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ABSTRACT

A three-dimensional variable-order panel method utilizing Bezier surfaces and functions for
representation of body geometry and distribution of velocity potential in steady incompress-
ible flow applications is presented. A prototype implementation of the method is demon-
strated for steady flow past spheroids, including computation of added mass components for a
range of beam-length ratios. Very good agreement with exact values is demonstrated. Consid-
erations for extending the method to the lifting-body case are discussed in detail.

The thesis describes the use of both triangular and tensor-product (four-sided) Bezier patches
in the panel method, and discusses the advantages that may be obtained in relation to model-
ing of a hydrofoil tip region. Included is a sample discretization of a hydrofoil.

A panel-coupling technique (velocity coupling) is utilized in order to improve overall solution
accuracy. Whereas continuity of potential is automatically guaranteed at panel interfaces,
velocity coupling ensures continuity of velocity at prescribed nodes. The velocity-coupling
technique introduces an alternate form of independent equation, used in lieu of the boundary
integral equation at appropriate locations, and is found to be much faster to assemble in com-
parison to the integral equation.
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Chapter 1

Introduction

Panel methods have been utilized extensively in aerodynamic and hydrodynamic design for

several decades, beginning with the classic three-dimensional panel method developed by

Hess and Smith in the 1960's [Hess 67]. This method was initially based on constant-strength

sources and vortices on flat quadrilateral panels ('surface elements') distributed over the

body; the adoption of these surface elements facilitated discretization of an arbitrary body sur-

face and made it possible to analyze flows past realistically-shaped bodies. Since that time, a

large number of variations on the original approach have been devised, although most can be

classified as either velocity-field or potential-field formulations [Lee 87]. The first potential-

field formulation as adapted to the lifting-body problem is attributed to Morino, whose imple-

mentation utilized a constant value of potential over each panel [Morino 74]. With the goal of

increasing solution accuracy and computational performance, a number of so-called higher-

order panel methods began to appear in the 1980's, e.g. [Hess 87]. However, many well-

known codes still employ constant-strength panels (the latter sometimes being referred to as a

low-order method); this reflects an on-going debate as to whether higher-order methods pose

any real advantages over the low-order methods.

Generally speaking, a low-order method requires a substantially greater number of panels

than that of a higher-order method, however, as the latter requires a greater number of degrees

of freedom (unknowns) per panel, the overall size of the linear system of equations is not nec-

essarily smaller for the higher-order method. This is one reason why comparing low-order and

high-order panel methods is difficult at best.

Over the past decade researchers have addressed serious concerns as to the accuracy and

convergence of low-order panel methods when applied to certain types of propeller blade
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geometry, e.g., see [Hsin 91], [Pyo 94] and [Lee 99]. Such interest is indicative of further

work to be done in this area.

In this thesis, a higher-order potential-based panel method utilizing Bezier basis functions

is presented. The paper describes a method which incorporates variable-degree Bezier model-

ing, not only for representation of the surface geometry, but also for the distribution of the

velocity potential. The Bezier-based approach was inspired by a B-Spline higher-order

method proposed by Lee and Kerwin [Lee 99] and still under development.

In modem computer-aided geometric design (CAGD), B-spline basis functions do in fact

present a more powerful means of surface representation compared to Bezier surfaces, espe-

cially for complex configurations like ship hulls. Today, B-spline-based NURBS surfaces are

utilized as the de facto industry standard. On the other hand, a panel method, by definition,

considers a discretization of the boundary into a collection of panels, and the complexity of

each individual panel is far less than that of the surface as a whole. Individual panels can

therefore be adequately represented using Bezier patches. Moreover, with respect to surface

discretization, the Bezier formulation offers a distinct advantage over B-spline surfaces, in

that Bezier patches can be rendered in both triangular and tensor-product (four-sided) forms. 2

The availability of both types of patches gives the analyst more flexibility in choosing panel

configurations, as for example, in the modeling of a hydrofoil or propeller tip. A sample dis-

cretization of a hydrofoil is included herein to illustrate one possibility.

Some well-known panel codes in use today utilize panels that do not have conforming

interfaces (e.g., neighboring panels connect at only one point along the edge). Using Bezier

patches, it is a simple and straightforward matter to maintain full continuity of the surface

along the entire perimeter of each panel, whether triangular, tensor-product or a combination

of both types is used.

1. NURBS: Non-uniform rational B-splines
2. The author is not aware of any B-spline techniques for triangular surface representation.
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The present paper begins with a brief review of the fundamentals of potential-based panel

methods. This is followed by a review of the fundamentals of Bezier curves, surfaces and

functions in Chapter 3. Both triangular and tensor-product Bezier surfaces are addressed, as

well as their role in representing scalar functions (potential distribution). The method for com-

puting velocity via first-derivative computations of the Bezier surface and function is also pre-

sented.

The objective of this thesis is to develop a general-purpose variable-order method for

application to non-lifting and lifting bodies in steady incompressible inviscid flow, including

the important problem of predicting added mass. 3 The method has been tested using a first-

generation implementation coded in C++ using object-based technology. Computed results

are compared with exact values for two applications: a) steady flow past a sphere and b)

added mass of spheroid (ellipsoids of revolution). Very good agreement is demonstrated in

both cases, as seen in Chapter 5.

A preliminary formulation for the lifting-body case is presented, however, further devel-

opment and testing is required in order to ascertain the validity of the method for this problem

domain. Various modeling issues and other considerations in the lifting-body problem are dis-

cussed in some detail.

A panel-coupling technique referred to as velocity coupling is utilized to improve overall

solution accuracy, and to eliminate or minimize the need for 'velocity-smoothing' or finite

differencing operations on the potential during post processing. Whereas continuity of poten-

tial is automatically guaranteed at panel interfaces, velocity coupling ensures continuity of

velocity at prescribed nodes. The velocity-coupling technique introduces an alternate form of

independent equation, applied in lieu of the boundary integral equation at appropriate loca-

tions, and is found to be much faster to assemble in comparison to the integral equation.

3. The concept of added mass is usually associated with unsteady applications, however it is also a
valuable concept in certain steady-flow applications, e.g., the correction of the measured drag coeffi-
cient in wind tunnels with diverging walls. In any case, the computation of the added mass itself is a
steady problem.
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Although the resulting matrix equation is hybrid in form, to date no solvability problems have

been encountered through the use of this technique, when applied in the manner described in

Chapter 4.

Results of this initial investigation indicate that further development work on the Bezier-

based panel method may be warranted, depending on the target application. Its applicability as

an analysis tool for use ultimately in propeller blade design and analysis, for example, remains

an open question, however there appear to be no technical limitations to preclude it from

being developed toward that purpose. The Bezier-based method may be of utility in other

fields in which boundary element techniques are commonly utilized.
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Chapter 2

Overview of Potential-Based Boundary
Integral Formulation

The boundary element or panel method is founded on Green's theorem, the well-known group

of theorems that express equivalence between an integral over a domain in n dimensions to an

integral over a domain in (n -1) dimensions.4 The boundary integral equation resulting from

Green's theorem makes it possible to obtain solutions to three-dimensional boundary value

problems via surface (boundary) discretization alone. For a large class of engineering prob-

lems, the boundary integral equation relieves one from the arduous task of performing a dis-

cretization of a volumetric domain, e.g., as in the finite element method. The comparative

simplicity afforded by the boundary integral equation has long been a prime motivating factor

driving the development of panel methods.

The starting point for the Bezier-based higher-order panel method described in Chapter 4

is a potential-based boundary integral equation, rather than a source-distribution integral

equation. The latter was the basis of the original three-dimensional panel method developed

by Hess and Smith in the early 1960's [Hess 64]; subsequently, a panel method using a poten-

tial-field formulation was developed by Morino [Morino 74]. In principle, both methods yield

identical solutions for the potential function, as discussed in [Sclavounos 87]. The potential-

based method was selected for this thesis based on considerations discussed in [Kerwin 87].5

Accordingly, this chapter will focus on the potential-based boundary integral formulation.

Before reviewing the boundary integral equation, the boundary-value problem for incom-

pressible potential flow is discussed.

4. In general, Green theorems are equivalent to integration by parts. [Arfken 85] refers to Green's the-
orem as a "corollary of Gauss's theorem."

5. Other variations of these two formulations are discussed in this reference as well.
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2.1 Boundary-value Problem for Incompressible Potential Flow

The primary task of the panel method described herein is the numerical computation of the

unknown distribution of potential on the body boundary. Once the distribution of potential is

computed, the potential-flow velocity and pressure fields may be determined. Before compu-

tation of the potential can proceed, a boundary-value problem (BVP) must be defined in suit-

able terms so that a corresponding matrix equation can be constructed and solved. Generally,

the closer the match between the matrix equation and the BVP, the more reliable the solution,

provided the BVP is well-posed to begin with.

The process of defining a BVP requires identification of the governing equations and

boundary conditions characterizing the problem. The theory underlying potential-flow bound-

ary-value problems is well known, e.g., see [Kellogg 29], [Lamb 32], [Hess 67], [Hess 72],

[Morino 74], [Newman 77], [Hunt 80], [Moran 84], [Lee 87], [Kerwin 87], and [Hsin 90].

Accordingly, only a brief overview is provided here.

2.1.1 Potential Flow Governing Equations

The problem domain under consideration is the steady potential flow about a three-dimen-

sional lifting or non-lifting body in an unbounded incompressible, inviscid fluid. The body is

assumed to be rigid and held fixed with respect to an inertial coordinate system, and subject to

an inflow velocity U0, as shown in Figure 2-1.

For analysis purposes a domain n = Q u 8Q is considered, where Q is an open simply-

connected 6 region with boundary aQ subdivided as

aQ = SB u SOu SW, (2.1)

where

SB is the body boundary.

So is a surface located far from the body and "surrounding" the body.

6. A 'simply-connected' region is one such that all circuits drawn within it are reducible. A circuit is
said is to be reducible if it is capable of being contracted to a point without passing out of the region.
See [Lamb 32].
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Sw is a branch surface connecting SB and S. Sw represents an infinitesimally thin
trailing-vortex sheet shed from the trailing edge of a lifting body [Kerwin 87].
For non-lifting bodies, Sw can be regarded as a tube of infinitesimal radius, yield-
ing no contribution to the boundary integral equation, e.g. see [Newman 77].

Soo

n

y

n

00 X

S W SWS 
UC

SW

n

Fig. 2.1 Schematic section of three-dimensional potential flow domain and boundary.

Strictly speaking, MQ does not actually enclose the body, i.e., the body itself is not contained

within the domain. 7 It should be noted that Sw is, conceptually speaking, a 'hollow cylinder';

the cross-section of this cylinder is distorted according to the manner in which the flow is

7. For explanatory purposes, and to help fix ideas, the domain boundary may be compared to the inside
surface of a large inflated balloon. At some location on the outer surface of the balloon a relatively
tiny body is displaced toward the center of the balloon and held in place, without penetrating the bal-
loon surface. The region of the balloon in contact with the body becomes SB, and the remaining por-
tion displaced inward becomes the branch surface Sw.
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anticipated to detach from the tail end of the body. In the case of a lifting body (e.g., hydro-

foil) with zero thickness at the trailing edge, S, has the outward appearance of a sheet, how-

ever, is actually the hollow cylinder in a 'flattened state'. This configuration is necessary, not

only to satisfy the requirement that the flow region be simply-connected, but also to facilitate

a differential of potential between the upper and lower sides of the lifting body. Normal vec-

tors to the boundary are defined as shown in Figure 2.1 (i.e., pointing toward the interior of

the domain). In view of the foregoing discussion regarding Sw , it is normal practice to assign

a normal vector to one side of Sw only, for the lifting-body problem. See Section 2.1.3.2

below.

