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Abstract

Analytic expressions for the first-order bias and second order covariance of a maximum
likelihood estimator (MLE) are applied to the problem of estimating geo-acoustic pa-
rameters of the sediment layers beneath a shallow ocean using a vertical hydrophone
array. These expressions are used to determine necessary conditions on sample size
for the geo-acoustic MLE to become asymptotically unbiased and attain the minimum
variance as expressed by the Cramer-Rao Lower Bound. These conditions are then
used to evaluate the performance of estimates for various combinations of unknown
parameters in two canonical waveguide models. Since acoustical oceanographers typ-
ically use deterministic sources for their inversions, signals are modeled as determin-
istic. As the energy ratio of the received signal to noise (SNR) is decreased and the
source-to-receiver range is increased, seafloor geo-acoustic parameter estimates made
using few samples exhibit variances that exceed the Cramer-Rao Lower Bound by
orders of magnitude. These variances worsen, and biases become non-negligible, as
the number of inversion parameters is increased. This behavior is probably due to
a combination of factors including physical coupling between parameters and loss
of modes due to attenuation. Samples sizes necessary for estimates of geoacoustic
parameters to attain the Cramer-Rao Lower Bound and become asymptotically un-
biased are shown to often be in the thousands of samples and, in particular cases,
in the hundreds of thousands. The efficacy of the Cramer-Rao Lower Bound as a
measure of feasibility of geo-acoustic parameter inversions and the notion that these
inversions can be assumed to be unbiased for low sample size are therefore put into
question. Researchers can use the method described in this thesis as a tool to design
future experiments and ensure that estimates are asymptotically unbiased and do
attain minimum variance.

Thesis Supervisor: Nicholas C. Makris
Title: Associate Professor
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Parameter definitions and waveguide models

Parameters for both the Case A and the Case B waveguides

c,: the compressional wave speed in the water column, in meters per second

pw: the density in the water column, in grams per cubic centimeter

a: the coefficient of attenuation in the water column, in dB per lambda

c,: the compressional wave speed in the sediment layer, in meters per second

ps: the density in the sediment layer, in grams per cubic centimeter

a,: the coefficient of attenuation in the sediment layer, in dB per lambda

Additional parameters for the Case B waveguide

gs: the gradient of the compressional wave speed with respect to depth in the

sediment layer, in meters per second per meter.

hs: the thickness of the sediment layer, in meters.

Cb: the compressional wave speed in the basement, in meters per second

Pb: the density of the basement, in grams per cubic centimeter

ab : the coefficient of attenuation in the basement, expressed in dB per lambda
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50 m

WATER
q, = 1500m/s
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Figure 0-1: Case A: Pekeris environmental model.
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Figure 0-2: Case B: Three layer environmental model with gradient sound speed in
sediment layer.
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Chapter 1

Introduction

1.1 Geoacoustical Inversions

The acoustical parameters of the ocean seafloor have a large effect on the propagation

of sound in the ocean. Therefore, knowledge of these parameters is important for

the effective implementation of many underwater acoustical systems, especially in

shallow water where extensive bottom interaction typically occurs during acoustic

propagation [1, 2, 3]. Additionally, acoustical oceanographers interested in identifying

and mapping sedimentary layers can infer sediment types from such parameters [4].

For both reasons, significant work has been done in recent years to create and improve

methods for determining geoacoustical parameters.

