
MIT Open Access Articles

Chisel: Reliability- and Accuracy-Aware
Optimization of Approximate Computational Kernels

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C. Rinard. 2014.
Chisel: reliability- and accuracy-aware optimization of approximate computational kernels.
In Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA '14). ACM, New York, NY, USA, 309-328.

As Published: http://dx.doi.org/10.1145/2660193.2660231

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/91290

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/91290
http://creativecommons.org/licenses/by-nc-sa/4.0/

Chisel: Reliability- and Accuracy-Aware
Optimization of Approximate Computational Kernels

Sasa Misailovic Michael Carbin Sara Achour Zichao Qi Martin Rinard
MIT CSAIL

{misailo,mcarbin,sachour,zichaoqi,rinard}@csail.mit.edu

Abstract
The accuracy of an approximate computation is the distance
between the result that the computation produces and the corre-
sponding fully accurate result. The reliability of the computation
is the probability that it will produce an acceptably accurate re-
sult. Emerging approximate hardware platforms provide approxi-
mate operations that, in return for reduced energy consumption
and/or increased performance, exhibit reduced reliability and/or
accuracy.

We present Chisel, a system for reliability- and accuracy-
aware optimization of approximate computational kernels that
run on approximate hardware platforms. Given a combined relia-
bility and/or accuracy specification, Chisel automatically selects
approximate kernel operations to synthesize an approximate com-
putation that minimizes energy consumption while satisfying its
reliability and accuracy specification.

We evaluate Chisel on five applications from the image
processing, scientific computing, and financial analysis domains.
The experimental results show that our implemented optimization
algorithm enables Chisel to optimize our set of benchmark
kernels to obtain energy savings from 8.7% to 19.8% compared
to the original (exact) kernel implementations while preserving
important reliability guarantees.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Processors – Optimization

Keywords Approximate Computing

1. Introduction
Emerging approximate hardware platforms provide operations
that, in return for reduced energy consumption, may produce
less accurate and/or incorrect results [13, 18, 19, 21, 27, 29, 36].

Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
OOPSLA ’14, October 20–24, 2014, Portland, OR, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-2585-1/14/10.
http://dx.doi.org/10.1145/10.1145/2660193.2660231

Target application domains include computations that either 1)
contain approximate components that naturally tolerate some
percentage of inaccurate and/or incorrect operations, or 2) come
with efficient checkers that can detect an unacceptably inaccu-
rate result and enable the application to recompute the result if
desired. Examples of such application domains include machine
learning, multimedia, information retrieval, scientific, and finan-
cial analysis applications. Many of these applications have one
or more approximate computational kernels that consume the
majority of the execution time [16, 26].

In previous work, we developed Rely [7], a language for ex-
pressing and analyzing computations that run on approximate
hardware platforms. These hardware platforms provide reliable
and unreliable versions of standard arithmetic and logical instruc-
tions as well as reliable and unreliable memories. Rely enables a
developer to manually identify unreliable instructions and vari-
ables that can be stored in unreliable memories. The developer
also provides a reliability specification, which identifies the min-
imum required probability with which the kernel must produce a
correct result. The Rely analysis then verifies that, with the iden-
tified unreliable instructions and variables, the kernel satisfies its
reliability specification for all inputs.

Rely requires the developer to navigate the tradeoff between
reliability and energy savings (because the developer is responsi-
ble for identifying the unreliable operations and data). But the
developer must redo this identification every time the compu-
tation is ported to a new approximate hardware platform with
different reliability and energy characteristics.

1.1 Chisel
We present Chisel, a new optimization framework that auto-
matically selects approximate instructions and data that may be
stored in approximate memory, given the exact kernel computa-
tion and the associated reliability and/or accuracy specification.
Chisel automatically navigates the tradeoff space and generates
an approximate computation that maximizes energy savings (ac-
cording to an energy model for the hardware platform) while
satisfying its combined reliability and accuracy specification.
Chisel can therefore reduce the effort required to develop effi-
cient approximate computations and enhance the portability of
these computations.

1.2 Reliability and Accuracy Specifications
A Chisel program consists of code written in an implementation
language (such as C) and kernel functions written in the Rely
base language [7]. The kernel function can compute the return
value, but may also write computed values into array parameters
passed by reference into the kernel. Reliability specifications of
the form <r*R(x1, ..., xn)> are integrated into the type
signature of the kernel. Here r specifies the probability that
the kernel (in spite of unreliable hardware operations) computes
the value correctly. The term R(x1, ..., xn) is a joint reli-
ability factor that specifies the probability that x1,...,xn all
have correct values at the start of the kernel. In the following
specification, for example:

int <.99 * R(x)> f(int[] <.98*R(x)> x);

the return value has reliability at least .99 times the reliability
of x; when f returns, the probability that all elements in the
array x (passed by reference into f) have the correct value is
at least .98 times the reliability of x at the start of f.

Chisel also supports combined reliability and accuracy specifi-
cations of the following form (these specifications are relational
in that they specify the combined accuracy and reliability with
respect to the fully accurate exact computation):

<d, r*R(d1 >= D(x1), ..., dn >= D(xn))>

Here d is a maximum acceptable difference between the ap-
proximate and exact result values, r is the probability that the
kernel computes a value within d of the exact value, and the
term R(d1 >= D(x1), ..., dn >= D(xn)) is a joint relia-
bility factor that specifies the probability that each xi is within
distance di of the exact value at the start of the computation.
If r=1, then the specification is a pure accuracy specification; if
d=0 and all the di=0, then the specification is a pure reliability
specification.

1.3 Reliability- and Accuracy-Aware Optimization
Chisel reduces the problem of selecting approximate instruc-
tions and variables allocated in approximate memories to an
integer linear program whose solution minimizes an objective
function that models the energy consumption of the kernel. The
integer linear program also contains reliability and/or accuracy
constraints that ensure that the solution satisfies the specification.
For each instruction in the kernel, Chisel specifies a zero-one
valued configuration variable that indicates whether the instruc-
tion should be exact (zero) or approximate (one). To generate
the optimization objective, Chisel uses the execution traces of
the kernel on representative inputs. To generate the constraints,
Chisel statically analyzes the kernel.

A solution to the integer linear program provides a configura-
tion of the kernel computation that minimizes energy consump-
tion while satisfying the specification.

Chisel works with a hardware specification provided by the
designers of the approximate hardware platform [21, 36]. This
specification gives Chisel the hardware parameter values it needs
to optimize the approximate computation.

1.4 Sensitivity Profiling
To help the developer obtain appropriate reliability and accuracy
specifications, Chisel provides an optional sensitivity profiler.
The profiler works with an end-to-end sensitivity metric, which
compares the end-to-end results of the exact and approximate ex-
ecutions of the Chisel program to define the acceptability require-
ments for the outputs that the program produces. Specifically, the
difference between the exact and approximate executions must
be below a specified sensitivity bound. A sensitivity profiler
(which performs function-level noise injection to estimate the
sensitivity of the program’s result to noise in the results that the
kernel computes) can help the developer identify specifications
that produce acceptable end-to-end results.

Code Synthesizer

Exact
Program

Typical
Inputs

Reliability/Accuracy
Specification

Sensitivity Profiler

Reliability/Accuracy
Constraint Generator

Energy Consumption
Objective Generator

ILP Solver

Hardware Designer

Approximate Hardware
Specification

Software Developer

Program with Approximate Kernels

Trace Profiler

Figure 1: Chisel Overview

1.5 System Overview
Figure 1 presents an overview of the resulting Chisel system.
The developer provides the Chisel program along with reliability
and/or accuracy specifications for the approximate kernels (op-
tionally obtaining these specifications via sensitivity profiling on
representative inputs). The hardware designer provides a hard-
ware specification, which specifies the reliability and accuracy
information for individual instructions and approximate memory.
Chisel analyzes the kernels, generates the integer linear program
(we use the Gurobi solver [15]), then uses the solution to generate
approximate code that satisfies its specification.

1.6 Contributions
The paper makes the following contributions:
• Specification Language: It presents the Chisel reliability

and accuracy specification language. Chisel specifications are
integrated into the type signatures of Chisel kernel functions
and enable the developer to state the probabilistic reliability
and/or accuracy constraints that approximate implementa-
tions of kernels must satisfy for the Chisel program to pro-
duce acceptable end-to-end results.
• Optimization Algorithm. It presents the Chisel optimization

algorithm, which reduces the problem of selecting approxi-
mate instructions and data (which can be stored in approxi-
mate memories) to an integer linear program that minimizes
energy consumption while satisfying the reliability and/or ac-

curacy specification. This algorithm automates the navigation
of the reliability and accuracy versus energy consumption
tradeoff space. It also eliminates the need to manually de-
velop different approximate implementations for different
hardware platforms.
• Hardware Model. It presents an abstract hardware model

for programs that execute on approximate hardware and
defines its semantics. The model defines an approximate
hardware specification, which consists of reliability, accuracy,
and energy consumption specifications for each hardware
operation.
• Extensions. It presents a set of extensions to the basic Chisel

optimization framework. These extensions enable Chisel to
work with larger granularity operations, to model overhead
associated with switching between exact and approximate
modes of operation on approximate hardware platforms
that support these two modes, to reason modularly about
function calls within approximate kernels, and to optimize
the placement of data accessed by multiple kernels in either
exact or approximate memory.
• Experimental Results. It presents experimental results for

five Chisel benchmark applications and a set of hardware
platforms with unreliable operations. These results show that
Chisel is able to produce approximate kernel implementations
that are from 8.7% to 19.83% more energy efficient than the
exact implementations. These kernel computations exploit a
significant portion of the maximum possible energy savings
offered by the unreliable hardware platforms (between 43%
and 95% of the maximum savings), while preserving each
kernel’s reliability guarantee to produce acceptable end-to-
end results.

2. Example
Figure 2 presents an implementation of an algorithm that scales
an image to a larger size. It consists of the function scale and
the function scale kernel.

The function scale takes as input the scaling factor f (which
increases the image size in both dimensions), along with integer
arrays src, which contains the pixels of the image to be scaled,
and dest, which contains the pixels of the resulting scaled image.
The algorithm calculates the value of each pixel in the final result
by mapping the pixel’s location back to the original source image
and then taking a weighted average of the neighboring pixels. The
code for scale implements the outer portion of the algorithm,
which enumerates over the pixels in the destination image.

The function scale kernel implements the core kernel of
the scaling algorithm. The algorithm computes the location in
the array src of the pixel’s neighboring four pixels (Lines 4-
5), adjusts the locations at the image edges (Lines 7-14), and
fetches the pixels (Lines 16-19). To average the pixel values, the
algorithm uses bilinear interpolation. Bilinear interpolation takes
the weighted average of the four neighboring pixel values. The
weights are computed as the distance from the source coordinates
i and j to the location of each of the pixels (Lines 21-24). In the

i

1 int scale_kernel (float i, float j, int [] src ,
2 int s_height , int s_width)
3 {
4 int previ = floor(i), nexti = ceil(i);
5 int prevj = floor(j), nextj = ceil(j);
6
7 if (s_height <= nexti) {
8 previ = max(s_height -2, 0);
9 nexti = min(previ +1, s_height -1);

10 }
11 if (s_width <= nextj) {
12 prevj = max(s_width -2, 0);
13 nextj = min(prevj +1, s_width -1);
14 }
15
16 int ul = src[IDX(previ , prevj , s_width)];
17 int ur = src[IDX(nexti , prevj , s_width)];
18 int ll = src[IDX(previ , nextj , s_width)];
19 int lr = src[IDX(nexti , nextj , s_width)];
20
21 float ul_w = (nextj - j) * (nexti - i);
22 float ur_w = (nextj - j) * (i - previ);
23 float ll_w = (j - prevj) * (nexti - i);
24 float lr_w = (j - prevj) * (i - previ);
25
26 int r = (int) (ul_w * R(ul) + ur_w * R(ur) +
27 lr_w * R(lr) + ll_w * R(ll));
28 int g = (int) (ul_w * G(ul) + ur_w * G(ur) +
29 lr_w * G(lr) + ll_w * G(ll));
30 int b = (int) (ul_w * B(ul) + ur_w * B(ur) +
31 lr_w * B(lr) + ll_w * B(ll));
32
33 return COMBINE(r, g, b);
34 }
35
36 void scale(float f,
37 int [] src , int s_width , int s_height ,
38 int [] dest , int d_height , int d_width)
39 {
40 float si = 0, delta = 1 / f;
41
42 for (int i = 0; i < d_height; ++i) {
43 float sj = 0;
44 for (int j = 0; j < d_width; ++j) {
45
46 dest[IDX(i, j, d_width)] =
47 scale_kernel (si , sj , src ,
48 s_height , s_width);
49 sj += delta;
50 }
51 si += delta;
52 }
53 }

Figure 2: Rely Code for Image Scaling Kernel
last step, the algorithm extracts each RGB color component of
the pixel, computes the weighted average, and then returns the
result (Lines 26-33).

