
Computer-Aided Design and Optimization of
dc/de Power Converters

by

Timothy Carl Neugebauer

B.S., Union College (1997)

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

September, 1999

@ 1999, Massachusetts Institute of Technology. All rights reserved.

Signature of Author

Certified by_

Dep t of Electrical E eering and Computer Science
September, 1999

John G. Kassakian
Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Certified by_
David J. Perreault
Research Scientist

Secondary Thesis Supervisor

Accepted by

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

MAR 0 4 2000

LIBRARIES

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

Computer-Aided Design and optimization of dc/dc Power Converters
by

Timothy Carl Neugebauer

Submitted to the Department of Electrical Engineering and Computer Science
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Abstract

The imminent introduction of a dual-voltage automotive electrical system has
motivated the development of dc/dc converters that are optimized it terms of price,
weight, and volume. This thesis investigates the design and optimization of dc/dc
converters for dual-voltage automotive electrical system. A prototype dc/dc converter is
developed and experimental evaluated, and is used to identify a number of tradeoffs and
critical design issues. Based on this information, a CAD optimization tool is developed
which allows the design space to be rapidly explored and highly optimized converter
design to be developed. The CAD optimization tool is also used to study the effects of
variations in system-level specifications on the characteristics of optimized converters.

Thesis Supervisor: John G. Kassakian
Professor of Electrical engineering

Secondary Thesis Supervisor: David J. Perreault
Research Scientist

3

4

Acknowledgments

This is the section in which I thank lots of people for all the help they have
provided me, intellectually or otherwise, up to and including the time in which this thesis
is complete.

All the characters and events portrayed on this page are fictional, and any
resemblance to real people or incidence is purely coincidental.

I am most grateful to David Perreault and Harvey Callahan for all the technical
help they have provided. I doubt there exists a question in EE that they could not solve
and fully explain. I would also like to thank Ms. Dave for allowing her husband to help
me for the past two years.

I would also like to thank the following people:
To Mom, just because you're Mom.
To J.G.K., T.K., T.J., and G.D. for providing me with the opportunity that I had

always dreamed about.
To V.M. and K.J. for all the work you've done.
To Flo, I could never ask for a better friend.
To V.C. and L.N.P. for giving everyone in the lab something to laugh about.
To the makers of Microsoft Office and other related software, for providing me

with the unique pleasure of using your products, which was a once in a lifetime
experience.

To the makers of the Unix program LaTex, whose product I will be using for any
other major documents that I will have to write.

To B.M., for your thesis was an enormous aid to my research.
To the various members of research unit number 1, for all the late night meeting

that occurred.
To my brothers Brian and John, my father, mother, grandmother, and the rest of

my family, for providing me with a place I could always go home to.
To the people of L.E.E.S. who also providing me with an office that was just as

good as any home.
To the programmers of Blizzard, the makers of StarCraft and Diablo.
To Hoss for bringing a little part of Texas into the lab.
To Scott Adams, for showing that engineers need a sense of humor.
To Fred, for he is like the twin brother I never had. He is also one of the top 3

xkobo players at MIT.
To J.G.G., T.B., and T.N.G. for your help in TimCAD's database.
To all my friends at Union college, A.C., M.L., and E.H. to name a few.
To everyone I forgot to list.
And finally to Mingjuan Zhu, who inspired me to always work as hard as I can.

5

6

Table of Contents

Chapter 1

Introduction 13

1.1 A Dual-voltage Architecture 13

1.2 Thesis objectives 15

1.3 Thesis Organization 16

Chapter 2

Design of the Prototype Converter 17

2.1 Requirements 17

2.1.1 Power Levels 17

2.1.2 EMI Limits 19

2.1.3 Ambient Temperature 20

2.2 Tradeoffs 21

2.2.1 Modular or Single Structure 21

2.2.2 Effects of Number of Cells on Output Ripple 23

2.2.3 Effects of the Number of Cells and Switch Type on

the Temperature Rise and Required Heatsink 26

2.2.4 Cells Inductance and Filter Size 28

2.3 The Prototype Converter 29

2.3.1 Major Components 29

2.3.2 Control 32

7

2.4 Testing Results 33

2.4.1 Transient Tests 34

2.4.2 EMI Measurements 34

2.4.3 Thermal Measurements 37

2.5 Conclusions 37

Chapter 3

TimCAD Architecture 39

3.1 Optimization 39

3.2 Program Structure 42

3.2.1 User Interface 42

3.2.2 Control Loop 43

3.2.3 Design Algorithm 44

3.2.4 Device Models 46

3.2.5 The Database 46

3.3 Program Objects 48

3.3.1 CRecordset Objects 48

3.3.2 CDialog Objects 49

3.3.3 The CDocument Object 49

3.4 Program Operation 49

3.4.1 Installing TimCAD 49

3.4.2 Starting Up 47

3.4.3 Running TimCAD and data manipulation 51

8

3.5 Conclusions

Chapter 4

Results

4.1 Limitations of the Results

4.2 The Baseline System

4.3 A Design Comparison

4.4 Identifying Design Trends

4.5 The Effects of Power Rating

4.6 The Effects of Ambient Temperature

4.7 The Effects of EMI Limits

4.8 Conclusions

Chapter 5

Device Models and Heatsinks

5.1 Two MOSFETs as Switches

5.2 MOSFET and a Diode as Switches

5.3 Heat Sinking

5.4 Conclusions

Chapter 6

Passive Elements and Filters

6.1 The Converter Inductor

9

53

53

54

56

56

57

59

61

63

65

66

73

76

79

81

82

52

6.1.1 Overview 82

6.1.2 Initial Design Pass 85

6.1.3 Temperature Rise Limit 86

6.2 EMI Filter Inductor Design 88

6.2.1 Overview 88

6.2.2 Initial Design Pass 88

6.2.3 Temperature Rise Limit 91

6.3 Capacitors 92

6.4 Filters 93

6.4.1 Introduction 93

6.4.2 Filter Specifications and Measurements 94

6.4.3 Filter Design Overview 97

6.4.4 Filter Type 1 98

6.4.5 Filter Type 2 99

6.4.6 Filter Type 3 101

6.4.7 Summary of the Filter Design 102

6.5 Conclusions 103

Chapter 7

Conclusions 105

7.1 Thesis Conclusions 105

7.2 Recommendations for Future Work 106

10

References

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Voltage Limits

Loadlist

Schematics

Functions

Flowcharts

11

111

113

123

129

199

109

12

Chapter 1

Introduction

A revolution in the automotive electrical system is imminent. The electrical needs

of the automobile are ever increasing whereas the power available from conventional

alternators is reaching a saturation point. The members of the MI T./Industry Consortium

on Advanced Automotive Electrical/Electronic Components and Systems have agreed that

a dual-voltage system is the next evolutionary step for automotive electrical systems.

High power loads would be moved up to a high-voltage bus, while incandescent lighting,

electronics, and other loads that benefit from a lower voltage can remain on the

(currently-used) low-voltage bus. With the advent of the dual-voltage system, new high-

voltage, high-power loads that were impractical to implement in the 14 V system will

become available. Components and system benefits that will accrue due to the dual-

voltage system are described in [1-3].

1.1 A Dual-voltage Architecture

The dual-voltage system will require electrical energy to be supplied to two

voltage busses. One widely considered method for doing this is illustrated in Fig. 1.1. A

high voltage alternator supplies the high-voltage bus, while the low-voltage bus is

42 V14V

Fi2ure 1.1 The dc/dc converter-based architecture for the dual-voltape system

13

powered from the high-voltage bus via a dc/dc converter. The dc/dc converter can

provide a stable, well-controlled voltage on the lower bus. The amount of current flowing

from one bus to another can be easily controlled and limited with the converter. A bi-

directional converter can be employed in order for the low voltage bus to temporarily

power the high voltage bus so that the high-voltage battery can be recharged from the

low-voltage battery. These capabilities make the dc/dc converter-based system the most

desirable of available options from a performance standpoint.

The major drawback to the dc/dc converter-based architecture is the cost of the

converter. The converter is constructed from relatively high-cost components, such as

high-frequency power switches, capacitors, and magnetic elements. Large input and

output power filters are also needed to attenuate the conducted EMI generated by the

switching action of the power converter. Thus, the viability of the architecture depends

upon the ability to develop power converters at a low manufactured cost.

This thesis will address two main challenges in the design of the dc/dc converter.

The first challenge is to develop an automated method for finding an appropriate design

that will minimize the price, weight and volume of the dc/dc converter based on a set of

specifications. The second challenge is to develop a method for finding the sensitivity of

the price, weight and volume of an optimized converter to system-level parameters such

as the power rating, ambient temperature, or EMI limit.

Estimates' of the power requirements for luxury cars employing dual-voltage

electrical systems indicate an average 14 V loading of 600 - 800 W, with peak loads

exceeding this by a factor of two or more. This suggests the need for a dc/dc converter

14

' See Appendix B

with an output power rating of 800 - 1000 W if a 14 V battery is used, and much higher

if a 14 V battery is not employed. As more loads are redesigned and moved to the 42 V

bus (leaving lighting and electrical loads on the 14 V bus), one might expect the

converter power requirements to be reduced to the 400 - 500 W range.

For the converter to be used in the automotive environment it must meet several

other requirements. If the dc/dc converter is to be placed under the hood it must be

designed to operate in a high ambient temperature. Furthermore, the converter will have

to meet extremely tight electromagnetic interference (EMI) requirements to prevent it

from interfering with other equipment on the vehicle. The converter will also need to be

configured to control the charging of the 14 V battery, and accept input from an external

energy management scheme that will direct the power flow to ensure that neither battery

becomes discharged.

A wide range of design possibilities exists for a dc/dc converter in the automotive

application. The designer can choose among a wide range of subsystem topologies,

design parameters, and component types to design a converter. Because of this large

design space, and the tight interrelation among many of the design choices, identifying

the converter designs that best meet the design objective is extremely difficult in practice.

It is also difficult to ascertain a priori the effects of system level parameter variations on

the resulting price, weight, and volume of the "best" converter design.

1.2 Thesis Objectives

The dc/dc converter is not a new device, but introducing it as a component in the

automotive electrical system is a new application with unique requirements. Furthermore,

there are a number of aspects of the design, utilization, and control of the converter that

15

are unique to this new application. The first objective of this thesis is to develop and

evaluate a prototype dc/dc converter for this application.

The second objective of this thesis is to investigate the optimization of power

converters for this application. The design of a converter involves numerous tradeoffs

that make optimization extremely challenging. To meet this challenge, a computer-aided

design (CAD) optimization tool has been developed. The CAD program allows the

design space to be rapidly explored for optimal designs and design strategies.

The last objective of this thesis is to use this dc/dc converter optimization

program to examine trends within the design space. These trends will show the

sensitivities of the converter price, weight and volume to changes in system

specifications. The examination of these trends will inform the auto industry as to the

quantitative effects of several major system level choices.

1.3 Thesis Organization

This thesis contains seven chapters including this introductory chapter. Chapter 2

covers the design and evaluation of a prototype converter, describing the major tradeoffs

and choices. The optimization routine used to analyze the system is described in Chapter

3. Chapter 3 also contains information about the structure of the CAD program and

directions for its use. Results from the program are shown in Chapter 4, including the

sensitivity of the converter characteristics to power rating, ambient temperature, and EMI

specifications. Chapters 5 and 6 contain the models for the devices, passive elements and

filters that are used in the program. Lastly, Chapter 7 concludes the thesis.

16

Chapter 2

Design of the Prototype Converter

In the course of this thesis a prototype dc/dc converter was designed and built.

The purpose of developing the prototype converter was to provide an understanding of

the converter design tradeoffs, and to allow operational experience to be gained with

power converters in this application. For purposes of this thesis, the prototype converter

is useful for validating component models in the optimization code. The converter has

been designed using many models (or early version of the models) used in the computer-

aided design optimization program, but without the benefits of automation of the process.

The prototype converter described here has also been used in a number of other

automotive electrical system projects both at M.I.T. and at the Ford Scientific Research

Laboratories in Dearborn, Michigan.

2.1 Requirements

2.1.1 Power Levels

The proposed dual-voltage electrical system for the next generation of automobiles will

contain a 42 V and a 14 V bus. The current automotive electrical system, as shown in Fig.

2.1a, consists of an alternator, a 12 V battery (regulated to 14 V for charging), and a

single 14 V bus. Many specific forms of the new dual-voltage system are possible, but

the general form of the new voltage system is illustrated in Fig. 2.1b. Of the candidate

architectures that are being considered, the baseline form, utilizes a new, high-voltage

17

a)

b)

C)

alternator 12 V

14 V
Loads

new New
alternator Electrical

System to 1
provide both Lo4ds
14 and 42 42 V Lod

volts Loads

high voltage _L6 valternator 42 V
Loads

Figure 2.1: (a) The conventional automotive electrical system, (b) the proposed dual
voltage automotive electrical system, and (c) an example of a dual voltage
system implementation.

alternator and a dc/dc converter, as illustrated in Fig. 2.1 c.

The Forum Bordnetz, a European automotive discussion group, has proposed a set

of specifications for the new electrical system [4]. These specifications, which are

summarized in Appendix A, set the maximum and minimum voltages for both busses

under various conditions. The static voltage of the high voltage bus can vary from 33 to

52 V, and the static voltage of the lower voltage bus can vary from 12 to 16 V when the

engine is running. These limits have been adopted for the design of the prototype

converter.

In order to determine the power level of the electrical system a comprehensive list

of electrical loads in the automobile (developed in [5] and shown in appendix B) was

examined. It was assumed that when the dual-voltage system is introduced some of the

18

major loads will be moved to the higher bus, and that many other loads will initially

remain on the lower bus and be transferred to the higher bus at a later time. With this

assumption the load list was examined to determine the worst case and nominal power

requirements for the low-voltage bus. Based on the load list, the nominal power for the

low-voltage bus was predicted to be approximately 700 W, whereas the peak power

needed by the system would be approximately 1500 W. In order for the low-voltage

system to operate with these power demands, either the dc/dc converter would have to be

sized to deliver the peak power required, or a 12 V battery is needed in the system. To

supply 700 W to the 14 V bus the converter would need to deliver between 43.8 and 58.3

A, depending on the 14 V bus battery voltage. The maximum current available from the

prototype is 68 A, enough to supply the average power required by the low-voltage bus

plus an additional amount to keep the battery charged. The converter can also be used

without a battery in a system where the peak load remains below 68 A.

2.1.2 EMI Limits

In order to control the amount of Electromagnetic Interference (EMI) on the

conventional 14 V bus the Society of Automotive Engineers (SAE) has adopted the

specification SAE J1113/41. This specification limits the amount of conducted EMI any

given device can generate on a standard test stand which includes a Line Impedance

Stabilization Network (LISN). The conducted EMI is specified as the amount of voltage

ripple that appears across the 50 ohm LISN impedance as a function of frequency. Figure

2.2 shows the relationship between the allowed ripple voltage and frequency as specified

in the Class 1 narrowband limits. This is the EMI specification that is applied to the

converter design. No standards presently exist for the EMI injected into the higher-

19

SAE J1113/41 Class 1 EMI specifications
95 -

90-

85-

M 75 -A.....

E
0

r
70

M

0

55-

50 2

10- 10 10 10
Freq in MI-z

Figure 2.2: The SAE J1113/41 specification for Class 1 narrowband signals. This
specification is applied to both the input and output of the dc/dc
converter.

voltage bus, but the same limits were applied to this bus for the design of the converter.

2.1.3 Ambient Temperature

The dc/dc converters for this application are likely to be located under the hood of

the automobile in close proximity to the alternator and the batteries. In recognition of

this, the prototype converter is designed to operate in ambient temperatures of up to 105

*C. This high temperature required the components for the design to be carefully

selected, and in many cases oversizing or derating of components was necessary. Also,

only natural-convection air cooling is used in the design for simplicity and robustness. It

should be pointed out that the high ambient temperature strongly affects the design.

20

2.2 Tradeoffs

There are many interrelated tradeoffs in the design of the dc/dc converter that

complicate the optimization of the design. These tradeoffs include the decision to use one

large converter cell or a paralleled cell interleaved design and, if an interleaved system is

used, the number of cells to use. More interleaved cells will reduce filter size and power

losses in the switches, but will increase the system complexity. Another tradeoff involves

the sizing of the converter inductance and ripple ratio versus the size of input and output

filters to limit ripple. These tradeoffs were considered in the design of the prototype

converter, and will be described here.

2.2.1 Modular or Single Structure

Two main options exist for the basic structure of the converter. Either one large

dc/dc converter can be built (using paralleled components where necessary) or the

converter can be divided into several paralleled converter cells as shown in Fig. 2.3. The

advantages of one large converter include the simplicity of the structure and control, but

does not necessarily include fewer parts. Due to the high current, low-voltage

characteristics of the converter, and the high ambient temperature specification, most

power stage elements in the converter would have to be constructed of paralleled

components in order to build a single large converter structure.

If the converter is cellularized, or separated into different cells, then the cells can

be interleaved in order to increase the fundamental frequency of the ripple and reduce the

magnitude of the ripple at the input and output ports of the converter [6-9]. To interleave

the cells of the converter, the cell switching times are equally phase displaced over a

21

L 'outa)S1

Ci2 Cout

I I

jout

b) S1 N -L

C;n S2 Cout

TN NT

iout
S1 N

C;n S2 Cout --

NN

Figure 2.3 Comparison of the power stages of a) a dc/dc converter with a single structure;
and b) an equivalent converter made up of N cells.

cycle, as illustrated in Fig. 2.4. Interleaving N converter cells results in a net functional

ripple frequency at the ports of the converter which is N timed the individual cell

frequency. Furthermore, it can be shown that the peak-to-peak ripple current amplitude at

the ports will be at least a factor of N times smaller then would be obtained with a single

large converter or with synchronous switching [6-9].

Due to the need for paralleled components even in a single converter design, and

considering the additional benefits provided by an interleaved design, a cellular design

for the prototype was chosen. Cellular designs using between three and six cells were

22

Ipk __aV

T

A3

Ipk

1ave

T/2 T

'2

Ipk

I
ave

T/4 T

i4

Tpk

lave

3T/4 T

b) £in

41 ave

T

Figure 2.4. Output current waveforms in a 4 cell converter with interleaved switching. a)
The output of each of the 4 stages and b) the resulting interleaved output
current.

considered. Using two cells would have still required using paralleled components in the

cells, and due to practical limitations the benefits of interleaving cease to accrue when

more then about 6 cells are used.

2.2.2 Effects of Number of Cells on Output Ripple

Because the converter consists of several cells, each cell can be operated in

discontinuous conduction mode and the output of the converter will still be continuous, as

illustrated in Fig. 2.4. After considering different options, the prototype converter was

designed such that the converter always operates in discontinuous conduction mode

(DCM) regardless of the voltage on either bus, and operates at the edge of discontinuous

conduction at one edge of its operating voltage range. This decision was made to keep the

cell inductor size small and to reduce the complexity of the controller. The converter was

23

designed to operate at a cell switching frequency of 125 kHz. This value represents a

typical value for the operation of a dc/dc converter and was an initial assumption for the

design of the converter.

The cell inductance needed to ensure that the cell remains in DCM can be

determined as follows: at the edge of DCM the average current through the inductor,

Ia = ""'a (where Imax is the rated current for the converter), is half of the peak current in
N

the cell Ipk. The peak current in a cell operating in DCM is

I - i" - "ou" .D -T (2.1)
L

Assuming that the converter cell is operating at the boundary between

discontinuous and continuous (CCM) conduction modes, then the duty cycle is

D = " (2.2)
Vin

and Ipk is twice Iave (ipk = 2 -Ia,). Thus, the maximum inductance to ensure DCM is

L = (Vil -Vem) -Vout T -N (2.3)
2. Vill -I

The minimum value of

f(Vin,Vout)= (Vi - Vot. VOUt (2. 4)
Vin

can be found by solving for when either or equals zero. Since there is noavin NvOW

solution to the partial derivatives within the voltage ranges, the minimum value will be at

one of the edges of the voltage range. In our case the minimum is fmin = 7.63. The

maximum cell inductance to ensure that the converter always operates in DCM is

24

.45piH -N, assuming that the cell switching frequency of 125 kHz, the maximum output

current of 68 A, and N cells are used.

Based on the inductance, bus voltages, switching frequency, number of cells, and

output current, the amount of current ripple that the converter contributes to the input or

output busses can be calculated. The waveform of the current in each cell can be

computed, then by summing the currents in each cell, the aggregate peak to peak ripple

can be found. For any given set of input parameters such as output current or inductance,

the ripple can be plotted for all combination of bus voltages. Four examples of these plots

are shown in Fig. 2.5 assuming that the cell switching frequency is 125 kHz, that the

converts are rated for 68 A, and the cell inductance is .45pH -N. The plots in this figure

help to visualize the effects of the operating conditions on the current ripple for different

V V 2 Vout()V(V)) 12 Vout (V)

3 cells, full current 4 cells, full cunrent

S10 -10
CL

CL CL

-- 0 0
0 42 0 42

Vin (V) 12 Vout (V) Vin (V) 12 Vout (V)

5 cell, full current 6 cell, full current

Figure 2. 5 An example of plots relating the output current peak to peak ripple that
results from operating the converter at various combinations of bus voltages.

25

numbers of cells. To further ease visualization of this relationship the data can be shown

on a two dimensional plot as in Fig. 2.6. In this figure the maximum ripple was found for

every value of V., across all possible values of input voltage and output current. With

each increase in the number of cells, the fundamental ripple frequency increases and

output peak to peak current ripple decreases. The resulting tradeoff is that increasing the

number of cells makes filtering easier, but also increases the part count and the

complexity of the converter.

2.2.3 Effects of the Number of Cells and Switch Type on
the Temperature Rise and Required Heatsink

Another major effect that the number of cells has on the system is the size of the

required heatsink. As the number of cells, N, increases, the average current per cell

decreases by a factor of N. This reduction in current causes a reduction in total

Max. amount of ripple current vs. Vout for 3, 4, 5, and 6 cells

12 -

10

4 cells @500 KHz

8

0. 6 ds@S ~
iZ

2-

0
12 12.5 13 13.5 14 14.5

Vout (V)

Figure 2.6 Comparison of the worst case output peak to peak current ripple as a function of
cell number and output voltage across all allowed output currents. Listed also is
the fundamental ripple of the output current. In all cases the switching frequency
is 125 kHz.

26

conduction losses in the switches if the same switches are used independent of the

number of cells. (Chapter 5 describes how to calculate the device losses and how to

choose the heatsink.) Switches with lower power losses require smaller heatsinks. Thus,

the tradeoff is that using more cells results in smaller net heat sinking but a higher part

count.

Switch selection affects the power dissipation. The three combinations of

topologies considered and shown in Fig. 2.7 result in different power losses under

different operating conditions. Also, using two MOSFETs may result in lower power

losses but will require extra control circuitry including another gate driver. Table 2.1

displays the predicted power loss and temperature rises of the converter using two

MOSFETs and a MOSFET and a Schottky diode. Both systems assume identical

heatsinks.

The prototype converter has four cells and uses the Temic SUP75N08-10

MOSFET and the International Rectifier 40CPQ080 Schottky diode as switches SI and

S1
Input Filter Output Filter

S2

b)

Input Filter Output Filter

S2

c) Si

Input Filter Output Filter

S2

Figure 2.7 The three possible topologies for the power stage: a) MOSFET/MIOSFET, b)
MOSFET/ Schottky Diode, and c) MOSFET/PiN Diode.

27

Topology SI -MOSFET SUP75NO8-10 SI -MOSFET SUP75N08-10
S2 -Schottky diode 40CPQ080 S2 -MOSFET SUP75N08-10
KM 150-1 Heatsink KM 150-1 Heatsink

Cells 4 5 6 4 5 6
SI Losses 4.45 W 3.24 W 2.53 W 4.45 W 3.24 W 2.53 W
S2 Losses 7.28 W 5.72 W 4.61 W 4.50 W 2.92 W 2.06 W
Total Loss 11.73 W 8.96 W 7.14 W 8.95 W 6.16 W 4.59 W
S1 Junction to Case 4.9 *C 3.56 *C 2.78 *C 4.9 *C 3.56 0C 2.78 0C
Temp. Rise
S2 Junction to Case 8.52 *C 6.69 *C 5.39 *C 4.94 *C 3.21 0C 2.26 *C
Temp. RiseI
Heatsink Temp. Rise 40 *C 31 *C 27 *C 31 *C 24 *C 17 *C
Max Junction Temp. 48.52 CC 37.69 *C 32.39 *C 35.94 CC 27.56 *C 19.78 C
Rise (Either Device) I I

Table 2.1 A comparison of the predicted temperature rises for two device configurations and
various numbers of cells.

S2. The MOSFET/Schottky diode combination was chosen to reduce the complexity in

the control. Four cells are used in the design of the converter as a compromise of the

various factors. The Thermalloy KR-150 heatsink, a model larger then the KM-150, was

used in order to ensure that if the devices are in an ambient temperature of 105 *C then

the junction temperature of the devices will not exceed 140 *C under any condition.

2.2.4 Cells Inductance and Filter Size

For a given number of cells the cell inductance used in the power converter

determines the amount of ripple that appears on the input and output busses. Figure 2.8

demonstrates this relationship for a converter with six cells.

The filters for the converter must attenuate the converter ripple. The converter

input and output ripple (ideally) has a fundamental frequency that is the switching

frequency times the number of cells. The filters must attenuate the fundamental and the

harmonics of these currents such that they meet the EMI specification. Thus, an increase

in the size of the cell inductance will decrease the magnitude of the harmonics from the

28

The Effect of Cell Inductance on Ripple for a 6 Cell Interleaved Converter
3

2.5-

E

0.

0.5

0

L

0

0 5 10 15 20 25 30 35
Cell Inductance (uH)

Figure 2.8 The relationship between the magnitude of the ripple and the cell inductance for
a six-cell converter. For every data point taken the design range of input and
output voltages was examined to determine the maximum fundamental ripple
component.

converter and therefore smaller filters can be used since less attenuation is needed. In the

design of the prototype converter this tradeoff was not examined; the power stage and the

filters were designed separately. EMI filter topologies and designs are discussed further

in Chapter 6.

2.3 The Prototype Converter

2.3.1 Major Components

The prototype was built in June of 1998 with the parts and parameters listed in

Table 2.2 and shown in Fig. 2.9 and Fig.2.10. The switching frequency and inductance

were chosen first. The inductance was chosen to guarantee that the converter cells would

run in the discontinuous conduction mode over the entire operating range, ensuring a

small inductor core size. Four cells were selected to keep the part count low while also

29

Ll in R -in

C' in

4 sheUsC

L
Si

2 C 2 0 ,
S2

Figure 2. 9 The layout of the prototype converter.

Power Stage

Voltage ranges See Appendix A
Maximum Current 68 A
Switching Frequency 125 kHz
Number of cells 4
Switch, S1 Temic SUP75N08-10
Switch, S2 IR 40CPQ080
Heatsink Thermalloy KR- 150
Inductor Core Philips RM 1OPA160 core with 3 turns
Inductance (per cell) 1.44 pH

Input Filter

C2 80 pF Cornell Dubilier 4 X
935C2W20K

C1 20 pF Cornell Dubilier 1 X
935C2W20K

R .27 Q
Ll 200 nH
L2 20.5 pH

Micrometals T157-40 core
with 20 turns

Output Filter
C2 80 pF Cornell Dubilier 4 X

935C1W20K
C1 20 pF Cornell Dubilier 1 X

935C1W20K
R .220_
LI 100 nH
L2 11.4 pH

Micrometals T250-40 core with 4
windings of 10 turns each

Table 2.2 Specifications and major components for the prototype converter.

30

R out L out

out ClouI1

Figure 2.10 Photograph of the dc/dc converter.

benefiting from the ripple reduction of interleaving and only requiring a single PC-board

mountable heatsink for each cell. The FET/Schottky diode combination was chosen to

reduce complexity in the control. Finally, a heatsink was chosen so as to ensure the

maximum junction temperature set for the semiconductor devices would never be

exceeded.

Once the key components were determined, the input and output EMI filters were

designed. The topology and the design algorithm for the EMI filter were adapted from

[10]. To design the filter, the input and output ripple across all operating conditions was

examined and the worst-case harmonic at each frequency was computed. The filters were

designed so as to ensure that these ripple components were sufficiently attenuated to

conform to the SAE J1 113/41 Class 1 EMI specification. Additional information about

EMI filter topologies and design can be found in Chapter 6.

31

2.3.2 Control

The output voltage of a modem alternator is controlled with a feedback loop. As

the voltage on the bus falls below a temperature-adjusted reference value the alternator

will supply more current in order to recharge the battery and raise the bus voltage. Above

a certain value, however, the alternator current reaches a limit and ceases to rise. The

converter is controlled such that it will operate in a manner similar to an alternator but

with much higher accuracy and bandwidth. Figure 2.11 shows a graph of the output

voltage/output current characteristics of the converter. A maximum current, 'max, of up to

68 A can be set from a digital input. The converter provides a current that is proportional

to the difference between the output voltage and a temperature-adjusted reference up to

the current limit. The proportionality constant is 170 A/V. The reference voltage is set to

14.2 V at 25 *C, with an ambient temperature adjustment of -7 mV/*C to match lead-acid

battery characteristics. Note that the output current limit for the converter is digitally

controllable between 0 and 68 A. An 8-bit digital input is provided which allows this

I &
OLt

IMAX~

I with diffrent digillinpits
mnax

Figure 2.11 The effects of output voltage on the output current of the converter. The level of I.,
is controllable.

32

current limit to be set. This input is highly useful for managing the flow between the high

and low-voltage batteries.

The converter is controlled with two feedback loops. An outer loop generates a

cell current command based on the error between the output voltage and the reference

voltage. This current command is fed to the current-control loops of each cell.

The individual cells employ average current-mode control to ensure that their

average output currents track the command current from the outer loop. (Average current

was selected over peak current control or duty ratio control because it was found to result

in the lowest sensitivity of the ripple cancellation to mismatches in cell inductances.) The

average cell currents are measured across 5 mQ sense resistors in series with the cell

inductors. The error between the commanded and measured currents is used to determine

the duty ratio of the cell.

The inner control loops operate at a relatively high bandwidth. The outer loop

operates at a much lower bandwidth resulting in an overall bandwidth on the order of the

outer loop crossover frequency of 1 to 10 kHz.

The controller is also required to be stable and well behaved both with and

without a battery on the output. More details of the control will be described in [11]. For

full schematics of the prototype see Appendix C.

2.4 Test Results

The converter was tested to ensure proper operation and stable control for

operation with and without an external battery. A load step test was performed to

compare the transient response of the 14 V bus in the dual-voltage system to the nominal

system in use currently. The conducted EMI of the converter was measured to evaluate

33

the performance of the filters. The temperature rises of various components were

measured in order to estimate the accuracy of the temperature rise prediction of the

various models, used to design the converter.

2.4.1 Transient Tests

One of the transient tests preformed on the converter is a step change in load.

These transitions occur when a major load is abruptly disconnected from the bus. The

dc/dc converter can respond to this step change in current thus allowing a quick

regulation of the voltage. Careful control of such transients is especially important in a

system where a 14 V battery is not used. Figure 2.12 shows a load-step transient on the

low-voltage bus of a load resistance increase from .25 i to .33 Q then back to .25 Q,

changing from 78 % to 59 % to 78 % of full load, without a low-voltage battery. Figure

2.12a is the simulated result from a Saber model, and Fig. 2.12b is the measured

transient. These results show that the performance of the converter is as expected and is

quite acceptable from a transient point of view. The voltages never exceeded the

specifications listed in Appendix A and the transients decay an order of magnitude faster

then load step transients in the conventional system under similar conditions.

2.4.2 EMI Measurements

The conducted EMI on the input and output busses were measured and compared

to the SAE J1 113/41 specification. The results of the tests are shown in Fig. 2.13. In both

cases the conducted EMI exceed the specified limits for frequencies less then 3 MHz.

This result was due to the fact that the models used to design the input and output filters

did not sufficiently consider capacitor parasitics. To rectify this problem a more detailed

model of the filter that considers more of the component parasitics (which is fully

34

........................

...

144. ---------------------

I

.. I

.

I'C

4a %

.20

00 sow C.WI5 O.DGZ

Expenmental Load Transient Response

...................%

...................

.

.....................

.

.......................................

.

...................

..

..

20

14

12

10

S 83

4

2

a)

0

35

0 0.5 1 1.5 2 2.5

Figure 2.12 Transient response of the output voltage (in Volts) to a step in resistance on the low
voltage bus without an output battery a) the simulated response b) the measured response.
Along the time axis each division is .5 n-dlliseconds

a)

90

70

EMI limit
(dB AV)

s0

30

0

b)

90

70

EMI limit
(dB IV)

50

30

0

6 12 is 24 30

6 12

Frequency (MHz)

18 24 30

Figure 2.13 The measured conducted EMI on the prototype a) input bus b) output bus at the rated
power level.

described in Chapter 6) was developed for use in the CAD optimization program.

Nevertheless, the performance of the converter was found to be acceptable for test

purposes, i.e. the EMI interference did not adversely affect any other systems.

36

D-LMT FAIL

i....... - e*.e.*. .".......

..

. '---... - - - Class -1 EAI specifications ---..

.
........................

....

D-LMT FAIL

- a

.,-- --- --- .--------- . .-------
--.- L ... Clss 1 EMI specifications---

'------------.....-.----

2.4.3 Thermal Measurements

A major design criteria for most of the components in the converter is a limited

maximum temperature. In order for the heatsink and other components to be properly

chosen the power losses of the major components and resulting AT's must be accurately

calculated. Through thermal testing of the prototype converter, the actual temperature

rises of key components within the converter were compared to the predicted values in

order to test the validity of the models used.

For the thermal tests the converter was operated at an output power of 560 W. The

temperature rise of the converter cell inductor centerpost and the heatsink were measured

to be 13.3 *C and 11.9 *C, respectively. The outer case of the diode has a temperature

that is 3.9 *C higher than the heatsink. The calculated temperature rise of the converter

cell inductor is 13.7 *C. The thermal model of the heatsink and both devices, shown in

Fig. 2.14, predicts the temperature rise of the heatsink to be 12.3 *C. The measured

temperature rises for the converter inductor and the heatsink were close to the estimated

temperature rises, implying that the calculated power losses of the elements in the power

stage were accurate.

2.5 Conclusions

Several objectives were met by the development of the prototype converter. The

design and construction has helped to elucidate a number of tradeoffs and hidden issues

within the design. The tradeoffs identified include the effects of the number of cells on

system performance and the relationship between the cell inductance and filter size. The

converter has been useful for validating and refining the filter and device models used in

37

Power
lossSl \1
l82 W l5.

Rjc
.8"C/W

13.7

Rcs

.8"C/W

2C

70C

Power
lossS2
4.66 W

RJc

14.

Rcs
.4"C/W

17.*'C

12.31"C

Rsa
l.9 C/W

Figure 2.14 The thermal model of the heatsink and devices used in the prototype
converter running at the reduced rating of 560 W. Rjc are the thermal
resistances of the devices listed in Table 2.2. R, is the thermal resistance of
the sil pads used. R,. is the thermal resistance of the heatsink.

the CAD optimization package. The converter has also proven useful in a variety of dual-

voltage automotive research projects that include load flow studies and transient analysis.

38

B3*C

Chapter 3

TimCAD Architecture

A wide range of design possibilities exists for a dc/dc converter in the dual-

voltage application. The converter can be constructed from a single power stage or any

number of paralleled power stages. Within the power stage design, a wide range of

switching frequencies and ripple ratios are feasible, and the power stage can be

constructed from a tremendous variety of component types. Many topological variations

are possible as well. Because of this large design space and the tight interrelation of many

of the design choices, identifying the converter designs that best meet the design

objectives is extremely difficult in practice.

TimCAD is a computer-aided design and optimization tool that allows the design

space to be rapidly explored, and the most optimal design approach to be identified. It

also allows the effects of system parameter variations on the price, weight, and volume of

an optimized converter to be easily determined. This chapter describes the structure of the

TimCAD package and how it is used.

3.1 Optimization

There has been some previous work on computer-aided optimization of power

electronics. In [12], an optimization routine is coupled with a circuit simulator to select

parameters for a power converter filter. The objective function to be minimized is a

predetermined function of the filter inductance, capacitance, and output voltage ripple.

39

The circuit simulator ACSL is used to predict the ripple performance of a design, while a

deterministic outer loop searches for the objective function minimum.

In [13] the joint optimization of the converter structure and control behavior is

formulated as a constrained optimization problem and solved using a numerical

optimization procedure. The structural objective of the optimization is formulated in

terms of converter losses or efficiency, which are based on simplified closed-form

calculations [14], while the control cost is based on a formulation of the control effort and

performance. The authors apply this approach to the design of a buck converter, where

the plant design parameters are the converter inductance and capacitance, with other plant

parameters fixed. A major disadvantage to this approach is that it requires a very detailed

mathematical formulation of the optimization problem.

In [15], computer-aided optimization of a three-phase inverter is considered. The

objective function of the optimization is formulated in terms of efficiency or temperature

rises. Analytical expressions for converter losses and temperature rises are developed and

used for the necessary calculations. The optimization is done via a stepped search across

two design parameters (gate resistance and gate drive voltage) with all other design

choices fixed.

While having a number of distinct aspects, the existing investigations have a

number of important characteristics in common. First, in each case, only a very small

number of parameters are searched over, meaning that only a small fraction of the entire

design space is explored. It is not clear to what extent the optimization techniques and

problem formulations extend to a more extensive optimization. Second, all of the

techniques consider numerical parameters only, without bridging the gap to actual

40

components. For example, [12, 13] search for optimized inductance values, but there is

no tie to actual component design or consideration of actual component non-idealities.

This makes it difficult to optimize for quantities such as price, weight, and volume, and

does not address many of the issues found in an actual design. Finally, all of these

investigations focus primarily on the computations and formulation aspects of

optimization. However for a CAD optimization tool to be useful across a large design

space and to address component implementation, user interface and data management

issues become very important. It is the authors' belief that these issues need to be

addressed in a fully functional optimization tool.

The TimCAD program explores the design space to identify the converter design

or set of designs that best minimize a cost function that is the weighted sum of converter

price, weight, and volume. The design variables considered by the program include the

number of interleaved cells, the cell switching frequency and ripple ratio, input and

output filter topologies and designs, and a wide variety of component types. The program

designs the converter with specific parts, each with its own price, weight, volume, and

operating characteristics. Detailed models are used to very accurately predict the system

behavior with these specific parts. The output of the program thus consists of converter

designs that are composed of available components and have well-defined performance

characteristics.

The optimization program uses a Monte Carlo design approach. The program

chooses random starting points in a user-defined design space and designs converters that

meet user-defined specifications. After designing a large number of converters across the

possible design space, the results can be analyzed to determine which converter

41

properties and designs are the most desirable. The program can be reconfigured to

examine local minima in the design space to further refine the search.

3.2 Program Structure

TimCAD is divided into five sections as shown in the block diagram in Fig. 3.1.

These five sections are the user interface, the control loop, the database, the design

algorithm, and the device models.

3.2.1 User Interface

The user interface of TimCAD is dialog based, i.e., the interface is made up

exclusively of dialog boxes. The toolbar and the menu of the main window can call up

any of these dialog boxes. There are three main types of dialog boxes in TimCAD: parts,

control, and results. For every major component of the converter there exists a parts

User Interface

Edit Configure
Data the Program

Results Control
E~c~lia Control

Loop
Database Loop

Design
Device initias

Paraeen 0;Conditions

System Info

DeviceDesign

Models ffects on
System

Figure 3.1 Block diagram of TimCAD showing the five major elements of the
program.

42

dialog box. The parts dialog box provides the ability to examine or edit the properties of

those parts within the database.

The control dialog boxes, Configuration and EMILimits, allow the user to set

options that will control the design algorithm or set design guidelines for several of the

components. These options include the range of allowable current ripple, the number of

cells, the maximum power loss of a component, the Q of the filters, and many other

options.

The results dialog boxes, Results and Cost, are able to manipulate the output of

the program. The Results box, as seen in the screenshot of Fig 3.2, displays all the

necessary information about the design of a dc/dc converter. The records accessed from

this dialog box are ranked based on a cost function. The cost function is a specified

weighted average of the price, weight, and volume of the converter.

3.2.2 Control Loop

The control loop is the main element in the program which regulates how the

design space is searched. Between any two successive designs of the converter many

different variable can change. The control loop controls the program by determining

which of these designs to use on each successive design of the converter. The control

loop uses a Monte Carlo design algorithm to randomly select from a number of design

parameters and components that are provided to the design algorithm. The design space

considered and the number of iterations used are key factors in the control loop, and can

both be changed through the use of the Configuration Dialog Box.

To search the design space rapidly, TimCAD actually uses a multi-layer control

loop. An outer control loop generates design with randomly selected parameters

43

;Stad ?yMicrosot Word -PrototyP... 09 TIMCAD - Mowwt DeveL '"Unied -TIMCAD I p 2:08PM

Figure 3.2 Screenshot of TimCAD

controlling the power stage design. An inner control loop designs multiple sets of input

and output filters (again using the Monte Carlo methods) for each power stage generated

by the outer control loop. The filters with the lowest weighted sum of price, weight, and

volume are then chosen for the design of the converter. The number of outer loop

iterations (which are the most computationally expensive) can then be reduced since the

fast inner loop will design the optimized filters on every iteration of the outer loop.