Within Q, the flow is assumed to be irrotational, i.e., the vorticity co is zero:

o = VxV = 0 in Q. (2.2)

This assumption is based on certain premises. For the purpose of this thesis, the flow upstream

of the body is assumed to be irrotational; then, according to Kelvin's theorem, a material vol-

ume of fluid upstream of the body and initially irrotational will remain irrotational as the

material volume moves over the body [Newman 77]. Lack of a no-slip condition at the body

boundary and the assumption of an infinitesimally thin wake downstream of the body are

abstract simplifications of the true viscous flow. Real viscous flows are characterized by the

presence of boundary layers and viscous wakes; however, the slip-boundary and thin-wake

assumptions present a reasonable approach for modeling of real non-separated flows over

streamlined bodies.

The irrotationality assumption implies the existence of a unique scalar potential field, such

that the velocity field V may be expressed as the gradient of a totalpotential (:

V = V . (2.3)

Alternatively, the velocity field may be expressed in terms of a perturbation potential $,

whereby
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V = U0 + V = UO + V# , (2.4)

and v is the disturbance velocity field corresponding to the perturbation potential. As pointed

out in [Hess 67], utilization of the perturbation potential permits somewhat greater generaliza-

tion in the types of flows to be considered, since the onset velocity field U, is not necessarily

restricted to the class of irrotational flows.

Of the three conservation laws (mass, momentum and energy), only the first is needed in

the formulation of the potential-flow boundary-value problem. With the restrictions stated

herein, mass continuity is given by Laplace's equation, in terms of the potential (either form):

V2Q = 0 in Q (total potential) (2.5)

V2 0 = 0 in Q (perturbation potential) (2.6)

2.1.2 Kutta Condition

The lifting-body problem requires an auxiliary condition (Kutta condition) to ensure the exist-

ence of a finite velocity at the trailing edge. In its most general form the Kutta condition is

given as

V'1 < 00 at the trailing edge of the body. (2.7)

The same principle applies for the perturbation potential. The Kutta condition numerically

constrains the potential in such a manner as to ensure a physically plausible flow field at the

trailing edge, and the amount of circulation and lift generated by the body is restricted accord-

ingly. 8

8. The relationship between circulation and lift is governed by the Kutta-Joukowski theorem. See, e.g.,
[Newman 77]. The circulation is defined as the line integral of the tangential component of the
velocity along any closed curve (as may surround a hydrofoil):

Lift L = p U0 F, where circulation F = V ds
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2.1.3 Boundary Conditions

Typically, two types of boundary conditions are specified on 8Q, viz., Dirichlet and Neu-

mann conditions. The former is synonymous with a known or specified potential and the latter

refers to a known or specified normal gradient of the potential. 9 The need for these boundary

conditions becomes obvious when examining the boundary integral equation, discussed in

Section 2.2. On a given region of OQ one is not ordinarily permitted to prescribe both a

Dirichlet and a Neumann condition, however there are exceptions. In the usual case, both

forms will be specified on their respective regions of the boundary, and no part of the bound-

ary will lack one or the other.

The following sections address boundary conditions on SB, SW and So,, respectively.

2.1.3.1 Body Boundary

Typically, Dirichlet conditions are not specified on the body boundary, simply because the

potential is unknown. 10 Therefore, Neumann conditions must be specified on the body bound-

ary. In the context of potential flow applications, a Neumann condition is equivalent to the

kinematic boundary condition. Assuming the body is solid (i.e., no transpiration), the kine-

matic boundary condition follows from the condition that the flow at the body boundary must

be tangent to the body surface. For the total potential, the Neumann condition is

an

Using (2.4), the Neumann condition for the perturbation potential is

= n - V4= n -Uc on S. (2.9)
an

9. The terms 'essential' and 'natural' are interchangeable with Dirichlet and Neumann, respectively.
10. This is the motivation behind the panel method in the first place!
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2.1.3.2 Wake Boundary

Boundary conditions on the branch surface S, depend on whether the body is lifting or non-

lifting. In the analysis of a non-lifting body, Sw is usually reduced to a tube of infinitesimal

radius, as described in [Newman 77]. In this case, there is no contribution to the integral equa-

tion from Sw; certainly, there is no surface upon which any boundary condition could be pre-

scribed. Although the 'utilization' of an infinitesimally small tube results in certain

simplifications, it is not strictly required; other configurations of the 'wake' of a non-lifting

body are conceivable.

Dirichlet conditions come into play in the analysis of a lifting body. The branch surface Sw is

interpreted as a variable strength 'dipole sheet' equivalent to an idealization of the free trailing

vortex system emanating from the trailing edge of the body. 11 For convenience, S w denotes

one-half of the wake boundary circumference (corresponding to either the 'upper' or 'lower'

side), while Sw refers to the entire wake boundary circumference (or loosely speaking, both

'sides' of the wake sheet). Here, Sw is assigned to the 'upper' side of the lifting body, so that

its normal vector is facing more or less in the positive y direction (see Fig. 2.1). For the pur-

pose of this thesis, the position of the wake sheet is either known or assumed; regardless, the

locations of all surfaces (i.e., the entire boundary MQ) are considered known and fixed, and a

solution to the direct problem is sought (in contrast to the inverse problem, in which the posi-

tion of a portion of the boundary is unknown and being sought, inevitably necessitating some

kind of iterative procedure).

On the wake sheet, Dirichlet conditions cannot be specified explicitly, as the potential is

unknown on Sw. However, the difference in potential at any point on Sw is expressible in

terms of the potential at the trailing edge, as discussed in [Morino 74]. This 'implicit'

Dirichlet condition is tied in with the Kutta condition, since the Kutta condition can be

expressed in terms of the potentials on either side of the foil at the trailing edge. As the flow

over the suction and pressure sides proceeds downstream from the leading edge stagnation

11. There is equivalence between the rate of change of the normal dipole strength along the surface, and
the strength of a vortex tangent to the surface (orientated perpendicularly to the dipole array). For
further details, see [Hess 72].

21



point, the value of the potential changes, resulting in a more or less cumulative increase in the

potential difference as the trailing edge is approached. This assumes the body is generating lift

- the potential difference at the trailing edge is zero for a non-lifting body. As the wake of a

foil is not able to sustain a pressure difference, no further change in the potential difference

occurs as the flow leaves the trailing edge. Whatever potential difference has accrued at the

trailing edge is all there will be, and the difference is maintained as the flow proceeds away

from the body.

Further aspects of the wake boundary and Kutta condition are discussed in Section 2.2 and

Chapter 4.

2.1.3.3 Far Boundary

Treatment of the far boundary S, depends on whether the total or perturbation potential is

utilized. This is one region in which both Dirichlet and Neumann conditions apply, and since

both the potential and the normal gradient are known on S., the corresponding surface inte-

gral in the boundary integral equation can be computed and reduced to a simple quantity. As

the perturbation potential is easier to deal with, it is discussed first.

On the far boundary S., both the perturbation potential and the normal gradient of the poten-

tial are expected to vanish in the limit as the distance between the surface and body

approaches infinity:

# -> 0, at infinity, (2.10)

and

V# -+ 0, at infinity. (2.11)

Considering this hypothetical boundary for S., there is no contribution to the integral equa-

tion and consequently no further consideration is required with respect to boundary conditions

at the far boundary.
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For the total potential, matters are somewhat more complicated, but reconcilable. Neither

the total potential nor the normal gradient (i.e., the velocity) vanish everywhere on S,. How-

ever, these quantities are known, provided the geometry of S, is specified and the distance

between the body and S. is sufficiently large so that any disturbance due to the presence of

the body may be regarded as negligible, i.e.,

(D -+ D,, at infinity, (2.12)

and

VP -> U,, at infinity. (2.13)

It turns out that the corresponding surface integral in the integral equation evaluates to a sim-

ple quantity proportional to the incident potential ,,.12 Using the resulting simplified form

of the boundary integral equation for the total potential, again, no further consideration is

required with respect to boundary conditions at the far boundary.

2.2 Boundary Integral Equation

The boundary integral equation is the backbone of the panel method. As pointed out by [Rob-

ertson 65], the significance of integral equations is the equivalence theorem, which states:

The solution of an integral equation is a solution of the
corresponding boundary-value problem and vice versa. 13

By casting the governing equation (2.5) or (2.6) into an boundary integral equation, a solution

can be obtained by considering what is happening on the boundary OQ alone, while disre-

garding details within the domain Q itself. The overall simplification and resulting economy

12. It can be shown that for a sphere surrounding the body, the Dirichlet condition contributes two-thirds

toward (D., , while the Neumann condition contributes the remaining one-third. The Dirichlet and

Neumann conditions are associated with the dipole and source terms, respectively, in Green's for-
mula.

13. This, according to [Robertson 65], is demonstrated in Courant and Hilbert (Methods of Mathematical
Physics, 1st English ed., Interscience Publishers, 1953) with the aid of Green's function.
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of effort achieved with the integral equation is significant in comparison to the original

boundary value problem (differential equation).

From the standpoint of implementing a panel code, the main purpose of the boundary inte-

gral equation is to provide a means for generating a system of linear algebraic equations to be

solved in order to yield the distribution of potential on the body boundary.

In this section, only the potential-based boundary integral equation is addressed. For dis-

cussion purposes, it is useful to distinguish between the basic integral equation and the bound-

ary integral equation. The basic integral equation is a Fredholm equation of the second kind 4

giving the potential at a point anywhere within the domain Q, in terms of the potential and its

normal derivatives on the boundary. The basic integral equation suffers from the fact that it

becomes strongly singular15 if the field point (i.e., the point at which the unknown potential is

sought) lies on the boundary. Nonetheless, the basic integral equation is important in two

respects:

1. The boundary integral equation is derived from the basic integral equation;

2. The basic integral equation can be used to compute the potential away from the bound-
ary after the boundary solution is obtained.

The 'boundary integral equation' refers to an integral equation of the second kind in which

the potential is expressed entirely in terms of values on the boundary 8M. The boundary inte-

gral equation is essentially 'de-singularized', as the kernel does not, strictly speaking, become

infinite at any point in the range of integration. De-singularization is accomplished by inte-

grating over an infinitesimal region S. surrounding the field point, yielding a free value of

potential which is simply added to the original term located outside the integral. This process

subsequently alters the range of integration, since the integral has already been evaluated over

S.. Therefore S. must be excluded, in a manner analogous to the Cauchy principal integral. 16

14. A Fredholm integral equation is a linear integral equation in which the limits of integration are fixed.
An integral equation of the second kind is one in which the unknown function appears both inside
and outside the integral(s). For more details, see, e.g., [Arfken 85].

