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1 Introduction

The advent of gauge-gravity duality (or “holography”) has revolutionized the study of

strongly interacting field theories.1 In gauge theories with gravitational duals, hologra-

phy maps problems involving non-equilibrium quantum dynamics, in the limit of strong

coupling and large gauge group rank, into problems involving classical gravitational dy-

namics in higher dimensions. Consequently, holography provides unique opportunities to

study strongly-coupled non-equilibrium dynamics — provided one can actually solve the

associated classical gravitational dynamics.

Gauge theories with known gravitational duals are generally conformal field theo-

ries (CFTs) or conformal theories deformed by relevant operators; for such theories the

dual gravitational description involves a 5D spacetime with asymptotically anti-de Sitter

(AdS) geometry.2 Much work to date has explored near-equilibrium phenomena via holog-

raphy. Examples include the study of viscosity and related transport coefficients [6–9],

more general aspects of dissipative hydrodynamics [10–12], quasi-normal modes and near-

equilibrium response [13, 14], and dynamics of probes such as heavy quarks [15–19] or light

quarks [20, 21].3

There has been much less work on far-from-equilibrium dynamics, as this requires the

solution of gravitational dynamics with non-trivial initial conditions and (except in ex-

tremely special cases) such solutions can only be found numerically.4 Despite the difficulty,

notable progress has been made on gravitational initial value problems involving asymptoti-

cally AdS geometries.5 Recent work applying holography to far-from-equilibrium dynamics

includes studies of isotropization in spatially homogeneous systems [24–26], boost-invariant

expansion with transverse homogeneity [27, 28] or with radial flow [34], spherically symmet-

ric thermalization [29], collisions of planar shocks [30–32], and turbulence in 2D fluids [33].

With the exception of the last example, all these problems have a sufficient degree of sym-

metry that the 5D Einstein equations reduce to either 1+1 or 2+1 dimensional partial

differential equations (PDEs). An obvious goal of current and future work is the solution

of initial value problems involving lower degrees of symmetry.

In this paper, we discuss the computational challenges involved in solving, numerically,

asymptotically anti-de Sitter gravitational initial value problems. We describe in detail a

particular approach which we have found to be effective in a series of progressively more

complex applications, three of which will be examined as specific test cases: homogeneous

isotropization, planar shock wave collisions, and turbulent 2D fluid flows. Results on homo-

1See, for example, refs. [1–4] and references therein.
2The Klebanov-Strassler cascading gauge theory [5] is an example of a more complicated theory whose

dual geometry is not asymptotically anti-de Sitter.
3For additional prior work in this area, see the recent review [22], which is focused on applications to

heavy ion collisions, and references therein.
4For a broad perspective on numerical relativity and applications to high energy physics, see ref. [23].
5In the numerical relativity community, the phrase “initial value problem” is sometimes viewed as refer-

ring, specifically, to dynamical evolution problems based on spacelike Cauchy surfaces. A “characteristic”

formulation refers to evolution schemes based on null surfaces. We will treat the phrase “initial value

problem” as encompassing dynamical evolution schemes with initial data given on either spacelike or null

surfaces.
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geneous isotropization have been previously reported in ref. [24]; the degree of symmetry

for this problem reduces the 5D Einstein equations to a set of coupled 1+1 dimensional

PDEs. Initial results for planar shock wave collisions were reported in ref. [30]; in this case

the 5D Einstein equations reduce to 2+1 dimensional PDEs. Studies of fluid flows in two

spatial dimensions, using holography, involve the solution of 4D Einstein equations [33].

With no simplifying symmetry restrictions, this case requires solving coupled 3+1 dimen-

sional PDEs. We present results for each of these test cases and discuss both the associated

physics and computational issues such as stability and accuracy. The results presented in

this paper extend and complement earlier work. In particular, for colliding planar shock

waves, we show that it is possible to perform numerically stable, accurate, calculations

without adding any artificial background energy density, as was done in refs. [30–32]. We

study stocks of different thicknesses, as in ref. [31], but integrate farther in time. In

agreement with ref. [31], we find that collisions of relatively thin shocks are not well ap-

proximated as boost invariant. However, we show that the resulting hydrodynamic flow

may be characterized as locally boost invariant, in a sense which we discuss in section 4.2.

For simplicity of presentation, most discussion in this paper is limited to problems

involving solutions to pure Einstein gravity which are asymptotic to the Poincaré patch

of anti-de Sitter space [1]. Many interesting extensions are only touched upon or left to

future work. These include generalizations of these methods to problems involving non-

flat boundary geometry (e.g., global AdS asymptotics, or explicit time-dependent boundary

geometries [24, 27]), additional compact dimensions (e.g., dynamics of initial states inN = 4

super-Yang-Mills (SYM) theory which are not invariant under the full SU(4) R-symmetry),

or additional dynamical fields (dilaton-gravity, Maxwell-Einstein, etc.).6

2 Setup and conventions

Gauge/gravity duality relates certain quantum field theories in D spacetime dimensions to

gravitational physics in D+1 dimensions. (As noted above, we are not considering problems

in which the dynamics of additional compact dimensions play any role in the gravitational

description.) We consider quantum field theories (QFTs) in D dimensional flat Minkowski

spacetime, and hence will be interested in gravitational solutions describing D + 1 di-

mensional geometries with boundary, for which the boundary geometry is D dimensional

Minkowski space. Using Fefferman-Graham coordinates, the resulting asymptotically AdS

metric may be represented as [35–38]7

ds2 =
L2

ρ2

[
gµν(x, ρ) dxµ dxν + dρ2

]
, (2.1)

6As 5D Einstein gravity is a consistent truncation of 10D IIB supergravity on AdS5×S5, all the 5D pure

Einstein gravity solutions we discuss may be viewed as supergravity solutions which describe the dynamics

of N = 4 SYM states invariant under the SU(4)R symmetry.
7Our metric signature convention is mostly plus. Uppercase Latin letters M,N, · · · = 0, · · · , D will

be used as D + 1 dimensional spacetime indices. Greek letters µ, ν, · · · = 0, · · · , D−1 are used as D

dimensional spacetime indices in the dual quantum field theory, and lower case Latin letters i, j, k, · · · =

1, · · · , D−1 are used for D−1 dimensional spatial indices. The usual Minkowski metric tensor η = ‖ηµν‖ ≡
diag(−1,+1, · · · ,+1).
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where ρ is a “bulk” radial coordinate such that the spacetime boundary lies at ρ = 0,

with {xµ} denoting the D remaining “boundary” coordinates. We use L as the spacetime

curvature scale; it is related to the cosmological constant via

Λ = −1

2
D(D−1)/L2 . (2.2)

The metric functions gµν(x, ρ) have a near-boundary asymptotic expansion in integer pow-

ers of ρ, with the leading term equal to the desired Minkowski boundary metric and sub-

leading terms starting at order ρD,8

gµν(x, ρ) ∼ ηµν +

∞∑
n=D

g(n)
µν (x) ρn . (2.3)

It will be convenient to use a rescaled stress-energy tensor

T̂µν(x) =
Tµν(x)

κ
, κ ≡ DLD−1

16πGN
, (2.4)

where GN is the D+1 dimensional Newton gravitational constant. [For D = 4, Newton’s

constant is related to the dual SU(Nc) SYM theory via GN = π
2L

3/N2
c , so κ = N2

c /(2π
2).]

The coefficient of the first sub-leading term in the near-boundary expansion (2.3) deter-

mines the boundary stress-energy tensor, which coincides with the expectation value of the

(rescaled) stress-energy tensor in the dual QFT,

〈T̂µν(x)〉 = g(D)
µν (x) . (2.5)

Einstein’s equations imply boundary stress-energy conservation and tracelessness [35, 37,

38],

∇µ 〈T̂µν(x)〉 = 0 , 〈T̂µµ〉 = 0 . (2.6)

Given a non-vanishing stress-energy expectation value, one may define an associated

velocity field u(x) and (rescaled) proper energy density ε(x) as the timelike eigenvector

and corresponding eigenvalue of the stress-energy tensor,

〈T̂µν(x)〉 uν(x) = −ε(x)uµ(x) , (2.7)

(with normalization u(x)2 ≡ −1), provided 〈T̂µν〉 (or −〈T̂µν〉) satisfies the weak energy

condition.9 An observer moving with spacetime velocity u(x) sees an energy density equal

to ε(x) and vanishing energy flux. For later convenience, let ũ = uµ dx
µ denote the one-form

dual to the vector field u = uµ ∂µ.

8If the boundary metric is not flat, then additional terms involving even powers of ρ below order ρD are

present, as well as logarithmic terms starting with ρD ln ρ when D is even [37].
9If ±T̂µν fail to satisfy the weak energy condition, then the matrix ‖T̂µν‖ can have complex conjugate

pairs of eigenvalues and no real time-like eigenvector.
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3 Computational strategy

A basic issue affecting any numerical relativity calculation is the choice of how to deal

with the diffeomorphism invariance of general relativity. This lies at the heart of how one

converts Einstein’s equations into a well-posed initial value problem.

One general approach is to choose an ansatz for the metric, whose form will greatly

restrict the remaining diffeomorphism freedom. The Fefferman-Graham form (2.1) is one

such possibility. The ansatz must allow an arbitrary metric, consistent with the symmetries

of the physical problem under consideration, to be transformed into the chosen form by a

suitable change of coordinates. Even when this is possible in any local region, a given ansatz

for the metric may fail to provide good coordinates covering the entire domain of interest.

This is a known problem with the Fefferman-Graham form (2.1). Although convenient and

useful for analyzing near-boundary behavior, in solutions describing gravitational infall and

horizon equilibration, the Fefferman-Graham metric develops coordinate singularities in the

bulk and fails to remain regular across the future event horizon [39, 40]. Consequently,

despite its utility for other purposes, the Fefferman-Graham ansatz is not a good choice

for numerical initial value problems.

A different approach, avoiding the need to commit to some specific global form of coor-

dinates, is provided by the ADM formalism in which Cauchy surfaces are arbitrary spacelike

slices of the geometry, and some chosen lapse function and shift vector field relate the co-

ordinates on neighboring spacelike slices foliating the geometry [41, 42]. This approach

has been widely used in numerical relativity calculations in asymptotically Minkowski

space [43–45]. However, employing this approach has some practical downsides. Imple-

menting this method (particularly when combined with adaptive mesh refinement) is com-

plex. One must formulate a scheme for dynamically choosing lapse and shift vectors, or

make some a-priori choice, in a manner which, one hopes, will allow the foliation to remain

regular throughout the spacetime region of interest. Achieving a numerically stable scheme

can be problematic [43, 46–49].

3.1 Metric ansatz

We have chosen to employ the first approach involving a metric ansatz, one which is

specifically tailored to gravitational infall problems. The metric ansatz is a generalization

of traditional ingoing Eddington-Finkelstein coordinates for black holes.10 It is based on

a null slicing of spacetime constructed from infalling null geodesics, and will lead to a

characteristic formulation of gravitational dynamics.11 The general form of the metric is

ds2 =
r2

L2
gµν(x, r) dxµ dxν − 2wµ(x) dxµ dr , (3.1)

10Previous work [11, 40] studying late time behavior of solutions which approach stationary black brane

solutions convincingly demonstrates the virtues of using generalized Eddington-Finkelstein coordinates for

this class of asymptotically AdS gravitational infall problems.
11For useful prior discussions of characteristic formulations of relativity, see ref. [50] and references therein.
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where r is a non-inverted bulk radial coordinate (so the spacetime boundary lies at r =

∞), and {xµ} denote the D remaining boundary coordinates.12 The boundary one-form

w̃ = wµ dx
µ appearing in the second term is independent of the radial coordinate r. This

one-form is assumed to be timelike and, without loss of generality, may be taken to satisfy

w̃ 2 = −1 (using the boundary metric discussed below). A more explicit representation

of the metric gµν which describes the geometry on fixed-r slices will be introduced in

section 3.4.

From the ansatz (3.1), one immediately sees that lines along which r varies while the

other coordinates are held fixed are null curves. One may easily check that these curves

are infalling null geodesics for which r is an affine parameter. Therefore, the vector ∂r is a

directional derivative along infalling null geodesics. At the boundary (r =∞), an observer

whose D-velocity components equal wµ would describe these geodesics as representing

trajectories of comoving objects at rest in his frame; their tangent vectors are normal to

the D−1 spatial basis vectors in the observer’s frame. In our coordinates, these geodesics

remain purely radial throughout the bulk geometry.

The form of the metric ansatz (3.1) is preserved by two types of residual diffeomor-

phisms: arbitrary D-dimensional diffeomorphisms (independent of r),

xµ → x̄µ ≡ fµ(x) , (3.2)

and arbitrary shifts in the radial coordinate (depending on x),

r → r̄ ≡ r + δλ(x) . (3.3)

The diffeomorphism freedom (3.2) may be used to transform the boundary one-form w̃ into

a standard form such as

wµ(x) = −δ 0
µ . (3.4)

This simple choice will be used in the examples presented in section 4. Alternatively,

one could choose to require that the boundary one-form w̃ coincide with the flow field ũ

which will (eventually) be extracted from the boundary stress-energy tensor via eq. (2.7).

Circumstances in which this may be desirable will be discussed in the next subsection.

3.2 Boundary metric and asymptotic behavior

We are interested in solutions to Einstein’s equations for which the boundary geometry is

flat Minkowski space. Using the ansatz (3.1), such solutions may be expanded, asymptot-

ically, in inverse powers of r,

gµν(x, r) ∼ hµν(x) +
∞∑
n=1

g(n)
µν (x) r−n . (3.5)

The leading term hµν(x) is the D dimensional boundary metric. This equals the r → ∞
limit of the induced metric obtained by restricting the D+1 dimensional metric (3.1) to

12The inverse metric GMN =

(
(L/r)2 (gµν−wµwν/w2) −wµ/w2

−wν/w2 −(r/L)2/w2

)
, with wµ(x, r) ≡ gµν(x, r)wν(x).

– 6 –
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r = const. slices, ds2
∣∣
r=const.

= (r2/L2) gµν(x, r) dxµdxν , after rescaling to remove the

overall r2/L2 factor. The order-D coefficient g
(D)
µν in expansion (3.5) cannot be determined

solely by a near-boundary analysis; the value of this coefficient (which depends on the

solution throughout the bulk) determines the boundary stress-energy tensor in a manner

similar to the Fefferman-Graham case. With wα ≡ hαβ wβ, one finds

〈T̂µν〉 = g(D)
µν +D−1wαg

(D)
αβ w

β hµν . (3.6)

The boundary metric hµν may be chosen to equal the standard Minkowski metric,

hµν(x) = ηµν . (3.7)

But demanding a flat boundary geometry does not obligate one to use Cartesian Minkowski

space coordinates. Use of the boundary metric (3.7) represents a further, arbitrary choice

of coordinates on the boundary geometry. Alternatively, one may choose to describe

Minkowski space using some set of coordinates {xµ} which are non-trivially (and non-

linearly) related to a set of Cartesian Minkowski coordinates {yα}, so that

hµν(x) =
∂yα(x)

∂xµ
∂yβ(x)

∂xν
ηαβ . (3.8)

For some problems, the standard choice (3.7) of Minkowski boundary metric is suffi-

cient. This will be the case for the specific examples presented in subsequent sections. For

other problems, exploiting the freedom of using non-Cartesian boundary coordinates, with

corresponding boundary metric (3.8), is helpful. This is true, for example, in problems

involving cylindrical or spherical symmetry in the dual field theory, where it is natural to

use boundary coordinates adapted to that symmetry.

We believe that exploiting the freedom to choose non-Cartesian boundary coordinates

will also be helpful in problems involving highly relativistic fluid flow with large gradients of

flow velocity. For such problems, it will undoubtedly be preferable to choose the congruence

of radial null geodesics underlying the ansatz (3.1) to involve geodesics describing infalling

matter which is at rest (or nearly at rest) in the local fluid rest frame — not at rest with

respect to some globally defined inertial Lorentz frame which is necessarily divorced from

any local physics of interest. This implies that one would like to use the D-dimensional

diffeomorphism freedom (3.2) to set the boundary one-form w̃ appearing in the ansatz (3.1)

equal to the flow field ũ, as suggested earlier.13 However, simplifying features in the form

of the resulting Einstein equations (discussed next) are easier to exploit, numerically, if one

uses the diffeomorphism freedom (3.2) to transform the choice

w̃(x) = ũ(x) , hµν(x) = ηµν , (3.9)

to a formally equivalent description where the boundary one-form w̃ has the standard

form (3.4) and the complexity of the actual fluid flow is isolated in non-trivial boundary

coordinates,

wµ(x) = −δ 0
µ , hµν(x) = ∂yα(x)

∂xµ
∂yβ(x)
∂xν ηαβ , (3.10)

13Although some other choice will be needed in spacetime regions where the stress-energy tensor fails to

satisfy the weak energy condition and the fluid flow field ũ is ill-defined.

– 7 –
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for some choice of yα(x). This amounts to changing from an Eulerian to a Lagrangian

description of fluid mechanics. The desired diffeomorphism is one for which yα(x), for

fixed values of the spatial coordinates x ≡ {xi} and varying x0, gives the worldline of a

fluid cell labeled by x. If one chooses x0 to coincide with proper time along this worldline,

then the required diffeomorphism is one for which

wα(x) =
∂yα(x)

∂x0
. (3.11)

3.3 Horizons and IR cutoffs

The radial direction in AdS is related, via holography, to the energy scale in the dual

conformal field theory. Dynamics arbitrarily deep in the bulk correspond to arbitrarily

low energy processes in the quantum field theory. With bounded resources, any numerical

calculation can only be accurate over a finite dynamic range. So it is inevitable that some

form of high energy (UV) and low energy (IR) cutoff will be necessary in any numerical

calculation. An effective UV cutoff is imposed by the discretization used when solving

differential equations; this will be discussed below. Here, we focus on IR issues.

The Poincaré horizon of AdSD+1 is the locus of events beyond which no signal can reach

any boundary observer. Any infalling perturbation will distort the geometry and hence

perturb the Poincaré horizon. A perturbation with uniform (boundary) energy density can

deform the geometry to AdS-Schwarzschild (AdS-BH) form [51], describing a black brane

embedded in asymptotically anti-de Sitter space. This geometry has a non-compact planar

event horizon, with an associated temperature which is related to the radial position of

the horizon. In more general cases of gravitational infall in asymptotically AdS space, one

should expect a time-dependent geometry which, at least at late times, will resemble the

AdS-BH solution in a local “tubewise” fashion [11].

The essential point is that a non-compact event horizon, with the topology of a plane,

may be regarded as an effective IR cutoff. From a holographic perspective, the energy scale

of this IR cutoff is set by the local temperature of the horizon. Events beyond this horizon

cannot affect any physics extracted by a boundary observer.

In a numerical calculation of the evolving geometry, one is free to excise the portion

of spacetime beyond such an event horizon. However, the location of the event horizon

cannot be determined without knowing the entire future spacetime geometry (because

gravitational infall arbitrarily far in the future can change which null congruence is picked

out as the event horizon). Of more practical utility is the identification of an apparent

horizon, or outermost marginally trapped surface which, if it exists, will lie inside the true

event horizon.14

We will require initial data such that, at some initial time t0, there exists an appar-

ent horizon at some radial position r = rh(t0,x). And we will require that this horizon

smoothly evolve into an apparent horizon located at radial position r = rh(t,x) on sub-

sequent time slices. Hence, we are assuming that there exists an apparent horizon which,

14For more discussion of event horizons and apparent horizons see, for example, refs. [52, 53]. Apparent

horizons depend on the foliation of spacetime. We are exclusively concerned with apparent horizons on our

t = const. null slices of the geometry.
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on every time slice, has a planar topology and whose radial position is a smooth function

of x and t. The location of this apparent horizon will function as an IR cutoff and will

be the boundary of our computational domain. The modification of initial data needed to

create or adjust the location of such an apparent horizon is simple: it corresponds, in the

dual field theory, to adding a small background energy density. Explicit examples will be

discussed in the context of our test cases below.

We will find that some of the fields in our metric ansatz grow, in a power-law fashion,

as one moves deeper into the bulk. This can lead to increasingly large problems with

numerical loss of precision, which will be discussed in more detail below. Such precision

loss can be ameliorated by increasing the IR cutoff, or in other words, choosing initial data

which leads to larger values of the apparent horizon radius.

The bottom line is that excising the geometry inside the horizon is not only allow-

able, it is necessary to avoid numerical problems. The location of the apparent horizon

may be tuned by suitably adjusting what, in the dual field theory, is a small background

energy density.