3.2.3 Design Algorithm

The design algorithm is the section of the program that designs the converter

based on the parameters provided by the control loop. The control loop of the program

randomly selects initial design parameters including the number of cells, switching

44

frequency, cell ripple ratio, filter topology and the selection of several components. The

design algorithm uses these values as initial conditions and determines essential values of

the design, chooses components to ensure proper operation of the converter, and makes

sure a valid design is achieved. The relationship between the control loop and the design

algorithm is shown in Fig. 3.3. To generate information necessary for the design of other

parts of the converter, the design algorithm uses models of the converter components. For

example, the models for the switches are used to calculate the power loss in the devices,

which is necessary for the design of the heatsink. If a component can not be found to

adequately meet one of the specifications, then the iteration is declared invalid and the

Outer Control Loop

Choose number of cells
Choose ripple ratio
Choose switching frequency
Choose both switches

Power Stage, Design Algorithm

Calculate power loss in switches
Design heatsink
Design converter inductor

Inner , Control Loop

Choose filter type
Choose capacitor
for both input and output filter

Filter Stage , Design Algorithm

Design Input Filter
Design Output Filter y iterations

x iterations

Figure 3.3 Relationships between the control loop and the design algorithm. The outer loop
calls the power stage design algorithm. After the power stage is designed the inner
control loop runs and the filter stage is designed. The inner control loop iterates y
times and the outer control loop iterate x times.

45

control loop chooses another point in the design space to analyze. Once a design is

successfully completed, the program will calculate the total price, weight and volume of

the valid design and save this record in a database.

3.2.4 Device Models

An object of code exists for every component used in TimCAD. Within each of

these objects is a model for that component describing the necessary aspects of its design

and use. When supplied with data from the design algorithm, the code for the component

will calculate and relay to the design algorithm all the relevant information about the

chosen component.

3.2.5 The Database

The program uses a Microsoft Access database to store all essential data. The

database is comprised of 23 tables separated into two different files. The Parts List file

contains a table for every component used in TimCAD with all the properties needed for

that component. Three other tables in the Parts List file, EMILimits, Configuration], and

Coiflguration2, store information on user-defined variables for the converter. In the table

EMI Limits, each record contains the EMI limit and frequency that define each corner of

the EMI specification for up to 30 megahertz. All the variables used to configure

TimCAD (listed in Table 3.1) are stored in the Configuration] and Configuration2 tables.

The configuration data is separated into two tables because the number of fields in any

database that interacts with another program is limited to forty. Along with other

configuration data, the Configuration2 table also stores the constants for the cost function

and the information determining which filter topologies to consider.

The Microsoft Access file, Results, contains all of the output from the program.

46

Field Description
Vin min Minimum voltage on the input bus
Vin max Maximum voltage on the input bus
Vout min Minimum voltage on the output bus
Vout max Maximum voltage on the output bus
Switching frequency min Minimum switching frequency for the power devices
Switching frequency max Maximum switching frequency for the power devices
Switching frequency step The increment of possible switching frequencies
Ripple Ratio min Minimum ripple ratio for one cell at nominal voltages
Ripple Ratio max Maximum ripple ratio for one cell at nominal voltages
Ripple Ratio step The increment of possible ripple ratio
Linear distribution Determines whether the possible values of ripple ratios is linearly or

exponentially distributed
Number of cells min Minimum number of cells to consider
Number of cells max Maximum number of cells to consider
Filter 1 Specs Q min For Filter type 1, the minimum Q to consider
Filter 1 Specs Q max For Filter type 1, the maximum Q to consider
Ambient Temperature The ambient temperature that the converter must be designed for
Max Temperature The maximum temperature of any device in the converter

verage Current The maximum average current that the converter must deliver to the low
voltage bus

FET gate drive current The average current that the gate drivers use to switch the MOSFETs
Capacitor max The maximum number of capacitors it place in parallel at the ports of each cell
PC board Price The price of the PC board in $/cm^2
Rcs Thermal resistance of material between the case of the device and the heatsink
Outer loop Iterations The number of runs TimCAD will perform
Inner loop Iterations The number of filter designs that will be examined for every outer loop

iteration
Continuous Mode Allows designs for continuous mode operations
Discontinuous Mode Allows designs for discontinuous mode operations
Switch 2 - FET Allows a MOSFET to be used as the second switch
Switch 2 - Diode Allows a Diode to be used as the second switch
Switch 2 - Schottky Diode Allows a Schottky Diode to be used as the second switch
Output filter simple windings The output EMI Inductor has a simple or complex winding
Output filter max power loss The maximum power loss acceptable in the output EMI inductor
Input filter simple windings The input EMI Inductor has a simple or complex winding
Input filter max power loss The maximum power loss acceptable in the input EMI inductor
Master control price Price for the control that controls the entire converter
Cell control price Price for the control that controls an individual cell
Master control weight Weight for the control that controls the entire converter
Cell control weight Weight for the control that controls an individual cell
Master control volume Volume for the control that controls the entire converter
Cell control volume Volume for the control that controls an individual cell
Max allowable price Maximum price for valid designs

7Max allowable weight Maximum weight for valid designs
Max allowable volume Maximum volume for valid designs
Use Max Values Toggles if maximum values limits are used

Table 3.1 Attributes in the Configuration Dialog Box

47

Again the results from the design must be split into four tables to limit the number of

fields per table to 40. The Results table contains the price, weight, and volume

information about the converters. The ResultsB table contains information about the

power stage whereas ResultsC and ResultsD store information about the filter stages. For

every results table there are also two tables created to store saved results. TimCAD can

copy the current results of any optimization process to either of these saved positions.

3.3 Program Objects

TimCAD is an object-oriented program. An object-oriented program can be

viewed as a collection of separate subprograms, or objects, that are linked to other objects

to create the full program. There are three main templates for the objects used in

TimCAD: CRecordset, CDialog, and CDocument.

3.3.1 CRecordset Objects

The CRecordset class is the object that directly interfaces with the database. Each

table used in the database has a corresponding CRecordset associated with it. Code within

these classes deals with the components associated with the table they represent. For

example, the CRecordset associated with MOSFETs, named CFETSet, contains the code

that models the MOSFET. When designing the converter, the code will send the CFETSet

object several parameters and this object will calculate the power loss of the device. The

code responsible for modeling all the components are fully contained in these CRecordset

classes. Along with code specific to the component, these objects contain the code that

link the program to the individual database tables. This code that interacts with Microsoft

Access allows the program to search and sort data within the database.

48

3.3.2 CDialog Objects

CDialog classes are the interface elements between the user and the program. For

every dialog box there is a CDialog class that controls its operation. This class reads and

writes information from the CRecordset class associated with the CDialog class. This

class controls all the user interactions such as displaying and editing the database records.

3.3.3 The CDocument Object

The most prominent class in the program is the CDocument class, even though

only one CDocument object, named CTIMCADDoc, exists in the program. This object

contains the design algorithm and the outer control loop. When the optimization

algorithm is started this object receives the command and proceeds to start the outer loop.

The program will then carry out the commands in the design algorithm and will interface

with the device models in the CRecordset objects as needed.

3.4 Program Operation

3.4.1 Installing TimCAD

To install TimCAD on any Windows 95 or 98 computer, one moves the files

TIMCAD. exe, Parts List. mdb, and Results. 11db onto the computer. The next step is to use

the ODBC program to make the database accessible to various other programs. From the

Start Menu choose Settings, then Control Panel. Then, start the ODBC program. On

the User DSN tab choose Add and then select the Microsoft Access Driver from the

Create New Data Source box. On the ODBC Microsoft Access 97 Setup box choose

Select and find the Parts List.mdb file and choose OK. Then repeat this process for the

Results.mdb file. The program should then be ready to run.

49

3.4.2 Starting Up

Use of TimCAD involves defining a design space of several variables and

designing dc/dc converters randomly in that design space. The resulting converters are

evaluated in terms of the price, weight and volume in an attempt to find the minimum-

cost design.

Before beginning an optimization run in TimCAD the setup of the program

should be examined. This includes the parts database and the configuration options. The

parts database, accessible through the toolbar and menu, contains all the components

within the database and all the information needed to model each component. (A

complete parts database is important. With a well stocked database, the selected

components will be closer to optimum, and fewer designs will be rejected for lack of a

suitable part.) A component will be ignored by the optimization routine if the Using

checkbox is unchecked. Most components are either chosen randomly or by matching a

component with a desired input value (i.e. choosing the appropriate capacitance for a

filter design) however the choice of converter inductor cores and heatsinks are made

differently. Each of these components is given a rank. The design algorithm will attempt

to use the component with the lowest rank; if the design fails with this component, the

next component is used. The ranking of these components can be automatically set based

on increasing values of price, weight or volume, or on a customized criterion.

In order to edit properties of the optimization process use th7e Configuration,

Filters, and EMILimits Dialog Boxes. The Configuration Dialog Box sets most of the

user defined constants in the program, such as number of iterations and maximum current

rating. From here the optimization program can be set to optimize over a range of

50

frequencies, number of cells, and ripple ratios. The range to be used is set with the

Configuration Dialog Box. A full list of attributes of the Configuration Dialog Box is

shown in Table 3.1. The Filters Dialog Box allows the user to examine and chose which

filter topologies to consider in the converter design. The EMILimits Dialog Box sets the

EMI limits for both the input and output bus by listing the EMI limit at every frequency

where the EMI limit changes.

3.4.3 Running TimCAD and Data Manipulation

To start the optimization routine chose Run from the toolbar or from Perform

Optimization in the menu. The program will give you an option to erase the current data

or to append the new designs to the database. Choosing either of these will bring up a

progress meter that indicates how much time is need for the program to complete the

process.

When the optimization routine has completed, the data from TimCAD can be

stored in two different saved positions (using Microsoft Access, the data can be moved

more quickly). The Saved Data option on the menu bar contains the options for saving or

restoring the data. The data should be saved before any of the data manipulation routines

are used, since these routines will delete records.

The Results Dialog Box displays all the valid converter designs ranked by a

weighted sum of their price, weight, and cost. (The formulation of this weighted sum can

be changed using the CCost Dialog Box, which is accessible from either the Results

Dialog Box or the menu.) If the information in the CCost Dialog Box is changed at any

time, all the records within the database will be updated. This will not necessarily result

in the optimal design for the new cost function since the inner control loop will have

51

chosen the filters based on the preexisting cost function.

The Results Dialog Box will list all the components used in the design and design

information about the components such as power loss and temperature rise. The buttons

Cost vs. Frequency and Cost vs. Ripple Ratio will delete all the records except for those

with the lowest cost for each frequency or ripple ratio.

Once the database has been cleared of all the extra data, the results can be viewed

using Microsoft Access. The results of the optimization routine are stored in the tables,

Results, ResultsB, ResultsC, and ResultsD. The query Results Query selects from those

four tables several of the interesting fields. The forms CostvsFreq and CostvsRippleRatio

show plots of the fields in Results Query across the range of either frequencies or ripple

ratios.

3.5 Conclusions

TimCAD is a powerful new tool for the design of dc/dc converters. Not only can

it be used to find the optimal design for a given set of system parameters, it can also be

used to examine the effects of varying these parameters on the characteristics of the

optimal design. TimCAD can thus determine the sensitivity of converter cost to

variations in system parameters such as ambient temperature or EMI limits.

To learn more about the operations of TimCAD, examine appendices D and E.

Appendix D contains the functions within TimCAD that deal with the design of the

converter. Flow charts of major functions used in TimCAD are in Appendix E.

52

Chapter 4

Optimization Results

This chapter shows some results of using TimCAD to search the design space for

optimal converter designs. The design variables that are searched across include the

number of cells, switching frequency, ripple ratio, filter topology and component choices.

One reason for doing this is to identify designs and design approaches that are more

optimal then what is easily achieved by hand. Furthermore, by comparing optimized

designs having different design specifications, the sensitivity of the converter size,

weight, and price to these specifications can be determined.

4.1 Limitations of the Results

Before presenting the results, it is important to state the two major

deficiencies that limit the utility of the existing simulation runs: the low number of

components in the database and the lack of high-volume pricing data. A sparse database

of parts leads to two problems: first, designs will fail because no suitable components

could be found. Second, converter designs may have oversized components because the

database does not contain smaller components that are suitable for the design. The use of

more components in the database results in more possible converter designs and therefore

more opportunities to generate a better converter design. Table 4.1 shows the number of

components used for the optimization runs described in this chapter. This database is

considered dense enough for a preliminary exploration of the design space, but the

53

Table Number of Entries

Capacitors 34
Converter Inductor Cores 23
PiN Diodes 2
EMI Inductor Cores 26
Heatsinks 43
MOSFETs 5
Schottky Diodes 1

Table 4.1 Number of components of each type in the database.

addition of more components would be valuable.

The pricing data used in the database are the prices provided by distributors and

manufacturers for small quantities of components. The converter prices formulated by

TimCAD are a summation of the component prices. Since the prices quoted by

manufacturers can vary depending on the purchaser and the quantity ordered, the

resulting price information will be slightly skewed. Its is not possible to use a constant

factor to translate between the calculated price and the price for another buyer since the

disparity in pricing is not the same for different components. Thus, to use TimCAD in

obtaining a price-optimized converter with pricing applicable to industry, the industrial

price of every component must be entered on the database and the optimization redone.

To bypass this issue, the preliminary results in this chapter do not contain pricing data or

price optimization.

4.2 The Baseline System

In most of the cases that follow, a system under test will be compared to the

baseline system described below. The settings in the Configuration and Filter dialogs

boxes used in this system are listed in Table 4.2 and the EMI limits used are in Table 4.3.

The voltage limits for all studies are described in Appendix A. The optimization runs use

all the parts possible, assuming the converter is bi-directional and free-convection cooling

54

is being used.

Category Baseline Category Baseline
Value Value

Vin min 33 V Inner loop Iterations 30
Vin max 52 V Continuous Mode TRUE

Vout min 12 V Discontinuous Mode TRUE

Vout max 16 V Switch 2 - FET TRUE
Switching frequency min 10,000 Hz Switch 2 - Diode FALSE
Switching frequency max 500,000 Switch 2 - Schottky Diode FALSE

Hz
Switching frequency step 2,000 Hz Output filter simple windings FALSE
Ripple Ratio min .10 Output filter max power loss 5 W

Ripple Ratio max 1.50 Input filter simple windings FALSE
Ripple Ratio step .01 Input filter max power loss 5 W

Linear distribution TRUE Master control price 5$
Number of cells min 3 Cell control price 5$
Number of cells max 6 Master control weight 4 g
Filter 1 Specs Q mn .5 Cell control weight 2 g
Filter 1 Specs Q max 2 Master control volume 2 cm^3

Ambient Temperature 100 *C Cell control volume 4 cm^3

Max Junction 140 *C Max allowable price 9999999 $
Temperature
Average Output Current 68 A Max allowable weight 9999999 kg

FET gate drive current 1.5 A Max allowable volume 2000 cm^3

Capacitor max 2 Use Max Values TRUE

PC board Price .18 Filter 1 TRUE
$/cm^2 I

Rcs .5 0C/W Filter 2 TRUE

Outer loop Iterations 20,000 Filter 3 TRUE

Table 4.2 Baseline values for the Conflguration and Filter Dialog Boxes.

Frequency (Hz) Limit (dB pV)

1 150000 90
2 300000 90
3 530000 66
4 2000000 66
5 5900000 57
6 6200000 57
7 30000000 52

Table 4.3 Baseline values for the EMILim its Dialog Box. Each line represents a corner on the
EMI limits diagram.

55

4.3 A Design Comparison

To get a sense of what is achievable with the program, consider a comparison

between the prototype converter shown if Fig 2.10 and a volume-optimized design

generated by TimCAD that meets the same specifications. The prototype converter,

which was not optimized for volume, has a displacement volume of 1740 cm 3.

Accounting for the extra volume of components such as heatsinks that were deliberately

oversized, a displacement volume of 1330 cm 3 reflects the design of the prototype. For

comparison, consider that a volume optimized design generated by TimCAD has a

displacement volume of only 210 cm3 . Part of this tremendous volume reduction is due to

the program selecting much more volumetrically-efficient capacitors then used in the

prototype, and part of it is due to the program identifying a better design point for the

converter. Even allowing for the use of the volumetrically efficient capacitors, the

prototype design would have a volume of 1000 cm 3, much larger than that achieved with

the optimized design. This illustrates what kind of results are achievable using a CAD

optimization program over conventional hand design.

4.4 Identifying Design Trends

In addition to optimizing designs, TimCAD can be used to study trends in the

design space. For example, one may wish to know what range of cell switching

frequencies yield the best designs. To do this, one can do an optimization run, and save

the best designs at each switching frequency. The results of plotting the volume of the

lowest-volume converter at each cell switching frequency vs. switching frequency for the

baseline specifications are shown in Fig. 4.1. At very low frequencies the cell inductors

56

Volume vs. Frequency for the Nominal System

1000

I 800 -

600

0
K 50K 100K 150K 200K 250K

Frequency (Hz)

Figure 4.1 The effect of frequency on the volume of the converter for the default system.

and filters become large, increasing converter size. At higher frequencies the power

losses of the devices increase, and therefore the volume of the heatsink increases, again

making the converter large. In between, there is a broad minimum centered at 75 kHz.

4.5 The Effects of Power Rating

One investigation performed with TimCAD is an examination of how the size of a

volume-optimized converter varies with power rating. To vary the power rating of the

converter for successive optimization runs, the output current (a variable in the

Configuration Dialog Box) is changed.

Figure 4.2 shows how the volume of a volume-optimized converter varies with

specified power level. (Except for the output current, the specifications of the baseline

converter were used.) Within the range of 250 W - 1000 W, doubling the power rating of

the converter results in approximately a factor of 1.8 increase in converter volume. This

indicates that the power density of an optimized converter increases with power over this

range. From this data, the required displacement volume (of converter parts) for a

57

Volume vs. Power Rating

250 -

c~200 -
< (6)E

.) 150 -

.M (3)0 > 50-
0 (3)0

0 200 400 600 800 1000 1200

Power Rating (W)

Figure 4.2 The volume of the smallest converter at various power rating. Values in
parenthesis represent the number of cells in the volume-optimized design.

volume-optimized converter in this power range is estimated as

Volume (cm 3) = 0.18 -Power (W) + 29.88 (4. 1)

The main trend for the volume-optimized converters is that heatsink volume is

always minimized. The heatsink volume makes up a large portion of the total volume of

the converter, thus operating conditions that result in low loss and small heatsinks are

always chosen. The volume-optimized converters generally have a switching frequency

in the vicinity of 75 kHz and a ripple ratio of approximately .45, regardless of power

level. From the data collected in Fig. 4.2, the number of cells decreases as the power level

decreases. Assuming the best device is always used, using fewer cells in the converter

will raise power dissipation in each cell (because each cell must carry more current)

whereas converters with a lower power rating will have less power losses. (In the

volume-optimized design the device with the largest die is always used, in a price-

optimized design this will be different). The net result is that the amount of power

dissipation, and therefore heatsink volume needed, decreases slightly as the power level

decreases. At lower power ratings the magnitude of the ripple current will generally

58

decrease, but using fewer cells will lessen the benefits of the interleaving process. Thus

the filters tend to (but not always) get smaller as the power level decreases. Note that the

volume of a cost-optimized converter may have very different characteristics from the

volume of a volume-optimized converter. When designing the volume-optimized

converter important characteristics such as the volume of the heatsinks take precedence

over choosing small, but expensive elements such as capacitors. This results in designs

that may have very small heatsinks but use many small and expensive elements. A price-

optimized converter will minimize the use of these expensive elements at the cost of

using a larger heatsink.

Figure 4.3 shows the relationship between the weight of the volume-optimized

converter and power rating. As expected the weights increase with power level, with an

approximate relationship of

Weight (g) = 0.20. Power (W) + 83.72 (4. 2)

These results should not be confused with those for weight optimization. For the 1000 W

Weights of Volume-Optimized Converters at Various
Power Ratings

300 -

250-
E 200 (6)

150 -(6)
. 100 - -

50((3)50
0 - I I III

0 200 400 600 800 1000 1200

Power Rating (W)

Figure 4.3 The relationship between the weights of the volume-optimized converters
and the power rating. Values in parenthesis represent the number of cells in
the volume-optimized design.

59

converter the EMI filter inductor makes up 2 % of the volume and 8 % of the weight of

the converter's components. In weight-optimized converters the size of the magnetic

elements rather than the heatsinks will be minimized.

4.6 The Effects of Ambient Temperature

The ambient temperature the converter must operate in affects many of the

components. The sizing of some components, such as semiconductors, inductors, and

heatsinks, is often determined by maximum temperature constraints. These elements can

be designed more freely at low ambient temperatures. Other components must be selected

directly based on ambient temperature. For example, film capacitors suffer from a severe

voltage derating at high temperatures, necessitating the selection of larger, more

expensive capacitors at high temperatures.

Figure 4.4 shows how the volume of a volume-optimized converter varies with

both the specified rating level and the ambient temperature. Aside from these parameters,

Volume vs. Power Rating
250 - - - -----

5 200

150 -

E 1001M ...- -- - -105 *C Ambient
> 50 85 *C Ambient

0 ~-.. 70 OC Ambient01
0 200 400 600 800 1000 1200

Power Rating (W)

Figure 4.4 The volume of the smallest converter at various power rating for three
different ambient temperatures.

60

the design parameters of the baseline system were used. One important parameter is the

maximum allowed junction temperature, set to 140 'C in this case. (Most modem devices

have a nominal rating of either 150 'C or 175 'C, but there is also a tradeoff between

maximum temperature and lifetime, so 140 'C is a reasonable, conservative design limit

for 175 'C devices.) For the 1000 W case, the volume increase by 10 % from 70 'C to 85

0C, and by 22 % as the temperature goes from 85 'C to 105 'C.

4.7 The Effects of EMI Limits

The SAE J1 113/41 EMI specifications list five different classes of narrowband

Electromagnetic Interference (EMI) specifications. The EMI limits specified in Class 1

are listed in Table 4.4. Each successive EMI specification is at most 10 dB lower than the

previous set of limits. Thus, Class 3 and Class 5 EMI specifications, listed in Table 4.4,

are as much as 20 dB and 40 dB lower than the Class 1 specification. Figure 4.5 shows

this relationship.

Applying different EMI specifications will affect the size of the required EMI

filters. As more stringent EMI limitations are applied to the voltage busses, the size of

filter capacitances and inductances will grow, resulting in an increase in converter price,

weight, and volume. Table 4.5 shows the volume of the input and output filters for six

Frequency Class 1 Class 3 Class 5
Limits Limits Limits

1 150000 90 70 50
2 300000 90 70 50
3 530000 66 50 34
4 2000000 66 50 34
5 5900000 57 45 33
6 6200000 57 45 33
7 30000000 52 40 28

Table 4.4 Class 3 and Class 5 SAE J1113/41 narrowband specifications.

61

SAE J111341 Class 1, 3, and 5 EMI specifications

70 -

V

60 -

0
50 - --

c0 -

30-

20
10 10 10 102

Freq in MHz

Figure 4.5 Classes 1, 3 and 5 SAE J1113/41 narrowband specifications.

converters designed for the baseline specifications with various numbers of cells,

switching frequencies, and ripple ratios. Filters for each system were optimized for three

different EMI specifications. In general, as the EMI limits decrease from Class 1 to Class

5, the filter volumes increase. There are several cases in which the filter volume does not

change. This indicates that the filter for the lower class has been oversized since it will

meet higher-order EMI limits. Filters are oversized when the program cannot construct a

more optimal (smaller) EMI filter due to lack of parts in the database.

The optimization results from the baseline system were compared to the results of

Operating Conditions Input Output Input Output Input Output
Filter Filter Filter Filter Filter Filter

N Switching Ripple ratio Volume Volume Volume Volume Volume Volume

Frequency, f R Class 1 Class 1 Class 3 Class 3 Class 5 Class 5

4 68000 .4 9.111 6.5 14.691 12.626 23.045 19.577
5 132000 .72 10.033 8.125 10.0333 10.033 16.45 16.45
4 186000 .82 9.111 9.111 9.876 9.111 19.684 11.683
5 226000 1.36 10.033 10.033 14.643 10.033 19.636 13.101
6 278000 .83 10.955 10.955 14.606 10.955 20.138 18.331
6 440000 .19 12.762 10.955 17.058 10.955 23.324 15.251

Table 4.5 The effects of EMI limitation on filter size.

62

Figure 4.6 This graph shows the affects of EMI specification on the volume of the input and
output filters.

systems with Class 3 and Class 5 EMI specifications to find the effects of EMI

specifications on the size of the filters needed. As can be seen in Fig. 4.6, the required

filter volume approximately doubles when specifications are changed from Class 1 to

Class 5.

These filters have all been optimized with respect to volume. The capacitors used

are very volumetrically efficient, thus all the filter designs are weighted toward using

capacitance rather then inductance. For a price-optimized design the opposite will be true

since inductor cores tend to be less expensive than capacitors.

4.8 Conclusions

This chapter illustrates the use of TimCAD to search the design space for optimal

designs. It has been shown that TimCAD yields designs that are better optimized then the

prototype converter described in Chapter 2, and that TimCAD can be used to examine

trends in the design space.

63

Total Filter Volume vs. EMI class

40 ---0 - ---

35

30

E 25
20

E
.2 15
> 10 ____

1 3 5

EM I specification

System variables such as power level, ambient temperature, and EMI limits affect

the design of the converter in many ways. With TimCAD, the effects of changes of these

system variables on the converter design can be quantified. The savings obtained by

changing the ambient temperature of the converter, for example, can be compared to the

cost of moving the converter out from under the hood. This thereby help the designers of

the automotive electrical system make informed decisions on major changes in the

design.

64

Chapter 5

Device Models and Heatsinks

Consider the buck converter in Fig 5.1. Switch SI must be a controlled switch in

order to regulate the flow of energy from the high bus to the low bus. Switch S2 must

also be controlled if the converter is required to supply energy in both directions.

However, if the converter is unidirectional, a Schottky diode or a PiN diode could also be

used to implement switch S2. Regardless of which devices are used the converter will

need a heatsink to protect the devices from the power they dissipate. This chapter will

analyze the device power losses and temperature rises for each of three possible cases:

two MOSFETs as the switching elements, a MOSFET and a Schottky diode, and a

MOSFET and a PiN diode.' This chapter will also examine the heatsinks necessary for

the design of the converter.

High-Voltage Si IL Low-Voltage
Bus Bus

IS2

Figure 5.1 Basic cell of a direct converter. S1 and S2 are the switching elements in the
converter.

Some of the information for this chapter is derived from [6], [16], and [17].

65

5.1 Two MOSFETs as Switches

If the two switches are implemented with MOSFETs (see Fig. 5.2) the direction

of energy flow between the two busses can be controlled. The use of a bi-directional

converter allows the battery on the lower bus to charge the battery on the higher bus. This

feature makes a much broader range of energy management routines possible. In case of

a discharged high-voltage battery, the converter would be able to use the low-voltage

battery to recharge it. The extra switch will, however, require another gate driver and

additional complexity in the control of the converter.

There are two main sources of loss in the switching elements: conduction losses

and switching losses. Conduction losses that arise in a low-voltage MOSFET are

primarily due to the bulk resistance of the device. This loss mechanism is modeled as an

on-state resistance, Rdson, as shown in Fig. 5.3. When the MOSFET is conducting,

S1
Input Filter '_ Output Filter

~-
~S2

Figure 5.2 The power stage if both switches are implemented with switches.

VF

Rdso

Figure 5.3 M~odel for the MNOSFET in the triode operating region.

66

current passing through this resistance will cause a voltage drop across the device and

incur a power loss of

2
Pcond = Id_ mis Rs-on (5.1)

Rd,-on is dependent on the ambient temperature of the device. For example, at a junction

temperature of 100 C the resistance might be one and a half times its nominal value at 25

C. The temperature dependence of Rd-on as given in the MOSFET datasheets appears to

be parabolic, therefore the value of Rdson used by the program is modeled as a parabolic

function of junction temperature.

The other main source of loss is due to the switching of the MOSFET. Whenever

the switch changes state, there is a finite amount of time during which the switch will

have a significant voltage across it while conducting current. During this interval

switching losses will exist. Figure 5.4 shows the switching waveforms of a MOSFET

ta tb c t d

d5

1
a ib tc td

I d

1a
t

b ic td

Figure 5.4 Turn-off transition of a MOSFET.

67

turning off. The gate driver of the MOSFET keeps the gate voltage high while the device

is on. When the MOSFET is turned off, the gate driver draws current from the gate of the

MOSFET, thereby discharging Cgs (the capacitance from the gate to the source of a

MOSFET). The gate to source voltage, Vgs, is lowered until its value reaches the

saturation voltage of the device, calculated as

Vsat - + VT (5.2)
g S

This occurs during the time interval tab, since the current in this time interval is

very small the power loss is ignored.

At the gate voltage of Vsat at tb the parasitic capacitance, Cgd, between the gate and

the drain will begin to charge. The value of this capacitance is not constant in the device.

We can model this nonlinear capacitance as

K
Cgd= K (5.3)

gd~

The value of Kgd can be calculated from base device parameters as Crss times the square

root of the voltage at which it was measured, where Crs, and the voltage are available

from the MOSFET's data sheet. Assuming that the gate driver supplies a constant

current, the time to charge this capacitance is given by te - tb = tbc;

t= 2K- gd Vb (5.4)
1drive

The voltage across the device then will rise according to

t
vds (t) - drive (d b (5.5)

2 -Kgd

68

Since the current is constant, the energy dissipated is

EbC= 2pk K -(V) //2 (5.6)
3 -drive

In the next time interval, td - te = tcd, Vgs drops to VT. During this transition the

current through the device will fall to zero. The duration of this time interval is dictated

by the time needed for the current to overcome the inductance in the leads and discharge

C gs, as well as any ringing that results from these parasitic elements. The full derivation

of this time interval can be found in [16].

TI
Cg -(V, -cos(-)-VT)

t cd = T, + LC (5.7)
drive

where Ls is the lead inductance and T2 is defined as

TI = [LCg, -sin~'(I' -_- 1 (5.8)
gs Vsat

and C.s is defined as

C.s = Q (5.9)
V

where Qg is the charge at the gate when there is a voltage Vg on the gate. These values can

be determined from the MOSFET's data sheet.

Based on these calculations, the energy lost during this interval is

Ecd = t cd Vs " pk (5.10)
2

The total turn off loss for a MOSFET is then

69

turn-off =(Ebc +E C) fSW (5.11)

The analysis of the turn-on losses follows a similar argument, but contains several

other terms. The energy loss associated with the charging and discharging of the parasitic

capacitances in the circuit is defined as

E o -Vb 2 Kext (5.12)
3

where the values of Ke.t represent the nonlinear capacitances in the form shown in

equation 5.3. These capacitances are a consequence of capacitors external to the device

such as the capacitance across the other switch. The graph of the turn-on switch voltage

and current shown in Fig. 5.5 is the reverse of Fig. 5.4. The first interval in which losses

occur happens when the gate voltage is greater then VT and less then Vsat. In this interval

V

Vd.v

V

ds

VT

bus
Ce tf tg 9 1h

I

te t 1. t

F r . T1r th F

Figure 5.5 Turn-on transition of a MOSFET.

70

the current will rise to its nominal value while the voltage across VdS will remain constant

at the bus value, leading to an energy loss of

Ee = t ef * Vbs * I pk (5.13)
2

over the interval

(V - V-r) Cs
tef sat IV =rive (5.14)

drive

The capacitance between the gate and the source can be estimated by dividing the charge

on the gate by the gate voltage at the time of the measurement.

When the current reaches its peak value, the capacitance between the source and

the drain will start to discharge. This results in an energy loss of

2-1 *K -V 2
Ef = pk gd b"s (5.15)

3
driv'e

Therefore the turn-on power loss of a MOSFET is

Ptunv-on = (E 11 + E e +Eg)-f1 , (5.16)

Since two MOSFETs are used, current can be moving in either direction. If

current is flowing out the drain of the MOSFET, then the body diode of the MOSFET

will be used to find the device switching losses. This parasitic element is modeled as a

PiN diode so the switching losses will only contain the reverse recovery losses in the

diode.

The reverse recovery of the PiN diode is caused when the device turns off. When

71

the device turns off the current in the device decreases from the operating current down

to the reverse recovery current, and then the current slowly decays to zero during the time

t,. Meanwhile the voltage returns to its nominal value. The total power loss during

reverse recovery is a function of the charge on the device given as

Qd = -- k - I test) (5.17)
4 dt Itest

di
where the parameters tIT, d, and Ites, are available from the MOSFET's data sheet and

dt

the power losses are

P, = Qd - V. -fs, (5.18)

When the MOSFET is acting as a diode, the capacitance across the device, Cds,

will be a cause of power loss in the other MOSFET. This external capacitance will add

Id

I rr

vds

V b. e

Figure 5.6 Source of reverse recovery loss in diodes.

72

another term to the summation in 5.12.

Table 5.1 sums up the switching losses for the case of using two MOSFETs. The

inductor current, IL, will normally be greater then zero. However, the inductor current

will vary for several different modes of operation. If the converter is operating in

discontinuous conduction mode then IL will be zero for the turn-on transition of switch

SI and the turn-off transition of switch S2, thereby reducing the switching losses for

those transitions. When two MOSFETs are used as the switches, the converter can be run

such that there will be a reverse energy flow. IL can be negative for the entire cycle

thereby sending energy to the higher bus. Another possible mode is to allow IL to be

positive when switch SI turns off and negative when switch S2 turns off.

Table 5.2 lists all the parameters used by TimCAD to model the power loss in the

device.

5.2 MOSFET and a Diode as Switches

The other option of the converter architecture is to implement the second switch

as a diode as in Fig. 5.7. This option restricts the inductor current from going negative, so

there can be no reverse energy flow. The diode implementation is useful because the

diode doesn't need extra control signals, making the control circuitry simpler.

IL >0 IL <0

Switch S1 turn on loss Pmon = (Eon+ Eef + Efg)- fw -----

Switch S1 turn off loss P =(EC +E C)f = Qd .Vb. -fS,

Switch S2 turn on loss ----- P = (E, + E , + E) f

Switch S2 turn off loss P = Qd VbUs fsw Puof = (EC + ECd) fS

Table 5.1 Switching losses for the case of two MOSFETs

73

Field Description

MOSFET The Name of the MOSFET
Package The casing of the device
Price The price of the MOSFET
Vdss The maximum voltage the MOSFET can withstand
Id The maximum current the MOSFET is rated for
Vt The threshold voltage
Crss Reverse transfer capacitance
Coss Output capacitance
Vds for Crss and Coss The drain source voltage used when measuring Crss

and Coss
Ls Lead inductance
Gfs Transconductance
Max Temperature The maximum temperature of the device

Qg The Gate charge
Vg for Qg The gate voltage at which Qg was measured
Tjc The thermal resistance of the device
Ra The first coefficient in the quadratic formulation of

Rds-on as a function of temperature
Rb The second coefficient in the quadratic formulation

of Rds-on as a function of temperature
Rc The third coefficient in the quadratic formulation of

Rds-on as a function of temperature
trr The reverse recovery time
If, test The current used when trr is measured
dI/dt The current rise used when trr is measured
Using Determined if the record is used during the

optimization routine

Table 5.2 MOSFET parameters used in TimCAD

The losses of the MOSFET are the same as they were in the previous case.

Since I is non-negative, equations 5.1, 5.11 and 5.16 will describe the power loss of the

MOSFET. Note that the capacitance across the diode will add the following term to 5.12

a)

Input Filter Output Filter

S2

b)

Input Filter q S2- Output Filter

Figure 5.7 The power stage if the second switch is implemented with a) a Schottky diode
or b) a PiN diode.

74

K diode = CT - Vtest (5. 19)

where CT, the junction capacitance, and Vtest are values determined from the diode's data

sheet.

In order to determine the conduction losses for the diode, the current through the

diode and the voltage across the diode must be known. The diode current is the portion of

the inductor current that has a negative slope. This current through the diode is known

and depends on the inductance, bus voltages and the switching frequency of the

converter. The relationship between the diode current and voltage is given in the diode's

data sheets. The voltage across the diode is modeled as either a linear or a parabolic

function of the diode current, based on the amount of accuracy desired. The conduction

power loss is then equal to

Pdiode-cond = - diode (t V(Idiode (t))- dt (5. 20)
D*T

where D is the duty cycle of the converter, T is the period, Idiode is the current through the

diode as a function of time, and V is the voltage across the diode as a function Of Idiode.

In this application the recovery losses of a Schottky diode are small and can be

safely ignored. But the leakage current of the device may be significant and causes a

reverse current power loss of

Preverse I= I -r Vhs *toff (5.21)
T

where Ir is the reverse current associated with the Schottky diode for a given voltage and

t
temperature, and off is the percentage of time that the Schottky diode is off.

T

The PiN diode doesn't have a significant power loss associated with leakage

75

current, but it does contain a switching loss similar to the loss associated with the

parasitic body diode of the MOSFET. The switching loss of the PiN diode is defined as

(5.22)PPiN sw Qd *Vbus -sw

Tables 5.3 and 5.4 list the parameters that TimCAD stores on Schottky and PiN

diodes.

5.3 Heat Sinking

In addition to power losses, it is also important to calculate and control device

temperature rises. The power lost in the device is converted to heat. The device, standing

alone, cannot tolerate the heat it generates when its power loss is only a few watts. To

operate the device at its full capacity, one must employ a heatsink. In the program only

free-convection cooling is assumed. The addition of fans to the system will increase the

cost and lower the reliability needlessly since free-convection cooling is adequate.

Field Description

Name The name of the Schottky diode
Package The casing of the device
Price The price of the Schottky diode
Vrrm The reverse voltage the diode can tolerate
If The current rating of the diode
Rjc The junction to case thermal resistance
Ct Junction Capacitance
Vr for Ct Reverence voltage used when Ct was measured
Ir at max Vin Reverse leakage current at the voltage in which the device is

being used
Max temperature The maximum temperature the device can tolerate
Detailed modeling Determines if the I vs. V curve is models as a parabola or

piecewise linear
B2 The first coefficient of the I vs. V term for a high order model
B1 The second coefficient of the I vs. V term for a high order model
B The third coefficient of the I vs. V term for a high order model
Al The first coefficient of the I vs. V term for a low order model
A The first coefficient of the I vs. V term for a low order model

Using Determined if the record is used during the optimization routine

Table 5.3 Schottky diode parameters used in TimCAD

76

Field Description

Name The name of the PiN diode
Package The casing of the device
Price The price of the PiN diode
Vrrm The reverse voltage the diode can tolerate
If The current rating of the diode
Rjc The junction to case thermal resistance
Ct Junction Capacitance
Vr for Ct Reverence voltage used when Ct was measured
Max temperature The maximum temperature the device can tolerate
Detailed modeling Determines if the I vs. V curve is models as a parabola or

piecewise linear
B2 The first coefficient of the I vs. V term for a high order model
BI The second coefficient of the I vs. V term for a high order model
BO The third coefficient of the I vs. V term for a high order model
Al The first coefficient of the I vs. V term for a low order model
AO The first coefficient of the I vs. V term for a low order model
Trr The reverse recovery time
If, test The current used when trr is measured
Di/dt The current rise used when trr is measured
Using Determined if the record is used during the optimization routine

Table 5.4 PiN diode parameters used in TimCAD

The key feature to model in a heatsink is the thermal resistance. With the thermal

resistances of the heatsink, the device, and the material between the objects the junction

temperature of the device can be predicted as shown in Fig 5.8. The thermal resistance of

the heatsink can be modeled in two ways. Using a low order model, the relationship

between the temperature rise and the power dissipation can be assumed to be linear with

a zero x-intercept. For some heatsinks the temperature rise is more accurately predicted

with a higher order model i.e., as a parabolic function of power loss

T Ris . P:d:-R" ±R iss + R1 * Pa SS + R0 (5. 23)

where R2, R1, and RO are constants. The level of modeling can be determined for each

heatsink.

77

Power
lossS '1)
P1I

Junction Junction Temp.
to Case 1 T -T=1+R _P 1
R1je

Case to Case Temp.
Sink Te=T1+RgPi
R

Power
lossS2
P2

Junictioni Junictioni
to Case 1
R2je

Case to
Sink
Re

T.I=T +RI.c

Case Temp.
Tc =T, + R&P2

Heatsink

Sink to Temp.
Ambient TS= R s4P, + PI)
R.

Figure 5.8 The thermal model of the devices and the heatsink. In the model, power
dissipations are represented as current sources, thermal resistances as resistors,
and temperature rises as voltages.

Heatsinks come in a variety of shapes and sizes, with a wide range of thermal

resistances. Some heatsinks are designed to hold specific package types. Others are

pieces of extrusion whose length can be determined. Regardless of the shape of the

Fields Description

Name The name of the heatsink
Rank The order in which the heatsinks are designed, not

used for extruded heatsinks
Volume The volume of the heatsink

Weight The weight of the heatsink
Price The price of the heatsink
R2 The first coefficient of the thermal resistance term

for a high order model
RI The second coefficient of the thermal resistance

term for a high order model
RO The third coefficient of the thermal resistance term

for a high order model
Area The area the heatsink needs on the PC board
Count The number of devices that can be put on the

heatsink, zero indicated an extruded heatsink
Thermal Resistance The thermal resistance used for a low order model
TO-220 Checked if heatsink can attach to this package type
TO-247 Checked if heatsink can attach to this package type
High Thermal Resistance Determines if the thermal resistance is calculated
Modeling from R2, RI, and RO or is given
Using Determined if the record is used during the

optimization routine

Table 5.5 Heatsink parameters used in TimCAD

78

Temp.
)2

heatsink, it must be chosen such that the temperature of the device does not exceed the 7

maximum temperature allowed. Table 5.5 lists the heatsink properties used by TimCAD.