15. There are two types of kernels encountered in this application. Both types are strongly singular as

they contain a difference term (x - 4)' in the denominator, with cx 1 and ox = 2, respectively. The
former is referred to a Cauchy singularity. See, e.g., [Jerri 99].
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The basic integral equation can be deduced in several ways. The traditional approach employs

the symmetrical form of Green's theorem. A modem approach uses the concept of distribu-

tion, which according to [Brebbia 89], "illustrates the degree of continuity required of the

functions and the importance of the accurate treatment of the boundary conditions."

No derivations of the basic integral equation or boundary integral equation are provided

herein - various derivations are given in [Newman 77], [Kerwin 87], [Brebbia 89], and [Chari

00]. The basic integral equation is presented in the next section, followed by the boundary

integral equations in terms of the total potential and perturbation potential, respectively.

2.2.1 Basic Integral Equation

The basic integral equation, better known as Green's formula or Green's third identity, is

given as

(x) (x; ( ()G(x; )]d. (2.14)
ffan, an(.4

This equation gives the potential at a field point x in terms of the potential and normal gradi-

ent distribution on the boundary MQ, where integration is performed with respect to the

dummy variable 4. The quantity G(x; 4) is defined as

G(x; 4) = - 1 (2.15)47rlx-41

where (x - )f is the distance between position vectors x = (x, y, z) and 4 (, 0, ).

Although best known as Green's function, G(x; ) is sometimes called thefundamental solu-

16. Cauchy's principal value of an integral of a functionf(x) that becomes infinite at an interior point
x = x, of the interval of integration (a, b) is the limit

SX0 - 6 b

lim f(x)dx + J f(x)dx
w X + /

where 0 < E ! min (xO - a, b -~xO) . See [Tricomi 5 7].
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tion, e.g., as in [Brebbia 89], since it is the simplest possible non-trivial solution to the poten-

tial-flow governing equation, i.e., (2.5) or (2.6). More specifically, it represents the potential

at the field point induced by a unit source at , and for this reason G(x; ) is also referred to as

the Rankine singularity. As such, (2.11) satisfies Laplace's equation everywhere except at the

source point 4, so that the fundamental solution can be expressed as

V 2G(x; ) = 6(x; ), (2.16)

where 6(x; 4) is the delta function, i.e.,

6(x; )for x (2.17)
00 for x

The delta function has the peculiar but powerful property

J dx = 1, (2.18)

which extends to distributions of functions, so that for a distribution of potential

f (x; 4)d = (1(x). (2.19)
Q

Referring to the second integral in (2.14), the normal gradient of Green's function represents

another type of singularity, viz, a dipole, which is derivable from the fundamental singularity

(source). Whereas a source exhibits no directivity, a dipole has an orientation corresponding

to a line on which a source and sink (negative source) approach one another in the limit as the

gap approaches zero and the strength of each singularity approaches infinity. By convention,

the positive direction is in the direction of the positive source. The normal gradient of Green's

function may be expressed more specifically as
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aG(x; ) _ (x - 4) n(3) unit-strength dipole directed along n . (2.20)
an ~ 4ix-I

2.2.2 Boundary Integral Equation

The boundary integral equation is obtained from the basic integral equation by locating the

field point on the boundary and evaluating the surface integral in way of the field point by

considering an infinitesimally small region S, surrounding the field point. This process is

effectively a 'de-singularization' of the basic integral equation. The boundary integral equa-

tion based on (2.14) is

T Q(x) f I iG(x; 4) a) - q(4)Gax; )d4 . (2.21)

M aQE,

The coefficient T is the solid angle (in steradians) subtended at the field point on the bound-

ary, divided by 47r. See, e.g., [Hunt 80]. The usual value for T is 1/2, corresponding to a

smooth continuous surface where the field point is situated. T may vary between 0 and 1,

depending on the geometrical configuration of the body boundary and wake surface.

2.2.2.1 Total Potential Formulation

By taking boundary conditions into account as discussed in Section 2.1.3, the resulting bound-

ary integral equation for the lifting-body problem is given as

T1(x) = ty(x) - q ()G x - f f A (4T1)Gx(X )d , (2.22)

SB-S, S W

where At((TE) is the difference in potential 'across' the trailing edge (i.e., from one side of

the wake sheet to the other), with the dummy variable 4 being associated with a position on
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the trailing edge, TE, corresponding to the location at which the flow departed the trailing

edge.

For the non-lifting problem, the second integral in (2.22) is omitted.

2.2.2.2 Perturbation Potential Formulation

Taking boundary conditions into account as discussed in Section 2.1.3 for the perturbation

potential, the resulting boundary integral equation for the lifting-body problem is given as

T4(x) = G(x; )) a n,

Sa - Se

- JJO( )Gan x - - fJA$(4TE)G x )d'

S3 - d) S W

where the meaning of AD( TE) is described in Section 2.2.2.1 above.

For the non-lifting problem, the last integral in (2.23) is omitted.
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Chapter 3

Fundamentals of Bezier Curves, Surfaces and Functions

This chapter presents an overview of Bezier curves, surfaces and functions, elements which

form the backbone of the Bezier-based panel method developed in Chapter 4. Most of the

information presented here on Bezier curves is based on material explained in [Hoschek 93]

and [Farin 99].

3.1 Historical Background

The development of Bezier curves is attributed to P. de Casteljau and P. Bezier, whose efforts

were carried out independently on behalf of Citroen (beginning in 1959) and Renault (begin-

ning in 1962), respectively.1 8 The introduction of Bezier curves presented an alternative

approach to cubic spline techniques developed by J. Ferguson at Boeing in the 1950's.

Only later was it discovered that the curves named after Bezier were intimately connected

with the classical Bernstein polynomials; in 1970, R. Forrest discovered that the Bernstein

polynomials were indeed the basis functions for Bezier curves. Meanwhile, efforts by de Boor

at General Motors led to a practical utilization of B-splines (basis splines); although B-splines

were actually investigated by I. Schoenberg during World War II, many years passed before

an accurate and stable means of computing with B-splines became available. A short time

after de Boor's landmark paper, "On calculating with B-splines," appeared in 1972, Gordon

and Riesenfeld demonstrated that Bezier curves were a special case of B-spline curves, paving

the way for a more unified treatment of the various methods developed on both sides of the

Atlantic.

18.According to [Farm 99], 1959 marks the birth of computer-aided geometric design (CAGD), when
Citroen hired P. de Casteljau to develop mathematical tools to more fully exploit the capabilities of
their numerically-controlled milling machines. De Casteljau invented what he called Courbes a
Poles, what are now known, ironically, as Bezier curves. P. Bezier learned about Citroen's 'very
secretive' efforts and was able to develop a functional CAGD system himself at Renault; his firm
allowed him to widely publicize the method.
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In this thesis, only the Bezier formulation is considered. The next section begins with a

brief description of the Bernstein polynomials. Subsequent sections treat Bezier curves, func-

tions and surfaces.

3.2 Bernstein Polynomials

Bernstein polynomials are the key component in the Bezier representation of curves, surfaces

and functions. Bernstein polynomials of degree n are defined as follows:

Br -( -t)l r, r = 0(1)n . (3.1)

The parameter t takes on values anywhere in the closed interval between 0 and 1, i.e.,

t e [0, 1]. An nth-degree Bernstein polynomial comprises a family of (n + 1) polynomial

curves spanning the closed interval [0, 1]. All the polynomials are non-negative on this inter-

val. At the end points the values of all the polynomials are zero, except for the first and last

polynomials, B n and B'1 , respectively; the former is equal to 1 at the beginning of the

parameter interval (t = 0) and the latter is equal to 1 at the end of the interval (t = 1).19

The cubic Bernstein polynomials B3 , for example, take the shape seen in Figure 3.1, for

t e [0, 1].

The Bernstein polynomials form a so-called partition of unity, an important property such

that the sum of all polynomials is equal to unity for any given value of t in the parameter

interval [0, 1], i.e.,

ti

B,.n (t) = 1. (3.2)

r 0

19. Interestingly, a Bernstein polynomial curve is identical to a binomial probability distribution of a
random variable, where t is the probability of getting r successes in n trials. Compare (3.1) with the
probability distribution formula given, e.g., in [Freund 80].
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Fig. 3.1 Bernstein polynomials of degree 3.

3.3 Bezier Curves and Functions

A Bezier curve can be defined using the Bernstein polynomials as basis functions. A Bezier

curve of degree n in parametric form is defined as

II

X(t) b B" (t), (3.3)
i= 0

with coefficients by e 9 d, d = 1, 2, 3. When bi are chosen as vectors in 12 or 93 3they are

referred to as Bezier controlpoints or simply Bezier points. If the coefficients bi are scalar val-

ues, they are called Bezier ordinates. The set of straight lines connecting the Bezier points is

called the Bezier polygon, as shown in Figure 3.2.

The Bezier curve (3.3) is independent of the coordinate system, due to the partition-of-

unity property (3.2). If this property did not hold, then a simple translation, rotation or scaling

would destroy the relationship between X (the curve) and b (the Bezier control points).
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If the Bezier ordinates bi are located at parameter values t = i/n, then the parametric for-

mula (3.3) for a Bezier curve reduces to a Bezierfunction. See Figure 3.3.

b2 b3

b, b4

bo

Fig. 3.2 A Bezier curve of degree 4 and its associated Bezier polygon.

b2

b,

bo

0 1/3 2/3 1 t

Fig. 3.3 A Bezier function.

32



The k-th derivative of a Bezier curve is given by

n-k

xk) (n I A k
i=0

n-k
(3.4)

where Ak are forward difference operators defined as

Ab, ab h+ - by ,

2A b1 = A(A b)= A(b 1j 1 , bi) = bi+ 2 - 2b jI + bi,

k

Ak b. Z (-1)( bi+k-1-
1=0

(3.5)

(3.6)

(3.7)

Important properties of Bezier curves are listed below:

- The Bezier curve begins and ends at bo and bn, respectively.

- The edges bo b1 and bn- 1 bn of the Bezier polygon are tangent to the curve.

" The k-th derivative at the endpoint of a Bezier curve depends only on the boundary
point and its k neighbors.

3.3 Bezier Surfaces and Related Functions

Bezier expansions can be formulated for two types of surface patches:

- tensor-product (four-sided)

- triangular

These are discussed in the following sections.

33



3.3.1 Tensor-product Bezier Surfaces and Functions

The surface geometry of a tensor-product Bezier patch is represented by the following rela-

tion:

X(u,v) = b g B"(u) Bkm(v) (3.8)
i=0 k=O

where bik are Bezier points distributed in three dimensional space and u, v e [0, 1]. The Bez-

ier points bik comprise a three-dimensional Bezier net controlling the geometry of the patch.

The Bezier net is analogous to the Bezier polygonal associated with Bezier curves. If the Bez-

ier points are scalar-valued, then (3.8) is a function defined over the planar simplex, on which

u, v e [0, 1], and a scalar distribution analogous to that shown for Bezier curves exists (see

Fig. 3.3). In this case, the control points are referred to as Bezier ordinates (as for the Bezier

curve).

The total number of Bezier control points bik associated with a single QUAD panel is

(np + 1)(m + 1).

