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Abstract

The goal of mobile robot relocation is to determine the position of a robot from
sensor measurements using an a priori map. Current methods in relocation are largely
based on probabilistic approaches using particle filters. An alternative approach is
based on using echolocation measurements of the surrounding environment as data
features in a constraint-based search to determine the robot's position. The goal
of this thesis research has been to investigate the latter approach, by creating a
C++ implementation of search-based relocation, and evaluating its performance with
data sets from several different environments. The algorithm considers all feasible
assignments of pairs of measurements with pairs of features in a given map to generate
candidate locations for the robot. Hypothesized positions are then evaluated by
comparing the remaining sensor measurements with predictions from the model. This
algorithm has been implemented in C++ and integrated with a visualization software
package based on openGL. The method has been tested on several data sets from
buildings of the MIT campus, including MIT's Compton Gallery and the corridors of
buildings 1 and 5. The results provide suggestions for future research, including the
development of more efficient search strategies and the integration of relocation with
concurrent mapping and localization.

Thesis Supervisor: John J. Leonard
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Dedication

"One time I hired a monkey to take notes for me in class. I would just

sit there, my mind a complete blank, while the monkey scribbled on little

pieces of paper. At the end of the week, the teacher said, 'Class, I want

you to write a paper using your notes.' So I wrote a paper that said,

'Hello, my name is Bingo. I like to climb on things. Can I have a banana?

Eek eek!' I got an F. When I told my mom about it, she said, 'I told you,

never trust a monkey!' The end."

Brak, from Space Ghost, "Never Trust a Monkey"

To Mom, Dad, Jeremy, and Jillian, without whom I may not have made it through

my years of school.
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Chapter 1

Introduction

In order to navigate autonomously in its environment, a mobile robot needs to know

where it is. With an a priori map, the robot's position can be estimated either by

localizing itself using knowledge of its current and previous movements, or relocating

itself solely based on knowledge of its current surroundings. Reliable position estima-

tion is crucial to navigation and mapping; without accurate tracking, an autonomous

system will grow in error as time goes on, thus generating unreliable data and maps.

The goal of relocation is to give the best estimate of the robot's position given

no information about its previous states, with only a set of measurements describing

its immediate environment. This is essential when no prior estimates are available

and the robot has become lost within its given map. Current methods in relocation

are largely based on probabilistic approaches, using Bayesian filtering and both grid-

based and particle-based density representations. Using these approaches, the robot's

position estimate improves over time, starting with the notion that it is equally likely

to be anywhere in the map. At each time step, the robot then uses the new information

to refine its assumptions about its surroundings and position. Our approach uses

constraint-based search to determine the robot's position. By matching echolocation

measurements of the surrounding environment as data features, this algorithm is

more of a "brute force" method to the relocation problem. The algorithm tests all

possibilities of measurements and features, eliminating the solutions that don't fit

within given sonar properties and geometric constraints.
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This search-based relocation work is complementary to work done by Leonard et

al. on concurrent mapping and localization (CML) [14, 9]. The goal of CML is to

enable a mobile robot to build a map of an unknown environment while using that

map to navigate [14]. The algorithm presented in this thesis is written as part of the

existing CML code, allowing us to test the relocation method with a large variety of

data sets that have recently been acquired.

1.1 Background on Object Identification Problems,

Sonar and CML

1.1.1 B21 Robot and Sonars

The B21 mobile robot by Real World Interfaces (RWI) supplies the data sets for our

research, and is shown in Figure 1-1. Affectionately named Leo, after Leopold Bloom

from Ulysses, the B21 is equipped with 2 rings of 24 sonar sensors, located in the

enclosure and in the base of the robot, and a SICK PLS laser scanner. Only the

enclosure sonar returns are used in our relocation research; the other data is used in

related CML work.