5.4 Conclusions

This chapter details the methods and models used to compute device losses and

temperature rises in converter cells. Loss models are provided for cases where two

MOSFETs are used as switches, when a MOSFET and a PiN diode is used, and when a

MOSFET and Schottky diode is used. Both conduction losses and switching losses are

computed using parameters found in the data sheets of the devices. Also described are

methods and models for computing the device temperature rises, and for describing the

thermal behavior of heatsink elements. TimCAD utilizes these models in the power stage

design.

79

80

Chapter 6

Passive Elements and Filters

Inductors, capacitors, and filters play important roles in the design of a power

converter. The inductor within the power stage of the converter is a significant energy

storage element in the dc/dc converter while capacitors are the main buffers for absorbing

the ripple current generated by the switching action of the power stage. Proper sizing and

design of these elements require accurate models and careful attention to a variety of

design considerations.

Stringent electromagnetic interference (EMI) specifications are applied at the

terminals of the power converter. In order to meet these specifications, EMI filters are

needed at the input and output of the converter to attenuate the high-frequency ripple

generated by the converter. To design these filters, the filter models, and hence the

models for their constituent inductors and capacitors, must be accurate for frequencies

into the megahertz range.

This chapter describes the models for passive elements and filters used by

TimCAD to design dc/dc converters. The passive elements described include the power

stage inductor, the EMI filter inductor, and the larger capacitors in the filters. Three

different filter topologies used in TimCAD are also described. This chapter contains the

methods and formulae used by TimCAD for the design of these elements and filters.

81

6.1 The Converter Inductor

6.1.1 Overview

The converter inductor, shown in Fig. 6.1, is a major energy storage element in

the converter. When the controlled switch, SI, is on, current flows from the 42 V bus

though the inductor to the 14 V bus, transferring energy from the 42 to the 14 V bus. At

V - Vou
the same time the inductor current increases at a rate of ' -" A/sec, increasing its

L sg

stored energy. During the second operational state, when SI is off and the second switch,

S2, is on, the inductor is connected between ground and the 14 V bus. The current will

V
then decrease at a rate of ot A/sec, transferring some of the energy in the inductor to

L

the output.

As seen in Fig. 6.2, the current through the inductor will contain both dc and

ripple components. The magnitude of the ripple current will be a function of inductance,

frequency, and the voltage at both busses. The magnitude of the dc current depends on

the required output current and the number of cells used in the converter. Significant ac

and dc currents are present, thus both core losses and winding losses must be considered

in the inductor design. Because a high frequency current will be present, we primarily

Converter Inductor
Input Si Output

S 2

Figure 6.1 The layout of the powver stage of the dc/dc converter!

82

I ave

in Vnhut -V in
L L

X

t
T

Figure 6.2: The current through the cell inductor for one period of the switching cycle.

consider ferrite cores in this application.

For every converter design TimCAD will design one of these inductors. To design

the inductor the program stores the data shown in Table 6.1 about each core. TimCAD

then uses the algorithm shown in Fig. E.3 in Appendix E, repeated here as Fig. 6.3, to

design the inductor. Some important steps of this algorithm are described in the following

subsections.

Field Description

AL The constant the correlates inductance to turns squared

Area The area on the PC board that the inductor will require

Core Area The cross sectional area of the core

Core Volume The volume of the core, a magnetic property

Length Per Turn 1 Layer The mean length of a turn assuming only one layer of
windings are used

Length Per Turn Full The mean length of a turn assuming the window area is full
Name The name of the core
Price The price of the inductor core
Rank The order in which the program tries to use the inductors
Thermal Resistance A constant that determines the temperature rise based on the

power loss of a core.
Using Determines if the program will ignore a record
Volume The volume of the inductor core
Weight The weight of the inductor core
Winding Area The area in which all windings must fit
Winding Width The width of the window area

Table 6.1 Fields in the Inductor core database.

83

Begin
Design Inductor

Determine harmonic
Content of Inductor
Current for Nominal

Conditions

Initialize at Inductor
with Rank = I

Valid = FALSE

Determine Turns Is Database
Needed Empty?

Is Flux Densit True > Move to Next Inductot Attempt to Put Anothe

to High9 in Database Core in Parallel Max.
4 Inductors Used

Choose Largest Wire
that will Fit in Core

Design
Inductor

Is Current Densit True
to High?

False

Find Winding and ore This is a recursive call

Losses and Temp Rise to the fuction

Is Temp Rise True

to High
.

SFalse

Valid = TRUE

CEnd
Design Inductor

Figure 6.3 Flowchart for the converter inductor.

84

6.1.2 Initial Design Pass
To determine th: number of turns, N, needed to achieve a given inductance,

equation 6.1 is used:

N= Ldesired (6.1)
AL

where AL is a constant for the core specified by the manufacturer. With gapped cores the

value of AL can be controlled by the length of the gap, so that when custom-gapped cores

are used a wide range of inductances is possible using any integer, N, number of turns.

For equation 6.1 to be valid the core can not be saturated, therefore the peak

magnetic flux density (Bpk) in the core must be kept below the saturation level of the core

material. If the core saturates then the inductance will be dependent on the operating

conditions. This is a situation that is generally unacceptable since the inductance should

be a constant value. The core will not saturate if the saturation point of the core, a

material constant called Bmax, is greater then Bpk, which is defined as

0.1 -AL N -Ipk
B (T)= Acore(6.2)

where AL is the core constant in mH/1000 turns 2, N is the number of turns, Ipk is the peak

current in A, and Acore is effective core cross section in cm 2. The allowed peak flux

density, Bmax, is 3000 Gauss for the Phillips ferrite cores used in TimCAD. If TimCAD

finds that the number of turns needed will saturate the core at rated current, the core will

be rejected as a candidate.

Once the number of turns is found and it is verified that the core will not saturate,

the wire size will be determined. The turns of wire must fit within the window area of the

core. (The window area is the cross-sectional area within the core through which all the

85

turns must pass.) TimCAD finds the smallest gauge (largest diameter) wire which will fit

within the window area. TimCAD verifies that this wire size will result in a maximum

current density, Jmax, of less then 3000 A/cm 2 in the wire. If not, the core is rejected as a

candidate.

6.1.3 Temperature Rise Limit

Because of the significant dc and ripple components in the current waveform,

there will be significant winding and core losses. The winding loss for the inductor is

computed using the models developed in [15]. The winding loss is a summation of the

power losses caused by every frequency component of the inductor current:

P\\re = I - , (6.3)

where In,rms is the rms current at the n th harmonic frequency, and Rn,wire is the effective

resistance of the wire at that frequency. The effective resistance of the wire is frequency

dependent; at higher frequencies the current will be restricted to the surface of the wire.

This outer region, or skin depth, is given as

2-
= " (6.4)
" 2- 7-n - f, -p cu

where n, Pc. and pc, are the harmonic number, the resistivity and permeability of copper.

The thickness of the wire in skin depths taking into account proximity effects is

X = - - - - (6.5)
4 L 2 6n

where d is the wire diameter and L is the spacing between the wires. The effective

resistance of the wire at the nth harmonic is then

86

R11 = M, + 3 -1. D -Rdc (6.6)

where m is the number of layers of windings and

Mil =Re (Xn +J. j X.) -cosh(X .+ j -X) (6.7)
" sinh(Xn + j- X')

2 -(Xn + j -XJ) sinh($(X, + j -X,))'
D1 = Re 2(6.8)

S=Re{cosh(l 2 (X, 1 +j.Xn)) }

The resistance of the wire at dc is simply the length of the wire used to create all the turns

times the resistance per length of the wire. The length of the wire used is the number of

turns needed times the mean length per turn (MLT) for a given core.

To calculate core loss, the ac flux swing in the core is approximated as a sinusoid

and the core loss model provided by Ferroxcube/Phillips [15] is utilized:

Pe,, (W) ~ 9.16 -10-" -(f, (Hz) .001)121 -(0.5 -BPk (gauss)) 2.793 -VOre (cm 3) (6.9)

where the constants are material dependent and Vcore is the volume of the core.

Based on the sum of winding and core losses, the centerpost temperature rise of

the core can be estimated by multiplying the power dissipation times the thermal

resistance of the core

(Pwire + Pcore) R L = Tse (6.10)

If the temperature rises above the maximum allowable temperature, the inductor design is

rejected, otherwise the program accepts the design of the inductor.

87

6.2 EMI Filter Inductor Design

6.2.1 Overview

The inductors used in the EMI filters have different design requirements then

those used for the main converter inductor. The inductors in the EMI filters carry large dc

currents (the aggregate current of the cells) but only very small levels of ripple current.

As a result, core losses and ac winding losses can be neglected, but the dc winding losses

and core energy storage capability are important. Because of these design considerations

toroidal powdered iron cores are used for these elements, and a different design algorithm

is utilized.

To design the EMI filter inductor one must use a core that can store the

appropriate amount of energy while maintaining a reasonable temperature rise. One must

also consider that the core may be partially saturated at full current when selecting the

numerical inductance value and number of turns. To model these inductor cores TimCAD

uses the data fields listed in Table 6.2 and the algorithm represented in Fig. E.9 repeated

here as Fig. 6.4.

6.2.2 Initial Design Pass

The first step in choosing a suitable core is to identify which cores can store

enough energy with an acceptable temperature rise and saturation level. Thus, the EMI

inductor cores are initially ranked on energy storage. The toroid cores used in TimCAD

have an upper limit for energy that depends on the complexity of the windings and the

allowed temperature rise. The energy stored by the inductor,

I
WM - L -I 2 (6.11)

2

88

Begin
Design EMI inductor

Rank inductors based
on energy storage and
choose first record

complex Simple windings
or complex

+~simple

Calculate max Energy Calculate max Energy move to next inductor
storage storage

enough?

True

Find number of turns

needed and power loss

End True s power loss less
Design EMI inductor hen max acceptabl

value?

False

Use multiple winding
to lower power losses
to acceptable value

End True

Design EMI inductor # of windings < 4

Figure 6.4 Flowchart for the design of the EMI filter inductor.

89

must be less then this maximum limit for the core to be chosen. If the inductor is

incapable of storing the energy needed within an acceptable temperature rise then the

design is rejected and the next core with more energy storage capability is chosen. Once

an acceptable core is found the number of turns can be calculated. Toroidal, ungapped

cores are used for the EMI filters, thus the amount of saturation of the core will influence

the effective inductance. The number of turns required can be calculated as in [16]:

LN = d e s::d

A L
(6.12)

Field Description

Al The constant the correlates inductance to turns squared
Area The area on the PC board that the inductor will require
Core Area The cross sectional area of the core
Core Volume The magnetic volume of the core
Full 10 Energy storage allowed for a 10 *C temperature rise for

an inductor with a full winding
Full 25 Energy storage allowed for a 25 *C temperature rise for

an inductor with a full winding
Full 40 Energy storage allowed for a 40 *C temperature rise for

an inductor with a full winding
MLT The mean length per turn of the wire
Name The name of the core
Price The price of the inductor
Simple 10 Energy storage allowed for a 10 *C temperature rise for

an inductor with a simple winding
Simple 25 Energy storage allowed for a 25 *C temperature rise for

an inductor with a simple winding
Simple 40 Energy storage allowed for a 40 *C temperature rise for

an inductor with a simple winding
Surface Area The surface area of the core
Ul The first coefficient in the parabolic representation of

the relationship between energy and percent saturation
U2 The second coefficient in the parabolic representation of

the relationship between energy and percent saturation
U3 The third coefficient in the parabolic representation of

the relationship between energy and percent saturation
Using Determines if the program will ignore a record
Volume The volume of the inductor
Weight The weight of the inductor
Window Area The area in which all windings must fit

Table 6.2 Fields in the EMIInductor database.

90

where % t is a measure of the permeability of the core, a value dependant on the energy

storage required from the inductor. The number of turns needed is then used to determine

the temperature rise of the core.

6.2.3 Temperature Rise Limit

Since the ac currents in the EMI filter inductor will be small, the power losses are

mainly due to the copper losses. The power losses of the core can then be written simply

as

Ploss =I12 -R e (6.13)

A user definable value is the maximum power loss of the EMI inductor. The

routine wviii attempt to design the inductor with less than this power loss. If an inductor

needs more then four parallel windings to achieve this then the inductor core is rejected.

The window area of a core must be considered when choosing the number of

windings necessary for an inductor. The total wire area needed in the core is the number

of turns the area required per turn. If the core does not have enough winding area to hold

all the turns needed then the core is rejected.

The temperature rise of the EMI filter inductor is a function of the power lost.

This function for temperature rise of the Micrometals toroid cores in free-standing air is

given by [16] as

ATore =).3 (6.14)

where Aswace is the surface area of the core. If the temperature rise of the core is within

limits, the core can store all the energy needed, and the window area is not exceeded then

the inductor has been design successfully.

91

6.3 Capacitors

Since the filters are built to suppress harmonics into the megahertz range, the

model for capacitors must include high-frequency characteristics. The high-frequency

model used for the capacitor is shown in Fig. 6.5. It contains an equivalent series

resistance (ESR) and an equivalent series inductance (ESL). These parasitic elements

affect the impedance of the capacitor starting near the resonant frequency of the

1
capacitor, eo = . At resonance, the ESR dominates the capacitor impedance.

LESR C

Above the resonant frequency, the ESL will dominate the impedance of the capacitor. A

typical capacitor selected for this application would be a film capacitor with a resonant

frequency on the order of 100 kHz - 1MHz and an ESR on the order of 10 mQ. Table 6.3

lists the data fields TimCAD uses to save information about the capacitors it uses.

Field Description

Area The area on the PC board that the inductor will require
Capacitance The rating of the capacitor
Bus Checked if capacitor is used next to the voltage bus
Damping Checked if capacitor is used in damping branches
ESL Parasitic inductance in series with the capacitor
ESR Parasitic resistance in series with the capacitor
Max Ripple Current The maximum ripple current that the capacitor can tolerate
Max Temp The maximum temperature that the capacitor can tolerate
Name The name of the capacitor
Nominal Voltage The maximum voltage a capacitor can tolerate at nominal

temperatures
Price The price of the capacitor
Switching Checked if the capacitor is used for low ESL applications
Using Determines if the program will ignore a record
Voltage/Temp The temperature at which the voltage needs to be derated
Breakpoint
Volts at Max Temp The maximum voltage a capacitor can tolerate at the max

temperature
Volume The volume of the capacitor
Weight The weight of the capacitor

Table 6.3 Fields in the Capacitor database

92

C

LESL

RESR

Figure 6.5 The high-frequency equivalent circuit for a capacitor, including parasitic
resistance and inductance.

6.4 Filters

6.4.1 Introduction

Two filters are needed for the dc/dc converter. The input and the output of the

converter are connected to busses that will have EMI specifications limiting the amount

of current ripple allowed on the bus. The unfiltered input current of the converter is the

summation of the currents in switch SI of each cell. As seen in Fig 6.6 the input current

in each cell drops to zero at the end of the first stage of operation, so this current, along

a) b)

T T
c)d)

T T

Figure 6.6 The output (a) and the input (b) current of a cell and the total output
(c) and input (d) current of a four cell power stage.

93

with the input current to the converter will contain discontinuities and therefore the high-

frequency harmonics in the current will be large. The output current of the converter is

the summation of the cell inductor currents, and hence is continuous.

The filters need to meet standards that limit the magnitude of the current ripple

out to the megahertz range. To meet the ripple specifications TimCAD uses three

different filters.

6.4.2 Filter Specifications and Measurements

The Society of Automotive Engineers' (SAE) EMI specifications for the 14 V bus

are stated in SAE J 1113/41. These specifications limit the broadband and narrowband

signals that can appear in the test setup described in the specifications. Figure 6.7 shows

the Class I narrowband specifications.

The Line Impedance Stabilization Network (LISN) is a device used in EMI test

procedures. This two port device, shown in Fig. 6.8, acts to separate the dc component of

SAE J1113N Cass 1 EMI Vpecificaions
957- I 11

W

~so

370

Figure 6.7 The plot of SAE J111
from Fig. 2.2)

10!10 12
Frq In KMz

3/41 Class 1 narrowband EMI specification (repeated

94

......

....

A

.....

...............

...

..........

the ripple current from its high-frequency components, and to provide a known ripple-

frequency impedance to the system under test. The capacitance and inductance in the

LISN effectively separate the high-frequency ac ripple, which the specifications address,

from the dc signal. The inductor appears as a high impedance for all ac components and

the capacitor appears as an open circuit for the dc component. Therefore, only the ripple

components of the current will pass through the LISN resistance, and it is the allowed

voltage ripple, V,, across this resistance which is defined in the specifications.

Due to interleaving, the fundamental ripple in the current will occur at

fi= fsw, Ncells (6.15)

Therefore the largest and most important components to attenuate will have frequencies

in the hundreds of kilohertz and megahertz range. Because we are dealing with these high

frequencies, suitable filter capacitors are those that can handle high ripple currents and

Input LISN Load

CSbig

V R

R

Figure 6.8 The setup for testing the EMI of the output of the converter consists of the LISN and the load.
The dc component will travel through the LISN to the load whereas the current ripple will be
measured across the LISN resistance.

95

therefore the largest and most important components to attenuate will have frequencies in

the hundreds of kilohertz and megahertz range. Because we are dealing with these high

frequencies, suitable filter capacitors are those that can handle high ripple currents and

have low ESR and ESL. At these high frequencies the effect of the capacitor's ESL must

be included in the design of the filter. Figure 6.9 shows the magnitude response of a filter

with and without the effects of the ESL. The lower curve shows the gain of the filter

without the parasitic elements in the capacitors. The gain of the filter with ESL

considered deviates from this curve at about one megahertz. In typical designs the

fundamental frequency of the ripple will in the hundreds of kilohertz range and either

curve may be used. For higher harmonics though, the ripple frequency will occur in the

megahertz range and the detailed curve must be used.

Magnitude response
0

-50-

.100 - %

-200F. ..

-2501
10 102 104 10 10 10 10

Frequency (Hz)

Figure 6.9 The gain of the filter in figure 6.11. The lower curve uses the ideal capacitor model.
The upper curve includes the effect of ESL and ESR.

96

6.4.3 Filter Design Overview

The filter design must allow the EMI specifications to be met under all normal

operating conditions. During normal operation, however the input and output voltages

can vary. The voltages of the converter ports will affect the shape of the current

waveforms seen in Fig. 6.6, and in turn their spectral content.

To ensure that the specifications will be met for all variations of input and output

voltage, the worst-case ripple component across all operating points is computed at each

frequency. Each filter design algorithm then uses this set of worst case harmonics as the

signal to be attenuated, resulting in a filter that will always meet the EMI specifications

regardless of the voltage on either of the buses.

To analyze the performance of the filters the system is tested as described in the

EMI specifications. Assume that two LISNs surround the converter. The output of the

first LISN is connected to a 42 V power supple and the output of the second filter is

connected to an appropriate load as shown in Fig. 6.10. Do to the nature of the LISN, dc

current will pass through the device, but all the ac currents produced by the converter

pass through the 50 Q LISN resistance. Since the filters are designed to attenuate ac

ripple for the EMI test using the LISNs, the output of all the filters is assumed to be the

LISN resistance.

LISN DC LISN
+ A!4 V Z DCL oadj

Figure 6.10 The setup for EMI testing. Note that the inputs of the LISNs are toward the
dc/dc converter, and for ac frequencies in the ranges given by the specifications
the input impedance of the LISN will be 50 n.

97

After calculating the worst-case harmonics of the converter's power stage,

TimCAD designs the input and output filters. According to which filter types were

selected in the Filters Dialog Box, TimCAD will randomly choose a filter type from

these and design it according to the filter's design algorithm. The inner control loop of

the program will cause the filter to be designed multiple times, and the optimal filter (as

determined by the cost function) will be chosen. The flow chart for this operation is

shown in Fig. E.5 in Appendix E.

6.4.4 Filter Type 1

To design a filter of the first type (shown in Fig. 6.11) three parameters are

needed: the location of the dominant poles, p, the Q of the filter, and one component

value. In the design algorithm used for TimCAD, C2 is chosen randomly based on the

components in the database. The variable p is initially assigned a value and the filter is

designed. For every frequency at which a harmonic exists the program examines the

attenuation provided by the filter, the worst case harmonic of the signal to be filtered, and

Filter

L1 R

L2
p LISN+ Load

ii n o u tInpu

2C

Figure 6.11 Layout of filter type 1.

98

the EMI limit. The value of p is then adjusted if more or less attenuation is needed from

the filter. The values of the other components can be determined using the design

algorithm described in [8]. Namely:

C , (6.16)
4

R =5 p (6.17)
4-C 2

=5. p (6.18)
C

2

L = (6.19)
5.Q 4. C,

The inductor, L2, will carry the dc component of the current, and therefore its

energy storage will be significant. The more energy L2 stores the larger the inductor must

be. The inductor LI is in a damping branch, and therefore it will carry a relatively low

magnitude current ripple and no dc current. LI can be implemented with a small inductor

or possibly as the parasitic of a wirewound resistor.

At frequencies much greater then the resonant frequency of the capacitors, C1 and

C2 are effectively inductors LcI and Lc 2 (i.e., the ESL of the capacitors from Table 6.3).

Then the transfer function for the filter at high frequencies, found by considering the

inductors in the circuit only, is

out =C2 - (6.20)
'In high _ frequency L.L

note that LcI is in parallel to the load. For the purposes of the EMI performance it can be

assumed that for all ripple components the load is the 50 Q LISN resistance. Therefore at

high frequencies LcI is in parallel with the load inductance, which is assumed to be zero,

99

thus Lci can be ignored.

6.4.5 Filter Type 2

The second filter type is a two-stage LC filter. This filter has two inductors in the

current path; thus both inductors cores must be rated for significant energy storage. This

filter naturally has a high Q, i.e., at some frequency near the cutoff of the filter there is

little to no attenuation at the noisy port. The Q of the filter must be reduced in order to

ensure the filter's proper operation. With a high Q system a frequency in the input could

easily contaminate the voltage busses, or the system could resonate at that frequency. In

order to reduce the Q two damping legs are added to the circuit resulting in the circuit

shown in Fig. 6.12.

The algorithm used to design this filter begins with the selection of a capacitor,

C2. The other capacitors in the circuit are then

C2C1 = 2 (6.21)
4

The capacitors on the damping legs need to be greater then the capacitor in series, thus

Filtet

Input L2 L L

C Cd C
N+Load

in out
C Cd2

R d2 Rd L

Figure 6.12 Layout of filter type 2

100

Cd, =10-C 2 (6.22)

CdI =10-C (6.23)

The resistors, Rd, and Rd2 , are chosen to limit the Q of the filter to a level what will not

interfere with the operation of the filter.

Changes in the value of Li only slightly vary the attenuation of the filter at low

frequencies, but affect the gain as much as changes in L2 at frequencies greater then the

resonant frequencies of the capacitors. The inductor L2 affects the gain for all frequencies

under consideration. Table 6.1 illustrates the effects of changes in the inductances on the

attenuation provided by the filter at several frequency. Thus, to design an adequate filter

after the capacitors are chosen the inductance of L2 will be varied to change the gain of

the filter for hanronics less then a few MHz, whereas both L, and L2 will be varied to

change the harmonics at higher frequencies.

For high frequencies the capacitors can be replaced with their parasitic inductors

and the resistors can be ignored. Since the damping capacitors have a ESL much higher

then the capacitors chosen for C1 and C2, the inductance in parallel can be approximated

to Lc1 and Lc2 (the ESL of the capacitors). The high-frequency transfer function is then

100 kHz 300 kHz 500kHz 750 kHz 1 MHz 5MHz

L , -106.4 -140.0 -167.7 -170.0 -160.0 -150.8
LI, 2 _-L, -112.5 -146.0 -173.8 -176.1 -166.0 -156.9

1 1, 3 L, -116.0 -149.5 -177.3 -179.6 -169.5 -160.4
LI, 4 L, -118.5 -152.0 -179.8 -182.1 -172.0 -162.9
LI, 5 L, -120.5 -154.0 -181.7 -184.0 -173.9 -164.8
2 LI, L, -106.6 -141.4 -170.4 -173.9 -164.5 -156.8
3 LI, L2 -106.9 -143.0 -172.9 -176.8 -167.7 -160.3
4 L, L,2 -107.3 -144.6 -174.9 -179.1 -170.0 -162.8
5 L1, L2 -107.8 -146.0 -176.7 -180.9 -171.9 -164.7

Table 6.1 For filter type 2 the effects of changes in L 2 and L, on the current gain in dB are
compared. Changes in L2 are more influential at lower frequencies.

101

Iout _ LCI LC2 (6.24)
in hih frequency L -

6.4.6 Filter Type 3

The third type of filter is the simple LC filter shown in Fig. 6.13. This filter is

included so that converters with very low ripple ratios can employ very simple filters,

without resorting to awkward higher order filter designs. The design algorithm is to

choose the capacitor, C2, randomly, then choose the inductance, L2, such that the EMI

specifications are met. If the inductance of this filter is not needed the algorithm will

design the filter with just the capacitor.

At high frequencies the transfer function of this filter is

-out (6.25)
1hih _ frequency 2

Filter

Input LISN + Load

'in iout

C2

Figure 6.13 Layout of filter type 3

102

6.4.7 Summary of the Filter Design

Even though TimCAD randomly choose a filter topology on every iteration of the

inner loop, each of the three filters is typically found to be optimal for different

occasions. In cases when only a little attenuation is needed, such as when the ripple ratio

is very low or when the EMI limitations are eased filter type 3 can be used. This filter has

fewer components and will usually have less price, weight, and volume then the other

topologies. When attenuation is needed for high frequencies, filter type 2 can be used,

since the other filters cannot provide the necessary attenuation. Figure 6.14 shows a

comparison of the gain of all three filters using the same C1, C2, and L2 components; the

L1 inductor is assumed to be identical to L2 in the second filter type.

0

-20-

-40

-60 -

Filter type 3

-120
/Filter type 1

-120 -

-140 -Filter type 2

-180-

-200
10 102 104 106 108 1010 1012

frequency (Hz)

Figure 6.14 Comparison of the magnitude response of the three filter topologies.
All inductors are 10 4H, C2 is 80 4F, and C1 is 20 4F.

103

6.5 Conclusions

The switching action of a power converter causes discontinuities in the voltage

and current waveforms that must not interfere with the rest of the system. To remove the

undesired components of these signals, filters are needed at the input and output of a

power converter. The inductors and capacitors needed must be rated to carry the total

current in the converter and withstand the converter's voltage. The biggest, heaviest, and

most expensive elements in a power converter are often the inductors and capacitors

because of the EMI requirements. Therefore, the design of these elements must be done

carefully in order to ensure the optimal design of the converter.

104

Chapter 7

Conclusions

7.1 Thesis Conclusions

Three major objectives have been addressed in this thesis. The first objective is

the development of a prototype dc/dc converter for dual-voltage automotive applications.

The second objective is the development of a CAD optimization tool. The final objective

is to use the optimization tool to study the effects of system-level specifications on the

characteristics of optimized converters.

The development of the dc/dc converter has been useful in a number of ways.

First, the process of designing and testing it has helped us identify a number of important

tradeoffs and issues in the design process. Second, the converter has been useful for

validating and refining the optimization program models described in Chapter 5 and

Chapter 6. Finally, the converter has proved useful in a variety of dual voltage

automotive research projects.

TimCAD, the dc/dc converter optimization program, has been written and tested.

This program is capable of searching the design space of the dc/dc converter and

identifying designs that minimize a weighted sum of price, weight, and volume. General

design trends can also be analyzed. For example, the sensitivity of converter price,

weight, and volume to variations in system parameters such as ambient temperature or

EMI limits can be determined by performing many optimization runs with different

105

design requirements.

Initial results found using TimCAD show the effects of various system-level

parameters on the total volume of the converter. In every case, the design space for the

optimization covered a wide range of frequencies, ripple ratios, number of cells, and

component selections. The effects of variations in power level, ambient temperature, and

EMI specifications on the volume of the optimized converter have also been examined.

The final conclusion made by this thesis is that, although the addition of the dc/dc

converter represents a significant increase in cost to the automobile, this cost can be

minimized using CAD optimization techniques. Through an extensive search of the

design space, designs for the converter with the lowest possible price, weight, and

volume can be found. Furthermore, changes in the design of the electrical system can be

better understood if the sensitivities of the converter's cost to system level parameters are

known. For example, when listing the savings and costs of moving a load from the 14 V

bus to the 42 V bus, the savings from reducing the converter power rating can be

determined from the sensitivity of the converter's cost to power level. Thus, the

optimized designs and sensitivity information that can be generated using CAD

optimization have great potential value.

7.2 Recommendations for Future Work

There are several directions future work in this area should take. To generate

more highly optimized designs and to provide more detailed information about the

sensitivity of the converter's cost, the database of components must be enlarged.

Introducing more parts to TimCAD will further refine the optimization process by

providing more possible designs to choose from. The pricing information from a major

106

company for all the components in the parts database would be useful in performing

price-optimized designs that truly reflect the cost of a converter to the automotive

industry. Although the absolute cost will be impossible to obtain and maintain, results of

price-optimized designs can be found that will show the approximate trends in the

designs.

Improvements in the optimization program, TimCAD, could also be made. The

models could be refined and new attributes could be incorporated. For example, more

filter topologies could be added. The addition of other dc/dc converter topologies could

be added with only limited changes to the program. Adding a new converter topology

would require a new design algorithm and new device models for any component not

already represented. Other changes that would be needed include additions to the control

loop, user interface, and possibly the database, and the preexisting device models.

Finally, methods to expedite the optimization process are needed. The most time-

consuming process in the program involves the interface between TimCAD and

Microsoft Access. To accelerate the optimization process, future versions of TimCAD

would benefit from custom-built data files.

107

108

References

[1] J. G. Kassakian, H-C. Wolf, J. M. Miller, C. J. Hurton, "The Future of Automotive Electrical
Systems," Proc. IEEE Workshop on Power Electronics in Transportation, Hyatt-Regency Hotel,
Dearborn, MI, Oct. 24-25, 1996, pp. 3-12.

[2] J. M. Miller, D. Goel, D. Kaminski, H.-P. Schdner, T. M. Jahns, "Making the Case for a Next
Generation Automotive Electrical System," International Congress on Transportation Electronics
Convergence '98, pp. 41-51

[3] J. G. Kassakian, H-C. Wolf, J. M. Miller, C. J. Hurton, "Automotive Electrical Systems circa
2005," IEEE Spectrun, August 1996, pp. 22-27.

[4] B. A. Miwa, D. M. Otten, and M. F. Schlecht, "High Efficiency Power Factor Correction Using
Interleaving Techniques," IEEE Applied Power Electronics Conference, Boston, MA, 1992.

[5] B. A. Miwa, "Interleaving Converter Techniques for High Density Power Supplies," Doctoral
Thesis, Dept. of EECS, Massachusetts Institute of Technology, June 1992.

[6] C. Chang and M. Knights, "Interleaving Technique in Distributed Power Conversion Systems,"
IEEE Trans. Circuits ans System -1, Vol. 42, No. 5, May 1995, pp. 245-251.

[7] C. Chang, "Current Ripple Bounds in Interleaved DC-DC Power Converter," Proceedings of the
1995 International Conference on Power Electronics and Drive Systems, Singapore, 1995.

[8] T. K. Phelps and W. S. Tate, "Optimizing Passive Input Filter Design," Proceedings of the 6 h

National Solid-State Power Conversion Conference (Powercon 6), May 1979, pp. Gl-1-- GI-10.

[9] J. J. Jeyappragash, T. V. Sivakumar, and V. V. Sastry, "Object Oriented Modeling, Simulation and
Optimization of Power Electronic Circuits," IEEE Power Electronics Specialists Conference,
1996, pp. 581-585.

[10] C. Gezgin, B. S. Heck, and R. M. Bass, "Simultaneous Design of Power Stage and Controller for
Switching Power Supplies," IEEE Transactions on Power Electronics, vol.12, no.3, May 1997, pp.
558-566.

[11] A. Reatti, "Steady-state analysis including parasitic components and switching losses of buck and
boost DC-DC PWM converters under any operating condition," International Journal of
Electronics, 1994, Vol. 77, No. 5, pp. 679-701.

[12] F. Blaabjerg and J. K. Pedersen, "Optimized design of a complete three-phase PWM-VS inverter,"
IEEE Transactions on Power Electronics, vol.12, no.3, May 1997, pp. 567-577.

[13] D. Grant and J. Gower, Power MOSFETs; Theory and application, John Wiley and Sons, NY,
NY, 1989.

[14] D. J. Perreault, "Design and Evaluation of Cellular Power Converter Architectures
Doctoral Thesis, Dept. of EECS, Massachusetts Institute of Technology, June 1997.

[15] Ferrite Material and Components Catalog, 8 th Ed., Philips Components, Discrete Product Division,
Riviera Beach, FL.

[16] Issue I, Power Conversion & Line Filter Applications, Micrometals Inc., Anaheim, CA, February,
1998.

109

110

Appendix A Voltage Limits

Symbol Limit Meaning

V42, ov-dyn 55 V Maximum dynamic overvoltage on 42 V bus during fault

conditions
V42, ov-stat 52 V Maximum static overvoltage on 42 V bus

V-2, E-max 43 V Maximum operating voltage of 42 V bus while engine is running

V42, E-nom 41.4V Nominal operating voltage of 42 V bus while engine is running

V42, E-min 33 V Minimum operating voltage of 42 V bus while engine is running

V42, OP-min 33 V Minimum operating voltage of 42 V bus. Also, lower limit
operating voltage for all non-critical loads (i.e. loads not required
for starting and safety)

V42, FS 25 V Failsafe minimum voltage: lower limit on operating voltage for all
loads critical to starting and safety on the 42 V bus

V14, ov-dyn 20 V Maximum dynamic overvoltage on 14 V bus during fault

conditions
V14, OV-stat 16 V Maximum static overvoltage on 14 V bus

V14, E-max 14.3 V Maximum operating voltage of 14 V bus while engine is running

V14, E-nom 13.8 V Nominal operating voltage of 14 V bus while engine is running

V14, E-min 12 V Minimum operating voltage of 14 V bus while engine is running

V14, OP-min 11 V Minimum operating voltage of 14 V bus. Also, lower limit
operating voltage for all non-critical loads

V14, FS 9 V Failsafe minimum voltage: lower limit on operating voltage for all
loads critical to starting and safety on the 14 V bus

"Draft Specification of a Dual Voltage Vehicle Electrical Power System 42V/14V," Forum Bordnetz
working document, March 4, 1997.

111

112

Appendix B Load List

A detailed and thorough examination was made of the electrical loads that are

expected to be present on a high-end luxury automobile in the near future. These loads

are separated into six categories: motor, solenoid, lighting, heating, electronic, and other.

The lists of loads, power ratings, and usage percentages were taken from the MAESTrO

database and were compiled by Khurram Afridi.

The summer and winter worst case percentages are the percentage of time a

device is on in the winter or summer in a space of several minutes. The year average is

the percentage of time the device is on throughout the year. For example, when the

windshield wipers are on they are powered continually, thus the worst case percentage is

100 %, but since the wipers are not used all year the year average is less then 100 %.

The loads were separated into 14 and 42 V lists. The dc/dc converter being

designed is a model that could be used during the transition to the dual voltage system,

hence it is assumed that only a few high power loads would be on the high voltage bus.

The average power and the winter and summer worst case power of both busses can then

be found. The average power is the nominal power of the load times the year average.

The worst case power assumes that all the loads are on, thus it's the maximum power

times the worst case percentages.

The summation of the power needed for every category of loads is at the bottom

of each table. The system totals are

Voltage Bus Average Power Summer Peak Power Winter peak Power

14 V Bus 612.6 1038.7 1228.7
42 V Bus 1420.4 3526.2 3416.2

113

Load ID Max Nominal Summer Winter Year 14 42 Average Average Summer Summer Winter Winter
Power Power Worst Worst Average Volt Volt Power Power Peak Peak Peak Peak

(W) (W) Case (%) Case (%) 14 Volts 42 Volts Power Power Power Power
(%) 14 Volts 42 Volts 14 42

Volts Volts
Starter ml 2500.0 2500.0 0.1 0.1 0.1 0 1 0 2.5 0 2.5 0 2.5
Fuel Pump m2 100.0 100.0 100.0 100.0 100.0 0 1 0 100 0 100 0 100
IdleSpeedBypassValveA m3 6.0 6.0 50.0 50.0 30.0 1 0 1.8 0 3 0 3 0
ctuator
Throttle Valve Actuator m4 20.0 20.0 7.0 7.0 7.0 1 0 1.4 0 1.4 0 1.4 0
ABS/TractionHydraulicPum m5 600.0 600.0 1.0 1.0 1.0 1 0 6 0 6 0 6 0
p
Windshield Wiper Front m6 150.0 90.0 100.0 100.0 10.0 0 1 0 9 0 150 0 150
Wash Pump Front m7 5.0 5.0 1.0 1.0 1.0 1 0 0.05 0 0.05 0 0.05 0
Windshield Wiper Rear m8 150.0 90.0 100.0 100.0 5.0 0 1 0 4.5 0 150 0 150
Wash Pump Rear m9 5.0 5.0 1.0 1.0 1.0 1 0 0.05 0 0.05 0 0.05 0
Head Lamp Washer Pump m10 100.0 100.0 1.0 1.0 1.0 1 0 1 0 1 0 1 0
Pass Comp Blower m11 500.0 220.0 100.0 100.0 50.0 0 1 0 110 0 500 0 500
Power Window Front Left m12 350.0 350.0 5.0 5.0 5.0 0 1 0 17.5 0 17.5 0 17.5
Power Window Front Right m13 350.0 350.0 1.0 1.0 1.0 0 1 0 3.5 0 3.5 0 3.5
Power Window Back Left m14 350.0 350.0 1.0 1.0 1.0 0 1 0 3.5 0 3.5 0 3.5
Power Window Back Right m15 350.0 350.0 1.0 1.0 1.0 0 1 0 3.5 0 3.5 0 3.5
Sun Roof m16 200.0 200.0 1.0 1.0 1.0 0 1 0 2 0 2 0 2
Power Door Lock Front Left m17 100.0 100.0 0.2 0.2 0.2 1 0 0.2 0 0.2 0 0.2 0
PowerDoorLockFrontRig m18 100.0 100.0 0.2 0.2 0.2 1 0 0.2 0 0.2 0 0.2 0
ht I
Power Door Lock Back Left m19 100.0 100.0 0.2 0.2 0.2 1 0 0.2 0 0.2 0 0.2 0
PowerDoorLockBack_Rig m20 100.0 100.0 0.2 0.2 0.2 1 0 0.2 0 0.2 0 0.2 0
ht
PowerTrunkPull- m21 200.0 22.0 0.1 0.1 0.1 1 0 0.022 0 0.2 0 0.2 0
down/opener
Headrest Adjustment Left m22 60.0 60.0 0.1 0.1 0.1 1 0 0.06 0 0.06 0 0.06 0
SeatLongitudinalAdjustmen m23 200.0 200.0 0.1 0.1 0.1 1 0 0.2 0 0.2 0 0.2 0
t Left
Seat Tilt Adjustment Left m24 200.0 200.0 0.1 0.1 0.1 1 0 0.2 0 0.2 0 0.2 0

SeatFrontEdgeHeightAdj m25 200.0 200.0 0.1 0.1 0.1 1 0 0.2 0 0.2 0 0.2 0
ustment Left
SeatRearEdgeHeightAdj m26 200.0 200.0 0.1 0.1 0.1 1 0 0.2 0 0.2 0 0.2 0
ustment Left
Lumbar PumpLeft m27 70.0 70.0 0.1 0.1 0.1 1 0 0.07 0 0.07 0 0.07 0
Headrest Adjustment Right m28 60.0 60.0 0.1 0.1 0.1 1 0 0.06 0 0.06 0 0.06 0
SeatLongitudinalAdjustmen m29 200.0 200.0 0.1 0.1 0.1 1 0 0.2 0 0.2 0 0.2 0
t Right m 2 2
Seat Tilt Adjustment Right m30 200.0 200.0 0.1 0.1 0.1 1 0 0.2 0 0.2 0 0.2 0

Seat FrontEdgeHeightAdj m31 200.0 200.0 0.1 0.1 0.1 1 0 0.2 0 0.2 0 0.2 0
ustmentRight
SeatRear_-Edge_ Height_Adj m32 200.0 200.0 0.1 0.1 0.1 1 0 0.2 0 0.2 0 0.2 0
ustmentRight
Lumbar PumpRight m33 70.0 70.0 0.1 0.1 0.1 1 0 0.07 0 0.07 0 0.07 0
Power Mirror Horizontal Left m34 5.0 5.0 0.1 0.1 0.1 1 0 0.005 0 0.005 0 0.005 0
PowerMirrorHorizontal_Rig m35 5.0 5.0 0.1 0.1 0.1 1 0 0.005 0 0.005 0 0.005 0
ht
Power Mirror Vertical Left m36 5.0 5.0 0.1 0.1 0.1 1 0 0.005 0 0.005 0 0.005 0
Power Mirror Vertical Right m37 5.0 5.0 0.1 0.1 0.1 1 0 0.005 0 0.005 0 0.005 0
Antenna Lift m38 45.0 45.0 0.2 0.2 0.2 1 0 0.09 0 0.09 0 0.09 0
Power Steering Pump m39 1000.0 1000.0 50.0 50.0 17.0 0 1 0 170 0 500 0 500
Engine Cooling Fans m40 800.0 500.0 100.0 5.0 15.0 0 1 0 75 0 800 0 40
Water Pump m41 300.0 300.0 100.0 5.0 15.0 0 1 0 45 0 300 0 15
Emissions Air Pump m42 300.0 300.0 8.0 8.0 3.0 0 1 0 9 0 24 0 24
ActiveSuspensionFrontLef m43 750.0 750.0 2.0 2.0 2.0 0 1 0 15 0 15 0 15
t
ActiveSuspensionFrontRi m44 750.0 750.0 2.0 2.0 2.0 0 1 0 15 0 15 0 15
ght
ActiveSuspensionBackLef m45 750.0 750.0 2.0 2.0 2.0 0 1 0 15 0 15 0 15
t I I
ActiveSuspensionBack_Rig m46 750.0 750.0 2.0 2.0 2.0 0 1 0 15 0 15 0 15
ht
Brake-by-Wire Front Left m47 500.0 62.5 1.0 1.0 1.0 0 1 0 0.625 0 5 0 5
Brake-by-Wire Front Right m48 500.0 62.5 1.0 1.0 1.0 0 1 0 0.625 0 5 0 5
Brake-by-Wire Back Left m49 500.0 62.5 1.0 1.0 1.0 0 1 0 0.625 0 5 0 5