2.1 Sensitivity Profiling
Chisel’s sensitivity profiler assists the developer in deriving the
reliability specification of the kernel. The sensitivity profiler
takes these three inputs from the developer:
• Sensitivity Metric. A function that compares the outputs

of the original and approximate executions. It produces a
numerical value that characterizes the difference between the
two outputs. For computations that produce images, such as
scale, a typically used metric is Peak-Signal-to-Noise Ratio
(PSNR).
• Sensitivity Goal. The value of the sensitivity metric that

characterizes the acceptable output quality of the approxi-
mate program.

(a) 0.20 (b) 0.40 (c) 0.60 (d) 0.80 (e) 0.90 (f) 0.99 (g) 0.999

Figure 3: Sensitivity Profiling for Image Scaling for Different Values of r

• Sensitivity Testing Procedure. A developer can write fault
injection wrappers that inject noise into the computation. In
general, the developer may use these wrappers to explore the
sensitivity of the program’s results to various coarse-grained
error models. For scale kernel, a developer can implement
the following simple sensitivity testing procedure, which
returns a random value for each color component:
int scale_kernel_with_errors(float i, float j, int[] src,

int s_height, int s_width) {
return COMBINE(rand()%256, rand()%256, rand()%256);

}

Chisel’s sensitivity profiler automatically explores the relation
between the probability of approximate execution and the quality
of the resulting image for the set of representative images. Con-
ceptually, the profiler transforms the program to execute the cor-
rect implementation of scale kernel with probability r, which
represents the target reliability. The framework executes the faulty
implementation scale kernel with errors with probability 1-

r. The framework uses binary search to find the probability r

that causes the noisy program execution to produce results with
acceptable PSNR. The profiler can also plot the quality of the
result as a function of r.

Figure 3 presents a visual depiction of the results of scaling
for different values of r. Note that implementations with low
reliability (0.20-0.80) do not produce acceptable results. However,
as r reaches values in the range of 0.99 and above, the results
become an acceptable approximation of the result of the original
(exact) implementation. For the remainder of this section, we use
0.995 as scale kernel’s target reliability, which yields images
with an average PSNR of 30.9 dB.

2.2 Reliability Specification
The derived reliability specification for the kernel is:

int<0.995 * R(i, j, src, s_height, s_width)> scale_kernel
(float i, float j, int[] src, int s_height, int s_width);

The reliability specification of scale kernel appears as part of
the type signature of the function. The additional reliability infor-
mation 0.995 * R(i, j, src, s height, s width) specifies
the reliability of the return value:
• Input Dependencies. The reliability of the return value is a

function of the reliability of the function’s inputs. The term
R(i, j, src, s height, s width) represents the joint re-
liability of the inputs on entry to the function, which is the
probability that they all together contain the correct result.
• Reliability Degradation. The coefficient 0.995 expresses

the reliability degradation of the function. Specifically, the

coefficient is the probability that the return value is correct
given that all input variables have the correct values on entry
to the function.
Since the specification does not explicitly state the acceptable

absolute difference, it is by default d=0. Therefore, whenever
the computation executes without errors, it should produce an
exact result.
Arrays. The Rely base language contains annotations on the
array parameters that specify that it is allocated in approximate
memory. For instance, the following signature of scale kernel

would state that the pixel array src is in an approximate memory
region named urel:

int<...> scale_kernel (..., int[] src in urel, ...);

To generate such annotations, Chisel explores the possibility
that the array passed as a src parameter may be allocated in the
approximate memory. Specifically, Chisel’s optimization prob-
lem encodes both alternatives, i.e., when src is allocated in an
exact memory and when it is allocated in an approximate mem-
ory. Chisel will report to the developer whether this alternative
allocation strategy (which may save additional energy) still satis-
fies the reliability specification. The developer can then annotate
the array’s allocation statement to indicate that the compiler or
the runtime system should allocate the array in an approximate
memory.
Lower Bound on Sensitivity Metric. Starting with a reliabil-
ity specification for our example kernel, it is also possible to
obtain an analytic lower bound for the sensitivity metric. Specifi-
cally, the PSNR for the exact resulting image d and the approxi-
mate image d′ is

PSNR(d,d′)=20·log10(255)−

10·log10

 1

3hw

h∑
i=1

w∑
j=1

∑
c∈{R,G,B}

(dijc−d′ijc)2
.

The constants h andw are the height and width of the image and
R, G, and B are the color components of a pixel. Each color
component is a value between 0 and 255.

The kernel computation computes the value of d′ijc for all
three RGB components correctly with probability r. In this case,∑
c∈{R,G,B}(dijc−d′ijc)2=0. With probability 1−r, the kernel

computation can compute the value of d′ijc incorrectly. The upper
bound on the expected error is then

∑
c∈{R,G,B}(dijc−d′ijc)2≤

3 · 2552. Therefore, the lower bound on the expected PSNR
metric is

PSNR(d,d′)≥−10·log10(1−r).

For a reliability specification r=0.995, we can obtain that the
expected PSNR is greater than 23.01 dB for any image (and for
the typical images used in profiling it is greater than 30.9 dB).

2.3 Hardware Specification
To automatically optimize the implementation of the computa-
tion, the optimization algorithm requires a hardware specifica-
tion of the approximate hardware, consisting of:
Operation and Memory Reliability. The hardware specifica-
tion identifies 1) approximate arithmetic operations and 2) the
approximate regions of the main and cache memories. The spec-
ification contains the reliability and (optionally) the accuracy
loss of each arithmetic operation. It also contains the probability
that read and write operations to approximate main memory and
cache complete successfully.
Energy Model Parameters. To compute the savings associ-
ated with selecting approximate arithmetic operation, the energy
model specifies the expected energy savings of executing an
approximate version (as a percentage of the energy of the exact
version). To compute the savings associated with allocating data
in approximate memory, the energy model specifies the expected
energy savings for memory cells.

To compute system energy savings, the energy model also
provides 1) a specification of the relative portion of the system
energy consumed by the CPU versus memory, 2) the relative
portion of the CPU energy consumed by the ALU, cache,
and other on-chip resources, and 3) the ratio of the average
energy consumption of floating-point instructions and other non-
arithmetic instructions relative to integer instructions.

2.4 Optimization Results
Chisel generates expressions that characterize the energy sav-
ings and reliability of scale kernel. These expressions are
parameterized by an unknown configuration of the approximate
kernel, which specifies which operations and array parameters
may be approximate or must be exact. This configuration is the
solution to the optimization problem. For the hardware platforms
in Section 9, the optimization algorithm delivers 19.35% energy
savings, which is over 95% of the maximum possible energy
savings for this computation (which occurs when the reliability
bound is zero, and therefore all operations and the src and
dest arrays can be approximate).

When the result of the function is assigned directly to an array
variable, like in the case of the dest array, the optimization
treats this variable (unless specified otherwise by the developer)
as another array parameter of the kernel function that can
be specified as approximate. Chisel identifies both src and
dest arrays as potentially approximate. Chisel also identifies
around 20% of the arithmetic operations as approximate. These
operations are in the part of the computation that performs
bilinear interpolation. For instance, the assignment to the variable
lr w on line 24 uses the inexact multiplication operation “*.”.

Identifying the kernel’s array parameters as approximate
informs the developer that the kernel can satisfy its reliability
specification with the array allocated in approximate memory.

r∈R∪{pc} n∈IntN

a∈A⊆IntN κ∈K={0,1}

op∈Op ::=add | fadd | mul | fmul | cmp | fcmp | ...
i∈I ::= r=opκ r r | jmp r r |

r=load r | store r r

Figure 4: Assembly Language Syntax

Given this information, the developer can use a predefined API
call at the array allocation site to allocate the array in approximate
memory across the entire application.

Final Sensitivity Validation. Using the specified sensitivity
bound and metric, the framework can evaluate the generated
approximate kernel computation on a set of (previously unseen)
production inputs. For our example benchmark, the average
PSNR on a set of production inputs is 32.31 dB.

3. Hardware Specification and Semantics
The code of scale in Section 2 illustrates the syntax of the
Rely base language, which is a pointer-less C-like language with
first-class one-dimensional arrays and reliability specifications.
In this section, we present a hardware model and a compilation
model for Chisel that captures the basic properties of approximate
hardware.

3.1 Hardware Specification
We consider a single-CPU architecture that exposes an ISA with
approximation extensions and an approximate memory hierarchy.

3.1.1 Syntax
Figure 4 presents the abbreviated syntax of the assembly lan-
guage of the architecture.

Operands. Each operand is either a register r∈R or a fixed
N-bit (e.g., 32-bit or 64-bit) integer n ∈ IntN. Floating point
numbers are integers coded with the IEEE 754 representation.

Instructions. Each instruction i ∈ I is either an ALU/FPU
arithmetic operation (such as add, multiply and compare), a
conditional branch to an address (jmp), or a load/store from
memory (load and store).

Each arithmetic instruction also has a kind κ∈K = {0,1}
– such as r=addκ r1 r2 – that indicates that the instruction is
either exact (κ=0) – and always produces the correct result – or
approximate (κ=1) – and may therefore produce an incorrect
result with some probability.

3.1.2 Hardware Specification
The reliability portion of the hardware specification ψ∈(Op→
R)× (R×R)× (R×R) is a triple of structures that specify
the reliability of instructions, the approximate memory region,
and the approximate cache region, respectively. In Sections 6.1
and 7.1, we extend the hardware specification to include the
hardware’s accuracy and energy parameters, respectively.

ALU/FPU-C
p=ψ(op)κ

〈r=opκ r1 r2,〈σ,m〉〉
C,p−→
γ,ψ,ξ

〈· ,〈σ[r 7→op(σ(r1),σ(r2))],m〉〉

ALU/FPU-F
p=(1−πop(ψ)(op))·Pf(n |op,σ(r1),σ(r2))

〈r=op1 r1 r2,〈σ,m〉〉
〈F,n〉,p−→
γ,ψ,ξ

〈· ,〈σ[r 7→n],m〉〉

Figure 5: Semantics Of Arithmetic Operations
Instructions. The projection πop selects the first element of
the hardware specification, which is a finite map from operations
to reliabilities. The reliability of an operation is the probability
that the operation executes correctly.

Memories. The hardware exposes an exact main memory
region and an approximate memory region. The projection πmem
selects the second element of the hardware specification, which
is a pair of reliabilities (rld, rst) that denote the reliability of
loading and storing a value in the approximate memory region,
respectively.

Caches. The hardware exposes an exact cache and an approx-
imate cache. The projection π$ selects the third element of the
hardware specification, which is a pair of reliabilities (rld,rst)
that denote the reliability of loading and storing a value in the
approximate cache, respectively.

3.2 Hardware Semantics
Register Files, Memories, Memory Configurations, Pro-
grams, and Environments. A register file σ∈Σ=R→IntN
is a finite map from registers to machine integers. A memory
m∈M=A→IntN is a finite map from addresses to machine
integers. A memory configuration ξ ∈ Ξ =A→K, maps an
address a to a kind κ that designates whether the memory at a is
configured as exact (κ=0) or approximate (κ=1). A program
γ∈Γ=A→I is a finite map from addresses to instructions. An
environment ε∈E=Σ×M is a register file and memory pair.

Ready Instructions and Configurations. A ready instruction
î ∈ Î := i | · is either an instruction i ∈ I or the distinguished
element “·” that indicates that the next instruction needs to be
fetched from memory (as determined by the pc register). A
configuration 〈̂i,ε〉 is a ready instruction and environment pair.
Errant Result Distributions. The discrete probability distri-
bution Pf(nf |op,n1,n2) models the manifestation of an error
during an incorrect execution of an operation. Specifically, it
gives the probability that an incorrect execution of an operation
op on operands n1 and n2 produces a value nf different from
the correct result of the operation.

Arithmetic Instructions. Figure 5 presents the inference rules
for arithmetic operations. We present the remaining rules in
Section A of the Appendix [22]. The small-step judgment
〈̂i,ε〉 λ,p−→

γ,ψ,ξ
〈̂i′,ε′〉 denotes that execution of the program γ from

the configuration 〈̂i,ε〉 under a hardware model ψ and a memory
configuration ξ takes a transition with label λ with probability p,
yielding a configuration 〈̂i′,ε′〉.