The sonar sensors on the robot are Polaroid Ultrasonic Rangefinders, which are

standard in robotics research involving sonar returns. They are plagued with a rep-

utation for being problematic, unpredictable and unreliable [13]. For those expect-

ing sonar to provide data resembling a real-world map (as a simple ray-trace model

might), sonar data appears to be "bad", filled with erroneous range readings. In their

book, Leonard and Durrant-Whyte counter sonar's reputation by presenting Polaroid

sonar data as predictable and accurate, by formalizing the notion of regions of con-

stant depth (RCDs). An RCD is a set of connected set of sonar returns differing

in range by less than some predefined threshold. The RCD is defined by its range

(the mode of the set of range returns) and width (the difference in angle between

the extreme returns in the set). RCDs are assigned an order, defined as the number

of surfaces sound has reflected from before returning to the transducer. First-order

9



Figure 1-1: The B21 mobile robot (illustrated here in the plywood box used for simple
testing of the algorithm.)
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returns are produced by planes perpendicular to the transducer, and second-order

returns are produced by corners. Higher order returns are given by side-lobe and

other reflections when the beam is at a high angle of incidence to a target. These

higher order returns are not accurate range readings, and appear to be erroneous

data. Incorrect interpretation of these spurious data points is simply one factor in

the problems of object identification.

1.1.2 The Problem of Object Identification

Identifying objects in the sensory information a robot receives is key to navigation and

tracking techniques. After determining the nature and pose of these objects, localiza-

tion is made possible by matching the objects to the robot's given map. Relocation

is made difficult by the inherent problems of the object identification problem. Iden-

tifying objects is made most difficult by three factors cited by Grimson [10]: spurious

data, occlusion, and noise. Spurious data stems from the aforementioned problem of

data interpretation without regard to order of the returns. Intuitively, if a high-order

data point is assumed to be first or second-order, it will return a false range reading.

False range readings are obviously problematic in the quest for accurate object iden-

tification. Occlusion is defined as an obstruction in a sonar sensor's beam path, such

as an object in the line-of-sight between the sensor and the wall, or a side of an object

not directly visible to the sensor. Object recognition is necessary even when there is

obstruction; in reality, a robot will rarely see every corner and side of its environment

at all times. Grimson asserts that good recognition methods must be able to deal

with shortcomings of occlusion and spurious data.

Real-world sensors are plagued with noise, which corrupts data and increases

uncertainty in readings. Additionally, real environments are filled with extra objects

and clutter, and not just simple walls, corners, and edges. Coping with uncertainty

is one the key challenges in robotics sensing.

In addition to the problems arising from uncertainty in sensor data, a key difficulty

in developing a relocation algorithms is computationally complexity [10].
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1.2 Thesis Road-map

In this chapter, we have provided a high-level overview of the issues addressed in the

thesis.

Chapter Two reviews previous and current research in mobile robot relocation.

It addresses methods using search algorithms, and gives a brief overview of other

particle-based and grid-based relocation methods.

Chapter Three summarizes our method for relocation, which is based on constraint-

based search, implemented in C within the framework of CML code developed by

Leonard.

Chapter Four applies the method to data from a land mobile robot navigating in

a series of indoor environments.

Chapter Five concludes the thesis and makes recommendations for future

12



Chapter 2

Previous research in mobile robot

relocation

2.1 Relocation using Sonar using Search Methods

2.1.1 Drumheller

Mobile robot relocation using sonar scans was first approached by Drumheller [7],
who referred to it as absolute localization. He developed a search-based algorithm

derived from work on the Interpretation Tree method by Grimson and Lozano-

Perez [10]. Drumheller used connected line segments as features of sonar data, which

are straight segments extracted from a sonar contour. Localization is performed as a

two-dimensional matching problem between the sonar segments and the room outline

to determine the robot's pose with respect to the room. Model features and data

features are paired together, and unfeasible pairings are initially eliminated using a

distance constraint (the distances of sonar segments must be comparable to distances

between walls they are assigned to), an angle constraint (the range of angles between

a pair of sonar segments must include the known angle between pair of walls they are

assigned to), and a normal-direction constraint (the same as distance constraint, but

measured along the segments' normal vectors).

After the interpretation tree is pared down, Drumheller introduces a new con-
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straint, called sonar barrier test, which basically tests for occlusion. It states that a

sonar ray won't intersect a wall, lie outside the cone of reflection for that wall, or has

any endpoint outside that wall.

In addition to these basic constraints, Drumheller tested that the vehicle geome-

tries would lie within the map, and also expressed preferences for long segments of

sonar data, which are assumed to be more accurate. Drumheller introduced this

method of relocation as a "worst-case scenario" for localization due to the "extreme

errors due to the nature of sound propagation," but work by Leonard and Durrant-

Whyte [13] has asserted that sonar can be a predictable and reliable tool.

