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ABSTRACT

Part I of this thesis presents an engineering approach to the

one and two degree of freedom study of both linear differential equa-

tions with time-varying coefficients and autonomous differential

equations with constant coefficients containing weak nonlinearities.

Approximate solutions of varying complexity and hence accuracy are

presented for these equations and the results are qualitatively com-

pared. In order to provide a convenient reference analysis for

assessing aeroelastic examples of time-varying and nonlinear system

behavior, a portion of this report is devoted to presenting the general

features of a constant coefficient aeroelastic process in a nonclassical

manner.

Part II of this thesis investigates the equations representing

the dynamic, torsion-bending motion of a wing which is one major

component of an ultra-high performance manned vehicle. Preliminary

work required for this investigation is included as an integral part of
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the report. This preliminary work includes the derivation of various

impulse responses using the results of exact two-dimensional

linearized supersonic aerodynamic theory for an accelerating un-

steady supersonic rigid chord airfoil, and a derivation for the tor-

sional stiffness loss of an aircraft wing that includes the effects

of a specified time-dependent wall temperature due to the given

flight mission and that includes the effects of mid-plane stretching.

The computer studies consider a "super X-15" type wing per-

forming two specified flight missions and provide answers in the form

of pitch and plunge impulse response time histories. The "exact"

solutions are compared with two approximate solutions. The results

of the comparisons indicate that a quasi-steady aerothermoelastic

analysis is adequate for all manned vehicles of the foreseeable

future. This statement does not apply to the dynamic stability

analysis (rigid-body) of these vehicles since their lower rigid-body

frequencies permit a moderate to strong coupling between the govern-

ing equations and their time-varying coefficients.

Thesis Supervisor: Raymond L. Bisplinghoff

Title: Professor of Aeronautics and
Astronautics
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OBJECT

The object of this thesis is twofold. Firstly, to present

an engineering approach to the one and two degree of freedom study

of both linear differential equations with time-varying coefficients

and autonomous differential equations with constant coefficients

containing weak nonlinearities; secondly, to study the effects of

time-varying parameters on the aerothermoelastic response of a

high performance aircraft wing executing any given flight mission

and to thus make recommendations concerning the least compli-

cated analysis that adequately represents the wing motion.
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CHAPTER 1

INTRODUCTION

Presently available methods of analyzing an aeroelastic

system require that the physical system be represented by a set

of linear simultaneous equations with constant coefficients. Al-

though this requirement is apparently quite restrictive, experience

has shown that this simple mathematical representation has been

very satisfactory in predicting aeroelastic stability and response

phenomena. The prime reasons for the success of this simplified

mathematical representation are twofold. Firstly, the effects of

nonlinearities have been virtually absent in the usual small de-

flection motion of most aircraft (or at worst the nonlinear effects

assumed importance only after instability occurred in a linearized

manner) thus obviating, from a conservative standpoint, the more

involved mathematical representation.

Secondly, thrust/drag ratios of even modern operational

aircraft are small enough to prevent large accelerations. Sequen-

tially, the absence of large accelerations prevents large rates of

fuel consumption and, usually, large rates of change in ambient

state parameters (pressure, density, and temperature) and stiff-

ness parameters. Hence, on qualitative physical grounds, it is

reasonable to expect that the above mentioned simplified mathe-

matical representation would be adequate.

However, consideration of highly accelerating anti-missile

missiles and boost-glide vehicles operating in a high speed, high

temperature environment raises serious questions as to the appli-
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cability of the linear constant coefficient analysis, since it is easy

to envision either large deflection motions due to combinations of high

q and large transient stiffness losses, and/or large rates of change of

mass, stiffness, and state parameters.

Therefore, it is the objective of Part I of this thesis to set

forth an engineering approach to the one and two degree of freedom

study of both simultaneous linear differential equations with time-

varying coefficients and simultaneous autonomous differential equa-

tions with constant coefficients containing weak nonlinearities. In

order to provide a convenient reference analysis for assessing aero-

elastic examples of time-varying and nonlinear system behavior,

Chapter 2 presents the general features of the constant coefficient

aeroelastic process in a nonclassical manner. Chapters 3 and 4

then discuss equations with time-varying coefficients and Chapter 5

discusses equations with weak nonlinearities.

Part II of this thesis is concerned with formulating and

analyzing, to several degrees of approximation, the bending-torsion

response problem of a wing such as might be found on an ultra-high

performance manned aircraft. To this end, Chapter 6 presents the

required structural theory including aerothermoelastic effects in some

detail, as well as presenting two alternate unsteady accelerating

flow aerodynamic theories.

Chapters 7 and 8 present the details of the response problem

and its solutions. The various solutions are then compared and dis-

cussed.

L



PART I

THEORETICAL CONSIDERATIONS
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CHAPTER 2

TRANSIENT MOTION ANALYSIS OF CONSTANT

COEFFICIENT SUPERSONIC AEROELASTIC SYSTEMS

2.1 Introduction

Although much effort has been concentrated on solving

aeroelastic response and flutter problems during the last three

decades, very little has been done to present the general aero-

elastic features of even the simple typical section. This type of

investigation has been primarily retarded by the complicated aero-

dynamic representations necessary to describe the lift and moment

due to arbitrary motion.

However, as pointed out by Ashley and Zartarian (Ref. 1),

the advent of piston theory aerodynamics removes this difficulty when

considering a wide portion of the supersonic region, and in fact re-

casts the equations of motion into a form most suitable for obtaining

the general features of the aeroelastic process. The first step in

presenting these features consists of considering the degenerate sys-

tem equations as the airspeed U approaches first zero and then in-

finity. This then permits the system to be classified as one of

several types. The second step, for any specific system, involves

computing the loci of all system roots using the airspeed U as a

"gain" parameter. This is usually a rapid process, and when sup-

plemented with a few additional computations yields a complete

representation of the system's damped normal aeroelastic modes,

the associated damping ratios and frequencies as well as a method

for explicitly determining the violence with which the flutter mode
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and the divergence mode appear. Hence, all the necessary in-

formation is available to perform any and all stability and response

investigations. Furthermore, this essentially exact process permits

one to make observations about the conditions under which simpli-

fied flutter theories such as the one advanced by Pines are valid, as

well as fulfilling the original purpose of setting forth a convenient

reference analysis for assessing supersonic aeroelastic examples

including time-varying and nonlinear system behavior.

Before proceeding with the analysis it must be noted that,

since piston theory is applicable only for a specified supersonic Mach

number range, the locus of roots corresponding to velocities below

and above this Mach number range are not quantitatively correct.

However, with this in mind, no difficulties in interpreting the anal-

ysis should occur. It also should be noted that the airspeed U is

not the only "gain" parameter available for computing the loci of the

system roots. In fact any quantity one desires may be used for this

purpose. For example, the densitypo or the static unbalance x.

might have been chosen. However, even a cursory examination re-

veals that there is no computational advantage of using one quantity

rather than anotherl so th the use of the airspeed U as the gain

parameter simply reflects the author's preference for this quantity.

2.2 Presentation of the Equations of Motion, the Characteristic

Equations of the Two Degree of Freedom Subsystems and the

Examination of the Degenerate System Equations as U -v 0

and U -co.

Incorporating the lift and moment expressions as given by

the piston theory development of Chapter 6, the zero-thickness typ-

ical section equations of motion with three degrees of freedom

(Figure 1) are given by,



(A 11p 2 + A 12 p + A 13) + (A 14p 2 +A A15 p + UA 16 )a

+ (A2 p2 + A18p + UA9)A = 0

(A21 2 +A p + A) + (A2p 2 + p +A + UA a

11 21 3 14 15 6 2

+ (A 27 p2 + A 28 p + UA 29 0

(A 31 p2 +A A32 p + A 33) + (A 34 p2 +A A35 p + UA 36

+ (A37 2 +A p+UA +UA3) = 0

17 18 19 3

(2 - 1)

where d and the A 's have the following forms,whr p=dt 1

A 
1 1

A 12

A21

A
22

= 4bp a

A13 h A23

A 14 S A24

A
15

A
1 6

= 4b 2p a c

= 4bp a

A
2 5

Sa

= 4b 2p a c

= 0

=-Ia
a

= - 4b p a d

A 2 6  1a

A* = 4b2p a c
26 00o00

A31 S

A
32

A
33

A
34

A
35

A
36

= 4b 2p a O

=0

= b 3p a Q3 OCO 0

=4b 2p ODa 00

A 17 S (

A
18

= 4b 2p a r2

A 19 = 4bp a r

A
27

A
28

A
29

= I*

= b3p a Q
3 4 OcO 0

-4b 2p ODa ODr(c + x)

A37 13

A8 = b3 Q38 3 OcOD 1

k 211331
A * = 4b2p a r239 cOO

6
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and additionally,

c = 1 - 2x 0  1-x (2 +x)

d = 4x0 - 4/3 Q 0 = 2+x (x 1- 3)- 3x0 (1-x) 2

I*= + 2S b(x - x0  Q 1  1-X 1
3 - 3x (1 -x )

r = 1 -x 1

With these equations established, it is now possible to

examine the system behavior by probing the system's characteristic

equation. However, in order to clearly present the tools used in

examining the system, attention will be focused on the subsystem

characteristic equations describing the bending-torsion, the bend-

ing-aileron, and the torsion-aileron motions as listed below. Again,

denoting dn by p n, one has

dt n

Bending-Torsion Characteristic Equation:

(Ap +Ap A)(A24 2 +A p +A +A*U)

- (A14 p2 + A 1 5p + UA1 6 ) (A2 1p + A 2 2)p = 0

(2- 2)

Bending-Aileron Characteristic Equation:

(Ap2 +ApA)Ap2 + + A(A11  +A 1 2p +iA13) (A3 7  +A 3 8p +A 39 +A 3 9U)

- 1 7p
2 + A 1 8 p + A 1 9 U) (A3 1p + A 3 2 )p 0

(2 - 3)
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Torsion-Aileron Characteristic Equation:

(A p2 +Ap A A*U) (A p2 +Ap1A +A*U)
24 +A 2 5  26 26 37 A 3 8  39 39

- (A27 2 + A2 8p + A 29 U) (A34 p 2 +A 3 5p + A3 6U) = 0

(2 - 4)

Briefly, the procedure is now to first let U -- 0 and de-

termine the roots of the resulting system and then secondly let

U-*oD and determine all finite roots of this resulting system. These

roots, symbolically denoted as a (U) + jo (U) or
IU -+OD

are plotted on a complex a, jW plane. Then using some techniques

developed by W. R. Evans for control-system analysis (for example,

see Reference 2) it is very easy to find the angles at which the loci

of roots in the complex plane depart from their values at U = 0

(hereafter called "asymptotes at oo"). These rapid calculations

immediately give a qualitative description of how the loci of the

system roots will behave in the complex plane as U is increased

from 0 to co.

I At this point it is instructive to look at the degenerate

equations contained in Eq. ( 2 - 2) and Eq. (2 - 4 ). Note that

Eq. (2 - 3) is not considered separately since it has exactly the

same form as Eq. (2 - 2). As U-..0 both equations retain their

fourth-degree character and yield four roots for each equation.

These roots will be complex conjugate pairs. The resulting forms

are shown in Eqs. (2 - 5) and (2 - 6).

** This symbolism assumes that all other system constants are
determined and only U is a variable.
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Bending-Torsion Characteristic Equation as U--o0

2

(A 11 p +A 12p + A1 3 ) (A24 p
2

+ A25p + A 2 6 )

- (A14p + A15 ) (A2 1p + A2 2)p = 0

Torsion-Aileron Characteristics Equation as U-- 0

9
(A24p +A 25p + A26) (A37p

2?

- (A 2 7p + A 2 8 ) (A34p +

(2 - 5)

+ A38p + A39)

A35 2
= 0

(2 - 6)

Similarly, as UJ-co, the resulting forms are shown

below.

Bending-Torsion Characteristic Equation as U-- co

(A2 6A 1 -1A16A 2 1 26 13
* 0

(2 - 7)

Torsion-Aileron Characteristic Equation as U-.oc

lim{
(A4A3* +A A -A2A - A2A34 2 + (A A *25 39

+A A* -A A -A A )p + (A2A* +A A*
38 26 28 36 29 35 26 39 39 26

+ (A2*A* - AA )U
26 39 29 36 I = 0

(2 - 8)
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It is to be noted from the two equations above that finite

as well as infinite roots can exist, the sum of both types being

equal to the degree of the original characteristic equation in ques-

tion. Furthermore, the magnitudes of the various A..'s determine

whether the finite roots are real, imaginary, complex, or if in fact

they exist at all. For completeness, special mention must be made

about the form of Eq. (2 - 8). This form implies that if (A 26*A 39*

- A29 A 36) is equal to zero, then two finite roots exist. Converse-

ly, if this term is not equal to zero (as will be the usual case), then

all roots are infinite as U-+co. One now knows where the loci of

roots start and terminate as a function of some given A..'s. As dis-

cussed previously, when supplemented with the "break-away angles"

and the "asymptotes at o", an excellent qualitative estimate of the

system behavior is thus obtained. Hence, it is felt that a meaning-

ful classification of the physical systems represented is to state

the type of system roots that arise as U-+oo.

In the next section, two examples are presented so that

step-by-step inspection may be made of the ideas presented in this

section as well as obtaining the actual modes, frequencies, damping

ratios, and flutter and divergence sensitivities.

2.3 Investigation of the System Roots for Two Bending-Torsion

Aeroelastic Systems

In order to facilitate computations the following defini-

tions are introduced:
a

E* = h = RA x = S /mb
Pbw a a

t* = w t where t is real time = M/4p b2  r 2= I /mb 2
a co a a

n n
pn d n d2 2 (w/W U* = U/bco dtn a dt*n h a

n sn
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With this notation, Eq. (2 - 2) can be written as follows:

r r 2  2 2 2 E*d 2 + *C 2
(s + E*s + ) (s --- 2 s+1)+s (s+ )

x r x

E+ ( - c)s - O2j = 0

(2 - 9)

2 2
Notice that the term (x - c)s - 02 c entirely controls the be-

havior of the system as U-+o-co; the dimensional counterparts of

c and x (bc and bx ) within this term having the following physical
a a

meanings. The quantity bc represents the distance from the elastic

axis to the midchord (the midchord being almost coincident with the

aerodynamic center for supersonic aircraft) and the quantity bx

represents the distance from the elastic axis to the center of gravity.

These quantities are thus measures of the aerodynamic coupling and

the mass coupling present in the system, respectively. Hence the

above term demonstrates that the system behavior is significantly

influenced by whether c(x - c) =0. In fact, in a later section

it will be hypothesized that only for systems in which c ~ x , in

which the roots initially approach one another, and in which E*

is not a large number does the so-called Pines' method have any

predictable success in approximating bending-torsion flutter speeds

and frequencies. Referring to Figure 2, the boxed-in rectangular por-

tion of the x , x plane represents fairly typical values of thesea 0
variables for modern aircraft, while the sloping line represents the

x = c condition. Thus the shaded area represents the region in

which our hypothesis predicts the validity of Pines' method.

Returning to the main theme of this section, the two

examples chosen have identical parameters except those that involve

x and x . These systems will be labelled (A) and (B) and analyzed
in a

in separate subsections that follow.
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2. 3.1 Analysis of System A

The constants involved in system A are

x0= .40 M = 50

x = .20 b = 4
a
2

r = .25 a = 972
a Co

2
bw /a = .238 0 = .25
a CD

thus Eq. (2 - 9) becomes

-6.25(s2 + .084s + .25)(s2 + .1254s + 1) + s2 (s + .084 2

- .105U* = 0

(2 -10)

Following the usual procedure in the "root locus" technique the

terms not containing U* are factored by a rapid graphical tech-

nique to yield,

(s + .043 t .496i)(s + .066 1.115 i) + .02U* = 0

(2 - 11)

Hence the roots at U = 0 are given by the two bracket terms and

the roots at U = CoD are obviously infinite. Once again utilizing

the "root locus" technique, a graph may be obtained of the actual

system roots as a function of the airspeed U. The result is shown

in Figure 3. Notice that the loci of roots yield the frequency and

damping terms, as illustrated in Figure 4, for the damped, normal,

aeroelastic modes of the system. Now by cross-plotting the damp-

ing ratio I versus the airspeed U, the degree of violence with which

the flutter mode beconms established is illustrated in Figure 5. It

is seen that the rate of damping loss increases rapidly as U-+-VUfltt

This indicates a violent flutter, since a small increment in airspeed
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above the flutter speed then predicates a substantial growth of the

wing oscillation amplitudes in a very short time.

Finally, it is also possible to calculate the mode shapes

for any given U. This is accomplished by first considering a as a
io

unit vector e and then obtaining the root, p = U + jO for a partic-

ular value of U, from Figure 3. T-is information is then substituted

into one of the equations of motion, either the h or the a equation,

which then will contain only the h vector as an unknown. The

solution for the h term is then straightforward. For example, pick-

ing two values of airspeed, say 1950 ft/sec and 2840 ft/sec, the

associated roots (corresponding to the eventually unstable locus shown

in Figure 3 ) are p = - .035 + .680 i and p = + .802 i. Substituting
io

this information into one of the equations of motion and letting a = e ,

the values of the h vector can be found and hence the mode shape

can be determined for each case. The results of this procedure are

shown in Figure 6. It is noticed that the modal contents (h, a, and

the phase angle between them) change as a function of the U as well

as the system roots.

At this point all information regarding the stability of the

system has been obtained and all the information necessary to compute

response problems is contained in Figure 3. System B is now considered.

2.3.2 Analysis of System B

The constants involved in System B are

x 0 .55 M 50

x = -. 10 b =4
a
2r u .25 a 972

bw /a = .238a co
Q = .25
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thus Eq. (2 - 9) becomes

- 25(s2 + .084s + .25)( s2 + .1142s + 1 ) + s2 (s + .084)2

+ .210U* 0 (2 - 12)

After factoring the terms not containing U* , Eq. (2 - 12)

becomes

24(s + .057 + 1.02i)(s + .042t .491i) - .210U* 0 (2 - 13)

Now as in. example A, the roots at U = 0 are given

by the two bracket terms and the roots at U = cn are similarly

infinite. However , there is a sign difference in the U* term in

Eq. (2 - 11) and Eq. (2 - 13), hence, the manner in which the

roots approach infinity as U-3. o is completely different. This

effect is clearly shown when the system roots are plotted as a

function of U. Figure 7 presents this information. Notice that

in this case the frequencies of the damped, normal aeroelastic

modes always move away from each other until one locus inter-

sects the real axis. At this point, this locus splits and one branch

crosses the origin when U = 6612 ft/sec. This airspeed is the

divergence speed. Hence for any airspeed greater than U = 6612 ft/sec,

this wing will exhibit an exponential type unstable motion until

failure occurs or until some unaccounted for nonlinear interaction

restrains the wing in some nondestructive fashion.

In summary, this section has presented two examples

which demonstrate how the general features of an aeroelastic sys-

tem may be obtained if piston theory aerodynamics is applicable.

However, (although the development is not shown here) it is found

that if Jones' approximation to the Wagner function is incorporated

with a Duhammel integral representation, the same general methods

of solution apply to the incompressible cases although the amount

of labor required is sharply increased.
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2.4 Discussion of Flutter Analyses that Utilize Zero-Damping

Approximations.

In recent years, the importance of damping terms in

various types of flutter analyses has been investigated by several

authors. The investigations have had varying degrees of success.

On the more successful side, the neglecting of damping terms in

the panel flutter problem by Hedgepeth (Ref. 3) and a host of other

authors has led to consistently accurate results for all high mass-

density ratio configurations. On the other hand, the analogous

method presented by Pines (Ref. 4) for the analysis of wing-like

surfaces often leads to inaccurate results simply because this

theory provides no method of assessing when the assumptions and

hence the results are inaccurate. However, if this information

could be provided then a truly useful zero-damping analysis for

wing-like surfaces could be put forth. To this end Dugundji and

Crisp (Ref. 5) have observed that, as in the panel flutter case, a

large mass-density ratio is a necessary requirement for the success

of the zero-damping analysis of wing-like surfaces and in their own

words ".... it appears that the frequency coalescence behavior

(Pines' method) is useful only when very little damping coupling

is present compared to either stiffness or inertia couplings. Its

success in panel flutter seems due to this fact, for other systems

such as bending-torsion flutter, its use can be misleading".

It is now suggested, by using some physical intuition

with the help of the root loci system representation and by inspec-

tion of the characteristic equations of the binary subsystems

(bending-torsion, etc, ), that the observations of Dugundji and

Crisp can be refined.

First of all, there is the effect of the mass-density ratio M

which is incorporated in the E* term of the present terminology.

k,
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-1
As given before * ~- . By inspecting the bending-torsion

characteristic equation, Eq. (2 - 9 ), it is seen that a high mass-

density ratio, hence a small E*, definitely predicts a very slightly

damped system. One might then be tempted to assert, since the

zero damping root loci in the complex plane are simply the vertical

axis projections of the actual root loci with small but finite damping,

that this large M condition is indeed sufficient (as in the panel

flutter case) to insure accurate flutter point calculations. To this

end, Table 1 summarizes some bending-torsion flutter calculations

utilizing first an exact solution and secondly the zero-damping

solution. All examples were for systems with a mass-density

ratio P equal to 50. Inspection of this table demonstrates that a

small E* (a large Mi) may be a necessary condition for accurate

flutter point calculations but it is certainly not a sufficient condi-

tion. In attempting to present the correct "sufficient conditions "

it is necessary to digress a bit. This digression begins by noticing

that a torsion-aileron system is generically just an extremely simple

panel structure. Thus the mechanisms that insure good results for

zero-damping panel flutter analyses should be inherent in the torsion-

aileron characteristic equation. Apparently, these mechanisms should

appear in the torsion-aileron equation as a departure from the gen-

eral form of the bending-torsion and bending-aileron equations. Thus

looking at the torsion-aileron characteristic equation Eq. (2 - 8 ) it

is noticed, contrary to the other binary subsystems general behaviors,

that as U-x.co the system roots always* approach infinity. Further-

more since the zero damping solutions require a "frequency coales-

cence " the break-away angles at U = 0 always point the two loci

* As discussed previously, this statement neglects the very unusual
case in which the term (A 2 A3 9 - A 2 9 A 3 6 ) is equal to zero.