The primary acoustical seafloor parameters are the compressional wave speed,

the compressional wave attenuation, the shear wave speed, the shear attenuation

and the density. In most scenarios the waveguide is assumed to be horizontally

stratified and therefore these properties are modeled as being functions of ocean

depth only. If the parameters were further constrained to be constant in depth and

nothing else was known, the inversion would require the simultaneous estimation of

all five parameters. If the relationship of a parameter with depth is more complicated,

that relationship must be parameterized and the number of parameters would then

be more than five e.g. were sound speed known to be linearly related to depth in a

given layer of sediment that relation could be parameterized as a initial sound speed
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and a gradient yielding a total of six parameters. The more complicated the model

of the waveguide used, the more parameters are needed to describe it. Anything

known about the environment beforehand reduces the number of parameters of the

inversion. Sometimes the bottom is assumed to be made up of an unknown number

of layers each with its own set of geo-acoustic parameters. This introduces the layer

thicknesses as possible parameters and, depending on the limit on number of layers,

the total number of inversion parameters can be very large. In some field and modeling

research the number of parameters ostensibly being estimated simultaneously is in

the tens, sometimes hundreds [5].

A variety of acoustical methods have been used to determine seafloor parameters.

Most involve the non-linear inversion of the parameters from measurements of the

acoustic field in the water-column. A typical scheme involves the comparison of

this field to synthetic fields generated using some forward propagation model and

a parametric model of the environment. The parameters of the model are varied

iteratively until a match is achieved. This method is called matched field inversion.

Methods where the modal components of the full-field are inverted for individually

are also employed [1]. Most schemes involve the following elements [6]:

o a source of low enough frequency (or frequency range) to allow bottom pene-

tration coupled with a receiving array with a large enough aperture to measure

spatial diversity in the field; a method for localizing both.

o a parametric model that accurately and succinctly describes the ocean waveg-

uide and seafloor acoustical structure.

o a model for synthetically generating the acoustic field due to a simulated source

from the parametric environmental model.

o a model for comparing the measured field to the synthetic field, called the

objective function or cost function. A criterion for what constitutes a good

match typically comes from a statistical theory.

o a search algorithm that locates in the output of the cost function the globally
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extreme stationary point that corresponds to the set of parameters that create

the best match between the real and synthetic field.

All five elements of this process are active areas of research. Hence a number

of methods exist to fill each role. Receiving array geometries vary due to differing

project goals or availability. Moored vertical arrays are sometimes employed, as are

horizontal, towed arrays, as are more complicated configurations. The energy ratio of

the received signal to noise (SNR) used can vary between 20 dB to lower than 0 dB.

A number of different forward propagation models are used to generate the synthetic

pressure fields: normal mode summation [7, 8], wave number integration [9], parabolic

equation based methods [2] and so on. For the correlation of the synthetic field with

the true field, different types of cost function are used; most are based on the linear

least squares function. Search algorithms that have been employed for geoacoustic

inversion include basic grid search methods, stochastic optimization methods like

simulated annealing [2], genetic algorithms [10], and neural nets [11].

Parameterization of the seafloor varies as well. Some methods rely on estimating

the reflection coefficient of the ocean/sediment interface only, rather than the layer

structure. Some break the field into its modal components and use those as the data

for the inversion, rather than the full-field [12]. For those who attempt to invert

for more than one parameter in multi-parameter models of the seafloor, the number

of simultaneously estimated parameters is typically in the teens [5] and often can

be even higher. Source position and frequency influence geoacoustic inversions as

well [13]. Generally, lower-frequency broad-band and narrow-band signals are used.

If only a few frequencies are used these are usually chosen to optimize estimation for

whichever geo-acoustic parameters are of interest. Some researchers have broken up

broad-band data for multi-parameter problems so that different bands are used to

estimate different parameters separately, depending on parameter sensitivities [14].

Given the many different methods for performing geoacoustic inversions, it is dif-

ficult to determine which is the most effective, or, as different methods have different

strengths, which is more effective in which circumstances. In recent years, efforts

have been made to bring together researchers doing geo-acoustic inversions [6] and to
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benchmark methods against standardized data [5]. In Ref. [5], a synthetic set of data

for a variety of ocean waveguides were created, the data were made available along

with waveguide descriptions from which the values for the inversion parameters had

been removed to groups of researchers in the geoacoustic inversion community. Each

group then made its best effort to estimate the original parameters. Many methods

yielded moderately accurate results. However, it is very important to point out that

the provided data were noiseless and hence very little discussion is applied to the

statistical properties of real-world data. Only one group added a marginal amount of

noise to their data before performing their inversion scheme [11].