2.1.2 Leonard and Durrant-Whyte

Leonard and Durrant-Whyte were the first to introduce the term "relocation" to re-

fer to localization without knowledge of prior states in their book [13]. The term is

adapted from orienteering, an outdoor sport where racers' navigation skills are often

more important than their speed. In orienteering, relocation means "recovery from

getting lost", and is done by matching local features, such as vegetation or rocks, to

map features. The authors review basics of extracting RCDs from sonar data, basing

their methods on Kuc and Siegel's work [11] presenting sonar data as consisting of

circular arcs and not line segments. Features are more easily identified as RCDs in

the sonar data, while returns not associated with an RCD can be assumed to be

diffuse reflections. Instead of being a "worst-case scenario", good reliable range esti-

mates can be obtained. This work suggested that future work in relocation could be

advanced by exploring a substitution of these RCDs for Drumheller's sonar contours.

Adding a relocation method with RCDs to their existing Kalman-filter based naviga-

tion algorithms would bring them closer to a fully autonomous, navigating, mapping

robot.
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2.1.3 Lim and Leonard

Lim and Leonard [16] furthered Drumheller's work by using RCDs in an Interpretation

Tree method. The substitution of RCDs for line segments is not straightforward,

because the corners and edges are indistinguishable from planes if only a single sensor

is used. In [16] the testing environment is modeled as geometric primitives such as

walls, corners, edges, and cylinders. Their relocation method was applied to a small

room environment, with implementation in Matlab for visualization of results. Since

this method is the basis for our work, we will cover it in more detail in the next

chapter.

2.1.4 Castellanos

The approach investigated in this thesis is similar to the approach of Castellanos [5].

Castellanos describes a search based algorithm for relocation which is called the first

location problem. They provide experimental results for a 2D environment using

multisensor system: laser range scanner data and vision data, not using sonar like

the others. It uses interpretation tree method compared to hand-measured map. Ge-

ometric constraints separated are into location dependent and location independent).

They discuss and compare two different algorithms: identifying before locating, and

identifying while locating. The distinctions between these two approach have an

analogy in model-based object recognition [10].

2.2 Alternative methods

2.2.1 Grid-based

An alternative to search-based representation is to use grid-based representation,

such as the work done by Moravec [17], Elfes [8], and more recently by Schultz and

Adams [19], which involves continuous localization. An evidence grid divides an area

(or volume) into cells, and each cell contains a value (-1,1), where a value of -1

represents an unoccupied cell, a value of 1 represents an occupied cell, and a value of
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0 represents an equal likelihood of being occupied or unoccupied. The environment is

divided into an evidence grid representation, and a long-term map is acquired using

many sensor readings over a long period of time. Short-term maps are then built of

the robot's immediate environment, from a recent set of sensor readings. The short-

term maps are then used to place the robot within the long-term map and correct

its overall position estimate. Continuous localization is the process of making these

smaller corrections at regular intervals.

The advantages of these evidence grid methods are intuitive. Regular relocation

leads to smaller errors at each time step. With the knowledge that the errors will be

small, the search space for relocation is greatly reduced, speeding up the correction

techniques. In addition, evidence grids lend themselves to using combinations of

sensors, so fusion of data is simple and beneficial. The difficulty of an evidence grid

representation is apparent in the method in which the long-term map is built. In a

real-world environment, there may be objects are present in a short-term map that

would not appear in a long-term map, such as people walking through, or movement

of furniture. The creation of the long-term map by accumulation of sensor data will

lead to problems with dynamic environments, such as hallways, or any environment

with people.

There is also the problem of computational overhead involved in discretizing repre-

senting environment into a grid, most importantly the requirement that the resolution

and precision of the environment be fixed beforehand.

2.2.2 Particle filtering

A popular current alternative to search-based methods is based on the use of particle

filtering. Monte Carlo Localization (MCL) work by Dellaert et al. [6] illustrates

particle-filtering work on localization and relocation using CMU's B21 robot Rhino.

Thrun's work on Bayesian landmark learning uses particle-filtering techniques to allow

a robot to determine salient features in the environment on its own, touting flexibility

over static approaches to mobile robot localization [20].

Particle filtering is a powerful generic framework based on Bayes' theorem. Parti-
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cle filtering represents the probability density of the robot's location using a random

set of samples (particles) drawn from all the data that is received. Localization of the

robot is done recursively computing the density in a prediction and an update phase.

In the first phase, samples are drawn from the previous state, and a motion model is

applied, resulting in a random sample of the predictive density.