V-

L
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towards one another. This fact then leads one to hypothesize

that zero-damping analyses are valid only if the roots of the system

under consideration approach infinity,, or at least are very large.

as U--.. co, and additionally, that the break-away angles direct the

two loci towards one another. When considering bending-torsion

examples, the condition of large roots as U- v.o is seen from

Eq. (2 - 9) to be x a'Vc. Now returning to the contents of Table 1,

it is seen that the only non-trivial case in which a zero-damping

analysis is reasonably accurate is indeed the case in which

x = c(i.e. xa = .21 x0 = .4), and the two loci approach one

another before turning to approach infinity. This case is the System A

of section 2.3.1. Notice that System B of section 2.3.2 also fulfills

the small c* condition and the xa = c condition but does not satisfy

the requirement that the break-away angles direct the two loci towards

each other. Needless to say, the above hypothesis must be more

carefully checked by the results of many worked examples, but it is

felt that the present evidence is convincing enough to warrant its

presentation at this time.

L
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CHAPTER 3

SOME SOLUTION TECHNIQUES FOR ONE AND TWO DEGREE

OF FREEDOM SYSTEMS WITH TIME-VARYING COEFFICIENTS

3.1 Introduction

It is the intent of this chapter to present, for the benefit

of the aeroelastician (or any other "engineering-type"), a collec-

tion of well known mathematical techniques which are useful for the

approximate * solution of engineering problems involving linear dif-

ferential equations with time-varying coefficients. More specifical-

ly, this collection consists of techniques for studying (1) a second

order linear differential equation with time-varying coefficients,

(2) a linear partial differential equation with separable time-varying

coefficients, and (3) a system of second order linear differential

equations with time-varying coefficients.

3.2 The One Degree of Freedom System with Time-Varying Coefficients

The general form of the equation considered in this section is

2d
d y  + da (t)-d- + a (t)y= h(t) (3 -1)
dt2 1 dt 2

Following a classical procedure (for example see Ref. 6), the homo-

geneous solution of Eq. (3 - 1) is assumed to be of the form
yt[V(T) -a (T)/2]dT

y = A* e 1  dwhere A* is a constant associated with

each linearly independent solution of v( r) and where v(7) is some

* As is to be expected exact solutions are not possible except in very
special and rarely occurring cases; hence the emphasis on approxi-
mate solutions.
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as yet undetermined function. Substituting this relation into the

homogeneous form of Eq. (3 - 1), it is found that the following

equation in v('T) must be satisfied.

2 dv(-)
v (-r) + = R(r) (3 - 2)

where

2 d(a1 /2)
R(r) = (a /2) + -a

d -r 2

A special, obvious set of solutions, denoted by v 0 's, can be

obtained for Eq. (3 - 2 ) if R('r) is a constant. Thus if R(7-) is
2

equal to some positive number a , one has

2 2
v0/a = tanh aT ; v 0 < a

0 2 2 (3 -3)
v0/a = ctnh a-r ; v 0 > a

and

v =FR = a (3- 4)

while on the other hand, if R(-r) is equal to some negative
2

number -a , one has

v0/a = tan(-a-r) (3 - 5)

v0= R = ia (3 - 6)

A little thought demonstrates that Eqs. (3 - 3) have a negligible

influence on the solution of Eq. ( 3 - 1) except when R - 0 in

which case Eqs. (3 - 3) merge with the solution obtained by

formally setting R = 0 in Eq. (3 - 2). In other words, the

v= a tanh aT solution becomes v0-- 0 as R-+0 and the

v = a ctnh a-r solution becomes vas R-0.0 7
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Furthermore, it is seen that Eq. (3-6) is physically inadmissible,

thus the only solution of consequence (when R - 0) is v0 = FR

for R either positive or negative. Following the steps indicated in
2 4Ref. 6 it can be shown that if (dv0/dT) /8v 0  ' 1, the approximate

homogeneous solution of Eq. (3-1) is given by

1tdv 0/d T
- t[ +a (T)]dT

[Aeitv(T)dT +Betv0 (T)dT e 2 v0 ;() R > 0

(3-7)

y(t) = [At + B]e ta (T)/2 dT; R = 0

(3-8)

t 2dv 0/dT + a (T)]dTt t 2- v 0(T
[Acos Y iv0(T)dT +B sin J iv0 (T)dT]e ;R< 0

(3-9)

where i is the unit imaginary vector and A and B are arbitrary con-

stants to be determined by initial conditions. Notice that Eqs. (3-7),

(3-8), and (3-9) are generalizations of the constant coefficient solu-

tions for an overdamped, critically damped, and underdamped system

respectively. In summary it is seen, for the time-varying coefficient

problem, that the spring and damping time-derivatives contribute to

the instantaneous frequency and damping ratio of the solution. Thus

some engineering problems require the use of this solution (see Ref. 7)

while the quasi-steady approximation is quite accurate in other cases,

for example as in Ref. 8.

Finally, using the standard variation of parameters technique,

the total approximate solution of Eq. (3-1 is given by
t -1

y(t) = f h(T) [u 1 ()u 2(t) - u ()u (t)]w [u1 (7),u2 (TI)]dI

+ c1 u 1 (t) + c 2u 2(t) (3-10)
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where u (t) and u 2(t) are the linearly independent homogeneous

solutions of Equation (3-1), c1 and 02 are as yet undetermined co-

> efficients, and W[u1 (t), u 2(t)] is the Wronskian of u1 (t) and u 2 (t).

3. 3 Comments on Work, Presented by Various Authors,

Complementary to the Present Effort

In the past few years, several authors have suggested some

approximate solutions of one degree of freedom linear differential

equations with time-varying coefficients to specifically cope with

various aeronautical problems. All solutions are traceable to some

variant of the classical approach used in Section 3.2. However,

the different notations and the varying degrees of accuracy of

these solutions makes it desirable to briefly discuss each method

in a unified notation so that comparisons can be obtained.

Additionally, a few comments are supplied concerning state-

ments by some of the authors.

3. 3. 1 Garber's Method

In a recent paper (Reference 7) Garber presents an iterative

solution based on an approximate solution of the general equation

y + a1 (t)y + a 2(t)y = 0. This is the only method, that the author has

found, that improves on the original approximate solution. The pro-

cedure is as follows. Assume a solution of the form y(t) = Ae X(t)dt,

thus the original equation is replaced by a non-linear operator equa-

tion of the form X' + X + a 1X +a = 0. X is assumed to be a com-

plex quantity so that X = u- + jo. This expression is put into the

operator equation thus yielding two equations. They are,
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a = -(a /2 ) - /2L (3 -11)

W = a2  a 1/2)2 - A/2 + 3(/2w) - /2w (3 -12)

The solution of the equation is then

t
l/rF~t t

y(t) = [e-/a 1 d /2[ A 1cos wdt + 2sinJwdt ] (3 -13)

All that remains is to find w from Eq. (3 - 12). This

is accomplished by performing an iteration solution of the form

W = - (a 1 /2) - (ay/2) + 3(w,/2wi) 2 - w/2wi

(i= 0,1,2,...) (3 -14)

where

,= a2 - (a /2) - ( /2)

3.3.2 Collar's Treatment

In 1957 Collar published one of the first papers (Ref. 9)

dealing with the stability of accelerating aeronautical systems.

One of the many sections of this paper was entitled "A Useful

Formal Solution", in which another variant of the classical approx-

imate solution was given. Translating Collar's solution into the

notation of the present work yields the result that

t t

y(t) =Aa2-1/4e -1/2a 1dr cos {B + a2 1/2 d}
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The solution as given in Section 3. 2 of this work is

t _v__ __

y(t) = Ae-l/2 1 [ v0
+ a ]dTCos {B + jtiv0dT

Thus an equivalence of these two solutions requires that

-1/4 = e-1/2 J
t 6v 0/3r

v dT

a21/2 = iv0

2
a1

Noting that iv [ a - ()-0 2 2

-1/2 f v0 dTe v0

- (da /dT)]1/2 and that

_etn v 1/2 _ -1/2= a 2 (da/dT)] 1/
02 2 2 1

it is seen that both Equations (3-15) and (3-16) are approximately

fulfilled when a 2 >> (a 2/4) + 1(da/dT)

a 2 (3-15)

(3-16)
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3.3.3 Squire's Objections

In a recent note (Ref. 10) Squire claims that the ap-

proximate solution of our much discussed equation neglects a

term (I'/4I) where I'(-r) in our notation is simply the -- dR-r)
d-r

of section 3.2. Furthermore, he claims that this neglected term

becomes dominant as I--0.

Now, although (I'/4I)2 is neglected, as Squire states,

it is perfectly consistent with the truncated binomial series expan-

sion as given in Ref. 6 which leads to our solutions for y(t).

Additionally, if one more term of this expansion were included,

Squire's .result and that of Eq. (3 - 7 ) or Eq. (3 - 9) would be

identical. Furthermore as I -0, Squire neglects the v 0/a = ctnh a-r

solution given by Eq. (3 - 3) so that our exact y(t) solution for

R = 0 is obviously superior to the result of Squire.

3.5.4 Reed's Observations

In one section of a recent paper (Ref. 11) Reed presents

an approximate solution of an undamped single degree of freedom

system whose natural frequency is increasing at a large rate. He

then notes that the effect of increasing frequency is to make the

solutions (i.e., x, k, 'x ) of this undamped system behave as both

"stable and unstable" depending upon the particular solution being

observed. This result has startled many casual readers of Reed's

work, but in fact even a quasi-steady analysis of this system yields

the same general conclusions. To this end, consider a conservative
2

constant coefficient system x + w x = 0. Multiplying this equation

by x and integrating, the following energy equation results,

2 2 2 2 (-7
x + w x = e ( 3 - 17)

where c2 is a term proportional to the energy in the system.
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Solving the original system equation and applying the initial condi-

tions x(O) = X and k (0) = V, the result is

x = X cos t + -sin Wt (3-18)

Now since Equation (3-17) is valid for any time, the t = 0 form of
2 2 2 2

this equation is V + W X = E . For simplicity, if either V or X is

chosen to be zero, it can be easily demonstrated that the absolute

values of the amplitudes of x, :k and *x' are given by

lxi =EW

1Ik = E (3-19)

1'x'l = cW

or expressing |k| and I'Ix' in terms of Ix|

l W 2x1 (3-20)
V x'i =u j x|

Notice that the desired trend is now exhibited in both Equa-

tions (3-19) and (3-20). For example, referring to Equation (3-18),

if the amount of energy (~ e2 ) in the system remains constant, then

increasing the system frequency on a quasi-steady basis will de-

crease the amplitude of x, will not affect the amplitude of : and will

increase the amplitude of 'x'.

3.4 A Partial Differential Beam Equation with Separable Space-Time

Coefficients

Using the technique presented in Section 3.2 for approximately

solving a second-order equation with time-varying coefficients, it is

then possible to solve the problem of a partial differential equation

with separable coefficients. In order to simultaneously present a

*
This implies that all coefficients c (xt) in the given equation
can be expressed as a product of terms c. (x) (t).

1 1



26

possible engineering application and to demonstrate the method of

solution, a forced lateral beam vibration problem (in which trans-

verse shear and rotary inertia effects are negligible) is treated.

Referring to Figure 8, the dynamics of an element of a slender beam,

neglecting rotary inertia, is described by

-a (m0) dx = dx + F (x, t)dx (vertical force
summation)

S dx + a x = 0 (moment summation)

Note that the vertical force summation equation assumes that the

mass lost by the system has a zero residual momentum component

in the z direction. Obviously this condition does not always occur

when representing physical problems, but for our illustrative pur-

poses nothing essential is lost in presenting the system, and hence

the analysis, in this simplified form.

Combining the above equations and neglecting shear deforma-

tion leads to the following equation of motion.

B 2 2
m * + IhN + (EI -w) = F (x, t) (3-21)

6x2 ax2) z

Explicitly denoting the separable coefficients as

EI(x, t) = EI(x) EI(t)

m(x, t) = m(x)m(t)

and assuming a separable solution w(x,t) = 0(x)T(t), the homogeneous

counterpart of Equation (3-21) reduces to two equations as given

below.

k
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a 2 -- 6 2 _ - 2
a2 [EI a2 1 + MK 2 4 =0 (3-22)

22T + (M"'/m~')T + K (EI/m"')T = 0 (3-23)

where - K2 is the separation constant.

Notice that Equation (3-22) has the same form as the separated

space equation associated with a beam motion equation with time-

invariant coefficients. Thus the conc pt of vibration modes is pre-
2 -served, the orthogonality relations 0 4 mdx = 6 x 2 mdx

p q pqj 0 q
are still valid, and as Equation (3-23) shows, the T coordinates can

be approximately calculated by the technique of Section 3. 2.

The solution of the fo rced equation (Equation (3-21) in its

entirety) can be expressed in the form w(x,t) = E k.(x) .(t) where
i=l

(t) are the generalized coordinates given by the following equation

obtained by well-known methods.

.2 - -2~4)
+ (m~'/ml') . + (EI/i~) K, L. = (m'M.) ' . (3-24)

whee M - 2 -th
her m d i-- generalized mass

S0

- F x th
F dx ~- 1- generalized force

0

th
If Fz is not dependent on the beam motion then each i- equation of

the set represented by Equation (3-24) can be solved independently

of the other equations. When this occurs, the approximate methods
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of Section 3.2 may be employed. However, if Fz is motion dependent,

all equations represented by Equation (3-24) may be coupled; thus

a simultaneous solution is then required. This situation is discussed

in the following section with special reference to a two degree of

freedom system.

3.5 The Two Degree of Freedom System with Time-Varying Coefficients

This section presents a routine operator method for uncoupling

a linear, homogeneous, second order, two degree of freedom- set of

equations. Obviously, this uncoupling procedure could be carried

out by cross-differentiation and elimination operations. However,

the proposed method proves to be an interesting and unusual exercise

in constructing non-commutative operators that will uncouple a set

of equations. Additionally, the well-ordered form of the operator
*

method is advantageous when performing approximate calculations.

Consider a general homogeneous coupled set of linear dif-

ferential equations given as

L1 (x) + L 2 (y) = 0 (-5
2 (3-25)

L3 (x) + L 4 (y) = 0

where,

L1 = A 2 (t) d2 /dt 2 + A (t) d/dt + A 0 (t)

2 2
L2 = B2 (t) d /dt + B (t) d/dt + B0 (t)1 B0(t)(3-26)

L3 = C 2(t) d2/dt2 + C (t) d/dt + C 0(t)

L = D 2(t) d 2/dt2 + D (t) d/dt + D (t)

*
This is pointed out in the discussion of "discrete-time" solutions
occurring in the next section.

L

T_
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and the A., B, C1 , and D. ( i = 0, 1, 2) are known functions of

time. Since the L (i = 1, 2, 3, 4) have time dependent coefficients,I
L L LL (i $ j), so that these L. operators are non-commutative

and hence the usual methods for uncoupling simultaneous differential

equations with constant coefficients are not applicable. Thus, it

is necessary to synthesize a set of operatorsX, (i = 1, 2, 3, 4) such

that Equation (3-25) can be uncoupled.

To this end the following operator operations are performed

on Equation (3-25).

&4 [ L1 (x) + L 2(y)] 0 (3-27)

=0 (3-27)

2 [ L3 (x) + L (y)] = 0 (3-28)

Or3 [L1 (x) + L2 (y)] = 0 (3-29)

=[ L(x) + L (y)I = 0 (3-30)

Subtracting Equation (3-28) from Equation (3-27) and

Equation (3-30) from Equation (3-29) yields,

4[L1 (x)+L 2  2 [L3 (x) L4 (y)] = 0 (3-31)

X3 [ L (x) + L2 (y) 1 [ L3 (x) + L4 (y)] = 0

and upon rearranging these equations,

[& 4 L1 - 2 L 3 ]x + [4 L2 ~ 2 L4 ]y = 0 (3-32)

[c 3 L1 - 1 L3 ]x + [ 3L 2 - 1 L 4 ]y = 0
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Thus, if the can be found such that

L2 = L4

(3-33)

X3L =LX L3

Equation (3-32) can be reduced to uncoupled equations of the form

5 (3-34)

L 6(y) = 0

where

L5 4 L -0 2 L 3

L6 3L2 xL4

Notice that if the L. lose their time-varying character they must

necessarily be identical to the '.. This observation suggests that

even in the time-varying case the form of the X, should be identical

to the L.. Acting on this observation the 2, are given the following

form

ZY = a (t) d2 /dt 2 + a (t) d/dt + a 0 (t)1 2 10

X2 = b2(t) d 2 /dt 2 + b (t) d/dt + b0 (t)

23 = C2 (t) d2/dt2 + c (t) d/dt + c0 (t) 
(3-35)

= c2 (t) d 2/dt2 + d (t) d/dt + d0 (t)

where a., b,, c., and d. are as yet unknown functions of time.
1 1 1
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Substituting Equation (3-35) into Equation (3-33) yields the two

following relations.

(d2 d 2/dt2 + d d/dt + d 0) (B2 d 2/dt2 + B 1 d/dt + B0

a(ba2 d2/dt2 + b1 d/dt + b0) (D2 d2/dt2 + DI d/dt + D0)

(3-36)

(c2 d 2/dt2 + c 1 d/dt + c0) (A2 d2/dt2 + A 1 d/dt + A0

= (a2 d
2/dt 2 + a1 d/dt + a0) (C2 d

2/dt 2 + C1 d/dt + C0 )

Expanding Equation (3-36) and equating the coefficients of similar

derivatives yields the two following matrix equations which will

determine the coefficients of

0 0 D.

D2 (2L2+DD)

2+D ) (D2+2D1+D)

(D1 +D0 ) (D1+2 L )

they. operators.

0

0

-B
2

-B
1

-B
0

0

-B
2

-B-(B 0+Bl)

- (B 1+B0)

-0

-B 2

-(2B 2+B1 )

-(B 2+2B 1+B0 )

-(B1+2B 0 )

..0
B 0

F
0

D 2

D 1

D 0

0
0

bl

b Ib1

b 2 0

0

0

0

d1 Ld

(3-37)



0 0 C2

0 C2 (2C2 1)

C2 (021+C) 102+201+C0)

C (O1+C0

C 0 C 0

1+2C0)

C 0

0 0

0 -A 2

-A
2

-(2A 2 +A 1 )

-A 2 -(A 2 +A) (A 2+2A 1+A 0 )

-A - (+A0

-A
0

-A
0

-(A 1 +2A
0

-A 0

A Gauss-Jordan reduction process will demonstrate that the above

5x6 matrix equations possess non-trivial solutions, which is

equivalent to stating that any one operator coefficient in each of

the above equations may be arbitrarily chosen. For instance, if

the choice that a2 = A2 and that d2 = D2 is made, Equations (3-37)

and (3-38) reduce to the following relations: b2 = B2' c2 = C2, and

0 D2

D 2 (D 2 D)

D +(D-Do)

0 -B
2

-B 2  -(B 2 +B 1 )

-B 1 -(B+B )

-B
0

-B
0

2B 2+B

B2+2B +Bo

B 1+2B0

B
0

-B 2

2D 2+D

2 +2M+Do

. .+ 0

(3-39)
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a
0

a 1

a
2

c

c 1

c 2J

0

0

0

0

0

0J

(3-38)

b 1

d 0
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0 C2 0 -A2 a 0  2A2 A1 202+C

C2 (2 1) -A 2 -(A2+Al) a1  A2+2A,+A0 C+2C+C0
= C 2 -A2 2 002 .. A. 2  .

C1 (C 0) -A 1  -(A+A) c0  A1+2A 0  C+200

0 0 -A0 -A0 c 1 A 0 0C0 0 0A 0 0 0

(3-40)

Solving Equation (3-39) and (3-40) for the remaining a., b., c., and d,
S 1 1

defines theeC. operators completely, hence the L and L operators
1 5 6

may be computed thus yielding the uncoupled equations for x and y.

The uncoupled equations will be of the form,

4 3 2
4 d(t) 3x(t) d+ V(t) + 2x (t) + V(t) x 0 (3-41)

dt dt 2 dt 2 1dt (

d () y + (t) d 3+ vy(t) d + v (t) y+ (t) y 0
4 4 3 t 3  2 2 1 dt 0dt dt dt

The v, and the v. could be written out explicitly (for example, see
1 1

Reference 12) but this lengthy procedure is not done here since, when

making approximate calculations, it is most convenient to work

directly from Equations (3-39) and (3-40). This point is discussed

in Section 3.6. Now, since each equation given by Equation (3-41)

is linear and of fourth order, each equation will possess four linearly

independent solutions so that the x and y general solutions may be

expressed as
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4

x(t) = E f. v, (t)

i= 1 1(3-42)

4

y(t) = E g, w.(t)
i = 11

where the v. (t) and the w. (t) are linearly independent solutions and

the f, and g. are arbitrary constants. The particular solution of1 1
these equations requires that all eight of the constants f. and g. be1 1
determined by specifying the functions x, y, and their first three

derivatives at some initial time t However, the particular solution

of the parent equations, Equation (3-25), requires that only the

functions x, y, and their first derivatives be specified at some

initial time t Thus in order to obtain particular solutions of

Equation (3-42) that are also solutions of Equation (3-25) it is

necessary that firstly, the same basic initial conditions (i.e. , x(t

y(t0 ), x(t0 ), y(t 0 )) be specified for Equation (3-42) as for Equation

(3-25) and that secondly, the initial values of the second and third

derivatives of x and y be found in terms of the initial x,y values and

their first derivatives. These remaining unknown initial values are

found, in terms of the x,y initial values and their first derivatives,

by a power series technique applied to the parent equations, Equation

(3-25), only at the initial time t = to. The essentials of this tech-

nique are presented in Appendix I.

3. 6 Approximate Solutions of the Fourth Order Uncoupled Equations

with Time-Varying Coefficients

Two immediately obvious approximate solutions of Equations

(3-41) are of the "frozen -time" variety, the term "frozen-time"

*
This term was apparently coined by L. Zadeh. See Reference 13.
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implying that at some time t0 the coefficients of the differential

equations are evaluated and the analysis proceeds as if one had a

constant coefficient system. That is, instead of solving the equation
4 .4 ,

d x d x.Z v.(t) = 0 for all time, the equation , E v.(t) - = 0 is solved
i=O i dti 1=0 1 0 dt1

in some limited time region that includes t0 as the lower limit. The

extent of the time region in which the solution is valid clearly depends

on the time-varying behavior of the coefficients. Hence the useful-

ness of the frozen-time solutions of Equation (3-41) depends on the
*

details of the v. (t) and the v. (t) time behavior. These details are

now examined and the two approximate solutions and their complex

plane representations are presented.
*

The expanded forms of the v, (and also the v, ) reveal that it
i 1

is always possible to group the terms comprising each v. (and also
*1

each v. ) into two sub-groups, the first sub-group containing only

products of the originally known time-functions A., Bi, C., D, and

the second sub-group containing products of the originally known

time-functions Ai, B , C., Di and an assortment of their time

derivatives. The first sub-group will be referred to as the "quasi-
*

steady" term, denoted by v. (and also v.) and the second sub-group
q i qi

will be referred to as the "discrete-time increment" term, denoted by

dVi (and * ) Therefore it is seen that v. = v. + v andd i 1 q i d i
* * *

v. = v, + v. . Note that as the original A,, B., C,, D, gradually
1 q i d i 1 1 i

lose their time-varying character and approach constant values it is

necessarily true that d/7-+O and d-+O. Thus, as was expected,
*

the qvi and the qvi are equal when their sub-terms are constants.