A transition label λ∈{C,〈F,n〉} characterizes whether the
transition executed correctly (C) or experienced a fault (〈F,n〉).
The value n in a faulty transition records the value that the fault
inserted into the semantics of the program. The semantics of an
arithmetic operation r=opκ r1 r2 takes one of two possibilities:
• Correct execution [ALU/FPU-C]. An operation executes

correctly with probability πop(ψ)(op)κ. Therefore, if the
operation is exact (κ=0) it executes correctly with probability
1. If it is approximate (κ=1), then it executes correctly with
probability πop(ψ)(op).
A correct execution proceeds with the rule [ALU/FPU-C]
wherein the instruction reads registers r1 and r2 from the
register file, performs the operation, and then stores the result
back in register r.
• Faulty execution [ALU/FPU-F]. An operation with a kind
κ=1 experiences a fault with probability 1−πop(ψ)(op). A
faulty execution stores into the destination register r a value n
that is given by the errant result distribution for the operation,
Pf . Note that while the instruction may experience a fault,
its faulty execution does not modify any state besides the
destination register.

Control Flow. Control flow transfer instructions, such as jmp,
always correctly transfer control to the destination address.
Preserving the reliability of control flow transfers guarantees
that an approximate program always takes paths that exist in
the static control flow graph of the program. We note that while
control flow transfers themselves execute correctly, the argument
to a control transfer instruction (e.g., the test condition of a
jmp) may depend on approximate computation. Therefore, an
approximate program may take a path that differs from that of
the original (exact) program.

Loads and Stores. The semantics of loads and stores are
similar to arithmetic operation semantics in that each operation
can either execute correctly or encounter a fault. The memory
configuration ξ determines if an accessed address’s memory
region is exact (all operations on the region execute correctly)
or approximate (operations may encounter a fault). As with the
destination register of arithmetic operations, if a store instruction
encounters a fault, then only the contents of the destination
address are modified.

Data stored in the approximate memory region may be placed
in the approximate cache. We conservatively model the cache
as a buffer that affects the probability of correctly executing
load and store operations. We discuss the cache’s semantics in
Section A.2 of the Appendix [22].

3.3 Compilation and Runtime Model
Data Layout. The compilation and runtime system stores the
program’s instructions and the stack in the exact memory region.
The system represents arrays with a header and a separately
allocated chunk of memory that contains the array’s data. The
header contains the length of the array’s data and the address
of the array’s data in memory. The system allocates the header
in exact main memory and allocates the data chunk in either

exact or approximate memory based upon Chisel’s optimization
results. This allocation strategy enables the system to separate
the reliability of the array’s metadata from the reliability of the
data stored in the array.

To support our formalization of reliability, we define a
variable allocation υ ∈ V → P(A) as a finite map from a
program variable v ∈ V to the address (or set of addresses in
the case of an array) in memory at which the variable has been
allocated by the compilation and runtime system.
Array Loads/Stores. The compilation system uses the bounds
information of each array to provide a failure oblivious [34]
semantics for array loads and stores. Specifically, the compiled
program includes a bounds check for each access. If an index for
a load is out of bounds, then the check returns an arbitrary value
for the load. If the access is a store, then the check elides the write
to the array. This semantics enables Chisel-optimized programs
to continue executing even if an array access is out-of-bounds
due to approximation.

4. Preliminary Definitions
We next present several definitions that enable us to precisely
specify the configuration of approximate programs along with
their reliability, accuracy, and energy consumption.

4.1 Configurable Approximate Programs
We augment our program representation to create an intermediate
representation that includes labels, where each label ` ∈ L is
uniquely associated with an instruction or a program variable.
Labels enable Chisel to separately mark each instruction and
variable as either exact or approximate.

Instructions. We augment each arithmetic instruction to have
a label instead of a kind:

i∈I ::= r=op` r r

Program Variables. We define the finite map χ∈V →L that
maps each variable in the program to a unique label.

Kind Configurations. We also define a kind configuration
θ ∈ Θ = L → K as a finite map from labels to kinds that
denotes a selection of the kind (i.e., exact or precise) of each
of the program’s instructions and variables. The set of kind
configurations denotes that set of all possible optimized programs
that Chisel can generate. We also define the substitution γ[θ] as
the program generated by substituting each label ` in the program
γ by the corresponding kind given by θ (namely, θ(`)).

4.2 Big-step Semantics
We use the following big-step semantics to later define an
approximate program’s reliability and accuracy.

Definition 1 (Big-step Trace Semantics).

〈·,ε〉 τ,p=⇒
γ,ψ,ξ

ε′≡〈·,ε〉λ1,p1−→
γ,ψ,ξ

...
λn,pn−→
γ,ψ,ξ

〈·,ε′〉

where τ=λ1,...,λn, p=
n

Π
i=1

pi and final(〈·,ε′〉,γ)

The big-step trace semantics is a reflexive transitive closure
of the small-step execution relation that records a trace of the

program’s execution. A trace τ ∈T ::= · |λ :: T is a sequence
of small-step transition labels. The probability of a trace, p, is
the product of the probabilities of each transition. The predicate
final⊆ (Î×E)×Γ indicates that the program cannot make a
transition from the configuration.

Definition 2 (Big-step Aggregate Semantics).

〈·,ε〉 p
=⇒
γ,ψ,ξ

ε′ where p=
∑
τ∈T

pτ such that 〈·,ε〉 τ,pτ=⇒
γ,ψ,ξ

ε′

The big-step aggregate semantics enumerates over the set of
all finite length traces and sums the aggregate probability that
a program γ starts in an environment ε and terminates in an
environment ε′ given a hardware specification ψ and memory
configuration ξ.

5. Reliability Constraint Construction
Chisel generates optimization constraints via a precondition gen-
erator. Similar to Rely, Chisel’s generator produces a precondition
that if valid before the execution of the kernel, guarantees that the
kernel produces acceptable outputs with reliability at least that
given in its specification. Chisel then transforms the generated
precondition into an optimization constraint.

5.1 Reliability Predicates
Chisel’s generated preconditions are reliability predicates that
characterize the reliability of an approximate program. A relia-
bility predicate P has the following form:

P :=Rf≤Rf | P∧P
Rf :=ρ | ρ` | R(O) |Rf ·Rf

Specifically, a predicate is either a conjunction of predicates
or a comparison between reliability factors, Rf . A reliability
factor is either a real number ρ, a kinded reliability ρ`, a joint
reliability factorR(O) of a set of register and variable operands
O⊆R∪V , or a product of reliability factors.

The denotation of a predicate JPK∈P(E×Φ×Θ×Υ) is
the set of environment, approximate environment distribution,
kind configuration, and variable allocation quadruples that satisfy
the predicate. An environment distribution ϕ∈Φ=E→R is a
probability distribution over possible approximate environments.

The denotation of a reliability factor JRfK∈E×Φ×Θ×Υ→
R is the real-valued reliability that results from evaluating the
factor for a given quadruple. For example, JρK(ε,ϕ,θ,υ)=ρ and
Jρ`K(ε,ϕ,θ,υ)=JρK(ε,ϕ,θ,υ)θ(`). The denotation ofR(O) is the
probability that an approximate environment εa sampled from ϕ
has the same value for all operands inO as the environment ε:

JR(O)K(ε,ϕ,θ,υ)=
∑

εa∈E(ε,O,υ)

ϕ(εa), (1)

where E((σ,m),O,υ)=

{(σa,ma) | ∀o. o∈R⇒σa(o)=σ(o)∧
o∈V ⇒∀a∈υ(o). ma(a)=m(a)}.

The function E(ε,O,υ) is the set of environments in which the
values of all operandsO are the same as in ε.

5.2 Semantics of Reliability
Given the semantics of reliability predicates, we define the
reliability of an approximate program with a Hoare-triple-like
semantics defined for the program’s paired execution semantics:
Definition 3 (Paired Execution Semantics).

〈· ,〈ε,ϕ〉〉⇓
θ,χ,υ

γ,ψ 〈ε′,ϕ′〉 such that 〈· ,ε〉 τ,pr
=⇒

γ[0θ],ψ,0ξ
ε′ and

ϕ′(ε′a)=
∑
εa∈E

ϕ(εa)·pa where 〈· ,εa〉
pa

=⇒
γ[θ],ψ,ξ

ε′a and

∀v∈V. ∀a∈υ(v). ξ(a)=θ(χ(v))

The paired execution semantics pairs a program’s exact
execution with its approximate executions.

Exact Execution. The semantics specifies the program’s exact
execution via a big-step execution that uses the exact kind and
memory configurations 0θ and 0ξ that both return 0 for all inputs.

Approximate Execution. Because approximate operations
can produce different results with some probability, the natu-
ral representation for the environments of a program’s approx-
imate execution is a probability distribution that specifies the
probability that the execution is in a particular environment. The
semantics specifies the distributions of the approximate execu-
tion’s initial and final environments with the distributions ϕ and
ϕ′, respectively. The relationship between these two distributions
is given by a summation over big-step executions, each of which
use the potentially approximate kind and memory configurations
θ and ξ. For each program variable v, ξ maps the variable’s
addresses (υ(v)) to either the exact or approximate memory
according to the kind specified for the variable (θ(χ(v))).

Reliability Transformer. Reliability predicates and the se-
mantics of approximate programs are connected through the
view of a program as a reliability transformer. Namely, simi-
lar to the standard Hoare triple relation, if an environment and
distribution pair 〈ε,ϕ〉 satisfy a reliability predicate P , then the
program’s paired execution transforms the pair to a new pair
〈ε′,ϕ′〉 that satisfy a predicate Q. We formalize the reliability
transformer relation in Section B of the Appendix [22].

5.3 Reliability Precondition Generator
Given a predicate targeted to be true after the execution of
a program (a postcondition), Chisel’s reliability precondition
generator produces a precondition that when true before the
execution of the program, ensures that the postcondition is true
after. Namely, the precondition, program, and postcondition
satisfy the reliability transformer relation.

The precondition generator operates backwards on the pro-
gram’s instruction sequence, starting at the program’s last in-
struction and ending at the program’s first. The generator starts
with an initial postcondition that is a conjunction of terms of
the form ρspec,i ·R(Vspec,i)≤R({vi}) and the term ρspec,ret ·
R(Vspec,ret)≤R({rret}). The left-hand side of the inequalities
represent the reliability specification of the array parameters and
the return value, respectively. Each vi is an array parameter and
rret is the register that contains the return value. The postcondition

asserts that the reliability of each output array and the function’s
return value must be at least that given in their specification.

5.3.1 Reliability Precondition Analysis
The reliability precondition generator is a function C ∈ I ×
P→P that takes as inputs an instruction and a postcondition
and produces a precondition as output. The analysis rules for
arithmetic instructions and memory accesses are as follows:

C(r=op` r1 r2,Q)=Q[ρ`op ·R({r1,r2}∪X))/R({r}∪X)]

C(r1=load r2,Q)=Q[ρ
χ(η(r2))
ld ·R({η(r2)}∪X)/R({r1}∪X)]

C(store r1 r2,Q)=Q[ρ
χ(η(r1))
st ·R({r2}∪X)/R({η(r1)}∪X)]

ALU/FPU. The first equation presents the generator rule for
ALU/FPU operations. The rule works by substituting the re-
liability of the destination register r with the reliability of its
operands and the reliability of the operation itself. The substitu-
tion Q[R({r1,r2}∪X)/R({r}∪X)] matches all occurrences
of the destination register r in a reliability term that occur in the
predicateQ and replaces them with the input registers, r1 and r2.
The substitution also multiplies in the factor ρ`op, which expresses
the reliability of the operation op as a function of its label’s kind
configuration, and its reliability ρop =πop(ψ)(op).

Load/Store. The second and the third equations present the
rules for loads and stores from potentially approximate memory.
The rules use the auxiliary register mapping generated by the
compiler (η∈R→V) that maps the address operand register to
the program variable that is read or written.

The minimum reliability of a load from a potentially approxi-
mate variable, ρld, is equal to the probability that the read from
memory, the write to a cache location, and the read from that
cache location all execute correctly, π1(πmem(ψ)) ·π1(π$(ψ)) ·
π2(π$(ψ)). The reliability of a store to a potentially approximate
variable, ρst, assuming a write-through cache, is equal to the
reliability of a memory store, π2(πmem(ψ)).

This rule presents the semantics of strong updates for scalar
program variables. In Section B of the Appendix [22] we present
the rules for weak updates of array variables.

Control Flow. We elide the rules for control flow. Our analy-
sis relies on the fact that the Rely base language has structured
control flow and therefore it is straightforward to map assem-
bly instructions to high-level program structures, such as if

statements and while loops. Working with these structures,
our analysis is similar to Rely’s analysis. Specifically, for if

statements the resulting precondition ensures that both branches
of the if satisfy the postcondition (inclusive of the probability
that the condition executes correctly). The analysis of bounded
while loops is conceptually similar to loop unrolling whereas
the analysis of unbounded loops sets the reliability of variables
that are unreliably updated within the body of the loop to zero.