Brake-by-Wire Back Right m50 500.0 62.5 1.0 1.0 1.0 0 1 0 0.625 0 5 0 5
A/C Compressor Pump m51 4000.0 3000.0 100.0 5.0 25.0 0 0 0 0 0 0 0 0
Automatic Tire Pump m52 100.0 100.0 0.1 0.1 0.1 1 0 0.1 0 0.1 0 0.1 0
StandardTransForceMote m53 200.0 200.0 2.0 2.0 2.0 1 0 4 0 4 0 4 0

HeatingSystemWaterPum m54 50.0 50.0 0.0 80.0 10.0 1 0 5 0 0 0 40 0
p

Total Total Total Total Total Total
22.192 617.5 18.57 2636.5 58.57 1591.5

System Totals
612.562 1420.35 1038.708 3526.15 1228.7 3416.1

5 08 5

Load ID Max Nominal Summer Winter Year 14 42 Average Average Summer Summer Winter Winter
Power Power Worst Worst Average Volt Volt Power Power Peak Peak Peak Peak

(W) (W) Case (%) Case (%) 14 Volts 42 Volts Power Power Power Power

(%) 14 Volts 42 Volts 14 42
Volts Volts

Starter Motor Solenoid s1 50.0 50.0 0.1 0.1 0.1 0 1 0 0.05 0 0.05 0 0.05
Fuel Injectors (1 thru 8) s2 80.0 80.0 22.0 22.0 22.0 0 1 0 17.6 0 17.6 0 17.6
EGR Valve slo 10.0 10.0 40.0 40.0 40.0 1 0 4 0 4 0 4 0
Canister Purge Solenoid s11 10.0 10.0 80.0 80.0 80.0 1 0 8 0 8 0 8 0
Canister Vent Solenoid s12 10.0 10.0 6.0 6.0 6.0 1 0 0.6 0 0.6 0 0.6 0
Brake-to-shift Solenoid s13 10.0 10.0 2.0 2.0 0.5 1 0 0.05 0 0.2 0 0.2 0
Trans Shift Solenoid 1 s14 10.0 10.0 100.0 100.0 100.0 0 1 0 10 0 10 0 10
Trans Shift Solenoid 2 s15 10.0 10.0 100.0 100.0 100.0 0 0 0 0 0 0 0 0
Torg Convtr Clutch Enable s16 10.0 10.0 50.0 50.0 50.0 0 1 0 5 0 5 0 5
ABS/TC Solenoids s17 68.0 68.0 0.1 0.1 0.1 1 0 0.068 0 0.068 0 0.068 0
Horn 1 s18 80.0 80.0 0.1 0.1 0.1 1 0 0.08 0 0.08 0 0.08 0
Horn 2 s19 80.0 80.0 0.1 0.1 0.1 0 0 0 0 0 0 0 0
Power Trunk Release s20 200.0 200.0 0.1 0.1 0.1 1 0 0.2 0 0.2 0 0.2 0
Power Fuel Door Release s21 200.0 200.0 0.1 0.1 0.1 1 0 0.2 0 0.2 0 0.2 0
Electromag. Valve Engine (8 s22 2000.0 2000.0 32.0 32.0 32.0 0 1 0 640 0 640 0 640
cyl) I I _ -- -1 1 1

Total Total Total Total Total Total
1 13.198 672.65 13.348 672.65 13.348 672.65

-4

Load ID Max Nominal Summer Winter Year 14 42 Average Average Summer Summer Winter Winter
Power Power Worst Worst Average Volt Volt Power Power Peak Peak Peak Peak

(W) (W) Case (%) Case (%) 14 Volts 42 Volts Power Power Power Power
(%) 14 Volts 42 Volts 14 42

Volts Volts
Low Beam Headlamp Left 11 55.0 55.0 100.0 100.0 20.0 1 0 11 0 55 0 55 0
Low Beam Headlamp Right 12 55.0 55.0 100.0 100.0 20.0 1 0 11 0 55 0 55 0
High Beam Headlamp Left 13 65.0 65.0 1.0 1.0 1.0 1 0 0.65 0 0.65 0 0.65 0
High Beam Headlamp Right 14 65.0 65.0 1.0 1.0 1.0 1 0 0.65 0 0.65 0 0.65 0
Parking Lamp Left 15 5.0 5.0 100.0 100.0 5.0 1 0 0.25 0 5 0 5 0
Parking Lamp Right 16 5.0 5.0 100.0 100.0 5.0 1 0 0.25 0 5 0 5 0
Blinking Lamp Front Left 17 21.0 21.0 50.0 50.0 5.0 1 0 1.05 0 10.5 0 10.5 0
Blinking Lamp Front Right 18 21.0 21.0 50.0 50.0 5.0 1 0 1.05 0 10.5 0 10.5 0
Fog Lamp Front Left 19 55.0 55.0 100.0 100.0 5.0 1 0 2.75 0 55 0 55 0
Fog Lamp Front Right 110 55.0 55.0 100.0 100.0 5.0 1 0 2.75 0 55 0 55 0
Tail Lamp Left ill 5.0 5.0 100.0 100.0 20.0 1 0 1 0 5 0 5 0
Tail Lamp Right 112 5.0 5.0 100.0 100.0 20.0 1 0 1 0 5 0 5 0
Reversing Lamp Left 113 21.0 21.0 1.0 1.0 1.0 1 0 0.21 0 0.21 0 0.21 0
Reversing Lamp Right 114 21.0 21.0 1.0 1.0 1.0 1 0 0.21 0 0.21 0 0.21 0
Brake Lamp Left 115 21.0 21.0 100.0 100.0 15.0 1 0 3.15 0 21 0 21 0
Brake Lamp Right 116 21.0 21.0 100.0 100.0 15.0 1 0 3.15 0 21 0 21 0
Blinking Lamp Rear Left 117 21.0 21.0 50.0 50.0 5.0 1 0 1.05 0 10.5 0 10.5 0
Blinking Lamp Rear Right 118 21.0 21.0 50.0 50.0 5.0 1 0 1.05 0 10.5 0 10.5 0
Fog Lamp Rear Left 119 21.0 21.0 100.0 100.0 5.0 1 0 1.05 0 21 0 21 0
Fog Lamp Rear Right 120 21.0 21.0 100.0 100.0 5.0 1 0 1.05 0 21 0 21 0
License Plate-LampLeft 121 5.0 5.0 100.0 100.0 20.0 1 0 1 0 5 0 5 0
License Plate LampRight 122 5.0 5.0 100.0 100.0 20.0 1 0 1 0 5 0 5 0
Cabin Ceiling Lamp 1 123 10.0 10.0 1.0 1.0 0.3 1 0 0.025 0 0.1 0 0.1 0
Cabin Ceiling Lamp 2 124 5.0 5.0 1.0 1.0 0.3 0 0 0 0 0 0 0 0
Cabin Ceiling Lamp 3 125 10.0 10.0 1.0 1.0 0.3 0 0 0 0 0 0 0 0
Cabin Ceiling Lamp 4 126 10.0 10.0 1.0 1.0 0.3 0 0 0 0 0 0 0 0
Map Lamp 127 5.0 5.0 1.0 1.0 0.3 1 0 0.0125 0 0.05 0 0.05 0
Glove Compartment Lamp 128 10.0 10.0 1.0 1.0 0.3 1 0 0.025 0 0.1 0 0.1 0
EngineCompartmentLamp 129 10.0 10.0 0.1 0.1 0.1 1 0 0.01 0 0.01 0 0.01 0
Trunk Compartment Lamp 130 10.0 10.0 0.2 0.2 0.2 1 0 0.02 0 0.02 0 0.02 0

00

Driver Door Exit Lamp 131 5.0 5.0 0.2 0.2 0.2 1 0 0.01 0 0.01 0 0.01 0
Total Total Total Total Total Total

46.4225 0 378.01 0 378.01 0

Load ID Max Nominal Summer Winter Year 14 42 Average Average Summer Summer Winter Winter
Power Power Worst Worst Average Volt Volt Power Power Peak Peak Peak Peak

(W) (W) Case (%) Case (%) 14 Volts 42 Volts Power 14 Power Power Power
(%) Volts 42 Volts 14 42

Volts Volts
Heated Rear Window hl 400.0 400.0 0.0 100.0 2.0 0 1 0 8 0 0 0 400
Cigar Lighter h2 120.0 120.0 0.3 0.3 0.3 1 0 0.36 0 0.36 0 0.36 0
Power Mirror Heater Left h3 40.0 40.0 0.0 100.0 2.0 1 0 0.8 0 0 0 40 0
Power Mirror Heater Right h4 40.0 40.0 0.0 100.0 2.0 1 0 0.8 0 0 0 40 0
Seat Heater Left h5 130.0 90.0 0.0 100.0 4.0 0 1 0 3.6 0 0 0 130
Seat Heater Right h6 130.0 90.0 0.0 100.0 2.0 0 1 0 1.8 0 0 0 130
Washer Jet Heater h7 10.0 10.0 0.0 100.0 2.0 1 0 0.2 0 0 0 10 0
Washer Tube Heater h8 60.0 60.0 0.0 100.0 2.0 1 0 1.2 0 0 0 60 0
Heated Oxygen Sensor h9 40.0 40.0 100.0 100.0 100.0 1 0 40 0 40 0 40 0
Heated Windshield h10 1000.0 500.0 0.0 20.0 0.1 0 1 0 0.5 0 0 0 200
Heated Catalytic Converter h11 3000.0 3000.0 2.5 2.5 2.0 0 1 0 60 0 75 0 75
Seat Heater Rear h12 250.0 180.0 0.0 30.0 1.0 0 1 0 1.8 0 0 0 75
Parking Heating h13 250.0 70.0 0.0 0.0 1.0 1 0 0.7 0 0 0 0 0

Total Total Total Total Total Total
44.06 75.7 40.36 75 190.36 1010

0

Load ID Max Nominal Summer Winter Year 14 42 Average Average Summer Summer Winter Winter
Power Power Worst Worst Averag Volt Volt Power Power Peak Peak Peak Peak
(W) (W) Case (%) Case e (%) 14 Volts 42 Volts Power Power Power Power

(%) 14 Volts 42 Volts 14 42
Volts Volts

Engine Control Unit el 17.0 17.0 100.0 100.0 100.0 1 0 17 0 17 0 17 0
Transmission Control e2 40.0 40.0 100.0 100.0 100.0 1 0 40 0 40 0 40 0
ABS/Traction Control e3 7.0 7.0 100.0 100.0 100.0 1 0 7 0 7 0 7 0
Cruise Control e4 30.0 30.0 7.0 7.0 7.0 1 0 2.1 0 2.1 0 2.1 0
Steering Control e5 14.0 14.0 100.0 100.0 100.0 1 0 14 0 14 0 14 0
Airbag/Seatbelt Tensioner e5 20.0 20.0 1.0 1.0 1.0 1 0 0.2 0 0.2 0 0.2 0
Automatic Climate Control e7 7.0 7.0 100.0 100.0 100.0 1 0 7 0 7 0 7 0
IR Central Locking e8 5.0 5.0 1.0 1.0 1.0 1 0 0.05 0 0.05 0 0.05 0
NavigationAid e9 70.0 70.0 100.0 100.0 100.0 1 0 70 0 70 0 70 0
Lamp Monitor & Control elO 10.0 10.0 100.0 100.0 100.0 1 0 10 0 10 0 10 0
Anti-theft Warning System eli 10.0 10.0 100.0 100.0 100.0 1 0 10 0 10 0 10 0
Active Suspension Control e12 10.0 10.0 100.0 100.0 100.0 0 0 0 0 0 0 0 0
Telephone e13 6.0 6.0 100.0 100.0 2.0 1 0 0.12 0 6 0 6 0
Tire Pressure Monitor e14 10.0 10.0 100.0 100.0 100.0 1 0 10 0 10 0 10 0

total total total total total total
1 187.47 0 193.35 0 193.35 0

Load ID Max Nominal Summer Winter Year 14 42 Average Average Summer Summer Winter Winter
Power Power Worst Worst Average Volt Volt Power Power Peak Peak Peak Peak
(W) (W) Case (%) Case (%) 14 Volts 42 Volts Power Power Power Power

(%) 14 Volts 42 Volts 14 42
Volts Volts

Instrument Cluster 01 30 30 100 100 100 1 0 30 0 30 0 30 0
Radio/Tape/CD o2 70.0 15.0 100.0 100.0 50.0 1 0 7.5 0 70 0 70 0
Amplifier o3 100.0 25.0 100.0 100.0 50.0 0 1 0 12.5 0 100 0 100
Spark Ignition o4 40.0 40.0 100.0 100.0 100.0 0 1 0 40 0 40 0 40
Power Outlet (Fax etc.) o5 100.0 100.0 2.0 2.0 2.0 0 1 0 2 0 2 0 2
All Weather Night Vision o6 100.0 100.0 0.0 0.0 50.0 1 0 50 0 0 0 0 0
Active Engine Mount o7 70.0 70.0 0.1 0.1 0.1 1 0 0.07 0 0.07 0 0.07 0
Voice Control 08 70.0 70.0 1.0 1.0 10.0 0 0 0 0 0 0 0 0
Side Vision Lane Change 09 15.0 15.0 100.0 100.0 10.0 1 0 1.5 0 15 0 15 0
Backup Parking Assist 010 15.0 15.0 0.0 0.0 1.0 1 0 0.15 0 0 0 0 0
Motor Management 4 Cyl ol 260.0 200.0 100.0 100.0 100.0 0 0 0 0 0 0 0 0
Motor Management 6 Cyl o12 280.0 210.0 100.0 100.0 100.0 1 0 210 0 280 0 280 0
Motor Management 8 Cyl 013 300.0 220.0 100.0 100.0 100.0 0 0 0 0 0 0 0 0
Motor Management 12 Cyl 014 400.0 280.0 100.0 100.0 100.0 0 0 0 0 0 0 0 0

Total Total Total Total Total Total
I__ I_ I_ 1_ 1_ _299.22 54.5 395.07 142 395.07 142

A B CI

R17

.. e 330R 3
1- VA - +5V

L6 8OuF
_ 23 TB

07Vi G vo 3

~U610 uF (14

107 2
N --

IDC- R16 C9
IDAC lOk %

100k 1% 1F_

T12

_

Title DC/DC Converter (Project Homer)

Size Number Rev

A Centralized Circuitry #1 1.2

Date August 30,1999 Drawn by DJP

Filename homersol Sheet 1 of 6

A B CI

1

16.8 UF NIC16 nF +1 5V

R3 R4 R12 VCFOUT

1200I-% 1W 20R 1_% 1W

10k 1% 10k 1% ~R R6

+1 5V U3 VSUB 6 - U1:B VBSN 1.3k 1% 11k1

-- NC NC R10 1) VREF R 6 U2 :tBRO54OT1

V. F 2 VI C-25 UB + LMC30

1EV+ MC3303 D2
4D G T N- - REP

1 5

0.1~C 2 U2 A 28 /AAV 155 +7 i

A +23v -VR R1 3 -
2

BR0540T1

LMN C 6 2 U V q 1:A VL M C 30 3 2

VC7 5 RF MC33033 6 4 - w 1.3 1.F 1 %1 .11

VCFIN 2 G vo
U.0 U4l0uF 1 819 1 k1% 1F -

REF02J3U Ilk +15C
II

'J.J 2

3

4

1

2

3

0.1 uF 100 VI

0.2 uF

4

A

I

2

I B C UA

CD

R

I DCB

A B

19 20

U8 1.3k 60

1> C K I F5 '10 15 U7
12 CIR CKO YO /Cpl

+5V 7_22_pF 6 _ _,__C

ODE 5 i GI Y32 12)/C4
Q4 2 B Y4 11NC +5V

16 G 14 NC 4 C Y5 9 NC

SVCC OH 13NC 5 i2A Y6 7NC C1013 NC G2B Y7 NC 16
C17 .1 uF 1NC G VCC

OL 2 NC

8 GND OM 2- NC - 74AC138
ON NC

74HC4060

Wirewound resistor, L = 200 nH

R21

P1 0.27R
I L1
2 VIN F1 VINF) N

4 40A 20.5 uH
5 20 uF 20Otums,10ga,T157-40 core

935C2W20K 18 19 20
8 0.1 uF0.1 uF

CONN1X8M

CONN1X14M
14
13

WSrewound resistor, L =100 nH R25 12

10
0.22R 9

L2 F2 8

VCFOUT , VOUTF 7

'C 11.4 uH 80 A6
10 turns, 4xll ga., T250-40 core 3 51 493501 W20K 4

0.1 uFY01iF 0 uF 2

P2

R

Ji
f3tI4
5 L16
7~L 8

I 1 1011 12

I 16

+5V

10

R22 1', 9 8 7 6 5 4 3 2 1

NC2 1

Connecto rn
Disconnect to shut down

F 0 0

,ilenam h -

2

3

4

5

6

7

8

D

D

0D

D

D
D

U9

60 VOUT

B1 VO SEN

62 VO SEL

B3 GND

B4 GND

B5 VCC

B6 /CS

67 /CE

AD558

16

15 +5V
CM,

14 CIa

13 IDACO0luF
0.C1 UF

12

04a:

10 CV)

TDOWN

Title DC/DC Converter (Project Homer)

Size Number

A I Centralized Circuitry #2
Rev

1.2

Date August 30, 1999 Drawn by DJP

Filename homer.s02 I Sheet 2 of 6

3

A

C

1

2

D

1

2

3

4

A I

A II I

I I
|

DCA

B

BZV85C62

2 r s Swltches on KRl150-1 ho atsin

' D 8 C28
0. D6 1008,RM10core

20 uF R506 Trim Cap -(vOSI L3 R30 20 uF

30 3 31D11.44 uH 5mR 34 32 43

1uF 4 n Q080 q3: a3 .1 uF-~~~ =- 07 ~r iJ
VR5

- 3.6k 1 %

0 z)Cq: 6.2k 4.7 nF

+5V

LC 4

'ef
q~ r:

zl f

Co

_7

- 6

MBRO54OT1

+1 5V

B B

Ul11

VB
vCC

1

OUT IN 2

CS ERR 3

vs vss 4 10u .1 uF
_ C46 C47

IR2125

C L)

4.7 nF

25
R29

.6k 1%
6 - U1:13

7

4 LM614;

i sense amp

R37 t4739 h D9

R40 U12

100 F 220R -= ILIM
>- 112 GND

039 Aq 3906 _-

0.01 ur NC CLOCK
- 6 C02 C

4 -7 RAMP
04

a: (\I E/A OUT SC

1 E/A-

2 E/A +

UC382

R26 R27

VCFIN>-

-

zI

Title DC/DC Converter (Project Homer)

Size Number Rev

A Cell #1 Circuitry 1.2

Date August 30, 1999 Drawn by DJP

, B C 1)

A
A I I

1

2

3

CPr

0)M~ C\

vs LL
oh?

1

R26 R27

R/C trim R/C trim

0.68 uF

10 uF 27

13
R3

2.kR108 U10:A

RF
0LM6142

-I error amp

IBR054OT1

OUT A 118 +15V

SOUTOWj4NC

vCC 1

GND1
4C41

FT START 8 -

RTI /*V

VREF 14.5k 10A 44_
uF 45 - 03

N0300

3A 18 10k

SHUTDOWN 1

31

4 4

2

I
A I

I C D

Sheet 3 of 6Filename homer.sos
I DCBA

I

BZV85C62

-27 Tn S 16 Switches on KR150-1 hoalsink

- 8iU C52
)i 17

V09 - i(- - 1 3lturns. 10 ga .RM1 Coto

20 uF R506 rim Cap -(OS2 L4 R50 20 uF
20~~~ ~ ~ ~ ~ LFmC,14 H2 VCFOUT

4 55 4 J 3 .4 0H 5mRg 54 56 58 57

C\J.1 u 4CQ8 R550 53 C uF

C0 R5

- +5v 1i

c') +15v
c 8 0R60
*_A 7lfnO.71F 220R

C'J
(D

I0CV)

z C

7

-3 6

" 7
S D25

MBR054OT1

I /CP2
U14

CC 1ve vCC 1

OUT IN 2

CS ERR3

4s VSS 10 u .1 uF
R2125 _ C70 C71

4.7 nF

R49

.6k 1%
6 U13:13

7

LM614

i sense amp

k R57 N 20

V I U15

9 ILIM
12 GN

C63 R 3906 -

001 Nc t- CLOCK0.01 uf N

a5 CT

066 'RAMP

c')r C E/A OUT SC

1 E/A -

2 E/A +

UC382

R4D 4
A

B

-

Filnam Uoe~G

Title DC/DC Converter (Project Homer)

Size Number Rev

A Cell #2 Circuitry 1.2

Date August 30, 1999 Drawn by DJP

4

A B C

VCFIN

1

2

3
U L LL

17 6

1

R46 R47

R/C trim R/C trim

MR0540T15

15 6 OuF 00u

510 uF 5
+23V > 4

R51 2-

F 1110 U 1:A

STNLM6142>- +I

-I error amp

M BRO540T1

OUT A 11 2 +1 5V

OUT B 14N

vCC 1

v 13 0u 1 uF

GND 10 T64 65

FT ST ART 11 Fi

RT 5C69
u

uF 65 06

3A 12 10k30

SHUTDOWN"-..

3

4

2

A I R I I

I

Sheet 4 of 6Filename nomer.so4
DCA

A

29

cr11-O .1 U

20 uF

CD

- Tro. 0 U

Go,
7't F 0z, --

C'r

U. LLJ

B

BZV85C62

TIn es Switches on KR150-1 heatsink

8 C76
828 Wu gaRM10core

R506 rim Cap VOS3 L5 R70 20 uF

'- _ ri Cp "- R70 20) VCFOUT

279 7 2 5mR 74 8082 81

.luF 74 CPQ080 r 7 M uF

3.6 c%C4 R75R77 3

S+5V 1
1 , +1V

Z
L2 a:

wD

z*

L

6

S D36
MBRO54OT1

LMB

U4 /CP3

VB VCC

OUT IN 2

IR2125 _C94 C95

C

4.7 nF

R1873R69

.6k 1%
6 - U16:B

7

+ LM614

a sense amp

R80 U18
1 U 86

100 F 220R JU 9 I I
12AGND

C87 AR 3906 - GND

113906 N-- CLOCK0.01 Ulf NC CLC

08 C

C 0 c 7 RAMP

a: N E/A OUT S

J E A -

2 IEIA+

UC3823

D
R66 R67
vvv-- Avv

R/C trim R/C trim

0.68 uF

10 uF -- 75

+23V >--4

2.2k1

+ FM6142

I error amp

I BR054OT1

OUT A D33 _ +15V

OUT B__4N

VCC OuF I uF

GND 10 88 89

START

T 5 C93 UF

VREF 14.5k 1 o,84
uF 85 - 09

.196 N0300

AD96 10kSHUTDOWN

Title DC/DC Converter (Project Homer)

Size Number Rev

A Cell #3 Circuitry 1.2
Date August 30, 1999 Drawn by DJP

Filename homer.s05 Sheet 5 of 6

A I

VCFIN

1

2

3

-

1

2

3

4

)FT

4

I

- -

I

I

DI CA B

R77 ,4 9 ;31

B

BZV85C62

738
Ti 3es Switches on KR150-1 healsink

88 C100
3 tums, 10 ga, RM10 ore

R506 Tri Cap VOS4 L6 R90 20 uFUlm ap 144) VCFOUT

S 4 H mR 94Co0 o

.1 uF ,4CPQO8O R95 93 m I 3 1 uF

.7F 3.6k 1%

5 r
+1 5V

LB

VCFIN>-

0)

C

VOS4 -

C

4.7 nF

97
R89

.6k 1%
6 U19:B

7

+ LM614

i sense amp

1 3 '7'4

R100 U21

100 F 220R - 9 ILIM

12 GND
C11 1 Fi?1O1 3906 -

Su NC CLOCK

allF - 6 CT

C14 17 RAMP
q- N 3

c E/A OUT S

1 E/A -

2 ElM

UC382

D
I

Title DC/DC Converter (Project Homer)

Size Number Rev

A Cell #4 Circuitry 1.2

Date August 30, 1999 =Drawn by DJP

Filename homer sI Sheet 6 of 6

A B C I D

A

31

20 uF

CI Z 00 1

1

2

3

U /CP4
U20

VB VCC

OUT IN 2

CS ERR

vs vss 4 ~ .u

_R2125 C118C119

00

ZLl

L-
7

U-4-
Cv3Ic

1

2

R86 R87

R/C trim R/C trim

,MR40T .37

0,68 uF 08

10 u F 2
+23V >

R91 2 C

2.2k

AR F A 3 + L 6142

i error amp

IBRO54OT1

OUT A D4 +15V

OUT 14 NC

VCC 1 uF .1uF

VC 13
L1u

GND -10 112C 1113

FT START 8[

RT 5C1 uF
VRE .5k 1 104

u 05= 012
N0300

3A 2 10k

SHUTDOWN t

D47
MBRO540T1

4

C

4

3

-

ID

I

B CA

Appendix D TimCAD Functions

Following is an abridged listing of the functions created for TimCAD and the

page where the function begins. Included are all functions that are used in the design of

the converter.

OniRun member of class CTIMCADDoc 131
OnRun is the function that starts the optimization process. Through this function
all the other major function in the program are called.

DeleteAll member of classes CResultsSet, CResultsB CResultsCSet CresultsDSet 138
DeleteAll deletes all the records in the Results database.

GetRandom Values member of class CTIMCADDoc 140
GetRandom Values Determines the number of cells, switching frequency, and
inductance to use for a particular inductance.

GetInductorCurrentInfo member of class CTIMCADDoc 140
GetInductorCurrentnfo determines the shape of the current at the input and
output of each cell of the converter.

PowerStage member of class CTIMCADDoc 142
PowerStage Designs the power stage of the converter. This consists of both
switches, the converter inductor, and the heatsink.

FilterStage member of class CTIMCADDoc 145
FilterStage Designs the input and output filters of the converter.

AddRecord member of classes CResultsSet, CResultsB CResultsCSet CresultsDSet 155
AddRecord stores all necessary information into the database.

PickFET member of class CFETSet 156
PickFET chooses a MOSFET randomly from the available records in the
database.

GetMaxPowLossF member of class CTIMCADDoc 158
GetMaxPowLossF sweeps the range of possible input and output voltages in order
to determine when a MOSFET has the maximum power loss.

GetInductor member of class C~nductSet 160

129

GetInductor chooses an appropriate core for each converter cells and insures a
proper design of the inductor.

PickSchottky member of class CSchottkySet 163
PickSchottky chooses a Schottky Diode randomly from the available records in
the database.

GetMaxPowLossS member of class CTIMCADDoc 164
GetMaxPowLossS sweeps the range of possible input and output voltages in order
to determine when a Schottky Diode has the maximum power loss.

PickDiode member of class CDiodeSet 165
PickDiode chooses a Diode randomly from the available records in the database.

GetMaxPowLossD member of class CTIMCADDoc 166
GetMaxPowLossD sweeps the range of possible input and output voltages in
order to determine when a Diode has the maximum power loss.

PickHeatSink member of class CHeatSiuzkSet 167
PickHeatSink chooses an appropriate heatsink based upon the maximum power
losses the devices may endure.

Get WorstCaseHarmnonics member of class CTIMCADDoc 171
Get WorstCaseHarmonics determines the maximum amplitude of each harmonic
in the input and output currents.

PickCap member of class CCapacitorSet 173
PickCap chooses a capacitor randomly from the available records in the database.

GetFilterType member of class CConfiguration2Set 175
GetFilterType chooses a filter randomly from the available records in the database.

PickSetCap member of class CCapacitorSet 176
PickSetCap chooses a capacitor from the available records in the database that
bests matches a desired capacitance.

DesignFilterl member of class CTIMCADDoc 178
DesignFilter] designs the first type of filter ensuring that the EMI limits are met.

DesignEMlnductor member of class CEMlnductorSet 181
DesignEMffnductor designs the inductor for the filters.

DesignFilter2 member of class CTIMCADDoc 184
DesignFilter2 designs the second type of filter ensuring that the EMI limits are
met.

DesignFilter3 member of class CTIMCADDoc 190

130

DesignFilter3 designs the third type of filter ensuring that the EMI limits are met.

PowLoss member of class CSchottkySet and CDiodeSet 193
PowLoss determines the maximum power loss in the Schottky Diode or Diode if
used as the second switch in the converter.

PowLoss member of class CFETSet 195
PoivLoss determines the maximum power loss in the FET if used as either switch
in the converter.

The C++ code is as follows

*1 /// / ///// //

CTIMCADDoc::OnRun()

OnRun is the function that starts the optimization process. Through this
function all the other major function in the program are called.

void CTIMCADDoc::OnRunO

int CellNum, //The number of cells
turns, //Number of turns in the converter inductor
Gauge, //The gauge of wire used in the converter inductor
Cores, //'The number of converter inductors in parallel
S2sel = 0, //Whether switch two is 1=MOSFET 2=Schottky 3=Diode
Mode, //1=Continuous Mode 2=Discontinuous Mode 3=Combo determined by

//voltages
Cap2InIndex, Cap2OutIndex, Cap1InIndex, L2InIndex, L2OutIndex,
CapD1InIndex, CapD2InIndex, LiInIndex, Cap1OutIndex, CapD1OutIndex,
CapD2Outlndex, LiOutIndex, //The part index for various capacitors and

//inductors
SinkNum, SinkNuml, //The part index for heatsinks
NumOfCapsInl, NumOfCapsIn2, NumOfCapsOut2, NumOfCapsDInl,
NumOfCapsDIn2, NumOfCapsOutl, NumOfCapsDOutl, NumOfCapsDOut2,

//The number of paralleled capacitors
In2Gauge, Out2Gauge, InlGauge, OutlGauge, //The wire gauge for the EMI

/inductors
In2Turns, Out2Turns, InITurns, OutlTurns, //The number of turns on the

//EMI inductors
In2Windings, Out2Windings, IniWindings, OutlWindings, //The number of

/sets of turns on the EMI inductors
Length, //The Length of extrusion needed
FilterTypeln, FilterTypeOut, //The type of filter used
ans, start, Good, HSneeded, Lneeded, LCellneeded, BusCapneeded,
Priceneeded, Weightneeded, Volumeneeded; //Arguments for dialog boxes

double Freq, //The Converter switching frequency
Inductor, //The total inductance of the power stage
CurrentPeak, //The peak current through the converter
Irms, //The rms current through the converter inductor
S Irnis, /the rms current through switch 1

131

S2rms, //the rms current through switch 2
FETPcon, //The conduction power losses in the MOSFET
FETPsw, //The switching power losses in the MOSFET
FETPrice, //The Price of the MOSFET
FETPtot, //The total power loss in the FET
Bpksave, //The peak magnetic field in the converter inductor
Jwiresave, //The current density in the converter inductor
Pcoresave, //The core power loss in the converter inductor
Pwindsave, //The winding power loss in the converter inductor
deltaTsave, //The max. temperature rise in the converter inductor
S2Pcond = 0, //The conduction power losses in switch 2
S2Psw = 0, //The switching power losses in switch 2
S2Price = 0, //The price of switch 2
DeltaT, DeltaTI, //The temperature rise of the heatsinks
FETTemp, //The temperature rise of the MOSFET
S2Temp, /The temperature rise of switch 2
linitial, //The amount of current through the MOSFET when it turns on
Qin, Qout, //The Q of the filter, for filter type 1
L2In, L2Out, L3In, L3Out, LiIn, LiOut, //The EMI inductance
InPowLoss, Out2PowLoss, InlPowLoss, OutlPowLoss, //The power loss

/of the EMI inductors
Rin, Rout, //Resistor values in filter type 1
Cap 1, Cap 1 Price, Cap 1 Weight, Cap 1Volume, L2Price, L2Weight,
L2Volume, //The net values used in the input filter
PCboardPrice, //The price of the PCboard
Cap2lnArea, Cap2OutArea, CapIArea, L2Area, SinkArea, LIInArea,
LIOutArea, /The area on the PCboard that a component uses
SinkWeight, SinkVolume, SinkPrice, //Properties of the heatsink used
RdiIn, Rd2In, RdlOut, Rd2Out, //Damping resistors used in filter type 2
LlInPrice, LiInWeight, LlInVolume, LiOutPrice, LiOutWeight,
L OutVolume, //Properties of the EMI inductors used
InFilterPrice, OutFilterPrice, InFilterWeight, OutFilterWeight,
InFilterVolume, OutFilterVolume, //Properties of the filters used
RippleRatio, //The ripple ratio for one cell under nominal voltages
TotalPrice, TotalWeight, TotalVolume; //The total price, weight and,

//volume of the converter

double waveform[1200], I/Vectors of the current in the inductor
waveformS2[1200]; /Vectors of the current in switch 2

CString FETName, //The name of the MOSFET
S2Name = _T(""), //The name of switch 2
Cap IName, //The name of a Capacitor used
L2Name, LIInName, LIOutName, //The name of inductors used
SinkName; //The name of the heatsink used

bool Valid; //True if current design is Valid

long IndNum; //The index of the converter inductor

srand((unsigned)time(NULL));

if (!mConfigurationSet.IsOpeno)
m_ConfigurationSet.Open();

if (!mConfiguration2Set.IsOpeno)
mConfiguration2Set.Open(;

132

if (!mInductSet.IsOpen()
m_InductSet.Openo;

if(!mR-sultSet.IsOpeno)
m_ResultSet.Openo;

if (!mResultBSet.IsOpen()
mResultBSet.Open(;

if (!mResultCSet.IsOpeno)
m_ResultCSet.Openo;

if (!mResultDSet.IsOpenO)
mResultDSet.Openo;

if (!mWireSet.IsOpen()
m_WireSet.Open(;

if (!mSchottkySet.IsOpeno)
m_SchottkySet.Open(;

if (!mHeatSinkSet.IsOpeno)
rnHeatSinkSet.Openo;

if (!mCapacitorSet.IsOpeno)
m_CapacitorSet.Openo;

if (!mDiodeSet.IsOpeno)
m_DiodeSet.Openo;

if (!mEMILimitsSet.IsOpeno)
mEMILimitsSet.Openo;

if (!mEMIlnductorSet.IsOpenO)
m_EMlInductorSet.Openo;

m_E MILimitsSet.m_strSort = "Frequency ASC";
mEMILimitsSet.Requeryo;

ans = MessageBox(NULL, "Do you wish to erase previous records?","TimCAD", MBYESNOCANCEL

if (ans == IDYES)

mResultBSet.m_strFilter =
m_ResultBSet.Requeryo;
m_ResultCSet.mstrFilter =
mResultCSet.Requeryo;
mResultDSet.mstrFilter =
mResultDSet.Requeryo;
mResultSet.DeleteAll();
mResultBSet.DeleteAll();
mResultCSet.DeleteAll();
m_ResultDSet.DeleteAll();
start = 0;

}
else if (ans == IDCANCEL)

return;
else if (ans == IDNO)

if (!(mResultSet.IsEOF() && mResultSet.IsBOFO))
{

mResultSet.m strSort = "IDNum";
m_ResultSet.Requery(;
m_ResultSet.MoveLasto;
start = mResultSet.mIDnum + 1;
m_ResultSet.mstrSort = "";
m_ResultSet.Requeryo;

133

}
else start = 0;

I
Good = HSneeded = Lneeded = LCellneeded = BusCapneeded = Priceneeded = 0;
Weightneeded = Volumeneeded = 0;

int iteration;
CCountDownDlg m CountDown(mConfigurationSet.mIterations);
m_CountDown.Create(IDD_COUNTDOWN);
m_CountDown.Begino;
for (iteration = 1+start; iteration <= mConfigurationSet.m_Iterations+start; iteration++)
{

m_CountDown.deco;
Valid = TRUE;

GetRandomValues(CellNum, Freq, Inductor, Mode, RippleRatio);

//This assumes that the worst case power losses will be at the max Vin and Vout
Valid = GetlnductorCurrentlnfo(CellNum, Freq, Inductorm_ConfigurationSet.mVoutmax,

m_ConfigurationSet.mVinmax, CurrentPeak, Irms, Sirms, S2rms, waveform,
waveformS2, Iinitial, Mode);

if (Valid)
Valid = PowerStage(CurrentPeak, Freq, Slrms, S2rms, Inductor, Irms, waveform, waveformS2,

FETName, FETPcon, FETPrice, FETPsw, FETPtot, turns, Gauge, Bpksave, Jwiresave,
Pcoresave, Pwindsave, deltaTsave, S2Pcond, S2Psw, S2Price, S2Name, S2sel, DeltaT,
FETTemp, S2Temp, Iinitial, Mode, CellNum, IndNum, SinkNum, Cores, SinkNuml,
DeltaTl, Length, HSneeded, LCellneeded);

if (Valid)
Valid = FilterStage(CellNum, Freq, Inductor, Mode, Qin, Qout, L2In, L2Out, L3In, L3Out,

LlIn, LIOut, InPowLoss, Out2PowLoss, InlPowLoss, OutlPowLoss, Rin, Rout, RdlIn,
Rd2In, RdlOut, Rd2Out, Cap2lnIndex, Cap2OutIndex, CaplInIndex, CaplOutIndex,
CapD1 InIndex, CapD2InIndex, CapD1OutIndex, CapD2OutIndex, L2InIndex,
L2OutIndex, LiInIndex, LIOutIndex, In2Gauge, Out2Gauge, InlGauge, OutiGauge,
In2Turns, Out2Turns, Inl Turns, Outl Turns, InlWindings, In2Windings, Outl Windings,
Out2Windings, Lneeded, BusCapneeded, NumOfCapslnl, NumOfCapsIn2,
NumOfCapsDInl, NumOfCapsDIn2, NumOfCapsOut2, NumOfCapsOutl,
NumOfCapsDOutl, NumOfCapsDOut2, FilterTypeln, FilterTypeOut, InFilterPrice,
OutFilterPrice, InFilterWeight, OutFilterWeight, InFilterVolume, OutFilterVolume);

if (Valid)
{

m_CapacitorSet.mParam = Cap2InIndex;
m_CapacitorSet.mstrFilter = "rank
m_CapacitorSet.Requeryo;
Cap2lnArea = mCapacitorSet.mArea*NumOfCapsln2;

m_CapacitorSet.mParam = Cap2OutIndex;
m_CapacitorSet.m strFilter = "rank =
m_CapacitorSet.Requeryo;
Cap2OutArea = mCapacitorSet.mArea*NumOfCapsln2;

m_CapacitorSet.mParam = Cap 1 InIndex;
m_CapacitorSet.mstrFilter = "rank =
m_CapacitorSet.Requery(;
Cap lName = mCapacitorSet.mCapName;

134

Cap1 = m CapacitorSet.mCapacitance*NumOfCapslnl;
Cap IPrice = mCapacitorSet.mPrice*NumOfCapslnl;
Cap 1 Weight = mCapacitorSet.mWeight*NumOfCapslnl;
Cap 1 Volume = m_CapacitorSet.mVolume*NumOfCapslnl;
Cap IArea = mCapacitorSet.m_Area*NumOfCapsInl;
mCapacitorSet.m_Param = Cap lOutlndex;
mCapacitorSet.m strFilter = "rank = ?";
mCapacitorSet.Requeryo;

m_EMIlnductorSet.mParam = L2lnIndex;
m_EMIInductorSet.mstrFilter = "rank =
m_EMIlnductorSet.Requeryo;
L2Name = mEMlInductorSet.mCoreName;
L2Price = mEMIlnductorSet.mPrice;
L2Weight = mEMI1nductorSet.mWeight;
L2Volume = m_EMIlnductorSet.mVolume;
L2Area = m_EMIlnductorSet.mArea;
m_EMIlnductorSet.mParam = LIInIndex;
m_EMIlnductorSet.mstrFilter = "rank =
m_EMIInductorSet.Requeryo;
L IInName = m EMlInductorSet.m CoreName;
LlInPrice = mEMIInductorSet.m_Price;
L InWeight = mEMlInductorSet.mWeight;
LIInVolume = m_EMlInductorSet.mVolume;
LlInArea = mEMlInductorSet.m_Area;
m_EMIlnductorSet.mParam = L2InIndex;
m_EMIlnductorSet.mstrFilter = "rank
mE MIlnductorSet.Requery(;
LIOutName = mEMlInductorSet.mCoreName;
LIOutPrice = mEMIInductorSet.mPrice;
LIOutWeight = m_EMIlnductorSet.mWeight;
LIOutVolume = m_EMIlnductorSet.mVolume;
LIOutArea = mEMlInductorSet.m_Area;
m_EMIlnductorSet.mParam = L2Outlndex;
mEMIlnductorSet.m strFilter = "rank =
m_EMIlnductorSet.Requeryo;

m_InductSet.mParam = IndNum;
mInductSet.mstrFilter = "InductorlD =
mInductSet.Requeryo;

mHeatSinkSet.mParam = SinkNum;
m_HeatSinkSet.mstrFilter = "rank =?"
m_HeatSinkSet.Requeryo;
SinkArea = mHeatSinkSet.mArea;
SinkWeight = mHeatSinkSet.mWeight;
SinkVolume = m_HeatSinkSet.mVolume;
SinkPrice = m_HeatSinkSet.mPrice;
SinkName = m HeatSinkSet.mName;
if ((mHeatSinkSet.mCount == 0) && (Length == 0))