The partial derivatives of a tensor-product Bezier surfaces are given by:

r 8 n-r__ rO n-r

X(u, v) = A bik B, (u) Bk (v) , (3.9)
O u i=O k=O

s_ X_,_)_m m' s b Bu)B (),3.)

d v _=0 k=O

where the forward differences are given by

ArObi -- Ar- ,Obi+1,k -A r-1,bk A Obik =A' b -A ' bk. (3.11)
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For derivatives of a function, X and b in (3.9) to (3.11) are replaced by their scalar equiva-

lents. Refer to [Hoschek 93] for further details.

3.3.2 Triangular Bezier Surfaces and Functions

A triangular Bezier surface is defined by the following parametric representation:

X(u) = b B1 (u), (3.12)

where B n(u) are the generalized Bernstein polynomials of degree n defined as

B n(u) = B ( = ! . u V /' , (3.13)I Uk (U) !j! k!

and b, are control points (in 2-D or 3-D) that collectively form a Bezier net. In (3.12) and

(3.13), I is defined as (i,j, k)T , with i,j, and k subject to the constraint i +j + k = n, with i,j,

and k non-negative; u is shorthand for (u, v, w)T , the three barycentric coordinates with respect

to a base triangle (planar), as shown in Fig. 3.4. For any point on the base triangle, the bary-

centric coordinates always sum to unity: u + v + w 1, and the coordinates are non-negative.

V

W=O
W

U

Fig. 3.4 Barycentric or area-based coordinates.
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The vertices of the triangle are represented by upper-case U, V, and W, corresponding to u

1, v = 1 and w = 1, respectively, so that any point on the planar triangle can be expressed as

P(u, v, w) = uU + vV + wW. (3.14)

The barycentric coordinates are invariant under linear (affine) transformations. This prop-

erty allows one to consider different shapes of the base triangle without affecting the Bezier

patch itself.

The sum in (3.12) involves a total of (n + 1)(n + 2)/2 terms. For example, a triangular

panel of degree 3 comprises 10 terms, yielding a three-dimensional Bezier net consisting of 10

Bezier points. For this case, the control point subscripts ij, k are identified with the base tri-

angle as shown in Fig. 3.5. Control points associated with the corner points of the base trian-

gle are located on the actual vertices of the Bezier triangular patch.

b03O

V

b021 b120

bol 2 b~l bl00

W U

b003 b102 b20 1  b300

Fig. 3.5 Bezier control points associated with base triangle (case of n = 3).
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If the control points in (3.12) are scalar-valued, the control points are referred to as Bezier

ordinates (just as in the case of a Bezier curve). In this case, the Bezier 'surface' is a function

defined over the base triangle, and the situation is analogous to that shown in Fig. 3.3 for the

curve.

Derivatives on triangular Bezier patches cannot be expressed as partial derivatives, due to

the constraint u + v + w = 1. However, derivatives can be expressed with respect to one of the

parameters with the condition that one of the other parameters is held constant, e.g., see

[Hoschek 93]:

DX
duv = constant

DX
du w= constant

DXu
dv

n

i +j+ k=n -I

=n
i+j +k=n-

(bij A - bjk ) B I v B)1B11k (u, V, w)
= n I

=constant i +j + k =n -1

For derivatives of a function, X and b in (3.15) to (3.17) are replaced by their scalar equiva-

lents.
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Chapter 4

Bezier Based Higher Order Panel Method

This chapter presents the main elements of the Bezier-based higher-order panel method. The

development of this method builds largely on previous chapters covering fundamentals of the

boundary integral equation and Bezier representation of surfaces and functions.

4.1 Body and Wake Surface Discretization

Application of the method begins with a boundary mesh-generation process, whereby the sur-

face of the body is decomposed into a set of unique, non-overlapping Bezier patches or pan-

els. The collection of panels may comprise a combination of tensor-product Bezier surfaces

and triangular Bezier surfaces, referred to here as QUAD and TRI panels, respectively. The

wake boundary, when modeled explicitly, is partitioned in a similar manner (except that, as

discussed in Chapter 2, only one side of an infinitesimally thin wake sheet is modeled). 20

A general requirement is that the interface between neighboring panels be continuous, i.e.,

CD continuity should exist at each such interface. Any gaps or 'leakage' between adjoining

panels would likely have an adverse effect on the solution and therefore should be avoided. CD

continuity is guaranteed by ensuring that adjoining panels share the same Bezier thread along

the common edge, i.e., the Bezier points on that edge are common to both panels; this is true

whether the interface between the two panels is QUAD-QUAD, TRI-TRI or QUAD-TR.

k
The body boundary SB is discretized into a total of NB individual panels AB such that

NB _k

SB AB U AB , (4.1)
k = I

20. As discussed in Chapter 2, typically the wake boundary for non-lifting bodies is practically nonexist-
ent. For a lifting body, the geometry of the wake sheet is given or assumed.
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where the over-bar denotes closure (i.e., A = A + aA). Similarly, an explicit wake boundary
k

Sw is discretized into a total of Nw individual panels A, satisfying

Nw k
SW = Aw= U Aw . (4.2)

k = 1

Conceptually, Sw is typically regarded as being semi-infinite in extent, however, as a practical

matter, the number of panels in the wake is necessarily restricted to a finite quantity, as indi-

cated in (4.2).21

The trailing edge of the body is defined as a closed curve formed by the intersection of the

body and wake boundaries:

CTE =BTr- w. (4.3)

In a typical analysis of a lifting body, the trailing edge thickness is considered to be zero, in

which case the area enclosed by CTE approaches zero and the trailing edge resembles an open

line or non-closed curve; despite any such appearance, however, the trailing edge must be

treated as a closed curve if the body is to generate lift, as discussed in Chapter 2.

CI continuity between panels is ensured when the panels connect in a 'simple', conform-

ing manner, so that

A r-n A an entire edge or an entire vertex of each panel .22 (44)

21. There are a number of ways in which this apparent dilemma is treated. For example, a semi-infinite
line vortex can be used to emulate a 'rolled-up' wake sheet, as the potential induced by such a line
vortex is known in closed form. For the propeller problem, see discussion in [Kerwin 78]. Details of
the various approaches are beyond the scope of this thesis. One approach is simply to model the
wake as a finite length sheet and rely on the fact that the influence of a normal dipole diminishes rap-
idly with distance from the body, on account of two effects. The potential induced at a field point on
the body is 1) inversely proportional to the square of the distance between the field point and the
point on the wake boundary, and 2) proportional to the dot product between the unit normal vector
on the wake and the unit vector collinear with the field and wake points. The former obviously indi-
cates a strong attenuating effect, and the latter tends to a low value for any field point on the blade,
with increasing distance.

22. Cf. [Patera 95], in finite element context.
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As mentioned, this condition is not difficult to achieve.

4.2 Bezier Modeling of Surface Geometry

The surface geometry of a QUAD panel is represented by the following tensor-product rela-

tion:

n ni
nn

X(u,v) = b 1B,"(u) B"(v) . (4.5)
i=Oj=O

Typically, the degree of the Bezier polynomial corresponding to the parameter u is the same

as that associated with the parameter v, in which case n = m; however, this is not a require-

ment. There may be panel configurations in which it is appropriate for n to differ from m.

A TRI-panel surface is defined by the following parametric representation:

X(u) = b, Bi"u (4.6)
Ill = n

As discussed in the previous chapter, the above sum involves a total of (n + 1)(n+ 2)/2 terms;

for instance, a TRI panel of degree 3 comprises 10 terms, yielding a Bezier net consisting of

10 Bezier points. Also, u is shorthand for (u, v, w), the three barycentric coordinates, the sum

of which is always unity: u + V + w = 1.

4.3 Bezier Modeling of Potential Distribution

The velocity potential distribution on a panel is modeled by means of a scalar Bezier function.

The velocity potential over the entire body boundary is modeled using a collection of scalar

Bezier patches. A one-to-one correspondence exists between the set of geometrical patches

and the set of functional patches, so that each and every panel is characterized by a pair of

unique Bezier expansions.
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On any given panel, the scalar Bezier function is expressed in terms of a distribution of

local potential ordinates { (p} ('functional control points'). Each potential ordinate q is asso-

ciated with a unique local node i on the panel. For QUAD panels, the potential is given as

D(u, v) = II B (u) B m(v) ,(4.7)

i=0 j=0

where degree n and degree m correspond to the u-wise and v-wise coordinate parameters,

respectively. While n and m are analogous to n and m of the Bezier surface, there is no

requirement that they be equal. Indeed, the Bezier potential patch and the Bezier surface patch

are independent in this respect. The scalar Bezier ordinates T i, comprise a Bezier net control-

ling the distribution of the potential over the QUAD panel and are analogous to the vector-val-

ued Bezier points bgy which control the panel surface geometry. The total number of unknown

potential ordinates (p associated with a single QUAD panel is L = (n + 1)(m + 1); each

potential ordinate is associated with a local panel node i, yielding a total of L such nodes

on the panel. The local panel nodes { x } are three-dimensional position vectors corresponding

to a uniform distribution of the panel coordinates (u, v), where u e [0, 1], v e [0, 1], so that

on any given panel, the nodes are unique, i.e., ix x for i #j

On TRI panels, the potential is given as

t(u) = 2 p1 B"(u) , (4.8)
Il = 124

where B2n(u) are the generalized Bernstein polynomials of degree n . Again, n is analogous

to n, but there is no requirement that they be equal, and as with the QUAD panel, the triangu-

lar Bezier potential patch is independent from its Bezier surface patch, insofar as difference in

degree is concerned. The scalar Bezier ordinates 9 comprise a Bezier net controlling the dis-

tribution of the potential over the TRI panel and are analogous to the vector-valued Bezier

points b, which control the panel surface geometry. The total number of unknown potential

ordinates p associated with a single TRI panel is L = (n + 1)(n + 2)/2; each potential ordi-
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nate (p is associated with a local panel node x, yielding a total of L such nodes on the panel.

The local panel nodes { x } are three-dimensional position vectors corresponding to a uniform

distribution of the TRI panel coordinates (u, v, w), where u e [0, 1], v e [0, 1], w e [0, 1],

subject to u + v + w = 1, so that on any given panel, the nodes are unique, i.e.,

xi # ix for i sj

It must be emphasized that the Bezier ordinates {p} , and not the actual potential values

{0}, are the unknowns to be solved via the matrix equation. However, the matrix equation

represents a global system of equations and therefore must be written in terms of global

potential control points {p }. Each globally distinct Bezier ordinate (p is assigned as an ele-

ment in the vector of unknowns. Once a matrix solution is obtained, the potential is computed

thereafter using (4.7) or (4.8). Further details of the matrix equation are given in the sections

to follow.

Although (4.7) and (4.8) are written using the symbol designated for the total potential 0, the

relations are valid for the perturbation potential as well.

It may be of interest to note that the triangular Bezier representation (4.8) has the same

general form as expansions for unknown parameters commonly utilized in finite element anal-

ysis; the various types of finite element shape functions are analogous to the generalized

Bernstein polynomials B n(u) , as these are known weights factoring unknowns to be solved.

In this regard, the tensor-product relation (4.7) fulfills the same role. For further details

regarding finite element analysis, see, e.g., [Zienkiewicz 94]. An example of another weight-

ing technique applied to potential flow integral equations is described by [Sclavounos 87], in

which an averaging of the integral equation is performed in lieu of collocation (enforcement at

a point).