This is an appropriate point at which to discuss the limits of applicability of our

methods. We require that the metric ansatz (3.14) provide good coordinates throughout

the region of spacetime between the boundary and an apparent horizon at some radial

position r = rh(t,x). This could potentially fail if: (a) some coordinate singularity develops

in the spacetime region outside the apparent horizon, or (b) an apparent horizon of the

assumed form does not exist.

Since our coordinates are directly tied to the congruence of infalling radial null

geodesics, possibility (a) would mean some event is not uniquely identified by our co-

ordinates (x, r), which label a particular infalling radial geodesic (originating at point x on

the boundary), together with an affine position r along this geodesic. This is precisely what

happens when there is focusing of the geodesic congruence, leading to intersections between

differing geodesics. The boundary of the region where such intersections occur defines a

caustic. As illustrated schematically in figure 1, a localized perturbation will typically lead

to geodesic focusing and consequent formation of caustics. Our method assumes that any

such caustics lie outside the computational domain; in other words, they must be hidden

behind the apparent horizon.

Possibility (b), or non-existence of a planar topology apparent horizon, can occur if

the apparent horizon changes form discontinuously. For example, gravitational infall could

lead to the formation of a compact trapped surface which is disconnected from a non-

compact apparent horizon lying deeper in the bulk. This is illustrated schematically in

figure 2. Of course, the formation of such a compact apparent horizon will likely also lead

to focusing and caustic formation in nearby infalling geodesics, so these two failure modes

are interrelated.

In either case, the applicability of our methods should be restored if the value of the

IR cutoff is increased, i.e., if the position of the non-compact planar topology horizon is

pushed outward by increasing the size of the background energy density in the dual theory,

as illustrated in the right panels of figures 1 and 2. Consequently, for some problems, one

should expect there to be a limit on the maximum scale separation achievable between the

IR cutoff and the physics of interest.

– 9 –
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Figure 1. Focusing of null infalling radial geodesics and consequent formation of caustics. Only

the radial direction and one spatial direction are shown. The grey shaded “blob” represents some

perturbation in the geometry causing focusing of infalling geodesics. The shaded area at the bottom

of each figure represents events behind the apparent horizon. Left panel: caustic formation outside

the apparent horizon. Right panel: caustic hidden behind apparent horizon.

Figure 2. Possible forms of apparent horizon evolution induced by gravitational infall. Only

the radial and one spatial direction are shown. The solid, dashed, and dotted lines, bounding

progressively lighter shaded regions, show the position of the apparent horizon at three times t0,

t1, and t2, respectively, with t0 < t1 < t2. Right panel: planar horizon topology at all times, to

which our methods apply. Left panel: non-planar horizon topology (at times t1 and t2), requiring

different computational methods.

Despite this limitation, we find that a large range of interesting problems are amenable

to solution using our methods. In fact, we have yet to encounter difficulties with caustic

formation or horizon topology change in any gravitational infall problem we have studied.

The underlying issue is one of relative scales. The above described pathologies are likely

to occur if one is studying situations with variations in the geometry (or bulk sources)

which are spatially localized on a scale which is small compared to the gravitational infall

time associated with the apparent horizon. In the dual field theory, this corresponds to

states with spatial structure on scales which are small compared to the length scale (or
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inverse temperature) τ set by the energy density. In a strongly coupled theory, one expects

fine spatial structure on scales small compared to τ to be washed out on the microscopic

time scale τ , with negligible influence on the later evolution. So, in practice, sources or

initial conditions of most interest are those with spatial size large compared to τ . Caustics

generated by such sources should be hidden by an apparent horizon whose infall time (or

inverse local temperature) is set by the microscopic scale τ .

3.4 Einstein’s equations

Turning Einstein’s equations into a computable time-evolution scheme necessitates a sepa-

ration of these equations into those which specify the dynamical evolution of the geometry,

and those which impose constraints on acceptable initial data (or boundary data). To

exhibit key aspects of the explicit equations which emerge when our metric ansatz (3.1) is

inserted into Einstein’s equations,

RMN − 1

2
RgMN + Λ gMN = 0 , (3.12)

we use the diffeomorphism invariance (3.2) of the ansatz to specialize the boundary one-

form w̃ to the standard choice (3.4), and rename the metric components in the ansatz,

r2

L2
g00(X) ≡ −2A(X) ,

r2

L2
g0i(X) ≡ −Fi(X) ,

r2

L2
gij(X) ≡ Gij(X) , (3.13)

so that the line element (3.1) becomes15

ds2 = Gij(X) dxi dxj + 2 dt
[
dr −A(X) dt− Fi(X) dxi

]
. (3.14)

Here, X = (x, r) ≡ (t,x, r) denotes event coordinates in which t ≡ x0 is a null time

coordinate, r remains the AdS radial coordinate, and x ≡ {xi} denotes the remaining

D−1 spatial coordinates.16 For later convenience, let

ν ≡ D−1 (3.15)

denote the spatial dimensionality of the boundary theory.

Spatial (ν dimensional) diffeomorphisms are a residual invariance of the form (3.14)

of the metric, and transform the metric functions Gij , Fi, and A in the usual manner (as

15We have redefined A by a factor of two, and flipped the sign of Fi, relative to definitions in our earlier

works [24, 27, 30]. This change simplifies the forms (3.17)–(3.19) for the radial shift transformations and

associated radially covariant derivatives presented below. Our metric ansatz (3.14) is closely related to

the null Bondi-Sachs form (see, for example, ref. [50]). The key difference is that our radial coordinate r

is an affine parameter along infalling geodesics, whereas the Bondi-Sachs metric uses a non-affine radial

coordinate r̄, chosen to make the determinant of the spatial metric a prescribed function of r̄.
16Using the symbol v instead of t for the null time coordinate would be traditional, as this is customary

in discussions of black hole geometries using Eddington-Finklestein (or Kruskal) coordinates. We choose

not to do so, but readers should keep in mind that t = const. surfaces are null, not spacelike. Near the

boundary our coordinates (t, r) are related to Fefferman-Graham coordinates (x0
FG, ρFG) via r = 1/ρFG and

t = x0
FG − ρFG.
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components of a covariant tensor, one-form, and scalar field, respectively). As mentioned

earlier, arbitrary radial shifts,

r → r̄ = r + δλ(x) , (3.16)

also leave the form of the metric invariant. Metric functions transform as

A(x, r)→ Ā(x, r̄) ≡ A(x, r̄−δλ) + ∂t δλ(x) , (3.17a)

Fi(x, r)→ F̄i(x, r̄) ≡ Fi(x, r̄−δλ) + ∂i δλ(x) , (3.17b)

while Gij(x, r) → Ḡij(x, r̄) ≡ Gij(x, r̄−δλ). From the transformations (3.17), it is appar-

ent that A and Fi function as the temporal and spatial components of a “radial shift”

gauge field.

In light of the spatial diffeomorphism invariance of the metric ansatz, it must be

possible to write explicit forms of the resulting Einstein equations in a manner which

is manifestly covariant under spatial diffeomorphisms. In addition, it is possible, and

quite helpful, to write expressions in a form which also makes invariance under the radial

shift symmetry manifest. To do so, we introduce derivatives which transform covariantly

under both radial shifts and spatial diffeomorphisms. For the temporal derivative, this is

accomplished by defining

d+ ≡ ∂t +A(X) ∂r . (3.18)

As noted earlier, ∂r is a directional derivative along ingoing radial null geodesics. The

d+ derivative is the corresponding directional derivative along the outgoing null geodesic

which passes through some event X in the radial direction.

The analogous definition for spatial derivatives, acting on (spatial) scalar functions, is

di ≡ ∂i + Fi(X) ∂r . (3.19)

Geometrically, these are derivatives along spacelike directions which are orthogonal (at the

event X) to the plane spanned by tangents to ingoing and outgoing radial null geodesics.

In the derivatives (3.18) and (3.19), A and Fi act like gauge field components, with ∂r the

associated “charge” operator. When acting on spatial tensor fields, one must augment the

derivative (3.19) with an affine connection, which we denote by Γ̃ijk, to build a derivative

which is also covariant under spatial diffeomorphisms. The required connection is the usual

Christoffel connection associated with the spatial metric Gij except that, to maintain radial

shift invariance, the spatial derivatives appearing in the definition of the connection must

be replaced by di derivatives. Hence,

Γ̃ijk ≡
1

2
Gil (dkGlj + dj Glk − dlGjk) (3.20a)

=
1

2
Gil
(
Glj,k +Glk,j −Gjk,l +G′lj Fk +G′lk Fj −G′jk Fl

)
. (3.20b)

Here, and henceforth, we use primes to denote radial differentiation.

We denote by ∇̃ the resulting spatial and radially covariant derivative. When dis-

playing indices, we use a vertical bar (|), instead of the usual semicolon, to indicate this
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modified covariant derivative. So, for example, if v is a spatial vector and ω a spatial

one-form, then

vi|k ≡ (∇̃v)ik = dk(v
i) + Γ̃ijk v

j = vi,k + v′ i Fk + Γ̃ijk v
j , (3.21a)

ωi|k ≡ (∇̃ω)ik = dk(ωi)− Γ̃j ik ωj = ωi,k + ω′i Fk − Γ̃j ik ωj . (3.21b)

The modified covariant derivative is both metric compatible, Gij|k = 0, and torsion free,

Γ̃ijk = Γ̃ikj . Associated with our modified spatial covariant derivative is a modified spatial

Riemann curvature tensor, R̃ijkl, defined by the usual formula, but with our modified

derivatives replacing the usual derivatives.17

With these preliminaries in hand, we now examine the resulting Einstein equations.

The D+1 dimensional set of equations (3.12) must decompose into one symmetric rank two

spatial tensor equation, two spatial vector equations, and three spatial scalar equations.

After tedious work, one finds the following simple results. The three scalar equations may

be written as:18

0 = tr

(
G′′ − 1

2
G′ 2
)
, (3.22)

0 = A′′ +
1

2
∇̃ · F ′ + 1

2
F ′ · F ′ + 1

2
(tr d+G)′ +

1

4
tr (G′ d+G) + 2Λ/ν , (3.23)

0 = tr [d+(d+G)−A′ (d+G)− 1

2
(d+G)2] + 2 ∇̃ · E +

1

2
tr (Ω2) . (3.24)

The dot products appearing here and in subsequent expressions are defined using the

spatial metric Gij . The spatial tensors G′ and F ′ are defined as the radial derivatives of

covariant components, (G′)ij ≡ (Gij)
′ and (F ′)i ≡ (Fi)

′. Likewise for G′′, d+G, d+F ,

etc. Hence, G′ ij = GikG′kj and F ′ i = GijF ′j . Therefore tr (G′) ≡ G′ ii = GijG′ji and

F · F = F iFi = FiG
ijFj . In equation (3.24), the last term involves the square of the

two-form

Ωij ≡ Fj|i − Fi|j = Fj,i − Fi,j + FiF
′
j − FjF ′i , (3.25)

which is the spatial (or “magnetic”) part of the field strength associated with the radial

shift symmetry. The penultimate term involves the corresponding time-space (or “electric”)

17Explicitly, R̃ijkl ≡ dkΓ̃ijl − dlΓ̃
i
jk + Γ̃imkΓ̃mjl − Γ̃imlΓ̃

m
jk. The modified spatial Ricci tensor and

scalar are given by the usual contractions, R̃jk ≡ R̃ijik and R̃ ≡ R̃kk. The modified Riemann tensor is

antisymmetric in the last two indices, as usual, but need not be antisymmetric in the first two indices,

or symmetric under (ij) ↔ (kl) pair exchange. Instead, R̃ijkl = R̂ijkl + ∆R̃(ij)kl where R̂ijkl obeys the

usual symmetries [odd under i ↔ j or k ↔ l, even under (ij) ↔ (kl)], while ∆R̃ijkl = 1
2
G′ij Ωkl +

1
4

[
G′ik Ωjl −G′il Ωjk +G′jl Ωik −G′jk Ωil

]
. The two-form Ω, defined in eq. (3.25), is the “magnetic” field

strength associated with the radial shift symmetry. The extra piece ∆R̃ijkl of the modified spatial Riemann

tensor leads to a corresponding term ∆R̃ij = 1
4

[G′ · Ω− Ω ·G′ + Ω (trG′)] in the modified spatial Ricci

tensor which is antisymmetric.
18We use a mixture of index-free notation (for simple factors like trG′, F · F , or ∇̃ · F ′), together with

indices on more involved expressions; this makes the results most concise. Factors of the inverse spatial

metric G−1 = ‖Gij‖ are implicitly present in raised spatial indices. Be aware that raising of indices does

not commute with radial or temporal differentiation.
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part of the radial shift field strength,

Ei ≡ d+Fi − diA = Fi,t −A,i +AF ′i − FiA′ . (3.26)

The two vector equations are:

0 = Gik
[
G1/2 F ′ k

]′
G−1/2 −G′ ki|k + (trG′)|i , (3.27)

0 = d+F
′
i + (d+G)ki|k − (tr d+G)|i +

1

2
(tr d+G)F ′i − 2A′|i −G

′
i
kEk + Ωk

i|k + F ′k Ωk
i ,

(3.28)

with G1/2 ≡ (detG)1/2. And the symmetric tensor equation is:

0 =

{
Gik
[
G1/4(d+G)kj

]′
G−1/4 +

1

4
G′ij tr (d+G)− R̃ij

+
2

ν
ΛGij + F ′i|j +

1

2
F ′iF

′
j

}
+ (i↔ j) , (3.29)

with R̃ij the modified spatial Ricci tensor. The trace of this equation separates from the

traceless part, and reads

0 =
[
G1/2 tr (d+G)

]′
G−1/2 − R̃+ 2Λ + ∇̃ · F ′ + 1

2
F ′ · F ′ , (3.30)

with R̃ the modified spatial Ricci scalar. Every term appearing in eqs. (3.22)–(3.24)

and (3.27)–(3.30) is invariant under the radial shift symmetry.

3.5 Propagating fields, auxiliary fields, and constraints

To elucidate the structure of equations (3.22)–(3.30) it is helpful to write them in a more

schematic form after extracting an overall scale factor Σ from the spatial metric Gij . Let

Gij(X) = Σ(X)2 ĝij(X) , (3.31)

with the rescaled metric ĝ ≡ ‖ĝij‖ defined to have unit determinant,19

det ĝ(X) = 1 . (3.32)

19The spatial scale factor Σ must be non-zero throughout the computational domain, as any zero

in Σ implies a coordinate singularity at which the metric degenerates. The determinant of the spa-

tial metric (3.31) coincides (up to a sign) with the determinant of the complete bulk metric (3.14),

det ‖Gij‖ = − det ‖gMN‖ = Σ2ν .
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Equations (3.22), (3.27), and (3.23) are linear second order radial ordinary differential

equations (ODEs) for Σ, F , and A, respectively, having the forms20

(
∂2
r +QΣ[ĝ]

)
Σ = 0 , (3.33)(

δji ∂
2
r + PF [ĝ,Σ]ji ∂r +QF [ĝ,Σ]ji

)
Fj = SF [ĝ,Σ]i , (3.34)

∂2
r A = SA[ĝ,Σ, F, d+Σ, d+ĝ] . (3.35)

The trace (3.30) and traceless parts of the tensor equation (3.29), and the second vector

equation (3.28), are first order radial ODEs for the (modified) time derivatives d+Σ, d+ĝ,

and d+F , respectively, with the schematic forms(
∂r +Qd+Σ[Σ]

)
d+Σ = Sd+Σ[ĝ,Σ, F ] , (3.36)(

δk(iδ
l
j) ∂r +Qd+ĝ[ĝ,Σ]klij

)
d+ĝkl = Sd+ĝ[ĝ,Σ, F, d+Σ]ij , (3.37)(

δji ∂r +Qd+F [ĝ,Σ]ji

)
d+Fj = Sd+F [ĝ,Σ, F, d+Σ, d+ĝ, A]i . (3.38)

The final scalar equation (3.24) directly expresses the (modified) second time derivative of

Σ in terms of the fields ĝ, Σ, F , and A, plus the first d+ derivatives of Σ and ĝ,

d+(d+Σ) = Sd2
+Σ[ĝ,Σ, F, d+Σ, d+ĝ, A] . (3.39)

The coefficient functions appearing in the above linear operators are

QΣ[ĝ] ≡ 1

4ν
tr
(
ĝ′ 2
)
, (3.40a)

PF [ĝ,Σ]ji ≡ −G
′ j
i + ν (Σ′/Σ) δji , (3.40b)

QF [ĝ,Σ]ji ≡ −G
′′ j
i + (G′ 2) ji − ν(Σ′/Σ)G′ ji + tr

(
G′′−1

2
G′ 2
)
δi
j , (3.40c)

Qd+Σ[Σ] ≡ (ν−1) Σ′/Σ , (3.40d)

Qd+ĝ[ĝ,Σ]klij ≡ −G′ k(i δ
l
j) +

1

ν
G′klGij +

(
2+

ν

2

)
(Σ′/Σ)

(
δk(iδ

l
j) −

1

ν
GklGij

)
, (3.40e)

Qd+F [ĝ,Σ]ji ≡ −G
′ j
i . (3.40f)

The various source functions SF [ĝ,Σ], Sd+Σ[ĝ,Σ, F ], Sd+ĝ[ĝ,Σ, F, d+Σ],

SA[ĝ,Σ, F, d+Σ, d+ĝ], Sd+F [ĝ,Σ, F, d+Σ, d+ĝ, A] and Sd2
+Σ[ĝ,Σ, F, d+Σ, d+ĝ, A] ap-

pearing in the inhomogeneous ODEs (3.34)–(3.39) depend only on the indicated fields

20To convert eq. (3.22) to the form (3.33), note that det ĝ = 1 implies that tr (ĝ′) = 0 and

tr (ĝ′′) = tr (ĝ′ 2). Hence, tr (G′) = 2ν Σ′/Σ, while tr (G′′) = 2ν
[
Σ′′/Σ + (Σ′/Σ)2

]
+ tr (ĝ′ 2) and

tr (G′ 2) = 4ν (Σ′/Σ)2 + tr (ĝ′ 2). The conversion of eq. (3.24) to the form (3.39) below uses the analo-

gous relations tr (d+G) = 2ν (d+Σ)/Σ, tr (d+(d+G)) = 2ν
[
(d+(d+Σ))/Σ + (d+Σ)2/Σ2

]
+ tr ((d+ĝ)2), and

tr ((d+G)2) = 4ν (d+Σ)2/Σ2 + tr ((d+ĝ)2).
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(and their radial and spatial derivatives). Explicit forms of these source functions may be

easily extracted from eqs. (3.27), (3.30), (3.29), (3.23), (3.28) and (3.24), respectively.

The function A is an auxiliary field; no time derivative of A appears in any of the above

equations. One must integrate the second order radial ODE (3.35) on every time slice (after

determining the fields appearing in the source term for this equation) to find A.21

The first order radial ODEs (3.36), (3.37) and (3.38) determine the modified time

derivatives of Σ, ĝ, and F . One may regard the functions Σ, ĝ, and F as propagating

fields, with the second order ODEs (3.33) and (3.34) serving as constraints on initial data

for Σ and F . If these constraints hold at one time, then the dynamical equations (3.36)–

(3.38) ensure that these constraints will be satisfied at all later times.

Alternatively, one may choose to regard Σ and F as auxiliary fields which are deter-

mined on each time slice by integrating the second order ODEs (3.33) and (3.34) (with

appropriate boundary conditions). These auxiliary field equations are completely local in

time. With this choice of perspective, only the rescaled spatial metric ĝ encodes propagat-

ing information.

The final equation (3.39) for d+(d+Σ), as well as eqs. (3.36) and (3.38) for d+Σ and

d+F , may be viewed as boundary value constraints. If these equations hold at one value

of r, then the other equations ensure that eqs. (3.36), (3.38) and (3.39) hold at all values

of r. This follows from the Bianchi identities. It is eqs. (3.38) and (3.39) which impose the

condition (2.6) of boundary stress-energy conservation.

3.6 Residual gauge fixing

The residual reparameterization freedom associated with radial shifts (3.16) is apparent in

the asymptotic near-boundary behavior of solutions to Einstein’s equations. After choosing

the boundary metric (3.7) one finds the asymptotic behavior:22

A =
1

2
(r+λ)2 − ∂tλ+ a(D) r2−D +O(r1−D) ,

Fi = −∂iλ+ f
(D)
i r2−D +O(r1−D) , (3.41a)

Σ = r+λ+O(r1−2D) ,

ĝij = δij + ĝ
(D)
ij r−D +O(r−D−1) , (3.41b)

d+Σ =
1

2
(r+λ)2 + a(D) r2−D +O(r1−D) ,

d+ĝij = −D
2
ĝ

(D)
ij r1−D +O(r−D) , (3.41c)

where λ = λ(x) is completely undetermined. Here and henceforth we have, for convenience,

set the curvature scale L = 1. (Factors of L can be restored using dimensional analysis.)