Valid FALSE;
if (SinkNuml != -1)
{

m_HeatSinkSet.mParam = SinkNuml;
m_HeatSinkSet.mstrFilter = "rank =
mHeatSinkSet.Requery(;

135

SinkArea = SinkArea + mHeatSinkSet.mArea;
SinkWeight = SinkWeight + mHeatSinkSet.mWeight;
SinkVolume = SinkVolume + m_HeatSinkSet.mVolume;
SinkPrice = SinkPrice + mHeatSinkSet.mPrice;
SinkName += " & ";
SinkName += mHeatSinkSet.mName;

if (Length != 0)
{

SinkArea = SinkArea*Length/150;
SinkWeight = SinkWeight*Length/150;
SinkVolume = SinkVolume*Lengtb/150;
SinkPrice = SinkPrice*Length/150;

}

PCboardPrice = mConfigurationSet.mPCboard* (CaplArea+mCapacitorSet.mArea*
NumOfCapsOutl +L2Area+mEMI1nductorSet.mArea+mConfigurationSet.m

_MasterArea+ CellNum* (Cap2lnArea+ Cap2OutArea+
mCapacitorSet.m_Area* NumOfCapsOut2+ mInductSet.mArea* Cores+
SinkArea));

if (mConfiguration2Set.mUseMaxs)
{

TotalPrice = PCboardPrice+InFilterPrice+OutFilterPrice+
mConfigurationSet.mMasterPrice+CellNum*mConfigurationSet.mCellPrice
+CellNum*(FETPrice+mInductSet.mPrice*Cores+S2Price+SinkPrice);

TotalWeight = InFilterWeight + OutFilterWeight +
mConfigurationSet.mMasterWeight + CellNum *

mConfigurationSet.mCellWeight + CellNum* (mInductSet.mWeight*
Cores+SinkWeight);

TotalVolume = InFilterVolume+ OutFilterVolume+
mConfigurationSet. m_MasterVolume+ CellNum*

mConfigurationSet.mCellVolume+ CellNum* (mInductSet.mVolume*
Cores+SinkVolume);

if (TotalPrice > mConfiguration2Set.m MaxPrice)

{
Priceneeded++;
Valid = FALSE;

}
if (TotalWeight > mConfiguration2Set.mMaxWeight)
{

Weightneeded++;
Valid = FALSE;

}
if (TotalVolume > mConfiguration2Set.m_MaxVolume)
{

Volumeneeded++;
Valid = FALSE;

}
}
if (Valid)
{

Good++;

136

mResultSet.AddRecord(FETPrice, (long) iteration, mInductSet.mWeight*Cores,
mInductSet.mPrice*Cores, S2Price, SinkWeight, SinkVolume, SinkPrice,
Cap1Price, r._CapacitorSet.mPrice*NumOfCapsOutl, CapiWeight,
m_CapacitorSet.mWeight*NumOfCapsOut 1, Cap 1Volume,
mCapacitorSet.mVolume* NumOfCapsOutl, L2Price,
m_EMIlnductorSet.mPrice, L2Weight, mEMInductorSet.mWeight,
L2Volume, m EMIInductorSet.m Volume,
mConfigurationSet.mMasterPrice + CellNum*
mConfigurationSet.mCellPrice, mConfigurationSet.mMasterWeight+
CellNum*mConfigurationSet.mCellWeight,
mConfigurationSet.mMasterVolume+ CellNum*
mConfigurationSet.mCellVolume, mConfigurationSet.mMasterArea+
CellNum*mConfigurationSet.mCellArea, mInductSet.m_Volume*Cores,
m_InductSet.m_Area*Cores, PCboardPrice, CellNum,
mConfiguration2Set.mPrice, mConfiguration2Set.mWeight,
mConfiguration2Set.mVolume, Length, InFilterPrice, OutFilterPrice,
InFilterWeight, OutFilterWeight, InFilterVolume, OutFilterVolume);

mResultBSet.AddRecord(CellNum, FETName, FETPcon, FETPsw, FETPtot, Freq,
(long) iteration, Inductor, mInductSet.mCoreName, turns, Gauge, Bpksave,
Jwiresave, Pcoresave, Pwindsave, deltaTsave, S2Pcond, S2Psw, S2Name, S2sel,
SinkName, DeltaT, FETTemp, S2Temp, mConfigurationSet.mTemperature,
Mode, Cores, RippleRatio);

mResultCSet.AddRecord((long) iteration, Qin, Qout, L2In, L2Out, L3Ln, L3Out,
InPowLoss, Out2PowLoss, Rin, Rout, In2Gauge, Out2Gauge, In2Turns,
Out2Turns, In2Windings, Out2Windings, CaplName,
mCapacitorSet.mCapName, Cap1, mCapacitorSet.mCapacitance, L2Name,
m_EMIlnductorSet.mCoreName, NumOfCapsInl, NumOfCapsln2,
NumOfCapsOutl, NumOfCapsOut2, NumOfCapsDInl, NumOfCapsDIn2,
InlGauge, IniTurns, IniWindings, FilterTypeIn, FilterTypeOut,Cap2lnlndex,
Cap2OutIndex);

mResultDSet.AddRecord((long) iteration, NumOfCapsDOutl, NumOfCapsDOut2,
OutlGauge, OutlTurns, OutlWindings, RdiIn, Rd2In, RdlOut, Rd2Out, LlIn,
InlPowLoss, LiOut, OutlPowLoss, LiOutName, LlInName, LlInPrice,
LiOutPrice, LiInWeight, LiOutWeight, LiInVolume, LiOutVolume,
CapD 1 InIndex, CapD2InIndex, CapD 1 OutIndex, CapD2OutIndex);

}
mCapacitorSet.mstrFilter =

mCapacitorSet.Requeryo;
mEMIlnductorSet.m strFilter
m_EMIInductorSet.Requeryo;
m_InductSet.mstrFilter = "";
m_InductSet.Requeryo;
m_HeatSinkSet.mstrFilter =

m_HeatSinkSet.RequeryO;

m_CountDown.DestroyWindowo;
char testbuffer[200];
sprintf(testbuffer,"Good %i,\nEMI Inductor %i,\nHeatSink %i\nCell Inductort %i\nBus Caps %i\nPrice

Max %i\nWeight Max %i\nVolume Max %i", Good, Lneeded, HSneeded, LCellneeded,
BusCapneeded, Priceneeded, Weightneeded, Volumeneeded);

MessageBox(NIULL,testbuffer,"Needed", MB_OK);

137

CResultSet::DeleteAll()

DeleteAll deletes all the records in the Results database.
*I//I/////I/////I/////I//////////////////1///1111/11//11/////II///I/II//I/III

void CResultSet::DeleteAll()

{
Requery();
if (!IsBOFO)

MoveFirsto;
while (!IsEOFO)
{

Deleteo;
MoveNexto;

return;

void CTIMCADDoc::GetRandomValues(int& CellNum, double& Freq, double& Inductor,
int& Mode, double& RippleRatio)

GetRandomValues Determines the number of cells, switching frequency, and
inductance to use for a particular inductance.

Parameters:
CellNum : The number of cells
Freq : The Converter switching frequency
Inductor: The total inductance of the power stage
Mode: 1 =Continuous Mode 2=Discontinuous Mode 3=Combo determined by voltages

RippleRatio : The ripple ratio for one cell under nominal voltages

void CTIMCADDoc::GetRandomValues(int& CellNum, double& Freq, double& Inductor,
int& Mode, double& RippleRatio)

{

int Nrange, /The range of number of cells
PossibleLs, //The range of ripple ratios
PossibleFreqs; i/The range of frequencies

double i, j, /counting indexes
Lmax, Lmin, //The Min. and max. inductances
Ripmax, Ripmin, /The Min. and max. ripple ratios
Vin, Vout, //Input and output voltages
minDCM = 99999, maxCM = 0; I/Values that find the min and max values of

//Vout/Vin *(Vin*Vout)
srand((unsigned)time(NULL));

Nrange = mConfigurationSet.mNmax - m_ConfigurationSet.mNmin + 1;
CellNum = (rando%Nrange) + mConfigurationSet.mNmin;

if (mConfigurationSet.mfreqstep != 0)

{
PossibleFreqs = (int)((mConfigurationSet.m freqmax- mConfigurationSet.m freqmin) /

m_ConfigurationSet.mfreqstep + 1);

138

Freq = (rand(%PossibleFreqs)*m ConfigurationSet.m freqstep +
m_ConfigurationSet.m-freqmin;

else Freq = mConfigurationSet.mfreqmin;

//finding the smallest values of L that guarentees CM operation
//and the largest value that guarentees DCM operation

for (i = mConfigurationSet.mVinmin; i <= mConfigurationSet.m_Vinmax; i = i +
(mConfigurationSet.mVinmax - mConfigurationSet.mVinmin)/10)

{
for (j = mConfigurationSet.mVoutmin; j <= mConfigurationSet.mVoutmax; j = j +

(rn ConfigurationSet.mVinmax - mConfigurationSet.mVinmin)/10)
{

if ((i-j)*j/i < minDCM)
minDCM = (i-j)*j/i;

if ((i-j)*j/i > maxCM)
maxCM = (i-j)*j/i;

}

Lax =inDCM/(2*m ConfigurationSet.nTout*Freq);
Lmin maxCM/(2*m ConfigurationSet.mIout*Freq);

Vin=42;
Vout = 14.3;
if (mConfigurationSet.mCM)

Ripmax = mConfigurationSet.mLmax;
else Ripmax = sqrt(minDCM*Vout*(Vin-Vout)/Vin)/(Lmax*Freq);

if (mConfigurationSet.mDCM)
Riprnin = mConfigurationSet.mLmin;

else Ripmin = Vout*(Vin-Vout)/(Vin*Lmin*Freq);

if (mConfigurationSet.rmLstep == 0)
RippleRatio = m ConfigurationSet.mLmin;

else

if (mConfiguration2Set.mLinearL)
{

PossibleLs = (int)((Ripmax - Ripmin)/mConfigurationSet.mLstep + 1);
RippleRatio = (rand(%PossibleLs)*mConfigurationSet.mLstep + Ripmin;

}
else
{

PossibleLs = (int)((log(Ripmax+1) - log(Ripmin+ 1)) /
log(mConfigurationSet.mLstep+ 1));

RippleRatio = exp((rand(%PossibleLs)*log(mConfigurationSet.mLstep+1) +
log(Ripmin+ 1))-1;

}
}

if (RippleRatio <= 1)
Inductor = Vout*(Vin-Vout)/(2*Vin*RippleRatio*Freq*m ConfigurationSet.mIout/CellNum);

else Inductor = Vout*(Vin-Vout) / (2*mConfigurationSet.mIout / CellNum* Vin* Freq* RippleRatio*
RippleRatio);

139

//this puts the answer back to total inductance i.e. the cell inductors in parallel
Inductor = Inductor/CellNum;
if (Inductor < minDCM/(2*mConfigurationSet.m_Iout*Freq))

Mode = DCM;
else if (Inductor > maxCM/(2*mConfigurationSet.m_Iout*Freq))

Mode = CM;
else Mode = OTHER;

return;
}

bool CTIMCADDoc::GetlnductorCurrentlnfo(int CellNum, double Freq,
double Inductor, double Vout, double Vin, double& CurrentPeak,
double& Irms, double& Slrms, double& S2rms, double waveform[,
double waveformS2[], double& Iinitial, int Mode)

GetInductorCurrentInfo determines the shape of the current at the input and
output of each cell of the converter.

Parameters:
CellNum: The number of cells
Freq : The Converter switching frequency
Inductor : The total inductance of the power stage
Vout : The output Voltage
Vin : The input voltage
CurrentPeak : The maximum current in the converter
Irms : The rms current in the inductor
SIrms : The rms current in switch 1
S2rms : The rms current in switch 2
waveform[] : A 1200 point vector of inductor current
waveformS2[] : A 1200 point vector of the current in switch 2
Iinitial : The current that is flowing in the inductor when the FET turns on
Mode: I=Continuous Mode 2=Discontinuous Mode 3=Combo determined by voltages

Output
True is function obtained valid results
*//
bool CTIMCADDoc::GetlnductorCurrentlnfo(int CellNum, double Freq,

double Inductor, double Vout, double Vin, double& CurrentPeak,
double& Irms, double& Sirms, double& S2rms, double waveform[],
double waveformS2[], double& Iinitial, int Mode)

{
double iave, //The average current in each cell

L, //The Inductor in each cell
dutyc, //the duty cycle of the converter
dt, //The time step
total; /used as a temperary placeholder

int i, //Counting index
on; //The number of time steps the MOSFET is on

for(i=0;i<l200;i++)
{

waveform[i] = 0;
waveformS2[i] = 0;

140

}
lave = m_ConfigurationSet.m Iout/CellNum;
L = Inductor*CellNum;
dt =1/(Freq* 1200);
if (Mode == OTHER)

dutyc = Vout/Vin;
linitial = iave - dutyc*(Vin-Vout)/(L*2*Freq);
if (Iinitial < 0)

Mode = DCM;
else Mode = CM;

if (Mode == DCM)

total = (iave*2*L*Vout*Freq)/(Vn*(Vin-Vout));
dutyc = sqrt(total);
Iinitial = 0;

else

dutyc = Vout/Vin;
linitial = iave - dutyc*(Vin-Vout)/(L*2*Freq);

on = (int) floor(dutyc* 1200);
waveform[0] = Iinitial+(Vin-Vout)*dt/L;
S 1 rms = waveform[0] *waveform[0];

for(i=1; i<(on); i++)

waveform[i] = waveform[i-1] + (Vin-Vout)*dt/L;
Slrnis = waveform[i]*waveform[il] + Slrms;

i on;
SIrms = sqrt(S l rns/1200);
CurrentPeak = dutyc*(Vin-Vout)/(L*Freq) + Iinitial;
if (i>1200)

return FALSE;
if (i == 1200)

i = 0;
waveform[i] = CurrentPeak - Vout*dt/L*(on+ 1 -dutyc* 1200);
waveformS2[i] = waveform[i];
S2rms =waveform[i]*waveform[i];
i++;
do

{
wave form[i] = waveform[i-1] - Vout*dt/L;
waveformS2[i] = waveform[i];
S2rms = S2rms + waveform[i]*waveforrn[i];
i++;

while ((waveform[i-1] > Iinitial) && (i<1200));

S2rms = sqrt(S2rms/1200);

if (i != 1200)

waveform[i-1] = 0;

141

waveformS2[i-1] = 0;
I
Irms = 0;
for (i=0;i<1200;i++)

Irms = wave form[i] * wave form[i] + Irms;

Irms = sqrt(Irms/1200);
return TRUE;
I

bool CTIMCADDoc::PowerStage(double Ipk,double Freq, double IrmsSl, double IrmsS2,
double L, double IrmsL, double waveform[], double waveformS2[], CString& FETName,
double& FETPcon, double& FETPrice, double& FETPsw, double& FETPtot,
int& turns, int& Gauge, double& Bpksave, double& Jwiresave, double& Pcoresave,
double& Pwindsave, double& deltaTsave, double& S2Pcond, double& S2Psw,
double& S2Price, CString& S2Nane, int& Picked, double& DeltaT, double& FETTemp,
double& S2Temp, double Iimtial, int& Mode, int CellNum, long& IndNum,
int& SinkNum, int& Cores, int& SinkNuml, double& DeltaT1, int& Length,
int& HSneeded, int& LCellneeded)

PowerStage Designs the power stage of the converter. This consists of both switches,
the converter inductor, and the heatsink.

Parameters:
Ipk : The maximum current in the converter
Freq : The Converter switching frequency
Irm-sSl : The rrns current in switch 1
IrmsS2 : The rms current in switch 2
L : The total inductance of the power stage
IrmsL : The rms current in the inductor
waveform[] : A 1200 point vector of inductor current
waveformS2[] : A 1200 point vector of the current in switch 2
FETName : The Name of the MOSFET used
FETPcon: The conduction power losses in the MOSFET
FETPrice : The Price of the MOSFET
FETPsw: The switching power losses in the MOSFET
FETPtot : The total power loss in the FET
turns : Number of turns in the converter inductor
Gauge : The gauge of wire used in the converter inductor
Bpksave : The peak magnetic field in the converter inductor
Jwiresave : The current density in the converter inductor
Pcoresave : The core power loss in the converter inductor
Pwindsave : The winding power loss in the converter inductor
deltaTsave : The max. temperature rise in the converter inductor
S2Pcond : The conduction power losses in switch 2
S2Psw : The switching power losses in switch 2
S2Price : The price of switch 2
S2Name : The name of switch 2
Picked : whether switch two is l=MOSFET 2=Schottky 3=Diode
DeltaT : The temperature rise of the first heatsink
FETTemp : The temperature rise of the MOSFET
S2Temp : The temperature rise of switch 2
Iinitial : The current that is flowing in the inductor when the FET turns on
Mode: I=Continuous Mode 2=Discontinuous Mode 3=Combo determined by voltages
CellNum : The number of cells

142

IndNum : The index of the converter inductor
SinkNum : The index of the first heatsink
Cores : The number of converter inductors in parallel
SinkNumr : The index if any of the second heatsink
DeltaTI : The temperature rise if any of the second heatsink
Length : The Length of extrusion needed
HSneeded : Number of fail designs due to heatsink
LCellneeded : Number of fail designs due to converter inductor

Output
True is function obtained valid results

bool CTIMCADDoc::PowerStage(double Ipk,double Freq, double IrnisSi, double IrmsS2,
double L, double IrmsL, double waveform[], double waveformS2[], CString& FETName,
double& FETPcon, double& FETPrice, double& FETPsw, double& FETPtot,
int& turns, int& Gauge, double& Bpksave, double& Jwiresave, double& Pcoresave,
double& Pwindsave, double& deltaTsave, double& S2Pcond, double& S2Psw,
double& S2Price, CString& S2Name, int& Picked, double& DeltaT, double& FETTemp,
double& S2Temp, double linitial, int& Mode, int CellNum, long& IndNum,
int& SinkNum, int& Cores, int& SinkNuml, double& DeltaTi, int& Length,
int& HSneeded, int& LCellneeded)

{
int FETnum, //The index of the MOSFET in use

AvailFET ,//The number of available MOSFETs
AvailSchottky, //The number of available Schottky diodes
AvailDiode, //The number of available PiN diodes
total, //Variable used for counting
Chosen, //Variable used for determine switch 2
S2Schottkynum, //The index for the Schottky diode in use
S2Diodenum, //The index for the PiN diode in use
Packages; //Packages stores what kind of packages are used.

//lst bit is 1 if Sl is TO-220 2nd bit is 1 if S2 is TO-220
//3st bit is 1 if SI is TO-247 4nd bit is 1 if S2 is TO-247

bool ValidInductor, //True if the inductor was designed successively
Valid = TRUE, //True if the power stage was designed successively
SinkValid; //True if the heatsink was designed successively

double DeltaTAllowed, //Max. Temperature - Ambient Temperature
FETThermalResistance, //The MOSFET's junction to case thermal resistance
S2ThermralResistance, //Switch 2's junction to case thermal resistance
FETPcap, S2Pcap; //The power loss associated with the charging and

/discharging of the equavalent capacitance across the MOSFET or switch 2

Picked = 0;
S2Name = _T("");

/SECTION 1 ------ >Pick and get values of Switch 1
//Pick one of the available FETs at random from the DB
FETnum = m fETSet.PickFET(FETPrice, FETName, AvailFET,

m_ConfigurationSet.mMaxTemperature, mConfigurationSet.m_Temperature,
m_ConfigurationSet.mLout/CellNum, Packages);

//Finds the power losses due to the FET
GetMaxPowLossF(FETnum, Freq, 1, CellNum, L, Mode, FETPcon, FETPcap, FETPsw,

FETThermalResistance);

143

if (LCellneeded > 200)
LCellneeded = LCellneeded;

Cores = 1;
//SECTION 2 ----- >designs the inductor
ValidInductor = mInductSet.GetInductor(&mWireSet, L*CellNum, Ipk, IrmsL, Freq,

m ConfigurationSet.m_Temperature,mConfigurationSet.mMaxTemperature, waveform, turns,
Gauge, Bpksave, Jwiresave, Pcoresave, Pwindsave, deltaTsave, IndNum, Cores);

/SECTION 3 ------ >Pick and get values of Switch 2
total = 0;

if (mConfigurationSet.mFETasS2)
total = AvailFET;

else AvailFET = 0;

if (mConfigurationSet.mSchottyDasS2)
{

AvailSchottky = mSchottkySet.GetAvail(mConfigurationSet.mMaxTemperature,
m_ ConfigurationSet.mIout/CellNum);

total = total+AvailSchottky;

}
else AvailSchottky = 0;

if (rnConfigurationSet.m_DiodeasS2)

AvailDiode = m_DiodeSet.GetAvail(mConfigurationSet.mMaxTemperature,
mConfigurationSet.m_Iout/CellNum);

total = total+AvailDiode;

else AvailDiode = 0;

Chosen = (rando%total)+1;

if (Chosen <= AvailFET)

GetMaxPowLossF(FETnum, Freq, 2, CellNum, L, Mode, S2Pcond, S2Pcap, S2Psw,
S2ThermalResistance);

FETPsw = FETPsw + S2Pcap;
S2Psw = S2Psw+FETPcap;
Picked = FET;
S2Name = FETName;
if (Packages == 1)

Packages = Packages+4;
if (Packages == 2)

Packages = Packages+8;

else if (Chosen <= AvailFET+AvailSchottky)

S2Schottkynum = mSchottkySet.PickSchottky(S2Price,S2Name,
AvailSchottky,mConfigurationSet.m_MaxTemperature,
mConfigurationSet.mlout/CellNum, Packages);

144

GetMaxPowLossS(CellNum, Freq, L, S2Pcond, S2Pcap, S2ThermalResistance,
Mode,S2Schottkynum);

//Since the switch on losses are the same the powloss functions use there own
//Set data to calculate the final Psw losses

FETPsw = FETPsw + S2Pcap;
Picked = SCHOTTKY;
S2Psw = 0;

else
f

S2Diodenum = mDiodeSet.PickDiode(S2Price,S2Name, AvailDiode,
m_ConfigurationSet.mMaxTemperature, mConfigurationSet.m_Iout/CellNum, Packages);

GetMaxPowLossD(CellNum, Freq, L, S2Pcond, S2Psw, S2Pcap, S2ThermalResistance,
Mode, S2Diodenum);

/Since the switch on losses are the same the powloss functions use there own
//Set data to calculate the final Psw losses

FETPsw = FETPsw + S2Pcap;
Picked = DIODE;

}

FETPtot = FETPcon+FETPsw;
FETTemp = FETPtot*(FETThermalResistance+mConfiguration2Set.mRcs);
S2Temp = (S2Pcond+S2Psw)*(S2ThermalResistance+mConfiguration2Set.m_Rcs);
DeltaTAllowed = mConfigurationSet.mMaxTemperature - m_ConfigurationSet.m Temperature;

SinkValid = m_HeatSinkSet.PickHeatSink(DeltaTAllowed, FETTemp, S2Temp, DeltaT, DeltaTi,
SinkNum, SinkNuml, FETPcon+FETPsw, S2Pcond+S2Psw, Length,
m_Configuration2Set.m_Rcs, Packages);

if (SinkValid == FALSE)
H Sneeded++;

if (ValidInductor == FALSE)
LCellneeded++;

Valid = (Valid && ValidInductor) && SinkValid;
return Valid;

bool CTIMCADDoc::FilterStage(int CellNum, double Freq, double Inductor, int Mode,
double& Qin, double& Qout, double& L2In, double& L2Out, double& L3In,
double& L3Out, double& LlIn,double& LlOut, double& In2PowLoss,
double& Out2PowLoss,double& In1PowLoss, double& OutlPowLoss,
double& Rin, double& Rout, double& RdlIn, double& Rd2In, double& RdIOut,
double& Rd2Out, int& Cap2InIndex, int& Cap2OutIndex, int& CapIInIndex,
int& CapIOutIndex, int& CapDIInIndex, int& CapD2Inlndex, int& CapDlOutIndex,
int& CapD2OutIndex, int& L2InIndex, int& L2OutIndex, int& L I InIndex,
int& LlOutIndex, int& In2Gauge, int& Out2Gauge, int& InlGauge, int& OutlGauge,
int& In2Tums, int& Out2Tums, int& InlTurns, int& OutlTurns, int& IniWindings,
int& In2Windings, int& Outl Windings, int& Out2Windings, int& Lneeded,
int& BusCapneeded, int& NumOfCapsInl, int& NumOfCapsIn2, int& NumOfCapsDInl,
int& NumOfCapsDIn2, int& NumOfCapsOut2, int& NumOfCapsOutl, int& NumOfCapsDOutl,
int& NumOfCapsDOut2, int& FilterTypeln, int& FilterTypeOut,
double& InFilterPrice, double& OutFilterPrice, double& InFilterWeight,
double& OutFilterWeight, double& InFilterVolume, double& OutFilterVolume)

145

FilterStage Designs the input and output filters of the converter.

Parameters:
CellNum : The number of cells
Freq : The Converter switching frequency
Inductor : The total inductance of the power stage
Mode: I =Continuous Mode 2=Discontinuous Mode 3=Combo determined by voltages
Qin, Qout : The Q of the filter, for filter type 1
L2In, L2Out, L3In, L3Out ,LlIn, LlOut,: The EMI inductances
In2PowLoss, Out2PowLoss, IniPowLoss, OutlPowLoss,: The power loss of the EMI inductors
Rin, Rout, RdlIn, Rd2In, RdlOut, Rd2Out, : Resistor values
Cap2InIndex, Cap2OutIndex, Cap1InIndex, Cap1OutIndex, CapD1InIndex, CapD2InIndex,

CapDIOutIndex, CapD2OutIndex : Indexes for capaciters
L21nlndex, L2OutIndex, LlInIndex, LlOutlndex: Indexes for Inductors
In2Gauge, Out2Gauge, InlGauge, OutlGauge : Wire gauges for the EMI inductors
In2Turns, Out2Turns, InlTurns, OutlTurns : The number of turns on the EMI inductors
InIWindings, In2Windings, OutIWindings, Out2Windings : The number of sets of turns on the EMI

inductors
Lneeded : The number of times the Design EMI inductor function fails
BusCapneeded : The number of times proper capacitors could not be found
NumOfCapsInl, NumOfCapsln2, NumOfCapsDInl, NumOfCapsDln2, NumOfCapsOut2,

NumOfCapsOutl, NumOfCapsDOutl, NumOfCapsDOut2, : Number of capacitors used in
parallel

FilterTypeln, FilterTypeOut : The type of filter used
InFilterPrice, OutFilterPrice, : The price of the filters used
InFilterWeight, OutFilterWeight : The weight of the filters used
InFilterVolume, OutFilterVolume : The volume of the filters used

Output
True is function obtained valid results

bool CTIMCADDoc::FilterStage(int CellNurn, double Freq, double Inductor, int Mode,
double& Qin, double& Qout, double& L2In, double& L2Out, double& L3In,
double& L3Out, double& LlIn,double& LIOut, double& In2PowLoss,
double& Out2PowLoss,double& InlPowLoss, double& OutlPowLoss,
double& Rin, double& Rout, double& RdlIn, double& Rd2In, double& RdlOut,
double& Rd2Out, int& Cap2InIndex, int& Cap2OutIndex, int& Cap 1 InIndex,
int& Cap 1 OutIndex, int& CapD IInIndex, int& CapD2InIndex, int& CapD 1 OutIndex,
int& CapD2OutIndex, int& L2Inlndex, int& L2OutIndex, int& Li InIndex,
int& LiOutIndex, int& In2Gauge, int& Out2Gauge, int& InlGauge, int& OutlGauge,
int& In2Turns, int& Out2Turns, int& InlTurns, int& OutlTurns, int& IniWindings,
int& In2Windings, int& OutlWindings, int& Out2Windings, int& Lneeded,
int& BusCapneeded, int& NumOfCapslnl, int& NumOfCapsIn2, int& NumOfCapsDInl,
int& NumOfCapsDIn2, int& NumOfCapsOut2, int& NumOfCapsOutl, int& NumOfCapsDOutl,
int& NumOfCapsDOut2, int& FilterTypeln, int& FilterTypeOut,
double& InFilterPrice, double& OutFilterPrice, double& InFilterWeight,
double& OutFilterWeight, double& InFilterVolume, double& OutFilterVolume)

{
double WCIn[250], //A vector containing the magnitudes of the first 250

/harmonics for the converter input current
WCOut[250], /A vector containing the magnitudes of the first 250

/harmonics for the converter output current
Cap2In, CaplIn, Cap2Out, CapsDInl, CapsDIn2, CapsDOutl, CapsDOut2,

CaplOut, //Capacitor values
Rc 1, Rc2, Rinloop,RdlInloop,Rd2lnloop, Routloop, Rdl Outloop,

Rd2Outloop, //Resistor values

146

Lcl, Lc2, Ldl, Ld2, L2Inloop, L3Inloop, LlInloop, L2Outloop,
L3Outloop, LlOutloop, //Inductor values

Price, Weight, Volume, //Running totals for the filters
Qinloop, Qoutloop, //The Q of the filter
In2PowLossloop, InlPowLossloop, Out2PowLossloop, Out 1 PowLossloop,

//The Power lost in the EMI inductor
InFilterPriceloop, InFilterWeightloop, InFilterVolumeloop,

/attrubuted for the input filter
MinFilterCost, //basis of ranking filter designs
OutFilterPriceloop, OutFilterWeightloop, OutFilterVolumeloop,

//attrubuted for the input filter
FilterCost; //The cost of a filter design

bool Valid = TRUE, //True if both filters were designed
Validloop; //True is a given filter if design correctly for one loop

//of the inner control loop
int i, //Counting index

Cap2InIndexloop, CaplInIndexloop, CapDlInIndexloop, CapD2Inlndexloop,
Cap2OutIndexloop, Cap1Outlndexloop, CapD1OutIndexloop,
CapD2OutIndexloop, //Capacitor indexes

In2Gaugeloop, InlGaugeloop, Out2Gaugeloop, OutlGaugeloop, //Wire
//Gauge for the EMI inductors

In2Turnsloop, InlTurnsloop, Out2Turnsloop, OutlTurnsloop,//Number of
//turns for the EMI inductors

In2Windingsloop, InlWindingsloop, Out2Windingsloop,OutlWindingsloop,
//Number of sets of windings for the EMI inductors

L2InIndexloop, LiInIndexloop, L2OutIndexloop, LiOutIndexloop, //EMI
//Inductor indexes

NumOfCapsInl loop, NumOfCapsIn2loop, NumOfCapsDInl loop,
NumOfCapsDIn2loop, NumOfCapsOutl loop,
NumOfCapsOut2loop,NumOfCapsDOutl loop,
NumOfCapsDOut2loop,//Number of capacitors in parallel

FilterTypelnloop, FilterTypeOutloop;//The type of filter topology

GetWorstCaseHarmonics(CellNum, Inductor, Freq, WCIn, WCOut, Mode);
//input filer
srand((unsigned)time(NULL));

MinFilterCost = 99999999;
Valid = FALSE;
for (i = 0; i < m_Configuration2Set.m_ICLiterations; i++)
{

InFilterPriceloop = InFilterWeightloop = InFilterVolumeloop = 0;

//picks the number of capaciters to use - from 1 to CapMax randomly
NumOfCapsIn2loop = rando%mConfigurationSet.mCapMax+1;

//pics the capacitor randonmfly
Cap2InIndexloop = mCapacitorSet.PickCap(mConfigurationSet.mTemperature,

m_ConfigurationSet.mVinmax+10, Cap2ln, Rc2, Lc2, Price, Weight, Volume, SWITCHING);

InFilterPriceloop = Price*NumOfCapsln2loop*CellNum;
InFilterWeightloop = Weight*NumOfCapsln2loop*CellNum;
InFilterVolumeloop = Volume*NumOfCapsIn2loop*CellNum;

147

FilterTypeInloop = mConfiguration2Set.GetFilterTypeo;

if (FilterTypeInloop == 1)

//looks for the bus capacitor of value Cap2In*NumOfCapsInl/4
Capllnlndexloop = im_CapacitorSet.PickSetCap(mConfigurationSet.mTemperature,

mConfigurationSet.mVinmax+ 10, CellNum*Cap2In*NumOfCapsIn2loop/4, Rc 1, Lc 1,
NumOfCapslnlloop, mConfigurationSet.m_CapMax*2, CaplOut, Price, Weight, Volume,
BUS);

InFilterPriceloop += Price*NumOfCapsInl loop;
InFilterWeightloop += Weight*NumOfCapslnl loop;
IiFilterVolumeloop += Volume*NumOfCapslnl loop;

Validloop = DesignFilterl(Freq, CeIlNum, WCIn, Qinloop, L2Inloop, L3Inloop,
Cap2In*CellNum*NumOfCapsln2loop, Rinloop, Rc l/NumOfCapslnl loop,
Rc2/(CellNum*NumOfCapsIn2loop), Lc l/NumOfCapslnl loop,
Lc2/(CellNum*NumOfCapsln2loop));

if (Validloop)
{

L2InIndexloop = mEMlInductorSet.DesignEMI1nductor(&mWireSet, L2Inloop,
m_ConfigurationSet.m_Iout*mConfigurationSet.mVoutmax/mConfigurationSet.mVinmi
n, m_ConfigurationSet.mMaxTemperature - mConfigurationSet.mTemperature,

mConfigurationSet.mInFilterPmax, m_ConfigurationSet.mInFilterSimple, In2Gaugeloop,
In2Turnsloop, In2Windingsloop, In2PowLossloop, Price, Weight, Volume);

InFilterPriceloop += Price;
InFilterWeightloop += Weight;
InFilterVolumeloop += Volume;

}
CapDl1InIndexloop = CapD2InIndexloop = NumOfCapsDInlloop NumOfCapsDIn2loop = -1;
LIInIndexloop = InIGaugeloop = -1;
Inl Turnsloop = InIWindingsloop = -1;
RdlInloop = Rd2lnloop = Lllnloop = InIPowLossloop = -1;
if (L2Inlndexloop == -1)

{
Validloop = FALSE;
Lneeded++;

}
if (CapIInIndexloop == -1)
Validloop = FALSE;

if (Cap2lnlndexloop == -1)
{

Validloop = FALSE;
BusCapneeded++;

}
} //if (FilterTypeInloop == 1)
if (FilterTypeInloop == 2)

{
//looks for another capacitor of value Cap2In*NumOfCapslnl/4
Cap 1 InIndexloop = mCapacitorSet.PickSetCap(mConfigurationSet.mTemperature,

m_ConfigurationSet.mVinmax+10, CellNum*Cap2In*NumOfCapsln2loop/4, Rc l, Lc1,
NumOfCapslnlloop, mConfigurationSet.mCapMax*2, CaplIn, Price, Weight, Volume,
SWITCHING);

148

InFilterPriceloop += Price*NumOfCapslnl loop;
InFilterWeightloop += Weight*NumOfCapslnl loop;
InFilterVolumeloop += Volume *NumOfCapsInl loop;

CapD 1 InIndexloop = m CapacitorSet.PickSetCap(mConfigurationSet.mTemperature,
mConfigurationSet.m_Vinmax+10, Cap I n*NumOfCapslnl loop*10, RdlInloop, Ldl,
NumOfCapsDIn loop, m ConfigurationSet.mCapMax*4,CapsDInl, Price, Weight,
Volume, DAMPING);

InFilterPriceloop += Price*NumOfCapsDInl loop;
InFilterWeightloop += Weight*NumOfCapsDInl loop;
InFilterVolumeloop += Volume*NumOfCapsDInl loop;

CapD2Inlndexloop = m CapacitorSet.PickSetCap(mConfigurationSet.mTemperature,
mConfigurationSet.mVinmax+10, CellNum*Cap2In*NurnOfCapsln2loop* 10, Rd2lnloop,
Ld2, NumOfCapsDln2loop, mConfigurationSet.mCapMax*4,CapsDln2, Price, Weight,
Volume, DAMPING);

InFilterPriceloop += Price*NumOfCapsDln2loop;
InFilterWeightloop += Weight*NumOfCapsDIn2loop;
InFilterVolumeloop += Volume*NumOfCapsDIn2loop;

Rd IInloop = RdlI nloop/NumOfCapsDInl loop;
Rd2lnloop = Rd2lnloop/NumOfCapsDln2loop;
if ((CaplInndexloop!= -1) && (CapDlInlndexloop != -1) && (CapD2Inlndexloop != -1))

Validloop = DesignFilter2(Cap 1 In*NumOfCapslnl loop, Rc 1/NumOfCapslnl loop,
Lc 1 /NumOfCapslnl loop, Cap2In*CellNum*NumOfCapsln2 loop,
Rc2/(CellNum*NumOfCapsln2loop), Lc2/(CellNum*NumOfCapsln2loop),
CapsDInl*NumOfCapsDInl loop, Rd1Inloop, Ldl/NumOfCapsDInl loop,
CapsDIn2*NumOfCapsDln2loop, Rd2Inloop, Ld2/NumOfCapsDIn2loop, L Ilnloop,
L2Inloop, Freq, CellNum, WCIn);

else Validloop FALSE;

if (Validloop)
{
L 1 InIndexloop m_EMlInductorSet.DesignEMlInductor(&mWireSet, L 1 Inloop,

mConfigurationSet.mIout*mConfigurationSet.mVoutmax/m_ConfigurationSet.m_Vinmi
n, mConfigurationSet.mMaxTemperature - mConfigurationSet.mTemperature,
mConfigurationSet.mInFilterPmax, mConfigurationSet.mInFilterSimple, InlGaugeloop,
InlTursloop, InlWindingsloop, InlPowLossloop, Price, Weight, Volume);

InFilterPriceloop += Price;
InFilterWeightloop += Weight;
InFilterVolumeloop += Volume;

L2InIndexloop = m_EMlInductorSet.DesignEMI1nductor(&m WireSet, L2Inloop,
mConfigurationSet.m_Iout*mConfigurationSet.mVoutmax/mConfigurationSet.m_Vinmi
n, mConfigurationSet.mMaxTemperature - mConfigurationSet.mTemperature ,
mConfigurationSet.mInFilterPmax, mConfigurationSet.mInFilterSimple, In2Gaugeloop,
In2Tumsloop, In2Windingsloop, In2PowLossloop, Price, Weight, Volume);

InFilterPriceloop += Price;
InFilterWeightloop += Weight;

149

InFilterVolumeloop += Volume;

}
Qinloop = Rinloop = L3Out = -1;
if ((LlInIndexloop == -1) 11 (L2lnIndexloop == -1))
Validloop = FALSE;

}//if (FilterTypeInloop == 2)
if (FilterTypelnloop == 3)
{

Validloop = DesignFilter3(Cap2In*CellNum*NumOfCapsln2loop,
Rc2/(CellNum*NumOfCapsIn2loop), Lc2/(CellNum*NumOfCapsIn2loop), L2Inloop, Freq,
CellNum, WCIn);

if (Validloop)

L2Inlndexloop = mEMI1nductorSet.DesignEMlInductor(&m_WireSet, L2Inloop,
inConfigurationSet.m_Iout*mConfigurationSet.mVoutmax/mConfigurationSet.m_V
inmin, mConfigurationSet.mMaxTemperature - mConfigurationSet.mTemperature,
m_ConfigurationSet.mInFilterPmax, mConfigurationSet.mInFilterSimple,
In2Gaugeloop, In2Turnsloop, In2Windingsloop, In2PowLossloop, Price, Weight,
Volume);

InFilterPriceloop += Price;
InFilterWeightloop += Weight;
InFilterVolumeloop += Volume;

}
Qinloop = L3Inloop = Rinloop = Rdllnloop = Rd2Inloop = LlInloop = InlPowLossloop = -1;
CaplInIndexloop = NumOfCapsInl loop = CapDlInIndexloop = CapD2Inlndexloop = -1;
NumOfCapsDInl loop = NumOfCapsDIn2loop = -1;
Lllnlndexloop = InlGaugeloop = InlTumsloop = InlWindingsloop = CaplOutIndex = -1;
if (L2InIndexloop == -1)

Validloop = FALSE;
}//if (FilterTypelnloop == 3)

FilterCost = InFilterPriceloop* mConfiguration2Set.m_Price+InFilterWeightloop*
mConfiguration2Set.m_Weight + InFilterVolumeloop* mConfiguration2Set.mVolume;

if ((FilterCost < MinFilterCost) && Validloop)

MinFilterCost = FilterCost;
Qin = Qinloop;
L2In = L2Inloop;
L3In = L3Inloop;
In2PowLoss = In2PowLossloop;
Rin = Rinloop;
Cap2InIndex = Cap2InIndexloop;
Cap InIndex = CapIInIndexloop;
In2Gauge = In2Gaugeloop;
In2Tums = In2Turnsloop;
In2Windings = In2Windingsloop;
L2Inlndex = L2lnIndexloop;
NumOfCapsInl = NumOfCapsInlloop;
NumOfCapsIn2 = NumOfCapsIn2loop;
CapD 1 InIndex = CapD 1 InIndexloop;
CapD2InIndex = CapD2InIndexloop;
NumOfCapsDlnl = NumOfCapsDInl loop;
NumOfCapsDln2 = NumOfCapsDIn2loop;

