0.4 0.5
Wavevector (kv2a/2x) Wavevector (kv2d/2x)

Figure 3-11: Left panels: Dispersion relations calculated from symmetrizing a set of
basis functions for the non-symmorphic group G’. The relative widths are taken to
be v = 1.5, and v = 2.5, respectively. Right panels: band structures for the PBG
waveguides displayed in the insets. The gray areas are the projected band structure
of the perfect crystal. Black lines: even modes, gray lines: odd modes.

no mode gaps open up at the Brillouin zone edge. However, because the symmetries
of individual bands have also changed, some bands that were allowed to cross in the
case of the symmorphic group will now repel, and this effect produces new mode gaps.

We compare two PBG guide band structures with the dispersion relations calcu-
lated from symmetrizing the basis function set in Fig.3-11. The two guides examined
are ones created by removing two and four rows of rods in the (11) crystal direction,
respectively, as shown on the insets. The periodicity d and the relative width v used
are indicated on the plots. As expected, mode gaps open up solely when bands of the

same symmetry repel.
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Chapter 4

Tapered couplers for efficient
interfacing between dielectric and

photonic crystal waveguides

4.1 Introduction

Photonic band gap (PBG) guiding is a mechanism for light guidance that has no
parallel in traditional dielectric waveguides. Line defects made of air in photonic
crystals (PCs) can guide optical light in air, above the light line w = ck, because they
do not rely on traditional index guiding. Photonic band gap guiding was first proposed
theoretically [5, 3] and has been demonstrated experimentally as well [22, 23]. In
part because of the absence of radiation modes, PC waveguides can be bent very
sharply, on the order of the guided light wavelength, while maintaining almost perfect
transmission through the bend [19, 24].

Nevertheless, to use PC waveguides in integrated optical circuits, light must be
efficiently coupled from traditional dielectric waveguides and fibers into and out of
the air defects in photonic band gap materials. Because of the different underlying
physics of traditional index guiding and PBG guiding, coupling light into and out

of photonic crystal waveguides is not a trivial problem. Results from microwave
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experiments with alumina PCs demonstrate that there are large insertion losses when
electromagnetic waves are coupled into and out of PC waveguides [24]. This results in
substantial reflection and scattering from PC waveguide ends, which adversely affects
the outcome of transmission measurements. To overcome this limitation, we need an
efficient waveguide junction design.

One way to achieve coupling is to use a resonant mode to couple the modes in
the two types of waveguides. By judiciously choosing the coupling coefficients of the
guided modes to the resonance, in principle very high transmission can be achieved.
However, limits are set on the useful bandwidth by the resonance width. In this
chapter we investigate a non-resonant way of coupling between the two types of
waveguides to achieve high transmission for a large frequency range. Specifically, we

consider tapered waveguide terminations for dielectric waveguides.

4.2 Model system and simulation methods

We restrict our attention to waveguide junctions for two-dimensional waveguides, as
this has been the focus of recent theoretical and experimental investigation. In Fig.4-
1 the dispersion relations for the two types of waveguides considered in this chapter
are plotted. The PC we use is composed of a square array of dielectric rods of lattice
constant a. The rods have a circular cross-section of radius 0.2a and a refractive index
n = 3.4, appropriate for silicon at 1.55 um wavelength. The PC has a large band
gap for TM polarized modes. The waveguide is a simple line defect in the crystal,
created by removing a line of rods, as shown in the inset on Fig.4-1.a. The solid
line in Fig.4-1.a shows the dispersion relation for the guided modes. Its cutoff is at
frequency w = 0.304 27c/a and it is single-mode in the band gap above cutoff. The
dispersion relations for a dielectric waveguide of width w are plotted in Fig.4-1.b.
Filled/open circles stand for even/odd modes with respect to the line along the guide
center. As the width of the waveguide increases, so does the number of modes present
at a certain frequency.

We calculate the transmission through PC/dielectric waveguide junctions by nu-
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Figure 4-1: a) The band structure of the photonic crystal waveguide shown in the
inset (solid line). The gray areas stand for extended modes in the bulk photonic
crystal. b) Dispersion relations for a dielectric waveguide of width a shown in the
inset. Filled/empty cirles represent even/odd modes, and the gray area stands for
radiation modes above the light line.
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Figure 4-2: Schematic of a junction between a photonic crystal and a traditional
dielectric waveguide used in the numerical simulations.

merically simulating pulse propagation. The electromagnetic fields are found by solv-
ing Maxwell’s equations in a finite-difference scheme in the time domain [25]. We use
perfectly matching layer absorbing boundary conditions at the computational cell
edges [20, 6]. The cell contains both waveguides, aligned with their axes coinciding,
and an arbitrarily shaped coupler. An example of the computational cell is shown
schematically on Fig.4-3.a for output coupling. The fundamental mode is excited at
the end of the input waveguide by a row of dipoles that have TM polarization and
the appropriate mode profile. The pulse generated has a Gaussian shape in time, a

center frequency wo = 0.36 2m¢,/a and covers a frequency range of about 0.04 27c/a.

The pulse propagates along the input waveguide. As it traverses the coupler, part
of the power is transmitted into the output coupler, some of it is reflected, and the
rest is lost to radiation modes. Since we do not rely on resonant coupling, we expect
that the efficiency of the coupler will not vary greatly within the frequency range
covered by the pulse. So to determine the transmission and reflection coefficients, we
measure the total flux as a function of time along a line perpendicular to the guide
in both the input and the output waveguides. In the example in Fig.4-3.a, the input
and reflection is measured at A in the PC waveguide and the transmission at B in

the dielectric waveguide.

As an example, we calculate transmission for a junction created by placing a flatly
terminated dielectric waveguide at the exit end of the PC waveguide, The flux as a
function of time is plotted in Fig.4-3.b, and the coupler configuration is shown in the
inset. At point A, the signal consists of two peaks, the first peak is the incident pulse

and the second one is the reflected pulse. By choosing a long enough waveguide, the
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Figure 4-3: a) Schematic of the computational cell used. The input source is denote
by the arrow. The flux is measured along the dashed lines at A and B. b) Flux
measured at A (black line) and at B (gray line) as a function of time for the coupler
configuration shown in the inset. The arrow indicates the propagation direction of
the input pulse.
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Figure 4-4: Tapered coupler for coupling into a photonic crystal waveguide.

two pulses become separated in time.! At point B the transmission peak is clearly
distinguishable. The fluxes are integrated in time to find the transmission through

the junction, which is 55% in this case.

4.3 Coupling into a photonic crystal waveguide

Dielectric waveguides in integrated circuits as well as optical fibers have sizes on the
order of a few microns. The PC that we use in our simulations must have a lattice
constant of about @ = 600 nm so light is guided at the standard optical communication
wavelength of 1.55 pum. If we simply terminate a wide dielectric waveguide flat and
place it next to a PC waveguide, which has width of about 1 micron, coupling is
very inefficient. We calculate transmission for a waveguide of width 6a that ends a
distance a before the PC. We find that in the vicinity of the frequency wp, only 22%
of the power is coupled into the PC waveguide. One of the reasons for this is the poor
mode profile-matching between the fundamental modes of the wide dielectric and of
the much narrower PC waveguide.

A taper can reduce the dielectric waveguide cross-section adiabatically in a rel-
atively short distance while still retaining almost perfect throughput. For instance,
with a taper of length 10a one can join a waveguide of width 7a to one with width

2a with 100% transmission within numerical accuracy of our calculations. So we can

1Since there is reflection at the the photonic crystal waveguide end at the computational cell
edges, the cell must be chosen long enough so the useful and the parasite pulses can be distinguished
[1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>