However, since the forms of the v. (and the v.) remain the sameq i qi
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even when their terms are time-varying, it is then true that
* * *

v.(t) v, (t). Thus when v.(t)>> v (t) and v (t) >> v (t), the
q i qi q i d i q i d i
x and y solutions shown by Equation (3-41) are, to an excellent

approximation, described by the same time functions; that is,

v.(t) ~w,(t) for i = 1,2, 3,4. Additionally if the v. and v coefficients

change by only a few percent during the time required for the system

to complete a natural oscillation cycle , an approximate frozen-time
*

solution that retains just the quasi-steady terms ( qVi and v) will

adequately describe the actual system solutions. This solution is

naturally called the quasi-steady solution. When performing the

quasi-steady solution calculations, the fact that . L. is immedi-
1 1

ately used thus rendering the numerical work almost trivial. Now if

the above inequalities are not valid but the v. (t) and the v. (t) yet

change by only a few percent during the specified cycle time, a

second type of frozen-time solution is still valid. This solution

freezes the v, and the v. coefficients in their entirety (that is, the

quasi-steady term and the discrete-time increment term) and will be

referred to as the discrete-time solution. The x and y solutions

shown by Equation (3-41) are now not composed of the same time

functions, thus there is a possibility that the x solution may exhibit

It is seen that in most cases of interest the v (t) >> V and the
q i d i

V, (t) >> Vi (t) conditions will automatically insure that the quasi-
q 1 d 1

steady solution is valid. Therefore, unless the time required for the
system to complete one natural oscillation cycle is unusually long,

the validity of a quasi-steady solution is assured by the conditions
* *

that v,(t) >> V (t) and that v, (t) >> V (t). In order to estimate
q i d i * q i d i

the v. (and similarly the v, ) percentage changes, let A(t ) denote

the v. (t) percentage change per specified unit time. The required

expression for A(t) is then A(t 0 ) = 2007r[ 6 v /t] t=t/A(t 0 )v (t0)

where d (t ) is the smaller of the terms A 0/A 2 or D0/D2 (the un-

coupled natural frequencies squared) given in Equation (3-25).
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an instantaneous stability behavior entirely different than that of

the y solution.

When performing the discrete-time solution calculations

experience has shown that it is much easier to invert the matrix

relations given by Equation (3-39) and Equation (3-40) to obtain
*

the ot, coefficients (and eventually the v, and the v, terms) than to
1 1 1

"plug-in" values in the expanded version of the v. and the v. terms.1 1
This method also results in a routine procedure with several con-

venient check points for discovering errors.

The final topic to be discussed is the complex plane repre-

sentation of the frozen-time solutions. Strictly speaking, the com-

plex plane representation of a system with time-varying coefficients

is not possible, but when the frozen-time solutions of this section

are valid this type of representation is permissible and in fact use-

ful. The usefulness of this representation is obviously its ability

to show the essential features of the system for any value of time.

Borrowing some of the techniques described in Chapter 2, the methods

for obtaining the complex plane plots for first the quasi-steady solu-

tion and then the discrete-time solution are now described.

3. 6. 1 Complex Plane Representation of the Quasi-Steady

Solution

After first choosing a series of times at which the system is

to be examined, plot the complex plane loci for each of the chosen

times as a function of some parameter (for an aero-elastic system

this parameter might be the relative wind velocity) U using the

quasi-steady approximation for the equations. The results of this

procedure are shown in Figure 9 for one locus of the complete

solution. The second step is to choose a desired parameter-time

2
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relationship U(t), or several relationships if an evaluation of the

effects of changing U(t) is desired. It is then possible to plot,

with the aid of Figure 9, the actual system locus for any specified

U(t). This result is shown in Figure 10 for two values of U(t).

3. 6.2 Complex Plane Representation of the Discrete-Time

Solution.

Since the x and y solutions are now not composed of the

same time functions there will be one set of complex plane loci for

the x solution and another set of loci for the y solution. The method

of obtaining the complex plane plots is similar to that described in

Section 3. 6. 1 except that now the number of plots required has in-

creased two-fold. Two actual system loci corresponding to an x

and a y solution are displayed in Figure 11 for two values of U(t).
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CHAPTER 4

COMMENTS ON THE STABILITY ANALYSIS OF

TIME-VARYING SYSTEMS AND AN INTRODUCTION TO

NON-STATIONARY RANDOM PROCESSES

4. 1 Introduction

The preceding chapter has discussed solutions, solution

features, and techniques for treating one and two degree of freedom

systems possessing time-varying coefficients. However, as perhaps

the reader has noticed, the topic of stability has been tacitly

neglected. -It is demonstrated in this chapter that a different treat-

ment of this topic may be necessary, if a system varies rapidly

with time, since the concept of stability loses its analytical attrac-

tiveness and must in fact be replaced with a more meaningful criterion.

Tne new criterion is shown to be necessarily statistical in nature;

hence, most of this chapter is devoted to presenting the background

material necessary to formulate problems within the framework of a

non-stationary random process. The closing portion of this chapter

discusses aircraft problems of a non-stationary random character.

4.2 Stability, and Time-Varying Systems

As an introduction to the anomalies arising from a stability

analysis of a system with time-varying coefficients, it is instructive

to consider the simple time-varying system shown in Figure 12. All

system coefficients have some prescribed, continuous time variation
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and additionally it is assumed that the spring and damping coefficients

can assume negative as well as positive values if necessary. Now,

at different levels of sophistication, the homogeneous behavior of

this system is sought by two methods. Both methods are approximate,

however the first method treats the system as a succession of constant

coefficient systems (the so-called quasi-steady approximation), where-

as the second method emphasizes the time-varying character of the

coefficients (the method presented in Section 3.2) and is hence a more

nearly exact treatment. Additionally, both methods assume thatat some

time T the perturbation displacement and velocity, identically zero

until time T, are assigned initial values which satisfy the usual tacit

assumption of all stability analyses that their magnitudes permit no

permanent deformation or failure of the system to occur at time T.

Proceeding, Figure 13 displays the types of oscillatory homo-

geneous behavior admissible when using the first method described

above. As usual, the instantaneous stability of this system at any

time T (due to the quasi-steady assumption of the first method) is deter-

mined by noting whether the amplitude of the oscillatory motion is in-

creasing, remaining constant, or decreasing. This type of analysis,

were it valid, leaves no doubt as to whether or not the system would

eventually fail in its free vibration motion. In other words, there is

a one-to-one correspondence between (a) stability and structural

soundness and between (b) instability and eventual destruction, pro-

vided that the initial condition magnitudes are not too large (as we

have already assumed). Note that these relationships are the basic

reasons for the dominant role that stability analyses have assumed
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in the analysis of linear differential systems with constant co-

efficients; since, if a system possesses any degree of stability,

then the system automatically possesses structural soundness when
*

executing its homogeneous response.

However, using the more nearly exact second method, a

significant change in the character of the system response occurs:

the envelope of the homogeneous system response is in general non-

monotonic. This fact severely alters the relationships (a) and (b) as

is shown in the following discussion. Referring to Figure 14, where

possible time history segments of the homogeneous system response

due to a displacement initial condition A are shown, attention is to

be focused on the dotted line indicating the dimensionless system

amplitude corresponding to the boundary between safe and unsafe

stress levels, as well as the regions created by the intersections of

this dotted line and the homogeneous response envelopes. Note that

this dotted line is not horizontal since frequency changes with time,

thus correspondingly altering the maximum permissible amplitude

level. Furthermore, as A decreases, the dotted line translates up-

ward as also indicated by the dashed lines in Figure 14. The signifi-

cance of each region (for A = A ) is tabulated below.

Region 1 - Failure cannot occur but depending on the time T,

the instantaneous state of the system can be stable, unstable or

neutrally stable.

Region 2 - The system fails as it enters this region, hence

motion cannot exist beyond the first encounter with this region. How-

ever, note that a formal stability analysis carried out for this region

at some time T could yield a system state of stability, instability or

neutral stability.

*
Merrick, in Reference 14, has interesting comments on this subject.
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Region 3 - The system fails as it enters this region and a

stability analysis yields an unstable state. Note that if the ampli-

tude A of the initial condition is changed, regions 1 through 3 may

appear, disappear or change their time intervals of existence.

4. 3 Introduction to Non-Stationary Random Processes

It has been demonstrated in Section 4. 2 that if a system

possesses strongly time-varying coefficients, such that non-monotonic

impulse responses (homogeneous solutions) are possible, then a sta-

bility analysis does not yield the information necessary to assess the

system's usefulness as in the case of a constant coefficient system.

Furthermore, it has been shown that a knowledge of the initial condi-

tion magnitude to be imposed on the system at any given time is also

important to assess the system's usefulness. However, since no

rational method exists for explicitly determining the magnitudes of

initial condition inputs throughout the life span of most systems, the

next best description of the expected inputs must be statistical in

nature. This unavoidable fact then clearly suggests that the behavior

of the time-varying system is best described by determining MS out-

puts (MS denotes mean square) due to random type inputs. This in-

formation, along with estimates of the probabilities of exceeding the

MS values by specified amounts etc. , will also provide the input

information necessary to conduct accumulative damage studies. It

must be recognized that, in general, the system and the system's

input will have non-stationary characteristics. Thus it is necessary
*

to discuss some of the properties of non-stationary random processes

*
Some of the ensuing presentation follows that of Reference 15.
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before attempting the analysis of the time-varying system. The

averaging properties of a non-stationary random process will be

discussed first.

Let a non-stationary random process u(t) be repeated many

times. Thus the resulting ensemble of this process over some given

time interval may appear as shown in Figure 15. At any time, say

t = t1 , the ensemble average of this process is given by

N CO

u(t )= lim N Z u (t) uP (u, tI)du (4-1)

N-+-co Ci=O

where P (u, t ) is the so-called first probability distribution at
1 1 th

t = t In fact, the mean of the L power (sometimes called the
th 1

r- moment of the first probability distribution) of the process at

ti , is given by a simple generalization of Equation (4-1).

N 0
r -1 r r

u (t)= lim N E u. (t 1 ) ur P(u,t1)du (4-2)

N->o i= 1 -

Note that if u (t) is equal to some fixed value for all values of t,

then the process is stationary random and is thus equivalent (by

invoking the ergodic hypothesis) to the more familiar time average

T
r -1r

u = lim (2T)_I u (t)dt (4-3)

T-1-o -T
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Using the ensemble averaging technique described above, the

correlation functions of a non-stationary random process can be

defined. For instance, if cp uu(t t 2) is the autocorrelation co-

efficient of some ensemble of processes u, (t) then using Equation

(4-1) the following relation results

-1
Cpuu (t 1 1t2 ) = u(t1 )u(t2 )= lim N E u.(t )u.(t 2

IJuf u2 2(u ,t ;u2 2 )du du2 (4-4)

where P 2(u, t ;u2t2) is the so-called second probability dis-

tribution. In a similar fashion, the cross-correlation coefficient

of two ensembles of processes u, (t) and v, (t) is given by
1 Li

Cp uv(t ,t) = u(t1)v(t) = lim N E u (t1)v (t2
N-+co i=1

= ' uvP2 (u, t ;v, t 2)du dv (4-5)

Since it may be desirable to have some qualitative feeling for the

properties of cpuu and cp uv some of their more interesting properties

are listed below.

cpuu (t t2 =CPuu (t21 t) (4-(4 -6)



puu(t , t1 )

(t i It + T) au (t)
= u(t1) 1

& 1

UV (t , It2) uv(t2 ' t)

puv (t, tt2 =Pvu (t 2 1 t 1 )

(4-10)

(4-11)

Additionally cpuv is not necessarily maximum when either t = t2 or

t 2= t . Note that Equations (4-6), (4-7), (4-9), (4-10), and (4-11)

follow directly from the definitions of the auto- and cross-correlation

function. Equation (4-8) needs proof and is supplied below.

Proof for Equation (4-8)

With a little manipulation, plus or minus the product

u (t1 )u (t2 ) may be written as

u (t )u (t2) = {[ui(ti) u (t 2 ui (t ) - u 2 (t2 )1

An ensemble average of this quantity then yields,

CP uu(t t2 2
[u(t)u (t 2 cpuu(t t1) - Cuu(t2,t2

45

u (t1 ) (4-7)

6cpuu
ST

lim
T-+0

(4-8)

(4-9)

%uu(tl , t2) : +1 1%uu (t 2 ' t 2)1uC.u (t 1 , t 1)
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Re-arranging and taking the absolute value

u 1uu (t1 t1 ) uP (t 2 2 1 2
2 - [u (t ) u (t )] = cp (t ,t2)

Hence it follows that

CP (t ,t )+ CP (t ,t)
PU (i. t2 14 uu 1 2 uu 21 2

cpuu(tl ,t2) 2

Additionally it is interesting to note the stationary random counterpart

of this statement which is obtained by noting that cp uu (t t1 ) = Puu(t2' t2
Thus for a stationary random process it is seen that cpuu(0) . CPuu(t) ,

as is well known. Now proceeding to the next topic of this section, the

generalized power spectral density technique as applied to the non-

stationary random process will be discussed.

For a stationary random process the power spectral density is

defined as

Y = jpuu (T)e d T (4-12)

where the inverse relation is given as

CPu (T) uu(W)eWT dw (4-13)

where t2- t1 = T
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If a formal extension of this definition to include non-stationary

random processes is attempted, Equation (4-12) is generalized to

the following form.

uu(W, t ) uu(t ,t + T)e W t1 +)d (ty +T) (4-14)

However, since u (wt ), as given above implicitly depends on all

other times t1 I +T, this concept is not meaningful for general non-

stationary processes. Apparently, its usefulness lies only in treat-

ing weakly non-stationary random inputs or actual stationary random

inputs. Notice that if a system is non-stationary due to only time-

varying system coefficients, then the power spectral density technique

for determining MS outputs is applicable as will now be shown.

Assuming a stationary random input correlation function cp , it is

desired to first find the output correlation function cp uu. This is

accomplished in the following manner. First find the system output

u(t) for two different values of time by using the superposition inte-

gral technique. Hence if x (T) is the input and W(t, T) is the system

impulse response, the two outputs u(t ) and u(t 2) are given by

t
u(t1 ) = W(t1 , T) x(T)dT (4-15)

t2
u(t2 t2 W(t T) x(T)dT (4-16)

Multiplying these two equations together, supplying proper dummy

variables, and ensemble averaging both sides of the resulting equa-

tion yields the desired output correlation function cpuu'



t t
CPuu(t 1 , t2  S W(t fT)dT 2 w(t 2 ' xx 2 1)dT2

Now substituting the relation

ep(t2 - t1 ) = (ejW(t 2 t 1)d

into Equation (4-17) yields the results that

W(t I T 1 )ejWT l dT t2 W(t 2 T )e jW2 dT2
-2 2O

(4-18)

Furthermore using the basic relation between the transfer function

Y(j, t) of a system and the system's impulse response which is ex-

pressed as

Y(jo, t) = Jt W(t, T)e-jd(t-T)dT

Equation (4-18) then becomes

Tp (t ,t ) = - S (W) Y (jOW,t) YOW,t )euu 1, 2 2 _ COxx 12

jw(t 2-t)
2o (4-19)

where Y (O, t ) is the conjugate of Yowt 1).

Now as t -- vt2 Equation (4-19) yields the result:

(4-20)
CO 2

u 2 (t) = I S 5 () J YjOt) dw
2 xx I I
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(4-17)

CO t

Cu(t ,t2 xx= f1.(w) dw Y 1uu L, - 00 - C
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This result clearly demonstrates that a variable-coefficient system

acted upon by a stationary random input can have its MS non-

stationary random output expressed in terms of the input power

spectral density and the system's time dependent transfer function.

Notice that the success of this method depends entirely on the

stationary random character of the input. When the input does not

possess this character it will be necessary to formulate the problem

of finding the non-stationary random output of a system entirely in

the time domain. This formulation is now described.

The system under consideration has time-varying coefficients

and is acted upon by a non-stationary random input. To be as general

as possible, the system is as shown in Figure 16. Any output error

time history is given by

t
E(t) = J w(t, T)f, (T)dT - fd(t)

since

t

f (t) = f W(t, T)f, (T)dT

Hence

E (t ) E (t2 W(ti T 1 )f (T )dT 1 2 W(t 2 T 2)f i (T2)dT 2 fd (t)fd (t2

- fd (t ) I 2 W(t2 2 fi 2 dT 2 fd (t2 W(ti T 1 )f (T 1 )dT 1

(4-21)
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Ensemble averaging Equation (4-21) on both sides,

t t~~

cpC (t, ,t 2) 1 2 W(t1 , T 1 )W(t2' 2 )Cii p l' (1  2)dT 1dT2 Cpdd (t, ,t2

- W(t2 2 )CPdi(t, T 2 )dT 2  W(t, T 'di(t2' 1)dT

(4-22)

Now letting t -o t 2 in Equation (4-22), the desired MS error is given by

t t
E:2 (t) = W(t IT 1 )W(t, T 2 ) Pii (Tl' 2 )dT 1 d T2 + "dd (t, t)

t

-2 W(t, T2 di(t, T2 )dT2 (4-23)

Notice that if no correlation exists between the total input (signal

and noise) and the desired output, then the term - 2 Stw(t,T2 )pdi (t T 2)dT2

is identically equal to zero. Thus knowing the input autocorrelation

function and the system weighting function (assuming that pdd di= 0)

the output error autocorrelation function and the mean square error

output are determined.

The above-mentioned quantities provide interesting information

about the system but it would also be interesting to know what is the

probability of an output occurring that is k times the MS value and what

is the probable number of times per unit time that an output exceeds the

value C. Tsien (Reference 16) presents the derivation of these quantities

for a stationary random process, following the lead of Bienaym 6 ,

Chebyshev, Gauss, and Rice. See References 17 and 18. Fortunately,

- - __ - - - -__ - - --- ___ . - jo - !!!! tt - - __ I -
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the results of these derivations may be recast into their non-stationary

random counterparts with little difficulty. For example, if the form of

the first probability distribution function P 1 (u, t) is known, then the

probability of the magnitude of the random function u exceeding the

value K is given by
K

P [Ju(t) -u(t)IK]= 1 - f P (u,t)du (4-24)
- K

If the first probability distribution is assumed to be Gaussian and K is

expressed as a multiple of the variance at some time t0 (i.e., K = kT(t 0
Equation (4-24) becomes

k 0(t)

P [ Iu(t) -u(t) k ~(t 1 2 / 2

2
- k CQ (t) (4-25)

a'(t0 )
where 0-~(t) = ~(t . Furthermore, if k >> 1, then an asymptotic expan-

sion of the error function yields the result

It must be pointed out that Tsien's statement (Reference 16, p. 126) "it

e-k2/2
is easily shown that P [Iy-yj kc] k for k >> 1" is not correct.

k v'2r
The factor 1/ i2T should be replaced by F. Furthermore, he states

that for k = 3 the probability is .002 which is not what one obtains from
using his erroneous formula, or the corrected formula for that matter. The
following table summarizes the correct and the incorrect results of this
stationary random probability calculation.

Method Used or Source P [1y-y : 3a]

Cramer's Table II (Ref. 17, p. 274) 0.00270

Correct first order asymptotic expansion 0. 00296

Correct third order asymptotic expansion 0. 00274

Tsien's value as stated in his text 0.00200

Tsien's first order asymptotic expansion 0. 00148
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_k2 I*2 (t

e 2
P [ju(t) - u(t)Ik 0(t * k - (t )

CO[1- ) - -2n
S n[k o~(t)

L=
(4-26)=(2m - 1)

m=1 .

where the first order approximation is usually sufficient. If the form

of the first probability distribution is not known except that it is uni-

modal and symmetric about u(t), then a generalized form of Gauss's

inequality states,

4
k (t 0 9k 2

.2 (t) (4-27)

Finally, if nothing is known about the form of the first probability

distribution, a generalized form of the Bienayme-Chebyshev inequality

states,

P [ju(t) - ^t 1 2 k -(t )] A0 k 2 2 (t) 
(4-28

It is interesting to note that if the probability for the response

u(t) - u(t) to exceed a given value ko*(t 0 ) is P(t), then the probable

number of random inputs in which one will cause a response exceeding

k0(t 0 ) is

s(t) = (4-29)P (t) ( -9

A physical example of a non-uni-modal distribution is provided by
Mott-Smith (Reference 19) who demonstrates that the distribution of
molecular velocities in a strong shock wave in a gas is bi-modal.

(4-28)

P I u (t) - U*)( a
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Proceeding to another topic, let Q (C, t) be the probable number of

times per unit time the random function will exceed the value u =

at some time t. The expression for Q(;,t) is found to be

Q (G, ) P2 (C ,t;u', t) I u' l du' (4 -30)

where u' Moreover, keeping in mind Equation (4-9), one may

infer that P2 (C ,t;u',t) P 1 (Ct) P 1 (u',t). This permits Equation (4-30)

to be written as

1M
Q (C, t) P ( 1) P(u',t) u'I du' (4-31)

If it happens that P (u', t) is symmetrical Equation (4-31) then simpli-

fies to

CO

Q(C,t) = P 1 (C,t) P (u',t) ju' du' (4-32)
0

It is then a trivial matter (left to any motivated or curious reader) to

present the forms that Q(C,t) would assume if P (u',t) were Gaussian

with a variance cr'(t) and then if P (C, t) were Gaussian with a variance

o(t) and then if both P (u', t) and P (C ,t) were assumed Gaussian.

Thus ends the introduction to non-stationary random processes.

4.4 An Aeronautical Application Depending on the Non-Stationary

Random Process

During the last decade an ever-growing amount of success and

confidence has been associated with the stationary random analysis

of a variety of aircraft problems representable by constant coefficient
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systems. Seemingly then, any number of a variety of aircraft

problems representable by time-varying coefficient systems could

be successfully analyzed by non-stationary random techniques.