150

LIInIndex = LIInIndexloop;
InIGauge = In1Gaugeloop;
InlTums = InlTurnsloop;
Ini Windings = Inl Windingsloop;
RdlIn = Rd1Inloop;
Rd2In = Rd2lnloop;
LIIn = LIInloop;
InlPowLoss = InIPowLossloop;
FilterTypeln = FilterTypelnloop;
InFilterPrice = InFilterPriceloop;
InFilterWeight = InFilterWeightloop;
InFilterVolume = InFilterVolumeloop;
Valid = TRUE;

if (!Valid)
return FALSE;

MinFilterCost = 99999;
for (i = 0; i < mConfiguration2Set.mICLiterations; i++)

/output filter
OutFilterPriceloop = OutFilterWeightloop = OutFilterVolumeloop = 0;

NumOfCapsOut2loop = rando%m ConfigurationSet.m CapMax+1;

Cap2OutIndexloop = m_CapacitorSet.PickCap(mConfigurationSet.mTemperature,
m_ConfigurationSet.mVoutmax+5, Cap2Out, Rc2, Lc2, Price, Weight, Volume, SWITCHING);

OutFilterPriceloop = Price*NumOfCapsOut2loop*CellNum;
OutFilterWeightloop Weight*NumOfCapsOut2loop*CellNum;
OutFilterVolumeloop = Volume*NumOfCapsOut2loop*CellNum;

FilterTypeOutloop = mConfiguration2Set.GetFilterTypeo;

if (FilterTypeOutloop == 1)

Cap 1 OutIndex = m CapacitorSet.PickSetCap(mConfigurationSet.mTemperature,
m_ConfigurationSet.mVoutmax+5, CellNum*Cap2Out*NumOfCapsOut2loop/4, Rc 1, Lc I,
NumOfCapsOutlloop, mConfigurationSet.mCapMax*2, CaplOut, Price, Weight, Volume,
BUS);

OutFilterPriceloop += Price*NumOfCapsOutl loop;
OutFilterWeightloop += Weight*NumOfCapsOutl loop;
OutFilterVolumeloop += Volume*NumOfCapsOutI loop;

Validloop = DesignFilterl(Freq, CellNum, WCOut, Qoutloop, L2Outloop,
L3Outloop,Cap2Out*NumOfCapsOut2loop*CellNum, Routloop, Rc 1/NumOfCapsOutl loop,
Rc2/(CellNum*NumOfCapsOut2loop), Lc 1/NumOfCapsOutl loop,
Lc2/(CellNum*NumOfCapsOut2loop));

if (Validloop)
{

L2OutIndexloop = mEMIlnductorSet.DesignEMI1nductor(&m_WireSet, L2Outloop,
mConfigurationSet.m_Lout, mConfigurationSet.m_MaxTemperature -

151

mConfigurationSet.mTemperature, mConfigurationSet.mOutFilterPmax,
mConfigurationSet.mOutFilterSimple, Out2Gaugeloop, Out2Tumsloop,
Out2Windingsloop, Out2PowLossloop, Price, Weight, Volume);

OutFilterPriceloop += Price;
OutFilterWeightloop += Weight;
OutFilterVolumeloop += Volume;

Cap I OutIndexloop = CapD 1 OutIndexloop = NumOfCapsDOutI loop = -1;
CapD2Outlndexloop = NumOfCapsDOut2loop = LlOutIndexloop = OutlGaugeloop = -1;
OutlTurnsloop = -1;
OutlWindingsloop = -1;
Rd 1 Outloop = Rd2Outloop = L IOutloop = Out IPowLossloop -1;
if (L2Outlndexloop == -1)

{
Validloop = FALSE;
Lneeded++;

}
if (CapIOutIndex == -1)

Validloop = FALSE;
if (Cap2OutIndexloop == -1)

{
Validloop = FALSE;
BusCapneeded++;

}

if (FilterTypeOutloop == 2)

{
//looks for another capacitor of value Cap2ln*NumOfCapslnl/4

Cap 1 Outlndexloop = m CapacitorSet.PickSetCap(mConfigurationSet.mTemperature,
mConfigurationSet.mVoutmax+5, CellNum*Cap2Out*NumOfCapsOut2loop/4, Rc 1, Lc 1,
NumOfCapsOutlloop, mConfigurationSet.mCapMax*2, Cap1Out, Price, Weight, Volume,
SWITCHING);

OutFilterPriceloop += Price*NumOfCapsOutl loop;
OutFilterWeightloop += Weight*NumOfCapsOutl loop;
OutFilterVolumeloop += Volume*NumOfCapsOutl loop;

CapD1OutIndexloop = mCapacitorSet.PickSetCap(mConfigurationSet.mTemperature,
mConfigurationSet.mVoutmax+5, CapI Out*NumOfCapsOutl loop* 10, RdlOutloop, Ldl,
NumOfCapsDOutl loop, mConfigurationSet.mCapMax*4,CapsDOutl, Price, Weight,
Volume,DAMPING);

OutFilterPriceloop += Price*NumOfCapsDOutl loop;
OutFilterWeightloop += Weight*NumOfCapsDOutl loop;
OutFilterVolumeloop += Volume*NumOfCapsDOutl loop;

CapD2Outlndexloop = mCapacitorSet.PickSetCap(m ConfigurationSet.mTemperature,
mConfigurationSet.mVoutmax+5, CellNum*Cap2Out*NumOfCapsOut2loop*10,
Rd2Outloop, Ld2, NumOfCapsDOut2loop, mConfigurationSet.mCapMax*4,CapsDOut2,
Price, Weight, Volume,DAMPING);

OutFilterPriceloop += Price*NumOfCapsDOut2loop;
OutFilterWeightloop += Weight*NumOfCapsDOut2loop;

152

OutFilterVolumeloop += Volume*NumOfCapsDOut2loop;

Rd 1 Outloop = Rd 1 Outloop/NumOfCapsDOutl loop;
Rd2Outloop = Rd2Outloop/NumOfCapsDOut2loop;
if ((Cap lOutlndexloop -1) && (CapD lOutIndexloop != -1) && (CapD2OutIndexloop -1))
{

Validloop = DesignFilter2(Cap 1 Out*NumOfCapsOutl loop, Rc l/NumOfCapsOutl loop,
Lc l/NumOfCapsOutl loop, Cap2Out*CellNum*NumOfCapsOut2loop,
Rc2/(CellNum*NumOfCapsOut2loop), Lc2/(CellNum*NumOfCapsOut2loop),
CapsDOutl *NumOfCapsDOutl loop, RdlOutloop, Ldl/NumOfCapsDOutl loop,
CapsDOut2*NumOfCapsDOut2loop, Rd2Outloop, Ld2/NumOfCapsDOut2loop, LlOutloop,
L2Outloop, Freq, CellNum, WCOut);

}
else Validloop = FALSE;

if (Validloop)
{

L 1 OutIndexloop = mEMlInductorSet.DesignEMI1nductor(&m_WireSet, L 1 Outloop,
mConfigurationSet.mlout, mConfigurationSet.mMaxTemperature -
m_ConfigurationSet.MTemperature , mConfigurationSet.rm_OutFilterPmax,
mConfigurationSet.m_ OutFilterSimple, OutlGaugeloop, OutlTurnsloop,
OutI Windingsloop, Outl PowLossloop, Price, Weight, Volume);

OutFilterPriceloop += Price;
OutFilterWeightloop += Weight;
OutFilterVolumeloop += Volume;

L2Outlndexloop = mEMllnductorSet.DesignEMI1nductor(&mWireSet, L2Outloop,
mConfigurationSet.mlout, mConfigurationSet.mMaxTemperature -
mConfigurationSet.mTemperature, mConfigurationSet.mOutFilterPmax,
m_ConfigurationSet.mOutFilterSimple, Out2Gaugeloop, Out2Tumsloop,
Out2Windingsloop, Out2PowLossloop, Price, Weight, Volume);

OutFilterPriceloop += Price;
OutFilterWeightloop += Weight;
OutFilterVolumeloop += Volume;

Qoutloop = Routloop = L3Outloop = -1;
if ((LIOutIndexloop == -1) f(L2OutIndexloop == -1))

Validloop = FALSE;
I
if (FilterTypeOutloop == 3)

Validloop = DesignFilter3(Cap2Out*CellNum*NumOfCapsOut2loop,
Rc2/(CellNum*NumOfCapsOut2loop), Lc2/(CellNum*NumOfCapsOut2loop), L2Outloop,
Freq, CellNum, WCOut);

if (Validloop)
{

L2OutIndexloop = m EMIInductorSet.DesignEMlInductor(&mWireSet, L2Outloop,
m_ConfigurationSet.m_lout, m ConfigurationSet.mMaxTemperature -
m_ConfigurationSet.m Temperature , mConfigurationSet.m_OutFilterPmax,
m_ConfigurationSet.mOutFilterSimple, Out2Gaugeloop, Out2Tumsloop,
Out2Windingsloop, Out2PowLossloop, Price, Weight, Volume);

153

OutFilterPriceloop += Price;
OutFilterWeightloop += Weight;
OutFilterVolumeloop += Volume;

}
Qoutloop = L3Outloop = Routloop = RdIOutloop = Rd2Outloop = LIOutloop = -1;
OutIPowLossloop = -1;
Cap lOutIndex = NumOfCapsOutlloop = CapDlOutIndexloop = NumOfCapsDOutlloop = -1;
CapD2OutIndexloop = NumOfCapsDOut2loop = -1;
L Outlndexloop=Cap 1 Outlndexloop =Out IGaugeloop=OutITumsloop=Out IWindingsloop = -1;
if (L2Outlndexloop == -1)

Validloop = FALSE;

FilterCost = OutFilterPriceloop* mConfiguration2Set.mPrice+ OutFilterWeightloop*
m_Configuration2Set.mWeight+OutFilterVolumeloop*mConfiguration2Set.m_Volume;

if ((FilterCost < MinFilterCost) && Validloop)

{
MinFilterCost = FilterCost;
Qout = Qoutloop;
L2Out = L2Outloop;
L3Out = L3Outloop;
Out2PowLoss = Out2PowLossloop;
Rout = Routloop;
Cap2OutIndex = Cap2Outlndexloop;
Cap 1 OutIndex = Cap 1 Outlndexloop;
Out2Gauge = Out2Gaugeloop;
Out2Turns = Out2Tumsloop;
Out2Windings = Out2Windingsloop;
L2OutIndex = L2Outlndexloop;
NumOfCapsOutl = NumOfCapsOutl loop;
NumOfCapsOut2 = NumOfCapsOut2loop;
CapD 1 OutIndex = CapD 1 Outlndexloop;
CapD2OutIndex = CapD2Outlndexloop;
NumOfCapsDOutl = NumOfCapsDOutl loop;
NumOfCapsDOut2 = NumOfCapsDOut2loop;
LIOutlndex = L1OutIndexloop;
OutlGauge = OutlGaugeloop;
OutITums = Outl Tursloop;
OutlWindings = OutlWindings;
Rd IOut = Rdl Outloop;
Rd2Out = Rd2Outloop;
LIOut = L IOutloop;
OutlPowLoss = OutlPowLossloop;
FilterTypeOut = FilterTypeOutloop;
OutFilterPrice = OutFilterPriceloop;
OutFilterWeight = OutFilterWeightloop;
OutFilterVolume OutFilterVolumeloop;
Valid = TRUE;

}

return Valid;

154

void CResultSet::AddRecord(double FETPrice, long IDnum, double Weight, double Price,
double S2Price, double SinkWeight, double SinkVolume, double SinkPrice, double CaplInPrice,
double CapIOutPrice, double CaplInWeight, double CaplOutWeight, double CaplInVolume,
double Cap 1 OutVolume, double L2InPrice, double L2OutPrice, double L2InWeight,
double L2OutWeight, double L2InVolume, double L2OutVolume, double ControlPrice,
double ControlWeight, double ControlVolume, double ControlArea, double IndVolume,
double IndArea, double PCboardPrice, int CellNum, double CostPrice, double CostWeight,
double CostVolume, int Length, double InFilterPrice, double OutFilterPrice,
double InFilterWeight, double OutFilterWeight, double InFilterVolume, double OutFilterVolume)

AddRecord stores all necessary information into the database.

Parameters:
FETPrice: The price of the MOSFET
IDnum : The iteration number
Weight, Price : The price and weight of the converter inductor per cell
S2Price: The price of switch 2
SinkWeight, SinkVolume, SinkPrice : The price, weight and volume of the heatsink
Cap 1 InPrice, Cap 1 OutPrice, Cap 1 InWeight, Cap 1 OutWeight, Cap 1 InVolume,

Cap lOutVolume : The price, weight, and volume of the filter capacitors
L2InPrice, L2OutPrice, L2InWeight, L2OutWeight, L2InVolume, L2OutVolume:

The price, weight, and volume of the EMI filter inductors
ControlPrice, ControlWeight, ControlVolume, ControlArea : Properties of the

control circuitry for the converter
IndVolume, IndArea : The volume and board space of the converter inductor per cell
PCboardPrice : The cost of the PC board in $/cm^2
CellNum: The number of cells
CostPrice, CostWeight, CostVolume : The coefficients used to calculate the converter cost
Length : The length of extruded heatsink needed
InFilterPrice, OutFilterPrice, InFilterWeight, OutFilterWeight, InFilterVolume,

OutFilterVolume : Properties of the filters used

void CResultSet::AddRecord(double FETPrice, long IDnum, double Weight, double Price,
double S2Price, double SinkWeight, double SinkVolume, double SinkPrice, double CaplInPrice,
double CaplOutPrice, double CaplInWeight, double CaplOutWeight, double CaplInVolume,
double Cap lOutVolume, double L2LnPrice, double L2OutPrice, double L2InWeight,
double L2OutWeight, double L2InVolume, double L2OutVolume, double ControlPrice,
double ControlWeight, double ControlVolume, double ControlArea, double IndVolume,
double IndArea, double PCboardPrice, int CellNum, double CostPrice, double CostWeight,
double CostVolume, int Length, double InFilterPrice, double OutFilterPrice,
double InFilterWeight, double OutFilterWeight, double InFilterVolume, double OutFilterVolume)

{
double TotalPrice, //The price of the converter

TotalWeight, //The weight of the converter
TotalVolume; //The volume of the converter

AddNewo;
m_IDnum = IDnum;
m_FETPrice = FETPrice;
mCoreWeight = Weight;
m_CorePrice = Price;
m_S2Price = S2Price;
m_SinkWeight = SinkWeight;

155

m_SinkVolume = SinkVolume;
m_SinkPrice = SinkPrice;
m_Cap1InPrice = CaplInPrice;
m_Cap lOutPrice = Cap lOutPrice;
m_Cap IInWeight = Cap 1 InWeight;
m_Cap IOutWeight = Cap lOutWeight;
mCaplInVolume = CaplInVolume;
m_CaplOutVolume = CaplOutVolume;
m_L2InPrice = L2InPrice;
m_L2OutPrice = L2OutPrice;
mL2InWeight = L2InWeight;
m_L2OutWeight = L2OutWeight;
m_L2InVolume = L2InVolume;
m L2OutVolume = L2OutVolume;
mControlPrice = ControlPrice;
mControlWeight = ControlWeight;
mControlVolume = ControlVolume;
m_ControlArea = ControlArea;
m_PCboardPrice = PCboardPrice;
m_CellNum = CellNum;
mIndVolume = IndVolume;
m_IndArea = IndArea;
m_Length = Length;
mInFilterPrice = InFilterPrice;
m_OutFilterPrice = OutFilterPrice;
mInFilterWeight = InFilterWeight;
m_OutFilterWeight = OutFilterWeight;
m InFilterVolume = InFilterVolume;
m_OutFilterVolume = OutFilterVolume;

TotalPrice = mPCboardPrice+InFilterPrice+OutFilterPrice+mControlPrice+
CellNum*(mFETPrice+mCorePrice+mS2Price+mSinkPrice);

TotalWeight = InFilterWeight+OutFilterWeight+m_ControlWeight+
CellNum*(mCoreWeight+mSinkWeight);

TotalVolume = InFilterVolume+OutFilterVolume+mControlVolume+
CellNum*(mlndVolume+m_SinkVolume);

m_TotalCost = (TotalPrice*CostPrice+TotalWeight*CostWeight+
TotalVolume*CostVolume);

if (CanUpdate()
Updateo;

int CFETSet::PickFET(double& Price, CString& Name, int& NumUsing,
double MaxTemp, double Temp, double AveCurrent, int& Package)

PickFET chooses a MOSFET randomly from the available records in the database.

Parameters:
Price : The price of the MOSFET chosen
Name : The name of the MOSFET chosen
NumUsing: The number of available MOSFETs

156

MaxTemp : The Max. Temperature allowed of the system
Temp : The ambient temperature
AveCurrent : The average current through the MOSFET
Package : The case of the FET //1st bit is 1 if MOSFET is TO-220

//3rd bit is 1 if MOSFET is TO-247

Output
The index of the chosen MOSFET, -1 is no valid MOSFET was found

int CFETSet::PickFET(double& Price, CString& Name, int& NumUsing,
double MaxTemp, double Temp, double AveCurrent, int& Package)

int chosen, //Variable that counts MOSFETs
FETnum= 0; //The index of the MOSFET

NumUsing = 0;
srand((unsigned)time(NULL));
, /First count the number of available records
MoveFirsto;
while (!IsEOFO)

if (mUsing && ((MaxTemp + 20) < mMaxTemperature) &&
(AveCurrent*(mRa*Temp*Temp+mRb*Temp+mRc) < 10))

//20 is a threshold of the temp we are going to allow to be used
//10 is a crude method of calculating power dissipation to insure an
//inadequate device is not used

NumUsing++;
MoveNexto;

I/if no FET available then cause error
if (NumUsing == 0)

return -1;
//randomly choose a FET
chosen = rando%NumUsing;
MoveFirsto;
FETnum = 0;
while (!IsEOF() && (chosen > -1))
{

if (mUsing && ((MaxTemp + 20) < nMaxTemperature)&&
(AveCurrent*(mRa*Temp *Tenmp+mRb*Temp+mRc) < 10))

chosen--;
FETnum++;
MoveNexto;
}

if (!IsBOFO)
MovePrevo;

Price = atof(m_UnitPrice);
Name = mFET;
Package = 0;
if (mPackage == "TO-220")

Package = 1;
if (m Package == "TO-247")

Package = Package+4;
MoveFirsto;
return FETnum;

157

void CTIMCADDoc::GetMaxPowLossF(int FETnum, double Freq, int Switch, int CellNum,
dovole L, int Mode, double& PowMax, double& FETPcapSave, double& FETPswSave,
double& S2ThermalResistanceSave)

GetMaxPowLossF sweeps the range of possible input and output voltages in order to determine when a
MOSFET has the maximum power loss.

Parameters:
FETNum: the index of the FET that is being used.
Freq : the switching frequency of the converter
Switch : determines if this is switch one or two.
CellNum : Number of cells in the converter
L : the value of the converter inductance
Mode : CM or DCM
Powmax : the maximum power loss
FET2PcapSave : for the worst case power loss, the power lost by S2 due to

the capacitance across the FET
FETPswSave : for the worst case switching power loss, the power lost by the FET

due to the switching losses.
S2ThermalResistanceSave : the thermal resistance for the FET with worst case

power loss

void CTIMCADDoc::GetMaxPowLossF(int FETnum, double Freq, int Switch, int CellNum,
double L, int Mode, double& PowMax, double& FETPcapSave, double& FETPswSave,
double& S2ThermalResistanceSave)

{
int x, y; //Counting Indexes
double CurrentPeak, //The peak current in the converter

Irms, //The rms current in the Inductor
SIrms, //The rms current in the switch 1
S2rms, //The rms current in the switch 2
waveform[1200], //Vectors of the current in the inductor
waveformS2[1200], //Vectors of the current in switch 2
linitial, //The amount of current through the MOSFET when it turns on
Vin, //The input voltage
Vout, //The output voltage
FETPcond, //The conduction power losses in the MOSFET
FETPsw, //The switching power losses in the MOSFET
FETPcap, /The power associated with the capacitance across the MOSFET
S2ThermalResistance, //The thermal resistance of the MOSFET chosen
Loss, //The power loss of the MOSFET
MaxLoss; //The max Power loss of the MOSFET

bool Valid; //True if no errors occured

MaxLoss = 0.0;
for (x = 0; x < 11; x++)

{
Vin = m ConfigurationSet.mVinmin + (mConfigurationSet.mVinmax -

mConfigurationSet.mVinmin)*x/10;
for (y=0;y<l 1;y++)
{
Vout = m_ConfigurationSet.mVoutmin + (mConfigurationSet.mVoutmax -

mConfigurationSet.mVoutmin)*y/10;

158

Valid = GetInductorCurrentlnfo(CellNum, Freq, L, Vout, Vin, Irms, SIrms, S2rms, waveform,
waveformS2, linitial, Mode);

if (Valid == FALSE)
continue;

if (Switch == 1)
Loss = mfETSet.PowLoss(FETnum, Vin, CurrentPeak, mConfigurationSet.m_Idrive,

Freq, Slrmis, FETPcond, FETPsw, FETPcap, S2ThermalResistance, linitial,
Switch, mConfigurationSet.mTemperature);

else
Loss = mfETSet.PowLoss(FETnum, Vin, Iinitial, mConfigurationSet.m_Idrive,

Freq, S2rms, FETPcond, FETPsw, FETPcap, S2ThermalResistance, CurrentPeak,
Switch, mConfigurationSet.mTemperature);

if (Loss > MaxLoss)
f

MaxLoss = Loss;
PowMax = FETPcond;
FETPcapSave= FETPcap;
FETPswSave = FETPsw;
S2ThermalResistanceSave = S2ThermalResistance;

f}

bool ClnductSet::Getlnductor(CWireSet* mpWireData, double L, double Ipk,
double Irms, double freq, double Temp, double TempMax,
double waveform[1200], int& turns, int& Gauge, double& Bpksave,
double& Jwiresave, double& Pcoresave, double& Pwindsave,
double& deltaTsave, long& IndNum, int& Cores)

GetInductor chooses an appropriate core for each converter cells and insures a proper design of the
inductor.

Parameters:
m-pWireData : The Wire database
L : The value of the converter inductance
Ipk : The peak current in the converter inductor
Irms : The rms current in the converter inductor
freq : The switching frequency of the converter
Temp : The ambient temperature
TempMax : The Max. allowable temperature of the converter inductor
waveform[1200] : A vector of the inductor current
turns : The number of turns on the core
Gauge : The gauge of wire to use to wind the core
Bpksave : The max. flux density in the core
Jwiresave : The current density of the wire in the inductor
Pcoresave The power loss due to the core
Pwindsave The power loss due to the windings
deltaTsave : The temperature rise of the core
IndNum: An Index to the core used
Cores : The number of cores used in parallel

Output
True if an Inductor was successively designed

159

bool CInductSet::GetInductor(CWireSet* mpWireData, double L, double Ipk, double Irms, double freq,
double Temp, double TempMax, double waveform[1200], int& turns, int& Gauge, double&
Bpksave, double& Jwiresave, double& Pcoresave, double& Pwindsave, double& deltaTsave,
long& IndNum, int& Cores)

{
bool Valid = FALSE; //True if the design is valid
int N, //The Number of turns

m, //Layers of winding used
i, //Counting number
harmonic; //Counting number

double Bpk, //Peak flux density
wirearea, /The area taken up the turns of wire needed
Jwire, I/Current density in the core
Pcore, //The core power loss
RwireDC, //The wire's total resistance at DC current
Resistance, //The wire's resistance per cm
heff, //The effective height of the wire
MA, MB, MC, MD, M1, DA, DB, DC, DD, D1, //Terms used to find the effects

/of skindepth on the wire
dc =0, t[1200]; //Terms used to decompose the inductor current

double Xk[240], //The skin depth of the wire
Rmult[240], /The resistance as a function of frequency
real = 0, imag = 0, //Terms used to do fourier transforms
current[240], //The coefficents of the fourier transforms
Pwind = 0, //The windings power loss
deltaT =0.0, //The temperature rise of the core
Leff, /The inductance do to the cores in parallel
Ipkeff, //The peak current do to the cores in parallel
Irniseff; //The rms current do to the cores in parallel

Leff= L*Cores;
Ipkeff = Ipk/Cores;
Irmseff = Irms/Cores;

MoveFirsto;
for (i = 0;i<1200;i++)

dc = wave form[i]/(Cores* 1200)+dc;
t[i] = i/(freq* 1200);

}
for (harmonic = 1;harmonic<240;harmonic++)
{

for (i = 0;i<1200;i++)
{

real = waveform[i]/Cores*cos(harmonic*freq*2*PI*t[i])/ 1200+real;
imag = -1*waveform[i]/Cores*sin(harmonic*freq*2*PI*t[i])/ I200+imag;

}
current[harmonic] = 2 *sqrt(real*real + imag*imag)/sqrt(2);//rms values
real =0;
imag = 0;

}
current[0] = dc;

m_strSort = "InductorID";
if(CanRestart())

160

Requery();
MoveFirsto;
while(!IsEOF()

if (mUsing)
5k

Valid = TRUE;
//the number of turns on the inductor
double Nd;

Nd = (I000*sqrt(1000*Leff/mAL));
N = (int)floor(Nd);
if ((Nd-N) > .5)

N++;
//the B field at peak current

Bpk = 0.1 *m_AL*N*Ipkeff/mCoreArea;
if (Bpk > 3000)

Valid = FALSE;

//chooses the lowest gauge that will fit on the core
if (Valid)
{

mpWireData->MoveFirstO;
while (Valid)

if (mpWireData->IsEOFO)

Valid = FALSE;
break;

wirearea = N/mpWireData->mturnsper square_inch;
if (wirearea < mWindingArea)

break;
if (!mpWireData->IsEOFO)

npWireData->MoveNext(;

//checks the current density
if (Valid)

Jwire = Irmseff/(PI*pow(mpWreData->mdiameter/2,2));
if (Jwire > 3000)

Valid = FALSE;
}

if (Valid)

Pcore = .000000000000916*pow(.00 1*freq, 1.231)*pow(Bpk/2,2.793)*m CoreVolume;
Resistance = mpWireData->mResistanceper inch*(1+.004*(Temp-20));

double md;
md = (N/(0.9*m WindingWidth/mpWireData->m insulatedwirediameter));
m = (int)floor(md);
if ((md-m) > .5)

m++;
if(m != 1)

RwireDC = Resistance*mLengthPerTurnFull*N;

161

else RwireDC = Resistance*mLengthPerTurn l_layer*N;
heff= pow(PI/4,.75)*pow(mpWireData->mdiameter, 1.5)/sqrt(m_pWireData->

m_insulatedwirediameter);

Rmult[O] = 1;
Pwind = current[O]*current[O]*RwireDC*Rmult[O];
for (i=1;i<240;i++)
{

Xk[i] = heff/(2.6/(sqrt(i/(freq*2*PI))));
MA = cos(Xk[i])*(exp(Xk[i])+exp(-1 *Xk[i]));
MB = cos(Xk[i])*(exp(Xk[i])-exp(-1 *Xk[i]));
MC = sin(Xk[i])*(exp(Xk[i])-exp(- 1 *Xk[i]));
MD = sin(Xk[i])*(exp(Xk[i])+exp(- 1 *Xk[il]));
MI = Xk[i]*(MA*MB+MC*MD+MA*MD-MB*MC)/(MB*MB+MD*MD);
DA = cos(Xk[i]/2)*(exp(Xk[i]/2)-exp(- 1 *Xk[i]/2));
DB = cos(Xk[i]/2)*(exp(Xk[i]/2)+exp(- 1 *Xk[i]/2));
DC = sin(Xk[i]/2)*(exp(Xk[i]/2)+exp(-1 *Xk[i]/2));
DD = sin(Xk[i]/2)*(exp(Xk[i]/2)-exp(-1*Xk[i]/2));
DI = 2*Xk[i]*(DA*DB+DC*DD+DA*DD-DB*DC)/(DB*DB+DD*DD);
Rmult[i] = MI + (m*n-1)*D1/3;
Pwind = current[i]*current[il]*RwireDC*Rmult[i]+Pwind;

}
}

if (Valid)
{

deltaT = m_ThermalResistance *(Pwind+Pcore);
if (deltaT > (TempMax - Temp))

Valid = FALSE;

if (Valid)
break;

}
MoveNexto;

}
if (Valid)
{

turns = N;
Gauge = n_pWireData->m gauge;
Bpksave = Bpk;
Jwiresave = Jwire;
Pcoresave = Pcore;
Pwindsave = Pwind;
deltaTsave = deltaT;
IndNum = (int) m_InductorID;

}

if (Valid == FALSE && Cores < 4)

{
Cores++;
Valid = GetInductor(m_pWireData, L, Ipk, Irms, freq, Temp, TempMax, waveform, turns, Gauge,

Bpksave, Jwiresave, Pcoresave, Pwindsave, deltaTsave, IndNum, Cores);
}
return Valid;

I

162

int CSchottkySet::PickSchottky(double& Price, CString& Name, int NumUsing,
double MaxTemp, double AveCurrent, int& Package)

PickSchottky chooses a Schottky Diode randomly from the available records in the database.

Parameters:
Price : The price of the Schottky diode
Name : The name of the Schottky diode
NumUsing: The number of available Schottky diodes
MaxTemp : The max. temperature allowed
AveCurrent : The average current in the diode
Package : The case the diode is in 2nd bit is 1 if S2 is TO-220

4th bit is 1 if S2 is TO-247

Output
The index of the Schottky diode chosen

int CSchottkySet::PickSchottky(double& Price, CString& Name, int NumUsing,
double MaxTemp, double AveCurrent, int& Package)

int chosen, num = 0; //Variables used for counting

srand((unsigned)time(NULL));
//First count the number of available records
MoveFirsto;
//if no FET available then cause error
if (NumUsing == 0)

return -1;
//randonly choose a FET
chosen = rando%NumUsing;
num = 0;
while (!IsEOFO && (chosen > -1))
{

if (m_Using && ((MaxTemp + 20) < m MaxTemperature) &&
(AveCurrent < mIf))

chosen--;
num++;
MoveNexto;

}
if (!IsBOFO)

MovePrevo;
Price = (mPrice);
Name = mName;
if (mPackage == _T("TO-220"))

Package = Package+2;
if(m _Package == _T("TO-247"))

Package = Package+8;
MoveFirsto;
return num;
}

163

void CTIMCADDoc::GetMaxPowLossS(int CellNum, double Freq, double Inductor, double& PowMax,
double& S2PcapSave, double& S2ThermalResistanceSave, int Mode, int SchottkyNum)

GetMaxPowLossS sweeps the range of possible input and output voltages in order to determine when a
Schottky Diode has the maximum power loss.

Parameters:
CellNum : Number of cells in the converter
Freq : The switching frequency of the converter
Inductor : The value of the converter inductance
Powmax: The maximum power loss
S2PcapSave : For the worst case power loss, the power lost by the FET

due to the capacitance across the schottky diode
S2ThermalResistanceSave : The thermal resistance for the diode with worst case

power loss
Mode: CM or DCM
SchottkyNum: The index of the Schottky diode used

void CTIMCADDoc::GetMaxPowLossS(int CellNum, double Freq, double Inductor, double& PowMax,
double& S2PcapSave, double& S2ThermalResistanceSave, int Mode, int SchottkyNum)

int x, y; //Counting indexes
double Vin, //Input Voltage

Vout, //Output Voltage
CurrentPeak, //The peak current in the Schottky Diode
Slrms, //The rms current in switch 1
S2rms, //The rmis current in switch 2
waveform[1200], //Vectors of the current in the inductor
waveformS2[1200], I/Vectors of the current in the the Schottky diode
Iinitial, //The current when the Schottky diode turns off
S2Pcond, //Conduction power loss in the schottky diode
S2Pcap, /for the worst case power loss, the power lost by the FET

//due to the capacitance across the schottky diode
S2ThermalResistance, //The thermal resistance for the diode with worst case

/power loss
Irms; //The rms current in the inductor

bool Valid; //True if no error occured

m_SchottkySet.MoveFirsto;
for (x = 1;x < SchottkyNum; x++)

if (!mSchottkySet.IsEOF()
m_ SchottkySet.MoveNexto;

PowMax = 0.0;
for (x =0; x < 11; x++)

Vin = mConfigurationSet.m_Vinmin + (mConfigurationSet.mVinmax -
mConfigurationSet.mVinmin) * x/10;

for (y-0;y<1 I;y++)

{
Vout = mConfigurationSet.mVoutmin + (mConfigurationSet.mVoutmax -

m_ConfigurationSet.mVoutmin)*y/10;
Valid = GetInductorCurrentlnfo(CellNum, Freq, Inductor,Vout, Vin, CurrentPeak, Irms,

Slrms, S2rms, waveform, waveformS2, Iinitial, Mode);
if (Valid == FALSE)

164

continue;
m SchottkySet.PowLoss(waveformS2, Vin, Freq, S2Pcond, S2Pcap, S2ThermalResistance);
if (S2Pcond > PowMax)
{

PowMax = S2Pcond;
S2PcapSave = S2Pcap;
S2ThermalResistanceSave = S2ThermalResistance;

}

int CDiodeSet::PickDiode(double& Price, CString& Name, int NumUsing,
double MaxTemp, double AveCurrent, int& Package)

PickDiode chooses a Diode randomly from the available records in the database.

Parameters:
Price : The price of the PiN diode
Name : The name of the PiN diode
NumUsing: The number of available PiN diodes
MaxTemp : The max. temperature allowed
AveCurrent : The average current in the diode
Package : The case the diode is in 2nd bit is 1 if S2 is TO-220

4th bit is 1 if S2 is TO-247

Output
The index of the PiN diode chosen

*///////////////1///////I///////////////////////////////////I///////1///////1

int CDiodeSet::PickDiode(double& Price, CString& Name, int NumUsing,
double MaxTemp, double AveCurrent, int& Package)

int chosen, num = 0; //Counting variables

srand((unsigned)time(NULL));
MoveFirsto;
//if no FET available then cause error
if (NumUsing == 0)

return -1;
/randomly choose a FET
chosen = rando%NumUsing;
while (!IsEOFO && (chosen > -1))

{
if (mUsing && ((MaxTemp + 20) <m Max Temperature) &&

(AveCurrent < mIf))
//20 is the headroom for the device to be used

chosen--;
num++;
MoveNexto;

}
MovePrevo;
Price = mPrice;
Name = mName;
if (mPackage == _T("TO-220"))

165

Package = Package+2;
if (mPackage == _T("TO-247"))

Package = Package+8;
MoveFirsto;
return num;
}

void CTIMCADDoc::GetMaxPowLossD(int CellNum, double Freq, double L,
double& PowMax, double& S2PswSave, double& S2PcapSave,
double& S2ThermalResistanceSave, int Mode, int DiodeNum)

GetMaxPowLossD sweeps the range of possible input and output voltages in order to determine when a

Diode has the maximum power loss.

Parameters:
CellNum: Number of cells in the converter
Freq : The switching frequency of the converter
L : The value of the converter inductance
Powmax: The maximum power loss
S2PswSave : For the worst case power loss, the switching power loss
S2PcapSave : For the worst case power loss, the power lost by the FET

due to the capacitance across the PiN diode
S2ThermalResistanceSave : The thermal resistance for the diode with worst case

power loss
Mode: CM or DCM
DiodeNum: The index of the PiN diode used

void CTIMCADDoc::GetMaxPowLossD(int CellNum, double Freq, double L,
double& PowMax, double& S2PswSave, double& S2PcapSave,
double& S2ThermalResistanceSave, int Mode, int DiodeNum)

{
int x, y; //Counting indexes
double Vin, //Input Voltage

Vout, //Output Voltage
CurrentPeak, //The peak current in the PiN Diode
SIrms, //The rms current in switch 1
S2rms, //The rms current in switch 2
waveform[1200], //Vectors of the current in the inductor
waveformS2[1200], //Vectors of the current in the the PiN diode
linitial, //The current when the PiN diode turns off
S2Pcond, //Conduction power loss in the PiN diode
S2Psw, /Switching power loss in the PiN diode
S2Pcap, /for the worst case power loss, the power lost by the FET

//due to the capacitance across the PiN diode
S2ThermalResistance, //The thermal resistance for the diode with worst case

/power loss
Irms; //The rmis current in the inductor

bool Valid; //True if no error occured

mDiodeSet.MoveFirsto;
for (x = 1;x < DiodeNum; x++)

if (!mDiodeSet.IsEOF()
m_DiodeSet.MoveNexto;

PowMax =0.0;

166

for (x = 0; x < 11; x++)

{
Vin = mConfigurationSet.m Vinmin + (mConfigurationSet.mVinmax -

nConfigurationSet.m_Vinmin)*x/10;
for (y=O;y< I1;y++)
{

Vout = mConfigurationSet.mVoutmin + (mConfigurationSet.mVoutmax -
m_ConfigurationSet.mVoutmin)*y/10;

Valid = GetlnductorCurrentlnfo(CellNum, Freq, L, Vout, Vin, CurrentPeak, Irms, Slrms,
S2rms, waveform, waveformS2, linitial, Mode);

if (Valid == FALSE)
continue;

mDiodeSet.PowLoss(Iinitial, waveformS2, Vin, Freq, S2Pcond, S2Psw, S2Pcap,
S2ThermalResistance);

if (S2Pcond > PowMax)

PowMax = S2Pcond;
S2PcapSave = S2Pcap;
S2PswSave = S2Psw;
S2ThermalResistanceSave = S2ThermalResistance;

}
}

bool CHeatSinkSet::PickHeatSink(double DeltaTAllowed, double FETTemp, double S2Temp,
double& TempHeatSink, double& TempHeatSinkl, int& SinkNum, int& SinkNuml,
double FETPtot, double S2Ptot, int& Length, double Rcs, int Packages)

PickHeatSink chooses an appropriate heatsink based upon the maximum power losses the devices may
endure.

Parameters:
DeltaTAllowed : The difference between the max temperature and the ambient
FETTemp : The temperature rise on the MOSFET
S2Temp : The temperature rise on switch 2
TempHeatSink : The temperature rise on the first heatsink
TempHeatSinkl : The temperature rise on the second heatsink
SinkNum : The index of the first heatsink
SinkNuml : The index of the second heatsink
FETPtot : The max power dissapation from the FET
S2Ptot : The max power dissapation from switch 2
Length : The length of the extrusion
Rcs : The thermal resistance from case to sink
Packages : The casing of the devices

1st bit is I if S1 is TO-220 2nd bit is 1 if S2 is TO-220
3rd bit is 1 if Sl is TO-247 4th bit is 1 if S2 is TO-247

Output
True is a heatsink is designed successively
*//

bool CHeatSinkSet::PickHeatSink(double DeltaTAllowed, double FETTemp, double S2Temp,
double& TempHeatSink, double& TempHeatSinkl, int& SinkNum, int& SinkNuml,
double FETPtot, double S2Ptot, int& Length, double Rcs, int Packages)

{

167

bool Valid; //True if heatsink is valid
double DeltaT, //The temperature rise

Ptot, //The power dissapated from both devices
RI; /the ratio of thermal resistances

int doubles, //The number of heatsink that accept 2 devices
singles, //The number of heatsink that accept 1 device
num, //Variable used for counting
total, /Total number of heatsinks
extru, //The number of extruded heatsinks
record; //The index of the database table

Ptot = FETPtot + S2Ptot;
doubles = 0;
singles = 0;
Valid = FALSE;
Length = 0;
total =0;

extru =0;
SinkNuml = -1;
MoveFirsto;
while(!IsEOFO)
{

if (mUsing)
{
if (mCount == 2)

doubles++;
else if (mCount == 1)

singles++;
else if (mCount == 0)

extru++;
I
MoveNext();

total = doubles+singles+extru;
srand((unsigned)time(NULL));
num = rando%total;
m_strSort = "rank";
if(CanRestart())

Requery();
MoveFirsto;

//Use a heatsink designed for two chips
if (num < doubles)
{

SinkNuml = -1;
TempHeatSinkl -1;
while(!IsEOFO)
{

if (mUsing && mCount == 2)

{
Valid = TRUE;
if (mHighModel)

TempHeatSink = m_R2*Ptot*Ptot+m_Ri *Ptot+m_RO;
else

TempHeatSink = Ptot*mThermalResistance;
if (FETTemp > S2Temp)

168

{
DeltaT = TempHeatSink+FETTemp + Rcs*FETPtot;
if (DeltaT > DeltaTAllowed)

Valid = FALSE;
}
else
{

DeltaT = TempHeatSink+S2Temp + Rcs*S2Ptot;
if (DeltaT > DeltaTAllowed)

Valid = FALSE;
}
if (Valid)
{

SinkNum = mrank;
break;

f }

MoveNext(;
}

}
else if (num < singles+doubles)

while(IsEOFO)
{

//First the FET
if ((Packages&l == 1 && m_TO 220) fl (Packages&2 2 && mTO_247))

if(mUsing && m_Count == 1)

Valid = TRUE;
if (n HighModel)

TermpHeatSink = mR2*FETPtot*FETPtot+m_Rl *FETPtot+mRO;
else

TeipHeatSink = FETPtot*miThermalResistance;
DeltaT = TempHeatSink+FETTeip + Rcs*FETPtot;
if (DeltaT > DeltaTAllowed)

Valid = FALSE;
else break;

}
MoveNext();

}
if (Valid)

SinkNumi= mrank;
MoveFirsto;
if (Valid)
{

while(!IsEOFO)
{
//Next S2

if ((Packages&4 == 4 && inTO 220) (Packages%8 == 8 && mTO_247))
if (in Using && mCount == 1)
{

Valid = TRUE;
if (mHighModel)

TempHeatSinkl = mR2*S2Ptot*S2Ptot+m_R1*S2Ptot+mRO;
else

TempHeatSinkl = S2Ptot*mThermalResistance;

169

DeltaT = TempHeatSinkl+S2Temp + Rcs*S2Ptot;
if (DeltaT > DeltaTAllowed)

Valid = FALSE;
else break;

}
MoveNexto;

}
if (Valid)
SinkNuml = m_rank;
}

}
if (!Valid)
//if nothing available goto extrusion design

{
SinkNuml -1;
m_strFilter = "Count = 0";
m_strSort = "ThermalResistance DESC";
Requeryo;
if (IsEOF() && IsBOFO)
{

m_strFilter =

Requeryo;

}
else

{
record = GetRandomNumber(0, extru);
SetAbsolutePosition(record);
while(l)
{

if (mUsing && mCount == 0)
{

Valid = TRUE;
if (FETTemp > S2Temp)

R= DeltaTAllowed/(Ptot)-FETTemp/FETPtot-Rcs;
else

RI = DeltaTAllowed/(Ptot)-S2Temp/S2Ptot-Rcs;
RI = Rl/m _ThermalResistance;//the ratio of thermal resistances
Length = (int)ceil(62.1934*Rl*Rl-308.7066*Rl+408.9255);

//the constants are from the thermoally book for determining the rating
//for various lengths of heatsinks

if (Length < 40)
{

if (record == 1)

{
Valid = FALSE;
m_strFilter =

Requeryo;
break;

}
extru = record-1;
record = GetRandomNumber(0, extru);
SetAbsolutePosition(record);
continue;

}
if (Length > 150)

Valid = FALSE;

170

else
{

TempHeatSink = Rl*mThermalResistance*Ptot;
SinkNum = m_rank;
m_strFilter =f""

Requeryo;
break;

}
if (record == extru)

m_strFilter =
m_strSort = "rank";
Requeryo;
break;

record = GetRandomnNurmber(record, extru);
SetAbsolutePosition(record);
}//while(1)

if (!Valid)
TempHeatSink = 0;

}//extrusion
else TempHeatSink = max(TempHeatSink, TempHeatSinkl);
return Valid;
}

void CTIMCADDoc::GetWorstCaseHarmonics(int CellNum, double Inductor,
double Freq, double WCIn[], double WCOut[], int Mode)

GetWorstCaseHarmonics determines the maximum amplitude of each harmonic in the input and output
currents.