This lack of consideration for the statistical characteristics of the ocean waveg-

uide is a general trend in the geoacoustic inversion community [15]. Most researchers

assume that the biases and variances of their estimates are negligible. However, this

assumption should be made more carefully. Field geoacoustic estimates are nonlinear

inversions performed on data randomized by the ocean waveguide, making the behav-

ior of the bias and variance of estimates difficult to predict and their values difficult

to determine directly.

Sometimes marginal effort is made, using either a Bayesian or classical statistical

approach, to determine bounds on the bias and the variance, and on other statistics,

instead of attempting to compute them directly. The Ziv-Zakai Bound and the Weiss-

Weinstein Bound [16, 17] are examples of bounds that are based on the Bayesian

approach. One particularly popular classical estimation bound is the Cramer-Rao

Lower Bound, which gives the minimum variance possible for an unbiased estima-

tor [18]. Relatively simple to compute, this bound is applied to estimation problems

that run the gamut of science and engineering fields. Schmidt and Baggeroer [19, 20]

applied the Cramer-Rao Lower Bound to seafloor parameter inversions and suggested

its general use for calculating parameter resolutions for such problems. Since then

it has been assumed to be a reliable tool for gauging the feasibility of geoacoustic

estimates. However, the CRLB is only applicable to unbiased estimators. It gives the

lowest possible variance for such estimators. That variance is unlikely to be attained

for instances where the sample size or the SNR is low, regimes typically encountered
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in ocean acoustical experiments.

In this thesis I use higher order approximations of the bias and variance with

models that do have noise to show that geoacoustic inversions often will be unbiased

and can very easily have non-minimum variances. I then use these same tools to de-

velop necessary conditions on sample size for estimates to be unbiased and attain the

Cramer Rao Lower Bound, exploring in the process correlation between parameters.

1.2 The Maximum Likelihood Estimate and the

CRLB

Consider a set of n independent and identically distributed experimental data vectors

Xi = Xii,. . . , XiN, where N is the dimension of every vector. We assume that these

data are described by a probability density P(X, 0) = fJln 1 p(Xi, E) that depends

on a m-dimensional parameter vector E = 01,..., em, where m < N. According

to Lawley's formulation [21], we suppose that the Maximum Likelihood Estimate

(MLE) e = 61, ... , 6m of E is given by a stationary point of the likelihood function

(X, E) = ln(P(X, E)) = En_1 ln(p(Xi, 0)) with respect to the components of 8

er(Xe) - '(X e) -0 r = 1,..., m. (1.1)
aEr 0=6

For a given estimation problem, a minimum variance unbiased estimator, one that

attains the Cramer-Rao Lower Bound, does not necessarily exist. However, if an esti-

mate becomes asymptotically unbiased and attains minimum variance at large sample

sizes, it is guaranteed to be the MLE [22]. Studying the performance of the MLE then

gives an upper limit on the asymptotic performance of all estimators. Therefore, in

this thesis we investigate the asymptotic behavior of the MLE to construct necessary

conditions for any estimator to become asymptotically unbiased and attain the CRLB

in the context of geoacoustic inversions.