5.3.2 Final Precondition
For a given kernel, our analysis computes a precondition that is
a conjunction of the terms of the form

ρspec·R(Vspec)≤r·R(V),

where ρspec · R(Vspec) is a reliability factor for a developer-
provided specification of an output and r · R(V) is a lower
bound on the output’s reliability computed by the analysis.

Each ρspec is a real-valued constant and each r is a product
of a real-valued constant and kinded reliabilities of the form

ρ·Πk ρ`kk .

If this precondition is valid for a given kind configuration, then
that kind configuration satisfies the developer-provided reliability
specification.

5.4 Optimization Constraint Construction
Validity Checking. To check the validity of this precondition,
we use the observation that the reliability of any subset of a set
of variables is greater than or equal to the reliability of the set as
a whole [7, Proposition 1]. Specifically,

V ⊆Vspec⇒R(Vspec)≤R(V). (2)

Therefore, Chisel can soundly ensure the validity of each inequal-
ity in the precondition by verifying that ρspec≤r and V ⊆Vspec.
Constraint Construction. Given a precondition, Chisel next
generates an optimization constraint. For each inequality in the
precondition, Chisel immediately checks if V ⊆Vspec. For the
test ρspec≤r, recall that the reliability expression r has the form
ρ·Πk ρ`kk . Given that the denotation of ρ` under a configuration θ
is ρθ(`), Chisel produces a final optimization constraint by taking
the logarithm of both sides of the inequality:

log(ρspec)−log(ρ)≤
∑
k

θ(`k)·log(ρk). (3)

We note that the expression on the right side is linear with respect
to all labels `k. Each label’s kind is an integer variable that can
take a value 0 or 1. The reliabilities ρ are constants and their
logarithms are immediately computable.

6. Accuracy Constraint Construction
To exploit the capabilities of architectures that have variable
precision floating point units [12, 17, 44, 45], we now present
Chisel’s analysis that unifies reasoning about both reliability and
accuracy. Specifically, we extend reliability predicates with the
ability to characterize the difference in the value of a variable
between the kernel’s exact and approximate executions. Then,
our constraint generator produces linear expressions of kind
configurations that characterize how the numerical error emerges
and propagates through the kernel.

6.1 Accuracy Specification
Approximate Hardware Specification. For each approxi-
mate floating point operation op, we extend the definition of the
hardware specification ψ from Section 3.1 to also include the
accuracy specification of the variable-accuracy instructions. The
specification of a variable-accuracy instruction consists of the
reliability r and the number of mantissa bits that are computed

fully accurately c (which determines the maximum error of
the operation). Each operation produces an approximate result
(with error whose magnitude bound is determined by c) with
probability r. With probability 1−r, the operation can produce
an arbitrarily inaccurate result.

Function Specification. We extend the syntax of reliability
specifications from the Rely base language to include a specifi-
cation of acceptable accuracy loss. The extended specification
has the following form:

<d, r * R(d1 >= D(x1), ..., dn >= D(xn))>

The constant d specifies the maximum acceptable difference
between the results of the exact and approximate executions. The
constant r specifies the probability with which the approxi-
mate execution will produce a result within distance d of the
exact result. The constraints di >= D(xi) specify that the non-
negative value di is the maximum absolute difference between
the values of the function’s parameter xi at the beginning of
the exact and approximate kernel executions.

Interval Specification. We extend function specifications to
enable developers to specify the intervals of values of a function’s
parameters. Because the accuracy analysis relies on an internal
interval analysis, the precision of the results of this analysis
depends on the precision of the intervals specified for the inputs
to the function. To specify the parameter interval, a developer
precedes a function’s declaration with an annotation of the form
@interval(p,a,b), denoting that the value of the parameter
p is within the interval [a,b].

6.2 Accuracy Predicates and Reliability Predicates
We next present the syntax and semantics of the predicates
generated by the accuracy analysis:

QA := RD≥RA |QA∧QA
RA := RD |RD ·` |RD ·∆(v) |RA+RA
RD := d | ∞ |RD ·RD

An accuracy predicateQA is a conjunction of accuracy pred-
icates or a comparison between a product of non-negative real
constants extended by infinityRD and an accuracy expression.
An accuracy expression RA has one of four forms: a constant
termRD; a product of a constant term and a label `; a product
of a constant term and a distance operator ∆(v) that relates the
values of the variable v in an exact and an approximate execution;
or an addition of two accuracy expressions.

Figure 6 presents the denotational semantics of accuracy ex-
pressions and predicates. Accuracy expressions and predicates
have a similar semantics to that of standard logical predicates
over numerical expressions. The main point of departure is the
semantics of the distance operator, which is the absolute differ-
ence between the value of a variable in an exact environment ε
and its corresponding value in an approximate environment εa.
For notational purposes, we define implication as:

QA1⇒QA2≡JQA1K⊆JQA2K.

JRDK∈R+∪{∞} JdK=d J∞K=∞ J0·∞K=0 JRD ·∞K=∞ JRD1 ·RD2K=JRD1K·JRD2K

JRAK∈E×E×Θ×Υ→R+∪{∞} JRD ·`K(ε,εa,θ,υ)=JRDK·θ(`) J∆(v)K(ε,εa,θ,υ)= max
a∈υ(v)

|π2(εa)(a)−π2(ε)(a)|

JRD ·∆(v)K(ε,εa,θ,υ)=JRDK·J∆(v)K(ε,εa,θ,υ) JRA1+RA2K(ε,εa,θ,υ)=JRA1K(ε,εa,θ,υ)+JRA2K(ε,εa,θ,υ)

JQAK∈P(E×E×Θ×Υ) JRD≥RAK={(ε,εa,θ,υ) | JRDK≥JRAK(ε,εa,θ,υ)} JQA1∧QA2K=JQA1K∩JQA2K

Figure 6: Accuracy Predicate Semantics

AE∈Exp→RA AE(n)=0 AE(x)=∆(x)

AE(e1op
` e2)=π1(propagationop,I(e1,e2))·AE(e1)+π2(propagationop,I(e1,e2))·AE(e2)+`·maxerrop,ψ,I(e1,e2)

C∗ψ,I ∈ S×P ′→P ′

C∗ψ,I(x = e,QR) = letQ′A=QA[AE(e)/∆(x)] in QR [REassign,ψ(x,e)·R∗(Q′A)/R∗(QA)]

C∗ψ,I(if xb s1 s2,QR) = letQ′A=QA∧0≥∆(xb) in
C∗ψ,I(s1,QR [R∗(Q′A)/R∗(QA)])∧C∗ψ,I(s2,QR [R∗(Q′A)/R∗(QA)])

C∗ψ,I(x = φ(x1,x2),QR) = letQ′A=QA[∆(x1)/∆(x)] andQ′′A=QA[∆(x2)/∆(x)] in
QR [R∗(Q′A)/R∗(QA)]∧QR [R∗(Q′′A)/R∗(QA)]

Figure 7: Accuracy (QA) and Extended Reliability (QR) Precondition Construction

Extended Reliability Predicates. To specify Chisel’s ex-
tended reliability precondition generator, we extend the reliability
predicate definition from Section 5.1 by adding a generalized
joint reliability factor,R∗(QA).R∗(QA) denotes the probabil-
ity that the exact environment ε and an approximate environment
εa sampled from ϕ together satisfy the accuracy predicateQA:

JR∗(QA)K(ε,ϕ,θ,υ)=
∑

εa∈E(ε,θ,υ,QA)

ϕ(εa),

where E(ε,θ,υ,QA)={εa | (ε,εa,θ,υ)∈JQAK}. The syntax of
the extended reliability predicates is R′f :=Rf | R∗(QA) and
P ′ :=R′f≤R′f |P ′∧P ′.

This definition of joint reliability factors subsumes the defini-
tion of the standard joint reliability factorsR(V) (Section 5.1,
Equation 1). Specifically, the set of variables that have the same
value in the exact and approximate program executions can be
represented using accuracy predicates that bound the acceptable
absolute difference of each variable by zero:

JR(V)K(ε,ϕ,θ,υ)=JR∗(
∧
v∈V

0≥∆(v))K(ε,ϕ,θ,υ).

6.3 Extended Reliability Precondition Generator
We now present the precondition generator of extended reliability
predicates. For simplicity, we present this analysis at the level
of the constructs in the Rely base language. This analysis is
applicable to kernel computations without unbounded loops.

Figure 7 presents the selection of rules of the combined accu-
racy and reliability analysis. The precondition generator takes as
input a statement s and an extended reliability postconditionQR
and generates a preconditionQ′R, such that ifQ′R holds before
the paired execution of the statement s, thenQR holds after the
paired execution of s. The final precondition generated for a full

program is a precondition from which the program satisfies both
its reliability and accuracy specification.

6.3.1 Interval Analysis
To compute the absolute error induced by variable-accuracy
arithmetic operations (given the number of accurately computed
mantissa bits), an accuracy analysis requires the intervals of the
operation’s inputs. Therefore, we define an auxiliary interval
analysis that computes the intervals of expressions computed
within the kernel. These intervals include the maximum absolute
errors induced by the variable-accuracy floating point operations.

The analysis produces a mapping I :L→ (Float×Float)+
Unbounded, which yields the interval of values to which each
expression (identified by its label ` ∈ L) evaluates. The set
Float contains all floating point numbers that the target platform
can represent. A special symbol Unbounded indicates that the
interval is unbounded (due to e.g., a possible overflow or divide
by zero).

The analysis operates in a forward fashion, using the standard
rules of interval arithmetic. To provide a conservative estimate
of the error that the approximate execution may produce, for
every arithmetic operation e1 op`e2 the interval analysis extends
the computed interval of the result of the exact operation [a,b]
with an error term δ, which represents the maximum absolute
error of the approximate operation. The resulting interval is then
I(`)=[a−δ,b+δ]. The computation of conservative intervals is
inspired by the analysis presented in [11].

To compute the error term for an arithmetic operation, the
analysis uses the function maxerrop,ψ,I(e1,e2), which returns
the maximum error when the operation op operates on only
a fraction of the inputs’ mantissa bits and the intervals of the
operands are I(loc(e1)) and I(loc(e2)). The function loc returns

the label of an expression. If any operand interval is unbounded,
then the result interval is also unbounded.

6.3.2 Analysis of Arithmetic Expressions
The function AE in Figure 7 produces an expression that bounds
the absolute error of an arithmetic expression.

Error Propagation. The function propagationop,I(e1,e2) re-
turns a pair of real-valued error propagation coefficients (k1,k2)
that specify how sensitive the result of the operation is to the
changes of the first and the second operand, respectively.

To compute the coefficients for each operation, we use the
observation that for a differentiable function f(x,y) defined on a
bounded interval and inputs with errors x̂=x+δx and ŷ=y+δy,
one can show that |f(x,y)−f(x̂,ŷ)| ≤ k1 · |δx|+k2 · |δy|. The
constants k1 =maxx,y

∣∣∣∂f(x,y)∂x

∣∣∣ and k2 =maxx,y

∣∣∣∂f(x,y)∂y

∣∣∣ can
be computed from the input intervals when the partial derivatives
of f are bounded. Note that the input intervals include the bounds
for the errors δx and δy.

We can use this observation to specify the error propagation
functions for the four arithmetic operations:

propagation+,I(e1,e2) = (1,1)

propagation−,I(e1,e2) = (1,1)

propagation∗,I(e1,e2) = (max
y∈I2
|y|,max

x∈I1
|x|)

propagation÷,I(e1,e2) = (max
y∈I2
|1/y|, max

x∈I1,y∈I2
|x/y2|) when 0 6∈I2.

Recall that the conservative interval analysis incorporates the
maximum error that can propagate from the operands. Therefore,
the intervals of the operandsI1=I(loc(e1)) andI2=I(loc(e2))
incorporate the upper bounds for the errors in the operands. If
either interval is unbounded or the divisor’s interval includes 0,
then the corresponding coefficient will be infinity (∞), indicating
that the operand’s value is critical, i.e., the kernel’s result is highly
sensitive to its change.

Error Induced by Approximation. The analysis uses the
function maxerrop,ψ,I(e1,e2) to compute the maximum error
induced by the approximate arithmetic expression when the
inputs are in I(loc(e1)) and I(loc(e2)). If either of the intervals
is unbounded, then the function returns∞.