Parameters:
CellNum: The number of cells in the converter
Inductor : The total inductance of the converter
Freq : The switching frequency
WCIn[] : Vector containing the harmonic amplitudes for the current through the MOSFET
WCOut[] : Vector containing the harmonic amplitudes for the current through the inductor
Mode : l=Continuous Mode 2=Discontinuous Mode 3=Combo determined by voltages

void CTIMCADDoc::GetWorstCaseHarmonics(int CellNum, double Inductor,
double Freq, double WCIn[], double WCOut[], int Mode)

{
int i, j, x, y, //Counting indexes

delaypts, //The number of points an interleaved cell is delayed by
harmonic; //Counts the harmonics

double Vin, I/Input voltage
Vout, //Output voltage
realln, realOut, //The real part of the harmonic currents
imagIn, imagOut; //The imaginary part of the harmonic currents

double wfOut[1200], wfS2[1200], //The current waveforms for one cell
totalOut[1200], totalln[1200], //The current waveforms totaled
HarmonicsIn[250], HarmonicsOut[250], //The harmonic content

171

t[1200]; /time vector
double junk1, junk2, junk3, junk4, /ignored variables

linitial, //The initial current when the MOSFET turns on
Vinmin, Vinmax, //The range of input voltages
Voutmin, Voutmax; //The range of output voltages

bool Valid; //True if no erros have occured

//voltages range considered are voltages that will occur then the car is running because EMI specs are
//intended for normal operation not extreme cases
Vinmin 33;
Vinmax = 43;
Voutmin 12;
Voutmax = 14.3;
for (i = 0;i<250;i++)

WCIn[i] = 0;
WCOut[i] = 0;

for (x = 0; x < 11; x++)

{
Vin = Vinmin + (Vinmax - Vinmin)*x/10;
for (y=O;y<l l;y++)
{
Vout = Voutmin + (Voutmax - Voutmin)*y/10;
for (i = 0; i<1200;i++)

totalln[i] = 0;
totalOut[i] = 0;

for (i = 1; i <= CellNum; i++)
{

Valid = GetlnductorCurrentlnfo(CellNum, Freq, Inductor, Vout, Vin, junkl, junk2,
junk3, junk4, wfOut, wfS2, Iinitial, Mode);

if (Valid == FALSE)
continue;

delaypts = (int) 1200*(i- 1)/CellNum;

for (j = 0; j<l200/CellNum; j++)
{
if (delaypts == 0)
{

totalOut[j] = totalOut[j] + 50*wfOut[j];
totalIn[j] = totalInij] + 50*(wfOut[j] - wfS2[j]);

}
else
{
totalOut[j = totalOut[j] + 50*wfOutj+1200 - delaypts];
totalln[j] = totalln[j] + 50*(wfOut[j+1200-delaypts]-wfS2[j+1200-delaypts]);

}

HarmonicsIn[0] = 0;
HarmonicsOut[O] = 0;

for (i = 0;i<1200/CellNum;i++)

172

{
HarmonicsOut[0] = totalOut[i]*CellNum/1200+HarmonicsOut[0];
HarmonicsIn[0] = totalln[i]*CellNum/1200+HarmonicsIn[0];
t[i] = ii/(Freq*1200);

}

for (harmonic = 1;(harmonic*CellNum*Freq<30000000) && (harmonic <= 250);harmonic++)
{

realOut = 0;
imagOut = 0;
realln = 0;
imagIn = 0;

for (i = 0;i<1200/CellNum;i++)

realOut = totalOut[i]*cos(harmonic*CellNum*Freq*2*PI*t[i])*CellNum/1200+realOut;
imagOut = -1* totalOut[il]* sin(harmonic*CellNum*Freq*2*PI*t[il]) *CellNum/1200+

imagOut;
realln = totalln[i]*cos(harmonic*CellNum*Freq*2*Pl*t[i])*CellNum/1200+realln;
imagIn = -1 *totalln[il]*sin(harmonic*CellNum*Freq*2*PI*t[i])* CellNum/1200+

imagIn;

HarmonicsOut[harmonic] = sqrt(realOut*realOut + imagOut*imagOut);
Harmonic sIn[harmonic] = sqrt(realln*realln + imagIn*imagIn);

for (i = 0;i<250;i++)

if(HarmonicsOut[il] > WCOut[i])
WCOut[i] = HarmonicsOut[i];

if (HarmonicsIn[i] > WCIn[i])
WCIn[i] = HarmonicsIn[i];

int CCapacitorSet::PickCap(double Temp, double Voltage, double& Capacitance, double& ESR, double&
ESL, double& Price, double& Weight, double& Volume, int Type)

PickCap chooses a capacitor randomly from the available records in the database.

Parameters:
Temp : The ambient temperature
Voltage : The bus voltage across the capacitor
Capacitance : The capacitance of the capacitor chosen
ESR: The equavalent resistance of the capacitor chosen
ESL: The equavalent inductance of the capacitor chosen
Price The price of the capacitor chosen
Weight: The weight of the capacitor chosen
Volume : The volume of the capacitor chosen
Type : The type of capacitor wanted

SWITCHING = 2, BUS = 3, DAMPING = 5

173

Output
The index of the capacitor chosen, -1 if there is an error

int CCapacitorSet::PickCap(double Temp, double Voltage, double& Capacitance,
double& ESR, double& ESL, double& Price, double& Weight, double& Volume, int

Type)

{
int chosen, //Counting variable

Capnum = 0, //The index of the capacitor
NurmUsing, //Number of available capacitors
PossibleTypes; //The type of capacitors

NumUsing = 0;
srand((unsigned)time(NULL));
//First count the number of available records
MoveFirsto;
while (!IsEOFO)
I
{

PossibleTypes = 1;
if (m_Switching == TRUE)

PossibleTypes *= 2;
if (mBus == TRUE)

PossibleTypes *= 3;
if (mDamping == TRUE)

PossibleTypes *= 5;

if (mUsing && (PossibleTypes%Type == 0))
{

if ((Temp <= m Volt Temp Breakpoint) && (Voltage < mNominal Voltage))
NumUsing++;

if ((Temp <= mMaxTemp) && (Voltage < mNominal _Voltage+
(Temp-m Volt TempBreakpoint)*(mNominal Voltage-

m_DCvoltAtTemp)/(mVoltTempBreakpoint-mMaxTemp)))
NumUsing++;

}
MoveNext(;

}
//if no available then cause error
if (NumUsing == 0)

return -1;
//randomly choose a Cap
chosen = rand(%NumUsing;
MoveFirsto;
Capnum= 0;
while (!IsEOFO && (chosen > -1))
{

PossibleTypes = 1;
if (m_Switching == TRUE)

PossibleTypes *=2;

if (m_Bus == TRUE)
PossibleTypes *=3;

if (mDamping == TRUE)
PossibleTypes *= 5;

if (mUsing && (PossibleTypes%Type == 0))

174

if ((Temp <= m Volt TempBreakpoint) && (Voltage < m_NominalVoltage))
chosen--;

if ((Temp <= mMaxTemp) && (Voltage < m_NominalVoltage+
(Temp-m Volt _TempBreakpoint)*(mNominalVoltage-
m_DCvoltAtTemp)/(mVoltTempBreakpoint-mMaxTemp)))

chosen--;

Capnum++;
MoveNexto;

}
if (!(IsBOFo))
MovePrevo;

else return -1;
Capacitance = mCapacitance;
ESR = mESR;
ESL = mESL;
Price = mPrice;
Weight = m Weight;
Volume = m_Volume;
Capnum = m_rank;
MoveFirsto;
return Capnum;

int CConfiguration2Set::GetFilterType()

GetFilterType chooses a filter randomily from the available records in the database.

Output
The filter type number

int CConfiguration2Set::GetFilterType()

int count, chosen;

count = 0;
if (mFilterl)

count++;
if (mFilter2)

count++;
if (mFilter3)

count++;

chosen = rando%count;

if (mFilterl)
chosen--;

if (chosen < 0)
return 1;

if (mFilter2)
chosen--;

if (chosen < 0)

175

return 2;
if (mFilter3)

chosen--;
if (chosen < 0)

return 3;
return 0;

int CCapacitorSet::PickSetCap(double Temp, double Voltage, double CapDesired, double& ESR, double&
ESL, int& Caps, int CapMax, double& Capacitance, double& Price, double& Weight, double&
Volume, int Type)

PickSetCap chooses a capacitor from the available records in the database that bests matches a desired
capacitance.

Parameters:
Temp : The ambient temperature
Voltage : The bus voltage across the capacitor
CapDesired : The capacitance desired in the chosen capacitor
ESR: The equavalent resistance of the capacitor chosen
ESL : The equavalent inductance of the capacitor chosen
Caps : The number of capacitors in parallel
CapMax : The maximum capacitors in parallel allowed
Capacitance : The capacitance of the capacitor that was picked
Price : The price of the capacitor chosen
Weight : The weight of the capacitor chosen
Volume : The volume of the capacitor chosen
Type : The type of capacitor wanted

SWITCHING = 2, BUS = 3, DAMPING = 5

Output
The index of the capacitor chosen, -I if there is an error

int CCapacitorSet::PickSetCap(double Temp, double Voltage, double CapDesired, double& ESR,
double& ESL, int& Caps, int CapMax, double& Capacitance, double& Price,
double& Weight, double& Volume, int Type)

{
int Capnum = 0, //Counting variable

NumUsing, //Number of availabe capacitors
Choose = 0, chosen, //Counting variables
PossibleTypes; //The types a capacitor could be

bool Valid = FALSE; //True is the capacitor is valid
double best = 999999; //Used to find best capacitor

//First count the number of available records
MoveFirsto;
NumUsing = 0;
while (!IsEOFO)
{

PossibleTypes = 1;
if (mSwitching == TRUE)

PossibleTypes *= 2;
if (m_Bus == TRUE)

PossibleTypes *= 3;
if (mDamping == TRUE)

176

PossibleTypes *= 5;

if (m Using && (PossibleTypesType == 0))

{
if ((Temp <= m Volt Temp Breakpoint) && (Voltage < m_NominalVoltage))

Valid = TRUE;
if ((Temp <= mMaxTemp) && (Voltage < m_Nominal Voltage+

(Temp-m Volt Temp Breakpoint)*(mNominal Voltage-

m_ DCvoltAtTemp)/(mVoltTemp Breakpoint-mMaxTemp)))
Valid = TRUE;

}
if (Valid)
{

Caps = (int)(CapDesired/mCapacitance);
if ((CapDesired/mCapacitance - Caps) > .5)

Caps++;
if (Caps == 0) Caps++;
if ((fabs(CapDesired-Caps*m Capacitance) < best) && (Caps <= CapMax))

{
best = fabs(CapDesired-Caps*m Capacitance);
NumUsing = m_rank;
Choose = 1;

else if ((fabs(CapDesired-Caps*m Capacitance) == best) && (Caps <= CapMax))
Choose++;

}

Valid FALSE;
MoveNexto;

}
//if no available then cause error
if (NumUsing == 0)

return -1;
MoveFirsto;
if (Choose == 1)

{
mParam = NumUsing;
m_strFilter = "rank =
Requery(;
ESR =m ESR;
ESL = m_ESL;
Capacitance = m Capacitance;
Price = m_Price;
Weight = m_ Weight;
Volume = Volume;
Caps = (int)(CapDesired/mCapacitance);
if ((CapDesired/mCapacitance - Caps) > .5)

Caps++;
m strFilter =

Requeryo;
return NumUsing;

}
srand((unsigned)time(NULL));
chosen = rando%Choose;
Capnum = 0;
while (!IsEOF() && (chosen > -1))

177

PossibleTypes = 1;
if (m Switching== TRUE)

PossibleTypes *= 2;
if (m Bus == TRUE)

PossibleTypes *= 3;
if (m Damping == TRUE)

PossibleTypes *= 5;

Caps = (int)(CapDesired/m Capacitance);
if ((CapDesired/m_ Capacitance - Caps)> .5)

Caps++;
if (Caps == 0)

Caps = 1;
if ((mUsing && (PossibleTypesType == 0) && (fabs(CapDesired-Caps*m Capacitance)

best))&& (Caps <= CapMax))

{
if ((Temp <= m Volt TempBreakpoint) && (Voltage < mNominalVoltage))

chosen--;
if ((Temp <= mMaxTemp) && (Voltage < m_NominalVoltage+

(Temp-m Volt TempBreakpoint)*(mNominal Voltage-
m_DCvoltAtTemp)/(mVoltTempBreakpoint-mMaxTemp)))

chosen--;

}
Capnum++;
MoveNexto;

}
if (!(IsBOFO))
MovePrev(;

else return -1;
ESR=mESR;
ESL =m_ESL;
Price = mPrice;
Weight = mWeight;
Volume = Volume;
Capacitance = mCapacitance;
Caps = (int)(CapDesired/m Capacitance);
if ((CapDesired/m Capacitance - Caps) > .5)

Caps++;
if (Caps == 0)

Caps = 1;
return Capnum = mrank;

}

bool CTIMCADDoc::DesignFilterl(double Freq, double CellNum, double WCHarmonics[], double& Q,
double& L2, double& L3, double C2, double& R, double Rc1, double Rc2, double Le l, double Lc2)

DesignFilterl designs the first type of filter ensuring that the EMI limits are met.

Parameters:
Freq : The switching frequency of the converter
CellNum : Number of cells imployed by the converter
WCHarmonics[] : A vector of the values each representing theworst case harmonics of a signal, values are

dc, freq*CellNum, 2*freq*CellNum, etc...

178

Q : The Q of the filter designed, choosen randomly
L2 The value of the inductor that will handel the dc current
L3 The inductor that is in series with the resister
C2 The capacitor closer to the converter
R : The rester in the filter
Rc 1: The ESR for the bus capacitor
Rc2 The ESR for the converter capacitor
Lc l The ESL for the bus capacitor
Lc2 The ESL for the converter capacitor

Output
The index of the capacitor chosen, -1 if there is an error

bool CTIMCADDoc::DesignFilterl(double Freq, double CellNum, double WCHarmonics[], double& Q,
double& L2, double& L3, double C2, double& R, double Rdl, double Rc2, double Lc1, double Lc2)

{
double Cl, //The second capacitor in the circuit

Li, //Placeholder variable
gain, //The gain of the filter at a given frequency
dB, //The worst case harmonics in dB
EMI = 66, //The EMI limit at a given frequency
numO, numi, num2, num3, num4, num5, denO, deni, den2, den3, den4, den5,

//Terms in the transfer function
RI; //The load resistance

bool DesignOK = FALSE, //True is design is valid
OneWay = TRUE; //Ensures that the while loop is not infinite

double numreal, numimag, nummag, denreal, denimag, denmag, //Terms used in the
//transfer function

OldLimit = 100000, //The previous EMI limit
OldFreq = 0, //The frequency where the old EMI limit started
pole; //The location of the pole of the filter

int i, //Countinf index
PossibleQs, //The possible numbers of Q
FirstHarmonicLimit; //The harmonic that first falls within the EMI limits

CRecordsetStatus rStatus; //Gets status of the EMI limit recordset

pole= .00001;
if (mConfigurationSet.m Qmin == mConfigurationSet.m_Qmax)

Q = mConfigurationSet.mQmin;
else
{

srand((unsigned)time(NULL));
PossibleQs = (int) ((in ConfigurationSet.mQmax - m ConfigurationSet.m Qmin)* 100);
Q = (rando%PossibleQs)*.0l + mConfigurationSet.mQmin;

}

while (!DesignOK)
{

Li = (4*pole*pole)/(5*C2);
L2 = (25*Ll)/4;
L3 = LI*pow(Q,4);
R = (5*pole)/(4*C2);
C = C2/4;
RI= 50;
DesignOK = TRUE;
mEMILimitsSet.MoveFirsto;

179

OldFreq = m EMILimitsSet.m Frequency;
OldLimit = m EMILimitsSet.m Limit;
FirstHarmonic Limit = (int) ceil(mEMILimitsSet.mFrequency/(Freq*CellNum));
numO = R;
numi = R*Rcl*C1+R*Rc2*C2+L2+L3;
num2 = R*Lc2*C2+(Rc2*C2+Rc 1 *Cl)*(L2+L3)+R*Rc 1 *Rc2*C 1 *C2+Lc 1 *C 1 *R;
num3 = Lc2*C2*(L3+L2)+Lc2*R*C2*Rc 1 *C 1+Rc 1 *Rc2*C 1 *C2*(L2+L3)+

R*Lel*Cl*Rc2*C2+ Lc1*Cl*(L2+L3);
num4 = Rc1*Lc2*(L3+L2)*C1*C2+R*Lc1*Lc2*C1*C2+Rc2*Lc1*C1*C2*(L2+L3);
num5 = Lc2*(L2+L3)*Lcl*Cl*C2;
denO = R;
deni = R*R1*(C1+C2)+R*Rc1*C1+R*Rc2*C2+L2+L3;
den2 = R*C1*Lc1+R*R*Rc2*Cl*C2+R*Rc1*Rc2*C1*C2+R*Lc2*C2+R*L2*C2+

Rl*(L2+L3)*(Cl+C2)+Rc1 *(L1 +L2)*C1+Rc2*(L2+L3)*C2+R*R*Rc 1 *C 1*C2;
den3 = R*Rc2*Lcl*C *C2+R*R1*(Lc2+Lc1)*C1*C2+ R*Re1*Lc2*C1*C2+ Lc1*(L2+L3)*C1+

R1*(Rc2+Rc1)*(L2+L3)*C1*C2+ Rc1*Rc2*(L2+L3)*C1*C2+ Lc2*(L2+L3)*C2+
R*R*C1*L2*C2+ L2*L3*C2+R*L2*C2*Rcl*Cl;

den4 = R*Lc1*Lc2*C1*C2+Rc2*Lcl*(L2+L3)*C1*C2+Rl*(Lc2+Le l)*(L2+L3)*C1*C2+
Re1*Lc2*(L2+L3)*C*C2+(R+Rc1)*L2*L3*C2*C1+R*L2*C2*Lc1*C1;

den5 = LcI*Lc2*CI*C2*(L2+L3)+L2*L3*C2*LcI*C1;
for (i=1;i<50;i++)

{
numreal = num0-pow(2*PI*Freq*i*CellNum,2)*num2+ pow(2*PI*Freq*i*CellNum,4)*

num4;
numimag = 2*PI*Freq*i*CellNum*numl-pow(2*PI*Freq*i*CellNum,3)*num3+

pow(2*PI*Freq*i*CellNum,5) * num5;
nummag = sqrt(numreal*numreal+numimag*numimag);
denreal = den0-pow(2*PI*Freq*i*CellNum,2)*den2+ pow(2*PI*Freq*i*CellNum,4)*

den4;
denimag = 2*PI*Freq*i*CellNum*denl-pow(2*PI*Freq*i*CellNum,3)* den3+

pow(2*PI*Freq*i*CellNum,5)* den5;
denmag = sqrt(denreal*denreal+denimag*denimag);
gain = nummag/denmag;
dB = 20*log10(gain*WCHarmonics[i] *1000000);
while ((Freq*i*CellNum > mEMILimitsSet.mFrequency) &&

(!m_EMILimitsSet.IsEOF())

{
OldFreq = m_EMILimitsSet.mFrequency;
OldLimit = m_EMILimitsSet.mLimit;
if (!mEMILimitsSet.IsEOFO)

{
mEMILimitsSet.MoveNext(;
m_EMILimitsSet.GetStatus(rStatus);
if (rStatus.m ICurrentRecord == 0)

EMI = 100000; //no limit so use a high number
else
EMI = (OldLimit - (OldLimit-mEMILimitsSet.mLimit)*

(Freq*i*CellNum-OldFreq)/(mEMILimitsSet.m Frequency-
OldFreq));

}

if (Freq*i*CellNum < mEMILimitsSet.m Frequency)

{
m_EMILimitsSet.GetStatus(rStatus);
if (rStatus.mlCurrentRecord == 0)

EMI = 100000; //no limit so use a high number

180

else
EMI = (OldLimit - (OldLimit-mEMILimitsSet.mLimit)*
(Freq*i*CellNum-OldFreq)/(mrEMILimitsSet.mFrequency-
OldFreq));

}
else EMI = OldLimit;

if (dB > EMI+1)
{

if (pole> .0001)
return FALSE;

DesignOK = FALSE;
pole+= .0000001;
OneWay = FALSE;
break;

}
if (i == FirstHarmonicLimit && (OneWay) && (EMI - dB) > 2)

{
DesignOK = FALSE;
pole-= .00000003;
if (pole < 0)

return FALSE;
break;

}
}

}
return TRUE;
}

int CEMIInductorSet::DesignEMIInductor(CWireSet* m pWireData,double Inductance, double Current,
double TempRange, double PLossMax, BOOL SimpleWindings, int& Gauge, int& Turns, int&
Windings, double& PowLoss, double& Price, double& Weight, double& Volume)

DesignEMIInductor designs the inductor for the filters.

Parameters:
m_pWireData : The Wire database
Inductance : The desired inductance
Current : The dc current through the inductor
TempRange : The difference between the max. temperature and ambient
PLossMax The maximum allows power loss
SimpleWindings : Determines if simple or complex windings are used
Gauge : The gauge of wire used
Turns : The number of turns used
Windings : The number of sets of turns used
PowLoss : The power loss of the inductor
Price : The price of the inductor
Weight: The weight of the inductor
Volume : The volume if the inductor

Output
The index of the inductor chosen, -1 if there is an error

int CEMI1nductorSet::DesignEMIlnductor(CWireSet* m pWireData,double Inductance, double Current,
double TempRange, double PLossMax, BOOL SimpleWindings, int& Gauge, int& Turns, int&
Windings, double& PowLoss, double& Price, double& Weight, double& Volume)

181

double Storage, //The maximum energy an inductor can store
Energy, //The energy the inductor needs to store
Window, //The usable window area of the inductor
Length, // The length of wire need for the turns
Resistance, //The resistance of the wire in the turns

U; //The percent permeability of the core
bool Valid; //True if design is valid

//if no inductor is needed then return zeros for all parameters. Index 16 corresponds to no inductor needed
if (Inductance == 0)

{
Gauge = 0;
Turns = 0;
Windings = 0;
PowLoss = 0;
Price = 0;
Weight = 0;
Volume = 0;
return 16;

}
Valid = FALSE;
m_strSort = "Full10 ASC";
Requery(;
MoveFirsto;
while (!(IsEOFO) && Valid == FALSE)

{
if (SimpleWindings)

{
if (TempRange < 10)

Storage = mSimple10;
else if (TempRange < 25)

Storage = (TempRange-10)*(m Simple25-mSimple10)/15+m Simple10;
else if (TempRange < 40)

Storage = (TempRange-25)*(m Simple4O-m Simple25)/15+mSimple25;
else Storage = m Simple40;

}
else
{

if (TempRange < 10)
Storage = mFull10;

else if (TempRange < 25)
Storage = (TempRange-10)*(mFul125-m Full 10)/1 5+mFulll 0;

else if (TempRange < 40)
Storage = (TempRange-25)*(m Full40-m Full25)/15+m_Full25;

else Storage = mFull40;

}
Energy = Inductance* 1000000*Current*Current/2;
if (Energy > Storage)

{
if (!(IsEOFO))

MoveNexto;
else return -1;
continue;

}
U = mU 1*Energy*Energy~mU2 *Energy+mU3;

182

Turns = int (sqrt(Inductance* 1 000000000/(m AL*.O 1 *U)));
if (Turns == 0)

Turns = 1;
if (SimpleWindings)

Window = m_WindowArea*.22;
else Window = mWindowArea*.55;
m pWireData->MoveFirst(;
Length = m MLT*Turns;
while (!(mpWireData->IsEOF() && (Valid == FALSE))

{
if (npWireData->marea*Turns > Window)

{
if (!(mpWireData->IsEOF())

m_pWireData->MoveNextO;
else return -1;

}
else

{
Resistance = Length*mpWireData->mResistanceper cm;
Windings = 1;
PowLoss = Current* Current*Resistance;
if (PowLoss > PLossMax)

Windings = int (PowLoss/PLossMax) + 1;
PowLoss = Current*Current*Resistance/Windings;

}
if (Windings <= 4)

{
if ((mpWireData->marea*Turns*Windings < Window) &&

(pow((PowLoss/mSurface Area), .8333)<TempRange))
Valid = TRUE;

else

if (!(mpWireData->IsEOFO))
npWireData->MoveNextO;

else return -1;

}
}
else

{
if (!(IsEOFO))

MoveNexto;
else return -1;
break;

}
}

}

Gauge = m_pWireData->m gauge;
Price = mPrice;
Weight = mWeight;
Volume = m_Volume;
if (Valid)

return m rank;
else return (-1);

183

/*///
bool CTIMCADDoc::DesignFilter2(double Cl, double Rcl, double Lcl, double C2, double Rc2, double

Lc2, double Cdl, double& Rddl, double Ld1, double Cd2, double& Rdd2, double Ld2, double& L1,
double& L2, double Freq, int CellNum, double WCHarmonics[])

DesignFilter2 designs the second type of filter ensuring that the EMI limits are met.

Parameters:
Cl : The value of the capacitor further from the converter
Re : The ESR for the Cl capacitor
Lel : The ESL for the CI capacitor
C2 : The capacitor closer to the converter
Rc2 : The ESR for the C2 capacitor
Lc2 : The ESL for the C2 capacitor
Cdl : The damping capacitor closer to Cl
Rddl : The damping resistor closer to Cl
Ldl : The ESL for the Cdl capacitor
Cd2 : The damping capacitor closer to C2
Rdd2 : The damping resistor closer to C2
Ld2: : The ESL for the Cd2 capacitor
Li : The inductance further from the converter
L2 : The inductance closer to the converter
Freq : The switching frequency of the converter
CellNum : Number of cells imployed by the converter
WCHarmonics[] : A vector of the values each representing the

worst case harmonics of a signal, values are dc, freq*CellNum,
2*freq*CellNum, etc...

Output
True if no errors occured

#pragma optimize("", off)
bool CTIMCADDoc::DesignFilter2(double Cl, double Rcd, double Lel, double C2, double Rc2, double

Lc2, double Cdl, double& Rddl, double Ldl, double Cd2, double& Rdd2, double Ld2, double& LI,
double& L2, double Freq, int CellNum, double WCHarmonics[])

f

double gain, //The gain of the filter at a given frequency
dB, //The magnitude of the worst case harmonic in dB
EMI = 66, //The EMI limit at a given frequency
numO, numl, num2, num3, num4, num5, num6, num7, num8, denO, denl, den2,

den3, den4, den5, den6, den7, den8, //Terms in the transfer function
RI, Rdl, Rd2; //Resistive values in the filter

bool DesignOK = FALSE, //True if the design is valid
OneWay = TRUE; //Insures that the while loop is not infinite

double numreal, numimag, nummag, denreal, denimag, denmag, //Terms used in the
/transfer function

OldLimit = 100000, //Previous EMI limit
OldFreq = 0, //Frequency where old EMI limit started
freqs, //The frequency of intrest
oldgain, //The gain of the filter at a previous frequncy
freqmingain; //The frequency where the min. gain occured

int i, //Counting index
oncel, once2, //Insure that the while loop in not infinite
FirstHarmonicLimit; //The first harmonic that the EMI limits apply to

CrecordsetStatus rStatus; //The status of the EMI database

184

oncel = once2 = SET;
freqmingain = 800000;
L2 =.00001;
LI = .00001;

if (2*Rddl <.1)
Rdl =.1;

else RdI = 2*Rddl;

if (2*Rdd2 < .1)
Rd2=.1;

else Rd2 = 2*Rdd2;

RI= 50;
while (!DesignOK)

{
if (L2 < .00000001)

return FALSE;
if (L2> .001)

return FALSE;

DesignOK = TRUE;

m_EMILimitsSet.MoveFirstO;
FirstHarmonicLimit = (int) ceil(m EMILimitsSet.mFrequency/(Freq*CellNum));
numO = 1;
numi = Rcl*C1+Rdl*Cdl+Rc2*C2+Rd2*Cd2;
num2 Ldl*Cl+ Ldl*Cdl+ Lc2*C2+ Ld2*Cd2+ Rcl*C1*Rdl*Cdl+ Rc2*C2*Rd2*Cd2+

Rd2*Cd2*Rcl*Cl+ Rc2*C2*Rcl*Cl+ Rc2*C2*Rdl*Cdl+ Rd2*Cd2*Rdl*Cd1;
num3 = Rc1*C*Ld*Cd+ Lc1*C*Rd1*Cd1+ Rc2*C2*Ld2*Cd2+ Lc2*C2*Rd2*Cd2+

Rd2*Cd2*Lcl*C1+ Ld2*Cd2*Rcl*C1+ Rc2*C2*Lcl*Cl+ Rc2*C2*Rd2*Cd2*Rcl*Cl+
Lc2*C2*Rcl*Cl+ Lc2*C2*Rdl*Cd+ Rc2*C2*Ldl*Cdl+ Ld2*Cd2*Rdl*Cdl+
Rd2*Cd2*Ld*Cd+ Rc2*C2*Rd2*Cd2*Rd*Cd+ Rd2*Cd2*Rcl*C1*Rdl*Cdl+
Rc2*C2*Rcl*C*Rdl*Cdl;

num4 = Lcl*C1*Ldl*Cdl+ Lc2*C2*Ld2*Cd2+ Ld2*Cd2*Lc1*C+
Rc2*C2*Rd2*Cd2*Lcl*Cl+ Rc2*C2*Ld2*Cd2*Rl*C1+ Lc2*C2*Lcl*C1+
Lc2*C2*Rd2*Cd2*Rcl*C1+ Lc2*C2*Ldl*Cdl+ Ld2*Cd2*Ldl*Cdl+
Rc2*C2*Rd2*Cd2*Ldl*Cdl+ Rc2*C2*Ld2*Cd2*Rdl*Cdl+
Lc2*C2*Rd2*Cd2*Rdl*Cdl+ Rd2*Cd2*Rcl*C1*Ldl*Cdl+
Rd2*Cd2*Lcl*C1*Rdl*Cdl+ Ld2*Cd2*Rcl*C1*Rdl*Cdl+ Rc2*C2*Rl*C1*Ldl*Cdl+
Rc2*C2*Lc1*C1*Rd1*Cd1+ Rc2*C2*Rd2*Cd2*Rc1*C1*Rd1*Cdl+
Lc2*C2*Rcl*C1*Rdl*Cdl;

num5 = Rc2*C2*Ld2*Cd2*Lcl*C1+ Lc2*C2*Rd2*Cd2*Lcl*C1+ Lc2*C2*Ld2*Cd2*Rcl*C1+
Rc2*C2*Ld2*Cd2*Ldl*Cdl+ Lc2*C2*Rd2*Cd2*Ldl*Cdl+ Lc2*C2*Ld2*Cd2*Rdl*Cdl+
Rd2*Cd2*Lcl*C1*Ldl*Cdl+ Ld2*Cd2*Rcl*C1*Ldl*Cdl+ Ld2*Cd2*Lc1*C1*Rd*Cdl+
Rc2*C2*Lcl*C1*Ldl*Cdl+ Rc2*C2*Rd2*Cd2*Rcl*C1*Ldl*Cdl+
Rc2*C2*Rd2*Cd2*Lcl*C1*Rdl*Cdl+ Rc2*C2*Ld2*Cd2*Rcl*C1*Rdl*Cdl+
Lc2*C2*Rcl*C1*Ldl*Cdl+ Lc2*C2*Lcl*C1*Rdl*Cdl+
Lc2*C2*Rd2*Cd2*Rcl*C *Rdl*Cdl;

num6 = Lc2*C2*Ld2*Cd2*Lcl*Cl+ Lc2*C2*Ld2*Cd2*Ld1*Cd1+
Ld2*Cd2*Lc1*C1*Ldl*Cd1+ Rc2*C2*Rd2*Cd2*Lc*C*Ldl*Cdl+
Rc2*C2*Ld2*Cd2*Rcl*C*Ldl*Cdl+ Rc2*C2*Ld2*Cd2*Lcl*C1*Rdl*Cdl+
Lc2*C2*Lcl*C1*Ldl*Cdl+ Lc2*C2*Rd2*Cd2*Rcl*C*Ldl*Cdl+
Lc2*C2*Rd2*Cd2*Lcl*C1*Rdl*Cdl+ Lc2*C2*Ld2*Cd2*Rcl*C1*Rdl*Cdl;

num7 = Rc2*C2*Ld2*Cd2*Lcl*Cl*Ldl*Cdl+ Lc2*C2*Rd2*Cd2*Lcl*C1*Ldl*Cdl+
Lc2*C2*Ld2*Cd2*Rcl*C1*Ldl*Cdl+ Lc2*C2*Ld2*Cd2*Lcl*C1*Rdl*Cdl;

num8 = Lc2*C2*Ld2*Cd2*Lcl*Cl*Ldl*Cdl;

185

denO = I;
deni = R1*C2+R1*Cd1+RI*Cd2+RI*C1+Rc1*Cl+Rdl*Cd1+Rc2*C2+Rd2*Cd2;
den2 = L1*C2+ L1*Cd2+ Ll*C1+ L2*Cd2+ L2*C2+ L1*Cdl+ Lc1*C1+ Ldl*Cd1+ Lc2*C2+

Ld2*Cd2+Rc2*C2*Rd2*Cd2+ Rcl*C1*Rdl*Cdl+R1*Rcl*C1*Cdl+ R1*Rdl*C1*Cdl+
Rd2*Cd2*Rdl*Cdl+ Rd2*Cd2*Rcl*C1+ Rd2*Cd2*R1*Cdl+ Rd2*Cd2*R*Cl+
Rc2*C2*Rdl*Cdl+ Rc2*C2*Rcl*C1+ Rc2*C2*R1*Cdl+ Rc2*C2*R*C+
R1*Rc2*C2*Cd2+ R1*Rd2*C2*Cd2+ Cdl*Rdl*R*Cd2+ Cdl*Rdl*R1*C2+
C1*Rcl*R1*Cd2+ C1*Rcl*R*C2;

den3 = Rc2*C2*Ld2*Cd2+ Lc2*C2*Rd2*Cd2+ Rcl*C1*Ldl*Cdl+ Lcl*C1*Rdl*Cdl+
L1*Rcl*Cl*Cdl+ L1*Rdl*C1*Cdl+ R1*Lc1*Cl*Cdl+ R1*Ldl*C1*Cdl+
L2*Rd2*C2*Cd2+ L2*Rc2*C2*Cd2+ L2*C2*Cl*Rl+ L2*C2*Cdl*R+ L2*Cd1*R*Cd2+
L2*C1*R*Cd2+ L2*Rdl*Cdl*Cd2+ L2*Rdl*Cdl*C2+ L2*Rcl*C1*Cd2+
L2*Rc1*C1*C2+ Lc2*C2*Rdl*Cd1+ L2*C2*Rc*C+ Lc2*C2*R1*Cdl+
Lc2*C2*R1*C1+ Ld2*Cd2*Rd1*Cd1+ Ld2*Cd2*Rc1*C1+ Ld2*Cd2*R*Cd1+
Ld2*Cd2*R1*C1+ Rc2*C2*Rd2*Cd2*Rdl*Cdl+ Rc2*C2*Rd2*Cd2*Rcl*Cl+
Rc2*C2*Rd2*Cd2*R1*Cdl+ Rc2*C2*Rd2*Cd2*R1*C1+ Rd2*Cd2*Ldl*Cdl+
Rd2*Cd2*Rcl*C1*Rdl*Cdl+ Rd2*Cd2*Lcl*C1+ Rd2*Cd2*L1*Cdl+ Rd2*Cd2*L1*Cl+
Rd2*Cd2*R*Rc1*C1*Cd+ Rd2*Cd2*R1*Rdl*Cl*Cdl+ Rc2*C2*Ldl*Cdl+
Rc2*C2*Rcl*C1*Rdl*Cdl+ Rc2*C2*Lcl*C1+ Rc2*C2*R*Rcl*Cl*Cdl+
Rc2*C2*L1*Cd1+ Rc2*C2*L1*C1+ Rc2*C2*R*Rd*C*Cd+ L1*Rc2*C2*Cd2+
L1*Rd2*C2*Cd2+ R1*Lc2*C2*Cd2+ RJ*Ld2*C2*Cd2+ Cdl*Rdl*L1*Cd2+
Cdl*Rdl*L1*C2+ Cdl *Rdl*R1*Rc2*C2*Cd2+ Cdl*Rdl*R1*Rd2*C2*Cd2+
Cdl*Ldl*R1*Cd2+ Cd1*Ldl*R*C2+ C1*Rcl*L1*Cd2+ C1*Rcl*L1*C2+
C1*Rc1*R*Rc2*C2*Cd2+ C1*Rcl*R1*Rd2*C2*Cd2+ C1*Cdl*Rcl*Rdl*R*Cd2+
Cl*Cdl*Rcl*Rdl*Rl*C2+ CI*Lc*Rl*Cd2+ C1*Lc*R1*C2;

den4 = Lc2*C2*Ld2*Cd2+ Lcl*C1*Ldl*Cdl+ L1*Lc1*C1*Cdl+ L1*Ldl*Cl*Cdl+
L2*Ld2*C2*Cd2+ L2*Lc2*C2*Cd2+ L2*C2*Cdl*L1+ L2*C2*Cl*Ll+
L2*C2*Rdl*C1*Cdl*R+ L2*C2*Rcl*C1*Cdl*Rl+ L2*C2*Rd2*Cd2*Cdl*Rl+
L2*C2*Rd2*Cd2*C*R+ L2*Cdl*R*Rc2*C2*Cd2+ L2*Cd1*L1*Cd2+
L2*Rcl*C1*Cdl*R1*Cd2+ L2*C1*L1*Cd2+ L2*C1*R*Rc2*C2*Cd2+
L2*Cl*Rd1*Cd*R*Cd2+ L2*Rdl*Cdl*Rc2*C2*Cd2+ L2*Rdl*Cdl*Rd2*C2*Cd2+
L2*Rcl*C1*Rc2*C2*Cd2+ L2*Rc1*C1*Rd2*C2*Cd2+ L2*Ldl*Cdl*Cd2+
L2*Ldl*Cdl*C2+ L2*Rcl*C1*Rdl*Cdl*Cd2+ L2*Rcl*C1*Rdl*Cdl*C2+
L2*Lc1*C1*Cd2+ L2*Lcl*C1*C2+ Lc2*C2*Ldl*Cdl+ Lc2*C2*Rcl*C1*Rdl*Cdl+
Lc2*C2*Lcl*C1+ Lc2*C2*L1*Cdl+ Lc2*C2*L1*Cl+ Lc2*C2*Rl*Rcl*C1*Cdl+
Lc2*C2*R1*Rdl*C1*Cdl+ Ld2*Cd2*Ldl*Cdl+ Ld2*Cd2*Rcl*Cl*Rdl*Cdl+
Ld2*Cd2*Lcl*C1+ Ld2*Cd2*L1*Cdl+ Ld2*Cd2*L1*C1+ Ld2*Cd2*R*Rc*C*Cd+
Ld2*Cd2*Rl*Rdl*C1*Cdl+ Rc2*C2*Rd2*Cd2*Ldl*Cdl+
Rc2*C2*Rd2*Cd2*Rcl*C1*Rdl*Cdl+ Rc2*C2*Rd2*Cd2*Lcl*C1+
Rc2*C2*Rd2*Cd2*L1*Cdl+ Rc2*C2*Rd2*Cd2*L1*C1+
Rc2*C2*Rd2*Cd2*R1*Rcl*C1*Cdl+ Rc2*C2*Rd2*Cd2*R1*Rdl*C1*Cdl+
Rd2*Cd2*Rc1*C1*Ldl*Cd1+ Rd2*Cd2*Lc1*C1*Rd1*Cd1+ Rd2*Cd2*L*Rc*C*Cd+
Rd2*Cd2*L1*Rd1*C1*Cd1+ Rd2*Cd2*R*Lc1*C1*Cd1+ Rd2*Cd2*R1*Ldl*C1*Cd1+
Rc2*C2*Rcl*C*Ldl*Cdl+ Rc2*C2*Lcl*Cl*Rdl*Cdl+ Rc2*C2*L1*Rcl*C*Cdl+
Rc2*C2*L1*Rdl*C1*Cdl+ Rc2*C2*Rl*Ldl*Cl*Cdl+ Rc2*C2*Ld2*Cd2*Rdl*Cdl+
Rc2*C2*Ld2*Cd2*Rcl*Cl+ Rc2*C2*Ld2*Cd2*R1*Cdl+ Rc2*C2*Ld2*Cd2*R*C1+
Lc2*C2*Rd2*Cd2*Rdl*Cdl+ Lc2*C2*Rd2*Cd2*Rc1*Cl+ Lc2*C2*Rd2*Cd2*R1*Cdl+
Lc2*C2*Rd2*Cd2*R1*C1+ L1*Le2*C2*Cd2+ Ll*Ld2*C2*Cd2+
Cdl*Rdl*L1*Rc2*C2*Cd2+ Cdl*Rdl*L1*Rd2*C2*Cd2+ Cdl*Rdl*R1*Lc2*C2*Cd2+
Cdl*Rdl*Rl*Ld2*C2*Cd2+ Cdl*Ldl*Ll*Cd2+ Cdl *Ldl*L1*C2+
Cdl*Ldl*Rl*Rc2*C2*Cd2+ Cdl*Ldl*R1*Rd2*C2*Cd2+ C1*Rc1*L1*Rc2*C2*Cd2+
C1*Rcl*Ll*Rd2*C2*Cd2+ Cl*Rcl*R1*Lc2*C2*Cd2+ C1*Rcl*R*Ld2*C2*Cd2+
Cl*Cdl*Rcl*Rdl*L1*Cd2+ C1*Cdl*Rcl*Rdl*Ll*C2+
C1*Cdl*Rcl*Rdl*R1*Rc2*C2*Cd2+ C1*Cdl*Rc1*Rd1*R*Rd2*C2*Cd2+
C1*Cd*Rc1*LdI*R*Cd2+ C1*Cdl*Rcl*Ldl*R1*C2+ Cl*LcI*L1*Cd2+