Assuming the existence of the likelihood function and of its derivatives with respect
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to 0 and assuming that

E = 0 (1.2)

we can prove that the MLE of E is consistent and the variance of the MLE is a

function of -1 that satisfies

V ,--) - -, (1.3)n n

or

nV , V (1.4)
n

for n -+o o [22]. We can also prove [23] that

V 6),- =-V,+V2+ E3; (1.5)
n n n2

where V and V2 are the first and second order terms of the variance expansion for a

given parameter and a single sample and where E3 is a polynomial in I containingn

powers higher than !. Equation 1.3 indicates that we can always find an no such

that for any n larger than no
V2
n2<+ 3  (1.6)

n

for an c chosen for the accuracy needed. From Equation 1.3 we know - + E3 -+ 0 as

n -+ oc and [-- + nE3 -+ 0 as n -+ oo. Therefore 2 -+ 0 as n -4 oc and E3 -+ 0

as n -+ oo independently in the asymptotic regime. In this asymptotic regime, it is

then necessary that

< 
(1.7)

n

in order to satisfy Equation 1.6 for n > no. From Equation 1.7 an approximate

number of samples necessary for Equation 1.6 to hold in the asymptotic regime is

then
|IV2Inec V 1  (1.8)
V E

It can also be proven that the bias can be represented as a series expansion similar

to Equation 1.5 for the variance where B1 would be the first order term. Again, as the
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sample size is increased, the terms in this expansion will become smaller, this time

asymptotically approaching zero as sample size is increased. At some sample size the

bias will be small enough when compared to the true value of the parameter to assume

that the estimate is unbiased. Therefore, by a similar argument of independent

minimization of terms in the asymptotic regime a sample size can always be found

where

S< E2 (1.9)
E

where 62 is chosen for the accuracy needed. An approximate number of samples for

an estimate to be considered unbiased is then

Onec2 m (1.10)
e62

If the sample size is greater than nnec2 and nnec the estimate can be considered

to be unbiased and have attained the Cramer-Rao Lower Bound. In this case, the

probability density function of the estimator would look very much like the one on the

left of Figure 1-1 and the variance, by definition, would be equal to the Cramer-Rao

Lower Bound.

Analytical formulas exist for the first order term of the bias expansion and the

first and second order terms of the variance expansion for an inversion for multiple

parameters performed using a deterministic signal [24]'. These three terms can there-

fore be calculated for a given estimation problem that fits these criteria and then used

in Equations 1.8 and 1.10 to determine the minimum sample sizes to meet goals on

resolution of the estimate as represented by the bias and the variance.

In this thesis, we use an 6 of _Lth for estimates of all parameters. How small the10

bias ought to be relative to the true value of the parameter to make Equation 1.9 true

depends more on the particular parameter than it does for the variance condition.

In this thesis, 62 = 1this considered reasonable for most parameters but for sound

speeds 62 = 1th is used. Sound propagation is more sensitive to sound speeds and

'They also exist for the case where the signal is completely randomized and has zero mean but
this scenario is far less typical for geo-acoustic inversions and therefore these formulas are not used
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Figure 1-1: Schematic probability density functions for a scalar estimate. Left hand
side representive of the probability density function for an estimate made with a large
number of samples. Right-hand-side, for an estimate made with a small number of
samples.
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therefore smaller biases can have a more detrimental effect, drastically changing the

accuracy of a model that makes use of the biased parameters.

1.3 Application to canonical problems

In this thesis, the conditions on sample size in Equations 1.10 and 1.8 are used to

evaluate the performance of geoacoustic parameter set estimates in two canonical

shallow water ocean waveguide models chosen to represent environments in which

geoacoustic inversions are often performed. Figures 0-1 and 0-2 display the two

models, their sound speed profiles and bottom compositions.

The first model, referred to as Case A, is a Pekeris waveguide (Figure 0-1). A con-

stant velocity water-column of 100 m depth overlays a halfspace of constant-velocity

sediment. The sediment is modeled as sand but with zero attenuation. The second

waveguide model (Figure 0-2) is similar to the first in water column properties but

beneath the water is a sediment layer overlying an infinite halfspace basement. The

sound speed in the sediment varies proportionally with depth, starting at 1600 m/s

at the water/sediment interface and increasing with a slope of 1.5 m/s per meter

until the sediment/basement interface where it is 1750rn/s. This waveguide model,

referred to as Case B, is meant to represent a typical continental shelf environment.