21The specification of appropriate integration constants for this, and all the other, radial ODEs will be

discussed in subsection 3.7.
22These asymptotic expansions hold for D > 2. For D = 2 (three-dimensional gravity), expansions in

1/r terminate. Exact solutions to Einstein’s equations (3.12), with a flat boundary metric (3.7), are given

by Σ = r + λ, A = 1
2
(r + λ)2 − ∂0(λ + χ), and F = −∂1(λ + χ), with λ = λ(x0, x1) completely arbitrary

and χ = χ(x0, x1) an arbitrary solution of the free wave equation, ∂2χ = 0.
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As mentioned earlier, asymptotic analysis also cannot determine the values of the

subleading order-D coefficients in the metric which, after the renaming (3.13) of metric

functions, are the coefficients a(D), f
(D)
i , and ĝ

(D)
ij (each of which is a function of x). Re-

expressing the result (3.6) for the stress-energy tensor using our renamed metric functions,

we have23

〈T̃ 00〉 = −2
D − 1

D
a(D) , 〈T̃ 0i〉 = f

(D)
i , 〈T̃ ij〉 = ĝ

(D)
ij −

2

D
a(D) δij . (3.42)

One must solve Einstein’s equations throughout the bulk to determine the coefficients a(D),

f
(D)
i , and ĝ

(D)
ij ; our procedure for doing so will be discussed in the next subsection. But

λ(x) is determined by fiat — one must simply adopt some scheme for fixing λ.

One seemingly natural approach is to demand that λ vanish identically. That is,

one could require that Σ(x, r) − r vanish, for all x, as r → ∞. However, this turns out

to be a bad choice as it leads to apparent horizons whose radial positions vary rapidly

with x. Such variation causes greater difficulty with numerical loss of precision due to

cancellations between terms which grow large deep in the bulk. And it can lead to situations

where the radial coordinate r decreases to zero and turns negative before the apparent (or

Poincaré) horizon is reached — which is a nuisance since it makes the inverted radial

coordinate u ≡ 1/r, which is otherwise convenient for numerical work, singular within the

computational domain of interest.

A much preferable choice is to use the residual reparameterization freedom to put the

apparent horizon at a fixed radial position,

rh(x) = r̄h (3.43)

for all x. This choice makes the computational domain a simple rectangular region. If the

surface r = r̄h is an apparent horizon, then an outgoing null geodesic congruence, normal

to the surface and restricted to a t = const. slice, will have vanishing expansion [52, 53].

This translates, in our metric ansatz, to a condition on d+Σ at the apparent horizon.24

One finds:

d+Σ|r̄h = Sd+Σh
[ĝ,Σ, F ] , (3.44)

with

Sd+Σh
[ĝ,Σ, F ] ≡ −1

2
Σ′ F 2 − 1

ν
Σ∇ · F . (3.45)

and all fields evaluated at radial position r̄h.25

23Because ĝ has unit determinant, the sub-leading coefficient ĝ
(D)
ij is automatically traceless (as well as

symmetric). So the full stress-energy tensor (3.42) of the dual field theory is automatically traceless as well.
24Ref. [54] has a particularly nice treatment of null congruences. The congruence may be defined as

kα(x) = µ(x)φ(x),α where, within the time-slice of interest, the surface φ(x) = C for some value of the

constant C will define the apparent horizon. Requiring that k be null fixes the time derivative ∂tφ in terms of

spatial derivatives of φ. Requiring the congruence to satisfy the (affinely parameterized) geodesic equation

kαkβ;α = 0 determines the time derivative of the multiplier function µ in terms of its spatial derivatives.

Given these time derivatives, one may then compute the expansion via θ = ∇ · k. Demanding that the

result vanish on the surface φ = C gives the condition that this surface be an apparent horizon. eq. (3.44)

is the result of specializing this condition to the case φ = r, so that the surface under consideration lies at

a fixed radial position.
25This expression and the subsequent horizon stationarity condition (3.47) are written using ordinary

spatial covariant derivatives, not our modified derivatives (3.21). These gauge fixing conditions are, by

necessity, not invariant under radial shifts and do not have simpler forms when written using the modified

derivative ∇̃.
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We want condition (3.44) to hold at all times. It is convenient to regard this as the

combination of a constraint on initial data (which is implemented by finding the radial

shift (3.16) needed to satisfy condition (3.44) at the initial time t0), together with the

condition that the horizon position be time-independent, ∂rh/∂t = 0, which requires that

the time derivative of condition (3.44) hold at all times,

∂t d+Σ|r̄h = ∂t Sd+Σh
[ĝ,Σ, F ] . (3.46)

Evaluating this horizon stationarity condition [and using eqs. (3.36), (3.37), and (3.39) to

simplify] leads to a second order linear elliptic differential equation for A on the horizon.

Explicitly, one finds

0 = ∇2A−∇A · (F ′ −G′F )

+
1

2
A

[
−R(ν) + 2Λ +

1

2
(F ′−G′F ) · (F ′−G′F )−∇ · (F ′−G′F )

]
+

1

2
F · F

[
−1

2
tr [(d+G)′]− (∇ · F )′ − Fi;jG′ ji −

1

4
(F · F )′ trG′

]
− 1

4
(Fi;j−Fj;i)(F j;i−F i;j)

− 1

4
tr [(d+G)2]− (d+G)jiFi;j + F · ∇2F +

1

2
(F ′ −G′F ) · ∇(F · F )

∣∣∣
r=rh

, (3.47)

with R(ν) the spatial Ricci scalar.

3.7 Integration strategy

The set of equations (3.33)–(3.39) have a remarkably convenient nested structure, which

permits a simple and efficient integration strategy.

On some given time slice t0, eq. (3.33) is a linear (in Σ) second order radial ODE which

may be integrated to determine Σ(t0,x, r), provided ĝ is already known on the time slice t0.

Linearly independent homogeneous solutions behave as r1 and r0 as r →∞. Consequently,

the two needed integration constants may be fixed using the leading and first sub-leading

terms in the asymptotic behavior, Σ ∼ r + λ+ · · · [cf. eq. (3.41b)]. However, this implies

that λ(t0,x) must be known, in addition to ĝij(t0,x, r), to determine Σ(t0,x, r).

Once Σ and ĝ are known at time t0, the set (3.34) of second order radial ODEs

can be integrated to determine the D−1 components Fi(t0,x, r).
26 Linearly independent

homogeneous solutions behave as r2 and r2−D as r → ∞. Consequently, the needed

integration constants may once again be fixed from the leading and first sub-leading terms

in the asymptotic behavior, Fi ∼ −∂iλ + f
(D)
i r2−D + · · · [cf. eq. (3.41a)]. This assigns a

vanishing coefficient to the r2 homogeneous solution, and a specified coefficient f
(D)
i to the

26In addition to the manifest dependence on F ′ in the first terms of equation (3.27), the second and third

terms in the equation generate, through the modified covariant derivatives, terms which depend linearly on

F . To solve for F , it is convenient to use the equivalent form (C.4) which uses ordinary covariant derivatives.

In the absence of bulk sources, one may decouple the equations for different components of F by integrating

first to find G1/2 Gik(F k)′, extracting (F k)′, and then re-integrating to find the contravariant components

of F .
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other homogeneous solution. Hence, in addition to ĝ and λ at time t0, one must also know

the subleading coefficient f
(D)
i (t0,x) before integrating the F equations; how to accomplish

this will be discussed momentarily.

Next up is eq. (3.36), which is a first order linear radial ODE for d+Σ, whose coefficients

and source term depend on the already-determined values of ĝ, Σ, and F at time t0.

Note that, with time derivatives rewritten in terms of d+, this equation has no explicit

dependence on A. The homogeneous solution behaves as r2−D as r → ∞, so the single

needed integration constant may be fixed by the coefficient of the sub-leading asymptotic

term, d+Σ ∼ 1
2(r+λ)2 + a(D) r2−D + · · · , [cf. eq. (3.41c)]. Hence, in addition to ĝ, λ, and

f
(D)
i at time t0, we also require that the subleading coefficient a(D)(t0,x) be known before

integrating the d+Σ equation; how to accomplish this will also be discussed momentarily.

Now consider eq. (3.37). This is, in general, a set of coupled first order linear radial

ODEs for the 1
2D(D−1) − 1 components of the traceless symmetric spatial tensor d+ĝij .

The coefficients and source terms of these equations again depend only on the already-

determined values of ĝ, Σ, F , and d+Σ at time t0. The homogeneous solution to this

equation behaves as r(1−D)/2 as r →∞; the needed integration constant just corresponds to

demanding the absence of any such homogeneous piece, so that d+ĝij = O(r1−D) as r →∞.

Next turn to eq. (3.35), which is a trivial second-order linear radial ODE for A, with

a source term depending on the already-determined values of ĝ, Σ, F , d+Σ, and d+ĝ.

Linearly independent homogeneous solutions are r1 and r0. The asymptotic behavior

A ∼ 1
2(r+λ)2 − ∂tλ + · · · [cf. eq. (3.41a)], shows that knowledge of λ and ∂tλ (at time

t0) determines these integration constants. If one fixes the residual reparameterization

invariance (3.16) by choosing, a-priori, the value of λ as a function of both t and x, then

this choice determines the two constants needed to integrate eq. (3.35) for A.

However, as discussed in section 3.6, it is preferable to adjust λ dynamically so as to fix

the radial position of the apparent horizon, which forms the IR boundary of the computa-

tional domain. As described above, the horizon position invariance condition, drh/dt = 0,

reduces to the second order linear elliptic differential equation (3.47) for A on the horizon.

The functions (evaluated at a given time t0 and radius r̄h) appearing in the coefficients

and source term of this linear elliptic PDE have all been determined in earlier steps of

the integration procedure. Solving the linear PDE (3.47) (with appropriate boundary con-

ditions in the spatial directions) will determine the IR boundary value A(t0,x, r̄h). This

provides one of the two integration constants needed to integrate eq. (3.35) and determine

A everywhere on the t = t0 time slice; the second integration constant is fixed by the

asymptotic behavior A ∼ 1
2r

2 + λr + O(1) as r → ∞, showing that λ is the coefficient of

the term linear in r.

After the determination of A in this manner, using the horizon-invariance condition,

one may extract the time derivative of λ from the subleading asymptotic behavior (3.41a)

of A. The needed term may be isolated most conveniently by combining A with d+Σ, as

∂tλ = lim
r→∞

(d+Σ−A) , (3.48)

with corrections to the limit vanishing as O(r2−2D). The determination of A also allows

one to extract t-derivatives from d+ derivatives so that, on the t = t0 time slice, one can
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now evaluate

∂t ĝij = d+ĝij −A∂r ĝij . (3.49)

To recap, having started at time t = t0 with ĝij , λ, f
(D)
i , and a(D), the above procedure

allows one to evaluate the time derivatives of ĝij and λ. Using a suitable integration method

(such as fourth-order Runge-Kutta), these time derivatives provide the information needed

to determine ĝij and λ on the next time slice at t = t0 + ε, up to an error vanishing as a

power of the time step ε (e.g., ε5 for fourth-order Runge-Kutta). Appropriate choices for

time integration methods are discussed below in subsection 3.12.

However, before one can repeat the entire procedure above on the t0 + ε time slice, one

must also evaluate the time derivatives of asymptotic coefficients f
(D)
i and a(D), as these

are needed to determine the values of these coefficients on the subsequent time slice. The

time derivative of f
(D)
i could be obtained by integrating the linear radial ODE (3.38) to

find d+F , converting the d+ derivative to a t derivative, and then extracting ∂tf
(D)
i from

the first subleading term in the large r asymptotic behavior of ∂tF . Likewise, ∂t a
(D) could

be obtained by integrating the final radial ODE (3.39) to find ∂t d+Σ, and then extracting

∂t a
(D) from its subleading asymptotic behavior. However, there is a simpler, far more

efficient approach: direct use of boundary stress-energy conservation (2.6). As indicated in

eq. (3.42), up to a common overall factor, −2D−2
D a(D) is the energy density (and the trace

of the spatial stress tensor), f
(D)
i are the components of the momentum density, and ĝ

(D)
ij

is the traceless part of the spatial stress tensor. Hence, the needed time derivatives of f
(D)
i

and a(D) are given by

∂t a
(D) =

D

2D − 2
∂i f

(D)
i , ∂t f

(D)
i =

2

D
∂i a

(D) − ∂j ĝ(D)
ji , (3.50)

where all quantities on the right hand sides are already known known on the t0 time slice.

(The traceless stress coefficient ĝ
(D)
ij must be extracted from the leading large r behavior

of ĝij .) Given these time derivatives, updated values for a(D) and f
(D)
i on the next t0 + ε

time slice are computed using the same time integration method employed for ĝij and λ.

This completes the series of steps needed to turn Einstein’s equations into an algorithm

for evolving information from a given t = t0 null slice to a subsequent slice at t0+ε. It should

be emphasized that although one is solving the highly non-linear Einstein equations, this

approach breaks the central time-evolution process down into a sequence of steps which

only require solving the linear first or second order radial ODEs (3.33)–(3.37), plus the

linear elliptic horizon PDE (3.47). The specific procedure described above is not, however,

unique. Instead of treating Σ as an auxiliary field, to be computed anew on each time slice

using the Schrodinger-like eq. (3.33), as mentioned earlier one could choose to treat Σ as

a dynamical field which is evolved by computing d+Σ and then extracting ∂tΣ. Likewise,

the vector F could be treated as a dynamical field and evolved using eq. (3.38), instead

of computing it as an auxiliary field from the second order eq. (3.34). One could fix

the integration constant in eq. (3.36) for d+Σ using the planar horizon condition (3.44)

directly on every time slice, instead of using (and evolving) a(D) to fix the subleading large

r asymptotic behavior of d+Σ. These are just a few of the possibilities.
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Different choices, while formally equivalent, have differing sensitivities to discretization

effects and lead to algorithms with quite different numerical stability. Our experience is that

stability is improved by computing auxiliary fields afresh on each time slice (instead of dy-

namically evolving these fields), and by using boundary stress-energy conservation to evolve

the relevant subleading asymptotic coefficients directly, as described in the above scheme.

3.8 Initial data

To start the integration procedure, one must specify the spatial dependence of the asymp-

totic coefficients a(D)(t0,x) and f
(D)
i (t0,x) on some initial t = t0 time slice. And one must

specify the radial and spatial dependence of the rescaled spatial metric ĝij(t0,x, r). The

asymptotic behavior of ĝij (specifically the coefficient ĝ
(D)
ij ) determines the initial trace-

less stress tensor, while a(D) and f
(D)
i fix the initial energy and momentum density [cf.,

eq. (3.42)]. Changes in the radial dependence of ĝij (for some prescribed asymptotic be-

havior) encode changes in multi-point correlations in the dual field theory state, but do

not affect one point expectation values of operators local in time, evaluated at time t0.

(Different choices for ĝij in the bulk, on the initial slice, may of course alter one point

expectation values at later times.)

In practice, there are several options for selecting initial data. One can choose to study

“incoming” scattering states which, at time t0, contain well-separated excitations that, if

considered in isolation, would have simple known evolution. Our case study of colliding

planar shock waves in section 4.2 is an example of this type. Alternatively, one can start

with a known static (or stationary) geometry describing an equilibrium state in the dual

theory and then, after the initial time t0, drive the system out of equilibrium using time-

dependent external sources. This was the approach used in refs. [24, 27], where specified

time-dependent boundary geometries represent sources coupled to Tµν . Finally, one can

simply make an arbitrary choice for the radial dependence of ĝij on the initial time slice.

To a large extent, features in ĝij deep in the bulk quickly disappear behind the horizon

and have little influence on the future geometry; they reflect initial transients.

Given some choice of initial data, before proceeding with the integration strategy

outlined above one must first find the value of the radial shift λ(t0,x) which leads to an

apparent horizon at the desired location r = r̄h. This requires integrating eqs. (3.33), (3.34)

and (3.36) with λ set to zero (or some other arbitrary choice), to obtain provisional solutions

for Σ, Fi and d+Σ on the initial slice. Using these functions, one can locate the outermost

value of r (for each x) at which the apparent horizon condition (3.44) is satisfied, and then

adjust λ(x), at time t0, to shift this radial position to the prescribed value.27

3.9 Finite spatial volume

With finite computational resources, one needs a finite computational domain in all direc-

tions, including the D−1 spatial directions.28 One could make an r-independent change

27More precisely, one must use an iterative root-finding scheme, as the condition (3.44) is satisfied when

there is an apparent horizon at r = r̄h, but is not covariant under radial shifts. We use a simple Newton

iteration procedure based on the value and first radial derivative of d+Σ− Sd+Σh [ĝ,Σ, F ] at r = r̄h.
28Problems with translation symmetry in one or more spatial directions, such as our first two examples

below, are trivial exceptions to this assertion. One needs a finite computation domain in all directions in
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of variables which would map the range of the spatial {xi} coordinates to a finite interval,

while preserving the form of the metric ansatz (3.14). Such r-independent transformations

are part of the residual diffeomorphism freedom. However, we have not found such remap-

ping to be desirable, as this leads to equations which are singular and ill-behaved at the

ends of the spatial interval.

A simple alternative which does not degrade numerical accuracy or stability is compact-

ification of the spatial directions. We impose simple cubic periodic boundary conditions

in spatial directions, with period Ls. This should be viewed as a complementary part

of the IR cutoff needed for computation. This spatial compactification also dictates the

appropriate boundary conditions to use in solving the horizon invariance condition (3.47),

namely spatial periodicity of Ah.

Of course, compactification of spatial directions can have undesirable consequences. In

scattering problems, as outgoing excitations separate there will be a limited time duration

before the evolution is polluted by “wrap-around” effects caused by the compactification.

If one is interested in exploring the uncompactified dynamics for some time duration τ ,

then one will generally need a spatial compactification with size Ls ≥ c τ .

3.10 Field redefinitions

For numerical work, it is helpful to make a change of variable which maps the unbounded

radial coordinate r to a finite interval. We just invert, and define

u ≡ 1/r . (3.51)

In all the radial ODEs (3.33)–(3.37), the endpoint u = 0 (or r = ∞) is a regular singular

point. As shown in eq. (3.41), the metric functions A and Σ, as well as the time derivative

d+Σ, diverge as u → 0. For numerical purposes, it is very helpful to define subtracted

functions in which the (known) leading pieces which diverge as u → 0 are removed, and

to rescale the subtracted functions by appropriate powers of u so that the resulting func-

tions vanish linearly, or approach a constant, as u → 0. This diminishes the substantial

loss of precision which can occur due to large cancellations between different terms near

u = 0. Altogether, this has lead us to use the following redefined fields in much of our

numerical work:29

σ(x, u) ≡ Σ(x, 1/u)− 1/u , γij(x, u) ≡ u1−D [ĝij(x, 1/u)− δij ] , (3.52a)

a(x, u) ≡ A(x, 1/u)− 1

2
Σ(x, 1/u)2, γ̇ij(x, u) ≡ u2−D [d+ĝij(x, 1/u)] , (3.52b)

fi(x, u) ≡ Fi(x, 1/u) , σ̇(x, u) ≡ u3−D
[
d+Σ(x, 1/u)− 1

2
Σ(x, 1/u)2

]
.

(3.52c)

which solutions of interest have non-trivial variation.
29If one introduces an explicit parameterization for ĝij which solves the unit determinant constraint, as

we do below in the examples discussed in section 4, then the redefinitions (3.52) for ĝij and d+ĝij are

replaced by analogous rescaling of the individual functions parameterizing ĝij and their time derivatives.
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Writing Σ2, and not just (u−1+λ)2, in the subtraction terms for A and d+Σ is an arbitrary

choice which makes no practical difference as Σ coincides with u−1+λ up to O(u2D−1)

terms which are negligible near the boundary. The resulting u → 0 boundary conditions

for these redefined fields are:

σ(x, u)→ λ(x) , γij(x, u) ∼ u ĝ(D)
ij (x) , a(x, u) remains regular , (3.53a)

σ̇(x, u) ∼ u a(D)(x) , γ̇ij(x, u)→ 0 , fi(x, u) ∼ −∂iλ+ uD−2f
(D)
i (x) . (3.53b)

3.11 Discretization

To integrate the radial ODEs (3.33)–(3.37), and the horizon equation (3.47), one must

discretize the radial and spatial coordinates, represent functions as finite arrays of function

values on some specified set of points, and replace derivatives with suitable finite difference

approximations.