The second phase incorporates incorporates sensor measurements, weights the

samples in the predictive density, and then re-samples the weighted set, selecting

particles with higher likelihood associated with them. When particle filters are ap-

plied to relocation problems, the prior density is represented as a uniform probability

density, meaning that the robot is equally likely to be anywhere in the environment,

except for where static obstacles are already known to be located. After several

iterations, the vehicle will be localized.

Wijk has also investigated relocation using particle filters, with very interesting

results [21]. He has reported that even with a very large number of particles (500,000),

in some tests the method only achieved a 50% success rate. He developed a new

technique, called planned sampling, that achieved better performance with a lower

computational burden [21].

Relocation using particle filtering is attractive because of its ability to handle

multi-modal distributions. Dellaert et al. [6] have also extended the approach to

apply for multiple mobile robots.

2.3 Relation of the current work to previous work

This thesis investigates the use of a search-based algorithm for relocation, based on

the Interpretation Tree [10]. We follow this technique because we believe that it

has the potential to be integrated with CML more seamlessly than other methods

that have been published. The key challenge with all relocation methods is achieving

robust performance while maintaining computational efficiency. The goal has been

to experimentally investigate the tradeoffs between performance and complexity by

creating a new C implementation of the method and testing it with a variety of
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experimental data sets.
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Chapter 3

Localization Algorithm

This chapter summarizes method from [16]. First we the sonar measurement model

is reviewed, and then the relocation algorithm is described.

3.1 Measurement Model

Echolocation refers to the process of measuring the location of an object by deter-

mining the time for an echo to return from the object to the sonar, in response to an

interrogating pulse from the sonar [1]. If the echoes reflected from an object can be

simultaneously detected by multiple transducers [2], then one can also measure the

direction to a reflection object. The method presented in this chapter assumes that

each transducer operates independently, and hence angle cannot be measured directly.

Because of the wide beam pattern of the Polaroid sonar, the angle to the reflecting

object cannot be reliably estimated from individual returns [13]. The measurement

produced by the sensor is a range value r = , where c is the speed of sound in air2'

and t is the round-trip travel time from the sensor to the object and back.

A physics-based sonar sensor model can be used to derive the geometric con-

straints provided by echolocation measurements for different types of objects [13].

We assume that environmental features can be classified according to four types:

planes, cylinders, corners, and edges. We approximate the world as being two di-

mensional, so that planes are represented by lines, cylinders by circles, and corners

19



or edges by points. Examples of cylindrical features that might be encountered in an

indoor environment include building pillars. We use the word "target" to refer to the

environmental features.

In addition, we assume that the surfaces of the environment are smooth in relation

to the wavelength of the sonar. In a specular wavelength regime, rough surface

diffraction [4] can be ignored. If rough surfaces are encountered, extra returns will be

produced at high angles of incidence from line targets; these will need to be rejected

as outliers as a by-product of the constraint-based search procedure.

For a long duration, single frequency transmitted pulse, the beam pattern b(O) of

a circular disc transducer such as the Polaroid sonar is given by [18]:

b (0) (2Ji(kasin0) 2 (3.1)
ka sin 0

where J1 is a first-order Bessel function, 0 is the angle from the sensor axis, k = 2

is the wavenumber, and a is the radius of the transducer. For the Polaroid sensor,

a=39 mm and A = 6.9 mm.

Bozma and Kuc [3] have found that with short, impulsive excitations, the beam

pattern of the Polaroid transducer has a Gaussian shape and side-lobe effects are

minimized. However, with the standard Polaroid driver circuit, which uses a longer

transmitted pulse, side-lobe levels can be significant. While under normal circum-

stances, a range return is produced by the main central lobe, returns can also be

generated from the side lobes of the radiation pattern.

For specular surfaces, only the perpendicular portion of the surface reflects the

beam directly back to the transducer [11]. For a line target, if we let Ot be the

angle with respect to the x axis of a perpendicular drawn from the line to the sensor

location, as shown in Figure 3-1, the range of values of sensor bearing, 04, that can

produce a range return is

t - - S < 5 + --,(3.2)
2 - - 21

where 3 is defined as visibility angle of the target and represents the maximum range

of angles over which a return is produced by a target. We define Equation 3.2 as the

20
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Figure 3-1: Plane target model. A plane is represented by the perpendicular distance r and
orientation a. The shaded rectangle indicates a single sonar sensor located at the position
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Figure 3-2: Corner target model. A corner is represented by the position (xc, yc).
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Figure 3-3: Edge target model. An edge is represented by the position (xe, ye).
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Figure 3-4: Cylinder target model. A cylinder is represented by the position of its center

(Xc, Ye) and its radius rc.

sensor orientation constraint.