Both simulations employ a 100 Hz deterministic monopole source at 50 m depth,

and a ten-element vertical array at a range, r, from the source. The array is centered

in the water column with 7.5 m spacing between each element so that the shallowest

element is at 16.25 m depth, as depicted in the figures. Noise is modeled as Gaussian.

The configuration is chosen to represent a common experimental set-up. For both

waveguides there are relatively few propagating modes2 at 100 Hz, six for Case A and

seven for Case B.

To gain insight into how the bias and the variance terms behave at varying SNRs,

the SNR is set to a particular value when the source is 1 km distant from the receiver

2 As calculated by KRAKEN. As will be discussed in Section 3.3.6, such a small number of modes
allows mode stripping due to attenuation to greatly affect estimation performance at long range.
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array, for most examples this is 15 dB. Then, while holding the noise and source levels

constant, the first order bias and variance and second order variance are computed

as this range is increased. Due to attenuation and spreading, the SNR decreases as

range increases.

The statistical moment terms and the minimum sample sizes for estimates to

attain the CRLB and become asymptotically unbiased are calculated for a number of

different parameter sets in the two waveguides. The parameters sets to be estimated

include fundamental physical ones such as sound speed, density, and attenuation, and

some morphological ones such as the sound speed gradient and the sediment layer

thickness. Various combinations of parameters are chosen to explore how parameter

coupling and the number of parameters to be simultaneously estimated affects the

statistical performance of the estimates.
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Chapter 2

Statistical Theory

2.1 Bias and variance of nonlinear inversions

The bias of an estimator is defined as,

b(E) = E[O(X) - E] (2.1)

and the covariance matrix of an estimator is given by,

C(e) E[(E(X) - E[E])(E(X) - E[])] (2.2)

For estimation problems where the data is related to the parameter or parame-

ters to be estimated in a nonlinear way, the estimates can be biased and have non-

minimum variances. These biases and variances can often be reduced by increased

sampling. A simple classical estimation example that illustrates these ideas (shown

graphically in Figure 2-1) is the scalar MLE for the square of a deterministic signal

embedded in Gaussian noise. The data is given by x = p + g where g = K(O, U.2)

which means that E[g 2] .2 . The MLE for P is /j = x so the MLE for /2 is A2 = X2.

However, this yields E[A2 ] =u 2 + r2 . The estimate is biased by U.2 . If n independent

samples are taken of a signal embedded in identically distributed noise, A 2  2I E

and E[A2] =2 + E. So the bias is now 2 and it is apparent that at least the bias
n n

22



A

2 2

At x

Figure 2-1: Demonstration of how a nonlinear relationship between data and estima-
tion parameter can lead to biases.
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will be reduced for larger sample sizes. Figure 1-1 illustrates intuitively the max-

imum likelihood estimator's performance at high and low sample sizes for a scalar

estimate for an estimation problem where an efficient estimator exists. On the left

is the probability density function for an estimate made at high sample sizes. It is

symmetric around the true value of the parameter, meaning that the expected value

of the probability density function equals the true value and the estimate is unbiased.

The probability density function also has a relatively small variance and is asymptot-

ically Gaussian. On the right is an example of a probability density function for an

estimate made with a relatively small number of samples. Its expected value might

not be the true value and the estimate is therefore biased. Additionally the variance

of this probability density function might be greater than that of the example on the

left.