Complications arise from the fact that u = 0 is a singular point in all the radial

ODEs. Typical numerical ODE integrators (involving short-range finite difference approxi-

mations) do not tolerate such a singular point at the endpoint of the computational interval.

One must introduce some finite separation scale umin, use truncated (analytically derived)

asymptotic expansions to approximate functions in the near-boundary region 0 < u < umin,

and only use numerical integration for u > umin. To achieve accurate results one must care-

fully select umin, and the order of the asymptotic expansion, so that the (in)accuracy of

the truncated asymptotic expansion is comparable to that of the numerical integration. As

one uses progressively finer discretizations (together with suitably matched improvements

in the treatment of the asymptotic region), the gain in accuracy scales, at best, as a power

of the radial discretization, error ∼ (∆u)k, with the exponent k depending on the range of

the chosen finite difference approximation.

For many differential equations, substantially improved numerical accuracy can be

obtained by using spectral methods.30 This approach entails the use of very long-range

approximations to derivatives. In essence, one represents functions as linear combinations

of a (truncated) set of basis functions, and then exactly evaluates derivatives of these

functions. For functions periodic on an interval of length Ls, the natural basis functions

are complex exponentials, eiknx with kn ≡ 2πn/Ls (or the equivalent sines and cosines),

and the expansion is just a truncated Fourier series,

f(x) =

M∑
n=−M

αn e
iknx . (3.54)

For aperiodic functions on an interval, convenient basis functions are Chebyshev polyno-

mials, Tn(z) ≡ cos(n cos−1 z). For functions on the interval 0 < u < 1, the appropriate

expansion reads

g(u) =
M∑
n=0

αn Tn(2u− 1) . (3.55)

This is nothing but a Fourier cosine series in the variable θ ≡ cos−1(2u−1).

30For a good introduction to spectral methods, see ref. [55].
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In so-called pseudospectral or collocation approaches, one determines the expansion

coefficients {αn} by inserting the truncated expansion (3.54) or (3.55) into the differen-

tial equation of interest and demanding that the residual vanish exactly at a selected set

of points whose number matches the number of expansion coefficients. For the Fourier

series (3.54), these grid points should be equally spaced around the interval,

xm = Ls

(
m

2M+1

)
+ const., (3.56)

for m = −M, · · ·,M . Knowledge of the expansion coefficients {αn} is completely equivalent

to knowledge of the function values {fm} on the collocation grid points,

fm ≡ f(xm) . (3.57)

For the Chebyshev case (3.55), appropriate grid points are given by the extrema and

endpoints of the M ’th Chebyshev basis function.31 With the [0, 1] interval used in expan-

sion (3.55), these are

um =
1

2

(
1− cos

mπ

M

)
, (3.58)

for m = 0, · · ·,M . Again, knowledge of the expansion coefficients {αn} is completely

equivalent to knowledge of the function values {gm ≡ g(um)} on the collocation grid points.

In practice, one uses these function values, plus interpolation formula, which together

exactly reproduce the truncated basis expansions (3.54) or (3.55).32

For linear differential equations, spectral methods convert the differential equation into

a straightforward linear algebra problem (albeit one with a dense coefficient matrix, not

a banded or sparse matrix as would be the case when using short-range finite difference

approximations). One key advantage of spectral methods is improved convergence. For

sufficiently well-behaved functions, accuracy improves exponentially as the number of basis

functions is increased. A second advantage is that one can directly apply spectral methods

to differential equations with regular singular points, as long as the specific solution of

interest is well-behaved at the singular point. See ref. [55] for further detail.

We have found the use of (pseudo)spectral methods to be quite advantageous. We

use the Fourier series form (3.54) to represent functional dependence on periodic spatial

31The Chebyshev grid points (3.58) are simply the image, under the mapping u = 1
2
(1 + cos θ), of

equally spaced points in θ which would be appropriate for a Fourier cosine expansion. This choice of

grid points, which include the interval endpoints, is most convenient when dealing with the imposition of

boundary conditions.
32In brief, for each truncated basis expansion, one reexpresses the expansion in the form f(x) =∑
m fm Cm(x) where the “cardinal” function Cm(x) is the unique function which (i) can be represented

in terms of the same truncated basis expansion, and (ii) vanishes identically at all collocation grid points

except the m’th point, where it equals unity [so that Cm(xn) = δmn]. Cardinal functions are essentially

regularized delta functions. See ref. [55] for more discussion including (in appendix E of that reference)

explicit formulas for the appropriate cardinal functions for the Fourier expansion (3.54) and the Chebyshev

expansion (3.55).
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coordinates, and the Chebyshev form (3.55) to represent functional dependence in the

radial direction (using the inverted radial variable u).33

3.12 Time integrator

As outlined above in section 3.7, in our evolution scheme we choose to evolve the minimal

set of fields Φ ≡ {ĝij , a(D), f
(D)
i , λ}. Discretizing the geometry with Ni grid points in the xi

spatial direction and Nu points in the radial direction, the fields in Φ constitute a total of

[1
2(ν−1)Nu+1](ν+2)

∏ν
i=1Ni independent degrees of freedom. The time evolution portion

of the spatially discretized Einstein equations then takes the schematic form

dΦ

dt
= F [Φ] . (3.59)

In other words, after discretizing the spatial and radial directions, Einstein’s equations

reduce to a large system of simple, first-order ODEs describing the time-evolution of Φ.

Evaluating F [Φ] is tantamount to first solving the nested system of radial equations (3.33)–

(3.37) to find d+ĝij , then using eq. (3.49) to extract the discretized field velocities ∂tĝij

from d+ĝij , and finally using eqs. (3.48) and (3.50) to compute ∂ta
(D), ∂tf

(D)
i , and ∂tλ.

The first order system (3.59) of simple ODEs can integrated using a variety of numer-

ical ODE solvers. For simplicity, we limit our discussion to non-adaptive constant time

step schemes.34 We have used both implicit and explicit evolution schemes. When using

explicit time evolution schemes, stability of the resulting numerical evolution requires that

one use a suitably small time step. The Courant-Friedrichs-Lewy (CFL) condition [57],

required for stability, imposes an upper limit on the time step. For diffusive equations, the

time step ∆t must satisfy D∆t� ∆x2, where ∆x is the minimum spatial grid spacing and

D is the relevant diffusion constant. For wave equations with unit propagation velocity,

the time step must satisfy ∆t � ∆x. (In general, the relevant condition is that the nu-

merical domain of dependence of new field values must encompass the appropriate physical

domain of dependence.) Gravitational evolution in asymptotically AdS spacetime contains

both diffusive and propagating modes. Diffusive gravitational modes are holographically

related to diffusive modes in the dual quantum field theory which describe the spreading of

(transverse) momentum density or other conserved charge densities. In the gravitational

33Convergence of the spectral approximation (3.55) with increasing order M is naturally related to ana-

lytic properties of the functions under consideration. For problems involving a flat boundary geometry, all

metric functions have expansions about u = 0 in integer powers of u. After applying the field redefinitions

discussed above, expansions of our unknown functions only involve non-negative powers of u. As noted

in footnote 8, for problems involving a non-flat boundary geometry, and an even dimension D, the near-

boundary expansion necessarily includes logarithmic terms. One can still usefully apply spectral methods in

this case, provided one subtracts these log terms (to reasonably high order) in the field redefinitions. Con-

vergence of the spectral expansion will be degraded and non-exponential, but the performance of spectral

methods can still be superior to traditional short range discretization methods.
34Employing adaptive time-step schemes is clearly advantageous for some problems. However, all the

issues discussed below, involving trade-offs between stability, accuracy, and computational efficiency, remain

relevant for more complicated adaptive schemes. For more extensive discussion of numerical methods for

solving ODEs see ref. [56], or most any other book on scientific computing.
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description, diffusive modes characterize the behavior of conserved densities near the hori-

zon, as seen in the membrane paradigm [59] for horizon dynamics. Consequently, diffusive

behavior of gravitational modes predominantly occurs in the spatial directions, and not in

the radial direction. Therefore, one CFL condition for the time step is D∆t� ∆x2. (Near

equilibrium, with some effective temperature T , the diffusion constant D = (2πT )−1 [58].)

Gravitational waves can propagate in both radial and spatial directions, and outward-going

radial waves propagate near the boundary with ∂u/∂t ' 1. Hence, the time step ∆t must

also satisfy the propagating wave CFL conditions ∆t� ∆x and ∆t� ∆u.35

In various applications, we have obtained good results using a third order Adams-

Bashforth method as well as both implicit and explicit fourth order Runge-Kutta methods.

Which solver is best depends on available computing resources, desired accuracy, and

stability. Adams-Bashforth methods have the advantage that only one evaluation of F [Φ] is

needed per time step. However, stability can require a very small time step. Explicit fourth-

order Runge-Kutta methods require four evaluations of F [Φ] per time step, but are more

stable than Adams-Bashforth methods and allow use of a larger time step. Implicit fourth-

order Runge-Kutta methods are much more stable than explicit evolution. Moreover, with

implicit evolution the time step need not satisfy the CFL condition. However, as we discuss

below, implicit evolution requires many evaluations of F [Φ] per time step, which is costly.

Runge-Kutta methods, either implicit or explicit, require the computation of a set of

“field velocities” {ki}, i = 1, 2, · · ·,M , defined by

ki ≡ F

[
Φn +

M∑
j=1

αij kj ∆t

]
, (3.60)

where ∆t is the time step, Φn ≡ Φ(tn), and ‖αij‖ is an M ×M matrix which determines

the particular Runge-Kutta method. Once the set of M velocities {ki} have been evaluated

at time tn, the new fields at time tn+1 ≡ tn + ∆t are given by

Φn+1 ≡ Φn + ∆t

M∑
i=1

bi ki, (3.61)

for a set of coefficients {bi} which again depend on the particular Runge-Kutta

method employed.

For explicit evolution, we use the classic fourth order Runge-Kutta (RK4) method

for which

‖αij‖ =


0 0 0 0
1
2 0 0 0

0 1
2 0 0

0 0 1 0

 , ‖bi‖ =

[
1

6
,

1

3
,

1

3
,

1

6

]
. (3.62)

35The grid spacing relevant for the radial CFL condition is the spacing near the middle of the non-uniform

Chebyshev grid (3.58), or ∆u ' 1/Nu if Nu points are used in the radial discretization. The radial grid

is much denser near the endpoints (where ∆u ∼ 1/N2
u), and one might expect the finer near-endpoint

spacing to mandate a far more stringent CFL bound on the timestep. Fortunately, this is not the case.

Near the boundary, the amplitudes of propagating modes decrease rapidly [as O(uD)], and do not perturb

the boundary geometry. And near the horizon, the relevant propagation speed vanishes, ∂u/∂t ∼ 1−u,

reflecting the asymptotic slowing down of infalling perturbations as seen by a boundary observer.
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Since the matrix ‖αij‖ is lower triangular, the field velocities ki can be computed sequen-

tially, with one evaluation of F [Φ] for each ki. Hence, overall, RK4 requires four evaluations

of F [Φ] per time step. Deviations of the numerical RK4 solution from the exact solution

to eq. (3.59) scale as O
(
(∆t)5

)
.

For implicit Runge-Kutta methods, the matrix ‖αij‖ is not lower triangular and the

set of equations (3.60) implicitly define the different field velocities. When using implicit

evolution, we compute the ki iteratively. Specifically, we start with a guess for the ki
(e.g., the values of ki at the previous time step) and compute k′i ≡ F [Φn+αij kj ∆t]. After

evaluating an error norm ∆ ≡ |ki−k′i|, we set ki = k′i, reevaluate k′i ≡ F [Φn+αij kj ∆t], and

repeat the processes until ∆ approaches zero to within a chosen accuracy threshold. For

this very simpleminded iterative process, the maximum time step is limited by convergence

of the iterative scheme, and not by stability of the actual numerical evolution in time. The

particular implicit Runge-Kutta method we employ is a fourth-order method known as

Lobatto IIIC for which

‖αij‖ =


1
6 −

1
3

1
6

1
6

5
12 −

1
12

1
6

2
3

1
6

 , ‖bi‖ =

[
1

6
,

2

3
,

1

6

]
. (3.63)

This implicit RK method is also a fourth-order scheme, with errors scaling as O
(
(∆t)5

)
.

The third order Adams-Bashforth (AB3) method we employ uses prior values of F [Φ]

on the previous two time slices. The fields on time slice tn are given by

Φn = Φn−1 + ∆t

{
23

12
F [Φn−1]− 4

3
F [Φn−2] +

5

12
F [Φn−3]

}
. (3.64)

With this third-order method, errors scale as O
(
(∆t)4

)
. Since the AB3 method requires

knowledge of F [Φ] on three consecutive time slices, one must use some other scheme to

compute Φ for the first two steps. This initialization can be performed using the above-

described explicit fourth-order Runge-Kutta method.

In general, when using non-adaptive integrators we recommend either implicit RK4,

or explicit RK4 with suitably small time step, if computational resources (and patience)

allows, and using AB3 if anything better is too slow. For problems where characteristic

time scales lengthen as the evolution proceeds, use of an adaptive integrator (such as one

which incorporates and compares RK4 and RK5 steps) is a reasonable choice. For more

discussion of performance, see section 3.16.

3.13 Filtering

In addition to the CFL instabilities discussed above, discretization of non-linear PDEs can

create spurious mechanisms, absent in the continuum limit, that cause artificial, unphysical

growth in the amplitudes of short wavelength modes. This unphysical excitation of short

wavelength modes leads to a progressive loss of accuracy and may eventually cause complete

breakdown of the numerical evolution.
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This problem is referred to as “aliasing,” or “spectral blocking”.36 To understand how

short wavelength modes can become artificially excited in discretizations of non-linear equa-

tions consider, for example, the product of two functions, f(x)g(x), defined on the periodic

interval [−π, π], when both f and g are approximated by truncated Fourier expansions with

2M+1 terms, f(x) =
∑M

k=−M f̂k e
ikx and g(x) =

∑M
k=−M ĝk e

ikx. The product f(x)g(x)

takes the form

f(x) g(x) =

M∑
k=−M

M∑
q=−M

f̂k ĝq e
i(k+q)x =

2M∑
p=−2M

ĥp e
ipx, (3.65)

with ĥp ≡
∑M

k=−M
∑M

q=−M δk+q,p f̂k ĝq. The Fourier expansion of the product contains

modes with wavenumber p lying outside the truncated domain |p| ≤ M . When sampled

on a grid with spacing ∆x = 2π/(2M+1) (which is the appropriate collocation grid for the

truncated expansion with |p| ≤M), a mode with wavenumber |p| > M is indistinguishable

from the mode with wavenumber k ∈ [−M,M ] for which p−k is an integer multiple of

2πM . One says that the high momentum mode with |p| > M has been “aliased” to the

low momentum mode with k = p− 2mM (for some integer m).

When computing the time evolution of non-linear PDEs, spectral aliasing typically

leads to continuing unphysical growth in the amplitudes of modes near the |p| = M UV

cutoff.37 This growth of short wavelength modes due to aliasing is called spectral blocking.

The same phenomena occurs when employing a basis of Chebyshev polynomials. Spectral

aliasing can cause truncation error to grow unboundedly, and lead to time evolution be-

coming numerically unstable [55]. To make numerical evolution stable, for many PDEs, it

is necessary to introduce some form of artificial dissipation which damps short wavelength

modes. This can take the form of explicit addition of higher derivative terms (“numerical

viscosity”) to the equations of motion (as we did in ref. [24]). Or one can just selectively

filter high k modes whose amplitudes are badly affected by spectral blocking [55].

For gravity, which is highly non-linear, one might expect significant aliasing and re-

sultant spectral blocking. However, black branes in asymptotically AdS spacetime allow

rapid dissipation of short wavelength modes, with an attenuation scale set by the infall

time into the black brane’s horizon.38 Moreover, in infalling Eddington-Finkelstein coor-

dinates, where lines of constant time t are infalling null geodesics, short wavelength modes

can propagate into the black brane horizon instantaneously in coordinate time t, and hence

need not persist and pollute the subsequent numerical evolution. As a result, for charac-

36For more extensive discussion of spectral blocking see, for example, ref. [55].
37The power spectrum of Fourier coefficients of the exact solution will fall with increasing magnitude of the

wavenumber for |p| ≥M , provided the solution is smooth on the scale of ∆x = 2π/(2M+1). Consequently,

of the modes which suffer from aliasing, the largest amplitude modes are those just slightly above the

UV cutoff at |p| = M , and these modes are aliased to modes lying just slightly below |p| = M . Therefore,

aliasing predominantly transfers power which should have appeared in modes above the UV cutoff to modes

just below the cutoff — amplitudes of these modes receive the the greatest damage due to aliasing.
38For example, high momentum quasinormal modes of black branes in asymptotically AdS spacetime

decay on a time scale set by the gravitational infall time [13, 14]. In this context, “high-momentum”

applies to modes with rapid radial and/or spatial variations.
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teristic evolution of black brane geometries in asymptotically AdS spacetime, instabilities

resulting from spectral blocking are less serious than might be expected.

Nevertheless, to ameliorate spectral blocking we have found it useful and often neces-

sary either to introduce numerical viscosity, or to selectively filter short wavelength modes.

For spatial directions, applying a sharp low-pass filter which sets to zero all Fourier compo-

nents for which 2
3kmax < |ki| ≤ kmax, for any spatial direction i, is a simple, computationally

efficient choice.39,40 For controlling spectral blocking in the radial direction, our preferred

method is filtering in real-space. Let {ufine} represent the radial spectral grid (3.58) used

to solve Einstein’s equations, and let {ucoarse} represent a spectral grid with two thirds as

many points in the radial direction. At each time step we interpolate the geometry from

the fine grid to the coarse grid. The interpolation can be done without losing spectral

accuracy by employing the spectral representation (3.55) to evaluate a function at off-grid

locations. We then reinterpolate the geometry from the coarse grid back to the fine grid.

As the coarse grid is also a spectral grid, the interpolation back to the fine grid can also

be performed without losing spectral accuracy. The process of interpolation from fine to

coarse and back to the fine grid has the effect of filtering short wavelength modes (albeit

with a soft cutoff, instead of a sharp momentum space cutoff). Filtering in real-space with

the Chebyshev grid (3.58), which includes the boundary u = 0, has the advantage that

Dirichlet boundary conditions at u = 0 are completely unaffected by filtering.

3.14 Parallelization

The characteristic formulation Einstein’s equations presented above is easily amenable to

parallelization. Imposition of the fixed horizon condition (3.44) makes the computation

domain a simple rectangular box, with the resulting discretized spatial lattice a tensor

product grid. For such a grid, spatial and radial derivatives of all functions can easily be

computed in parallel. When computing, for example, the radial derivative of a function,

with a tensor product grid one can evaluate the radial derivative independently at each

point in space. Computation of the radial derivatives at a given spatial point (or set of

points) can be performed independently by different processors.

Moreover, as discussed above, Einstein’s equations in the characteristic formulation

take the form of linear ODEs in the radial coordinate. After all needed spatial and radial

39This is the “2/3’s rule” [55, 60]. For equations with only quadratic non-linearity, removing the upper-

most third of Fourier components is sufficient to prevent aliasing from corrupting the components which are

retained. Einstein’s equations have higher order (cubic, quartic, and worse) non-linearities. Nevertheless,

our experience is that filtering using the 2/3 rule is very effective in removing spectral blocking artifacts.

The sufficiency of 2/3’s rule filtering, despite high order non-linearities in the equations, is undoubtedly

a reflection of the above-mentioned dissipation of short wavelength modes which is an intrinsic feature of

black-brane geometries in asymptotically AdS spacetimes.
40To implement this low-pass filter, one can use fast Fourier transforms (FFTs) to transform from real

space to momentum space and back. Or one can construct the one-dimensional real space filter which is

exactly equivalent to the desired momentum cutoff, and apply this filter as a convolution in real space.

Asymptotically, for very fine spatial discretizations, using FFTs is most efficient. However, given matrix

multiplication and convolution routines which are optimized for modern multi-core processors, the break-

even point beyond which FFTs become preferable to real-space convolution can lie at surprisingly large

values of the number of points Ni used in the discretization of a given spatial direction.
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derivatives have been computed, these radial ODEs can be solved independently at each

spatial point. In other words, the radial ODEs can be integrated, in parallel, using inde-

pendent CPUs for each point in space. Solving the radial ODEs in parallel greatly increases

computation speed; specific performance results will be discussed below in section 3.16.