The desirability for such applications is furthered by the conclusions

of Section 4.3 where an attempt to replace the "stability" analysis

of a time-varying coefficient system by a more meaningful type of

analysis directly led one to consider a non-stationary random

description of the system. These applications of non-stationary

random techniques to aircraft problems were thought to have been

previously unused. However, in the specific area of aircraft land-

ing loads analysis, an outstanding paper by Fung (Reference 24),

which had been published late in 1955, was found as this chapter

was being finished. Additionally, in 1960, Thorson and Bohne

(Reference 25) treated time-varying coefficient missile and aircraft

problems as continuous sums of stationary random sub-problems,

and in 1961 Bieber (Reference 26) presented a non-stationary random

analysis for obtaining the rigid-body structural load response of a

vertical-rising ballistic missile to an environment of atmospheric

disturbances.

Having dispensed with the motivational and cronological

aspects, the professed purpose of this section is to demonstrate how

a relatively simple non-stationary random aeronautical problem is

formulated, to present the important problem parameters and to

indicate how the solution is effected. The problem chosen is a

#Four excellent presentations of these applications, as well as a complete
listing of references, are those of Bisplinghoff, et al (References 20 and
21), and Fung (References 22 and 23).

Actually, Acker (Reference 27) has made some calculations, based on
the problem to be outlined in this section, in a thesis supervised by the
author. The results are quite interesting and some attention will be
accorded them at the end of this section.
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study of the MS vertical acceleration and the vertical acceleration

auto-correlation functions possessed by a supersonic, forward

accelerating, rigid chord airfoil restrained in pitch. It will be ob-

served that this problem has a classical stationary random counter-

part when the forward speed is constant. See Reference 23. De-

noting the vertical acceleration impulse response due to a unit

impulse in upwash as W, the vertical acceleration time history h

for a given upwash w(T) can be expressed as

.. t . .
h (t) - W (t-T)w (T)dT (4-33)

The use of piston theory aerodynamics yields the following value

of W

'0 2 -e -)
W (t-T) = 6 eCJtT) (4-34)

where

E0 = 4b a /m

b = airfoil semi-chord

P = free stream density

a = free stream speed of sound

m = airfoil mass per unit span

Ensemble averaging the product of two terms given by Equation (4-33),

that is h (t ) h (t 2), using the W of Equation (4-34), and employing

the von Karman-Howarth result for the vertical turbulence auto-

correlation function cp , as given by Liepmann (Reference 28), results

in the following basic expression,
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lAxi
42 - 0 (t1 t t1 ~ .+E: --y (T +T)4 - E (t +t ) tyw2 ex [ L 0 1 2

hh(t 't2 0 w e 0 1 2 E [ L ]e dT1dT2

(4-35)

where

cp 00 (t ,t 2 ) = airfoil vertical acceleration auto-correlation
function

w 2= mean square turbulence intensity

L = integral scale of turbulence

IAxi =x -I = space coordinate difference (absolute value)

This expression may also be used to calculate the mean square airfoil

vertical acceleration by letting t2-.m-tl, remembering that h (ti )

cp ' 'h (t, 1 t ). At this point Equation (4-35) may represent either a

stationary random process or a non-stationary random process depend-

ing on the relation between 1Axi and the time coordinates T and T2'

In other words if the airfoil has a constant forward velocity, jAxJ will

be linearly related to the time scale IT -T 1 1 so that cp'' ' (t 1 t) will

depend on only the difference t - ti = T. Hence cp (T) will be a
21h

stationary random q'antity. On the other hand, if the airfoil is

accelerating forward, lAxi will be non-linearly related to the time

scale so that cp (t1 1 t2 ) will be a non-stationary random quantity.

This last situation commands our attention. Thus, it is assumed for

time less than zero, that the airfoil is flying at a constant supersonic

velocity v0 . At time zero the airfoil experiences an impulse in jerk#,

so that a constant acceleration "a" results for all time greater than or

equal to zero. With the acceleration time history so defined, the
ILAxI

term is given in non-dimensional form by the following relation.

Jerk = the time rate of change of acceleration.
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where

S=V T /L
= 0 i

19=V 0 t i/L

i =1,2

c aL = Froude number
v

0

v 0 = initial velocity

a = value of airfoil's constant forward acceleration for
time greater than zero

Additionally, by letting,

= e0 L/v 0 = [4M L.

= m/4b 2f~ mass density ratio

MO = v 0 /a - initial Mach number
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(4-36)

(4-37)

a2
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Cdd ( 11 2 dd v 1 v 0 0
d = h, "

C = h/L
.o 32h
h -

6t2

2

e2

it is easy to

in two intere

show that Equation (4-35) can be non-dimensionalized,

sting alternate forms, as presented below in Equation (4-38).

-1 *

h h 1 ' 2

= 32 1 2

(4-38)

where
956 - j" M +i

F (ee 1 1JlZ [ 1 - AdI le L 1 2 d 0- d 0-
,2'L 1 2

(4-39)

The domain of integration and two typical integration paths are shown

in Figure 17. As given in FORM I, cph (,9 . ) is a dimensional
h h 1 2

auto-correlation function expressed in terms of non-dimensional

arguments 9 and 92 for a fixed 7and P. Thus the left hand side of

FORM I must be divided by two acceleration terms in order to be
v 0 2

non-dimensional. These acceleration terms ( and-) areL L

58

2
v

[( 1 )( _ L ]FORM I

FORM II
2 -1 *

[ -2 " " 1 2
v 0
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proportional to the constant accelerations that would be required to

traverse a distance equal to the integral scale of turbulence by starting

at x = 0 with zero velocity and arriving at x = L with the velocity V wZ

or v 0 . In FORM II, cp ,(0 , e2) is a non-dimensional auto-correlation

function expressed in terms of non-dimensional arguments e and 92*1 2
for a fixed uand P. It is seen that cp ( 19 2) is directly propor-

tional to w2 . The effect of 7and some of the 3 effects are contained

in the F function. In general, the effect of positive I is to increase

the value of h2 and to skew the ep + 6 +e) curve to the left
hh 1' 1

about 8 = 0. For negative 'J, the converse is expected to be true.

Since F(9 e2, ,J) is a well behaved function of its arguments the
1' 2'4 -3(0 +6 )

overall effect of / is given by the expression /3 e 1 2 which

provides the physically expected results that when either P-40 or
*

9--m, cp ' (e , 9 )-*0. Acker's calculations (Reference 27), which

were carried out for a specific wing, state properties, and two values

of constant acceleration (50g and 100g), agree with the above genera-

lized predictions and arrive at mean square accelerations (for a = 50g)

about 13% over the corresponding 1= 0 quasi-stationary random case.

A useful goal, arising from the solution of the above problem

and some knowledge of the first probability distribution functions

given in Section 3. 3, would be the prediction of structural failure of

the wing during any specified mission. This failure information could

be used in place of qualitatively using disturbance growth and growth-

rate information (time-varying stability indicators) to determine safe

or unsafe behavior. This action appears desirable since, as discussed

in Section 3.2, there appears to be no really satisfactory method of

interpreting time-varying stability information if the coefficients of

the system are changing rapidly.

#Note that for convenience 62 is represented as G +.

## In the example presented above, the deterministic counterpart would
involve a time-varying coefficient problem; the state parameters being
the time-varying quantities.
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CHAPTER 5

WEAKLY NON-LINEAR AUTONOMOUS EQUATIONS OF INTEREST
TO THE AEROELASTICIAN AND A TECHNIQUE FOR THEIR SOLUTION

5. 1 Introduction; A Concise History of Non-Linear Mechanics

During the period 1882-1893 the classical researches and

publications of Lindstedt (Reference 29), Poincare (References 30, 31),

and Liapounoff (Reference 32) cast the foundations of non-linear

mechanics. In fact, the two basic methods of approach emerging

from these works still persist in modern treatments of non-linear

mechanics. These methods may be described as the topological

methods and the quantitative methods of successive approximations.

The topological methods study trajectories in a phase space, hence

permitting a comprehensive appreciation and understanding of all

possible motions of the system. The penalty one pays for this

"broad picture" is that numerical calculations are difficult to ex-

tract from this type of analysis. In sharp contrast, the quantitative

methods severely restrict the scope of one's understanding of the

system but they do permit numerical solutions to be made. Poincar4

contributed fundamental ideas in each of these basic methods, thus

he is often referred to as "the father of non-linear mechanics". How-

ever, the quantitative approach of Lindstedt brilliantly overcame the

"secular term" difficulties experienced by Poincar6 and thus logically

formed the basis of the quantitative works of van der Pol (in the 20's)

and of Kryloff and Bogoliuboff (in the 30's). During the period 1893-

1931, a few isolated contributions of merit were presented by such

people as Bendixon, Lienard, and van der Pol. See References 33,

34, and 35. Beginning in 1932 and extending through the 30's, Kryloff
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and Bogoliuboff (References 36, 37, 38, 39, 40, 41, 42) and Mandelstam

and Papelexi (References 43, 44) prodigiously carried out numerous

applications based on slightly modified approaches of earlier authors.

The Kryloff-Bogoliuboff approach was based on the original work of

Lindstedt (and a co-worker Gylden) as noted previously, while the

Mandelstam-Papelexi approach was patterned after the original work

of Poincare. Following this pioneering period of emphasis on applica-

tions sampled from the various scientific disciplines, the interest

of an increasing number of mathematicians, physicists and engineers

was stimulated. Thus contributions to the non-linear mechanics

literature appeared at an accelerating pace, the emphasis of these

contributions now concentrating on such topics as the existence and

stability of non-linear periodic motions (limit cycles) for a given

class of equations or an engineering solution of the quantitative

aspects of limit cycle analysis. A compendium of national and

foreign works from this period to the present may be obtained by

reference to the series of monographs edited by Lefschetz (Reference

45), the extensive bibliography of Ku (Reference 46), the classical

survey text of Minorsky (Reference 47), recent contributions appear-

ing in Prikladnaia Mathematika I Mekhanika (References 48, 49, 50,

51, 52, 53, 54), and the recent books of Cesari (Reference 55),

Malkin (Reference 56), and of Bogoliuboff and Mitropolsky (Refer-
*

ence 57).

5.2 Weakly Non-Linear Solution Techniques that Satisfy the

Aeroelastician's Needs

Remaining cognizant of the techniques implicitly contained in

the capsule history given in the previous section, attention is now

*
The author is indebted to Professor W. D. Hayes (Princeton University)
for alerting him to the existence and, more importantly, the scope of
these last two texts.
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focused on aeroelastic applications only. Thus given a problem in

non-linear aeroelasticity one must first ask what types of answers

are required. That is, is one interested in the numerical values of

flutter amplitudes and frequencies, the existence of certain periodic

solutions (that is, the existence of non-linear flutter), the stability

of the possible periodic solutions, or perhaps the detailed transient

motion of the aerodynamic surface in question due to some input

occurring at velocities not necessarily equal to the flutter speeds?

Depending on what information is desired the solution technique may

vary. For example, Fung (Reference 58) and Shen (Reference 59) find

the Kryloff-Bogoliuboff "averaging" technique to be very useful in

settling the questions of existence and stability of non-linear flutter

motions in panels and wings respectively, as well as in the deter-

mination of numerical values for flutter frequency and velocity as

functions of amplitude. Runyan, Andrews, and Woolston (Reference 60)

employ the analog technique (and many servo-multipliers) to obtain

their answers. If the detailed transient motion due to some input is

sought it is obvious that the "electronic marvel" technique of Runyan,

Andrews and Woolston is quite capable of solving the problem. How-

ever, the available analytical approaches leave something to be de-

sired. For example, the method Kryloff and Bogoliuboff does not cor-

rectly account for strong linear damping terms in the system it repre-

sents, hence the non-linear perturbations are effected about an

approximate solution of the linearized equation. This fact is not

important when treating the gross properties of a periodic motion

such as the frequency and amplitude of a limited flutter motion, as

verified by the studies of Fung (Reference 58) and Shen (Reference 59),

but it is extremely important when dealing with the transient motion of
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a system whose detailed motion is predominately influenced by linear

springs and dampers, and secondarily by weakly non-linear elements.

Noticing that transient aeroelastic problems are of the latter nature,

one may expect that the method of Kryloff and Bogoliuboff will not

fulfill the needs of an aeroelastician interested in transient motion

aeroelastic problems. During the last two decades many attempts

have been made to improve or supplant the method of Kryloff and

Bogoliuboff. Unfortunately, the successful attempts have been

only for those applications in which properties of periodic motions

of the system are desired. As a typical example, the much re-

spected recent works of Cesari (Reference 61) and Hale (References

62, 63, 64) are concerned with discussing the solution technique,

the stability and the existence of periodic solutions of weakly non-

linear differential systems. Other typical examples are the works

of Laricheva (Reference 49) and of Plotnikova (Reference 53).

Laricheva investigates equations of the type,

Oil x+1 +0 1 2 x2 + a 1 1 x 1 + a 1 2 x2  1 2

1 2 x1 + 2 2 x2 + a1 2 x 1 +a 22 x 2  4f2 (x1 'x 2

hence, the aeroelastically important linear damping terms -y x ,

712 2' 12 1, and y22 2 are not accounted for. Additionally,

Laricheva seeks only periodic solutions. Plotnikova investigates

equations of the type,

*

The reader need not be a priori convinced of this stated typicality.

However, a careful search of the references given will force this

opinion upon the reader.
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x +ax + by = f1 (t) + pF 1(x,x,y,y)

y+ cx + dy = f 2(t) + (Fx2Ixy)

thereby neglecting inertia coupling as well as any form of important

linear damping.

Since the aeroelastic system behavior of interest in this

thesis depends on strong linear damping terms as well as the weakly

non-linear terms, the representations given by the literature are not

adequate for our purposes. Thus it is the intent of the next two

sections to introduce an improved analysis for the one degree of

freedom weakly non-linear problem with strong linear damping and

to present the framework for a two degree of freedom weakly non-

linear problem which includes the effects of complete linear couplings.

5. 3 An Approximate Analytical Method for Treating Equations of
2

the Typex + 2x + W x + pf(xx) = 0

In an attempt to eliminate the weakness inherent in the

Kryloff-Bogoliuboff formulation, the following equation is now con-

sidered and subsequently analyzed.

0 2
x + 2Ax + w x + p f(x,x) = 0 (5-1)

As p-- 0 the solution of Equation (5-1) for x and x approach

the linear solutions given by

-#t *
x = ae sin(w t +cp) (5-2)

x = ae - w cos (w t +cp )- sin( t cp)T (5-3)

where o = 1-G(/w)
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Now formally considering the case in which -1 << #<< 1, the x and

x linear solutions are approximated by

*

x = a sin(W t +Cp) (5-4)

* * * *
x = aw cos (w t +Cp ) - a sin(w t +cp) (5-5)

This artifice has fictitiously restored the harmonic form of

x and x but has retained the phase lag term in the x expression. It

is this phase lag term that will contribute to the accuracy of the

final solution, while the fictitious harmonic form prevents any mathe-

matical difficulties from arising when applying the modified variation

of parameters method. In fact it will be seen that the variation of

parameters technique will restore the full range of linear damping

right up to, but not including, a critically damped case- (L/P = 1).

Now, assuming that a and Cp are slowly varying functions of

time for the case when g f 0 but small, the calculation proceeds.

Differentiating Equation (5-4) yields,

x = a sin yP + aw cos 41 + a CP cos ' (5-6)

*

where w t + p

Equating Equation (5-5) to Equation (5-6) yields the following

condition.

a sin ' + a T cos S + a3sin (Y =0 (5-7)

Differentiating Equation (5-5) yields,

x = ~Oa sin ( - aw f cos ( - a CT cos ( + aw cos y

2 * i* a
- aw sin -aw Cp0 sin IV (5-8)
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Now substituting Equations (5-4), (5-5), and (5-8) into Equation (5-1)

yields the following condition.

-* -- * *2
-Oa sin'- aw cos ' - a cp I cosY + aw cosP- aw sin 1P

* 2 *2
-aw ep sin t + 2aw cos 4 - 2a sin y + w a sin 1P

+ pf (x, x) = 0 (5-9)

where f (x,x) f(a sin Ifaw cos - a 3 siny).

After simplification due to cancellations and identity relations,

Equation (5-9) becomes,

- * **- * * -

aw cos - aw cp sin fJ=-a9W cos y - pf (x,x) (5-10)

Now Equations (5-7) and (5-10) supply the information necessary to

solve for a and Cp . That is,

* * - * * -

w cosy) - aw sinY a aOw cosy + pf (x,x)

sin Y a cos cp ag sin y (5-11)

Solving Equation (5-11) for a and cp yields

a = -10a - [p/w]f (x, x)co s (5-12)

cp = [p/aw ]f (x,x)sin9) (5-13)
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Noticing that the non-linear terms in Equations (5-12) and

(5-13) are periodic with a period 2 -t-/w and that a and ep are pro-

portional to the small parameter p, it appears reasonable to assume

a and cP are slowly varying functions of time over any given period.

Hence they may be considered, to the first approximation, as con-

stants on the right-hand sides of Equations (5-12) and (5-13), thus

allowing Fourier expansion of these right-hand sides. Hence

f (x,x)cos k4 and f (x,x)sin y are represented as,

f (x,x)cosY =K (a) +Z [K (acos n +L (a)sinn ] (5-14)0 n=1 n n

f*(xx)sin = P0 (a)+ P n(a)cos n +Q n(a)sinny I

where K0  f(a siny, awcos ky) cosfy d(f
0

2Wr

P0(a) = (2T) 1 0 f(a sin Y/, aw cos Y ) sin4) d y
0

2 IT
K n(a) TT f(a sin Y, awcosy) cos cos n y dtp

L n (a) 2T' 0 asnY aw cos) Y)cos f sin ny dy0
2r

P (a)=T~ 5f(a sin Y, aocos))sintecos nyd y
n0

2r

Qn(a)= TT 1  f(a sin Y , aw cos ) sin Y sin n dp
n0

Since we have assumed a and cp constant over one period,

all terms for n > 1 vanish and the solution to the original non-linear

equation, Equation (5-1),is given as
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x = a sin (O t + ep ) (5-16)

where a = -0a - (p/w) K0 (a)

Tp = (p/awo) P0 (a)
(5-17)

-1 2Tr,
K (a) = (2I) 1 f (x, x) cos yP d y

0

-1 2Tr,
P 0 (a) = (27) Y f (x, x) sin Y d Y

0

To check the limiting behavior of this equation as p-+0, it suffices

to observe Equations (5-12) and (5-13) when the p-+-0 limit is taken,

Thus,

lim (a) = -0a

p -+'"0

and (5-18)

lim (Cp) = 0

Integrating these expressions,

a = A e-t

cp = const. (5-19)

Hence the form of Equation (5-16) becomes

-j#t *
x = A0e sin(o t +cp) (5-20)

which is the correct linear solution.

As another indication of the improved approximate transient

solutions obtained by the method of this sub-section, the classical

van der Pol equation given as,
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+x +4p(x2 )x = 0

was solved for two values of p (.2 and .4) by an "exact" numerical

integration technique, by the Kryloff-Bogoliuboff technique, and

finally by the technique presented in this sub-section. The results

of these calculations are presented as phase plane plots in

Figures 18 through 23.

Notice that the phase plane plots obtained by using the

method presented in this sub-section possess nearly the same

ovaloid spiral shapes, hence phase velocities, that characterize

the exact solutions even at distances close to the limit cycle. On

the other hand, the phase plane plots obtained by using the Kryloff-

Bogoliuboff method always have a very definite circular spiral shape

so that the phase velocities of this solution and the exact solution

will match only in four small sectors for each transient cycle in the

phase space. Furthermore, comparing the positions of the symbols

(0) that denote equal time intervals (~l.6 sec.) on the phase plane
*

plots, it is seen that the Kryloff-Bogoliuboff solution at first leads

and lags about the exact solution and eventually lags at an increas-

ing rate as the limit cycle is approached. In comparison the solution

plot of this section at first possesses a slowly growing phase lead,

in fact almost negligible until the approach to the limit cycle is over

half completed, and then grows rapidly in the remaining two or three

cycles that bring the trace into coincidence with the limit cycle.

As an aside, it was found that both methods predict the limit cycle

amplitude and frequency quite well. The point to stress however is

that the method of this section is much superior to the Kryloff-

Bogoliuboff method in predicting the phase velocity during the entire

*
Only in the p = .4 case does the Kryloff-Bogoliuboff solution
exhibit the initial lead-lag condition. For p = .2 just the in-
creasing lag feature is exhibited.
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transient approach to the limit cycle and predicts the actual phase

quite accurately over the first 60 to 70% of the approach. Potentially,

then, the method of this section is of use to aeroelasticians inter-

ested in transient motion problems. Obviously if an aeroelastic

analog to the van der Pol equation existed, no one would be inter-

ested in the transient behavior since limit-cycle flutter will occur

for any initial position of the system in the phase space. A system

in which transient motion is of interest would be one in which the

linearized analysis about the phase plane origin yielded a stable

focus or a stable node. In other words a "hard"excitation must be

given the system before it will exhibit a limit-cycle flutter. Any

excitation less severe than the prescribed "hard" excitation, which

would be a function of the airspeed U, would result in a non-linear

inward motion towards the origin of the phase space. For example

in Reference 60 it was found that at a velocity U, less than the

linearized flutter speed of a wing, a certain finite amplitude excita-
*

tion is required to cause flutter. This required amplitude decreases

as U increases until finally, at U equal to the linear flutter speed,

the required amplitude is zero. If this problem were to be linearized

about the phase space origin one would indeed find the stable focus

or stable node motion near the origin for any velocity U less than the

linear flutter speed. Hence, transient motion analysis is of interest

in this case. Since this case involves two degrees of freedom, the

method of this section must be extended to treat two-dimensional

problems. This is done in the next section.