The propagation and approximation-induced errors are ad-
ditive because for two continuous functions f and f̂ , it fol-
lows from the triangle inequality that |f(x, y) − f̂(x̂, ŷ)| ≤
|f(x, y) − f(x̂, ŷ)| + |f(x̂, ŷ) − f̂(x̂, ŷ)|. Therefore, the to-
tal absolute error is bounded by the sum of the error that
propagates through the operands, characterized by the propa-
gation coefficients from propagationop,I(·), and the induced
error, maxerrop,ψ,I(·). To control whether to approximate the
operation, the generator multiplies the induced error with the
operation’s label.

6.3.3 Analysis of Statements
Figure 7 presents the selection of rules for the precondition
generator for statements, C ∗. We present the remaining rules in
Section C of the Appendix [22]. The precondition generator for

statements operates backwards, from the end to the beginning
of the kernel function. It transforms the extended reliability
predicateQR, starting from the predicate that is the conjunction
of the terms ρspec,i ·R∗(Qspec,i)≤R∗(dspec,i≥∆(vi)) for each
kernel’s array parameter vi. The analysis rules for statements are
analogous to those from the reliability analysis in Section 5. The
main difference between the two analyses is in the propagation
of the accuracy predicate QA within the reliability factors, as
opposed to propagating sets of variables.
Kernel Preprocessing. Before precondition generation, a pre-
processing pass flattens conditionals and transforms the kernel’s
code to an SSA form (as in [7]). In addition, the preprocessing
pass also unrolls finitely bounded loops.
Assignment. The assignment operator modifies the accuracy
predicate by substituting the occurrences of ∆(x), the distance
operator for the variable x with the assignment’s accuracy
expressions AE(e). The generator substitutes the joint reliability
factor R∗(QA) with the product of the reliability expression
REassign,ψ(x,e), generated by the analysis from Section 5, and
the joint reliability factor of the new accuracy predicateQ′A.
Control Flow. For the conditional statement, both branches
must satisfy the predicate. Note that the preprocessing pass
flattens the conditional by extracting the variable xb, which is
assigned the expression that computes the boolean condition.
The predicate 0≥∆(xb) therefore states that the computation
affecting the statement’s condition cannot be computed with
reduced accuracy (which could cause control flow divergence).
This predicate simplifies the accuracy analysis so that it need
not consider all possible combinations of divergent paths for the
kernel’s exact and approximate executions.

The rule for phi-nodes substitutes the distance operator with
the variable’s name for the distance operators of the alternative
variable names in each of the branches to address the dependence
of the variable’s value on the control flow.
Array Operations. We present the analysis of array operations
in Section C of the Appendix [22]. They are analogous to
the rule for the assignment statement, but also ensure that the
variable-accuracy computation does not affect the array index
computation.

6.3.4 Final Precondition
The precondition generator generates a precondition that is a
conjunction of terms of the form:

ρspec ·R∗(Qspec)≤r·R∗(QA).

The accuracy predicate Qspec (given by the specification) is a
conjunction of terms of the form

d≥∆(v), (4)

where each d is a constant and each v is a function parameter.
The accuracy predicate QA (produced by the precondition

generator) is a conjunction of terms of the form

dspec≥
∑
j

∆(vj)·
∏
l

dj,l+
∑
k

`k ·
∏
l

dk,l. (5)

The constant dspec comes from the specification and the
analysis computes coefficients dj,l and dk,l. The first sum on
the right side of the inequality represents how the error in
the parameters propagates to the output and the second sum
represents the error caused by the approximate execution of the
arithmetic operators.

6.4 Optimization Constraint Construction
If the final precondition generated by the analysis is valid, then
the program satisfies its accuracy specification. The validity prob-
lem for a precondition leads to a natural method for generating an
optimization constraint that limits the set of possible kind config-
urations of the program to only those that satisfy the program’s
accuracy specification.

Predicate Validity. Similar to the procedure in Section 5.4,
we demonstrate the validity of each of the final precondition’s
conjuncts,

ρspec ·R∗(Qspec)≤r·R∗(QA),

by showing that 1) the reliability coefficient on the right side of
the inequality is bounded from below by that on the left side,
specifically that ρspec≤r, and 2) the generalized joint reliability
factor on the left side of the inequality is bounded above by that
on the right side, specifically thatR∗(Qspec)≤R∗(QA).

Bounding the reliability coefficients (and generating appro-
priate optimization constraints) follows from the techniques pre-
sented in Section 5.4. To bound the generalized reliability factors,
we generalize the ordering property for joint reliability factors
(Equation 2) as follows:

Proposition 1 (Generalized Reliability Factor Ordering).
IfQA1⇒QA2 thenR∗(QA1)≤R∗(QA2).

This property follows from the fact that, if QA1 implies
QA2, then the set of approximate program environments that
satisfy the predicate QA1 is a subset of the environments that
satisfy the predicateQA2. Therefore,R∗(QA1), the probability
of the environments satisfyingQA1, must be less than or equal to
R∗(QA2), the probability of the environments satisfyingQA2.

Constraint Construction. Given the generalized reliability
factor ordering, Chisel’s goal is to generate an optimization
constraint that ensures that Qspec ⇒ QA (which therefore
ensures that the corresponding conjunct in the precondition is
valid). Chisel constructs this constraint via the observation that
Qspec has the form

∧
jdj≥∆(vj) (Section 6.3.4, Equation 4).

Therefore, it is sound to replace each occurrence of ∆(vj) inQA
with the corresponding dj, yielding a predicate of the form:

dspec≥
∑
j

dj ·
∏
l

dj,l+
∑
k

`k ·
∏
l

dk,l. (6)

The constraint generator takes this accuracy predicate and
constructs the optimization constraint. First, it rearranges terms
and simplifies numerical constants (d∗ =

∑
j dj ·

∏
ldj,l and

d∗k =
∏
ldk,l). Since d∗k · `k denotes the multiplication of the

constant d∗k and the kind configuration θ(`k), the generator then
produces the following optimization constraint for a conjunct:

dspec−d∗≥
∑
k

d∗k ·θ(`k).

Identifying Critical Operations. As it generates the optimiza-
tion constraint, the constraint generator identifies all accuracy
expressions in which the coefficient d∗k has the value∞ (Sec-
tion 6.3.2). Such expressions indicate that small deviations in the
result of an intermediate operation or a variable value may cause
a large deviation of the kernel’s output. The constraint generator
sets the corresponding kind configuration θ(`k) to 0 (exact) and
removes all terms with such assigned configurations from the
final accuracy constraints.

7. Energy Objective Construction
We now define a set of functions that operate on traces of the
original program to model the energy consumption of the exact
and approximate program executions.

7.1 Absolute Energy Model
Energy Model Specification. We extend the hardware spec-
ification from Section 3.1 with the relative energy savings for
each approximate arithmetic operation (for simplicity we use
αint for all integer and αfp for all floating point instructions)
and approximate memory and cache regions (αmem and αcache).
The specification also contains the relative energy consumption
of the system’s components (µCPU, µALU, and µcache) and relative
instruction class energy rates (wfp and woi).

Energy of System. We model the energy consumed by the
system (Esys) when executing a program under configuration θ
with the combined energy used by the CPU and memory:

Esys(θ)=ECPU(θ)+Emem(θ).

Energy of CPU. We model the energy consumption of the
CPU as the combined energy consumed by the ALU, cache, and
the other on-chip components:

ECPU(θ)=EALU(θ)+Ecache(θ)+Eother.

Energy of ALU. Each instruction in the hardware specifica-
tion may have a different energy consumption associated with
it. However, for the purposes of our model, we let Eint, Efp, Eoi
be the average energy consumption (over a set of traces) of an
ALU instruction, a FPU instruction, and other non-arithmetic
instructions, respectively.

Using the instructions from the traces that represent kernel
execution on representative inputs, we derive the following sets:
IntInst is the set of labels of integer arithmetic instructions and
FPInst is the set of labels of floating-point arithmetic instructions.
For each instruction with a label `, we also let n` denote the
number of times the instruction executes for the set of inputs.
Finally, let αint and αfp be the average savings (i.e., percentage

reduction in energy consumption) from executing integer and
floating-point instructions approximately, respectively. Then, the
ALU’s energy consumption is:

Eint(θ)= Σ
`∈IntInst

n` ·(1−θ(`)·αint)·Eint

Efp(θ)= Σ
`∈FPInst

n` ·(1−θ(`)·αfp)·Efp

EALU(θ)=Eint(θ)+Efp(θ)+noi ·Eoi.

This model assumes that the instruction count in the approxi-
mate execution is approximately equal to the instruction count in
the exact execution.

Memory Energy. We model the energy consumption of the
system memory (i.e., DRAM) using an estimate of the average
energy per second per byte of memory, Emem. Given the exe-
cution time of all kernel invocations, t, the savings associated
with allocating data in approximate memory, αmem, the size of
allocated arrays, S`, and the configurations of array variables in
the exact and approximate memories, θ(`), we model the energy
consumption of the memory as follows:

Emem(θ)=t·Emem ·
∑

`∈ArrParams
S` ·(1−θ(`)·αmem).

Cache Memory Energy. We model the energy consumption
of cache memory, Ecache, similarly. Let Sc be the size of the
cache, αcache the savings of approximate caches. In addition,
we need to specify the strategy for determining the size of
approximate caches. We analyze the strategy that scales the
size of approximate caches proportional to the percentage of the
size of the arrays allocated in the approximate main memory. If
cu is the maximum fraction of the approximate cache lines, the
energy consumption of the cache is

Ecache(θ)=t·Ecache ·Sc ·(1−cu ·
∑
`S`θ(`)∑
`S`

·αcache).

7.2 Relative Energy Model
While the energy model equations from Section 7.1 capture basic
properties of energy consumption, the models rely on several
hardware design specific parameters, such as the average energy
of instructions.

However, we can use these equations to derive a numerical
optimization problem that instead uses cross-design parameters
(such as the relative energy between instruction classes and the
average savings for each instruction) to optimize energy con-
sumption of the program relative to an exact configuration of the
program, 0θ (Section 4.2). For each energy consumption model-
ing function in the previous section we introduce a corresponding
function that implicitly takes 0θ as its parameter. For example,
for the energy consumption of the system, we letEsys≡Esys(0θ).

System Relative Energy. The energy model contains a param-
eter that specifies the relative portion of energy consumed by the
CPU versus memory, µCPU. Using this parameter, we derive the

relative system energy consumption as follows:

Esys(θ)

Esys
=
ECPU(θ)+Emem(θ)

ECPU+Emem
=

=
ECPU

ECPU
· ECPU(θ)

ECPU+Emem
+
Emem
Emem

· Emem(θ)

ECPU+Emem
=

=µCPU ·
ECPU(θ)

ECPU
+(1−µCPU)·Emem(θ)

Emem
.

CPU Relative Energy. The energy model contains a parame-
ter that specifies the relative portion of energy consumed by the
ALU, µALU, and cache, µcache (and µother =1−µALU−µcache).
We can then derive the relative CPU energy consumption simi-
larly to that for the whole system:

ECPU(θ)

ECPU
=µALU ·

EALU(θ)

EALU
+µcache ·

Ecache(θ)

Ecache
+µother.

ALU Relative Energy. We apply similar reasoning to derive
the relative energy consumption of the ALU:

EALU(θ)

EALU
=µint ·

Eint(θ)

Eint
+µfp ·

Efp(θ)

Efp
+µoi.

The coefficients µint, µfp, and µoi are computed from the
execution counts of each instruction class (nint, nfp, and noi)
and the relative energy consumption rates of each class with
respect to that of integer instructions (wfp and woi). For example,
if we letwfp be the ratio of energy consumption between floating
point instructions and integer instructions (i.e, wfp =

Efp

Eint
), then

µfp =
wfp·nfp

nint+wfp·nfp+woi·noi .

Memory And Cache Relative Energy. Applying similar rea-
soning to the memory subsystem yields the following:

Emem(θ)

Emem
=

1

H
· t
′

t
·

∑
`∈ArrParams

S` ·(1−θ(`)·αmem)

Ecache(θ)

Ecache
=

1

H
· t
′

t
·

∑
`∈ArrParams

S` ·(1−cu ·θ(`)·αcache),

where H=
∑
`S` is the total size of heap data. The execution

time ratio t′/t denotes possibly different execution time of the
approximate program. One can use the results of reliability
profiling to estimate this ratio.

8. Optimization Problem Statement
We now state the optimization problem for a kernel computation:

Minimize:
Esys(θ)
E

Constraints: log(ρspec,i)−log(ρi)≤
∑
k

θ(`ki)·log(ρki)

dspec,i−d∗i ≥
∑
k

dki ·θ(`ki) ∀i

Variables: θ(`1),...,θ(`n)∈{0,1}

The decision variables θ(`1),...,θ(`n) are the configuration
kinds of arithmetic instructions and array variables. Since they
are integers, the optimization problem belongs to the class of
integer linear programs.