3.15 Domain decomposition

Consider a discretization with Nu points in the radial direction and Ni points in the spatial

xi direction (so the total number of grid points on a timeslice is NuNs, with Ns ≡
∏D−1
i=1 Ni

the number of spatial discretization points). For a sufficiently fine spatial discretization,

the rate limiting step in our time-evolution procedure is the solution of the linear elliptic

PDE (3.47) for the function A at the apparent horizon. Employing spectral methods,

solving eq. (3.47) requires the solution of a linear system with a dense coefficient matrix

with order (Ns)
2 elements, which is the discretization of the linear operator appearing in

eq. (3.47). Besides requiring extensive computation time, which scales as O(N3
s ), memory

consumption can become problematic for large Ns. Fortunately, it is easy to ameliorate

these difficulties.

Linear elliptic PDEs such as eq. (3.47) can be efficiently solved using domain decompo-

sition [55]. In this procedure, the spatial interval in each xi direction is broken up into mi

separate subintervals, thereby decomposing the spatial computational domain into a total

of ms ≡
∏
imi subdomains. Let ` = 1, · · ·,ms index these subdomains. The xi depen-

dence of functions within some subdomain ` can be represented as a sum of n
(`)
i Chebyshev

polynomials. Boundary points of the collocation grids in adjacent subdomains coincide. In

each subdomain, the solution to the linear equation (3.47) can be decomposed in terms of

a particular solution P (`)(x) and a set of homogeneous solutions H
(`)
j (x),

A(x) = P (`)(x) +
∑
j

C
(`)
j H

(`)
j (x), (3.66)

with the summation index j running from 1 up to the number of boundary points in the

collocation grid for subdomain `. Each homogeneous solution may be chosen to vanish at

all but one boundary point of the subdomain, so H
(`)
j (x) ≡ 0 for all boundary points except

the jth point, at which H
(`)
j (x) ≡ 1. In other words, the homogeneous solutions {H(`)

j (x)}
represent the discretized boundary Green’s functions of the linear differential operator on

the subdomain `. The coefficients {C(`)
j } are computed by demanding that A and ∇A be

continuous across adjacent subdomains. The resulting linear equations for the coefficients

C
(`)
j form a very sparse linear system whose solution can be efficiently computed using

sparse matrix routines in standard numerical linear algebra packages.

The particular solution P (`)(x), and the homogeneous solutions {H(`)
j (x)}, can be com-

puted independently in each subdomain. Therefore the computation of the set of functions

{P (`)(x), H
(`)
j (x)} can easily be performed in parallel. Moreover, one may choose the num-

bers of subintervals {mi} so that the total number of grid points within each subdomain is

easily manageable, i.e., small enough that the computation of {P (`)(x), H
(`)
j (x)} requires

comparatively little memory.
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Using domain decomposition to solve the elliptic equation (3.47) requires interpolating

the coefficient functions of the linear operator and the source terms appearing in eq. (3.47)

from the global grid with Ni points in each direction to the local grid in element ` with

n
(`)
i points in each direction. Once the solution in element ` is obtained, one must in-

terpolate the local solution back to the global grid. As noted above in section 3.13, these

interpolations can be performed without losing spectral accuracy by employing the spectral

representations (3.54) and (3.55) for the functions being interpolated.

Domain decomposition can also be usefully employed in the radial direction. This en-

tails breaking the radial interval up into mu subdomains and coupling adjacent subdomains

via boundary conditions. There are several reasons to employ domain decomposition in

the radial direction. First, the global nature of spectral methods implies that if the metric

happens to be badly behaved deep in the bulk, the spectral representation of the metric will

converge poorly everywhere, including near the boundary. However, for many situations,

including the planar shock collisions discussed below in section 4.2, as time progresses

features in the geometry deep in the bulk can rapidly fall through the event horizon. In

such situations, there is little practical value in knowing the metric with high spectral

accuracy in such regions. By employing domain decomposition in the radial direction,

spectral convergence in one subdomain is only weakly dependent, via boundary conditions,

on spectral convergence in other subdomains. Consequently, domain decomposition helps

improve convergence near the boundary when convergence is poor deep in the bulk.

Domain decomposition in the radial direction can also be helpful in controlling the ef-

fects of round-off error. Near the boundary, Einstein’s equations contain 1/u2 singularities.

Since the grid is clustered around u = 0, round-off error coming from points close to u = 0

can be greatly amplified by the presence of the nearby singularity. Domain decomposition

helps with this simply because it allows the grid spacing ∆u near u = 0 to be much larger

than it will be if one uses a single domain with Chebyshev grid points.

The implementation of domain decomposition in the radial direction is completely

analogous to the spatial decomposition of elliptic PDEs discussed above. The radial do-

main is split up into mu subdomains with nu Chebyshev grid points in each subdomain.

The endpoints of adjacent subdomains coincide. The boundary conditions on the second

order equations (3.33)–(3.35) for A, Σ, and F are simply that these functions, and their

radial derivatives, are continuous across interfaces. When solving the first order radial

equations (3.36) and (3.37) for d+Σ and d+ĝij , one constructs solutions for these functions

which are continuous along infalling geodesics. When computing the time derivative ∂tĝij
via eq. (3.49), one requires that ∂t ĝij also be continuous along outgoing geodesics.

3.16 Performance

Key parameters controlling performance of a numerical calculation using our approach

are, naturally, the number of points used in the spectral grids in the radial and spatial

directions, the number of time steps which are taken, plus the speed (and memory capacity)

of available computing resources.

With appropriate use of domain decomposition, both memory requirements and com-

putational cost per time step are essentially linear in the total number of grid points (radial
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times spatial). For many problems, such as our homogeneous isotropization and 2D tur-

bulence examples below, 20–25 points in the radial grid are sufficient. For our colliding

shock example, we use up to 80 radial points (partitioned into multiple subdomains). The

size and spacing of the spectral grid used for spatial directions inevitably depends on the

nature of the chosen problem. For colliding shocks, we have used a Fourier grid with just

over 800 points in the longitudinal direction; this allows us to evolve the outgoing remnants

of the collisions quite far before wrap-around effects arise.41 For 2D turbulence, we have

used Fourier grids with several hundred points (in each direction). Here, the challenge is

to make the spatial domain large enough to contain flows whose Reynolds number is in the

turbulent regime.

For the following examples, and our prior work [24, 27, 30], we implemented the above-

described approach and performed calculations using MATLAB. It is possible that some-

what improved performance could be obtained by carefully programming in a lower level

language. However, particularly for problems (such as our examples in sections 4.2 and 4.3)

where symmetries at most reduce the problem to 2+1D or 3+1D PDEs, the bulk of the

computational time is spent in linear algebra routines which are already highly optimized

in MATLAB. Consequently, we expect that any potential gain from coding in a lower level

language is quite modest. (Far more important, for problems with non-trivial spatial depen-

dence, is that one implements the approach in a manner which allows easy parallelization

and hence benefits from multi-core processors.)

Our calculations have been performed with only desktop or laptop scale computing

resources.42 Using these relatively limited computing resources, calculating the homoge-

neous isotropization example discussed below (where symmetries reduce the problem to

1+1D PDEs) is quick, taking a few seconds. Evolving the geometry in the colliding shock

example (where symmetries reduce the problem to 2+1D PDEs), for the more demanding

case of narrow shocks, required approximately 12 hours on a laptop computer. Perform-

ing the numerical evolution of the geometry in our turbulent fluid example (where one is

dealing with 3+1D PDEs) required approximately three weeks of time.

A different aspect of performance concerns achievable accuracy. At a crude but im-

portant level, a key indicator of accuracy is the absence of obvious numerical instabilities

which prevent continuing evolution to arbitrarily late times. Achieving stable evolution

requires sensible choices for the spectral grids and time step. The use of UV filtering to

control spectral blocking (as described in section 3.13) is important for many problems.

Once stable numerical evolution is achieved, a more refined, physically important,

measure of accuracy involves comparison of numerical results with analytically derived

late-time asymptotic forms. This is discussed below in the context of our specific exam-

ples. A further check of numerical accuracy can be obtained by monitoring the validity of

constraint equations. As the constraint equations were used in deriving the horizon sta-

tionarity condition (3.47), which determines the value of A on the apparent horizon, correct

41As discussed below, we use a significantly finer spectral grid, in both radial and spatial directions, for

computing the colliding shock initial data.
42Our recent work has used a single six core Intel i7-3960x processor overclocked to 4.25 GHz and a four

core MacBook Pro with Intel i7 processor running at 2.5 Ghz.
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numerical evolution of the gauge parameter λ via eqs. (3.47) and (3.48) is intimately con-

nected to the numerical validity of the constraint equations. Hence, one simple test of

the constraint equations comes from monitoring how well the gauge parameter obtained

from evolving eq. (3.48) agrees with the value obtained by directly solving the horizon

fixing condition (3.44). If the gauge parameter evolved from eq. (3.48) drifts too far from

the value which correctly solves the horizon condition, it may be necessary to make small

periodic readjustments in λ to ensure that the horizon remains at r = 1.

The bottom line is that with appropriate care (in adjusting grids, filtering, etc.), the

achievable accuracy is, in our view, remarkably good.

4 Examples

4.1 Homogeneous isotropization

4.1.1 Motivation

Relativistic heavy ion collisions may be regarded as proceeding through a sequence of stages.

Initially, the collision of the (overlapping portions of the) highly Lorentz contracted nuclei

may be viewed as liberating a very large phase space density of partons from the colliding

nucleons. Within the central rapidity region of the event, the initial distribution of par-

tons is highly anisotropic, with typical transverse momenta much larger than longitudinal

momenta. These partons subsequently interact and scatter. After a “thermalization time”

(which, more properly, should be called an isotropization time), the gas of interacting

partons may be modeled as a relativistic fluid — a quark-gluon plasma — whose stress

tensor, in a local fluid rest frame, is nearly isotropic. This plasma expands, cools, and

eventually reaches a temperature where hadrons reform, fly outward, and ultimately reach

the detector.43

Hydrodynamic modeling of the results of heavy ion collisions strongly suggests that

the isotropization time of the dense parton gas is remarkably short, less than 1 fm/c [62],

and that the resulting plasma behaves as a nearly ideal fluid. Understanding the dynamics

responsible for such rapid isotropization in a far-from-equilibrium non-Abelian plasma is

a challenge. The nearly ideal (i.e., low viscosity) behavior of the produced plasma is an

indication that experimentally accessible quark-gluon plasma is strongly coupled [63].44

Due to the difficulty of studying real time quantum dynamics in QCD at strong cou-

pling, it is useful to examine far-from-equilibrium behavior in an instructive toy model,

namely N = 4 SYM, whose equilibrium behavior at non-zero temperature mimics many fea-

tures of real QCD plasma. This was the motivation for our earlier study [24] of isotropiza-

tion in spatially homogeneous but highly anisotropic states of strongly coupled N = 4 SYM,

using the dual gravitational description. In that work, we considered initial states which

43For a more substantial introduction to heavy ion collisions see, for example, ref. [61].
44For systems with a quasiparticle interpretation, viscosity scales as energy density times the mean free

time of excitations. Weakly coupled systems have excitations with long mean free times, and hence large

viscosity relative to entropy density. Low viscosity, relative to entropy density, implies short mean free

times or rapid scattering, and hence strong coupling.
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could be produced by the action of time-dependent (but spatially homogeneous) back-

ground fields. The background field which naturally couples to the stress-energy tensor

of the field theory is the metric of the four-dimensional geometry in which the QFT is

formulated. A time-dependent 4D metric in the QFT description corresponds, under the

holographic mapping, to a time-dependent boundary geometry in the dual gravitational de-

scription. Our earlier work [24] solved the resulting gravitational dynamics (numerically),

using the approach presented in section 3.7, with the simplifying assumption of spatial

homogeneity but with the complication of a time-dependent boundary geometry.

In the present paper we focus, for simplicity, on problems involving a flat Minkowski

boundary geometry. To illustrate the application of our methods, we will present results on

far-from-equilibrium isotropization in which the operational driving via a time-dependent

boundary geometry of ref. [24] is replaced by a simple (and arbitrary) choice of initial data

for our characteristic formulation.

4.1.2 Setup

The boundary dimension D = 4. With the imposition of spatial homogeneity, spatial

parity invariance, and O(2) rotation invariance, the only non-zero functions in the metric

ansatz (3.14) are A, Σ, and the diagonal elements of ĝij which we write in terms of a single

“anisotropy” function B,

‖ĝij‖ = diag(eB, eB, e−2B) . (4.1)

The unknown functions A, B, and Σ depend only on t and r. Eqs. (3.33), (3.35), and (3.36)

for Σ, A, and d+Σ, respectively, become

Σ′′ +
1

2
(B′)2 Σ = 0 , (4.2a)

A′′ = 6(Σ′/Σ2) d+Σ− 3

2
B′ d+B − 2 , (4.2b)

(d+Σ)′ + 2(Σ′/Σ) d+Σ = 2Σ , (4.2c)

while eq. (3.37) for d+ĝ reduces to

(d+B)′ +
3

2
(Σ′/Σ) d+B = −3

2
B′ (d+Σ)/Σ . (4.3)

We replace the field redefinitions (3.52) involving the spatial metric with the redefinitions

b ≡ u−3B , ḃ ≡ u−3 d+B . (4.4)

for the anisotropy function and its (modified) time derivative. The asymptotic behav-

ior (3.41) implies that b vanishes at the AdS boundary while ḃ approaches a finite limit of

−2b(4). The latter boundary condition is imposed when solving eq. (4.3) for ḃ.

The apparent horizon condition (3.44) is just

d+Σ
∣∣
rh

= 0 . (4.5)
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Since there is no spatial dependence, the horizon stationarity equation (3.47) becomes a

simple algebraic condition for the value of A on the apparent horizon,

Ah = −1

4
(d+B)2 . (4.6)

Initial data consists of a choice of the anisotropy function on the initial time slice,

B(t0, r), plus a value for the single asymptotic coefficient a(4)(t0) which sets the initial

energy density. We make the simple but arbitrary choice:

b(t0, u) = β u e−(u−u0)2/w2
, a(4) = −1

2
α , (4.7)

with β = 5, u0 = 0.25, w = 0.15, and α = 1. Using the result (3.42) for the boundary

stress-energy tensor and inserting the holographic relation GN = π
2 L

3/N2
c appropriate

for N = 4 SYM, the corresponding energy density T 00 = 3
8 N

2
c α/π

2. The energy density

of an equilibrium, strongly coupled N = 4 SYM plasma at temperature T is given by

T 00
eq = 3

8 N
2
c π

2T 4. Hence, our chosen value of α corresponds to an equilibrium temperature

T ≡ α1/4/π = 1/π.

To evolve the geometry, we use a spectral grid in the radial direction with 25 points,

and employ explicit fourth-order Runge-Kutta for the time-integrator with a time step

∆t = 0.01. For this simple 1 + 1 dimensional problem, where all dynamics takes place

in the radial direction only, we do not employ any filtering. Indeed, because radial lines

are infalling null geodesics, any high frequency numerical noise generated by the numerical

evolution tends to get absorbed effectively instantaneously by the horizon.

4.1.3 Results

The resulting evolution of the anisotropy function B is shown in the left panel of figure 3.

The right panel displays a plot of the pressure anisotropy δp ≡ Tzz − 1
2(Txx +Tyy), relative

to the equilibrium pressure peq = 1
8N

2
c (πT )4, as a function of time. Inserting the diagonal

form (4.1) of the spatial metric into the general result (3.42) for the stress-energy tensor,

one sees that the pressure anisotropy is simply proportional to the coefficient b(4) of the

leading near-boundary behavior of the anisotropy function, B(t, u) ∼ b(4)(t)u4 +O(u5).

Examining figure 3 one sees, first and foremost, that the geometry evolves toward an

isotropic equilibrium geometry, which is just the static Schwarzschild black-brane solution.

This is a basic test of the numerics; no problems with numerical instabilities, potentially

preventing evolution to arbitrarily late times, are seen. The approach to equilibrium shows

exponentially damped oscillations. With no spatial gradients, there is no excitation of

hydrodynamic degrees of freedom, and hence no hydrodynamic regime in the response.

At sufficiently late times, the damped oscillations of the pressure anisotropy reflect the

discrete spectrum of complex quasinormal mode frequencies characterizing infinitesimal

departures from equilibrium [13, 14], specifically those of ` = 2 metric perturbations whose

linearized dynamics around the AdS-Schwarzschild black brane solution coincides with

fluctuations of a minimally coupled scalar field. The late time asymptotic response has

the form

δp(t) ∼ Re
∑
n

cn e
−λnt , (4.8)
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Figure 3. Homogeneous isotropization results. Left panel: anisotropy function B(t, u)/u3. The

anisotropy function rapidly attenuates, with exponentially damped oscillations. Right panel: pres-

sure anisotropy δp = Tzz − 1
2 (Txx + Tyy), relative to the equilibrium pressure peq = 1

8N
2
c (πT )4,

as a function of time. At early times the pressures anisotropy is very large. However, just as the

anisotropy function vanishes exponentially fast, so does the pressure anisotropy.

Figure 4. A plot of e|Reλ1|tδp/peq as well as the lowest quasinormal mode (also multiplied by a

factor of e|Reλ1|t). The fit to the lowest quasinormal mode agrees with the numerics at the 1 part

in 104 level or better after time t = 10.

where the first few quasinormal mode frequencies, at zero wavevector, are given by [13]:

λ1

πT
= 2.746676+3.119452 i ,

λ2

πT
= 4.763570+5.169521 i ,

λ3

πT
= 6.769565+7.187931 i .

(4.9)

As a check on the accuracy of the numerics, in figure 4 we plot e|Reλ1|t δp/peq, as well as a

fit to the lowest quasinormal mode. As is evident from the figure, the rescaled amplitude

of e|Reλ1|t δp/peq is constant at late times. Indeed, our fit to the lowest quasinormal mode

agrees with the numerics at the level of a part in 104, or better, after time t = 10.

In terms of physics, perhaps the most significant result one sees from figure 3 (and from

the results of ref. [24]) is that the characteristic relaxation time is comparable or shorter
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than 1/T , even when the system is initially quite far from equilibrium with δp/peq of O(10).

The gravitational infall time in the AdS-Schwarzschild geometry is also order 1/T . This

naturally suggests that, even far from equilibrium, one should regard the gravitational

infall time as characterizing the relaxation time of non-hydrodynamic degrees of freedom.

4.2 Colliding planar shocks

4.2.1 Motivation

Collisions of infinitely extended planar shock waves in N = 4 SYM may be viewed as

instructive caricatures of collisions of large, highly Lorentz-contracted nuclei. In the dual

description of strongly coupled (and large Nc) SYM, this becomes a problem of colliding

gravitational shock waves in asymptotically AdS5 spacetime. In this section, we discuss

the setup, preparation of initial data, and results for such planar shock collisions.

Numerical construction of a complete colliding planar shock geometry was first per-

formed in ref. [30]. More recently, the authors of ref. [31] examined the sensitivity of the

post-collision energy density and pressure distributions to the width of the initial shocks.

In both of these previous works, a small background energy density was added to the initial

data to help control numerical instabilities deep in the bulk.

Using the filtering approach discussed in section 3.13 to suppress spectral blocking, it

is possible to compute, accurately, colliding shock geometries, even for very thin shocks,

without adding any background energy density. In other words, it is possible to study

collisions of shocks which are truly excitations of the vacuum state. Even with a vanishing

background energy density (or temperature), we find no problems associated with caustics

or non-planar horizon topology.

4.2.2 Initial data

The boundary dimension D = 4. With the imposition of spatial homogeneity in transverse

directions, plus 2D rotation and reflection invariance in the transverse plane, the only non-

zero functions in the metric ansatz (3.14) are A, Σ, the longitudinal component Fz of the

spatial vector F , and the diagonal elements of the rescaled spatial metric ĝij . The latter

we write in terms of a single anisotropy function B which distinguishes the transverse and

longitudinal directions,

‖ĝij‖ ≡ diag(eB, eB, e−2B) . (4.10)

The unknown functions A, B, Fz, and Σ all depend on t, u ≡ 1/r, and z ≡ x3.