*
This says physically that the change in the system parameter U
changes the character of the phase space such that the amplitude
and shape of the limit cycle nearest the origin diminishes until it
degenerates to the point at the origin when U is equal to the linear
flutter speed.
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5.4 An Approximate Analytical Method for Treating Equations

with Full Linear Couplings as well as Weakly Non-Linear

Coupling Terms

The system of equations considered in this section is

L1x + L2 y =

(5-21)

L3 x + L4 y =P

2 2
where L, =a,.P + b.P + w. ; i = 1, 2, 3, 4

and the 'Xand Y are composed of x,x and y,y non-linear combina-
.2 3'2 *

tions (e.g., y x + y x , yx, etc.). When p = 0, the x and y un-

coupled equations are represented as

(LL - L L ) x =0

(5-22)

(L2 L3 - L4 L ) y = 0

where, in a normalized form, the operator (L2L3 - L L ) may be

expressed as

(L2L3 - L4L1) 1 (p2 + 2v1 p + 2)(P2 + 2v2p + 22 2) (5-23)

Thus the exact solutions of the linear uncoupled set, if damped

oscillatory motion ensues, are

x = ae 1t sin(St +Pla) + be 2t sin(YZt +cp2b(
(5-24)

y = ce-Vlt sin(gt + e 1c) +de-V2t sin(O2 t +S0 2d)
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Now using the artifice explained in the previous section, the v, are

initially restricted to the condition -1 << v. << 1, such that

eVit a 1. Thus the assumed forms of the x solution and its deriva-

tives, in the case with p small but not equal to zero, are given as

x = a sin(1t + p 1a) + b sin(Q2t + cp2b) (5-25)

x = a cos(os + Tp la) av 1s in (' t + lP1a) (5-26)

+ b cos (2t + p2 b)bv2 sin(22t + p

-2 2
x = - a sin( t + C)- b2 sin(2t + ep) (5-27)

1 1 la 2 2 2b

- 2avj21 cos (t + CP la) - 2bv Y2 cos(2t + cp 2b)

2 2x = 3av sin( t + ip 1 ) + 3bv 2  sin(2t + T2b) (5-28)

a3 -bE23
-* cos(Q t + p 1a) -b cos (it + cP2b)

Thus using the variation of parameters technique and con-

sidering a,. b, Tp a and cpb to be time functions, the followingla 2
set of algebraic equations*are derived.

k k k 3 k 4 a k11 12131 1

k k k k b k
21 22 23 24 _ 2

k k k k a pk
31 32 33 34 ala 3

k41 k42 k43 k44 bcp2b k4

*
The y solutions obviously have a similar form.

Note that the equations governing c, d, dcplc, and dcp2d are
similar to those given in Equation (5-29).
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where

k = (sin Tla)
k11-Co

k2 1 =( 1 sYla

k 31 (_ sinYla

1 sin +la)

- 2v COSia),

k1 2 = (sin 42b)

k2 = (cosyb -

k = (-Q2 siny32 2 2b

v2sinyb
2  2 b s b

- 2v 2 1 cos 4 )b)

k =(A sinI -
3 cos )l

kl 3 = (cos'W.)

k2 = (-gsiYa - v cos9a)
23 - l 1 la11

k33 _ _2cosy +2v Osn )

3la 1 la
k4= (A co sW_1 + 21 3 S in Yla)

k = -av siny - bv2 sinyb

2= -av 1gcos - bv2 2cos2b

k3 av 2 sinyN + bv 2Q2 sin 2 b

k4 = a(C acos ,a - S sintpl ) + b(Cbcos 42 b

k = (B sin yb 3 :CO 9Sb

14 (cos

k = (-02sinYV-cs
24 2s 2b V2COS 2b

(k 2 2cos2b + 2v2 2s 2b
k34 = s2(sin

k (B COSY, 3 asinY) 442b +0 2b

-bsin b + iX
-b 2b

Ti = 4/(a 2 a 3 - a4 a1 )

Yla = t + cpla

2b = t + P2 b

Ca =V 1 21
3 - 8v 2

S = 6v 2 2 _ 2V 2 2

Sb = 6v 2 2 - 2v22 2

A = 3v 2

B = 3v2 2

Cb =2 3 - 8v22

+ 4v 1v2 2 1
2  4v1 V 2 22

+ 4v 1 v2
2

A1 2
2

The first step in solving these equations is to compute the deter-

minant of the system matrix. After much labor, all the sine and cosine

terms combine in such a manner as to cancel one another, thus eliminat-

ing any time variable from the value of the determinant. The resulting

value of the determinant is
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Next, solving Equation (5-29) and a corresponding one for the y solu-

tion components, the differential equations for a, b, c, d, acpla
ccp 1 , and dcp2d may be written.

2
a IfD -rl%(p os. 1 Pl 0 sinq, + (p + p2 sin

01o~~ l P

b IDI

+ p 3Cos2 Ta

+ p sinlacos Yla)a + ([psin 2 b + p6 cos + 2 b]sin4l

+ [p sin 2 b + p 8 Cos ' 2 b ]Cosla )b
7 2la

= -r'X(q 0 1 cos P2 b + 1 0 sin )2b + (q 2 sin2 2b + q3 s2 2b

+ q sinY)2 bcos- 2 b)b + ([q5 sin+2b + q6 Cos 2 ]sinfla

+ [q7 sin 2b + q8 cos 2 b]cos Yla)a

(5-31)

(5-32)

ala IDI = - sla 10sinla) + 2 sin2 1a 3 os2qa

+p sinlacosqla)a + ([p5 sin2b 6s 2b]sin'la

+ [p sin +2b P8cos+2b]cos la)b (5-33)

bY2 b Di = ((qcos 2b + (q sin2 2b 3 2 b

+ q 4sin2bcos 2b )b + ([q 5 sin P2 b +q 6cosy 2b]sinTla

+ [q7sinY2b 8Cos2b]cos la)a (5-34)
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(5-30)

- Elli. , ,,

22 22
- 8(v 1 + v2 S 2)ID|= Q2[ 2 ( Q2 ) (V 2+V2



c (DI = -,Y(r 01cosW 1c + r10sin 91 C) + (r2 sin 4l c

+ r sin Tic cos )1c+ (Er5sin2d + r cos '2d ]sin T, c

+ [r 7sin T2d + r 8cos Y2d ]cosY c)d

-r1Y(s ocosY2d + s 10sinY2 d) + (s 2sin2y2d + s3Cos2 2d

+ s sin cosY )d + ([s sind + s cos ]sin)4 q2d 2 d 5 '2 d 6 '2 dlVc

+ [s7sin Y2ds + s8cos 2 d ]cosY 1c)c

DI = -y(r 01cosc r10 sin Yi) +

+ r sinlccosY )c

+ Ersiny2d

(5-36)

2 - 2
(r sin Yc + r3cos 4'c

+ (Er5 sin 2d i+ 6cos 2d]sin4l2d 6 Y2 d] Tic

+ r8cosY 2d]cos'lc)d

dcp dDI= -TIY(s cosY +-s sind +d2d 01= 2d 10 2d+

(5-37)

2 2 2
F2 snq2 d +s3o2d

+ s sinYd cosY2d)d + (Es sin 2d + s6Cos2d

+ [s sinY2d +s 8cos2d]cosY c)c

where C = C Cd = Cb S
c

p0_ 2_ 2 _ 2 -2 1

P1= 2Q2E2 (v -v 2

q01 2 2

410 = 2E 2 2

a Sd Sb

V 2 q

2 + 2v1 2

v1)
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+ r 3cos 2 l c

d IDI

(5-35)

ccp 1 I

]sinylc

(5-38)



76

Pl = 2 02 1 2

p1 0 = 2 {f 2 _ 2 - 2v2 (v1  2

q 0 1 =2 22 ( 2 1

q1 0  2 2 + 2v 1 ( 2 V 1

r = 22 _2 -2 2v2 (V1 -2

r10 22 1 2

s01 122 2 _2 + 2v (v2 -1

s1 0 = 2 12 (V2 - V1)

01 0 Q2 1 2

r10  -"f 2  2 22 1 -v 2

01 2 2 1

s1 0  2 2 2 -2v 1 (v - v2 1

Notice that no definitions have been given for the pi, q., p, q, r,

sI r., and s, where i = 1,2, 3,4. Expressions could have been

written down for these quantities but this would have been an

unnecessary step as is now pointed out. Suppose that Tj-0-0. Then,

after applying an averaging process to eliminate the trigonometric

terms, equations 5-31 through 5-38 are first order linear differential

equations describing the behavior of a , b, ... cpla 2d in terms of

*
For example see Chapter 6 of Reference 12.



77

a, b, c, and d. However, we can find these equations directly from

the solution of the original linear coupled equations. That is, from

Equation 5-21 with T'-%okt = 0. Hence the deleted definitions. Thus,

when averaging Equations 5-31 through 5-38 over a cycle, one

actually carries out the averaging process for the terms multiplied

by an Tj (the non-linear terms), but merely replaces all other terms

by their linear equation counterparts. For example, the averaged

counterpart of Equation 5-31 would appear as

a IDI = -IF(a,b, .. ,a, . .d) + k1 a +k 2b

where F is a non-linear function equal to the first term of the Fourier

expansion of X(p01 la + p 1 sinla), and k and k2 are constants

determined from the direct solution of Equation 5-21. The Fourier

series expansion may be effected by first expanding products such

as cos m sinng cos Ysin tQ into the formh A cos(r s2)
11 Z 2 rs rs'l 2

+ B sin(r sE)'. As an aside note that whenXhas no y or y

dependence and when Y has no x or x dependence, Equations 5-31

through 5-38 split into two uncoupled sets of equations. That is,

Equations 5-31 through 5-34 and Equations 5-35 through 5-38. At

this point all that remains is to specify Xand Y, carry out the aver-

aging process in the manner already explained, and solve the re-

sulting first order equations for the amplitude and phase parameters

which will then be inserted into Equation 5-24. This is a tedious

but nevertheless practical process which, in summary, provides the

aeroelastician with a method for treating the transient motion described

by two simultaneous differential equations with complete linear coup-

lings and weak non-linear couplings.
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PART II

AEROTHERMOELASTIC APPLICATIONS
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CHAPTER 6

PRESENTATION OF THE REQUIRED AERODYNAMIC

AND

AEROTHERMOELASTIC THEORIES

6.1 Introduction

The object of Part II of this thesis is to formulate and in-

vestigate the equations representing the dynamic, torsion-bending

motion of a wing which is one major component of an ultra-high

performance manned vehicle that is performing some specified flight

mission(s). A necessary step in obtaining this object is the deriva-

tion of the terms required to compute the time-varying coefficients

of the governing equations. The derivation of these terms is neces-

sary for the following reasons. Firstly, it is noted that a highly

accelerated flight mission performed at supersonic speeds may intro-

duce flight conditions that invalidate the well-known solution

(Reference 65) for the torsional stiffness loss of an aircraft wing.

The introduced conditions make it necessary to include the effects

of a specified time-dependent wall temperature due to the given

flight mission and to include the effects of large wing deformations

due to the large magnitude transient thermal stresses produced by the

given flight mission. Secondly, it is noted that although "piston

theory" aerodynamics is widely in use through&irti the aeronautical

industry, its use as a mathematical representation for arbitrary

motion may be unfamiliar. Thus a short compendium of arbitrary
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motion piston theory expressions for lift and moment will be useful

to the reader. Thirdly, in order to provide an aerodynamic theory

that does not yield the simplified quasi-steady results of piston

theory and additionally accounts for the direct effects of accelera-

tion, it is necessary to consider the exact two-dimensional linearized

aerodynamic theory for an accelerating unsteady supersonic airfoil.

The well-known foundations of this exact theory are briefly recounted

and then the theory is utilized to obtain lift and moment responses

to impulsive upwashes of two varieties.

Thus the following three sub-sections present the material

necessary to determine the time-varying coefficients that will be

used in the latter portions of this thesis.

6.2 Loss of Torsional Stiffness due to Aerodynamic Heating,

Including the Effects of Mid-Plane Stretching, Finite

Acceleration and Varying State Values

In recent years several articles (References 65, 66, 67) have

appeared concerning the loss of wing torsional stiffness due to aero-

dynamic (kinetic) heating. The solution most widely known to the

members of the aeronautical profession however, adopts a mathematical

model that considers an infinite acceleration to attain some final Mach

number. Thus a constant wall temperature exists during the time that

the wing is undergoing a torsional stiffness loss. Additionally, this

model is based on the small deflection theory of elasticity. Since

this model may be inadequate for the supersonic velocity, finite

acceleration flight missions envisioned, the important features of

Reference 67 are incorporated into the model presented in this sub-

section as well as a means for including the effects of arbitrary

finite acceleration and varying state (density, etc.) values.
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To this end, consider a plate-like wing as shown in Figure 24,

which is assumed to have an x-direction uniaxial stress and strain

distribution. Utilizing the finite bending theory of thin plates, the

total strain in the x-direction is given by

2 2w2 w 0 w02

E =E - G +- ax (6.1)
x Ox 2 2

where

EOx = mid-plane strain at ( =0.

2
0 = strain due to bending

2

w 2

S ax = strain due to finite transverse displacement
2

Now assuming that the mid-plane strain is given as Ex = 5 + fy,

where 5 and 1 are as yet undetermined time-dependent coefficients,

and by using Singer's approximation for w0 = kxy, where k is

the angle of twist per unit length, the total strain is given as

6 = E + y +-k y (6.2)
x 2

*

Reference 67 demonstrates that this extremely simple formula yields
at most 5% errors in deflections when compared with exact solutions.

-1
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Hence the total stress, including thermal gradients, is given as

0- (y, z,t) = E 1 6+ fy +- k y -a ET(y, z,t) - T (y, z,o)]x 2 w

(6.3)

where

E = Modulus of elasticity

T(y,z,t) = actual wing temperature at (y,z,) during time t

T (y, z, o) = a reference temperature, chosen to be the wing

equilibrium temperature at t = 0

In order to insure zero force and moment resultants at all wing cross-

sections it is required that

f~ dA=O
A

yf - dA = 0 (6.4)
A

where A is the cross-sectional area.

However, the choice of the w function and the additional assumption

of a thermally thin wing dictates that = 0 throughout the wing,

thus Equation (6.4) is replaced by the following simpler statement.

b
ha dy = 0

-b x

b
Shya dy = 0
_b x (6.5)-b

where h = h(y) is the local wing thickness. Now if E = E(t) at most,

the introduction of Equation (6.3) into Equation (6.5) yields the results

-A
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Iy a -
.. .. _j L 2 _j (6.6)

b
A = f hdy = cross-sectional area

-b

A = I hydy (= o for a symmetrical cross-section)
-b

I = I hy dy = moment of inertia
-b

L= Ibhy3 dy (= o for a symmetrical cross-section)
-b

b
*

T (t) = F h[T(t,y) - T (O)]dy = thermal force
-b

b
*

M (t) = hy [T(t,y) - T (O)]dy = thermal moment
-b

Solving Equation (6.6) yields the following results:

6(t) = (AI - A *2) I T (t) - A M *(t)] + k [A
y y 2

y2]}

(t) = (AI - A 2) a[AM*(t) - A T (t)] + [A* I - A)]}
y 2 y I

82

A

L*A

where

-1

(6.7)
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At this point, T (yt) is completely determined once k and T(ty) - T (0)x w
have been specified. The next step in the calculation is to relate the

stress distribution to the ensuing loss in torsional stiffness. Follow-

ing the simplified development given in Reference 65, attention is

focused on Figure 25 which pictures a longitudinal "fiber" originally

in the position A-B of a wing structure located at a distance r from

the axis of twist, which has been given an incremental twist of magni-

tude dx; thus the fiber is now in the position A'-B'. If the stressdx
0 is still axially aligned with the fiber, now in the position A'-B',x
it is seen that a small component of this stress acts in the plane of

the wing cross-section. This stress component is given by a r .x dx
Thus the incremental twisting moment about the axis of twist is given

as dT= (T r2 d dA. Integration over the cross-section yields thex dx
result

d - r 2 dA (6.8)
dx Ax

When Equation (6.8) is added to the usual Saint-Venant torque, the

total torqueT becomest

o = GJ + f - r2 dA d (6.9)
t A x J dx

It is immediately seen that the bracket term is physically just an

effective torsional stiffness which will be denoted by GJ . Thus,

GJ = GJ + S T r2 dA (6.10)
A
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Where GJ is now more descriptively termed an iso-thermal torsional

stiffness and will be denoted by GJ iso-thermal. The next reduction

is to incorporate GJ into an expression for the square of a wing

torsional frequency w 2 since this is the term in which the stiffness

appears in the equations of motion. This is accomplished by utilizing

the Rayleigh method. Thus, for a constant cross-section wing of
2

semi-span L, w is given by

2 Gf L 2 L
(2 = eff d'') dx/f L p2 dxa Ida 0 dx 0

where cp is simply chosen as

cp = sin 2
2L

Thus, a simple integration yields the result that

2 t Gjeff(t)
a(t) = 2 (6.11)

2
The last step in the calculation of w 2 (t) is to determine the tempera-

ture distribution time history of the wing. Assuming a solid, thermally-

thin wing which possesses no heat conduction in either the chordwise

or spanwise directions, the heat balance equation governing the tem-

perature at any chordwise distance y is given by

+ F=FI 
(1
(6.12)
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with the initial condition

9(0,y) = 0

where
T(t,y) - T (0)

(t,y) = w
T (T*) - T (0)

T (t) - T (0)w w
T (T-T (0)

h = heat-transfer coefficient

P> = mass density of the wing

c m= specific heat of the wing

h(y) = wing thickness

T(t,y) = wing temperature

T (t) = wall temperaturew

*
2h (t,y)

F(ty) =c h(y)
mhm

T (0) = equilibrium wall temperature at t = 0
w * ,

T (T ) =final equilibrium wall temperature at t = T

Fortunately, Equation (6.12) is a first order linear differential

equation inS(t,y) with time-varying coefficients. Furthermore, y

plays only the role of a parameter. Utilizing a standard technique,

the left-hand side of Equation (6.12) is made an exact differential by

multiplying the entire equation by an apprgpriate integrating factor v.

This integrating factor is given by v = e S F(Cy)dC. The solution for

((t,y) then becomes,

t TI

(9(t, y) = 1 const. +I F (-n, y))(-1)e
F F (C.y)d}

dT1 (6.13)

where the constant term is determined by the condition

9(0,y) = 0
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Thus, once a particular flight mission is specified and the

wing properties are given, the required square of the torsional fre-
2

quency w a(t) can be calculated.

6. 3 Arbitrary Motion Piston Theory

The conception and development of piston theory is concisely

framed by a quote of Runyan and Morgan (Reference 68) who observed

that, " This procedure was originally suggested by Hayes (Reference 69),

was used by Lighthill (Reference 70) to check the results of Van Dyke

at high Mach number, and later was elaborated on and applied to the

flutter problem by Ashley and Zartarian (Reference 1). " One of

several interesting topics discussed in the classic paper of Ashley

and Zartarian was that of using piston theory assumptions in formulat-

ing lift and moment expressions for arbitrary airfoil motions.

Referring to Figure 26 and noting that (1) lift is defined positive

downward (2) moment about the elastic axis is defined positive nose

up and (3) moment about the aileron hinge line is defined positive

trailing edge down, these expressions for the zero-thickness lift and

moments are given by

2
+ 4b?,,a,(1-x)2j (6.14)

2 2
M = 4b a (x1 [2 +x 1 ] - 1)h + 4b aU(x 1 [2 +x 1 ]-)a

b3 2 2 2 2

16 3 3x[ x])
3bPMc 1 3x1 El-x1 ]P(6.15)
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M ,b.t_ 2 3 1)4 ]b3

MA = 4b2 ac (2x0 - 1)h + 4b ?pcacU(2x 0 - 1)a + 4b Pa,[4x0 (1-x0-3 a

2 83 2 2+ 4b P.,a U(1-x )(2x0-1-x 1) +b a(3x0 [1-x -x [x -3]-2)3

(6.16)

where

b = airfoil semi-chord

x0= dimensionless distance from leading edge to elastic axis

x= dimensionless distance from leading edge to aileron hinge

line

dt

= free stream density

a = free stream speed of sound

= airspeed

h(t) = dimensional plunging motion

a(t) = airfoil angle of attack

0(t) = aileron angle of attack relative to the angle

and it has been tacitly assumed that the airfoil has an aerodynamically

unbalanced flap so that E = 0.

6.4 Exact Two-Dimensional Linearized Aerodynamic Theory for

an Accelerating Unsteady Supersonic Airfoil

The preceding sub-section has dealt with a theory that utilizes

an instantaneous point function relationship between the vertical com-

ponent of the airfoil velocity and the pressure at any point on a two-

simensional wing. This relationship has been found to be quite satis-

factory for constant flow velocity problems in which the flow velocity
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is within a rather wide range of supersonic speeds. At the lower

supersonic speeds however, the piston theory concept yields less

accurate results since the time history of the airfoil downwash con-

tributes appreciably to the pressure expressions. Additionally, the

piston theory concept is unable to show the direct effects of airfoil

forward acceleration in any velocity regime. In order to overcome

these possible deficiences, this sub-section introduces the exact

two-dimensional linearized aerodynamic theory for an accelerating

unsteady supersonic airfoil. This introduction will then permit a

comparison of this more exact theory with the linearized version of

piston theory. Since it is not possible, in general, to obtain exact

solutions for the theory alluded to in this sub-section, it was de-

cided to solve the relatively easy problem that leads to the deter-

mination of the various impulse responses of the airfoil. As will

be seen these impulse responses provide a clear indication of the

effects of both the time history of the airfoil motion and the forward

acceleration as well as providing the kernel functions necessary for

an integral formulation of the lift and moment expressions for arbitrary

motion. This work is facilitated by utilizing a remarkable analogy

that exists between a two-dimensional accelerating unsteady airfoil

problem (see Figure 27) and a three-dimensional steady flow airfoil

problem in which the main stream Mach number is fixed at M = 2

(See Figure 28). The details of this analogy are well-known and may

be reviewed by referring to a report by Lomax et al (Reference 71) and

to a monograph by Miles (Reference 72). Utilizing this analogy it is

possible to treat the entire forward speed range, subsonic and super-

sonic, of the two-dimensional airfoil flying at a constant altitude.

However, since a subsonic forward speed requires that the three-

dimensional "analogy" wing possess subsonic leading and trailing
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edges, the computational labor (for example see References 73 and 74)

becomes prohibitive. For this reason, the present investigation was

limited to speeds of sonic and supersonic magnitudes. Rigorously

speaking, the theory of this section is valid only for constant alti-

tude flight. However, the results and discussion contained in

Appendix II show that except at M= 1 the variable altitude cases may

be very satisfactorily treated by simply considering the state variables

as given functions of time.

At this point all the necessary mathematical tools are im-

plicitly available (in References 71 and 72) to calculate the time-

varying pressure distribution on the two-dimensional supersonic air-

foil by first obtaining the pressure distribution on the steady flow

three-dimensional analogy wing and then appropriately transforming

the results. As previously explained the pressure distributions and

eventually the integrated lifts and moments, will be obtained that

correspond to the various upwash impulse responses of the two-

dimensional airfoil. For the rigid chord airfoil, two upwash impulse

responses, corresponding to impulsive plunging motion and to im-

pulsive pitch rate motion (i.e., constant and linear chordwise varia-

tion in instantaneous upwash), are required to represent motion de-

pendent forces. The determination of these upwash impulse responses

requires careful integration techniques since the already singular

integrals inherent in the formulation are further complicated by the

required singular upwash distributions. Thus a finite band of upwash

will be used in formulating the expressions for the upwash responses

and then a limiting process will be used to rigorously determine the

true impulse responses. When this limiting process is applied, many

integration regions on the three-dimensional analogy wing (these
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regions being defined by intersections of various Mach lines) vanish,

thus these vanishing regions must be examined to make sure that

they leave no residual contributions to the pressure distribution.