Complexity. The number of constraints for a single program
path is linearly proportional to the number of kernel outputs
(the return value and the array parameters). The number of
paths that Chisel’s precondition generator produces is in the
worst case exponential in the number of control flow divergence
points. However, in practice, one can use the simplification
procedure from [7, Section 5.4], which can identify most of
the path predicates as redundant and remove them during the
analysis. Out of the remaining predicates, Chisel can immediately
solve those that involve only numerical parameters and pass
only the optimization constraints with kind configurations to the
optimization solver.

The number of decision variables is proportional to the
number of instructions and array parameters in a kernel. In
general, integer linear programming is NP complete with respect
to the number of decision variables. However, existing solvers
can successfully and efficiently solve many classes of integer
linear programs with hundreds of variables.

We describe two techniques that can reduce the size of the
generated optimization problem. First, the precondition generator
can create constraints at coarser granularities. For example,
a single decision variable may represent program statements,
basic blocks, or loop bodies. (Section 8.1). Second, Chisel
can separately optimize the invoked functions that implement
hierarchically structured kernels (Section 8.4).

Extensions. In the rest of this section we describe several
extensions to Chisel’s optimization algorithm.

8.1 Operation Selection Granularity
When the number of decision variables in the optimization
problem for a large kernel computation is too large to solve given
the computational resources at-hand, a developer may instruct
the optimizer to mark all instructions in a block of code with the
same kind (i.e., all exact or all approximate). The optimization
algorithm assigns a single label ` to all operations within this
block of code. This approach reduces the number of decision
variables and – therefore – the resources required to solve the
optimization problem.

8.2 Overhead of Operation Mode Switching
Some approximate architectures impose a performance penalty
when switching between exact and approximate operation modes
due to e.g. dynamic voltage or frequency scaling. Therefore,
for these architectures it is beneficial to incorporate the cost
of switching into the optimization problem. For example, the
constraint generator can produce additional constraints that
bound the total switching overhead [38].

To specify this additional constraint, we let `i and `i+1 be the
labels of two adjacent arithmetic instructions. Next, we define
auxiliary counter variables si∈{0,1} such that

si≥θ(`i)−θ(`i+1) ∧ −si≤θ(`i)−θ(`i+1).

Finally, we specify the constraint
∑
isi ≤B to limit the total

number of mode changes to be below the boundB.

8.3 Array Index Computations and Control Flow
Instead of relying on support for failure-oblivious program
execution (Section 3.3), Chisel can further constrain the set
of optimized instructions to exclude instructions that compute
array indices and/or affect the flow of control. To ensure that
approximate computation does not affect an expression that
computes an array index or a branch condition, a dependence
analysis can compute the set of all instructions that contribute
to the expression’s value. Chisel then sets the labels of these
instructions to zero to indicate that the instructions must be exact.

8.4 Function Calls
To analyze function calls, one can use the following strategies:

Inlining. Chisel’s preprocessor inlines the body of the called
function before the precondition generation analyses.

Multiple Existing Implementations. A called function f
may have multiple implementations, each with its own reliability
specification. The specification of each of the m implemen-
tations of f consists of the function’s reliability specification
ρf,i·R(·) and estimated energy savings αf,i.

For n calls to the function f in the kernel, the constraint
generator specifies the labels `f,1,1, ... ,`f,m,n. The reliability
expression for a k-th call site becomes

∏
iρ
`f,i,k
f,i . The relative

ALU energy consumption expression for the same call site is
µf,k · (1−

∑
iθ(`f,i.k) ·αf,i). A trace profiler can record the

count of instructions that the exact computation spends in each
called function to calculate the parameters µf,k.

We also specify a constraint
∑m
i=1θ(`f,i.k)=1 for each call

site to ensure that the optimization procedure selects exactly one
of the alternative implementations of f .

Inferring Reliability Specification. Instead of selecting from
one of the predefined reliability specifications, one can use
the optimization procedure to find the acceptable reliability
degradation of the called function f that will satisfy the reliability
specification of the caller function. The constraint generator can
then be extended to directly model the logarithm of the reliability
as a continuous decision variable ρ′(`f)≤0 (`f is the label of f).

For the energy consumption expression, the optimization
requires the developer to provide a function αf(ρ′(`f)), which
specifies a lower bound on the energy savings. To effectively
use an optimization solver like Gurobi, this function is required
to be linear (the optimization problem is a mixed integer linear
program), or quadratic (the optimization problem is a mixed
integer quadratic program).

8.5 Hardware with Multiple Operation Specifications
To support hardware platform with arithmetic operations and
memory regions with multiple reliability/savings specifications
(ρop,i, αop,i), we can use an approach analogous to the one
for functions with multiple implementations. Specifically, each
arithmetic operation can be analyzed as one such function.
Analogously, to specify one of k approximate memory regions
for a parameter v, the generator defines the labels `v,1,...,`v,k. It

generates the reliability expression
∏
iρ
`v,i
mop,i for each memory

operation and the memory savings expression
∑
iθ(`v,i)·αmem,i

for each array parameter. To select a single memory region, the
generator produces the constraint

∑
iθ(`v,i)=1.

8.6 Multiple Kernels
A program may contain multiple approximate kernels. To adapt
Chisel’s workflow, we consider appropriate modifications to the
reliability profiling and the optimization.

Reliability Profiling. The approximate execution of one ker-
nel may affect the inputs and the execution of the other kernels.
Therefore, to find the reliability specifications of multiple ker-
nels, the reliability profiler enumerates parts of the induced mul-
tidimensional search space. First, the one-dimensional profiler
(Section 2.1) finds the lower reliability bound of each kernel.
Then, to find the configuration of kernel reliability specifications
that yield an acceptably accurate result, the profiler can system-
atically explore the search space, e.g. using strategies analogous
to those that find configurations of accuracy-aware program
transformations [16, 24, 26, 40] from a finite set of possible con-
figurations. The profiler then returns configurations that closely
meet the accuracy target, ordered by the reliability of the most
time-consuming kernels.

Optimization. The optimization algorithm for multiple ker-
nels needs to consider only the allocation of arrays, since the
ALU operations are independent between kernels.

The multiple kernel optimization operates in two main stages.
In the first stage, it computes the energy savings of each in-
dividual kernel for all combinations of shared array variables.
Conceptually, if the shared variables are labeled as `1,...,`k, the
optimization algorithm calls the basic optimization problems for
all combinations of the kind configurations θ(`1),...,θ(`k), while
pruning the search tree when the algorithm already identifies that
a subset of labels cannot satisfy the reliability bound.

In the second stage, the analysis searches for the maximum
joint savings of the combination of m kernels. It searches
over the combination of individual kernel results for which
all array parameters have the same kind configuration, i.e.,
θ(1)(`i) = ...= θ(m)(`i) for each i∈ {1,...,k}. The algorithm
returns the combination of kernels with maximum joint energy
savings, which is a sum of the kernels’ savings weighted by the
fraction of their execution time. While, in general, the number
of individual optimization problems may increase exponentially
with the number of shared array variables k, this number is
typically small and the search can remain tractable.

9. Evaluation
We evaluate Chisel for several applications over a parameterized
space of approximate hardware designs. Our evaluation consists
of the following parts:

• Sensitivity Profiling. We present how sensitivity profiling
can help developers effectively identify an appropriate relia-
bility specification for an application.

• Optimization Problem Size. We present statistics that char-
acterize the size of Chisel’s optimization problem.
• Energy Savings. We present the percentage of potential

energy savings that Chisel uncovered.
• Output Quality. We present the resulting end-to-end sensi-

tivity metric for the execution of the synthesized approximate
benchmarks on a set of test inputs.

9.1 Chisel Implementation
We have implemented Chisel using OCaml. The framework
consists of several passes. The translation pass produces an
equivalent C program for an input file with Rely functions.
The trace profiler pass instruments the C program to collect
instruction traces used to compute the frequencies of instructions
(nint,nfp, and noi) in the energy objective.

The analysis pass generates the objective, the reliability con-
straints, and the accuracy constraints. To solve the optimization
problem, we use Gurobi mixed integer programming solver [15].
Finally, the transformation pass uses the optimization problem
solution to generate a kernel code with approximate instructions
and memory annotations.

The framework also contains a fault injection pass, which,
given the approximate kernel and the hardware error model,
injects errors at approximate operations and collects the execution
statistics of the computation.
9.2 Hardware Reliability and Energy Specifications
We use the reliability and energy specifications for approximate
hardware presented in [36, Table 2] to instantiate our approximate
hardware specification, ψ. We reproduce this table in Section D
of Appendix [22]. It defines three configurations, denoted as
mild, medium and aggressive, for arithmetic instructions, caches,
and main memories respectively. We consider only the unreliable
arithmetic operations (that produce the correct results with
specified probability) and unreliable memories.
System Parameters. To compute the overall system savings
(Section 7.2), we use the server configuration parameters speci-
fied in [36, Section 5.4]: CPU consumes µCPU =55% of energy
and the main memory consumes the remaining 45%; the ALU
consumes µALU = 65% of CPU’s energy and the cache con-
sumes the remaining µcache=35% energy.

The sizes of the reliable and approximate regions of the
main memory are determined before the execution of the kernel
computations and remain fixed until all kernel computations
finish. We assume that the capacity of the approximate region
of the cache (that can store approximate heap data) is twice that
of the reliable cache that contains instructions and reliable data,
and therefore cu=67%.
Error Model. The error injection pass and its runtime insert
faults in the synthesized computation with the frequency speci-
fied by the hardware specification. For integer and floating point
ALU operations, the error model returns a fully random result
(as in [36]). For read and write memory errors, the error model
flips from one (with highest probability) up to three bits (with
lowest probability) in the word.

Benchmark Size Kernel Time Array Parameter Representative Sanity Sensitivity
(LoC) (LoC) in Kernel % Count / Heap % Inputs (Profile/Test) Test Metric

scale 218 88 93.43% 2 / 99% 13 (5/8) × Peak Signal-to-Noise Ratio
dct 532 62 99.20% 2 / 98% 13 (5/8) × Peak Signal-to-Noise Ratio
idct 532 93 98.86% 2 / 98% 9 (3/6) × Peak Signal-to-Noise Ratio
blackscholes 494 143 65.11% 6 / 84.4% 24 (8/16) X Relative Portfolio Difference
sor 173 23 82.30% 1 / 99% 20 (6/14) X Average Relative Difference

Table 1: Benchmark Description

9.3 Benchmarks
We implemented a set of benchmarks from several application
domains. The benchmarks were selected because they tolerate
some amount of error in the output.
Scale. Scales an image by a factor provided by the user. The
kernel computes the output pixel value by interpolating over
neighboring source image pixels.
Discrete Cosine Transform (DCT). A compression algo-
rithm used in various lossy image and audio compression meth-
ods. The kernel computes a frequency-domain coefficient of an
8x8 image block.
Inverse Discrete Cosine Transform (IDCT). Reconstructs
an image from the coefficients generated by DCT. The kernel
reconstructs a single pixel from the frequency domain grid.
Black-Scholes. Computes the price of a portfolio of European
Put and Call options using the analytical Black-Scholes formula.
The kernel calculates the price of a single option. Our imple-
mentation is derived from the benchmark from the PARSEC
benchmark suite [42].
Successive Over-relaxation (SOR). The Jacobi SOR compu-
tation is a part of various partial differential equation solvers.
The kernel averages the neighboring matrix cells computed in
the previous iteration. It is derived from the benchmark from the
SciMark 2 suite [43].

Table 1 presents an overview of the benchmark computations.
For each computation, Column 2 (“Size”) presents the number
of lines of code of the benchmark computation. Column 3
(“Kernel”) presents the number of lines of kernel computation
that is a candidate for optimization. Column 4 (“Time in Kernel
%”) presents the percentage of instructions that the execution
spends in the kernel computation. Column 5 (“Array Parameter
Count/Heap %”) presents the number of array arguments and the
percentage of heap allocated space that these variables occupy.
Column 6 (“Representative Inputs”) presents the number of
representative inputs collected for each computation. Column
7 (“Sanity Test”) presents whether the computation contains
a sanity test that ensures the integrity of its result. Column
8 (“Sensitivity Metric”) presents the sensitivity metric of the
computation.
Representative Inputs. For each benchmark, we have se-
lected several representative inputs. The analysis uses a subset of
these inputs (designated as “Profile”) to obtain the estimates of
the instruction mixes and construct the objective function of the
optimization problem. We use the remaining inputs (designated
as “Test”) to evaluate the synthesized approximate computation.