From the series expansions (3.41) one sees that near the boundary

B ∼ u4 b(4) +O(u5) . (4.11)

We replace the field redefinitions (3.52) involving the spatial metric with the following field

redefinitions for the anisotropy function and its (modified) time derivative,

b ≡ u−3B , ḃ ≡ u−3 d+B . (4.12)
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The asymptotic behavior (3.41) implies that b vanishes at the AdS boundary while ḃ ap-

proaches a finite limit of −2b(4). The latter boundary condition is imposed when solving

eq. (3.37) for ḃ.

We choose initial conditions corresponding to two well separated, smooth, non-singular

planar gravitational waves. In Fefferman-Graham coordinates [denoted (t̃, x̃⊥, z̃, ρ̃)] the

pre-collision metric reads

ds2 = ρ̃−2
[
−dx̃+dx̃− + dx̃2

⊥ + dρ̃2
]

+ ρ̃2
[
h(x̃−) dx̃2

− + h(x̃+) dx̃2
+

]
, (4.13)

where x̃± ≡ t̃ ± z̃ and h(z) is an arbitrary function characterizing the longitudinal profile

of the shocks. In what follows we choose a simple Gaussian profile of adjustable width and

amplitude, parameterized as

h(z) ≡ µ3 (2πw2)−1/2 e−
1
2
z2/w2

. (4.14)

In the distant past, the geometry both between and far away from the shocks is just

AdS5, up to negligible, exponentially small corrections. Via eq. (2.5), the initial boundary

energy density and longitudinal stress are given by

T̂ 00(t̃, z̃) = T̂ zz(t̃, z̃) = h(t̃− z̃) + h(t̃+ z̃) , (4.15)

while the momentum density

T̂ 0z(t̃, z̃) = h(t̃− z̃)− h(t̃+ z̃) . (4.16)

Therefore, the metric (4.13), with shock profile (4.14), describes two localized planar lumps

of energy of width w moving toward each other at the speed of light and colliding at time

t̃ = 0. Restoring the overall factor of κ = L3/(4πGN ) [cf. eq. (2.4)] and inserting the

holographic relation GN = π
2 L

3/N2
c , appropriate for N = 4 SYM, shows that the energy

per unit area of each incoming shock is µ3(N2
c /2π

2).

Without loss of generality we may set µ = 1 and measure all quantities in units of µ

to the appropriate power. We will present results for the collisions of “wide” shocks with

w = 0.375, and “narrow” shocks with w = 0.075. (For comparison, ref. [30] used w = 0.75

and ref. [31] investigated widths ranging from 1.9 down to 0.05.)

In the distant past, when the two functions h(t̃± z̃) have negligible overlap, the met-

ric (4.13) is arbitrarily close to an exact solution to Einstein’s equations (3.12).45 But near

the collision time t̃ = 0, when the functions h(t̃ ± z̃) begin to overlap significantly, the

metric (4.13) ceases to be a (near) solution to Einstein’s equations, and one must compute

the future evolution numerically. To do so we employ our characteristic formulation.

To obtain initial data suitable for our formulation, the initial metric (4.13) must be

transformed from Fefferman-Graham coordinates to infalling Eddington-Finkelstein coor-

dinates, in which the metric takes the form (3.14). To do so we compute, numerically, the

45If we had chosen profile functions with compact support, then the metric (4.13) would be an exact

solution in the region of spacetime outside the causal future of the collision (i.e., not in the causal future

of any event where h(t̃+z̃)h(t̃−z̃) is non-zero). The fact that our Gaussian profile functions do not have

compact support is irrelevant for all practical purposes.
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needed coordinate transform for a single shock moving in the +z direction and thereby

determine the set of functions {b+(t−z, u), a
(4)
+ (t−z), f (4)

z+ (t−z), λ+(t−z)} characterizing

a right-moving shock. The substitution z → −z produces the corresponding functions

{b−(t+z, u), a
(4)
− (t+z), f

(4)
z− (t+z), λ−(t+z)} for a left-moving shock. As we discuss in

greater detail below, we then superimpose the pre-collision functions

b(t, z, u) = b+(t−z, u) + b−(t+z, u) , a(4)(t, z) = a
(4)
+ (t−z) + a

(4)
− (t+z) , (4.17)

and likewise for f
(4)
z and λ, and then evolve {b, a(4), f

(4)
z , λ} forward in time by numerically

solving Einstein’s equations.

The metric of a single shock moving in the +z direction is given by [64]

ds2 = ρ̃−2
[
−dx̃+dx̃− + dx̃2

⊥ + dρ̃2
]

+ ρ̃2 h(x̃−) dx̃2
− . (4.18)

The coordinate transformation taking this metric to the Eddington-Finkelstein form (3.14)

(with u ≡ 1/r) can be expressed as

t̃ = t+ u+ α(t−z, u), x̃⊥ = x⊥, z̃ = z − γ(t−z, u), ρ̃ = u+ β(t−z, u) , (4.19)

for suitable functions α, β, and γ whose determination will be described momentarily.

The functions {b+, a(4)
+ , f

(4)
z+ , λ+} providing the required initial data for our character-

istic formulation can be expressed in terms of the profile function h and the transformation

functions α, β, and γ. A short exercise shows

a
(4)
+ = −2

3
h , f

(4)
z+ = h , λ+ = −1

2
∂2
uβ
∣∣
u=0

, (4.20a)

and

b+ = −1

3
u−3 log

[
−(∂tα)2 + (∂tβ)2 + (1 + ∂tγ)2 + (u+β)4 (1 + ∂tα+ ∂tγ)2 h

]
. (4.20b)

The equations determining the coordinate transformation functions (which follow from

solving for infalling radial null geodesics in the metric (4.18), or equivalently demanding

that the transformed metric have the desired form (3.14)) are simplified by redefining

β ≡ − u2ξ

1 + u ξ
, α ≡ −γ + β + δ . (4.21)

In terms of ξ, δ and γ, the equations of the coordinate transformation reduce to a system

of coupled radial ODEs for ξ and δ,

1

u2

∂

∂u

(
u2 ∂ξ

∂u

)
+

2uH

(1 + uξ)5
= 0 ,

∂δ

∂u
− u2

(1 + uξ)2

∂ξ

∂u
= 0 , (4.22)

with H ≡ h
(
t−z + u+ δ − u2ξ/(1 + uξ)

)
. The function γ satisfies the first order ra-

dial ODE

∂γ

∂u
− u2

(1 + uξ)2

∂ξ

∂u
+

u4

2(1 + uξ)2

(
∂ξ

∂u

)2

+
u4H

2(1 + uξ)6
= 0 . (4.23)
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As is clear from inspecting eq. (4.22), on each slice with fixed t−z, the functions ξ and δ

can be determined by integrating the coupled ODEs (4.22) from u = 0 to u = 1. With ξ

and δ known, one can then integrate the radial ODE (4.23) on the same t−z = const. slice

to determine γ. In other words, determination of the coordinate transformation functions

is local in t−z; one need only integrate radial ODEs.

The desired solutions to eqs. (4.22) and (4.23) are specified by boundary conditions at

u = 0 and u = 1. The conditions t = t̃, z = z̃, and u = ρ̃ near the AdS boundary imply

that the fields ξ, δ, and γ have the asymptotic forms

ξ = ξ0 +O(u3) , δ = O(u5) , γ = O(u5) . (4.24)

Defining further rescaled fields ∆ ≡ δ/u4 and Γ ≡ γ/u4, we therefore impose at the AdS

boundary the conditions

∂uξ
∣∣
u=0

= 0 , ∆
∣∣
u=0

= 0 , Γ
∣∣
u=0

= 0 , (4.25)

and integrate eq. (4.22) to find ξ and ∆, and eq. (4.23) to find Γ. One additional bound-

ary condition is needed to fully specify a solution to eq. (4.22). At u = 1 we impose

the condition

ξ
∣∣
u=1

= −1 +
1

ρ̃max
, (4.26)

for some choice of the function ρ̃max(t−z). This boundary condition determines how deep

into the bulk one determines the transformation of the initial geometry. Via eqs. (4.19)

and (4.21), one sees that at u = 1 the Fefferman-Graham coordinate ρ̃ coincides with ρ̃max.

The boundary condition (4.26) also largely determines the gauge parameter λ+ since, away

from the shock where h is negligible, one has

λ+ → −1 +
1

ρ̃max
. (4.27)

Controlling how deep into the bulk one solves for the initial geometry (in Eddington-

Finkelstein coordinates) is essential. If one integrates too far into the bulk, the metric

functions become very large, causing problems with loss of numerical precision. This

can already be seen in the single shock Fefferman-Graham metric (4.18), where metric

functions grow like ρ̃2 for large ρ̃. However, the apparent horizon of the colliding shock

geometry exists prior to the collision at t = 0 [30]. The mapping of the initial geometry

into Eddington-Finkelstein coordinates must go sufficiently deep into the bulk so that the

apparent horizon lies within the chosen computational domain u ∈ [0, 1]. Selecting an

appropriate value for ρ̃max so that the apparent horizon lies in this interval, and the bulk

geometry is reasonably well behaved, can require some trial and error. We set

ρ̃max = 8, (4.28)

independent of t−z, and comment below on more refined choices of ρ̃max(t−z).
We employ domain decomposition in both the radial and longitudinal (t−z) directions

when solving eqs. (4.22) and (4.23). We use 20 Chebyshev polynomials in each subdomain
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Figure 5. Plots of b+ (left) and λ+ (right) for a single narrow shock of width w = 0.075 moving in

the +z direction. The choice of gauge parameter λ+ is such that u = 1 corresponds with Fefferman-

Graham coordinate ρ̃ = 8. On the boundary, u = 0, the shock is centered at z = 0 at the time

shown, t = 0. However, in Eddington-Finkelstein coordinates the shock increasingly extends into

the +z direction as one goes deeper into the bulk. This also manifests itself in the gauge parameter

λ, which differs significantly from its background value in front of the shock. In regions where

b+ = 0 the geometry is that of AdS5.

in both directions. We employ 350 subdomains in the t−z direction and 35 subdomains

in the u direction, and solve the equations in the interval −18 ≤ t−z ≤ 18. Using domain

decomposition in each direction is advantageous for several reasons. First, as mentioned

above, the coordinate transformation can become badly behaved deep in the bulk. As

discussed in section 3.15, if the convergence of the spectral series very deep in the bulk

becomes poor, the use of domain decomposition serves to reduce the influence of such poor

convergence on fields closer to the boundary. Second, the use of domain decomposition

— with relatively few points in each subdomain — allows the function b+ [defined in

eq. (4.20b)], and its near-boundary asymptotics, to be determined numerically with very

good and controllable accuracy. In particular, the use of domain decomposition allows

finely spaced grid points to be used for rapidly varying functions, thereby enabling good

spectral convergence, while simultaneously avoiding the significant round-off error that can

occur when employing a single global domain with a very large number of grid points.

Figure 5 plots the resulting functions b+ and λ+, at time t = 0, for a single narrow

shock moving in the +z direction. One sees that b+ is non-zero for positive values of z

(well beyond the width of the shock) deep in the bulk. Likewise, the gauge function λ+

differs significantly from its background value far in front of the shock. This behavior

is an unavoidable consequence of our use of infalling Eddington-Finkelstein coordinates,

combined with the fact that, in Fefferman-Graham coordinates, the perturbation to the

geometry due to the shock extends arbitrarily deep into the bulk at any fixed value of

t̃−z̃ lying within the shock profile. Any radially infalling null geodesic which begins at the

boundary at t = 0 and some z � w eventually intersects the shock which is moving in the

+z direction with unit speed. Since all events along such a geodesic have common values

of the Eddington-Finkelstein coordinates t and z this shows that, for any z > 0, sufficiently

deep in the bulk, metric functions are influenced by the shock.
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In the neighborhood of slices with fixed t−z � w, on which a
(4)
+ and f

(4)
z+ are negligible,

Einstein’s equations imply that the local geometry is AdS5 as long as b+ is also negligible.

The geometry only ceases to be AdS5 deep in the bulk where b+ becomes non-negligible.

In other words, the geometry corresponding the dark red “background” region in the left

panel of figure 5 is simply that of AdS5.

The fact that the functions b+ and λ+ are non-zero in front of the shock may ap-

pear to constitute a problem for computing the initial geometry of two colliding shocks

in Eddington-Finkelstein coordinates. Incoming shocks which, near the boundary, have

arbitrarily large separation at some initial time are, in Eddington-Finkelstein coordinates,

already colliding sufficiently deep in the bulk. In other words, even for shocks which are

widely separated on the boundary, there will always be some region deep in the bulk where

the simple superposition (4.17) of the functions {b±, a(4)
± , f

(4)
z± , λ±} is not correct. However,

as we demonstrate below, when the shocks are well separated on the boundary, the region

where the functions b± overlap significantly, and hence where the shocks are already col-

liding deep in the bulk, lies inside the apparent horizon and thus is causally disconnected

from the above-horizon geometry. Just as seen in the Fefferman-Graham metric (4.13), the

initial above-horizon geometry both between and far away from the shocks is simply AdS5.

Using b−(t+z, u) = b+(t−z, u), we superimpose b±(t, z) and define the initial

anisotropy function to be

b(t0, z, u) ≡ b+(t0+z, u) + b+(t0−z, u), (4.29)

for some initial time t0. We choose t0 = −1 for narrow shocks and t0 = −2 for wide shocks.

Similarly, we have a
(4)
− (t+z) = a

(4)
+ (t−z), f (4)

z− (t+z) = −f (4)
z+ (t−z), and λ−(t+z) = λ+(t−z).

We define

a(4)(t0, z) ≡ a(4)
+ (t0+z) + a

(4)
+ (t0−z), f (4)

z (t0, z) ≡ f (4)
z+ (t0+z)− f (4)

z+ (t0−z). (4.30)

However, one should not simply superimpose the gauge functions λ± since these functions,

as defined above, asymptote to non-zero background values away from the shocks; if one

simply superimposes λ± then the value of the total gauge function λ will differ significantly

from the desired λ± near the individual shocks. However, because the initial above-horizon

geometry between the shocks is just that of AdS5, one can freely adjust the gauge function

λ between the shocks and not alter the geometry between them. We therefore choose to

superimpose the functions λ± via

λtot(t0, z) ≡ θ(−z)λ+(t0+z) + θ(z)λ+(t0−z), (4.31)

where θ(z) is a regularized step function,

θ(z) =
1

2

[
1− erf

(
− z√

2w

)]
. (4.32)

With this choice, provided |t0| � w, the function λ differs negligibly from λ± in the vicinity

of each shock.
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Figure 6. Plots of the anisotropy function b (left) and gauge parameter λ (right) for two incoming

narrow shocks of width w = 0.075. The choice of gauge parameter λ is such that the apparent

horizon lies at u = 1. In the dark red region where b differs negligibly from zero, the geometry is

that of AdS5.

After determining {b, a(4), f
(4)
z , λ} on the domain decomposition grid used to find the

transformation functions, we then interpolate the functions to the spectral grid used to

evolve Einstein’s equations. The interpolation is performed using the spectral representa-

tions of the functions in each subdomain, and hence entails no lose of spectral accuracy.

For the evolution of the geometry, we choose to use a Fourier grid in the z direction with

Nz points, with periodicity enforced at z = ±zmax with zmax ≡ 10. For narrow shock

collisions we use Nz = 801 and for wide shock collisions we use Nz = 401. We use domain

decomposition in the radial direction with 4 domains, each having 20 Chebyshev points.

After computing the functions {b, a(4), f
(4)
z , λ} on the new grid, we then apply a radial

gauge transform to reposition the apparent horizon to radial coordinate u = 1.

Before proceeding, we address two more technical points. First, in the infinite volume

(zmax →∞) limit, the apparent horizon asymptotes to the Poincaré horizon at Fefferman-

Graham coordinate ρ̃ → ∞. In this limit, our choice of constant ρ̃max in eq. (4.28) will

not yield the the entire above-horizon geometry in the computational domain 0 ≤ u ≤ 1.

This can present a problem since, for any finite choice of zmax, one cannot compute the

location of the apparent horizon and thereby know how big ρ̃max should be until the

functions {b, a(4), f
(4)
z , λ} are computed (which requires a choice of ρ̃max). However, the

above-horizon pre-collision geometry at large |z| is simply AdS5. Because of this, one may

freely adjust λ(t0, z) at large |z| without changing the initial geometry. In other words,

one may make the redefinition

λ(t0, z)→W (z)λ(t0, z), (4.33)

with W (z) = 1 in the vicinity of the shocks and W (z) arbitrary at large |z|. This freedom

allows one to compute and superpose the single shock profiles using ρ̃max = const., and

then apply the transformation (4.33) with W (z) chosen such that the apparent horizon lies

in the computational domain for any choice of zmax. With this technique, ρ̃max need only

be chosen large enough such that the horizon lies in the computational domain u ≤ 1 near

– 43 –



J
H
E
P
0
7
(
2
0
1
4
)
0
8
6

z = 0. We employ this technique and parameterize W (z) via

W (z) =
1

(K − 1)2

[
K + erf

(
−z + z0√

2s

)][
K + erf

(
z − z0√

2s

)]
, (4.34)

with K, z0, and s adjustable parameters. We choose K = 21 and s = 0.25. For narrow

shocks we use z0 = 3, and for wide shocks we use z0 = 6.

Second, after computing {b, a(4), f
(4)
z , λ} on the grid used to solve Einstein’s equations,

but before gauge transforming to reposition the apparent horizon at u = 1, we have found

it advantageous to filter high momentum modes. This helps eliminate numerical noise

generated in the numerical calculation of b and λ. We perform the filtering by Fourier

transforming b and λ in z and then setting the coefficients of modes with momentum

|k| ≤ kmax/2 to vanish.

Figure 6 shows the resulting gauge transformed initial anisotropy function b and gauge

parameter λ for incoming narrow shocks with width 0.075. The apparent horizon is at

u = 1. In between the shocks, the functions b, a(4), and f (4) differ negligibly from zero. As

mentioned above, in the neighborhood of z = const. slices on which a
(4)
+ = f

(4)
z+ = b+ = 0,

Einstein’s equations imply that the local geometry is AdS5; only deep in the bulk where

b becomes significant does the geometry deviate from AdS5. Therefore, the geometry

corresponding the background dark red region in the figure (everywhere except in the

vicinity of the shocks) is simply that of AdS5. Exactly the same description holds for the

wide shock initial data.

4.2.3 Results

Figure 7 displays E ≡ 〈T̂ 00〉, the energy density rescaled by a factor of κ = N2
c /(2π

2), for

both wide (top) and narrow (bottom) shock collisions. The shocks approach each other at

the speed of light in the ±z direction and collide at z = 0 at time t = 0. For both cases, the

debris leaving the collision event appears dramatically different than the initial incoming

shocks. Prior to the collision, all the shock energy lies near the lightcone (smeared only

by the width of the shock), while long after the collision nearly all the energy lies inside

the lightcone. Inspecting figure 7, one sees qualitative differences between narrow and

wide shock collisions. For wide shocks, there is no sign of any distinct remnant of the

shock remaining on the forward light cone; the energy density of the post-collision debris

is smoothly distributed in the interior of the forward light cone [30]. In contrast, for the

narrow shock collisions there are clear remnants of the initial shocks propagating outward

on the forward light cone [31]. But, as can easily be seen in figure 7, immediately after the

collision energy density is transported inside the lightcone and the portion remaining very

near the lightcone steadily attenuates. On the left side of figure 8 we plot the amplitude A
of the energy density on the lightcone as a function of time for the narrow shock collisions.

At late times our results are consistent with the power-law decay A ∼ t−0.9. By time t = 9,

the amplitude of the null maxima has decreased to 13% its pre-collision value. Evidently,

for both wide and narrow shocks the collision event results in the subsequent annihilation of

the shocks with essentially all energy lying well inside the forward light cone at late times.
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Figure 7. Energy density (rescaled by κ = N2
c /(2π

2)) in planar shock collisions, as a function of

time t and longitudinal position z. Top figure: wide shocks with w = 0.375. Bottom figure: narrow

shocks with w = 0.075. In both plots, the shocks approach each other along the z axis and collide

at z = 0 at time t = 0. The collisions produce debris that fills the forward light cone. In the case

of narrow shock collisions, the amplitude of the visible remnants of the shocks on the forward light

cone falls like t−p with p ≈ 0.9.

Aside from the decay of the null peaks in the energy density, there is another qualitative

difference between collisions of narrow and wide shocks. On the right side of figure 8 we

plot the energy density for the narrow shock collision at successive times t = 1, 2, 3, 4, 5.