This work, as well as the rest of the details required to obtain the

various upwash impulse responses, is quite lengthy. Since an out-

line of the procedure for obtaining the upwash impulse responses is

given in Appendix III, just the final results of this procedure are now

presented for a rigid chord airfoil with a constant forward acceleration.

Lift and Moment Due to Upwash Caused by Impulsive Plunging

L c(T,x') =4

-4b 
a 6 (x')

4 1 -F(T,x') 2
- bpa. 1 -i (I, )

.0

Region I

Region II

Region III

2-4b %ao[ 6 (x') - x']

8 2 x' -1,-l+F(Tx')
M c(T,x') = -b a[ 2Cos x , )

1 + F(T ,x')
2

(6. 18)
1-F(T Ix')]

x'

0 Region III

*
As will be seen in Appendix III, upwash distributions of higher
power in the chordwise variable present no difficulties, thus
flexible chord airfoils may also be treated by this technique.

(6.17)

Region I

Region II
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Lift and Moment Due to Upwash Caused by an Impulsive Pitch

Rate About the Leading Edge

L't (T, x') =

-4b a 6(x')/2 + x'/2 ]

4 x' -1 -1+F(Tx')
- Tb cacj Cos ( , )+

1-F(T ,x') 2
2 x

0

Region I

Region II

I
(6.19)

Region III

8b2 ?,a JLk + X, F(T,x')}

8 2
b faL 3

Region II

1-F(T,x') 1-F(Tx') 2  s -1
-F (T,- X')+ 2 (

x 2

0 Region III

2
F(T,x') = [M 0 (T)][t-T] +1[t-T]

x= t-T

a= bA/a 2 O = Froude number

A = Value of the constant forward acceleration

5 (x') = Unit impulse function (Dirac delta function)

Region I

3/2
1 - F(Tx)2

x'

where

(6.20)
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c ) Refers to constant upwash condition due to
impulsive plunging

( ), Refers to linearly varying upwash condition
due to impulsive pitch rate about the leading
edge

Region I is given by

T <t<T- M 0 + 1+ M0 +i11 2 +
2 '- + 2 c,+ (6.21)

Region II is given by

M0+ +1 IM+1 2  M 1 2 +
- - -L<t<T 0 +2 ' 2

(6.22)

Region III is given by

M2-1 MF _2__

t >T- 27 2 '+

If a non-constant forward acceleration is to be considered, it is

only necessary to re-define the F(T,t-T) term and the integration

regions. Thus for non-constant acceleration beginning at t=T=0,

the only changes in the above equations are given as

1 T t
F(T, t-T) = - - [ I U(C)dC - S U(C)dC]

CO 0 0

Region I is given by 0 < t < t4

Region II is given by t _< t < t6 (6.23)

Region III is given by t > t6

where t4 and t6 are given by the following implicit relations
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t - T = 1 - F(T,t -T)

t6 - T = -1 + F(T,t 6 -T) (6.24)

In order to obtain an indication of the effects of airfoil time

history and forward acceleration, Figures 29 through 32 present the

lift and moment impulse responses for instantaneous Mach numbers

M 0(T) equal to 1.0, 1.5, and 2.0. Zero, moderate and very large

accelerations are considered in each case by choosing Froude

- 2 - 1
numbers equal to 0, 1 x 10 , and 1 x 10 These Froude numbers

correspond to accelerations of 0, 300, and 3000g for a 1 foot semi-

chord airfoil or to accelerations of 0, 30, and 300g for a 10 foot

semi-chord airfoil. Additionally, the influence of very large de-

celeration (a= -1 x 10 1) is shown for Mach number M0 () = 2.

Figures 29 through 32 reveal the following features about the lift

and moment impulse responses:

A. The portions of the lift and moment impulse responses con-

taining the delta functions are independent of Mach number

and acceleration. In fact they are equal to the impulse re-

sponses calculated by piston theory aerodynamics.

B. The influence of increasing the Mach number M (T) and/or

the acceleration (~"3-) is to cause the lift and moment

impulse responses to attenuate more rapidly.

C. Except at Mach number M 0 (T) 1 the influence of accelera-

tion is microscopic compared to the influence of the Mach

number M0 (T).

D. Increasing the Mach number M0 (T) brings the present

theory rapidly into close agreement with the simpler piston

theory results.



94

Additionally, Figures 29 through 32 imply that it is advantageous

to distinguish between the influence of the quasi-steady variation

of Mach number (which is the time history effect) and the direct

influence of the acceleration (which is embodied in the ' terms);

since, once it is shown that the quasi-steady variation of Mach

number dominates the direct acceleration effects, then the two-

dimensional airfoil calculations are somewhat simplified and

(perhaps more important for future work) some justification is

established for treating the accelerating finite span wing in an

approximate quasi-steady manner. In fact, Figures 29 through 32

do show that, except for M 0 (T) 1, even the large acceleration

cases ( *3= 1 x 10 ) are approximated very well by assuming

"= 0 and by just considering the quasi-steady variation of

M0(T). Additionally, for a Mach number M 0 (T) > 2.5, even the

effect of M 0 (T) is very small so that piston theory aerodynamics

begins to be an accurate representation.

When considering a problem in which arbitrary motion is in-

volved, the lift and moment impulse responses calculated in Equa-

tions(6. 17) through (6.20) are the kernel functions for the integral

relations that determine the lift and moment due to a given arbitrary

motion. Referring to Figure 33, which illustrates the notation used

in describing the airfoils perturbed flight path, the integral rela-

tions for the lift and moment about the leading edge due to a given

arbitrary motion are given by:

t + t
L(t) = Lc (T, x')[h (T)+U(T)a(T)]dT + J L (T ,x')e(T)d T (6.25)

t M t+
M(t) M f M(T~x'h(T)IU(T)a(T)]dT +YT M -L(T .X') 19(T) dT (6.26)

I.nlillil,1.1.11_ d, n = -
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Thus, the presentation of the exact two-dimensional linearized

aerodynamic theory for an accelerating unsteady supersonic airfoil

is completed.

Finally, as a thought towards further work, it is suggested

that a useful approximation of the exact linearized theory may be

constructed by considering the lift and moment impulse responses

as a collection of weighted pulses. This would reduce the above

integrals,Equations (6. 25) and (6. 26),to difference - differential

elements. Thus when these relations are substituted into the

equations of motion for some system, the system is described by

a coupled set of difference - differential equations. The solution

of this set of equations, perhaps by Laplace transform methods,

may be less time-consuming than solving the original set of integro-

differential equations that describe the system's behavior. The

success of this method obviously depends on having a larg value

of the ratio of the characteristic time period of the unsteady motion

to the time increment required for the impulse load (lift or moment)

response to go to zero; since, if this ratio is large, the effect of an

impulse or of a finite load time history on the system will be prac-

tically identical. However, if this condition is not met it simply

means that more pulses must be used to more accurately describe

the load impulse responses. Clearly if the required number of

pulses is too large, the original integro-differential equations may

still be attractive.

However, referring again to Figures 29 through 32 it is seen

that the time increment required for the impulse load responses to go

to zero (excepting the M = 1 case) is of the order of 2b x 10-3 to

2b x 10-2 sec., where b is the airfoil semi-chord measured in feet.
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Thus, at most, two pulses (in addition to the "piston theory pulse")

should be adequate for a wide class of problems. Referring to

Figures 34 and 35 it is readily seen how the load time history areas

are replaced by an "equivalent area" impulse centered at the

x'-centroids of the original load time history areas. The distances

of the centroids from the x' = 0 axis as well as the original areas

may be plotted as a function of Mach number M0 (T) with the Froude

number 'J as a parameter. See Figure 36. However, as mentioned

previously, probably only the 7= 0 curve need be used when

M (T) ;C 1. If successful, this "multi-pulse" piston theory should

facilitate response and flutter calculations in the Mach number

range from slightly above 1. 0 to slightly above 2. 5 where the

usual piston theory begins to be an accurate representation.

At this point the presentation and discussion of the required

aerodynamic and aerothermoelastic theories terminates, the remain-

ing two chapters being devoted to an example of high-speed vibratory

wing response.
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CHAPTER 7

THE PURPOSE, DEFINITION AND DESCRIPTION OF THE
COMPUTATIONAL EFFORTS

This chapter states the purpose of the ensuing computational effort,

briefly defines the problem to be analyzed, describes the equations

representing the problem and then discusses the methods of solving

the problem. The definition of the problem includes a presentation

of the flight missions chosen and a summary of the geometrical

and structural properties of the wing associated with the vehicle

chosen to perform the flight missions. The calculations necessary

for expressing the time-varying coefficients of the above-mentioned

equations are also displayed graphically. Finally, the equations of

motion are presented and the methods utilized in the computational

routines are explained. A short summary of IBM 704 calculation

times is presented in Appendix IV to give the reader some idea of

the "run-time" magnitudes required to perform a study of this

general type.

The purpose of the ensuing computational effort is to answer,

as completely as possible, the following questions.

(A) When are time-varying coefficients of importance in

aeroelastic applications?

(B) Do these instances of importance (if any) correspond

to aircraft performing flight missions of practical

importance ?

(C) Given a specific type of flight mission and aircraft,

what is the least complicated theory that may be

confidently used for analysis purposes?
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(D) Will in fact the answer to (C) be that a quasi-steady

linear analysis is adequate for a large variety of

flight missions and aircraft?

Emphasis has been placed on the possibility of an affirmative answer

for question (D) since this fact would permit the aeroelastician to

utilize, with confidence, a standard analysis technique for the study

of a large class of aircraft performing their various flight missions.

Although it is desired to answer questions (A) through (D)

for all types of aeronautical vehicles, the enormous amount of com-

putational effort required to calculate even one exact reference

solution for a problem involving time-varying coefficients necessitates

that the different types of aircraft considered and their numerous pos-

sible flight missions must be severely limited so that the computa-

tional work can be completed using reasonable amounts of time and

funds. Accordingly, it was decided to concentrate on manned

vehicles operating within the atmosphere. Furthermore, in order

to make the computations as useful as possible, two flight missions

will be chosen that could conceivably represent the upper bound

performance of manned vehicles of the foreseeable future. This

choice of flight missions should insure clear indications of how ap-

proximately the time-varying system coefficients may be treated and

still yield the correct system behavior.

Flight within the atmosphere yields definite bounds on the

flight missions possible due to temperature-induced material limita-

tions and the specification of a human occupant yields an upper

bound on the g loading time history that can be endured by the pilot.

*

The term "exact" here implies the use of the most accurate theories
presented in Chapter 6.
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For example, Reference 75 presents the maximum Mach number-

altitude trajectories permissible (assuming reasonable material

properties) due to kinetic heating and high q loadings, while

Reference 76 displays the human time-tolerance intervals at dif-

ferent g loadings for various body orientations. Considering the

above bounds imposed on the flight missions, a consistent choice

of a manned vehicle would be one of a "super X-15" variety or of

a boost-glide type which will perform the following two assumed

flight missions.

The vehicle starts from a slightly supersonic speed (M = 1. 05)

at 35,000 feet and initiates a vertical climb which culminates in

an altitude of about 140, 000 feet and a final Mach number M * 8;

after which time the vehicle remains at a constant altitude and

Mach number. The two flight missions are distinguished only by

the acceleration time histories used during the vertical climb.

The first time history is a constant 9g acceleration while the

second time history is an a/2(1-cos t) type acceleration with a

and / adjusted so that the time to climb, the final altitude and

the final Mach number are approximately equal. The variables

summarizing these two flight missions are now presented as func-

tions of time, and are also given in graphical form in Figures 37

through 40. Additionally, the variation of the dynamic pressure q

versus altitude h is shown for the 9g acceleration case in Figure 41.

Flight Trajectory Summary for the 9q Vertical Acceleration

35000 + 144.9t2 + 1018t Ft.; 0 < t < 23.26 sec.
h(t) = 137074 Ft. t > 23.26 sec. (7.1)

M(t) = 1.05 + .2985t ; < t< 23.26 sec.

f8.00 t > 23.26 sec. (7.2)

co(h(t)) = . 0 0 3 4 e h(t)/22, 000 slug s/ft. 3 (7.3)
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The wall temperature is not an analytical function of time and is

therefore expressed in tabular form.

T w(t) deg.

471

850

960

1305

1450

1500

1540

1530

1525

R. t sec.

0

5

6

10

13

15

20

23

25

(7.4)

Flight Trajectory Summary for the a/2 (1 -cos 1t) Vertical Acceleration

a = 540

9 = .2513

30723 + 4277 cos (.2513t) + 1018t
h(t) + 135 t 2 Ft; 0 < t < 25 sec.

144825 Ft. t > 25 sec.

1.05 - 1.1065 sin (.2513t) + .2780t; 0 < t < 25 sec.

M(t) =

V8 t>25 sec.

0(h(t)) = .0034e h(t)/22, 
0 0 0 slugs/ft. 3

(7. 5)

(7.6)

(7. 7)

(7.8)

--- 4
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T (t) deg. R. t sec.

471 0

530 5

577 6

1108 10

1490 13 (7.9)

1630 15

1680 20

1600 23

1490 25

Summary of the Geometrical and Structural Properties

of the Vehicle Wing

The wing geometry is described in Figure 42. Although the

planform is rectangular the wing area, wing weight, etc., are

roughly the same as the unclassified estimates (available in peri-

odicals) made for the X-15. Structurally the wing is represented by

a 3% unsymmetrical (fore and aft) double wedge stainless steel

multi-cell thick skin cross-section. The number of cells is not

determined since this then allows the required freedom in choosing

the iso-thermal fundamental torsional frequency. This freedom in

choosing wai -thermal is necessary since a wing must be found

that is just slightly stable (but not unstable) when analyzed by quasi-

steady techniques over some portion of the flight mission. This

slightly stable configuration gives some "sensitivity" to the results

calculated using non-quasi-steady analyses. In view of these
2remarks w is found by using a modified form of Equation 6. 11

Th
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(w 2  h 2 T.2GJ * )2h
a 2 iso-thermal - GJ(0) where X is adjusted

(2L)2 Ia linear

to give an adequate value of W 2iso-thermal. After some mathe-

2 ~
matical experimenting it is found that K == 4. 00, which appears to

be quite high. However, this value of K2 corresponds to adding

only about . 015 to the existing airfoil thickness ratio. Hence this

artifice produces the required changes well within the error bounds

of a design analysis.

Using the assumed values,

M = 5.8230 slugs/ft..

I = 14.216 slug ft. 2

Sa = -3.6394 slug ft.

hn2
= .20

c = 2b = 6.25 ft.

L = 8 ft.

it is found that
2

W (t) = .01085 GJ(t)

G (0) = 5.932 x 10 #ft.
linear

2 4 2 2
W (0) = 6.44 x 10 rad. /sec.

iso-thermal

Wh2(0) = 1.288 x 104 rad. 2/sec.2

iso-thermal

By assuming no degradation of elastic properties at constant

elevated temperatures,

2 2
h2(0) = Wh (t).

iso-thermal

*
GJ(0) denotes the value of GJ at t = 0 when no non-linear mid-plane
linear
stretching effect is included.
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Now by using equation 6. 10 the GJ may be calculated with

just one modification. Equation 6.10 was derived assuming a solid

wing, thus some correction must be made for the fact that the wing

to be analyzed has a cellular structure. The desired correction has

been made by introducing a thermal stress efficiency factor TI into

the equation for GJ(t) so that this result is now given, referring to

Figure 43, as

0 2 .45C 2 2
GJ(t) = GJ(0) = 2n a- y t (y)dy + 2n a- ay t2 (y)dy #ft.

.55C x 1 0 x 2

where a- is given by Equation 6. 3.
x

Again after a limited amount of mathematical experimenting, 71 was

assigned a value of n = .5000. Additionally when assessing 6- it is
x

necessary to specify the initial twist rate k that introduces the non-

linearity into the analysis. Figure 44 shows the effect of k on GJ(t)

for both flight missions and for three values of k.

As can be seen from Figure 44, large reductions in torsional

stiffness do not take place. This is primarily due to the fact that,

at the altitudes considered, the heat transfer coefficient h is quite
ths

small since it is directly proportional to the 4/5 power of the

atmospheric density.

SUMMARY OF CALCULATION PROCEDURES AND METHODS OF SOLVING

THE PROBLEM

The calculations described in this sub-section were designed

to numerically solve the system of Equations 7. 10 and 7. 11 with an

accuracy of four or five significant figures. Since the solution of

these equations depends on what aerodynamic theory is used to

ii
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describe the lift and moment, what flight mission is chosen, and

how exactly (or how approximately) the effects of the time-varying

coefficients are treated, it is obvious that several solutions of

varying "exactness" will ensue and that, possibly, each solution

may be best obtained by a different calculation procedure. Further-

more, since it is not known a priori how markedly the solutions

utilizing the time-varying coefficients and/or the various aerodynamic

theories will differ from the damped sinusoidal sums that are charac-

teristic of the quasi-steady solutions, the more exact solutions must

be the responses to some suitable set of inputs such that these solu-

tions reveal a significant amount of information about the effects of

the time-varying coefficients and the various aerodynamic theories.

Clearly, several choices must be now made as to what inputs are to

be used, at what times during the flight mission should these inputs

be initiated, how long after these input initiations should the re-

sponse be recorded, how many different approximate solutions are

to be attempted, and as to what techniques should be used to obtain

the various approximate solutions. These choices are described in

the following paragraphs.

Suitable inputs are obtained by using perturbation impulsive

loadings (h or a) at some time T. One advantage of impulsive in-

puts is their correspondence to velocity initial conditions for a

given system. Hence it is possible to obtain the homogeneous re-

sponse of the system at time t due to specified velocity initial con-

ditions at time T. The above reference to perturbation is underlined

since it is to be understood that the system response is comprised

of two parts. The first part being that response due to intentional

control and throttle movements throughout the flight mission; the
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second part being the response to the chosen perturbation inputs

occurring at time(s) T. This further implies that the response of

interest in this report, the perturbation response, is zero until

t = T. Thus given a flight mission, and a perturbation input at

time T (the i denotes that there may be several values of T at

which one would like to investigate the effects of the input), one

will obtain i traces of h and a perturbation motions, each trace

being zero until t = T,. These h and a motions are combinations
21

of the damped normal aeroelastic modes (if they exist) of the system,

thus unless one mode predominates in the description of either h or

a it may be difficult to draw quantitative conclusions about the

.effective damping ratios of the system, although qualitative conclu-

sions are easily obtained. In the special case of the quasi-steady

analysis utilizing piston theory aerodynamics, it is much easier to

calculate the frequencies and damping ratios directly with no con-

sideration given to the total h and a motion. Had time permitted,

the quasi-steady response to h and a impulsive inputs would have

provided a more direct correlation with the other calculations.

The large amounts of time required, on even such an efficient

high-speed machine as the IBM 704 computer, to calculate the re-

sponse time histories made it imperative to sparingly choose the

times of input initiations and the duration of the recorded response.

Thus the cases involving piston theory aerodynamics were studied

for inputs at 0, 2, 4, ... , 28, 30 seconds, with each time history

having a one second duration and the cases involving the exact un-

steady accelerating aerodynamics were studied for inputs at 0, 2, 4,

6, and 8 seconds, with each time history having a one-half second

duration.
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The solutions involving piston theory aerodynamics were

found by first treating the time-varying coefficients exactly and

then by using a quasi-steady analysis for the times t = 0, 2, 4,...,

28, 30 seconds.

When considering the solutions involving the exact unsteady

accelerating aerodynamics the results of a preliminary calculation

involving the determination of lift and moment responses to im-

pulsive pitch and plunge inputs indicated, for the accelerations

involved in the given flight missions and for the stated Mach number

range 1. 05 < M < 8, that the direct effect of the Froude number S
was negligible. Hence the S= 0 approximation is used with excel-

lent justification for all the exact unsteady accelerating aero-

dynamics relations. Furthermore, it was decided to first compare

the results of the more critical flight mission (more critical in the

sense of simultaneous high q and highIoccurring) with the simpler

piston theory solutions and then to determine if the less critical

flight mission should be considered. This decision and its after-

math is discussed in Chapter 8. The calculation procedures for

these exact solutions and the approximate procedures are now de-

scribed in some detail.

The equations treated, referring to Figure 26, are

h (t) + - a (t) + Wh2 h(t) = - L(t)/M (7.10)
M

*
One might argue that the "less critical" flight mission, the 9g case,
would demonstrate more unsteady accelerating aerodynamics effects
in the Mach number region 1. 05-1. 5 than would the "most critical"
flight mission. The argument is of course correct except that the
Froude number "J for a 9g acceleration of the airfoil in question at
35, 000 ft. altitude is I = i0-. This value of' predicates small
effects even in the low supersonic range 1. 05 < M < 1.5.
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S /I0 h (t) + a (t) + a a(t) = M0(t)/I

M = mass = 5.8230 slugs

I = Ia 14.216 slug ft. 2

S S = -3.6394 slug ft.

Now for an unsteady supersonic aerodynamic solution L(t) and

M (t) are given by
a

t
L(t) = f

0

+

L (T ,t-T)U(T) [h. (L + a(T)]dT

t+t
+ S L (Tt-T)a (T)dT

0

t
Ma(t) = f

0

+

M (T,t-T)U(T) [ (T)
c UJ(T)

t

+0 M (T ,t-T) a (T)dT
0

while for a piston theory solution:

2 4
U (t) sE M(t)

4 1
+ ()) + M(t) 2 a

A
- ( + 1 ) ) cU t)

where
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(7.11)

(7.12)

+ a(T)]dT

(7.13)

2
L )= 2

(7.14)
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P O(t) A
M (t) = U2(t) Sc[( 4 (a - '-)+ (2f+1)__w h (t) + a(0))a 2 M(t) 2 2 U(t)C

+ 4 a-a2- - ( + 1) 2aA _ 2M 7.15)
M(t) 33  2 c 3  U (t)

where

A total wing cross-section area
w

M = first area-moment of total wing cross-
section about the leading edge

The piston theory solution of the problem was found first,

as the differential equations could be solved numerically with an

accuracy of five significant figures and could be compared with a

difference equation solution of the same set. This comparison is

important, since it gives the basis for a statement of accuracy con-

cerning the difference equations used to solve the unsteady aero-

dynamics set of equations. A preliminary study was done to deter-

mine whether operational calculus methods could be employed to

reduce the exact solution of the unsteady aerodynamics set to a

feasible IBM 704 problem. Results of this study showed that an

estimated minimum of 100 hours of machine time would be necessary

for this solution due to the presence of changing functions of

(t-T,T) under the integral sign. Therefore, the decision to use

difference equation approximations was made since the comparison

of the exact solution with the difference equation solution of the

piston theory formulation showed that 4 to 5 significant figure

accuracy could be obtained by using a At of . 001 sec. and by ap-

proximating the true value of h(t) and a(t) at the end of the first

.001 second interval by the piston theory exact solution values.
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The entire study as described was done for an acceleration

of ng = 270 (1 - cos .2513t) letting 0&= 0 and the complete piston

theory and quasi-steady study was done for an acceleration of

ng = 9g. Each of these accelerations was broken up into two cases.