Benchmark Reliability Sensitivity metric
Bound Average Conservative

scale 0.995 30.93± 0.95 dB 23.01 dB
dct 0.99992 27.74± 1.32 dB 22.91 dB
idct 0.992 27.44± 0.49 dB 20.96 dB
blackscholes 0.999 0.005± 0.0005 0.05
sor 0.995 0.058± 0.034 ≥ 1.0

Table 2: Software Specification PSNR

Sensitivity Metrics. For the three image processing bench-
marks (Scale, DCT, and IDCT) we use peak signal to noise ratio
between images produced by the original and the synthesized
versions of the benchmark. Specifically for DCT, the sensitivity
metric first converts the image from the frequency domain and
computes the PSNR on the resulting image.

For Blackscholes, we have used the relative difference be-
tween the sum of the absolute errors between the option prices
and the absolute value of the price of the portfolio (the sum of all
option values returned by the fully accurate program). For SOR,
the sensitivity metric is the average relative difference between
the elements of the output matrix.
Sanity Tests. Two of the benchmark computations have built-
in sanity test computations that ensure that the intermediate or
final results of the computation fall within specific intervals.
These computations typically execute for only a small fraction
of the total execution time. The Blackscholes sanity test uses
a no-arbitrage bound [3] on the price of each option to filter
out executions that produce option prices that violate basic
properties of the Black-Scholes model. The SOR benchmark
checks whether the computed average is between the minimum
and maximum array value.

If the sanity test computation fails, the approximate computa-
tion may skip updating the result (as in SOR), or reexecute the
computation (as in Blackscholes). In the case of reexecution, the
overall savings are scaled by the additional execution time of the
kernel computation.

9.4 Sensitivity Profiling
To find reliability specifications for the benchmark applications,
the sensitivity profiler relates the reliability degradation of a
kernel computation with its end-to-end sensitivity metric.
Methodology. For each profiling input, we perform 100 fault
injection experiments. As in Section 2.1, we use the sensitivity
profiler to compute the average sensitivity metric value (over the
space of possible injected faults) for multiple reliability bounds
using a developer-provided sensitivity testing procedure. For
each benchmark, we select one reliability bound that yields

Benchmark Optimization Reliability
Variables Constraints

scale 147 4
dct 121 1
idct 104 1
blackscholes 77 2
sor 36 1

Table 3: Optimization Problem Statistics

an acceptable sensitivity metric. We also analytically derive
conservative estimates of the average sensitivity metric.

Table 2 presents the final reliability specifications for the
benchmarks. Column 2 presents the reliability bound. Column
3 presents the average metric obtained from sensitivity testing.
Column 4 presents the analytic conservative lower bound on the
average sensitivity metric.

Image Benchmarks. For Scale and IDCT, the sensitivity
testing procedure (like the one from Section 2.1) modifies a
single pixel. For DCT, the sensitivity testing procedure changes a
single coefficient in the 8x8 DCT matrix. To compute the lower
bound on the average PSNR, we use an analytical expression
from Section 2.1. Note that DCT has smaller average PSNR
than the other two benchmarks, as a single incorrectly computed
coefficient can make 64 pixels in the final image incorrect.

Blackscholes. The sensitivity testing procedure conservatively
estimates the error at the end of the computation by returning
either the upper or the lower no-arbitrage bound (whichever is
more distant from the exact option value). For reliability bound
0.999, the average absolute error is $150.6 (±$1.63), while the
average value of the portfolio is $28361.4. Therefore, the relative
error of the portfolio price is approximately 0.50%. To derive
a conservative analytic expression for the deviation, we use the
no-arbitrage bound formula, while assuming that the price of the
portfolio is at least $4000 (e.g., each option in a portfolio with
4K options is worth at least a dollar) and the strike price is less
than $200.

SOR. For SOR, the sensitivity testing strategy returns a ran-
dom value within the typical range of the input data. Since the
computation performs multiple updates to the elements of the in-
put matrix, the worst-case relative error typically exceeds 100%.

9.5 Optimization Problem Solving

Chisel’s optimization algorithm constructs the optimization
problem and calls the Gurobi solver. Table 3 presents for each
benchmark the number of variables (Column 2) and the number
of constraints (Column 3) constructed by Chisel. For each of
these problems, Gurobi took less than a second to find the optimal
solution (subject to optimality tolerance bound 10−9) on an
8-core Intel Xeon E5520 with 16 GB of RAM.

9.6 Energy Savings

We next present the potential savings that Chisel’s optimization
uncovered. We relate the savings obtained for the traces of

profiled inputs to 1) the maximum possible savings when the
reliability bound is 0.0 and 2) the savings for the previously
unseen test inputs.

Methodology. To get the statistics on the approximate execu-
tion of the benchmarks, we run the version of the benchmark
transformed using the fault injection pass. We ran the benchmark
100 times for each test input. To estimate the energy savings,
we use the instruction counts from the collected traces and the
expressions derived in Section 7.

Results. Table 5 presents the system savings that the Chisel’s
optimization algorithm finds for the kernel computations. Col-
umn 2 (“Reliability Bound”) presents the target reliability that we
set according to the exploration in Section 9.4. Column 3 (“Po-
tential Savings”) presents the maximum possible savings when
all instructions and memory regions have medium configuration
and the result’s reliability bound is 0.0 – so that all operations can
be unreliable and all arrays can be stored in unreliable memory.

The remaining columns present the system savings when
running the approximate kernels for different hardware specifi-
cations. We represent the system configurations as triples of the
form CPU/Cache/Main, denoting the reliability/saving configu-
ration of CPU instructions, cache memories, and main memories,
respectively. We use the letters “m” and “M”’ to denote the mild
and medium reliability/savings configuration of the system com-
ponent from [36, Table 2]. We omit the aggressive configurations
as they yield no savings or only small savings for the reliabil-
ity bounds of our benchmarks. For instance, the configuration
“M/m/M” denotes a medium configuration for CPU instructions,
mild configuration for the cache memory, and medium config-
uration for the main memory. The column “Profile” contains
the savings that Chisel finds for the inputs used in sensitivity
profiling. The column “Test” contains savings computed from
the traces of inputs not used during sensitivity profiling.

Overall, for these benchmarks and hardware specification,
the majority of savings (over 95%) come from storing data
in unreliable memories. For Scale and SOR, Chisel marks
all array parameters and a significant portion of instructions
as unreliable for the configuration “M/M/M”. For Scale, the
optimization achieves over 95% (19.35% compared to 20.28%)
of the maximum savings. For SOR it obtains more than 98% of
the maximum possible savings.

In general, the hardware parameters affect the result that
Chisel produces. For instance, Chisel cannot apply any approx-
imation for the medium main memory configuration for DCT
(which is the benchmark with the strictest reliability bound) – it
produces a kernel in which all operations are reliable. However,
for mild memory and cache configurations, the optimization can
obtain up to 43% of the maximum possible savings.

For IDCT, Chisel obtains greater savings for mild (“m”)
configurations of the unreliable memories, because it can place
both array parameters to the kernel as unreliable, for the savings
of 67% of the maximum possible savings. When the memory
configurations are at the medium (“M”) level, Chisel can place
only one array parameter in unreliable memory.

Benchmark Reliability Potential m/m/m M/m/m M/M/m M/m/M M/M/M
Bound Savings Profile Test Profile Test Profile Test Profile Test Profile Test

scale 0.995 20.28% 14.11% 14.16% 14.22% 14.28% 15.39% 15.42% 18.17% 18.20% 19.35% 19.36%
dct 0.99992 20.09% 6.73% 6.72% 6.73% 6.73% 0.00% – 8.72 % 8.72% 0.00 % –
idct 0.992 19.96% 13.38 % 13.38% 13.40% 13.40% 7.34% 7.34% 8.70 % 8.70% 9.32 % 9.32%
blackscholes 0.999 17.39% 9.87 % 9.79% 9.90% 9.81% 5.38% 5.35% 6.36% 6.32% 4.40 % 4.52%
sor 0.995 20.07% 14.52% 14.50% 14.83% 14.87% 16.07% 16.07% 18.81% 18.70% 19.83% 19.43 %

Table 4: Energy Savings (Configurations: ’m’ denotes mild and ’M’ medium CPU/Cache/Memory approximation)

Benchmark Reliability Bound m/m/m M/m/m M/M/m M/m/M M/M/M
scale 0.995 44.79± 2.51 35.30± 1.95 34.07± 1.19 33.13± 1.33 32.31± 1.08
dct 0.99992 30.34± 3.84 30.37± 4.41 – 29.76± 4.81 –
idct 0.992 31.28± 0.80 30.45± 0.75 30.36± 0.19 30.36± 0.18 30.35± 0.20
blackscholes 0.999 0.0002± 0.00004 0.0006± 0.00008 0.0005± 0.00006 0.0005± 0.0008 0.0005± 0.0008
sor 0.995 0.029± 0.022 0.051± 0.032 0.046± 0.038 0.086± 0.090 0.080± 0.074

Table 5: Sensitivity Metric Results for Test Inputs

For Blackscholes, Chisel also selects different combinations
of unreliable input array parameters based on the configurations
of the main and cache memories and exposes up to 57% of
the maximum possible savings. Blackscholes reexecutes some
of its computation (when detected by the sanity test), but this
reexecution happens for only a small fraction of the options
(less than 0.03% on average) and has a very small impact on
program’s execution time and energy consumption.

For all benchmarks, the energy savings obtained on the test
inputs typically have a deviation less than 3% from the savings
estimated on the profiling inputs.

9.7 Output Quality
We next present the end-to-end sensitivity metrics results for the
executions of programs with synthesized kernels.

Methodology. We instrumented the unreliable operations se-
lected by the optimizer and injected errors in their results accord-
ing to the hardware specification and error model.

Results. Table 5 presents the end-to-end sensitivity of the
optimized benchmarks. Columns 1 and 2 present the benchmark
and the reliability bound. The remaining columns present the
mean and the standard deviation of the distribution of the error
metric. The number of faults per execution ranges from several
(Blackscholes) to more than a thousand (DCT and IDCT).

The sensitivity metric of Scale, DCT, and IDCT is the average
PSNR metric (higher value of PSNR means better accuracy). We
note that the value of the metric for the synthesized computation
is similar to the sensitivity profiling results (Table 2). The
accuracy of Scale and IDCT increases for the mild configuration
of arithmetical operations, as the frequency of faults and therefore
the number of faulty pixels caused by computation decreases.
The higher variance in DCT is caused by the inputs of a smaller
size, where each fault can significantly impact PSNR.

The accuracy of blackscholes exceeds the accuracy predicted
by the sensitivity testing (up to 0.06% on test inputs vs. 0.5% in
sensitivity testing). The error injection results for SOR are less
accurate than the sensitivity profiling results for medium main
memory configurations (8.0% vs. 5.8%). We attribute this lower
accuracy to the fact that the sensitivity profiling does not inject
errors in the read-only edge elements of the input matrix.

9.8 Kernel Transformations
We now focus on the kernels that Chisel’s optimization algorithm
generated. For each benchmark, we examined the kernel with
maximum energy savings.

Scale. We discussed the transformation in Section 2.4.

DCT. Chisel places the array that contains the pixels of the
output image in the unreliable memory. All arithmetic operations
remain reliable, as they all occur in a nested loop.

IDCT. Chisel places both arrays (these arrays contain the pix-
els of the source and output image) in unreliable memory. Chisel
also selects 14% of the arithmetic instructions as unreliable. The
instrumented instructions include those that affect the condition
of one of the inner bounded loops. Since this loop executes at
most 8 iterations (which is enforced by the language semantics),
this transformation does not have a visible impact on the energy
consumption of the kernel.

Blackscholes. Chisel places 5 out of 6 input arrays in unreli-
able memory. These arrays contain different input parameters for
computing the blackscholes equation. In addition, Chisel selects
7% of the arithmetic operations as unreliable that fit within the
reliability bound.

SOR. Chisel places the input array in unreliable memory and
selects 82% of the arithmetic operations as unreliable. These
unreliable instructions do not affect the control flow.

10. Related Work
Accuracy and Reliability Specifications. Researchers have
previously used dynamic sensitivity testing to obtain combined
accuracy and reliability guarantees for approximate computa-
tions [2, 8, 24, 26, 32, 33, 35, 40]. These guarantees are statistical
in that they are based on end-to-end sensitivity testing on repre-
sentative inputs. Researchers have also developed static analysis
techniques that provide similar guarantees [5, 6, 9–11, 25, 47].

Snap combines input fuzzing with dynamic execution and
influence tracing to quantitatively characterize the sensitivity
of the computation to changes to the input [8]. ASAC [35]
characterizes the sensitivity of the computation to changes in the
intermediate program data. Bao et al. [2] use whitebox sampling
to find discontinuities in numerical computations.