186

C1*Lcl*L1*C2+ C1*Lcl*R1*Rc2*C2*Cd2+ C1*Lcl*R1*Rd2*C2*Cd2+
C1*Cd1*Lc1*Rd*R*Cd2+ C1*Cdl*Lc1*Rdl*R1*C2+Rc2*C2*R*Lc1*C*Cdl;

den5 = L2*C2*Rcl*Cl*Cdl*L+ L2*C2*Rdl*C1*Cdl*L1+ L2*C2*Rd2*Cd2*Cdl*L1+
L2*C2*Rd2*Cd2*Cl*L1+ L2*C2*Lcl*C1*Cdl*R1+ L2*C2*Ldl*C1*Cdl*Rl+
L2*C2*Rd2*Cd2*Rc*C*Cd*R+ L2*C2*Rd2*Cd2*Rd*C*Cd*R+
L2*C2*Ld2*Cd2*Cdl*R1+ L2*C2*Ld2*Cd2*Cl*R1+ L2*Cdl*L1*Rc2*C2*Cd2+
L2*Cdl *R1*Lc2*C2*Cd2+ L2*Rc1 *C1 *Cdl *R1*Rc2*C2*Cd2+
L2*Rcl*C1*Cdl*L1*Cd2+ L2*Lcl*C1*Cdl*R*Cd2+ L2*C1*L1*Rc2*C2*Cd2+
L2*C1*Rdl*Cdl*R*Rc2*C2*Cd2+ L2*C1*R1*Lc2*C2*Cd2+ L2*C1*Rd1*Cdl*L1*Cd2+
L2*C1*Ldl*Cdl*R*Cd2+ L2*Rdl*Cdl*Lc2*C2*Cd2+ L2*Rdl*Cd1*Ld2*C2*Cd2+
L2*Lcl*C1*Rc2*C2*Cd2+ L2*Lc1*C1*Rd2*C2*Cd2+ L2*Ldl*Cdl*Rc2*C2*Cd2+
L2*Ldl*Cdl*Rd2*C2*Cd2+ L2*Rcl*C1*Lc2*C2*Cd2+ L2*Rcl*C1*Ld2*C2*Cd2+
L2*Rcl*C1*Rdl*Cdl*Rc2*C2*Cd2+ L2*Rcl*C1*Rdl*Cdl*Rd2*C2*Cd2+
L2*Rcl*C1*Ldl*Cdl*Cd2+ L2*Rcl*C1*Ldl*Cdl*C2+ L2*Lc1*C1*Rd1*Cd1*Cd2+
L2*Lcl*C1*Rdl*Cdl*C2+ Lc2*C2*Rcl*C1*Ldl*Cdl+ Lc2*C2*Lcl*C1*Rdl*Cdl+
Lc2*C2*L1*Rc1*C1*Cd1+ L2*C2*L1*Rd*C*Cd+ Lc2*C2*R*Lc1*C1*Cd1+
Lc2*C2*R1*Ld1*Cl*Cd1+ Ld2*Cd2*Rc1*C1*Ld1*Cd1+ Ld2*Cd2*Lc1*C1*Rd1*Cd1+
Ld2*Cd2*L1*Rcl*C1*Cdl+ Ld2*Cd2*L1*Rdl*C1*Cdl+ Ld2*Cd2*R*Lcl*C1*Cdl+
Ld2*Cd2*R1*Ldl*Cl*Cdl+ Rc2*C2*Rd2*Cd2*Rcl*C1*Ldl*Cdl+
Rc2*C2*Rd2*Cd2*Lc1*C1*Rdl*Cdl+ Rc2*C2*Rd2*Cd2*L1*Rcl*C1*Cdl+
Rc2*C2*Rd2*Cd2*L1*Rdl*C1*Cdl+ Rc2*C2*Rd2*Cd2*R1*Lcl*C1*Cdl+
Rc2*C2*Rd2*Cd2*R*Ld*C*Cd+ Rd2*Cd2*Lcl*C1*Ldl*Cdl+
Rd2*Cd2*L1*Lcl*CJ*Cdl+ Rd2*Cd2*L1*Ldl*C1*Cdl+ Rc2*C2*Lc1*C1*Ldl*Cdl+
Rc2*C2*L1*Lcl*C1*Cdl+ Rc2*C2*L1*Ldl*C1*Cdl+ Rc2*C2*Ld2*Cd2*Ldl*Cdl+
Rc2*C2*Ld2*Cd2*Rc1*C1*Rdl*Cdl+ Rc2*C2*Ld2*Cd2*Lc*C+
Rc2*C2*Ld2*Cd2*L1*Cdl+ Rc2*C2*Ld2*Cd2*L*Cl+
Rc2*C2*Ld2*Cd2*R*Rcl*C1*Cdl+ Rc2*C2*Ld2*Cd2*R1*Rdl*C1*Cdl+
Lc2*C2*Rd2*Cd2*Ldl*Cdl+ Lc2*C2*Rd2*Cd2*Rc1*C1*Rd*Cd+
Lc2*C2*Rd2*Cd2*Lc1*C1+ Lc2*C2*Rd2*Cd2*L1*Cdl+ Lc2*C2*Rd2*Cd2*L1*C1+
Lc2*C2*Rd2*Cd2*R*Rc1*C1*Cd+ Lc2*C2*Rd2*Cd2*R*Rd1*C*Cd+
Lc2*C2*Ld2*Cd2*Rd*Cd+ Lc2*C2*Ld2*Cd2*Rcl*C1+ Lc2*C2*Ld2*Cd2*R1*Cdl+
Lc2*C2*Ld2*Cd2*R1*C1+ Cdl*Rdl*L1*Lc2*C2*Cd2+ Cd1*Rdl*L1*Ld2*C2*Cd2+
Cdl*Ldl*L1*Rc2*C2*Cd2+ Cd1*Ld1*L1*Rd2*C2*Cd2+
C1*Cd1*Rc1*Rdl*L*Rc2*C2*Cd2+ C1*Cdl*Rcl*Rdl*L1*Rd2*C2*Cd2+
C1*Cdl*Rcl*Rdl*R*Lc2*C2*Cd2+ Cdl*Ldl*R1*Ld2*C2*Cd2+
C1*Cdl*Rcl*Rdl*R*Ld2*C2*Cd2+ C1*Cdl*Rcl*Ldl*L1*Cd2+
C1*Cdl*Rcl*Ldl*L1*C2+ C1*Cdl*Rcl*Ldl*R1*Rc2*C2*Cd2+
C1*Cd1*Rc1*Ld*R*Rd2*C2*Cd2+ C1*Lc1*Ll*Rc2*C2*Cd2+
Cl*Lc1*L1*Rd2*C2*Cd2+ Cl*Lc1*R1*Lc2*C2*Cd2+ Cl*Lc1*R*Ld2*C2*Cd2+
Cl*Cdl*Lcl*Rdl*L1 *Cd2+ Cl*Cdl*Lcl*Rdl*L1*C2+
C1*Cdl*Lcl*Rdl*R*Rc2*C2*Cd2+ C1*Cd1*Lc1*Rd1*R1*Rd2*C2*Cd2+
Cl*Cdl*Lc1*Ldl*R1*Cd2+ Cl*Cdl*Lc1*Ldl*R1*C2+ Cdl*Ldl*R1*Lc2*C2*Cd2+
C1*Rcl*L1*Lc2*C2*Cd2+ C1*Rcl*Ll*Ld2*C2*Cd2;

den6 = L2*C2*Lc1*C*Cdl*L+ L2*C2*Ldl*C1*Cdl*L1+
L2*C2*Rd2*Cd2*Rcl*C1*Cdl*Ll+ L2*C2*Rd2*Cd2*Rdl*C1*Cdl*L1+
L2*C2*Ld2*Cd2*Cdl*Ll+ L2*C2*Ld2*Cd2*C1*Ll+
L2*C2*Ld2*Cd2*Rcl*C1*Cdl*R+ L2*C2*Rd2*Cd2*Lcl*C1*Cdl*R1+
L2*C2*Rd2*Cd2*Ldl*C1*Cdl*R+ L2*C2*Ld2*Cd2*Rdl*C1*Cdl*R+
L2*Cdl*L1*Lc2*C2*Cd2+ L2*Rcl*C1*Cdl*R1*Lc2*C2*Cd2+
L2*Rcl*C1*Cdl*L1*Rc2*C2*Cd2+ L2*Lcl*C1*Cdl*L1*Cd2+
L2*Lcl*C1*Cdl*R1*Rc2*C2*Cd2+ L2*C1*L1*Lc2*C2*Cd2+
L2*C1*Rdl*Cdl*R*Lc2*C2*Cd2+ L2*C1*Rdl*Cdl*L1*Rc2*C2*Cd2+
L2*C1*Ldl*Cdl*Ll*Cd2+ L2*Cl*Ldl*Cdl*R*Rc2*C2*Cd2+
L2*LcI*CI*Lc2*C2*Cd2+ L2*LcI*Cl*Ld2*C2*Cd2+
L2*Lcl*C1*Rdl*Cdl*Rc2*C2*Cd2+ L2*Lc1*C1*Rd1*Cd1*Rd2*C2*Cd2+
L2*Ldl*Cdl*Lc2*C2*Cd2+ L2*Ldl*Cdl*Ld2*C2*Cd2+

187

L2*RcI*CI*Rdl*CdI*Lc2*C2*Cd2+ L2*RcI*C1*RdI*CdI*Ld2*C2*Cd2+
L2*Rc1*C1*Ldl*Cdl*Rc2*C2*Cd2+ L2*RcI*CI*LdI*Cdl*Rd2*C2*Cd2+
L2*Lc1*C*Ldl*Cd*C2+ L2*Lc1*C1*Ld1*Cd1*Cd2+ Lc2*C2*Lcl*C1*Ldl*Cdl+
Lc2*C2*L1*Lcl*C1*Cdl+ Lc2*C2*L1*Ldl*CJ*Cdl+ Ld2*Cd2*Lcl*C1*Ldl*Cdl+
Ld2*Cd2*L1*Lcl*C1*Cdl+ Ld2*Cd2*L1*Ld1*C1*Cdl+
Rc2*C2*Rd2*Cd2*Lcl*C1*Ldl*Cdl+ Rc2*C2*Rd2*Cd2*L1*Lcl*C1*Cdl+
Rc2*C2*Rd2*Cd2*L1*Ldl*C1*Cdl+ Rc2*C2*Ld2*Cd2*RcI*C1*Ldl*Cdl+
Rc2*C2*Ld2*Cd2*Lcl*C1*Rdl*Cdl+ Rc2*C2*Ld2*Cd2*L1*Rcl*C1*Cdl+
Rc2*C2*Ld2*Cd2*L1*Rdl*C1*Cdl+ Rc2*C2*Ld2*Cd2*R1*Lcl*C1*Cdl+
Rc2*C2*Ld2*Cd2*R1*Ldl*C1*Cdl+ Lc2*C2*Rd2*Cd2*Rcl*C1*Ldl*Cdl+
Lc2*C2*Rd2*Cd2*Lc*C*Rdl*Cd+ Lc2*C2*Rd2*Cd2*L1*Rcl*C1*Cdl+
Lc2*C2*Rd2*Cd2*L1*Rdl*C1*Cdl+ Lc2*C2*Rd2*Cd2*R1*Lcl*C1*Cdl+
Lc2*C2*Rd2*Cd2*R1*Ldl*C1*Cdl+ Lc2*C2*Ld2*Cd2*Ldl*Cdl+
Lc2*C2*Ld2*Cd2*Rcl*C1*Rdl*Cdl+ Lc2*C2*Ld2*Cd2*Lc*C+
Lc2*C2*Ld2*Cd2*L1*Cdl+ Lc2*C2*Ld2*Cd2*L1*C1+
Lc2*C2*Ld2*Cd2*R1*Rcl*C1*Cdl+ Lc2*C2*Ld2*Cd2*R1*Rdl*C1*Cdl+
Cdl*Ldl*L1*Lc2*C2*Cd2+ Cdl*Ldl*L1*Ld2*C2*Cd2+
C1*Cdl*Rc1*Rdl*L1*Lc2*C2*Cd2+ C1*Cdl*Rcl*Rdl*L1*Ld2*C2*Cd2+
C1*Cdl*Rcl*Ldl*L1*Rc2*C2*Cd2+ C1*Cdl*Rcl*Ldl*L1*Rd2*C2*Cd2+
C1*Cdl*Rcl*Ldl*R1*Lc2*C2*Cd2+ C1*Cdl*Rcl*Ldl*R1*Ld2*C2*Cd2+
C1*Lcl*L1*Lc2*C2*Cd2+ C1*Lcl*L1*Ld2*C2*Cd2+
C1*Cdl*Lcl*Rdl*L1*Rc2*C2*Cd2+ C1*Cdl*Lcl*Rdl*L1*Rd2*C2*Cd2+
Cl*Cdl*Lc1*Rdl*R*Lc2*C2*Cd2+ Cl*Cdl*Lcl*Rdl*R1*Ld2*C2*Cd2+
C1*Cd1*Lc1*Ldl*L1*Cd2+ C1*Cd1*Lc1*Ld1*L1*C2+
C1*Cdl*Lc1*Ldl*R1*Rc2*C2*Cd2+ Cl*Cdl*Lcl*Ldl*R1*Rd2*C2*Cd2;

den7 = L2*C2*Rd2*Cd2*Lcl*C1*Cdl*L1+ L2*C2*Rd2*Cd2*Ldl*C1*Cdl*L1+
L2*C2*Ld2*Cd2*Rcl*C1*Cdl*L1+ L2*C2*Ld2*Cd2*Rdl*C1*Cdl*L1+
L2*C2*Ld2*Cd2*Lcl*C1*Cdl*Rl+ L2*C2*Ld2*Cd2*Ldl*C1*Cdl*R1+
L2*Rcl*C1*Cdl*L1*Lc2*C2*Cd2+ L2*Lcl*C1*Cdl*L1*Rc2*C2*Cd2+
L2*Lcl*C1*Cdl*R1*Lc2*C2*Cd2+ L2*C1*Rdl*Cdl*L1*Lc2*C2*Cd2+
L2*C1*Ldl*Cd1*L1*Rc2*C2*Cd2+ L2*C1*Ldl*Cdl*R1*Lc2*C2*Cd2+
L2*Lcl*C1*Rdl*Cdl*Lc2*C2*Cd2+ L2*Rc1*C1*Ld1*Cd*L2*C2*Cd2+
L2*Rc1*C1*Ldl*Cdl*Ld2*C2*Cd2+ L2*Lcl*C1*Rdl*Cdl*Ld2*C2*Cd2+
L2*Lc1*C1*Ldl*Cdl*Rc2*C2*Cd2+ L2*Lc1*C1*Ldl*Cdl*Rd2*C2*Cd2+
Rc2*C2*Ld2*Cd2*Lc1*C1*Ldl*Cdl+ Rc2*C2*Ld2*Cd2*L1*LcI*C1*Cdl+
Rc2*C2*Ld2*Cd2*L1*Ldl*C1*Cdl+ Lc2*C2*Rd2*Cd2*Lcl*C1*Ldl*Cdl+
Lc2*C2*Rd2*Cd2*L1*Lcl*C1*Cdl+ Lc2*C2*Rd2*Cd2*L1*Ldl*C1*Cdl+
Lc2*C2*Ld2*Cd2*Rcl*C1*Ldl*Cdl+ Lc2*C2*Ld2*Cd2*Lc1*C1*Rdl*Cdl+
Lc2*C2*Ld2*Cd2*L1*Rcl*C1*Cdl+ Lc2*C2*Ld2*Cd2*L1*Rdl*C1*Cdl+
Lc2*C2*Ld2*Cd2*R*Lcl*Cl*Cdl+ Lc2*C2*Ld2*Cd2*R1*Ldl*C1*Cdl+
C1*Cdl*Rcl*Ldl*L1*Lc2*C2*Cd2+ C1*Cdl*Lcl*Rdl*L1*Lc2*C2*Cd2+
C1*Cdl*Lcl*Rdl*L1*Ld2*C2*Cd2+ C1*Cd1*Lc1*Ld1*L*Rc2*C2*Cd2+
C1*Cdl*Lcl*Ldl*L1*Rd2*C2*Cd2+ C1*Cdl*Lcl*Ldl*R1*Lc2*C2*Cd2+
C1*Cdl*Lcl*Ldl*R1*Ld2*C2*Cd2+ C1*Cdl*Rcl*Ldl*L1*Ld2*C2*Cd2;

den8 = L2*C2*Ld2*Cd2*Ldl*C1*Cdl*L1+ L2*C2*Ld2*Cd2*Lcl*C1*Cdl*L1+
L2*Lc1*C1*Cdl*L1*Lc2*C2*Cd2+ L2*C1*Ldl*Cdl*L1*Lc2*C2*Cd2+
L2*Lc1*C1*Ldl*Cdl*Lc2*C2*Cd2+ L2*Lc1*C1*Ld1*Cd1*Ld2*C2*Cd2+
Lc2*C2*Ld2*Cd2*Lcl*C1*Ldl*Cdl+ Lc2*C2*Ld2*Cd2*L1*Lc1*C1*Cdl+
Lc2*C2*Ld2*Cd2*L1*Ldl*C1*Cdl+ C1*Cdl*Lcl*Ldl*L1*Lc2*C2*Cd2+
Cl*Cdl*Lcl*Ldl*L1*Ld2*C2*Cd2;

//long equation huh?
for (i=1;<50;i++)
{

freqs = Freq*i*CellNum;
numreal = numO-pow(2*PI*freqs,2)*num2+pow(2*PI*freqs,4)*num4-

pow(2*PI*freqs,6)* num6+pow(2*PI*freqs,8)*num8;

188

numimag = 2*PI*freqs*numl-pow(2*PI*freqs,3)*num3+pow(2*PI*freqs,5)*num5-
pow(2*PI*freqs,7)*num7;

nummag = sqrt(numreal*numreal+nummag*numimag);

denreal = den0-pow(2*PI*freqs,2)*den2+pow(2*PI*freqs,4)*den4-pow(2*PI*freqs,6)*
den6+pow(2*PI*freqs,8)*den8;

denimag = 2*PI*freqs*denl-pow(2*PI*freqs,3)*den3+pow(2*PI*freqs,5)*den5-
pow(2*PI*freqs,7)*den7;

denmag = sqrt(denreal*denreal+denimag*denimag);
oldgain = gain;
gain = nummag/denmag;
if ((gain > oldgain) && (freqs > 800000))

freqnmingain = freqs;
dB = 20*log 1 0(gain*WCHarmonics[i] *1000000);
while ((freqs > mEMILimitsSet.mFrequency) && (!mEMILimitsSet.IsEOFO))
{
OldFreq = mEMILimitsSet.mFrequency;
OldLimit = m_EMILimitsSet.mLimit;
if (!m EMILimitsSet.IsEOFO)
{

mEMILimitsSet.MoveNextO;
mEMILimitsSet.GetStatus(rStatus);
if (rStatus.m_lCurrentRecord == 0)

EMI = 100000; /no limit so use a high number
else

EMI = (OldLimit - (OldLimit-mEMILimitsSet.m Limit)*
(freqs-OldFreq)/(mEMILimitsSet.m Frequency-OldFreq));

}

if (freqs < m_EMILimitsSet.mFrequency)
{

m_EMILimitsSet.GetStatus(rStatus);
if (rStatus.mlCurrentRecord == 0)

EMI = 100000; //no limit so use a high number
else

EMI = (OldLimit - (OldLimit-mEMILimitsSet.mLimit)*
(freqs-OldFreq)/(mEMILimitsSet.mFrequency-OldFreq));

}
else EMI = OldLimit;
if (dB > EMI+1)

{
if (once l == SET)

once l = USED;
if (once2 == SET)

once2 = USED;
if ((gain > oldgain) && (freqs < freqmingain))
{

if (Rdl > Rd2)
Rdl -= Rdl *. 1;

else Rd2 -= Rd2*.1;
DesignOK = FALSE;
break;

if (freqs > 1000000)

if (L1 > L2)

189

Li +=L1*.05;
else L2 += L2*.5;
DesignOK = FALSE;
break;

}
if (freqs < 1000000)
{

L2 += L2*.05;
DesignOK = FALSE;
break;

}

if ((i == FirstHarmonicLimit) && (once 1 USED) && ((dB +2) < EMI))
{

once 1 = SET;
L2 -= L2*.03;
DesignOK = FALSE;
break;

}
if ((freqs == freqmingain) && (once2 USED) && ((dB + 10)<EMI))
{

if(L1 > .0000005)

{
once2 = SET;
Li -= L1*.03;
DesignOK = FALSE;
break;

}
}

}

Rddl = Rdl;
Rdd2 = Rd2;
return TRUE;

}
#pragma optimize("", on)

bool CTIMCADDoc::DesignFilter3(double C2, double Rc2, double Lc2, double& L2, double Freq,
int CellNum, double WCHarmonics[])

DesignFilter3 designs the third type of filter ensuring that the EMI limits are met.

Parameters:
C2 : The capacitor closer to the converter
Rc2 : The ESR for the C2 capacitor
Lc2 : The ESL for the C2 capacitor
L2 : The inductance of the filter
Freq : The switching frequency of the converter
CellNum: Number of cells imployed by the converter
WCHarmonics[] : A vector of the values each representing the

worst case harmonics of a signal, values are dc, freq*CellNum,
2*freq*CellNum, etc...

Output

190

True if no errors occured

bool CTIMCADDoc::DesignFilter3(double C2, double Rc2, double Lc2, double& L2, double Freq,
int CellNum, double WCHarmonics[])

{

double gain, //The gain of the filter at a given frequency
dB, //The magnitude of the worst case harmonic in dB
EMI = 66, //The EMI limit at a given frequency
num0, numi, num2, denO, denl, den2, //Terms in the transfer function
RI; //Resistive values in the filter

bool DesignOK = FALSE, //True if the design is valid
OneWay = TRUE, //Insures that the while loop is not infinite
Nolnductor; //True is filter is designed without the inductor

double numreal, numimag, nummag, denreal, denimag, denmag, //Terms used in the
/transfer function

OldLimit = 100000, //Previous EMI limit
OldFreq = 0, //Frequency where old EMI limit started
freqs, //The frequency of intrest
LOWL2, HIGHL2; //Constants for the min and max L2 value

int i, //Counting index
once l, once2, /Insure that the while loop in not infinite
FirstHarmonicLimit; //The first harmonic that the EMI limits apply to

CRecordsetStatus rStatus; //The status of the EMI database

LOWL2 = 5e-8;
HIGHL2 =.0001;
NoInductor = FALSE;
once 1 = once2 = SET;
L2 =.00001;
Rl =50;
OneWay = TRUE;
while (!DesignOK)
{

if (L2 > HIGHL2)
return FALSE;

DesignOK = TRUE;
m EMILimitsSet.MoveFirstO;
FirstHarmonic Limit = (int) ceil(m EMILimitsSet.mFrequency/(Freq*CellNum));
numO = 1;
numl = Rc2*C2;
num2 = Lc2*C2;

den0 = 1;
denl = (Rl+Rc2)*C2;
den2 = (L2+Lc2)*C2;

for (i=1;i<50;i++)

{
freqs = Freq*i*CellNum;

numreal = num0-pow(2*PI*freqs,2)*num2;
numimag = 2*PI*freqs*numl;
nummag sqrt(numreal*numreal+numimag*numimag);

191

denreal = den0-pow(2*PI*freqs,2)*den2;
denimag = 2*PI*freqs*denl;
denmag = sqrt(denreal*denreal+denimag*denimag);
gain = nummag/denmag;

dB = 20*log 1 0(gain*WCHarmonics[i] *1000000);

while ((freqs > mEMILimitsSet.mFrequency) && (!mEMLimitsSet.IsEOFO))

{
OldFreq = mEMILimitsSet.mFrequency;
OldLimit = m EMILimitsSet. m_Limit;
if (!m_EMILimitsSet.IsEOFO)

{
m_EMILimitsSet.MoveNextO;
m_EMILimitsSet.GetStatus(rStatus);
if (rStatus.mlCurrentRecord == 0)

EMI = 100000; /no limit so use a high number
else

EMI = (OldLimit - (OldLimit-mEMILimitsSet.m_ Limit)*
(freqs-OldFreq)/(m EMILimitsSet.mFrequency-OldFreq));

}

if (freqs < mEMILimitsSet.mFrequency)

{
m_EMILimitsSet.GetStatus(rStatus);
if (rStatus.mlCurrentRecord == 0)

EMI = 100000; //no limit so use a high number
else

EMI = (OldLimit - (OldLimit-mEMlLimitsSet.mLimit)*
(freqs-OldFreq)/(mEMILimitsSet.mFrequency-OldFreq));

}
else EMI = OldLimit;

if (dB > EMI+1 && (Nolnductor))

{
L2 = LOWL2;
DesignOK = FALSE;
OneWay = FALSE;
Nolnductor = FALSE;
break;

}
if (dB > EMI+I)
{

L2 += L2*.05;
DesignOK = FALSE;
OneWay = FALSE;
break;

}
if ((i == FirstHarmonicLimit) && (OneWay) && ((dB +2) < EMI) && (L2 > LOWL2))

{
L2 - L2*.03;
DesignOK = FALSE;
break;

}
if ((i == FirstHarmonicLimit) && (OneWay) && ((dB +2) < EMI) && (L2 < LOWL2)

&& (!Nolnductor))

{

192

L2 =0;
DesignOK = FALSE;
NoInductor = TRUE;
break;

}

return TRUE;

void CSchottkySet::PowLoss(double waveformS2[], double VinMax, double freq, double& Pcond,
double& Pcap, double& ThermalResistance)

PowLoss determines the maximum power loss in the Schottky Diode if used as the second switch in the
converter.

Parameters:
waveformS2[] The current through switch 2
VinMax: The maximum voltage at the input
freq : The switching frequency of the converter
Pcond : The conduction losses
Pcap : The energy associated with charging the capacitance across the diode
ThermalResistance : The junction to case thermal resistance

void CSchottkySet::PowLoss(double waveformS2[], double VinMax, double freq, double& Pcond,
double& Pcap, double& ThermalResistance)

int i, count; //Counting variables
double Loss, //Copnduction losses

Eon, //Turn on energy losses
t_reverse_on, //time the device is off
P_reverse, //Reverse current power loss
Kdiode; /A constant that is in F/(V)^1/2

Pcond = 0;
count = 0;
if (mDetail)

for(i = 0; i < 1200; i++)

if (waveformS2[i] == 0)
Loss = 0;

else Loss = waveformS2[i]* (mB2*waveformS2[i]* waveformS2[i]+

m_BI*waveformS2[i]+ mBO);
Pcond = Pcond+Loss/1200;

}
else

{
for(i 0; i < 1200; i++)
{

if (waveformS2[i] < 0)
Loss = 0;

193

else Loss = wave formS2[i]*(mA *waveformS2[i]+mA);
Pcond= Pcond+Loss/1200;

}
}
for (i = 0; i < 1200; i++)

if (waveformS2[i] == 0)
count++;

}

t_reverseon = (double) count/1200;
P_reverse = mJr_Vmax*VinMax*t reverse on;

Pcond = Pcond + Preverse;

Kdiode = mCt*sqrt(m VrCt);
Eon = 2*Kdiode*pow(VinMax,1.5)/3;
Pcap = Eon*freq;

ThermalResistance = m Rjc;

return;

}

void CDiodeSet::PowLoss(double Iinitial, double waveformS2[], double VinMax, double freq, double&
Pcond, double& Psw, double& Pcap, double& ThermalResistance)

PowLoss determines the maximum power loss in the PiN Diode if used as the second switch in the

converter.

Parameters:
Iinitial : The current in the diode when it turns off
waveformS2[] : The current through switch 2
VinMax : The maximum voltage at the input
freq : The switching frequency of the converter
Pcond : The conduction losses
Psw: The switching losses
Pcap : The energy associated with charging the capacitance across the diode
ThermalResistance : The junction to case thermal resistance

void CDiodeSet::PowLoss(double linitial, double waveformS2[], double VinMax, double freq, double&
Pcond, double& Psw, double& Pcap, double& ThermalResistance)

{
int i, count = 0; //Counting variables
double Loss, //Conduction losses

Eon, //Turn on losses
Kdiode, //Constant in the units of F/(V)^1/2
Qd, Qdo; //Charge within the diode

Pcond = 0;
if (mDetail)
{

for(i = 0; i < 1200; i++)
{

194

if (waveformS2[i] == 0)
Loss = 0;

else Loss = waveformS2[i]* (mB2*waveformS2[i]* waveformS2[i]+
m_Bl*waveformS2[i1]+ mBO);

Pcond = Pcond+Loss/1200;

}
}
else

{
for(i = 0; i < 1200; i++)

{
if (waveformS2[i] < 0)

Loss = 0;
else Loss = waveformS2[i]*(m A1*waveformS2[i]+mAO);
Pcond= Pcond+Loss/1200;

}
}
for (i = 0; i < 1200; i++)

{
if (waveformS2[i] == 0)

count++;

}
Qdo = mntrr*m trr*m didt/2;

Qd = Qdo*(1+(Iinitial-mIftest)/(2*mIftest));
Psw = Qd*VinMax*freq;

Kdiode = m Ct*sqrt(m Vr Ct);

Eon = 2*Kdiode*pow(VinMax,1.5)/3;
Pcap = Eon*freq;

ThermalResistance = mRjc;
return;

}

double CFETSet::PowLoss(int FET,double Vin, double Ifinal, double Idrive, double freq, double Irms,
double& Pcon, double& Psw, double& Pcap, double& ThermalResistance, double Iinitial, int Switch,
double Temp)

PowLoss determines the maximum power loss in the FET if used as either switch in the converter.

Parameters:

FET: The index of the MOSFET in use
Vin : The maximum voltage at the input

Ifinal The current when the MOSFET turns off
Idrive : The current used by the gate driver
freq: The switching frequency of the converter
Irms : The rms current through the MOSFET
Pcon : The conduction losses
Psw: The switching losses
Pcap : The energy associated with charging the capacitance across the MOSFET
ThermalResistance : The junction to case thermal resistance
Iinitial : The current in the MOSFET when it turns on
Switch: whether the MOSFET is used as switch 1 or switch 2
Temp : The ambient temperature

195

Output
The total power lost

double CFETSet::PowLoss(int FET,double Vin, double Ifinal, double Idrive,
double freq, double Irms, double& Pcon, double& Psw, double& Pcap,
double& ThermalResistance, double Iinitial, int Switch, double Temp)

{
double Loss = 0, //The total power loss

Kgd, //The gate to drain capacitance per root voltage
Kds, //The drain to source capacitance per root voltage
Ecb, //The energy loss for the c-b transition
Cgs, //The gate to source capacitance
sqr, /A constant
Qdo, Qd, //The charge in the device when acting like a diode
VsatOff, //Turn off saturation voltage
VsatOn, //Turn on saturation voltage
Ti, T2, //Time intervals
Tdc, //Time interval for the d-c transition
Edc, //Energy loss during the d-c transition
Etot, //Total energy loss
P2, P3, /power loss during the 1 and 2 time intervals
Prr; //Reverse recovery power loss

//Gets the data for the current FET
SetAbsolutePosition(FET);

//The capacitive turn-on losses and other constants
Kgd = mCrss*sqrt(mVdscrss);
Kds = (mCoss-mCrss)*sqrt(mVds crss);

Cgs = mQg/mVgQg;
sqr = sqrt(mLs*Cgs);
VsatOff = fabs(Ifinal)/m gfs+m_- Vt;
VsatOn = fabs(Iinitial)/m gfs+mVt;

if (((Iinitial >= 0) && (Switch == 1)) 1 ((Iinitial < 0) && (Switch == 2)))

{
/turn on switching losses

T2 = (VsatOn-mVt)*Cgs/Idrive;
P2 = T2*Vin*fabs(Iinitial)*freq/2;
P3 = freq*fabs(Iinitial)*Kgd*2*pow(Vin,3/2)/(Idrive*3);

/the engery to charge the capacitances across the gate turn on loss
// Eo = 2*(Kds+Kgd)*Vin*sqrt(Vin)/3; removed since it is accounted already

}
else

P2=P3 =0;

if (((Ifinal >= 0) && (Switch == 1)) 11((Ifinal < 0) && (Switch == 2)))

{
//The first section of the turn off losses ie charging the Miller Capacitance

Ecb = 2*fabs(Ifinal)*Kgd*Vin*sqrt(Vin)/(3 *Idrive);
//turn off switching losses

T1 = sqr*atan(sqrt(VsatOff*VsatOff-mVt*mVt)/mVt);
if (VsatOff*sqrt(Cgs/m Ls) < Idrive)

196

Tdc =TI;
else

{
T2 = sqr*asin(Idrive*sqrt(m Ls/Cgs)/VsatOff);
if (T2 > T1)

Tdc= TI;
else Tdc = T2 + Cgs*(VsatOff*cos(T2/sqr)-mVt)/Idrive;

}
Edc = Tdc*Vin*fabs(Ifinal)/2;

}
else

Ecb = Ede = 0;

if (((Ifinal < 0) && (Switch == 1)) 11 ((Ifinal >= 0) && (Switch 2)))

{
Pcap = freq*2*Kds*Vin*sqrt(Vin)/3;
Qdo =m_trr*mtrr*m_didt/2;
Qd = Qdo*(1+(fabs(Ifinal)-mIftest)/(2*mIftest));
Prr = Qd*Vin*freq;

}
else Pcap = Prr = 0;

Etot = Ecb + Ede;
Psw = Etot*freq + P2 + P3 + Prr;
//conduction losses
P con = Irms*Irms*(m Ra*Temp*Temp+m Rb*Temp+mRc);
Loss = Psw+Pcon;
ThermalResistance = mThermalResistance;

return Loss;

}

197

198

Appendix E TimCAD Flowcharts

Begin OnRun
For loop:

Number of iterations of the

optimization routine

False initialize i= 0
I <#of Iterations?

i = i+1

j~True

End n~unChoose Frequency,
Ripple Ratio, and

Cell Number
Randomly

Find the Current in
Each Cell

Design
Power Stage

Design

Filter Stage

Is
Valid?

True

Save Data

Figure E. 1: Flowchart for the optimization routine

199

Choose Diode
Find Max Power Loss

Begin
Design Power Stage

Choose MOSFET
for Switch 1

Find Max Power Loss

Use

MOSFET, Diode
or Schottky as

Switch

Choose Schottky Diode
Find Max Power Loss

Design
Inductor

Design

Heatsink

End
Design Power Stage

Figure E.2 Flowchart for the power stage design of the converter.

200

Use Same MOSFET
Find Max Power Loss

Begin

Design Inductor

Determine harmonic
Content of Inductor
Current for Nominal

Conditions

Initialize at Inductor
with Rank = 1

Valid = FALSE

Determine Turns Is Database
NeededEmpty?Needed

:#

Is luxDesit Tru y Move to Next Inductor Attempt to Put Anothe
to High? in Database Core in Parallel Max.

False
4 Inductors Used

Choose Largest Wire
that will Fit in Core

Design
Inductor

Is Current Densit True
to High?

False

Find Winding and Core This is a recursive call
Losses and Temp Rise to the fuction

Is Temp Rise True
to High?

False

Valid = TRUE

End
Design Inductor

Figure E.3 Flowchart for the converter inductor.

201

Begin
Design Heatsink

Count the Number of
Heatsinks in each Class

3
Wat is Rando

Number.

2

Examine heatsinks thal Examine heatsinks tha
hold only 1 device in hold both devices in

order of rank and find order of rank and find
one that can be used on one that can be used on

switch 1 both switches

Examine heatsinks thaF
hold only I device in Was a Heatsink

order of rank and find Found?
one that can be used on

switch 2

4
True

End Tu

Were Heatsinks
Found? Design Heatsink

False

A heatsink class is the number
of devices the heatsink can hold
o indicated an extrusion

Choose a random
extrusion heatsink

determine length of <
extrusion needed

Was a Heatsink False End

Found? Design Heatsink

True

Make Range of
Is Length < 4? e Heatsinks Include

Smaller Heatsinks

False

Is Length > 15? Make Range of
Heatsinks Include
Larger Heatsinks

False

End
Design Heatsink

Figure E.4 Flowchart for the heatsink design

202

Begin
Design Filter Stage

Determine the Worst
Case Harmonics ----

Is i < # of Iterations.

4 Iiiei
=

0

True

Choose 3
an Input Filter

Type

2

This for statement is

the inner control loop

Design Filter 1 Design Filter 2 Design Filter 3

Was one design
valid?

End
Design Filter Stage

Is the Design
the Best?

True

Save Design

To Next Page...

203

False

1

False

False

1

Design Filter 1

End
Design Filter Stage

Continued From Previous Page

Initilize i = 0
Is i < # of Iterations?

i = i+1

True

Choose 3
an Output Filter

Type

2

Design Filter 2 Design Filter 3

Is the Design False

the Best?

True

Save Design

Figure E.5 Flowchart for the design of the input and output filters.

204

Begin

Design Filter 1

Choose C 2 from
Switching Capacitor

List

Choose Q of filter

Pick Cl to be C2 / 4
from Bus Capacitor

List

Choose Initial

Filter Components

End Design Filter I einO Evaluate Filter To Much

Return Valid = TRUE

-i

Inductor size Not Enough Attenuation

To large or

End Design Filter 1 Cloose Larger Inductor
Return Valid = FALSE

Attenuation

Choose Smaller
Inductor

I-V

Figure E.6 Flowchart for the design of filter type 1

205

Begin

Design Filter 2

Choose C 2 from
Switching Capacitor

List

Pick C1 to be C2 / 4
from Switching
Capacitor List

Pick Cdl to be Cl*10
Pick Cd2 to be C2*10

from Damping
Capacitor List

Choose Initial
Filter Components

Inductor size
To large or

End Design Filter 2 Design OK Evaluate Filter to small End Design Filter 2

Return Valid = TRUE L > Return Valid = FALSE

Attenuation Problems Attenuation Problems
at Frequencies below 1 Mhz at Frequencies above IMHz

To Much Evaluate Filter Not Enough
Peaking Attenuation

To Much
Reduce Rdl and Rd2 Attenuation Cloose Larger L2

Inductor

Choose Smaller L2
Inductor

Evaluate Filter Not Enough
AtO~ttenuation

To Much
Attenuation Cloose Larger L2

V Inductor

Choose Smaller L2
Inductor

Figure E.7 Flowchart for the design of filter type 3

206

Begin

Design Filter 3

Choose C 2 from
Switching Capacitor

List

Choose Initial

Filter Components

End Design Filter 3 Den OK To Much
Return Valid = TRUE

Inductor Size Not Enough Attenuation

To Large or

End Design Filter 3 to Small Cloose Larger Inductor
Return Valid = FALSE

Attenuation

Choose Smaller
Inductor

Figure E.8 Flowchart for the design of filter type 3

207

Begin
Design EMI inductor

Rank inductors based
on energy storage and
choose first record

complex Simple windings
or complex

V simple

Calculate max Energy Calculate max Energy move to next inductor
storage storage

Is inductor large False

enough?

True

Find number of turns

needed and power loss

End True s power loss less
Design EMI inductor hen max acceptabl

value?

False

Use multiple winding

to lower power losses
to acceptable value_

End True

Design EMI inductor # of windings < 4

Figure E.9 Flowchart for the design of the EMI filter inductor.

208