Case 1 is a time history following a unit impulse on h(t) at time t
0

where a (t ) = 0; Case assumes h(t ) = 0 and a (t) = 1. 0.
0 0 0

Before the main body of calculations could be started, a

suitable k had to be found (as mentioned previously). By finding

GJ(t) in a separate preliminary calculation, it was determined that

k = .006 was a reasonable choice. Then GJ(t) was approximated by

a series of cubic equations yielding five significant figures for use

in solving Equations (7.10) and (7.11).

Substituting the given values into Equations (7. 10) and (7.11)

the piston theory system for both ng's becomes:

h(t) - .625 a (t) = -2084.4p%(t){ h(t) - .3125 a (t)j

4-
- 1.288 x 10 h(t) - 2084.4pc(t)U(t)a(t) (7.16)

-. 256h (t) + a (t) = 853.77?c(t) {. 3125h(t) - 3.3529 a (t)

+ t266.80 %(t)U(t) - 2 (t)I a(t) (7.17)

As stated previously, these equations were first solved

numerically and then the finite difference form of these equations

were solved for several time histories in order that the aforementioned
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comparison could be made. Additionally, this set of equations was

solved in a quasi-steady manner, for times t = 0, 2, 4, ... , 23,

30 seconds. This quasi-steady calculation was performed in the
n dn

classical manner by letting p = in the Equations 7. 16 and 7. 17
dtn

and then solving for the roots of the resultant quartic in p. One thus

obtains four sets of roots in the form a ib and c id, where a and

c are proportional to the instantaneous (quasi-steady) damping ratios

C of the system and b and d are the instantaneous frequencies of the

system.

To treat the unsteady supersonic aerodynamics solution

Equations 7.10 and 7.11 were written in operational form:

1* * *

x.(t) - L ,(t) x - L x = f. (t)

+ g, (t) f [K.. (Tt-T)x.(T) +K..(T,t-T)x.(T)
1 0 1 1J

+ K (T,t-T)x.(T) + K ..(Tt-T)x,(T)]dT i,j = 1,2
Ii~ 1 1

J. (7.18)

where 1 denotes the h motion and 2 denotes the a motion and

* * d *
L (t) =a (t) -- +b .. (t)

II ii dt ii

* * d 2  * d *
L (t)=d ,.(t) 2+a * (t)- +b .(t)ij ij dt2 ij dt ij
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It is most convenient to remove the dirac portion of the ex-

pression from under the integral sign yielding Equation 7.19, where

C and C are the coefficients of the dirac portion of the kernel

multiplying X and X respectively, and K and Kk are the kernels

with the dirac portion removed.

x .(t) = L .. (t) x. (t) + L ,.(t) x.(t) + g (t)[ Cx (t) + C x.(t)
1 11 1 1 i i i ij j

+ C.,x (t) +CX(0+ (t) + g ,(t) 0[Kiix i(T) + K. x (T)

11 1 1J . i1

+ iK,,x (T) + K .x(T) dT
11 1 lj .3

(7.19)

*
f .*(t) = 0

*

d 12 o/ M
* 2

b h o11 h
* -

g = -S/cM

C = C21 0

011 2a~ c

2 1
C = 2 fa~c (a -- )21 2

K12=

* *
a a 0

11 J
*

d 21 -S /Io
* 2b = -w

22 a
*

g 2 = S/cI0

C12 = 2 a cU

12

70

2 2 1-f 2
2 a 2,U 1 - ( )

b = 0
ij

C =2 2
C22= 2 ,ac U(a-1)

2

a) K 1 = K21 0

3 1 2
22 2ac ( - a +a

; 2 < x'; f < 1 + x'

; f> 1 + x'

where

A

0



9a2,cUx'
K22- 2 -1UX

K22 a2cU[y os~

0

f- 1
x 2 x

a
x = (t-T)

f = f(x',T) = M(T)x'

x'
2

K 1 1

= [1 + M(T)] 1

=

0

2 2
S- a

0

1f2
_ I1 f ) 2

x

;0 <x' < x 2

< x', f < 1 + x'

;f> 1 +x'

2,
a cx

K
2 1

2 (lxf l4 L
a2 2 Cos ( ) +2

0

a cx'

2 a2 - cos- + ( 1-fa)
12 Ir2 x 2

0

(a - f) 1 - f 2
2

1- ( 2 )
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; x' 2



[- a2 c2fx'

Wfa c
-1 f-i f-)

2 x 2

12

+-[1 -3

2 3/2

(9)]e1xI

-0

By using central difference approximations, set

n 2n+1(t)- n-
Xn~ = 2(tn+ 1- t n)

.. x n+()- 2 x (t) + n- 1t
x (t) n- 2

and replacing the above integral by

n-i

k=O
W EK (t t -t )x(i

k ii k'r n k k +K (tk tn tk k

(i) (i)
k+ 1 k- 1

+K (t t -t ) %k+i k-

ii k' n k 2L

+ K (tkI t -t Xk i ~xk- i)ij n k 2,L

113

K22
1-f 2

XI

n+() xn-
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(where Wk is the weighting factor corresponding to the trapezoidal

rule of numerical integration) one obtains the difference equations,

= j-',,(i)
nx niin n

+ . x n
Ijn n- 1

+ .. xn
ijn n

+ A x
iin n- 1

+ I..
ujn

where

i j

* *

iin 2

a1 .
a iin
2A

g. C..i ijn
2A

* * *
d.. a g. C.,

1 ijn _ ijn _ iin

ijn A2 2 2A

2 *
iin 2 lin

-2d-
i1n +-b

ijn 62

*
+g. C..

1 uin

~

+ +g 1 C,
ijn i ijn

* *
a.. g. .

A_ 1 iin i 11
lin A2 2L 2A

*
dn-

iin A

** -
a. g. C..

in _ i 1
2A 2A

A =t - t
n n-i

3, (i),nx Wiin n+ 1 + nx n1
ijn n+ 1

(7.20)
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To start the solution of these difference equations Case 1 and Case 2

initial conditions were used, the values from the piston theory solu-

tion at to + . 001 sec. (the piston theory solution = the unsteady aero-

dynamics solution to five significant figures at t + .001 sec.), and

the exact derivatives at t = t rather than the difference approxima-

tions. These measures were taken to insure at least 4 figures of

accuracy in the results, since it was found that a sizeable error

can be introduced by using the stated difference equation between

t and t + .001 sec.
0 0

Since the GJ(t) calculation, the piston theory differential

equation solution, and the difference equation solution utilizing

the exact unsteady accelerating aerodynamic theory were all done

by means of an IBM 704, programs written in the Share Assembly

language are available for future use by interested people or

agencies. Problems similarly formulated with different parameters

could be solved by making only minor modifications to the existing

programs.
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CHAPTER 8

PRESENTATION AND DISCUSSION OF THE SOLUTIONS

Once the calculations described in Chapter 7 have been

completed the resulting plethora of information must be presented

in an organized fashion such that the answers to questions (A)

through (D) , posed in the first page of Chapter 7 of this thesis

may be obtained. To this end, the impulse response time

histories h and a were examined over their full time range and

then grouped into the following two categories. The first category

contained h and a time histories, utilizing piston theory aero-

dynamics, for the two acceleration time histories and both Case 1

and Case 2 inputs. The second category contained h and a time

histories, utilizing first piston theory aerodynamics and then un-

steady accelerating aerodynamics, which were examined over the

time interval 0 < t < 8 seconds for the ng = 270(1-cos.2513t)

acceleration time history and both Case 1 and Case 2 inputs.

Note that the h and a time histories grouped in the above two

categories are exact solutions of the problem within the frame-

work of the mathematical model chosen for the aerodynamics, etc.

Thus these time histories yield the most accurate response curves

of the aircraft wing. A third grouping of information was formed by

compiling the quasi-steady frequency calculations, as well as the

For the chosen class of "manned vehicles".



117

instantaneous frequencies obtained from the exact solutions

utilizing first piston theory aerodynamics and then unsteady ac-

celerating aerodynamics, over the entire time range for both ac-

celeration time histories. This bloc of information obviously

yields the crudest possible, and most easily obtainable, descrip-

tion of the wing motion. At this point, the "best" and the "worst"

solutions are available for inspection. Note that if additional

solutions intermediate to the "best" and "worst" are required,

the theories developed in Part I of this thesis are then applicable.

The need for these additional solutions must be a consequence of

a poor correlation between the "worst" and the "best" solution,

therefore the comparison of these latter solutions should be first

pursued.

Since Groups 1, 2, and 3 contain so much data, these

data were re-examined and then sorted, within each group, into

their essential and non-essential elements; the essential ele-

ments of each group being presented in this thesis. The essential

elements of the first, second, and third groups are contained in

Figures 51 through 66, Figures 67 through 78, and Tables 2 through

6, respectively.

*

In order to directly compare the quasi-steady portion of the group
three information with groups one and two, a quasi-steady analysis
of the wing response due to Case 1 and Case 2 inputs should have
been made. However, time limitations dictated the approach pur-
sued above.

**

Necessarily so, because the only feasible calculational procedure
dictated a step by step (time-wise) method as described in
Chapter 7 of this thesis.

Non-essential being used here to indicate a redundant or repetitive
type of information.
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Thus Figures 51 through 66 present h and a time histories

utilizing piston theory aerodynamics near the times t = t and
".0 0

t =t + .45 seconds, where t = 0, 10, 20, and 30 seconds, for

the two acceleration time histories and the Case 1 and 2 inputs.

This group of information should demonstrate whether the h and a

impulse responses are similar to the general type of impulse

response W(T,t-T) for a time-varying system or if indeed they are

more nearly like the impulse response W(t-T) for a constant co-

efficient system. The above-mentioned demonstrations may be

carried out by noting the behavior of the delayed trace at t = t

+ .45 seconds with respect to the trace observed just after the

application of the impulsive input at t = t .

Figures 67 through 78 present comparisons between the h

and a time histories obtained by first using piston theory aero-

dynamics and then using unsteady accelerating aerodynamics in

the exact analysis. The t time range for these comparisons is

concentrated in the early portions of the ng = 270(1-cos.2513t)

flight mission since it is in this time interval that the greatest

solution differences should appear due to the two aerodynamic

theory representations. This group of information should estab-

lish the relative merits of using the "more accurate" (but computa-

tionally difficult) unsteady accelerating aerodynamic theory as

Denote t-T by s. Thus the waveform of the general type of impulse
response W(T, s), associated with a system describable in terms of
time-varying coefficient differential equations, depends on the time
T at which the impulse is applied as well as the elapsed time s. In
other words, if a plot of W(T , s) were compared with a plot of W(T 2 's)
such that the T point and the T point were coincident, the waveforms
would not be identical. This is in sharp contrast to the waveform of
an impulse response associated with a system described in terms of
constant coefficient differential equations, in which such a comparison
would show identical waveforms so that only a dependence on s is
demonstrated. A similar description of this elementary concept is
given by Laning and Battin on page 182 of Reference 15.
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opposed to using the "less accurate" (but computationally simpler)

piston theory aerodynamics.

Tables 2 through 6 present comparisons between the quasi-

steady and the instantaneous frequencies over the entire time range.

This group of information should give supporting evidence to the

trends established by an analysis of Figures 51 through 78.

Now that the usefulness and purpose of the above three

groups of information has been delineated the conclusions obtained

from these groups may be presented.

Figures 51 through 66 generally demonstrate, in any given

time interval, that the h and a time histories exhibit the usual

characteristics of a constant coefficient system coupled mode re-

sponse. One of a few exceptions to this general statement is

Figure 57 in which the a time history is seen to grow slightly for

t = 10.45 seconds. However this growth may be predicted on a

quasi-steady basis since at this particular time GJ and P are

beginning to show reasonable decreases. It is thus correct to

state that the coupled h and a impulse responses are not similar

to the general type of impulse response W(T,t-T) but are indeed

very nearly like the constant coefficient system impulse responses

W(t-T).

Figures 67 through 78 demonstrate that there is no justifica-

tion for employing the unsteady accelerating aerodynamics (linear)

theory instead of the second-order piston theory aerodynamics.

Finally, an inspection of Tables 2 through 6 reveals that

in most cases the quasi-steady frequencies and the instantaneous

frequencies are almost identical. The worst frequency correlation,

which occurs in only a few cases, is of the order of 5%.
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Thus evidences of the time-varying coefficients are seen

but they are small. It is seen that the omission of the ng = 9g calcu-

lations suggested in the last page of Chapter 7 proved to be the cor-

rect procedure since the more critical ng = 270(1-cos.2513t) flight

mission produced such unspectacular results.

The answers to questions (A) through (D) posed at the be-

ginning of Chapter 7 may now be answered by the following state-

ments.

(A) Time-varying coefficients are of little importance in the

aeroelastic analysis of manned aircraft.

(B) It is suggested that time-varying coefficients would be of

importance in the aeroelastic analysis of an anti-missile

missile, etc.

(C) Quasi-steady analysis appears to be still a remarkably

good method of analysis. It is suggested that a more

complete quasi-steady analysis should be made, however,

to obtain both the frequencies and mode shapes as well

as the response to some specified impulsive input. This

procedure insures knowledge of the pertinent amplitude

growths.
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APPENDIX I

DETERMINATION OF THE f. AND g. CONSTANTS
1 1

FROM THE SPECIFIED INITIAL CONDITIONS x(t0 )' y(t0 )'

x0 ' 0x (t 0 ), y (t 0 )

Particular solutions of Equation (3-42) may be obtained if

one specifies the values of the functions x, y, and their first

three derivatives at some initial time t This specification will

lead to two sets of four equations, each set with four unknowns

(the unknowns being f, and g,, i = 1, 2, 3,4) as shown below.

4 4
x(t 0  Z v(t0 )fi y(t 0 ) E w (t0 )gi

i=1 i=1

. 4. . 4.
x(t)= v. (t )f, y(t E (t )g

i=1 0 i=1i0i

4.. .. 4..

x(t0 . v.(t0 i y(t 0 Wi (t0 )gi
i=1 =

x(t 0 ,0 v.(t0)f y(t0 ) i (t0 )gi
i=1 i=1

However, it is desired to find particular solutions of Equation (3-42)

that are also solutions of the parent equations Equation (3-25) in

which the only initial conditions that may be specified are x(t

x(t ' y(t ), and y(t ). Thus, appropriate values of x(t ), x(t 0 )'. .00 0 0
y(t0 )' y(t 0 ) must be found before the correct f. and g, may be computed

0 01 1

from the above equations. Quite naturally, the correct values of

x(t0 ), x(t 0 ), y(t 0 )' y(t0 ) to be inserted in the above equations for
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the determination of the f, and the g, are those values of x(to), x(tO),1 1
y(to), y(to) possessed by the solutions of the parent equations

Equation (3-25). It follows that the remaining step is to find the

initial values of the second and third x, y derivatives at t = t0
possessed by the solutions of the parent equations Equation (3-25)

in terms of the known quantities x(t 0 ), x(t 0 ), y(t0 ), y(t 0 ). This step

is accomplished by obtaining a power series solution of the parent

equations for x, y and their first three derivatives at the point t = to.
To this end it is convenient to transform the parent equations, Equa-

tion (3-25), into their canonical form by introducing the following

notation.

x =x x= x 2

y= x 3  yx 4

Thus, Equation (3-25) transforms into the expressions,

X2  a + Ox 2 +Vx 3 +&x4

x 3 x43 4

X 4 = x 1 + vx 2 +x3+P

where a, , 3 , S, p, v, (, and cp are ratios of sums and products of

the original time-varying coefficients appearing in Equation (3-25).

Taking as our illustrative case that in which the a, 3, b', &, p, v,

e, and cp terms possess no singularities, one can obtain a power

*
Relaxing this assumption to discuss expansions about a regular
singular point introduces more labor, by way of solving an indicial
equation, but does not alter the basic technique that is demonstrated
here.



series solution about any ordinary point r = t-t Since x2 = x
and x4 = x3 the following power series are assumed,

x1 = E
n=0

n
pn

CO

n
X3 En

n=0

n-i
2 = E npnn

n=0

n-i
4 =E nqnn

n=0

where as stated above, 11 = t-t 0 . Additionally, the a, 1, of, , p, V,

e, and cp terms possess known expansions represented as

i=0

iam
1

=E0 Ti=O

0
i=O

i=0 1I

where the a., Pit,..
1 i

i=0

i=0

i

=E ze
1=0

i=0

1cplr1

*.Cp are constants.
1

The procedure is to now find the p n and q n in terms of the arbitrary

p0 ' q0 ' P1
, and q by means of recurrsion relations, which after

some manipulation can be expressed as, for n _2,

-p
p =n (j p + q) )+n

n O n-i On-i

- -i n-2
(n-1) E p

k=0 tz+n-k k

+ k(nk pk + qk )

123

n-k-2 k

- - .-0 --- poft 1. . M ". - - I - - --
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-1
qn n (v0 pn 1 + On-)

-1 1 n-2
+ n (n-1) E { (n-k-2 k n-k-2qk

k=0

+ k(v n-k-lpk + CPn-k-1qk)

The series expressions for

at 71 = 0 yields,

x(0) = p

y(0) = 0

the x and their first derivatives evaluated

I

y(O) =i

Since one knows the initial values x(0), x(0), y(O),

values of p0 ' P1 1 q0 , and q 1 are hence determined.

since pn and qn can be found (n > 2) in terms of po'

from the recurrsion relations, further differentiation

yields the following results.

x(0) = 2P 2

y(O) = 2q 2

y(O), the numerical

Furthermore,

P1 ' q 0 ' and q

of the x. series
1

x(0) = 6p3

y(0) = 6q3

Thus the second and third initial derivatives are known in terms of

p2' q2 ' p3 q and hence in terms of p q0  ' l'1 q1 and hence in

terms of x(0), x(0), y(O), y(O) so one now has enough information

about the initial conditions for Equation (3-42) so that the desired

f. and g. may be uniquely solved for.
1 1
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APPENDIX II

COMMENTS ON VARIABLE ALTITUDE FLIGHT

Rigorous inclusion of a non-homogenous atmosphere adds

considerable difficulty to the aerodynamics problem. It is then of

interest to determine an order of magnitude check on the influence

of the variation of state parameters with altitude. For supersonic

flight, the impulse response functions lend themselves nicely to

such a check since the load due to impulsive motion must be

identically zero for times after the airfoil trailing edge moves

ahead of the foremost leading edge disturbance wave. For vertical

flight at constant Mach number, this time is approximately

~ c
ac, (M-1)

and the corresponding vertical distance traveled is

M
C

(M-1)

Thus, except for M - 1, the change in altitude is of the order of

the airfoil chord and hence negligible. Positive acceleration re-

duces Ah further. Deceleration to subsonic speeds could allow past

disturbances to reach the airfoil. Solution to the latter seems out of

the realm of practicability at the present, since it involves at least

analysis for subsonic unsteady flow and at most inclusion of dis-

sipation due to viscosity which is conceivably of importance here.

*
Even Mach numbers close to M = 1 produce moderate altitude changes
Ah. For example, when M = 1. 05, Ah is given by Ah = 20c.
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Thus, since loads due to arbitrary motion can be determined from

superposition of the impulse responses, one concludes that it is

sufficient to use the impulse response functions developed for the

homogenous atmosphere with a quasi-steady representation of the

change in state variables. This, of course, holds only for the

supersonic case. The subsonic case is more difficult to justify;

but doe to the complexity of the problem, it is not felt that it is

worthwhile proceeding along these lines at present.

As a matter of interest, the difficulty in accounting for the

non-homogenous atmosphere is discussed in the following. The

isentropic relation is

p/P = (p/p) Y= 1. 4

whereas the altitude pressure-density relation is

K '1.-23 0 < h < 35,000 (Ft.)

0 ( P,/1 )K If K { 35, 000 < h < 0 (Ft.)

Hence one cannot establish the baratropic relation p = p (p) so that

the quantity j dp/p(p) encountered in Kelvin's theorem and thus the

Bernoulli pressure formula is not a proper integral. Thus one cannot

justify the existence of a velocity potential. If one makes the ap-

proximation that K = y, then the linearized mathematical problem can

be formulated as a potential problem, the potential satisfying the

wave equation with a variable speed of sound. This would of course

be limited to some relatively narrow altitude band for which the above

approximation is good. The solution to this latter problem is no

trivial matter, particularly for the subsonic case for which its need

seems most apparent.
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APPENDIX III

OUTLINE OF THE PROCEDURES FOR OBTAINING THE
UPWASH IMPULSE RESPONSES

If a finite band of upwash (width e) is present on the three

dimensional wing planform, the planform possessing supersonic

leading and trailing edges, Figure 45 depicts the regions in which

the velocity potential is of interest and must be computed.

When e-*O and the upwash magnitude w is defined in general

as w = f(C, T) we have the case in which a spacewise impulse of

upwash exists on the three dimensional airfoil at T = 0. Referring

to Figure 46, it is seen that Regions I, II, and VI collapse onto the

T = 0, C = 0 point, Region III collapses onto the T = 0 line and all

other regions collapse onto the Mach lines except IX, VII, and IV.

Also points 4 and 5, and 7 and 6 merge, and point 3 coincides with

the origin. Thus, if the collapsed regions yield no limiting contribu-

tion to the three dimensional wing pressure distribution, it is ob-

served that one need calculate only the pressure in Regions IV, VII,

and IX. However, since one always expects a pressure distribution

to occur at the position of the applied upwash, at least Regions I, II,

and III must contribute some limiting pressure distribution.