4.4 The Discrete Form of the Boundary Integral Equation

Both the total potential and perturbation formulations are presented. Refer to Section 4.4.1

and 4.4.2, respectively.
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Total Potential Formulation

The starting point is the boundary integral equation discussed in Chapter 2. The total potential

formulation (2.22) is rearranged such that only known 'loading' terms reside on the right-hand

side:

T 1(x) + f f( )Gax- )d + f f Ae(DTE)@Gx ) d4 = I,(x) (4.9)

SB-SE SW

This boundary integral equation, which includes a term for the wake sheet, is discussed in

further detail in [Kerwin 87] and [Lee 87]. For non-lifting bodies, the wake term is omitted.

At the discretization stage, field points are ordinarily located on the boundary and the

coefficient T is therefore equal to 1/2, provided the boundary is smooth. If the boundary is not

smooth, then T is equal to the solid angle (in steradians) subtended at the field point by the

boundary, divided by 47r. See, e.g., [Hunt 80]. Following the solution to (4.9), the potential

may be computed at any other point in the domain Q; if x lies within the domain but not on the

boundary MQ, then T takes on a value of 1.

In the following discussion, the field point x is assumed to be fixed, so that only one

instance of (4.9) is under consideration; in other words, only a single row of the influence

matrix is being considered. In addition, T is assumed to be known (say, T= 1/2). The first step

in obtaining a discrete form of (4.9) is to partition the region of integration of each boundary

integral in (4.9) in direct correspondence with the panel arrangement, i.e., the first integral
k

according to the set of body panels {AB } and the second according to the set of wake panels
k

NB Nw

TG(x) + I (f)aG(x; ) d4 + I fJAq(4TE) Gax; d4 = Wo(x). (4.10)
k = IA k k - I
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Before proceeding further it is necessary to consider the nature of the matrix equation to

be assembled. The prototype implementation of this panel method employs a non-overdeter-

mined system of equations of the following form:

A -q) = c (4.11)

where A is a square influence matrix, (p is a vector of unknown potential ordinates, and c is a

vector of known 'loads'. The size of ( corresponds to a total of M globally unique nodes {x}

{x,..., X.} associated with the body boundary panels AB. In general, X X for i ,

however in the case of a zero-thickness trailing edge, a pair of nodes associated with panels on

the 'upper' and 'lower' sides of SB respectively and lying on CTE may 'legitimately' occupy

the same physical location. At a zero-thickness trailing edge of a lifting foil, therefore, unique-

ness of a global node is not established exclusively by position; when ambiguity of position

occurs on CTE, uniqueness is determined by distinguishing between panels attached to the

node in question. For all nodes not on CTE, however, uniqueness of nodal position is sufficient

to establish uniqueness of a global node.

A one-to-one correspondence exists between the global nodes {x} and the global potential

ordinates {p }. The global nodes {x} are usually referred to as 'field points', particularly

when used as an argument in the boundary integral equation. However, a global node is not

necessarily a field point per se, as the matrix equation may incorporate one or more auxiliary

equations in lieu of the boundary integral equation, as discussed in Section 4.8.

To facilitate dissection of (4.10), it is useful to establish two mapping systems, g and h, for

use in conjunction with body and wake panels, respectively. The main purpose of these map-

pings is to establish linkage between the local potential ordinates {p} and the global potential

ordinates {p }. These mappings are nothing more than a bookkeeping system to facilitate

assembly of the matrix equation, which requires some method of specifying which columns of

the influence matrix are to be 'entered' into. Following along the lines of [Patera 95], a panel-

to-global mapping gk for body panels is introduced: Vk e {1, ... ,NB}, VJE {1, ... L ,

there exists an i = gj such that x i = i and (p = 1 , where the i are the local panel nodes
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k kand p1 are the local potential ordinates on the body panels AB . Thus, the body panel mapping
k

g also serves to associate local panel nodes { x } with global nodes {x }.

To evaluate the integral over the wake boundary, it is necessary to associate the potential

on any given wake panel with the potential at the trailing edge of the body, and for this pur-

pose, a panel-to-global mapping hf7 for wake panels is introduced: Vk e {1, ... ,N,

Vj e {1, ... ,L( } and Vie {1, 2} , there exists an i = hj; such that yp = (pjl , where the Yj;

are the local potential ordinates on the wake panels. For this mapping, i will always map to a

global control point at the trailing edge. The additional subscript I is necessary in order to

denote the 'side' of the foil (e.g., l = 1 and l= 2 correspond to the 'lower' and 'upper' sides of

the blade, respectively). Unlike the body panel-to-global mapping, the wake panel-to-global
kmapping hjg is a 'one-to-many' mapping.

With these mappings at our disposal, the r-th row of the influence matrix A can be

reduced to the following (colon notation is used, e.g., see [Golub 96]):

NB L k Nw L k 2

A(r, A(rg) + A(r, h1 g) (4.12)
k=i j=i k=1 j=1 1=1

where r corresponds to a single field point x (global node), and matrices AB and AW are

defined as

k kA(r,gJJ = kr gj+ D (4.13)

AW(r, hk) /(-) Dk (4.14)

k
In (4.13), 6 k is the Kronecker delta, which is unity when r = gj ,and zero otherwise. The

row vector D is composed of four prime ingredients:

- Kernel

- Potential distribution represented by Bezier scalar function (shape function)
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- Jacobian to transform domain of integration from 3-D panel to 2-D simplex

- Quadrature weights

Before examining the details of the row vector D, it is worthwhile to put D into perspec-

tive by observing that the multiplication of D by the vector of potential control points on a

given panel yields the potential induced at a field point x due to a normal-dipole distribution

over that panel, with dipole strength corresponding to the values of the potential control points

91
II(X)INDUCED BY A SINGLE PANEL =D [- , D ... DL (4.15)

LT

Recall that L k is the quantity of potential control points over the panel given by index k. Now

compare (4.15) with (4.7) or (4.8) and it is seen that the Bernstein polynomials are contained

in D. The key is to construct D in such a way that (4.7) and (4.8) is 'recovered' for a QUAD

and TRI panel, respectively. Note that (4.15) is really the contribution from a single panel to

the first integral in the boundary integral equation (4.10).

Referring back to the four components of D listed above, the kernel is equivalent to a nor-

mal dipole, cf. (2.20), distributed on the boundary with strength related to the value of poten-

tial represented by the Bezier scalar function, (4.7) and (4.8) for QUAD and TRI panels,

respectively. Provided the panel is smooth and a one-to-one mapping from the three-dimen-

sional panel domain onto a domain of the (u, v)-plane exists, integration over the panel can be

carried out conveniently by use of Jacobian determinants which give the differential area of

the panel in terms of the local panel coordinates u and v, as follows (see, e.g., [Zienkiewicz

94]):
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ax ax
au 10V

dS= aY x ay du dv (4.16)
au 15v

az az
u _vj

Quadrature weights associated with integration points depend on the order of integration as

well as the type of integration rule. This is discussed further below and in sections to follow.

Combining the elements mentioned above, an element j of the row vector D associated

with a given panel (index k) and field point x may be expressed in the following form:

NQ

D, (x) jq ) JQq j e{1, ... , L }. (4.17)
q= I

All four components inside the quadrature summation in (4.17) depend on the quadrature

point given by index q, and of which there are a total of NQ. The only component having any

dependence on x is Kq, which is nothing more than the kernel given by (2.20), with the source

point corresponding to the quadrature point q. It should be noted that even though quadrature

is being performed over a 2-D simplex (unit square in first quadrant for QUAD panels, unit

right triangle for TRI panels), where for square or rectangular domains it is typical to perform

quadrature using a pair of summations (one nested inside the other), the quadrature is easily

converted to a single index summation, i.e., the form used in (4.17).

In (4.17), J is given by the cross-product in (4.16). The quadrature weight factor Qq is

given as

(Wi W.)
(q 4 Ph QUAD panel4 Q = <(4.18)

S(WA) TRI panel
2
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where Wi and W% are Gauss-Legendre quadrature weights corresponding to abscissae (integra-

tion nodes or offsets) in the open interval (-1, 1), and WA are Gaussian weights given by

[Cowper 73]. Values of the weights and abscissae for the QUAD case are given in many engi-

neering texts, and also can be easily computed; see, e.g., [Press 92]. Quadrature is discussed

further in Sections 4.4 and 4.5. The divide-by-4 shown for QUAD panels is required when the

integration is performed in the first-quadrant, i.e., 0 < u, v < 1, while using quadrature weights

corresponding to the interval (-1, 1). This requires a simple transformation given in [Mohr

92]:

ui = 0.5(l - a) (4.19)

where ag is the quadrature abscissa in the interval (-1, 1) and ui (or vi) is the resulting parame-

ter in the interval (0, 1). Integrating in the interval (0, 1) is convenient with respect to the typ-

ical range of parameters (u, v) used in Bezier tensor-product patches, i.e., (0, 1). For TRI

panels, the integration is performed over a unit triangle with area = 1/2, which is precisely the

divide-by-2 factor shown in (4.18).

Last but certainly not least, Bjq is obtained by deconstructing or 'reverse engineering' (4.7)

or (4.8). For QUAD panels, each Bjq involves a single product of two Bernstein components

Bj(u) Bj(v), 23 while for TRI panels, each Bjq is simply a single value of B1(u, v, w).

The element in the load vector c is simply the value of the incident potential at the field

point, cf. (4.9) and (4.11).

Assembly of the matrix equation is discussed further in Section 4.8.

4.4.2 Perturbation Potential Formulation

Referring to Chapter 2, the boundary integral equation for the perturbation potential is

23. The subscriptj in Bj(u)Bj1 v) is not to be confused with the subscriptj in Byq. The formerj is associ-
ated with the summation over the potential control points on a panel (cf. Equation. 4.7), while the lat-
terj is an index referring to the element of the row vector D.
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T4(x)+ f$(4) aG(x; )d4 + f f A(T) ) d4 = f fG(x; 4) d4 . (4.20)
f a ang ) an an

SB -SS SB - S

The above equation is arranged with all known terms ('loads') on the right-hand side. As the

left-hand side is identical in form to that of the total potential formulation (4.9), the procedure

for assembling the influence matrix is identical to that described in Section 4.4.1; furthermore,

the load vector c in the matrix equation is assembled by straightforward extension of tech-

niques described in that section.

4.5 Avoiding Singularity Problems in the Induction Integrals

From a computational standpoint, it is clear that any 'encounters' with singularities must be

avoided. As discussed in Chapter 2, the boundary integral equations contain singular kernels,

which must be considered in the implementation of the numerical integration procedures. The

singularity originates from Green's function (2.15), and the gradient of Green's function

(2.20), both of which contain a distance parameter r in the denominator. Both the 'source

term' (integral whose integrand is proportional to G) and the 'dipole' term (integral with inte-

grand proportional to ) are singular, as the kernels approach infinity as r approaches zero
an

(i.e., as the field point x approaches the source point 4). Moreover, the kernels are strongly

singular, since r is raised to a power greater than or equal to unity.