For a point target such as a corner or edge, the range of values of 0, is identical to

Equation 3.2, except Ot in this case is defined as the angle between the x axis of the

global reference frame and the line drawn from the sensor location to the point that

defines the location of the point target. In practice, edge targets will be visible over

a smaller range of angles than other types of targets, because they provide weaker

returns. Our method uses the conservative strategy of using the large value of 3 = 50

for all types of targets.

A cylinder is represented by a circle and is defined by the x and y coordinates of

the center and the radius of the circle. Ot for a cylinder is defined as the angle between

the x axis of global reference frame and the line drawn from the sensor location to

the center of the cylinder.

3.2 Relocation Procedure

Relocation is basically a searching problem that finds the best correspondence between

sensor data and the model features. Thus the reduction of the search cost as well as

the accuracy of the result is very important. If we have m data features (sonar returns)

and n model features, the search cost will grow at the rate of (n+ 1)' when we use the
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basic Interpretation Tree algorithm of Grimson and Lozano-Perez [10]. To reduce the

number of data values to be considered in such a procedure, one method is to group

sonar returns that are hypothesized to originate from the same environmental object

into a "data feature". This was the motivation for Drumheller to extract straight line

segments from sonar scans, to serve as input to the data.

In Drumheller's work, line segments extracted from sonar scans were effectively

used as constraints for relocation. A line segment can reduce dramatically both

the search cost and the angle uncertainty of the robot's configuration. As stated

earlier, however, it is difficult to extract line segments from even densely sampled

data because most of the object surfaces in an indoor environment can be considered

to be specular. Furthermore, it is impossible to extract line segments from sparse

data such as a circular ring of 16 sonar sensors.

The relocation method presented here uses the constraints derived from a physics-

based measurement model in a hypothesize and test search procedure [10]. The algo-

rithm can employ either individual sonar returns or multiple adjacent sonar returns

grouped together (circular arcs) as data features. For simplicity, we state the algo-

rithm in terms of the situation when all sonar returns are referenced to the center

of the robot, but the method can be generalized to accommodate arbitrary sonar

configurations.

The method is summarized in Algorithm 1. The key steps are described below:

Step 1: generation of trial positions. From the combination of any two

range returns, fi and f3, we consider all possible ways of pairing the returns with

targets Fp and Fq, i.e., sets of pairings fi:F, and fj:F. The association of a return

with a plane target gives a line on which the sensor is constrained to be located.

The association of a return with a corner, edge, or cylinder target gives a circle of

possible sensor positions. Each pair of feature-to-model associations generates zero,

one, or two possible positions of the robot, based on computation of the intersection

points of the line and circle position constraints produced from each association. (See

Figures 3-5 to 3-7).

For associations that match both returns to plane targets, many infeasible pairings
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Figure 3-5: A possible trial position P for the robot calculated from the hypothesized
match of return R, with line target Fp and return RI with line target Fq.

F/0
P 2
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Figure 3-6: Possible trial positions Pi and P2 for the robot calculated from the hypothesized
match of return R, with line target Fp and Return Rj with point target Fq.

F P P 2

rRj

F q
P 1  

P

Figure 3-7: Possible trial positions P and P2 for the robot calculated from the hypothesized
match of return Ri with line target Fp and return Rj with cylinder target Eq (r is the radius
of the cylinder).
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can be quickly removed without calculation of a trial position through application of a

binary angle constraint [10]. The binary angle constraint tests the relative orientation

of the measurements fi and fj against the difference in angle between the normals of

Fp and Fq, to see if they agree within the target visibility angle f. Additional binary

constraints based on intersection of visibility regions for different targets can also be

incorporated in the method.

Step 2: removal of infeasible trial positions. For each trial position ik

calculated in step 1, a trial angle is calculated for the sensor using the mean of

the angle to each target from the trial position. Then, predicted sonar returns are

generated for the features Fp and Fq, and these are matched against the measurements

fi and f3 by the application of the sensor orientation constraint (Equation 3.2). The

sonar prediction function incorporates an occlusion test, which determines if target

F, is visible from position :4. If the occlusion test fails for either pairing, then the

position is considered infeasible.