The first step in calculating the pressure distributions is to

express the velocity potential cp at some point (t,x) in terms of the

wing planform geometry and the upwash w. As is well known, the

velocity potential cp is an integral of all properly weighted upwash

elements that occur in the forward Mach-cone emanating from the

*
Consult References 71 and 72 for the details of this integral
formulation of ep.
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point (t,x). For any given point (t,x), this forecone will intersect

the wing planform at two positions. Thus, these two positions may

be on the leading edge T = 0, on the side edge C -MT -*T 2 or

may be on both portions of the planform. Figure 47 illustrates the

possible forecone-planform intersections. The intersection points

are labeled 1 and 2, the point having the largest negative value of

C being denoted as point 2. For convenience the equations of the

curves representing the wing geometry and the forward Mach-cones

are also shown on Figure 47. Calculating the positions of points 1

and 2 in terms of the vertex coordinates of the forward Mach-cone

and whether these points are on the leading edge T = 0 or the side

edge C = -(M 0 T +IT 2 ) it is seen that,

(0, t+x); if on leading edge T = 0

M -1 M -1 2
0M0 t+x

1' 120 2

L~ t + x+ M - )

(0, -t+ x); if on leading edge T = 0

M+ 1 + 1 2
(T0 0 +t-x

2' 2 2 + 2" +

M +1 M +1 2
0 -t+ x - [

if on side edge

C= -(M 0 T @3 T 2

; if on side edge
2(M0T+J

The values of cp(t,x) for all nine regions are now presented in

their basic form, before simplification or integration. Notice that

these expressions must necessarily differ only in their integration

limits providing the upwash w(T , C) is left in implicit form.

1,
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Region I

P (t, x) = -

T
2

T

rx+t-T

W (T , )d~dT

(t-T) 2 -'T x2

-M 2

t

T2

X+t-T

w(T, C)d~dT

V(t-T)2-(X-C)2

-x-t+T

M 0 -( 1 M0I + 1 t+xwhere T 2 + + 2

M+1 M +1 2

2 2 *4 2*5 +( )

Cp (t, x) = -#
II Tr

2

0

4x+t- T

w(T, )dCdT

(t-T)2 -(x-C) 2

e-M 0 T -; 2

-1~
iT

,t -x + t -T

w(T, C)d~dT

i(t-Tr)2_ (x-C)2

T x- t + T
2

M +1
where =2(20*4

M+1 2

+ (20 ) f

Region III

CPI (t,x) = -

t Ox + t - T

t X(-Tkd

(t-T) 2 - (-)2

0 x -t+T
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Region IV

rx +t - T

w(T , C)d~dT

(t- T) 2 (X- 2

*x - t + T

IT2 rx + t - T

w(T, )d~dT

(t-T)2_ _ 2

1

10 -M 0 TT 2
T

2

r x + t - T

w(T, C)dCdT

(t-T)2 -(X- 2

x - t + T

M + 1
where T 0

M + 1 2 t-x

!2

Region VI

T2 rx+t - T

w(T, 'Od~dT
IT*1

T 1 J-M T- T2
0

rx+t -

W(T,G

T T2 X- t + T

CP (t, X) = -1
IV IT

0

Region V

Yv(tx) = - 1
I 'Tf

I

T

dCdT

c(t, x) = -41
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M -l M -1 2

where T =-( 2 + ( 0 V- tx

T M0+ 10

2 2

M+2
M0 + 1 t- x

+ (IL9

Region VII

C,~, 1 (t,x) = -1

X+t - T

W(T, )d~dT

(t- T)2 ( 2

0 I-M0 2

Region VIII

CPVII (t, x) = 1VIII T

E: r x+t - T

W(T, )d~dT

2 - M0 _ 2

MO+1 M + 1 2

where T20 0 t - x
wern 2 

Region IX

CP ix(tx) 0

F-
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The second step in the analysis is to compute acp/t since

the pressure difference across both the two-dimensional accelerating

airfoil and the three-dimensional steady flow (M =4J ) planform is

proportional to this quantity. From this point on, the upwash is

assumed to originate from a constant impulsive downwash on the two-

dimensional accelerating airfoil. Thus the final quantities obtained

will be L and M . Notice that the linearly varying upwash and in-
c c

n
deed any upwash proportional to x causes no changes in the method

of analysis. The validity of the following arguments would still be

valid; only the actual integrations being more complex. Thus, using

the upwash w(T,0 = , the cp/ t terms are now obtained. The two

basic integrations over the dummy variable C are,

rx+t - T

I 1 (t, T,x) = [ (t-T) 2 _ (_ 02 - 1/2 d

JX - t+ T

,-X + t - T

I2 (t, T, x) = [(t-T) -(XC)2 1/2dC

- M0 2

Since the integrands are identical, both I and I2 may be

computed by the same process. To this end, let X = x-C and

B = t-T since t-T is a constant as far as this integration is con-

cerned. These substitutions yield the results that,
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dC = -dX

as -+M 0 -MT 2,

as - x + t - T,

as -x - t + T,

X-+ x + M0T+'2

X-* -t + T

X--P-t - T

Hence, I and I2 reduce to:

B

I (B,x) X

-B

I 2(B, T ,x)

B

-B

. si n
sin B-

Bj

dX

B -2 _ 2 = sin

B

-B

-1 X

X+ M0T+1 2

-B

Evaluating the limits these integrals become,

I (Bx) T - (7Y) =1
2 2

1 (BTx) = sin'( x+M) +---
2 B 2



134

Proceeding, the integrations over the T dummy variable have the

following forms,

t

I = 1  IdT
0

16 = S I dT

T

1 = 1 dT
0

t

17 1 T

T
1

2
I5 IdT

0

C

1 1, IdT
8 1

2 2

where I, is either IS or I
1 =t

When I, = I,, the integrals may be written down immediately.

I =TrC

(i =1)

is =ITT2
5 2

(i =1)

17 =Tr(t-T
2

(i= 1)
8 T2

(i=1)

When I, = 12 it is most advantageous not to compute 13 through 171

but to instead compute 6/at(I 3) through /6t(I 7 ) immediately. These

relations are now determined using Leibnitz's rule which states,

Q (t) Q(t)

f(t, T)dT = '(t,T) dT + f(t,Q(t))

P(t) P(t)

dt) f (t P(t)) dd(t)

Thus, noting that a/ t(I3 )(i= 2 ) and 6/at(I7) (i=2) need not be

computed, the remaining quantities are given by,

I3 = Tt

(i=1)

16 T (T

(i= 1)

T2

T 'I
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E

-1 x + MT 0 2
at( 4) - at [sn ( t-T )d

(i=2)
0

T
2

x+M0T+2T

(t-T -)]dT=Tt(15) = I t [ sin

(i =2)

0

X+M 0T 2+0J4 22'TxM t02 2) a
( t-T a

2

t 6
(i =2)JI

z

t3T 2
a [sin-'( t- 0T )]dT+,E 2 ]+n-1 x+M 2 2

t +2t-T

1

-1 X+ M0 1 12 a
- sin ( t-T

t-T y at

-- (I ) =at 8
(i =2)J

T

S -1 x+0 T+ 2 -1-[sin ( )]dT- - sin
at t-T 2 at

X+MT +43T 2 ar
0 2 2 2

t-T at
2

2

By explicitly denoting T 1 and T 2 in terms of Mo' ', t and x the arcsin

terms reduce to the following values.

T

+ T2 ~ si-
+2 _ t +sn

T

6T2

6 t
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.1x +M0T 2  2 2
sin ( ) = -

t-T 2 2

-1 x + M T 1  T 1
2

sin ( ) =- -
t-T 2

Using the accumulated information above, the 6p/6t terms for

all regions may now be presented.

a [sin -
at

x+ M0T+T2

0 )]dT
t-T

x+ M T +4T2
[sin 1 t-T

-1 x+M 2X -T ]T

t-T - d

2
a 1 1

-- Yp - - E:I

T

S T
1

) ]dT

0

0

1

0

-t II

T -
at CPIII

at 1PIV

a

aty P

S2

1
-__ T2 a [sin

2
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T

a 1 2 -1 x+MT T 2 2V
ep -- [sin ()dTat VI - T t t-T

T1

__ -1 x + M0 T +"&3T 2

ap = - [sin 1( 0 )]dT
at IVII 6 a at t-T

0

a a 3 1 x + M 0T+' 2
-- -- - [sin ( ) ]dT

ot VIII E: Ir at t-T

T 1

at IX

Since the lift at any station t is proportional to the chordwise

integration of the acp/ot terms, the method for determining whether

limiting (as E--> 0) values of lift remain due to the collapsed regions

is now obvious. It is required that several carefully chosen chord-

wise integrations be made and then take the limit as E:--->0. The

collapsed regions may then be inspected for lift contributions. The

same procedure is then used to compute a quantity proportional to

the moment. Notice that this same technique, when the proper con-

stants of proportionality are supplied, determines the lift and the

moment contributions of the non-collapsed regions also. Furthermore,

this method can be used when the upwash is any power in the

variable x.
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In order to facilitate these proposed integrations Figure 48

presents the equations of the various curves of importance and the

following tabulation gives the t stations at which various regions

begin and end, these t stations being denoted by the t coordinate of

points 3 through 7 shown in Figure 48.

t3 = [ M + 1 +3 E
3 2 0

M 0 + 1 M 0 + 1 2 10 + _ M ) +

4t5 2 a ) 2 'S+ [7M 1+- +1/

M +1 1

56 2 T 24 }
02

M -1 M 1 2

7 2 ~i (c39 F23 4 0

ty=-( 20 ) __(2_ )+[_+_(_1+e)/

The first integration to be carried out will be for the regions

0 <t < E. Thus choosing some t between 0 and E, the lift is pro-

portional to the following expression.
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t - M0t t2

Lc at pI dx+ t PII dx+ t III d

M0t -0t2 t t

Since all three integrands contain - 1, and in fact
1 1

a/at cp 1 is identically equal to--, this - - term can be removed

and treated as a single integration across the planform. Utilizing

this equivalent expression and writing out the remainder of the

integrands explicitly yields the following.

0 2
S-1 X+M T+7T2

L dx - dx -sin ( )dTc E E: Tr t t-T

-M 0t-It2  -M0t-jt 2 T 1

1 a -1~X+ M 0T +'-T 2l o-l x+
- _dx - sin )dT

E 1r at t-T

-t - 0

As presently written, the double integrals are to be evaluated

by first holding x constant, integrating over the appropriate T interval

and then integrating over the indicated x interval. This integration

is difficult to do by this sequence of operations, thus a change in

the order of integration is appropriate. Referring to Figure 49, which

illustrates the T, x region of integration, the expression proportional

to Lc is given as,
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1 x+MT 2
L ~- dT -1 ( )dx

c e eta ~t-T

0 J x(T )

t - M T-T 2+t-T

1 1 x + M T+2
S0dT dx.e J0 M T -T 2 -t+T (t-T)2- (x+M0 T +4T2)2

0

Carrying out the integration, L -1

Noting that the upwash w = or that we= 1 even as the e -I 0 limit

is taken, it is seen that Lc is proportional to a unit delta function at

t = 0. Therefore, L ~ 6(t - 0) when t = 0. This value is in fact
c

proportional to the zero-thickness second-order piston theory value

as should be expected.

Observing that the distance between some point x and the

planformn leading edge, at some time t, is equal to x + M 0 t +at2

the expression proportional to the moment for 0 < t < E is given by

t ,(M T+'ST 2)+t-Tr 0
M 1 dT (x + MOT +; T 2(x +Mot +'t2 X

26 -r (t-T) (t-T)2 - (x + M0 T +'-T 2 )2

J 2
0 -(M T+IT )-t+T

Using the identity that x + M 0 t +t 2 = x + M 0 T -i T + M 0 (t-T)

+ !(t-T) 2 + 2T(t-T), the integration is easily executed and yields

the following result.

M ~ 1 t2
c 2E 4E
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t2
As e -->0 the product t--VO, since t < E. Thus M is also

impulsive, as should be expected, at t = 0.

M ~- 6(t - 0); t = 0
c 2

The second integration to be carried out is for e < t < t 3 '
Making use of Figure 50, the integrals for the lift and moment propor-

tionals become,

e. -- (M 0T+0T2 )+t-T

dT (x + MOT +I-T 2 )dx
c(t-T) j [(t-T) 2 - (x + M 0T 2 )2 1/2

0 -(M 0 T+T 2)-t+T

I r(t-T) 1 e
M dT=-(t - -)c ET 2 2 2

0

Now as E--%-0, t -- V0 if t < t3 so that Mc for this T region goes to zero.

In a similar fashion the lifts and moments can be computed for the

limiting case of e--0. The results of these calculations have been

presented in Section 6. 4 of this thesis, and reflect the results that

no singularities occur across the collapsed regions except those

regions that contribute to the impulse functions at t = 0.

2
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APPENDIX IV

APPROXIMATE TIMES ON THE 704 FOR THE FOLLOWING
PROGRAMS

Time

1. Compute GJ(t) (one k) 9 mins.

O <t < 23.26 sec.

ng = 9g

2. Compute GJ(t) (one k)

23.26 < t < 1200 sec.

ng = 9g

3. Piston theory differential equations

ng = 270 (1-cos.2513t)

0 < t < 1. 0 sec., At = . 001 sec.

4. Unsteady Aerodynamics Difference Equations

ng = 270 (1-cos.2513t)

0 < t < .500 sec., t0 = 0 sec.

8 < t < 8.5 sec., t0 =8 sec.

3.5 mins.

8 mins.

110 mins.

7 mins.

It is to be noted that the computing time factor from computa-

tion (3) to (4) is about 20 for the early time calculations 0 < t 0 < 4 sec.
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Figure 4 Quantities Described by the Complex Plane Plot

Z.00

1400 ......

a600____

-:06 -04 0 .O .04 .06

Figure 5 Airspeed U Versus Damping Ratio C for System A

U=O
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Figure 6 Mode Shape of the Eventually Unstable Locus of
Figure 2 for Two Values of Airspeed U
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Figure 11 Actual Discrete-Time System Loci Corresponding to
Two Parameter Time Histories U(t)
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c(t) kt

m(t)

Figure 12 A Simple Time-Varying Mechanical System

A

Figure 13 Admissible Types of Quasi-Steady Oscillatory
Homogeneous Behavior
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Equations
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Table 1 Comparison of Exact and Zero-Damping Flutter
and Divergence Calculation

W 0

a)

-I-i
0
Cdx
a)

-4-

0

rs-I

a)

~4~I
0
rdx
a)

3
N

-- I

S
Cd
0
5-4
a)
N

3
N

-

4-i

Cd

a)

o
U2S

N Cd

-I
0s-I
a)
N

q

1 .40 .10 C O O o O C

2 .40 .20 2844 3526 .81 .85 C C

3 .40 .30 1852 2821 .84 .88 C 0

4 .55 -. 30 0 3080 C .73 6990 C

5 .55 -. 20 0 O O O 6880 C

6 .55 -. 10 0 4555 C .80 6612 C

7 .55 .00 3075 1193 .74 .74 6329 *

*
8 .55 .10 1209 781 .74 .73 0 O

*
9 .55 .20 865 800 .74 .76 O O

10 .55 .30 855 1103 .74 .81 C *

*

Piston theory not applicable for these cases when b 1 .4
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Table 2 Comparison of System Frequencies (cycles/sec.) Obtained
by Various Methods of Analysis Due to Case 1 Inputs for
the Time Interval 0 < t _< 8 Seconds; ng = 270 (1-cos.2513t)

h

t t
o ref

(sec) (sec) Q.S. P.T. U.A.A. Q.S. P.T. U.A.A.

0 0 17.65 17.7 17.72 17.65 17.2 17.26

0 0.5 17.71 17.61

0 1.0 17.7 17.7

2 2.0 17.67 17.7 17.72 17.67 17.2 17.27

2 2.5 17.71 17.63

2 3.0 17.7 17.7

4 4.0 17.65 17.7 17.70 17.65 17.2 17.26

4 4.5 17.70 17.59

4 5.0 17.7 17.7

6 6.0 17.65 17.7 17.66 17.65 17.2 17.16

6 6.5 17.65 17.62

6 7.0 17.6 17.7

8 8.0 17.63 17.6 17.65 17.63 17.2 17.14

8 8.5 17.64 17.61

8 9.0 17.6 17.7

Q.S. = Quasi-Steady
P.T. = Piston Theory with time-varying coefficients
U.A.A. = Unsteady Accelerating Aerodynamics with time-varying

coefficients
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Table 3 Comparison of System Frequencies (cycles/second) Obtained
by Various Methods of Analysis Due to Case 1 Inputs for the
Time Interval 10 < t0 < 30 Seconds; ng = 270 (1-cos.2513t)

h

0 ref
(sec) (sec) Q.S. P.T. Q.S. P.T.

10

10

12

12

14

14

16

16

18

18

20

20

22

22

24

24

26

26

28

28

30

30

10.0

11.0

12.0

13.0

14.0

15.0

16.0

17.0

18.0

19.0

20.0

21.0

22.0

23.0

24.0

25.0

26.0

27.0

28.0

29.0

30.0

31.0

17.62

17.60

17.62

17.62

17.63

17.65

17.65

17.65

17.65

17.65

17.65

17.6

17.6

17.6

17.6

17.6

17.6

17.6

17.6

17.6

17.7

17.6

17.6

17.6

17.6

17.6

17.6

17.6

17.6

17.6

17.6

17.6

17.6

17.62

17.60

17.62

17.62

17.63

17.65

17.65

17.65

17.65

17.65

17.65

17.5

17.6

18.2

17.5

18.2

17.5

18.2

17.3

18.1

17.2

18.1

18.4

18.1

18.9

18.1

18.8

18.05

18.6

18.0

17.7

18.0

17.4
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Table 4 Comparison of System Frequencies (cycles/second) Obtained
by Various Methods of Analysis Due to Case 2 Inputs for the
Time Interval 0 < t _< 8 Seconds; ng = 270 (1-cos.2513t)

h

to tref

(sec) (sec) Q.S. P.T. U.A.A. Q.S. P.T. U.A.A.

0 0 17.65 17.2 17.26 44.47 44.1 44.22

0 0.5 17.62 44.23

0 1.5 17.7 45.2

2 2.0 17.67 17.2 17.25 44.45 44.1 44.20

2 2.5 17.63 44.24

2 3.0 17.7 45.1

4 4.0 17.65 17.2 17.22 44.45 44.1 44.17

4 4.5 17.58 44.20

4 5.0 17.7 45.1

6 6.0 17.65 17.2 17.15 44.43 44.1 44.11

6 6.5 17.61 44.24

6 7.0 17.7 45.0

8 8.0 17.63 17.2 17.13 44.34 44.0 44.05

8 8.5 17.61 44.16

8 9.0 17.7 44.8
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Table 5 Comparison of System Frequencies (cycles/second) Obtained
by Various Methods of Analysis Due to Case 2 Inputs for the
Time Interval 10 < t0 < 30 Seconds; ng = 270 (1-cos.2513t)

h

to tref

(sec) (sec) Q.S. P.T. Q.S. P.T.

10

10

12

12

14

14

16

16

18

18

20

20

22

22

24

24

26

26

28

28

30

30

10.0

11.0

12.0

13.0

14.0

15.0

16.0

17.0

18.0

19.0

20.0

21.0

22.0

23.0

24.0

25.0

26.0

27.0

28.0

29.0

30.0

31.0

17.62

17.60

17.62

17.62

17.63

17.65

17.65

17.65

17.65

17.65

17.65

17.5

17.6

18.0

17.5

18.2

17.5

18.2

17.3

18.1

17.2

18.1

18.5

18.1

18.9

18.1

18.8

18.05

18.6

18.0

17.7

18.0

17.4

44.07

43.61

43.05

42.52

42.14

41.89

41.73

41.65

41.60

41.57

41.54

43.7

43.3

43.2

44.0

42.6

42.3

42.1

43.7

41.8

42.2

41.5

41.4

41.4

41.4

41.3

41.4

41.2

41.4

41.2

41.4

41.2

41.4

.. S
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Table 6 Comparison of System Frequencies (cycles/second) Obtained
by Various Methods of Analysis Due to Both Case 1 and Case 2
Inputs for the Time Interval 0 < t .< 30 Seconds; ng = 9g

Case 2

h a h a

t tref
(sec) (sec) Q.S. P.T. Q.S. P.T. Q.S. P.T. Q.S. P.T.

0 0 17.65 17.7

0 1 17.7

2 2 17.63 17.6

2 3 17.6

4 4 17.62 17.6

4 5 17.6

6 6 17.60 17.6

6 7 17.6

8 8 17.60 17.6

8 9 17.6

10 10 17.62 17.6

10 11 17.6

12 12 17.62 17.6

12 13 17.6

14 14 17.63 17.6

14 15 17.6

16 16 17.63 17.6

16 17 17.7

18 18 17.65 17.6

18 19 17.6

20 20 17.65 17.6

20 21 17.6

22 22 17.65 17.6

22 23 17.6

17.65 17.2

17.7

17.63 17.2

17.7

17.62 17.2

17.6

17.60 17.3

17.6

17.60 18.1

17.6

17.62 18.2

17.5

17.62 18.2

18.4

17.63 18.2

17.3

17.63 18.1

17.3

17.65 18.1

17.3

17.65 18.1

18.7

17.65 18.1

18.9
51 ____________________________ 4

Case 1

17.65 17.2

17.7

17.63 17.2

17.7

17.62 17.2

17.7

17.60 17.3

17.6

17.60 18.1

17.6

17.62 18.2

17.5

17.62 18.2

18.5

17.63 18.2

17.3

17.63 18.1

17.3

17.65 18.1

17.3

17.65 18.1

18.7

17.65 18.1

18.9

44.47 44.1

45.2

44.47 44.1

45.2

44.37 44.0

44.9

44.12 43.7

44.2

43.73 43.3

43.1

43.30 42.9

43.5

42.88 42.5

42.3

42.51 42.1

42.8

42.21 41.8

42.4

42.00 41.7

41.5

41.84 41.5

41.4

41.75 41.4

41.4
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Table 6 (continued)

Case 1 Case 2

h a h a

t t
o ref

(sec) (sec) Q.S. P.T. Q.S. P.T. Q.S. P.T. Q.S. P.T.

24 24 17.65 17.6 17.65 18.1 17.65 18.1 41.3 41.68

24 25 17.6 18.9 18.9 41.4

26 26 17.65 17.6 17.65 18.1 17.65 18.1 41.3 41.63

26 27 17.6 18.7 18.7 41.4

28 28 17.65 17.6 17.65 18.1 17.65 18.1 41.2 41.59

28 29 17.6 18.4 18.4 41.4

30 30 17.65 17.6 17.65 18.0 17.65 18.0 41.2 41.54

30 31 17.6 17.4 17.4 41.4
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