Whereas the kernels in (4.9) and (4.20) are singular in behavior, the area of integration

excludes an infinitesimally small region S, surrounding the field point, so that, in principle, a

singularity is not encountered within the region of integration. 24 The form of the integral

equation, as derived, is such that the region S6 has already been accounted for; the value attrib-

uted to the integration over S, is contained in the 'free' potential term, i.e., the first term in

(4.9) or (4.20). While these boundary integral equations are effectively non-singular, due con-

sideration to the singular nature of the kernels must be given. In choosing a numerical integra-

tion procedure, at least two basic requirements come to mind:

24. The region of integration may be compared to a surface having a pin-hole at the location of the field
point.
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1. The procedure must avoid divide-by-zero errors and associated solution inaccuracies;

2. The 'free' potential value corresponding to SE must not be duplicated (no 'double dip-

ping'), as the contribution to the integral has already been evaluated in the process of
de-singularizing the integral equation. See Section 2.2.

The numerical integration strategy employed in the prototype implementation is relatively

straightforward. Gauss-Legendre quadrature is utilized, with one basic restriction imposed: A

field point must not be present within the perimeter of the quadrature domain. A field point

may, however, be present on the perimeter of the quadrature domain. This guideline follows

from the two characteristics of Gauss-Legendre quadrature (see, e.g., [Funaro 92]):

a. The Gauss-Legendre abscissae never occur on the perimeter of the quadrature domain,
since it is an open type quadrature rule. As the quadrature order increases, the 'outer-
most' Gauss abscissae approach the perimeter, but never reach it.

b. As the order of quadrature increases, the weight values associated with the outermost
Gauss abscissae approach zero.

Accordingly, it is hypothesized that Requirements 1 and 2 are satisfied when employing

Gauss-Legendre quadrature, subject to the restriction that the field points lie on or outside the

quadrature perimeter, but not inside. It may be noted that Characteristics a and b more or less

correspond to Requirements 1 and 2, respectively.

Remark: In utilizing Gauss-Legendre quadrature to compute the boundary integrals in (4.9)
or (4.20), it appears that the Cauchy principal value (cf. footnote 16) is automati-
cally obtained, thus satisfying Requirement No. 2 above. This statement is based
on results obtained from the single-panel quadrature tests described in Section 4.6.

It turns out that Gauss-Legendre quadrature is generally not the most accurate means of

integrating the boundary element kernels (for a given number of integration points). Various

other methods have appeared in the literature in the past 15-20 years, e.g., 1) weighted Gauss-

ian, 2) triangle-square regularizing transformation, and 3) series expansion combined with

singularity subtraction. See, e.g., [Lean 85] and [Aliabadi 89]. However, this finding does not

necessarily mean that standard Gauss-Legendre quadrature is not useful for this purpose, par-

ticularly when a stable, accurate and consistent means of modeling the geometry is available.

Critical to the determination of the boundary integrals is the computational quality of the geo-
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metrical coordinates, derivatives and Jacobians. On any given panel, the Bezier representation

provides an extremely smooth and stable representation of the geometry; in addition, it is a

relatively simple matter to ensure fully conforming inter-panel connections, i.e., C0 continu-

ity.

For discussion purposes it is convenient to establish a simple classification system for

field point location, with respect to a given panel, as follows:

- EXTERIOR: A field point that is not contiguous with the panel.

- EDGE: A field point that lies an edge, but not vertex, of the panel.

- VERTEX: A field point that lies on a vertex (corner) of the panel.

- INTERIOR: A field point that lies on the panel, within the panel perimeter.

When an integration must be performed for an INTERIOR-type field point, a subdivision

of quadrature domains ('quadrature subdomains') on the panel is utilized to facilitate integra-

tion. The method of subdivision used in the prototype implementation comprises a uniform

subdivision of the panel in parameter space u, v. The quantity of 'subdomains' is therefore

given by:

Fn, m, QUAD panel
Number of Quadrature Subdomains on Panel = . (4.21)

no TRI panel

4.6 Quadrature Tests

Gauss-Legendre quadrature is probably the most extensively used open type integration rule

in engineering analysis. However, there appears to be a fair amount of controversy as regards

its applicability to boundary element methods, particularly with respect to integration over a

panel on which a field point (singularity) is present.

In order to obtain a quantitative measure of performance of conventional Gauss-Legendre

quadrature as applied to the Bezier-based panel method, several quadrature tests were per-

formed. Each test comprises a single panel, and the objective is to compute, using standard

Gauss-Legendre quadrature, the potential induced by a constant-strength source distribution
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and a constant-strength normal dipole distribution over the panel. The test "field point" (for

which the induced potential is computed) is typically located at one of the vertices of the

panel. In any case, the field point is never permitted to lie in the interior of the quadrature

domain, so when a field point is located within the perimeter of a panel, a subdivision of the

panel exists to facilitate integration, cf. (4.21). The computation of the induced potential is

repeated with progressively increasing quadrature order. Panel aspect ratio and size were var-

ied in some of the tests.

A further purpose of these tests is to establish a baseline performance benchmark for com-

parison with other methods at a later date. In addition, the tests were performed with the hope

of gaining a better grasp of any limitations inherent in standard Gauss-Legendre quadrature as

applied to the problem under consideration.

The battery of quadrature tests is summarized in Table 4.1. For each listing, two separate

computations were performed, corresponding to 1) a unit source distributed over the panel,

and 2) a unit normal dipole distributed over the panel.

Table 4.1 - Summary of single-panel quadrature tests.

The potential induced at a field point x due to a unit-strength source distributed over a

panel A is
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Field Point
Panel Type Form Subdivided? loin

Location

QUAD planar NO VERTEX

QUAD planar YES VERTEX

QUAD spherical NO VERTEX

QUAD spherical YES VERTEX

TRI planar NO VERTEX

TRI planar YES VERTEX

TRI spherical NO VERTEX

TRI spherical YES VERTEX



(S d , (4.22)
4I~tXx - j

while the potential induced at a field point x due to a unit-strength dipole distributed over a

panel A is

D _ (x- .()d- (4.23)
A 4tIx - I

Equations (4.22) and (4.23) are numerically integrated as discussed in previous sections.

Referring to the unit square planar QUAD panel shown in Fig. 4.1, it can be shown that

the exact induced potential at the corner field point due to a unit source distribution is:

s_ ln(1 + 2)
2 T

(4.24)

while the corresponding value for a dipole distribution is zero. For the unit planar TRI panel

shown in Fig. 4.2, the exact value of the induced potential at the same field point due to a unit-

strength source distribution is simply one half the value given in (4.24)

For the spherical QUAD panel shown in Fig. 4.3, it can be shown that the exact value of

potential induced at the field point, by a unit-strength source distribution, is

S= -sin(IOI)ln tan ),
2n 8t(

(4.25)

while the potential due to a unit-strength dipole is exactly one half the value given in (4.25).

For the spherical TRI panel shown in shown in Fig. 4.4, the exact value of potential

induced by a unit-strength source distribution is
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S_Ral sin
27c 2

(4.26)

Again, the potential induced by a unit-strength normal dipole distribution is exactly one half

that given in (4.25).

y

1.0

1.0

Field Point (singularity)

x

Fig 4.1 Domain of unit planar QUAD panel used in single-panel quadrature test.

y

1.0 Field Point (singularity)

x

1.0

Fig 4.2 Domain of unit planar TRI panel used in single-panel quadrature test.

The computed values of induced potential have been compared with the exact values

obtained from the relations discussed above. Most of these comparisons are shown in Fig.'s

4.5 to 4.8.

A sampling of error results for the spherical TRI panel is shown in Tables 4.2a, 4.2b and

4.2c. These results correspond to integration without subdividing the panel into multiple
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Field Point (singularity)

Note: 9 is the same in both directions.

x

z

Fig 4.3 Domain of spherical QUAD panel used in single-panel quadrature test.

y

7 I
7 I/

x

Field Point (sin

Z

gularity)

Fig 4.4 Domain of spherical TRI panel used in single-panel quadrature test.
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quadrature subdomains. Referring to Fig. 4.4, the results listed in Table 4.2a are for 0 fixed at

0.1 degrees, with various values of a ranging from 0.1 to 90 degrees. In Table 4.2b, a is fixed

at 0.1 degrees, while 0 is varied in a range from 0.1 to 90 degrees. In Table 4.2c, both 0 and a

are varied from 1 to 90 degrees.

Based on these tests several observations can be made:

- In many cases, the error associated with the source distribution is nearly identical
to that of the dipole distribution.

- For planar panels, the error is independent of panel size, and all the source-test

errors are negative, i.e., QCALC < 1 . The absolute value of the source-test errors
NEXACT

decrease with increasing quadrature order. The dipole-test errors compute to zero
to within machine accuracy.

- For spherical panels, the error decreases with increasing quadrature order, pro-
vided the solid angle (in steradians) is not 'too large'. As the solid angle increases,
some point is reached when the sign of the error changes. As seen in Fig. 4.8, the
sign of the error for spherical QUAD panels changes from negative to positive as
the solid angle increases, as indicated by the rapid change in the curve.

- For TRI panels, the error does not increase significantly with increasing aspect
ratio (ratio of a to 0), even for very large aspect ratios, provided that a or 0 is not
'too large'.

One salient difference between QUAD and TRI panels is the means by which quadrature

weights and abscissae are obtained. For QUAD panels, algorithms exist for this purpose, for

practically unlimited order of quadrature; e.g., see [Press 92]. As far as the author is aware, no

such algorithms exist for triangular domains, at least for the symmetrical Gaussian formulae

of the Hammer and co-workers type given in [Cowper 73]; the highest-order formula pro-

vided in that reference corresponds to the 13-point integration rule. According to Cowper, the

discovery of additional formulas "remains a matter of ad hoc investigation". There is the pos-

sibility that additional formulae have been introduced since Cowper's publication 28 years

ago. In any case, alternate quadrature methods exist for triangular domains; see, e.g., [Mohr

92].

57



0

0

0

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5
0 0.5 1 1.5 2 2.5

Iog1O( sqrt( Number of Integration Points ) )

Fig. 4.5

Errors using standard Gauss-Legendre quadrature in computation of the potential induced by a constant-
strength source distribution over a planar square-shaped QUAD patch, with singularity (field point)
located at a corner node (see Fig. 4.1). Error is independent of patch size and degree of Bezier surface.

No error occurs in the computation of the potential induced by a constant-strength normal dipole; the
computed value agrees with the exact value (identically zero in this case).

Note: The abscissa can be misleading. The number of integration points corresponding to several values
of the abscissa are:
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Fig. 4.6

Error using standard Gauss-Legendre quadrature in computation of the potential induced by a constant-

strength source distribution over a planar square-shaped QUAD patch, with singularity (field point) located
at a corner node (see Fig. 4.1). Patch is subdivided into separate equally-sized quadrature domains, as indi-
cated. Error is independent of patch size and degree of Bezier surface.

No error occurs in the computation of the potential induced by a constant-strength normal dipole; the com-
puted value agrees with the exact value (identically zero in this case).

Note: The abscissa can be misleading. The number of integration points corresponding to several values of

the abscissa are:
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Fig. 4.7

Error using standard Gauss-Legendre quadrature in computation of the potential induced by a constant-
strength source distribution over a planar TRI patch, with singularity (field point) located at a vertex node
(see Fig. 4.2). Patch is subdivided into separate equally-sized quadrature domains, as indicated. Error is
independent of patch size and degree of Bezier surface.