As is evident from the figure, there is a brief period of time after the collision when the

energy density just behind the receding null peaks is locally negative [31]. However, by

time t = 4 the energy density is everywhere positive, just as it always is for wide shock

collisions. Evidently, the presence of negative energy density is a transient effect. Indeed,

as shown in figure 9, aside from the decaying null maxima on the light cone, at late times

the distribution of energy density produced by both wide and narrow shock collisions looks

quite similar.
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Figure 8. Left: plot of the amplitude A of the outgoing decaying null maxima in the energy density,

as a function of time, for the narrow shock collisions. At late times our results are consistent with

A ∼ t−p with p ≈ 0.9. Right: plot of the energy density for the narrow shock collision at successive

times t = 1, 2, 3, 4, 5. Small regions behind the decaying null maxima with negative energy density

are visible at t = 1, 2 and 3. By time t = 4, and thereafter, the energy density is everywhere positive.

Figure 9. Comparison of the longitudinal distribution of energy density for wide and narrow shocks

at time t = 9.

It is instructive to compare our results with predictions from the fluid/gravity cor-

respondence [12]. In the limit of asymptotically slowly varying fields (compared to the

dissipative scale set by the local temperature T of the system) Einstein’s equations (3.12)

can be solved perturbatively with a gradient expansion

gMN (x, r) ∼
∞∑
n=0

g
(n)
MN (x, r) , (4.35)

where g
(n)
MN is of order (∂/∂xµ)n in boundary spacetime derivatives [11]. Via eq. (3.6), this

implies that the boundary stress tensor also admits a gradient expansion. In ν = D−1

spatial dimensions, the resulting gradient expansion of the boundary stress begins

Tµνhydro =
κε

ν
[ηµν + (ν+1)uµuν ]− 2η σµν +O(∂2) , (4.36)
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where ε is the (rescaled) proper energy density, u the fluid velocity, η the shear viscosity, and

σµν ≡
1

2
[ ∂µuν + ∂νuµ + uρ∂ρ(uµuν)]− 1

ν
(∂αu

α) [ηµν+uµuν ] . (4.37)

is the relativistic shear tensor (which is symmetric, traceless, and orthogonal to the flow

velocity u). The fluid velocity and proper energy density satisfy Tµνhydro uν = −κε uµ. More-

over, the fluid/gravity gradient expansion yields expressions for all transport coefficients

as functions of the proper energy density. For D = 4, the shear viscosity η = 1
4κ(πT )3,

where the local temperature T is defined by ε = 3
4κ(πT )4 [6]. Eq. (4.36) is precisely the

constitutive relation of first order relativistic conformal hydrodynamics.

To compare our numerical results with the asymptotic predictions of the fluid/gravity

correspondence, we first extract the fluid velocity u and rescaled proper energy density ε

from the numerically computed stress-energy tensor (by finding the timelike eigenvector

and associated eigenvalue of 〈T̂µν〉, as discussed in section 2). With u and ε obtained

via eq. (2.7), we then use eq. (4.36) to construct the hydrodynamic approximation to the

spatial stress tensor, T ijhydro. Rotational symmetry in the transverse plane implies that all

off-diagonal elements of the spatial stress tensor vanish, and that 〈T xx〉 = 〈T yy〉. Therefore,

we define a simple dimensionless residual function,

R ≡ 1

pave

[(
〈T xx〉 − T xxhydro

)2
+
(
〈T zz〉 − T zzhydro

)2]1/2
, (4.38)

where the average pressure pavg ≡ 2
3〈T

xx〉 + 1
3〈T

zz〉. The residual R gives a measure

of the relative deviation of the spatial stress from the prediction of the hydrodynamic

constitutive relation (4.36). Figure 10 plots R for collisions of both wide shocks (top) and

narrow shocks (bottom). In each plot we exclude the region where R > 0.15. Specifically,

for every value of z, we define t∗(z) as the last time for which R(t, z) > 0.15 and exclude

from the plot all points (t, z) for which t ≤ t∗(z). We will denote by H the region where

viscous hydrodynamics works at the 15% level or better (as measured by R). The dashed

line in each plot is the curve

τ2
hydro = (t−∆t)2 − z2, (4.39)

with ∆t = 0.43 and τhydro = 1.5 which, as seen in the figure, nicely approximates the

boundary of region H. Figure 10 clearly shows that our planar shock collisions result in

the formation of an expanding volume of fluid which is well described by hydrodynamics

everywhere except near the light cone, where non-hydrodynamic effects become important.

At mid-rapidity, viscous hydrodynamics becomes a good description when t & 2 [30].

As was noted in refs. [27, 30], even in the region H where viscous hydrodynamics works

at the 15% level or better, the first order viscous corrections are not small. The viscous

stress tensor −2ησµν in eq. (4.36) can be just as large as the zeroth order ideal fluid term.

One manifestation of this is that in the local rest frame of the fluid (where uµ = δµ0 ),

the spatial stress 〈T local
ij 〉 can be highly anisotropic with very different eigenvalues (i.e.

pressures) in each direction. In the local fluid rest frame, this anisotropy is solely due to

the gradient corrections in eq. (4.36). To illustrate this point, figure 11 plots, for narrow

shocks, the difference ∆p = 〈Txx〉 − 〈Tzz〉 in the eigenvalues of the spatial stress at z = 0
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Figure 10. The relative deviation R of the spatial stress tensor from prediction of first order

viscous hydrodynamics for the case of wide shocks (top) and narrow shocks (bottom). As detailed

in the text, we only display the region H = {(t, z) : R(t, z) ≤ 0.15} where the residual is no more

than 0.15. The dashed curve, discussed in the text, is defined by eq. (4.39). For both cases, viscous

hydrodynamics becomes a good description near mid rapidity when t & 2.

(where by z → −z symmetry the fluid is at rest), normalized by the average pressure pavg.

As just asserted, ∆p/pavg is O(1). Given the size of the first order gradient corrections, it

is quite remarkable that the hydrodynamic constitutive relation works so well.

It is also illuminating to examine how well boost invariant flow approximates our nu-

merical results. As the name suggests, boost invariant flow is defined by the condition

that the system be invariant under arbitrary boosts in the longitudinal direction. Our

initial conditions corresponding to two colliding shocks with non-zero widths are not boost

invariant, and hence neither is the debris produced by the collision. Nevertheless, in a

qualified sense which we make precise below, the produced debris does display some char-
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Figure 11. The normalized anisotropy in the spatial stress, ∆p/pavg, at z = 0 for the narrow

shocks. The anisotropy is O(1) indicating that viscous effects are not small compared to the ideal

fluid terms.

acteristics of nearly boost invariant flow. In what follows we focus on the case of narrow

shock collisions, and on the dynamics in the region H, shown in figure 10, where viscous

hydrodynamics is applicable at the 15% level.

From the fluid/gravity correspondence, the fluid velocity and proper energy density

(rescaled by κ) for boost invariant flow, up to second order in gradients, are given by [40]

uµ dx
µ = dτ ≡ cosh y dt+ sinh y dz , (4.40a)

ε =
3

4

(πΛ)4

(Λτ)4/3

[
1− C1

(Λτ)2/3
+

C2

(Λτ)4/3
+O

(
1

(Λτ)2

)]
, (4.40b)

where τ ≡
√
t2 − z2 is proper time, y ≡ tanh−1 z

t is rapidity, and

C1 =
2

3π
≈ 0.21 , C2 =

1 + 2 log 2

18π2
≈ 0.013 . (4.41a)

The energy scale Λ is set by initial conditions and is otherwise arbitrary. Each subsequent

gradient correction to the proper energy density is suppressed by an additional power of

(Λτ)−2/3; for boost invariant flow, the fluid/gravity gradient expansion is precisely a late

time expansion in inverse powers of proper time.

Our first comparison to boost invariant flow is shown in figure 12, where we plot the

longitudinal component uz of the fluid velocity at time t = 9 for the narrow shock collision.

Also shown in the plot is the boost invariant flow result uz = sinh y = z/τ . Again, we

display uz only in the region H where viscous hydrodynamics works at the 15% level or

better. As is evident from the figure, the numerical result agrees quite nicely with this

prediction of boost invariant flow.

Figure 13 shows a contour plot of the proper energy density ε extracted from our

numerical results and multiplied by a factor of τ4/3. Lines through the origin corresponds

to events with fixed rapidity, t = z coth y. Inspecting eq. (4.40b), it is evident that if the

flow was truly boost invariant then ετ4/3 would asymptote to a constant, independent of
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Figure 12. The longitudinal fluid velocity uz for narrow shock collisions, at time t = 9, in the

region H where viscous hydrodynamics works at the 15% level or better. The boost invariant flow

result, uz = z/τ , fits the numerical result quite well.

Figure 13. The normalized proper energy density ε τ4/3 in the region H for the narrow shock

collision. At late times, lines of constant ετ4/3 are approximately straight lines from the origin,

t ≈ z coth y.

rapidity, in the τ →∞ limit. Figure 13 shows that this is not at all the case; the flow is not

globally boost invariant (as was also found in ref. [31]). However, one striking feature of

figure 13 is that contours of ετ4/3, at late times, are approximately straight lines through

the origin, t ≈ z coth(y). This observation suggests that on each slice of constant rapidity

y, the proper energy density is approximately given by eq. (4.40b) but with a rapidity

dependent scale parameter, Λ = Λ(y). To test this hypothesis, on each slice of constant

t/z = coth y we fit the proper energy density ε to the boost invariant expression (4.40b)

allowing Λ to depend on y. In the left panel of figure 14 we plot ε at y = 0, 0.85, 1.25, and

1.6, and the corresponding fit to eq. (4.40b). The agreement with eq. (4.40b) is remarkable.

In the right panel of figure 14 we plot the resulting scale parameter Λ(y) emerging from

this fit to local (in rapidity) boost invariant flow.

It would be interesting to study more carefully the dependence of Λ(y) on the width

of the incoming shocks, and to evolve longer in time in order to examine the asymptotic

behavior of Λ(y) at large rapidity.
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Figure 14. Left: the proper energy density ε on several slices of constant rapidity y, as a function

of proper time τ . The dashed curves are fits to the boost invariant flow result (4.40b) with a

rapidity dependent scale parameter Λ(y). Right: the resulting scale parameter Λ(y) as a function

of rapidity.

4.3 Two-dimensional turbulence

4.3.1 Motivation

Turbulent flows in relativistic boundary conformal field theories with ν spatial dimensions

should be dual, via holography, to dynamical black hole solutions in asymptotically AdSν+2

spacetime. This connection raises many interesting questions in gravitational physics. For

example, what distinguishes turbulent black holes from non-turbulent ones? And what

is the gravitational origin of the Kolmogorov scaling and energy cascades observed in

turbulent fluid flows?

Gravitational dynamics may also provide insight into turbulence, in particular for

problems where microscopic physics plays a crucial role in turbulent evolution. For super-

fluids, whose turbulent evolution is not governed by ordinary hydrodynamics, holography

has already yielded insight into two dimensional turbulent flows [69]. In particular, ref. [69]

found that turbulence in a two dimensional holographic superfluid exhibits a direct energy

cascade into the UV. This stands in stark contrast to turbulence in normal fluids in two

spatial dimensions, where enstrophy conservation gives rise to an inverse cascade to the IR.

A fully consistent microscopic description of normal turbulence in three dimensions may

also prove useful. Turbulence in three spatial dimensions is characterized by a cascade

of energy from the IR to the UV, with dissipation occurring at microscopic length scales

which may lie outside the hydrodynamic regime governed by the Navier-Stokes equation.

Via holography, black hole solutions to Einstein’s equations provide a laboratory in which

one can study the domain of validity and late-time regularity of turbulent solutions to the

Navier-Stokes equation.

In this section, we numerically construct black hole solutions in asymptotically AdS4

spacetime dual to ν= 2 turbulent flows, where energy flows from the UV to the IR in an

inverse cascade. The following discussion summarizes work first presented in ref. [33].
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4.3.2 Setup

The boundary dimension D = 3. We choose an explicit parameterization of the rescaled

spatial metric ĝij that manifestly satisfies det ĝ = 1,

||ĝij || =

[
eB coshC sinhC

sinhC e−B coshC

]
. (4.42)

From the series expansions (3.41) we see that B and C have the near-boundary asymptotics

B(x, u) ∼ u3B(3)(x) +O(u4) , C(x, u) ∼ u3C(3)(x) +O(u4) . (4.43)

We choose to replace the field redefinitions (3.52) involving the spatial metric with the

following field redefinitions for the spatial metric functions

b ≡ u−2B , ḃ ≡ u−1 d+B , c ≡ u−2C , ċ ≡ u−1 d+C . (4.44)

The asymptotic behavior (4.43) implies that b = ḃ = c = ċ = 0 at the AdS boundary

u = 0. Therefore, when solving eq. (3.37) for ḃ and ċ, we impose the Dirichlet boundary

conditions ḃ = ċ = 0 at u = 0.

We choose initial conditions corresponding to a locally boosted black brane. With our

metric ansatz,

ds2 = r2gµν(x, r) dxµ dxν + 2 dt dr , (4.45)

a boosted black brane geometry is described by

gµν(x, r) =

(
R(x, r)

r

)2
[
ηµν +

(
rh(x)

R(x, r)

)3

uµ(x)uν(x)

]
, (4.46)

where uµ(x) is the boost velocity and rh(x) ≡ 4πT (x)/3, with T (x) the local temperature

of the brane. (We are using simple Cartesian boundary coordinates for the boundary

geometry.) The function R(x, r) satisfies

∂R(x, r)

∂r
=
[
1 + rh(x)3R(x, r)−3 u(x)2

]1/2
, (4.47)

where u2 ≡ uiui. For constant values of uµ and T , the metric (4.46) is an exact solution

to Einstein’s equations.

After applying the time-space split (3.13) to gµν , the initial data for integrating Ein-

stein’s equations consists of the rescaled spatial metric with unit determinant,

ĝij(x, r) =
δij + rh(x)3R(x, r)−3 ui(x)uj(x)[

1 + rh(x)3R(x, r)−3 u(x)2
]1/2

, (4.48a)

together with the asymptotic coefficients describing the energy and momentum density on

the initial slice,

a(3)(x) = −1

2
rh(x)3

[
−1 + 3u0(x)2

]
, f

(3)
i (x) = −rh(x)3 u0(x)ui(x) , (4.48b)

with all functions evaluated at the initial time ti ≡ 0.
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We apply the above setup to the specific case of a boost velocity with sinusoidal

variations plus small random perturbations (which serve to break the symmetry of the

initial conditions),

ui(x) = cos(Qx1) δ2
i + δui(x) . (4.49)

We study evolution in a periodic square spatial box of size Ls and choose the wavevector

Q = 10π/Ls. The small fluctuations δui are chosen to be a sum of the first four spatial

Fourier modes with random coefficients, with the overall amplitude of the fluctuation ad-

justed to make |δui(x)|max = 1/5. These initial conditions are unstable and capable of

producing subsequent turbulent evolution if the Reynolds number Re is sufficiently large.

For our initial conditions Re ∼ LsT . We choose box size Ls = 1500 and the initial tem-

perature 4πT/3 = 1.

A linear combination of the first 20 Chebyshev polynomials is used to represent the

radial dependence of all functions, while an expansion of 305 plane waves (in each direction)

is used to represent the spatial dependence. The discretized geometry was evolved from

the initial time ti ≡ 0 to a final time tf ≡ 3001, using AB3 with timestep ∆t = 1/25.

Computations were performed on a single six core Intel i7-3960x processor overclocked to

4.25GHz. With this relatively limited computing resource, producing the following results

required approximately three weeks of running time.

4.3.3 Results

To illustrate the turbulent flow which emerges from the solution to Einstein’s equations,

we plot in figure 15 the boundary vorticity,

ω ≡ εµνα uµ ∂νuα , (4.50)

at six different times. We extract the fluid velocity uµ from the boundary stress tensor

〈Tµν〉 via eq. (2.7), just as we did for the shock collisions in section 4.2.

At time t = 0, when the fluid velocity is given by eq. (4.49), the vorticity is approxi-

mately sinusoidal in the x1 direction and translationally invariant in the x2 direction. By

time t = 752, an instability is visible and the approximate symmetry of the initial condi-

tions is destroyed. By time t = 1248, the instability has generated many small vortices with

fluid rotating clockwise (red) and counterclockwise (blue). Subsequently, vortices with the

same rotation tend to merge together producing larger and larger vortices, as seen in the

evolution snapshots at times t = 1760, 2192, and 3001. As time progresses, the number of

vortices decreases while the typical vortex size grows. This is a characteristic signature of

an inverse cascade.

It is instructive to compare the gravitational evolution with predictions from the Kol-

mogorov theory of turbulence. A simple quantity to study is the power spectrum of the

fluid velocity, defined as

P(t, k) ≡ ∂

∂k

∫
|k′|≤k

dνk′

(2π)ν
|ũ(t,k′)|2, (4.51)
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where

ũ(t,k) ≡
∫
dνx u(t,x) e−ik·x. (4.52)

A celebrated result of Kolmogorov is that for driven steady-state turbulence the power

spectrum P obeys the scaling

P(t, k) ∼ k−5/3, (4.53)

within an inertial range k ∈ (Λ−,Λ+). The lower limit Λ− is determined by the size of the

largest eddies in the system, while the upper limit Λ+ is set by the scale on which viscous

effects damps small eddies.

Despite the fact that our system is not driven or in a steady-state configuration, we do

see hints of Kolmogorov scaling. In figure 16 we plot P at time t = 1008. Our numerical

results are consistent with the scaling (4.53) in the inertial range k ∈ (0.025, 0.055). As we

are not driving the system, evidence of the k−5/3 scaling is transient and is destroyed first

in the UV, with the UV knee at k = 0.055 shifting to the IR as time progresses further.

Beyond the inertial range the spectrum decreases like P ∼ k−p with p ∼ 5 until k ∼ 0.15

beyond which P decreases exponentially.

The inverse cascade also manifests itself in bulk gravitational quantities. One inter-

esting quantity to consider is the horizon area element
√
γ. In our coordinate system, and

in the limit of large Reynolds number Re � 1, the event and apparent horizons approxi-

mately coincide at r = 1 and the horizon area element is
√
γ ≈
√
−g
∣∣
r=1

.46 In figure 17 we

plot
√
γ for the same sequence of times displayed in figure 15. The evolution of

√
γ closely

mirrors the evolution of the vorticity on the boundary shown in figure 15. At time t = 0

when the fluid velocity is given by eq. (4.49),
√
γ varies sinusoidally in the x1 direction and

is approximately translationally invariant in the x2 direction. By time t = 752, an insta-

bility is visible and the approximate symmetry of the initial conditions is destroyed. By

time t = 1248 the area element
√
γ exhibits structure over a large hierarchy of scales and

is fractal-like in appearance. During the subsequent evolution,
√
γ becomes progressively

smoother, just like the fluid vorticity ω, reflecting the inverse cascade.

The velocity power spectrum P also imprints itself in bulk quantities. One observable

to consider is the extrinsic curvature ΘMN of the event horizon. The horizon curvature

ΘMN can be constructed from the null normal nM to the horizon and an auxiliary null

vector `M whose normalization is conveniently chosen to satisfy `M nM = −1. The extrinsic

curvature is then given by

ΘMN ≡ ΠP
M ΠQ

N ∇P nQ , (4.54)

where the projection operator ΠM
N ≡ δMN + `MnN . Since the horizon is at r ≈ 1 we

choose nM dxM = dr and `M dxM = −dt. In our coordinate system, the horizon curvature

satisfies ΘM
N ΘN

M = Θi
j Θj

i, where i, j run only over the spatial coordinates. For later

convenience we define the rescaled traceless horizon curvature θij ≡ (γ/κ2)1/4 Σi
j , where

Σi
j ≡ Θi

j− 1
ν Θk

k δ
i
j is the traceless part of the extrinsic curvature, and κ is the eigenvalue

46 In the fluid/gravity gradient expansion, the apparent and event horizons are identical up to second

order in gradients. Hence their positions should coincide in the Re→∞ limit.
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Figure 15. The boundary vorticity at six different times. The initial conditions shown at time t = 0

give rise to an instability which produces many vortices as seen in the subsequent evolution at times

t ≥ 1248. Vortices colored red (blue) correspond to clockwise (counterclockwise) fluid rotation. As

time progresses, vortices of like rotation tend to combine to produce larger and larger vortices.