Step 3: matching of additional range values based on the hypothesized

location. Predicted returns (range and angle) are generated for each model feature

that is visible from the trial position and matched to the remaining ranges in the data

set. Predicted ranges Rt and actual ranges Rt are compared with a set threshold

I - R <; re (3.3)

If Equation 3.3 holds true, we get a successful match. The value of re is chosen

based on the range accuracy of the sensor and the uncertainty of the trial position.

If multiple predicted ranges match a measured range, then the closest prediction is

used.

Step 4: pose refinement using least squares estimation. For each trial

position, suppose that K is the number of matched predictions and observations

determined in step 3. If K is greater than a minimum number of matches N, then

a least squares algorithm is used to compute an improved location and orientation

estimate for the robot based on all of the matched predictions and observations, and
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this location is added to the solution set. An additional parameter A, is used to

control the size of the solution set. If K - A is greater than N, then the solution

set is pruned by removing any solutions with with less that K - A matches, and N

is set to K - A. In our experiments, good results have been obtained with A - 0.

By increasing the value of A to a larger value, such as A = 2, a greater number of

solutions is provided, and a better insight into the the algorithm's performance can

be obtained.

Step 5: clustering of computed locations. The locations in the solution set

are clustered together to produce a single solution for each set of locations within a

specified error range (xe, ye, 0e) of one another.
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1: function x = relocation(R, F)

2: inputs:

3: R = {R ... Rm}

4: F = {F1, F.}
5: outputs:
6: X = {,xi. -,.}1
7: M
8: control parameters:
9: xe,ye,Oe,re
10: '3
11: N
12:
13: z

14:
: local variables:

.19: a
17: fz
18: K

19: :i

a set of m sonar returns (observations)

> a set of n model features (targets)

> a set of r potential robot positions

> number of positions in x

C position, range, and angle tolerances (typical values are 10 cm and 10 degrees)

> maximum range of angles over with a target is visible (50 degrees for Polaroid sonar)

> initial value for the minimum number of matching

sonar returns for each position in x (typically six)

> maximum difference in the number of matching sonar returns

for each location in the solution set (typically zero)

> set of assignments between predicted and observed sonar returns

> predicted sonar returns

> number of matches for a hypothesized location

C> hypothesized vehicle positions

x <- 0
M +- 0
for i = I to

23: forj = i +
24: for p =1
25: forq=

26: if bi

27: ;i
A fo
2 :
30:
31:
32:
33:
34:
35:
36:
37:

40:
41:
42:
43:

46:
47:
48:

en
end

end
end

end
end

-i x +- clusterin

60:
61: x <- sort(x)
62: return x, M

n - I
1 to m

to n

I to n

nary.constraints(R;, R3 , F,, Fq) == TRUE then

= {si, . . , i.) +- generate.locations(R;, Rj, Fp, Fq)

r k 1 to s
Rk *- sonar-prediction(.4, Fp)

if match-returns(R , N;) == TRUE then

kj +- sonar.prediction(:4, Fq)

if match.returns(R 3 , N3 ) == TRUE then

R = {N,.. , NA } +- sonar-prediction (ik,, {F1,... ,F )

(K, a) +- match-returns(, {R1 ,, . .. ,R,}\Ri, RB)

if K >= N then
xM +- compute-position(R;, Fp, R,, Fq, a)

X +- X U {X}

M ~-M + 1

end
if (K - A) > N then

(x, M) <- prune(x, K - A)

N 4- K -A
end

end
end
d

g(X, X, ye,0e)

> apply binary constraints

> generate s hypothesized positions

> predict sonar return for feature Fp

C predict sonar return for feature Fq

> generate predicted sonar

returns from hypothesized position k

> match predicted sonar returns

with remaining measurements,
producing a set of assignments

> calculate improved position

estimate using all matched

predictions and observations

> add new solution to set of solutions

C remove any solutions with

less than K - A matches
> increase the minimum number of matches

> group positions in x into clusters based on the tolerances xe, y., e

and replace the set x by the set of average positions for each cluster

> sort solutions based on number of matches and residual from least squares computation

Algorithm 1: Summary of the relocation procedure.
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Chapter 4

Experimental Results

This chapter describes the results of applying the new implementation of the mobile

relocation algorithm to several mobile robot data sets.