No error occurs in the computation of the potential induced by a constant-strength normal dipole; the com-
puted value agrees with the exact value (identically zero in this case)

Note: The abscissa can be misleading. The number of integration points corresponding to several values of
the abscissa are:
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Fig. 4.8

Errors using standard Gauss-Legendre quadrature in computation of potential induced by constant-strength
source distribution over a spherical QUAD patch, with field point (singularity) located at a corner node (see
Fig. 4.3). Patch is Bezier surface of degree 4, varying in size (in terms of solid angle) as shown. Results are
essentially unchanged for the potential induced by a constant-strength normal dipole.

Results from [Aliabadi 89] using weighted Gaussian integration are shown for comparison.

Note: The abscissa can be misleading. The number of integration points corresponding to several values of the
abscissa are:
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Table 4.2a Quadrature test errors (in percent) for spherical TRI panel, with 0 = 0.1 degree and various a.

a=0.1 a=1 a=5 a=30 a=60 a=90

Num S D S D S D S D S D S D
PTS

1 25.00 25.00 25.00 25.00 24.99 25.04 24.63 26.32 23.65 30.11 22.42 35.92

3 10.00 10.00 10.00 10.00 9.99 10.01 9.59 10.26 8.32 11.32 6.04 13.97

4 11.98 11.98 11.98 11.98 11.97 11.98 11.54 12.26 10.16 13.40 7.70 16.26

7 6.00 6.00 6.00 6.00 5.99 5.99 5.68 5.78 4.70 5.17 2.99 4.34

13 3.77 3.77 3.77 3.77 3.76 3.76 3.55 3.51 2.85 2.66 1.59 0.94

Table 4.2a Notes:

1. All errors listed in Table 4.2a are negative, i.e., CALC <I
(EXACT

2. a is in units of degrees. Refer to Fig. 4.4.

3. 'S' denotes unit-strength source distribution. 'D' denotes unit-strength dipole distribution.

4. Bezier surface degree = 3.

Table 4.2b Quadrature test errors (in percent) for spherical TRI panel, with a = 0.1 degree and various 0.

0=0.1 0=1 0=5 0=30 0=60 0=90

Num S D S D S D S D S D S D
PTS

1 25.00 25.00 25.00 25.00 23.78 30.23 25.29 25.48 26.23 26.94 28.03 29.46

3 10.00 10.00 10.00 10.00 8.36 11.29 10.12 9.89 10.50 9.57 11.24 9.12

4 11.98 11.98 11.98 11.98 10.20 13.39 12.12 11.94 12.57 11.85 13.41 11.75

7 6.00 6.00 6.00 6.00 4.73 5.09 6.07 5.73 6.28 4.98 6.68 3.93

13 3.77 3.77 3.77 3.77 2.86 2.54 3.81 3.42 3.94 2.42 4.16 1.02

Table 4.2b Notes:

1. All errors listed in Table 4.2b are negative, i.e., CALC <I
DEXACT

2. 0 is in units of degrees. Refer to Fig. 4.4.

3. 'S' denotes unit-strength source distribution. 'D' denotes unit-strength dipole distribution.

4. Bezier surface degree = 3.
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Table 4.2c Quadrature test errors (in percent) for spherical TRI panel, with 0 = x.

0= 1 0= 5 0= 15 0=30 0= 60 0=90
cc= I=5 x=15 x=30 a=60 x=90

Num S D S D S D S D S D S D
PTS

1 25.00 25.00 25.00 25.05 24.98 25.45 24.98 26.80 25.75 32.11 29.15 40.71

3 10.00 10.00 9.99 10.00 9.93 10.03 9.72 10.15 8.97 10.89 8.16 13.05

4 11.98 11.98 11.97 11.99 11.90 12.04 11.68 12.29 10.80 13.35 9.63 16.42

7 6.00 6.00 5.99 5.99 5.94 5.88 5.76 5.50 5.06 3.90 4.07 0.81

13 3.77 3.77 3.77 3.75 3.73 3.62 3.59 3.14 3.10 0.97 2.50 3.87

Table 4.2c Notes:

1. All errors listed in Table 4.2c are negative, i.e., CALC <

and column (in bold). OEXACT

2.

3.

4.

1 , EXCEPT for the entry in the last row

0 and cx are in units of degrees. Refer to Fig. 4.4.

'S' denotes unit-strength source distribution. 'D' denotes unit-strength dipole distribution.

Bezier surface degree = 3.

4.7 Velocity Coupling

On any given panel, the computed velocity will be continuous and smooth, consistent with the

properties of Bezier surfaces and functions (see Chapter 3). At panel interfaces, however, the

velocity will not be continuous across the interface, in general.2 5 A technique referred to as

velocity coupling is used in an effort to improve the quality of the global velocity distribution.

In addition, velocity coupling may yield an improvement in the accuracy of the solution for

the potential.

Velocity coupling can be applied at any global node x meeting the following criteria, subject

to possible restrictions relating to 'excessive stiffness' in the matrix equation:

25. On an edge common to two panels, the velocity is continuous along the entire edge, provided the

Bezier threads (geometrical and functional) are common to both panels.
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- The node x must be either an EDGE or VERTEX type node situated on an inter-
face at which two or more panels are joined.

- The adjoining panels must be approximately tangent at the interface;

The first requirement is obvious. The second is based on intuition, and is reflected in the deri-

vation of velocity coupling equations. Ideally, C1 continuity exists at the interface, however

this does not appear to be a strict requirement.

As an example, assume that QUAD panels with Bezier function of degree 3 are utilized

for the potential distribution. Each QUAD panel will have 16 potential control points uni-

formly distributed over the panel, with 4 control points allocated to each edge. On any given

edge common to two neighboring panels, CD continuity of the potential is ensured, as all four

edge control points are common to both adjoining panels. However, at a given EDGE node,

the velocity computed with respect to one panel (say, Panel A) will in general differ from the

velocity computed with respect to the adjoining panel (Panel B). This comes as no surprise,

since the neighboring panels are separate entities (with only C continuity, geometrically and

functionally) and collocation nodes (field points) are relatively sparse.26 Velocity coupling is

essentially a process of equating two such computed velocities.

Velocity coupling as described is essentially a collocation process, in the sense that the

velocity is guaranteed to be continuous only at control points for which velocity-coupling is

applied, and strictly speaking, is continuous nowhere else along the panel edge.

Velocity coupling produces an independent equation that can be 'inserted' into the matrix

equation. If it is desired to avoid an overdetermined matrix system (which is the case in this

thesis), the boundary integral equation associated with the field point x may be supplanted by

the velocity-coupling equation in the appropriate row of the influence matrix, with an appro-

priate change to the corresponding load vector element. Further aspects are discussed in Sec-

tion 4.8.

26. True C continuity can in principle be obtained among a collection of patches, in which case the indi-
vidual patches become transformed into one large patch. This modified approach may offer some
advantages, but is not pursued in this paper.
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Velocity Coupling Equation

The general form of the velocity coupling equation is expressed as

d -VA (x) = d - V (x), (4.27)

where x is a node on the interface between Panel A and Panel B, d is a vector tangent to the

body at x, and V^ and VB are velocity expressions given in terms of potential control points on

Panel A and Panel B, respectively.

The velocity computation itself is discussed in Section 4.10. Fortunately, the velocity

computation for nodes at a panel interface (edge or vertex) is simplified, compared to the gen-

eral case. For example, consider a QUAD panel with degree 3 for the surface and degree 2 for

the potential function. The first derivative evaluated at some point on the edge, with respect to

a parameter line crossing the edge, depends on the row of control points lying on that edge, as

well as the row of control points adjacent to the edge (i.e., a pair of Bezier threads on the edge

and parallel to the edge, respectively). The derivative of the surface itself can be computed

beforehand, and therefore the geometrical control points themselves do not enter into the

velocity equation. For the derivative of the potential, the potential control point values (Bezier

ordinates) are unknown and therefore must be incorporated into the velocity equation explic-

itly. As the degree is 2, there will be 3 x 3 rows of potential control points; the first derivative

with respect to a parameter crossing the edge on which the node is located will involve a total

of six control points; more specifically, there will be three pairs of differences taken between

the two Bezier threads.

Refer to Chapter 3 for derivative expressions.

4.8 Assembly of Linear System of Equations

The exact form of the discretization depends on several factors, including the type of matrix

system envisaged. The implementation programmed in this thesis is a matrix equation of the

following type:
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A-p = c (4.28)

where A is a square influence matrix, (p is the vector of unknown potential ordinates, and c is

a known right-hand side vector. Other aspects of this equation were discussed in Section 4.4.

An alternate approach could utilize an equality-constrained least-squares (LSE) matrix

system, with suitable constraint equations, e.g., see [Lee 99], and also [Golub 96] for further

details on this matrix method. In this thesis, however, the LSE approach was not pursued.

As with any panel method, assembly of the influence matrix A is the primary task at hand.

In the method implemented here, the influence matrix is constructed one row at a time. Each

row is associated with two key variables: a prescribed field point for which the left-hand side

of the integral equation (4.9) or (4.20) is applied, and a corresponding potential control point

(Bezier ordinate) of unknown value. The latter constitutes an element in the vector of

unknowns, (p. discussed in more detail in Section 4.4.

4.8.1 Boundary Integral Equation

The boundary integral equation is the foundation of the method and therefore plays the most

important role in characterizing the matrix equation. In principle, a square matrix equation can

be generated solely from the discrete form of the boundary integral equation, by assembling M

instances of the equation corresponding to M unique field points (the lifting-body problem

requires an auxiliary equation (Kutta condition) as discussed in Chapter 2 and Section 4.8.3).

4.8.2 Velocity-coupling Equation

Independent equations of the velocity-coupling type presented in Section 4.7 can be used in

lieu of the boundary integral equation (only for field points located at panel interfaces). One

significant advantage of the velocity-coupling equation is the fact that the number of opera-

tions required to assemble the row in the influence matrix is far less than required by the

boundary integral equation.
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4.8.3 Kutta Condition

A third type of independent equation is required for the lifting-body problem, as discussed in

Chapter 2. The most general statement of the Kutta condition, (2.7), leads to a variety of meth-

ods to implement the Kutta condition for computational purposes, depending on the applica-

tion and analysis method, e.g., see [Kerwin 78]. As discussed in [Kerwin 87] and [Lee 99], the

Kutta condition can be characteristically kinematic or dynamic, or a combination of both.

In principle, the Kutta condition may be imposed at the trailing edge, at each location

where a pair of opposing control points exists. See Figure 4.9. Using a technique similar to

that employed for velocity coupling (described in Section 4.7), it is possible to write an equa-

tion in terms of the potential control points (Bezier ordinates) located on both 'sides' of the

foil.

As indicated in Fig. 4.9b, the question arises as to whether a double-node should exist on

the trailing edge at the ends of the span, where the trailing edge curve CTE is reentrant. Since a

dipole sheet (with dipoles oriented normal to sheet) is equivalent to a distribution of vorticity

(tangential to the sheet) of strength equal to the local rate of change of the dipole strength, plus

a vortex filament at the edge of the sheet with strength equal to the strength of the dipole, one

may conclude that the use of a single node at the 'edge' of the wake sheet would result in an

equivalence of a zero-strength vortex filament at the edge of the wake.27 If the equivalence of

a finite-strength vortex filament is desired at the edge of the wake sheet, then there must be

two independent control points to allow a difference in potential to exist, just as with the

remaining intermediate trailing edge control point 'pairs'.