Chisel’s sensitivity profiling quantitatively relates the rate of
incorrect kernel results to the quality of the result that the program
produces. Chisel’s sensitivity profiling differs from previous
techniques in the source of the noise (incorrect kernel results as
opposed to changes in the computation, inputs, or program data)
and the goal of the analysis. The goal of the Chisel sensitivity
analysis is to obtain the Chisel reliability specifications. The
goal of Snap, in contrast, is to identify input fields, intermediate
program data, and program regions that must execute correctly
and those that can tolerate errors. The goal of ASAC is to discover
approximable program data.

In contrast to these dynamic techniques, researchers have de-
veloped static program analyses for reasoning about programs
transformed using accuracy-aware transformations [5, 6, 10, 25,
47], for verifying continuity of computations [9, 10], and for ver-
ifying the precision of numerical computations [11]. Researchers
have also developed techniques for reasoning about reduced-
bitwidth floating point computations [14, 28]. In comparison,
Chisel’s analysis unifies static reasoning about reliability and ac-
curacy, and dynamic reasoning about performance/energy with
the goal to navigate the tradeoff space induced by approximate
hardware platforms.

Software Approximate Computation. Researchers have de-
veloped many systems that apply approximate computing tech-
niques in software to reduce the amount of energy and/or time
required to execute computations running on standard exact, reli-
able hardware platforms [20, 24, 25, 32, 33, 40, 47]. In Chisel,
the source of the approximation is the hardware – Chisel synthe-
sizes acceptably reliable and accurate software that executes on
unreliable approximate hardware platforms.

Approximate Hardware Platforms. Researchers have pre-
viously proposed multiple hardware architecture designs that
improve the performance of processors [12, 13, 17–19, 27, 29,
36, 41, 44, 45] or memories [13, 21, 37, 39] at the expense of
decreased reliability or accuracy.

Programming Models for Approximate Hardware. Rely
provides a specification language that developers can use to
specify computational reliability requirements and an analysis
that verifies that Rely programs satisfy these requirements when
run on unreliable hardware platforms [7]. Flikker provides a set
of C language extensions that enable a developer to specify data
that can be stored in approximate memories [21]. EnerJ provides
a type system that a developer can use to specify unreliable
data that can be stored in unreliable memory or computed
using unreliable operations [36]. The EnerJ type system ensures
the isolation of unreliable computations. More recently, it was
extended to support the specification and inference of quantitative
reliability types [4]. Unlike these previous techniques, which
rely solely on the developer to identify reliable and unreliable
operations and data, Chisel automates the selection of unreliable
operations and data while ensuring that the generated program
satisfies its reliability specification.

ExpAX is a framework for expressing accuracy and reliabil-
ity constraints for a subset of the Java language [31]. ExpAX

uses a genetic programming optimization algorithm to search
for approximations that minimize the energy consumption of the
computation over a set of program traces. Chisel, in contrast, uses
mathematical programming to guarantee that the resulting pro-
gram satisfies its reliability specification (the genetic algorithm
in ExpAX provides no such guarantee).

Topaz is a task-based language that allows the developer to
specify tasks that execute on approximate hardware that may
produce arbitrarily inaccurate results. Topaz includes an outlier
detector that automatically detects and reexecutes unacceptably
inaccurate tasks [1].
Mathematical Optimization in Program Analysis. There
is a long history of using mathematical optimization to solve
traditional compiler optimization problems such as instruction
scheduling and register allocation [30]. EPROF uses integer
linear programming to schedule parallel streaming applications,
taking into account the execution time, energy consumption, and
task error rate [46]. Saputra et al. use integer linear programming
to place instructions that dynamically scale the voltage and
clock rate of the underlying hardware platform. The goal is
to exploit the tradeoff between execution time and energy
consumption [38].

We have previously used linear programming as a compo-
nent of an approximation algorithm that finds an ε-optimal ex-
pected error/performance tradeoffs for map-fold computations
automatically transformed using randomized program transfor-
mations [47]. Chisel similarly uses mathematical programming
to optimize energy while providing reliability and accuracy guar-
antees. In general, we see mathematical programming, with its
ability to optimize an objective while preserving a set of con-
straints, as a natural fit for many approximate computing prob-
lems, which typically aim to optimize a resource consumption
objective, such as energy or time, while providing acceptable
execution, which may be captured by the constraints in the math-
ematical program.

11. Conclusion
As the need for energy-efficient computing becomes more acute,
approximate hardware platforms become an increasingly attrac-
tive target for computationally intensive applications that must
execute efficiently. But successfully navigating the resulting re-
liability and/or accuracy versus energy tradeoff space requires
precise, detailed, and complex reasoning about how the approx-
imate hardware platform interacts with the approximate com-
putation. We present a new system that automatically maps the
computation onto the underlying approximate hardware plat-
form and minimizes energy consumption while ensuring that
the computation executes with acceptable reliability and/or ac-
curacy. This system is capable of generating significant energy
savings while relieving developers of the need to manage the
complex, low-level details of assigning different parts of the com-
putation to approximate hardware components. Such systems
are clearly required if developers are to produce software that
can effectively exploit emerging energy-efficient approximate
hardware platforms.

Acknowledgments
We thank Abbas Banaiyan, Harshad Kasture, Deokhwan Kim,
Velibor Misic, Majid Shoushtari, Stelios Sidiroglou, and the
anonymous referees for the useful comments on the previous
versions of this work. We note our previous technical report [23].

This research was supported in part by NSF (Grants CCF-
1036241, CCF-1138967, and IIS-0835652), DOE (Grant DE-
SC0008923), and DARPA (Grants FA8650-11-C-7192, FA8750-
12-2-0110, and FA-8750-14-2-0004).
References
[1] S. Achour and M. Rinard. Energy-efficient approximate computation in

Topaz. Technical Report MIT-CSAIL-TR-2014-016, MIT, 2014.
[2] T. Bao, Y. Zheng, and X. Zhang. White box sampling in uncertain data

processing enabled by program analysis. OOPSLA, 2012.
[3] J. Birge. Optimization Methods in Dynamic Portfolio Management (Chap-

ter 20). Elsevier, 2007.
[4] B. Boston, A. Sampson, D. Grossman, and L. Ceze. Tuning approximate

computations with constraint-based type inference. WACAS, 2014.
[5] M. Carbin, D. Kim, S. Misailovic, and M. Rinard. Proving acceptability

properties of relaxed nondeterministic approximate programs. PLDI, 2012.
[6] M. Carbin, D. Kim, S. Misailovic, and M. Rinard. Verified integrity

properties for safe approximate program transformations. PEPM, 2013.
[7] M. Carbin, S. Misailovic, and M. Rinard. Verifying quantitative reliability

for programs that execute on unreliable hardware. OOPSLA, 2013.
[8] M. Carbin and M. Rinard. Automatically identifying critical input regions

and code in applications. ISSTA, 2010.
[9] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity analysis of

programs. POPL, 2010.
[10] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour. Proving

programs robust. FSE, 2011.
[11] E. Darulova and V. Kuncak. Sound compilation of reals. POPL, 2014.
[12] P. Düben, J. Joven, A. Lingamneni, H. McNamara, G. De Micheli, K. Palem,

and T. Palmer. On the use of inexact, pruned hardware in atmospheric
modelling. Philosophical Transactions of the Royal Society, 372, 2014.

[13] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture
support for disciplined approximate programming. ASPLOS, 2012.

[14] A. Gaffar, O. Mencer, W. Luk, P. Cheung, and N. Shirazi. Floating-point
bitwidth analysis via automatic differentiation. FPT, 2002.

[15] Gurobi. http://www.gurobi.com/ .
[16] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and

M. Rinard. Dynamic knobs for responsive power-aware computing.
ASPLOS, 2011.

[17] H. Kaul, M. Anders, S. Mathew, S. Hsu, A Agarwal, F. Sheikh, R. Krish-
namurthy, and S. Borkar. A 1.45ghz 52-to-162gflops/w variable-precision
floating-point fused multiply-add unit with certainty tracking in 32nm cmos.
ISSCC, 2012.

[18] K. Lee, A. Shrivastava, I. Issenin, N. Dutt, and N. Venkatasubramanian.
Mitigating soft error failures for multimedia applications by selective data
protection. CASES, 2006.

[19] L. Leem, H. Cho, J. Bau, Q. Jacobson, and S. Mitra. Ersa: error resilient
system architecture for probabilistic applications. DATE, 2010.

[20] T. Lin, S. Tarsa, and H. T. Kung. Parallelization primitives for dynamic
sparse computations. HotPar, 2013.

[21] S. Liu, K. Pattabiraman, T. Moscibroda, and B. Zorn. Flikker: saving dram
refresh-power through critical data partitioning. ASPLOS, 2011.

[22] S. Misailovic, M. Carbin, S. Achour, Z Qi, and M. Rinard. Chisel:
Reliability- and accuracy-aware optimization of approximate computational
kernels (appendix). http://groups.csail.mit.edu/pac/chisel, 2014.

[23] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. Rinard. Reliability-aware
optimization of approximate computational kernels with rely. Technical
Report MIT-CSAIL-TR-2014-001, MIT, 2014.

[24] S. Misailovic, D. Kim, and M. Rinard. Parallelizing sequential programs
with statistical accuracy tests. ACM TECS Special Issue on Probabilistic
Embedded Computing, 2013.

[25] S. Misailovic, D. Roy, and M. Rinard. Probabilistically accurate program
transformations. SAS, 2011.

[26] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of
service profiling. ICSE, 2010.

[27] S. Narayanan, J. Sartori, R. Kumar, and D. Jones. Scalable stochastic
processors. DATE, 2010.

[28] W. Osborne, R. Cheung, J. Coutinho, W. Luk, and O. Mencer. Automatic
accuracy-guaranteed bit-width optimization for fixed and floating-point
systems. FPL, 2007.

[29] K. Palem. Energy aware computing through probabilistic switching: A
study of limits. IEEE Transactions on Computers, 2005.

[30] J. Palsberg and M. Naik. Ilp-based resource-aware compilation. Multipro-
cessor Systems-on-Chips, Elsevier, 2004.

[31] J. Park, X. Zhang, K. Ni, H. Esmaeilzadeh, and M. Naik. Expectation-
oriented framework for automating approximate programming. Technical
Report GT-CS-14-05, Georgia Institute of Technology, 2014.

[32] M. Rinard. Probabilistic accuracy bounds for fault-tolerant computations
that discard tasks. ICS, 2006.

[33] M. Rinard. Using early phase termination to eliminate load imbalances at
barrier synchronization points. OOPSLA, 2007.

[34] M. Rinard, C. Cadar, D. Dumitran, D.M. Roy, T. Leu, and W.S. Beebee Jr.
Enhancing server availability and security through failure-oblivious com-
puting. OSDI, 2004.

[35] P. Roy, R. Ray, C. Wang, and W. Wong. Asac: automatic sensitivity analysis
for approximate computing. LCTES, 2014.

[36] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. Enerj: Approximate data types for safe and general low-
power computation. PLDI, 2011.

[37] A. Sampson, J. Nelson, K. Strauss, and L. Ceze. Approximate storage in
solid-state memories. MICRO, 2013.

[38] H. Saputra, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, J. S. Hu, C-H. Hsu,
and U. Kremer. Energy-conscious compilation based on voltage scaling.
LCTES/SCOPES, 2002.

[39] M. Shoushtari, A. Banaiyan, and N. Dutt. Relaxing manufacturing guard-
bands in memories for energy savings. Technical Report CECS TR 10-04,
UCI, 2014.

[40] S. Sidiroglou, S. Misailovic, H. Hoffmann, and M. Rinard. Managing
performance vs. accuracy trade-offs with loop perforation. FSE, 2011.

[41] R. St Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh,
A. Hassibi, L. Ceze, and D. Burger. General-purpose code acceleration
with limited-precision analog computation. ISCA, 2014.

[42] Parsec Benchmark Suite. http://parsec.cs.princeton.edu/.
[43] SciMark2 Benchmark Suite. math.nist.gov/scimark2/.
[44] J. Tong, D. Nagle, and R. Rutenbar. Reducing power by optimizing the

necessary precision/range of floating-point arithmetic. IEEE Transactions
on Very Large Scale Integrated Systems, 2000.

[45] S. Venkataramani, V. Chippa, S. Chakradhar, K. Roy, and A. Raghunathan.
Quality programmable vector processors for approximate computing. MI-
CRO, 2013.

[46] Y. Yetim, S. Malik, and M. Martonosi. Eprof: An energy/performance/reli-
ability optimization framework for streaming applications. ASP-DAC’12.

[47] Z. Zhu, S. Misailovic, J. Kelner, and M. Rinard. Randomized accuracy-
aware program transformations for efficient approximate computations.
POPL, 2012.