4.1 Results

The relocation algorithm has been tested in several different buildings of the MIT

campus. In particular, tests have been performed with six different model files:

9 Box: a 1.8-meter by 2.4-meter box (shown in Figure 1-1).

" Museum: a 10-meter by 10-meter room

Figure 4-1).

" Building 1: an approximately 60-meter

(the MIT Compton Gallery, shown in

long segment of the 2nd floor corridor

of building 1.

9 Building 5: an approximately 60-meter long segment of the 2nd floor corridor

of building 5

" Lobby 7: Lobby 7 of MIT.

" Complete Infinite Corridor: Model file consisting of a rough approximation

to the geometry of the 2nd floor of MIT buildings 1 through 11 (Figures 4-2

and 4-3).
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Figures 4-1 through 4-3 show representative output from the system for several

of these environments. For all but the Complete Infinite Corridor model, the refer-

ence files were painstakingly generated for each environment using a tape measure.

The Complete Infinite Corridor model tests used a very coarse environmental model

that was generated by hand-measuring of prominent features from MIT's database of

architectural drawings.

The biggest limitation of the technique is its reliance on very detailed, hand-

measured models of the environment. Generation of the model for a small segment

of corridor, e.g. 20 meters, could take over 2 hours. Clearly for a real application,

it will be necessary to integrate relocation with concurrent mapping and localization

(CML) [14].

In addition, we were surprised by the susceptibility of the relocation algorithm

to coping with symmetries in the environment. It may be that relocation from a

small number of sonar returns, obtained from just a single vantage point is too "ag-

gressive". There are simply too many possibilities for the robot's location. Future

research should address methods to perform relocation using data from multiple van-

tage points.

4.2 Conclusion

While further work is necessary to perform an exhaustive performance analysis for

the new implementation, a number of important lessons have been learned in this

research. Several key limitations of the relocation algorithm were identified, includ-

ing its dependency on a very detailed environmental model and its susceptibility to

generation of many solutions in environments with a great deal of symmetry. These

issues are discussed further in Chapter 5, in the context of future research.
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Figure 4-1: Typical result for testing of the algorithm in the Museum environment.
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Figure 4-2: Testing of the algorithm in the Complete Infinite Corridor environment.
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Figure 4-3: Close-up of the "correct" solution for testing in the Complete Infinite
Corridor environment.
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Chapter 5

Conclusion

5.1 Summary

This thesis has investigated the relocation problem for mobile robots. A search-

based relocation algorithm has been implemented in C and tested with a variety

of real data sets. The C++ implementation demonstrated a dramatic improvement

in computational efficiency, with relocation taking on the order of a few seconds for

small environments and a few tens of seconds for somewhat larger environments. Time

constraints prevented a careful and exhaustive analysis of the algorithm's performance

in a wide range of environments. Work in progress by the MIT Marine Robotics is

anticipated to bring this work to a more complete conclusion, through integration of

relocation with CML.

5.2 Future Research

Our work on this problem has generated a wealth of ideas for future research. We

recommend three key ideas that should be pursued for future research: (a) integration

with CML, (b) multi-vantage point relocation, and (c) generation of "saliency maps".

First, it is vital to integrate relocation with a CML algorithm to free the technique

from the tedium of generating hand-measured maps. As discussed in Chapter One,

the goal of CML is to enable a mobile robot to build a map of an unknown environment
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while using that map to navigate. Clearly, relocation has a very important role to

play in CML for error recovery when the robot gets lost. As CML algorithms are

deployed in more and more situations, we expect relocation to be a very valuable

capability.

Second, it is very challenging to attempt relocation using sonar data from just a

single vantage point. In the future, methods should be explored for relocation using

data from multiple vantage points. For example, a CML algorithm could be applied

to a small segment of data, to build a small local map. Subsequently this local map

could be matched against the global map to perform relocaiton. This should make it

easier to estimate the robot position in situations with high symmetry. An alternative

to building a local map might be to perform relocation directly with sonar returns

from multiple vantage points using delayed decision making techniques developed for

CML [15].

Finally, it should be very interesting to combine relocation with adaptive motion

control [9] to direct the robot, when it gets lost, to try to find unique, distinctive

locations where relocation has a much higher chance of success. An off-line process

could be executed in which a simulation is performed for many randomly generated

positions throughout the environment. One could make a "saliency" map which

highlights the best areas of an environment from a relocation perspective. This could

be integrated with a path planning algorithm [12] to steer the robot along routes

where it is least likely to get lost.
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