Figure 16. The power spectrum P(t, k) of the fluid velocity at t = 1008. Also shown as dashed

lines are k−5/3 and k−5 power laws.

of the geodesic equation,

nM∇M nQ = λnQ . (4.55)

We define the horizon curvature power spectrum

A(t, k) ≡ ∂

∂k

∫
|k′|≤k

dνk′

(2π)d
θ̃ij(t,k

′)∗ θ̃ji(t,k
′) , (4.56)
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Figure 17. The horizon area element
√
γ at six different times. At time t = 0

√
γ varies sinusoidally

in the x1 direction and is approximately translationally invariant in the x2 direction. By time

t = 752, an instability is visible and the approximate symmetry of the initial conditions is destroyed.

By time t = 1248
√
γ exhibits structure over a large hierarchy of scales. However, as time progresses

√
γ becomes smoother and smoother just as the fluid vorticity ω does due to the inverse cascade.

with θ̃ij ≡
∫
dνx θij e

−ik·x, and plot the ratio A(t, k)/P(t, k) in figure 18. As this figure

makes clear, our numerical results are consistent with the simple scaling relation

A(t, k) ∼ k2 P(t, k) . (4.57)

Evidently, these horizon and boundary observables are highly correlated. This follows

directly from the applicability of the fluid/gravity correspondence.

Both qualitative and quantitative features of our numerical results can be understood

in terms of ideal conformal hydrodynamics and the fluid/gravity correspondence. As dis-

cussed in section 4.2, in the limit of long wavelength spatial fluctuations (compared to 1/T )

Einstein’s equations can be solved perturbatively with a gradient expansion. At leading

order the metric is precisely the locally boosted black brane (4.46), with the evolution of

the fluid velocity u and temperature T governed by relativistic ideal conformal hydrody-

namics [11, 66]. In other words, to leading order in the gradient expansion, solutions to

Einstein’s equations can be generated merely by solving the equations of relativistic ideal

conformal hydrodynamics and constructing the bulk metric from the resulting fluid velocity

and temperature via eq. (4.46).

It was recently demonstrated that turbulent evolution in two dimensional ideal rela-

tivistic conformal hydrodynamics gives rise to an inverse cascade and Kolmogorov scal-

ing (4.53) [67]. Since the relativistic hydrodynamic equations reduce to the non-relativistic
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Figure 18. The horizon curvature power spectrum A divided by the boundary velocity power

spectrum P(t, k). Different curves correspond to different times, as indicated in the legend. For

comparison, the dashed line plots k2.

incompressible Navier-Stokes equation at low velocities [65], this connects directly to classic

results on non-relativistic two dimensional turbulence. It is well known that two dimen-

sional non-relativistic incompressible turbulent flows exhibit Kolmogorov scaling and an

inverse cascade, with the latter a consequence of conservation of enstrophy (the square

of the vorticity). As demonstrated in ref. [67], the equations of two dimensional ideal

relativistic conformal hydrodynamics conserve a relativistic generalization of enstrophy.

We find that our numerical metric is surprisingly well approximated by the boosted

black brane metric (4.46). To perform the comparison, we extract the flow field u and the

proper energy density ε from 〈T̃µν〉 via eq. (2.7). The proper energy density is converted

to a local temperature via the (static AdS4 black brane) relation T ≡ 3
4π

(
3
2ε
)1/3

. The

flow field u and local temperature T are then used to construct the boosted black brane

metric (4.46). Finally, we compute the difference ∆gµν between the numerical metric and

the boosted black brane metric and define the error to be max{|∆gµν |} on a given timeslice

t. As shown in figure 19, the boosted black brane metric ansatz (4.46) approximates the

complete geometry, even at early times, to better than 1%!

Although the accuracy with which the simple boosted black brane ansatz approxi-

mates the numerical solution is remarkable, it should not be too surprising that turbulent

evolution in two spatial dimensions gives rise to dual geometries which are reasonably

well approximated by the locally boosted black brane ansatz. First of all, irrespective of

the dimensionality, turbulent flows require large Reynolds number, Re � 1, which (in a

strongly coupled fluid) is equivalent to small gradients compared to the local temperature

T . This is precisely the regime where the fluid/gravity gradient expansion should be well

behaved. Second, the inverse cascade of turbulence in two spatial dimensions implies that

gradients become smaller and smaller as energy cascades from the UV to the IR. Therefore,
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Figure 19. Absolute deviation, as a function of time, between the numerically computed spacetime

metric and a boosted black brane metric, with fluid flow and local temperature extracted from the

numerical solution. The upper (blue) curve shows the maximum size of metric components on the

timeslice t, and the much lower (green) curve shows the maximum, on the given timeslice, of the

difference between the numerically computed metric and the boosted black brane ansatz.

the leading term (4.46) should become a better and better approximation to the metric as

time progresses and the inverse cascade develops.

At least for ν = 2, the above observation has powerful consequences for studying

turbulent black holes. Instead of numerically solving the equations of general relativity,

one can simply study the equations of hydrodynamics and construct the bulk geometry

via the fluid/gravity gradient expansion. This is particularly illuminating in the limit of

non-relativistic fluid velocities |u| � 1, where the bulk geometry and boundary stress are

asymptotically close to equilibrium. As shown in ref. [65], under the rescalings t → t/s2,

x→ x/s, u→ su, and δT → s2 δT (with δT the variation in the temperature away from

equilibrium), as s→ 0 the boundary evolution of δT and u implied by the fluid/gravity cor-

respondence reduces to the non-relativistic incompressible Navier-Stokes equation. Indeed,

the above rescalings are symmetries of the Navier-Stokes equation. Likewise, in the s→ 0

limit the geometry dual to the Navier-Stokes equation can be computed analytically [65].

At least for two spatial dimensions, where is it known that solutions to the Navier-Stokes

equation remain regular, it should be possible to (re)derive results from classic studies of

turbulence, such as Kolmogorov scaling (4.53), directly from the dual gravitational dynam-

ics. This is discussed in more detail in ref. [33].

5 Conclusions

We have presented a characteristic formulation of gravitational dynamics which permits

accurate and efficient study of a wide variety of gravitational initial value problems in

asymptotically anti-de Sitter spacetimes. The requirement of the approach that geome-

tries of interest have an apparent horizon cloaking any caustics in the infalling null con-
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gruence has, in practice, not been a limitation. Problems with numerical stability are less

severe than is often the case with numerical relativity, due to helpful attributes of our

characteristic formulation, the presence of an apparent horizon, and the asymptotic anti-

de Sitter geometry. With only modest computing resources, we have shown that problems

whose symmetries reduce the dynamics to 1+1 dimensional partial differential equations

(homogeneous isotropization), 2+1 dimensional PDEs (colliding planar shocks), or 3+1

dimensional PDEs (turbulence in two space dimensions), are quite manageable. An ob-

vious question concerns the feasibility of solving 4+1 dimensional gravitational dynamics

with no simplifying symmetry restrictions. We are optimistic that various problems in this

category, such as studying turbulent fluids in three spatial dimensions, or off-center “heavy

ion” collisions, will also be feasible.
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A Bulk sources

For future convenience, we record here the explicit form of Einstein’s equations in our

ansatz (3.14), with the addition of a bulk matter stress-energy tensor TMN . To make

the radial gauge invariance manifest (in addition to spatial covariance) it is convenient

to decompose TMN , or other tensors, using the frame defined by the modified derivatives

d+ (3.18), di (3.19), plus ∂r, so that basis vectors are

e′0 ≡ d+ = ∂t +A∂r , e′i ≡ di = ∂i + Fi ∂r , e′r ≡ ∂r . (A.1)

The corresponding coframe has basis one-forms

ω′ 0 ≡ dt , ω′ i ≡ dxi , ω′ r ≡ dr −Adt− Fi dxi . (A.2)

(To make notation concise, we name the radial basis vector and dual one-form e′r and ω′ r

instead of e′D+1 and ω′D+1.) The metric, expressed in terms of these basis forms, is simply

ds2 = Gij ω
′ i ω′ j + 2ω′ 0 ω′ r . (A.3)

Using the coframe (A.2), the stress-energy tensor decomposes into

〈T, ω′ 0 ⊗ ω′ 0〉 = T 00, Πi ≡ 〈T, ω′ 0 ⊗ ω′ i〉 = T 0i, sij ≡ 〈T, ω′ i ⊗ ω′ j〉 = T ij , (A.4)

along with

κ ≡ 〈T, ω′ 0 ⊗ ω′ r〉 = T 0r −AT 00 − Fj T 0j , (A.5)

qi ≡ 〈T, ω′ i ⊗ ω′ r〉 = T ir −AT i0 − Fj T ij , (A.6)

τ ≡ 〈T, ω′ r ⊗ ω′ r〉 = T rr − 2AT 0r − 2Fi T
ir +A2T 00 + 2AFj T

0j + Fi Fj T
ij . (A.7)

These combinations all transform as scalars with respect to radial shifts (3.16).
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Einstein’s equations, now in the presence of bulk sources, decompose into the

scalar equations:

0 = tr

(
G′′ − 1

2
G′ 2
)

+ 2T 00, (A.8)

0 = A′′ +
1

2
∇̃ · F ′ + 1

2
F ′ · F ′ + 1

2
(tr d+G)′ +

1

4
tr (G′ d+G) +

2

ν
Λ− 1

ν
tr s+

(
1−2

ν

)
κ ,

(A.9)

0 = tr

[
d+(d+G)−A′ (d+G)− 1

2
(d+G)2

]
+ 2 ∇̃ · E +

1

2
tr (Ω2) + 2τ , (A.10)

two vector equations:

0 = Gik
[
G1/2 F ′ k

]′
G−1/2 −G′ ki|k + (trG′)|i + 2Πi , (A.11)

0 = d+F
′
i + (d+G)ki|k − (tr d+G)|i +

1

2
(tr d+G)F ′i

− 2A′|i −G
′
i
kEk + Ωk

i|k + F ′k Ωk
i − 2qi , (A.12)

and the symmetric tensor equation:

0 =

{
Gik
[
G1/4(d+G)kj

]′
G−1/4 +

1

4
G′ij tr (d+G)− R̃ij +

2

ν
ΛGij + F ′i|j +

1

2
F ′iF

′
j

+ sij −
1

ν
Gij (2κ+ tr s)

}
+ (i↔ j) . (A.13)

Recall that Ωij (3.25) and Ei (3.26) are the “magnetic” and “electric” parts of the radial

shift field strength. The trace of the last equation separates from the traceless part, as

before, and reads

0 =
[
G1/2 tr (d+G)

]′
G−1/2 − R̃+ 2Λ + ∇̃ · F ′ + 1

2
F ′ · F ′ − 2κ . (A.14)

The simple integration strategy described in section 3.7 relies on the nesting of the equa-

tions. To remain applicable, the Σ equation (A.8) must only require knowledge of ĝij , the

F equation (A.11) must only require knowledge of ĝij and Σ, the d+Σ equation (A.14)

must only depend on ĝij , Σ and F , and the d+ĝij equation (A.13) must not depend on

A. The radial shift invariance of the linear combinations (A.5)–(A.7) guarantees that the

explicit factors of A and Fi which appear in these expressions cancel when combined with

the metric dependence inside TMN . For either an electromagnetic field, or a scalar field φ

with arbitrary potential V (φ), one may easily confirm that the bulk source terms do not

upset the nesting of equations which underlie the integration strategy.47

The apparent horizon condition (3.44) is not affected by the addition of a bulk stress-

energy tensor, but the horizon stationarity condition (3.47) receives modifications from

47To see this, one must rewrite time and space derivatives of matter fields appearing in TMN in terms of

d+ and di derivatives and, for electromagnetism, choose radial gauge.
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source terms (due to the use of Einstein’s equations in its derivation) and becomes

0 = ∇2A−∇A · (F ′ −G′F )

+
1

2
A

[
−R(ν) + 2Λ +

1

2
(F ′−G′F ) · (F ′−G′F )−∇ · (F ′ −G′F ) + 2T 0r − T 00 F · F

]
+

1

2
F · F

[
−1

2
tr [(d+G)′]− (∇ · F )′ − Fi;jG′ ji −

1

4
(F · F )′trG′

]
− 1

4
tr [(d+G)2]− (d+G)jiFi;j + F · ∇2F − 1

2
(F ′ −G′F ) · ∇(F · F )

− 1

4
(Fi;j − Fj;i)(F j;i − F i;j)− T rr + T 0r F · F

∣∣∣
r=rh

. (A.15)

B Riemann tensor components

For some purposes, such as evaluating curvature invariants, it is desirable to have explicit

expressions for the Riemann tensor components generated by our metric ansatz (3.14).

Defining components with respect to the frame (A.1) is convenient, as this makes the

results transform as scalars with respect to radial shifts. (Moreover, the corresponding

components of the metric (A.3) are especially simple.) One finds:

Rt′r′t′r′ = A′′ +
1

4
F ′ · F ′, (B.1)

Rt′r′i′r′ =
1

2
F ′′i −

1

4
(G′ · F ′)i , (B.2)

Rr′i′j′r′ =
1

2
G′′ij −

1

4
(G′ ·G′)ij , (B.3)

Rt′r′i′j′ =
1

2
F ′i|j +

1

4
[G′ · (d+G+ Ω)]ij − (i↔ j) , (B.4)

Rt′r′t′i′ = A′|i −
1

4
[F ′ · (d+G+ Ω)]i −

1

2
(d+F

′)i +
1

2
(G′ · E)i , (B.5)

Rt′i′j′r′ =
1

2
(d+G)′ij −

1

4
[G′ · (d+G+ Ω)]ij +

1

2
F ′j|i +

1

4
F ′iF

′
j , (B.6)

Rt′i′j′t′ =
1

2
(d+d+G)ij −

1

2
A′ (d+G)ij +

1

2
(Ei|j + Ej|i)−

1

4
[(d+G− Ω) · (d+G+ Ω)]ij ,

(B.7)

Rr′i′j′k′ =
1

2
G′ij|k +

1

4
G′ijF

′
k − (j ↔ k) , (B.8)

Rt′i′j′k′ =
1

2
(d+G+ Ω)ij|k −

1

4
(d+G+ Ω)ijF

′
k −

1

4
F ′i Ωjk − (j ↔ k) , (B.9)

Ri′j′k′l′ = R̂ijkl −
1

4

[
(d+G)ikG

′
jl − (d+G)jkG

′
il + (d+G)jlG

′
ik − (d+G)ilG

′
jk

]
, (B.10)

with R̂ijkl defined in footnote 17.
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C Spatially covariant expressions

Using our metric ansatz (3.14), explicit forms of Einstein’s equations and Riemann cur-

vature components are most compact when written using the modified spatial deriva-

tives (3.21) which are covariant under both spatial diffeomorphisms and radial shifts, as

done in section 3.4 and appendices A and B. Neverthess, there may be occasions where it

is helpful to have available equivalent expressions written using ordinary spatial covariant

derivatives. These are recorded below, using the decomposition (A.4)–(A.7) of any bulk

stress-energy tensor.

Einstein’s equations may be separated into three scalar equations,

0 = tr

(
G′′ − 1

2
G′ 2
)

+ 2T 00, (C.1)

0 = A′′ +
1

2
∇ · (F ′) +

1

2
(
√
GF · F ′)′/

√
G+

1

2
(tr d+G)′ +

1

4
tr (G′ d+G) +

2

ν
Λ

− 1

ν
tr s+

(
1−2

ν

)
κ , (C.2)

0 = tr [d+(d+G)−A′(d+G)− 1

2
(d+G)2] + 2∇ · (d+F −∇A−A′F )

+ 2F ·
[√
G (d+F −∇A−A′F )

]′
/
√
G+

1

2
tr (Ω2) + 2τ , (C.3)

two vector equations,

0 =
[
G1/2Gik(F

k)′
]′
G−1/2 −G′ ki;k + (trG′);k − 2T 00 Fi + 2Πi , (C.4)

0 = Gij
[
((d+F )j)′ − ((d+G)jk)

′F k
]

+
(
(d+G) ki + (F · F )G′ ki

)
;k

+G′ ki A;k + (∇2F )i

− (F ′k −G′kjF j);iF
k + (F ′i −G′ijF j);kF

k + (F ′i −G′ijF j)
[

1

2
tr (d+G)−A′ +∇ · F

]
−
[
tr (d+G) + 2A′ + F · F ′ + 1

2
F · F tr (G′) +∇ · F

]
;i
− 1

2
(F · F ) tr (G′);i +R

(ν)
ij F

j

+ 2(κ+ F ·Π)Fi − 2sijF
j − 2Qi , (C.5)

and the symmetric tensor equation,

0 =

{
Gik
(
G1/4(d+G)kj

)′
G−1/4 +

1

2
Gik
(√
G (F · F )G′kj

)′
/
√
G−R(ν)

ij +
2

ν
ΛGij

− (G′ik;j −G′ij;k)F k − Fi;kG′kj + F ′i;j +
1

2
Fi;j (trG′) +

1

4
G′ij [tr (d+G) + 2∇ · F ]

+
1

2
(F ′i −G′ikF k)(F ′j −G′jlF l) + T 00Fi Fj − 2Fi Πj + sij −

1

ν
Gij (2κ+ tr s)

}
+ (i↔ j) . (C.6)
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The trace of this last equation separates from the traceless part and reads48

0 =

[√
G
(
tr (d+G) +∇ · F +

1

2
tr (G′)F · F

)]′
/
√
G+

1

2
∇ · (tr (G′)F )−R(ν) + 2Λ

+
1

2
(F ′−G′F ) · (F ′−G′F ) + T 00 F · F − 2F ·Π− 2κ . (C.7)

In the above, R
(ν)
ij and R(ν) denote the spatial Ricci tensor and Ricci scalar, respectively,

and Ωij ≡ Fj,i − Fi,j + FiF
′
j − FjF ′i .

Components of the Riemann tensor are given by:

Rtrtr = A′′ +
1

4
(F ′ · F ′) , (C.8)

Rtrir =
1

2
F ′′i −

1

4
(G′ · F ′)i , (C.9)

Rrijr =
1

2
G′′ij +

1

4
(G′ ·G′)ij , (C.10)

Rtrij =
1

2
F ′i;j −

1

4

[
(d+G)ik + Fi;k − Fk;i + F ′i Fk

]
G′kj − (i↔j) , (C.11)

Rtrti = A′;i −
1

4
(d+G)i

kF ′k +
1

2
G′i

k
[
(d+F )k −A;k

]
+

1

2
A′
[
F ′i − (G′ · F )i

]
+

1

2
A
[
F ′′i −

1

2
(G′ · F ′)i

]
− 1

2
(d+F )′i −

1

4
(F ′ · F )F ′i −

1

4
(Fi;k − Fk;i)F

′ k , (C.12)

Rtijr =
1

2
(d+G)′ij −

1

4
G′i

k(d+G)kj +
1

2
F ′j;i +

1

4

[
F ′i − (G′ · F )i

]
F ′j +

1

4
G′ij (F · F ′)

+
1

4
G′i

k(Fk;j − Fj;k)−
1

2
A
[
G′′ij −

1

2
(G′ ·G′)ij

]
, (C.13)

Rtijt =
1

2
(d+d+G)ij −A (d+G)′ij −

1

2
A′ (d+G)ij +

1

2
A2G′′ij

− 1

4

[
(d+G)ik −AG′ik + Fi;k−Fk;i + F ′iFk

][
(d+G)kj −AG′kj + Fj

;k−F k;j + F ′jF
k
]

+
1

2

[
(d+F )i;j+(d+F )j;i

]
− 1

2
A (F ′i;j+F

′
j;i + F ′iF

′
j)−

1

2
A′ (Fi;j+Fj;i)− (A;ij+A;ji)

+
1

2
G′ij F ·

[
d+F − (AF )′ −∇A

]
, (C.14)

Rrijk =
1

2
G′ij;k +

1

4
G′ij
[
F ′k − (G′ · F )k

]
− (j↔k) , (C.15)

Rtijk =
1

2
(d+G)ij;k −

1

2
AG′ij;k −

1

4
(d+G)ijF

′
k

− 1

4
G′ij(d+G)k

lFl +
1

2
Fj;ki −

1

4
(Fi;j + Fj;i)F

′
k

− 1

4
G′ij
[
F ′k (F · F +A) + (Fk;l−Fl;k)F l −A (G′ · F )k

]
− (j↔k) , (C.16)

48Note that (∇ · F )′ = ∇ · (F ′−G′F ) + 1
2
F · ∇(trG′).
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Rijkl =
1

4
R

(ν)
ijkl −

1

4
(d+G)ikG

′
jl −

1

4
(Fi;k + Fk;i)G

′
jl −

1

8
G′ikG

′
jl (F · F )

− (i↔j)− (k↔l) + (ij↔kl) . (C.17)
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