27. Recall that the wake sheet really comprises a pair of dipole sheets, with opposite normal vectors, cf.
Fig. 2.1. Use of one independent node (control point) at the end of the span is, in electrical engineer-
ing parlance, akin to 'shorting' the two dipole sheets, thus resulting in zero difference of potential
along the edge of the wake progressing downstream.
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k
panel AB

CTE

See Fig. 4.9b

Fig. 4.9a Schematic of trailing edge discretization. The trailing edge is a closed curve as denoted by CTE.

Symbolizes use of Green's theorem (boundary
integral equation) at node (field point).

K

Ksignifies independent equation
based on Kutta condition.

Reentrant node on TE:

A question arises as to whether this should be a 'double
node'. A double node allows a potential difference at the
edge of the wake sheet, thus permitting the equivalence of
a non-zero vortex filament strength at this location.

CTE

t->0

K CTE

* vertex node

o edge node

Fig. 4.9b

Close-up of panel nodes at the trailing edge, near the end of the wing span. Opposing trailing edge nodes are
joined by dotted lines. For a zero-thickness trailing edge ( tTE = 0), opposing nodes occupy the same location;
in this figure they are shown separated to clarify the different treatment of the nodes.
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4.9 Solution of Matrix Equation

In the first-generation implementation of this higher-order panel method, the solution of the

matrix equation was carried using LU decomposition and back-substitution [Press 92]. This

method was utilized for expediency. No attempt was made to incorporate alternative matrix

solution techniques, however other researchers have obtained substantial improvements in

computational performance (relative to Gauss reduction) by employing accelerated iterative

solution procedures. See, for example [Lee 87].

4.10 Velocity Computation

Velocity computations are performed after a solution of the matrix equation is obtained. The

process involves the computation of two derivatives with respect to the parameter u or v. One

derivative, d/dt relates the velocity potential to the Bezier parameter, while the other, ds/dt,

relates the physical coordinate to Bezier parameter. Here dt represents either du or dv, and ds

is the differential arc length (actual physical coordinate). These derivatives are combined in

accordance with the chain rule. A similar procedure as applied to a B-spline panel method is

outlined in [Lee 99].

Derivative formulae for the Bezier surface and scalar function are provided in Chapter 3.

Only the first derivatives enter into the calculation of the velocity.
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Chapter 5

Test Cases

5.1 Steady Flow Past Sphere

The steady incompressible potential flow over a sphere was analyzed using a first-generation

implementation of the Bezier-based higher order panel method. The test sphere for which

results are presented is shown in Fig. 5.1.

Fig. 5.1 Discretization of spherical body, 8 x 8 panels (meridional x circumferential).
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Fig. 5.2 compares the computed total potential and velocity with exact values. Overall agree-

ment is seen to be very good. As might be expected, there is closer agreement between the

potential, versus the velocity. The maximum error in velocity occurs near the poles of the

sphere, where the TRI panels are located; this error may be partially attributed to the velocity

algorithm for TRI panels, which needs further validation.

Exact Potential
- - - - -- Exact Velocity

K Computed Potential

+ Computed Velocity

1.5______

0.5

01
-0 N -+

- NOT FES
Number of panels in rneridional direction: 8

0_ -0.5 (equally spaced)
Number of panels in circumferential direction: 8
(equally spaced)
Bezier surface degree: 3; Bezier function degree: 3
Quantity of integration points:

-1 QUAD Panels: 16(Exterorfield point)
16x 9= 144(Edge& Interiorfield point)

TRI panels: 13(Exterior field point)
13 x 9= 117 (Edge & Interior field point)

-1.5 ________ ___ ___ ___ ___

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Meridional Position (degrees)

Fig. 5.2 Comparison of computed and exact potential (total) and meridi-
onal velocity for spherical body shown in Fig. 5.1.
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5.2 Added Mass of Spheroids

An added-mass computational routine was developed using the perturbation-potential formu-

lation discussed in Chapters 2 and 4. The added-mass computation is based on well-known

relations, given, e.g., in [Newman 77].

Test cases were run on spheroidal bodies (i.e., ellipsoids of revolution) with beam-length

ratio varying from 0.1 to 1.5. A typical spheroid is shown in Fig. 5.3, which also illustrates a

typical panel arrangement. Three components of added-mass were computed:

- mi I - surge component

* M2 2 - sway component

* M5 5 - yaw component

Fig. 5.3 Discretization of spheroid. Beam-length ratio = 0.3.
Panel Discretization: 8 x 8.

Comparisons of computed and exact values are shown in Fig.'s 5.4, 5.5 and 5.6, for m,

M 22, and m5 5 , respectively. The agreement is very good for all three components.
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1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

b
a

ml1' exact

X computed (8 x 8 panels)

-T

_X
_)K

0 0.2 0.4 0.6 0.8

b/a

1 1.2 1.4 1.6

Fig. 5.4

Added-mass coefficient m1 I for a spheroid of length 2a and midbody diameter of 2b. Bezier degree 3
for both surface and potential function. The added mass mi I denotes surge acceleration (longitudinal
direction). The coefficient is nondimensionalized with respect to the mass of the displaced volume of
fluid, which is (4 /3 )T p a b2. See [Newman 77] for further details.

NOTE: The 'exact' curve shown was manually extracted from Fig 4.8 in [Newman 77], i.e., it is not
an exact reproduction of that curve. Accordingly, there may be a small error in translation.
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b
a

m22' exact
+ computed (8 x 8 panels)
x computed (12 x 12 panels)
0 computed (16 x 16 panels)

0.9 -- -+

0.8-

0.7 x

0.6 -

0.5 - -

0.4-

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

b/a

Fig. 5.5

Added-mass coefficient M 22 for a spheroid of length 2a and midbody diameter of 2b. Bezier degree 3
for both surface and potential function. The added mass M 22 denotes sway acceleration (lateral, in
equatorial plane). The coefficient is nondimensionalized with respect to the mass of the displaced vol-
ume of fluid, which is (4/3) apa b2 . See [Newman 77] for further details.

NOTE: The 'exact' curve shown was manually extracted from Fig 4.8 in [Newman 77], i.e., it is not
an exact reproduction of that curve. Accordingly, there may be a small error in translation.
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b
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m55' exact
+ computed (8 x 8 panels)
x computed (12 x 12 panels)
o computed (16 x 16 panels)

- +

0 0.2 0.4 0.6 0.8 1

b/a

1.2 1.4 1.6

Fig. 5.6

Added-mass coefficient M5 5 for a spheroid of length 2a and midbody diameter of 2b. Bezier degree 3
for both surface and potential function. M5 5 denotes the added moment of inertia for rotation about an
axis in the equatorial plane. The coefficients are nondimensionalized with respect to the moment of
inertia of the displaced volume of fluid, which is (4/15)7r pab2 (a2 + b2). See [Newman 77] for further
details.

NOTE: The 'exact' curve shown was manually extracted from Fig 4.8 in [Newman 77], i.e., it is not
an exact reproduction of that curve. Accordingly, there may be a small error in translation.
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5.3 Sample Discretization of Hydrofoil

In order to illustrate the use of a TRI panel arrangement at the tip of a wing or hydrofoil, a

sample discretization was generated, as shown in Fig. 5.7. In this example, TRI panels are

used exclusively at the tips. The arrangement shown differs from a typical treatment of the tip

region, in which a small portion of the tip remains 'undiscretized', due to the exclusive use of

quad-like panels, for which it is not practical to 'close the gap.'

The close up view of the tip region shows quite thin sliver-like panels in way of the lead-

ing edge. From a numerical viewpoint this is not necessarily cause for alarm; as discussed in

Section 4.5, the single-panel quadrature tests performed for a spherical TRI patch showed that

the error did not significantly increase with increasing aspect ratio (ratio of 0 to a, cf. Fig. 4.4

and Table 4.2b). One parameter that has a bigger impact on accuracy is the amount of 'curl'

exhibited by the panel, i.e., the total change in cc and 0 (roughly speaking, the amount of vari-

ation in the normal vector while traversing from one end of the panel to another).

Whether or not the type of arrangement shown in Fig. 5.7 presents any advantage remains

to be seen.
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CLOSE-UP OF TIP REGION

Fig. 5.7

Sample discretization of a symmetrical-section hydrofoil with elliptical planform, showing use of
TRI panels at both ends of the span.
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Chapter 6

Conclusions

The Bezier-based higher order panel method developed in this thesis performs well with

respect to the test cases presented in Chapter 5: a) steady flow past a sphere, and b) added

mass of spheroids. In both cases, very good agreement with exact values was demonstrated.

For these cases, at least, it appears that standard Gauss-Legendre quadrature provides an ade-

quate means of facilitating the task of computing the boundary integrals. In the method out-

lined herein, a field point is never permitted to lie in the interior of the quadrature domain; for

field points that lie inside the perimeter of a panel, a subdivision is utilized. Of course, the

efficacy of this strategy depends on how well the quadrature method can handle singularities

on the boundary of the quadrature subdomain.

The single-panel quadrature tests summarized in Chapter 4 confirm that the accuracy of

Gauss-Legendre quadrature generally does not match that of some other methods described in

the literature (for equal number of integration points), nonetheless, the foregoing results attest

to its effectiveness in those cases. In any case, the Bezier-based panel method does not pre-

clude the use of other methods of quadrature.

In general, the quality of the geometrical parameters appears to play an important role in

the overall performance of the method. The incorporation of Bezier panels is likely a signifi-

cant contributory factor in the favorable results witnessed so far, as Bezier patches provide an

extremely stable and consistent platform for determination of coordinates, derivatives and

Jacobians over the panel. Moreover, as the quadrature domain never extends beyond the

perimeter of a panel, the issue of higher-order continuity between panel interfaces does not

appear to be critical.
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A preliminary formulation for the lifting-body case has been presented, however, further

development and testing is required in order to ascertain the validity of the method for this

problem class. From a geometric standpoint, the Bezier representation appears to present

some advantages over some other methods, as both triangular and tensor-product (four-sided)

patches can be utilized, giving the analyst more flexibility in choosing panel arrangements.

Again, this is consistent with the view that high fidelity in geometric modeling is desirable,

especially in certain applications.

The velocity coupling technique presented appears to perform as intended, although more

testing is required in general to ascertain whether the benefit is consistently achieved, particu-

larly for interfaces between triangular panels. Besides yielding a smoother velocity distribu-

tion, there are indications that the overall solution of the potential is improved when velocity

coupling is judiciously applied. Worth noting is the contrast in equation assembly time

between the two equation types (i.e., velocity-coupling vs. Green's theorem). The 'rapid-fire'

execution time of the velocity-coupling equation comes as a welcome bonus.

Results of this initial investigation indicate that further development work on the Bezier-

based panel method may be warranted, depending on foreseeable needs. The method will

require further effort to determine whether it is suitable for the lifting-foil problem. There is

the possibility that the Bezier-based method may be of utility in other fields in which bound-

ary element methods are commonly utilized (e.g., electromagnetics).
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