2.2 Asymptotic expressions for the first order bias

and first and second order variance

Let the random data vector X, given m-dimensional parameter vector E, defined in

Section 1.2, obey the conditional probability density function (PDF) p(X; E). The

first-order derivative of the log-likelihood function with respect to a given parameter

is then defined as f, = Je(0)/Oe', where Er is the r-th component E. The higher

log-likelihood derivatives are written in the following notation,

ala2...a. = faia 2...a, (X, E) = a9e7 -E- - a) (2.3)

Moments of the log-likelihood derivatives are written

Vaia 2 ... as,bib 2 ... bs,...,ZiZ2...Zs = E [aia2 2...afbb 2 2... bs. - ... Z] (2.4)

so for example Us,tu = E[lsltl] and Va,b,c,de = E[lalbIclde]-

The expected Fisher information matrix is defined as irs = E[lIs], for arbitrary
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indices r, s [18]. We use the lifted notation to denote inverse matrices and the

Einstein summation convention is used, in that whenever an index appears as both

a superscript and a subscript in a term, summation over that index is implied. For

instance the Fisher Information matrix (one of the moments of the log-likelihood

function derivatives), 4s = E[ers], has the inverse, irs, which is the Cramer-Rao

Lower Bound (CRLB) [18, 22, 27], the lower bound on the variance of unbiased

estimators.

According to [24, 28] the first-order bias of the MLE 1 can be written as:

1
Bi[n]r = - abc + 2Va,bc) (2.5)

2

and the first order covariance of the MLE as [18, 28]:

Vi[n] r = ra (2.6)

The second order covariance of the MLE as [24, 28]:

V2[n] = 2imb in n ( irszila + ias zlr )Vbc( 1) + 1 icdjef rs iab + jas Zrb)Vbd(n 2)

tu rs ab cd + rd ab cs * ad rb cs Vst,u,bc,d(n2

+ jbmjcqjtp v I rlpq(3 rl -aoisn + I rs -alion + asirion)v (f 2 )
4 2 2

+ 1 sm V itnjcd( rl -ab _ ial -rb + bnicd(irliat + ialirt

2

+ ijcitn(ird ab + zad zrb))Vst,bc,d(l 2 ) + Zmbincod 1 (imnoirsila + zasirt)Vbd(n 2)
6 2

+ 4 ibm( rsial + ias rl )Vs,m,1b(n 1 ) - rsituZaw zyzVstUVWYz4
- irs tu awiyzstiz1) _ zrsztuiawyyz1\stuW) vy,z(n7

The notation Vbce,d,f,s(n 2) indicates that in the joint moment 1vbce,d,f,s only terms pro-

portional to n2 are retained. The first-order covariance term is simply the CRLB.

The general bias and variance expressions of Equation. 2.5- 2.7 are now applied to

Analytical expressions for the second order bias and a method for generating higher order terms
of both the bias and variance expansions can be found in [23]
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the specific case of data that obey the conditional Gaussian probability density [22].

If xi = M + gi and gi = (0, C)

I n

1 -E(X - -())TC(O)-1(Xi - (0))
p(X; E) = e i=1 (2.8)

(2wr)nN/2IC(O)Jn/2

Here Xi is one of the n independent and identically distributed N-dimensional real-

valued data vectors, C is the real-valued covariance matrix, and M is the real-valued

mean of the random data. For the present study of geo-acoustic inversion, Xi rep-

resents the narrow-band acoustic data collected around a given frequency across an

array of N sensor. The parameter set ) represents a vector of whichever geo-acoustic

parameters are chosen for a particular inversion, i.e. sediment density, attenuation or

sediment sound speed.

Since additive noise typically arises from a large number of independent noise

sources distributed over the sea surface [29], like wind action, wave interactions, or

ocean-going vessels, the total noise field can generally be modeled as the sum of large

numbers of statistically independent contributions. Therefore, if none of the noise

contributions dominates the others, the central limit theorem is applicable and the

noise distribution is considered to be Gaussian [30]. The Gaussian probability density

of Equation. 2.8 is then a valid representation of a deterministic signal embedded in

additive noise [30].

In general, both the data mean and the covariance in Equation 2.8 are functions of

the desired parameter set 0. The evaluation of the joint moments in Equation 2.5- 2.7

has recently been performed in [24] . However the analysis of this paper is focused on

a deterministic signal in additive noise, where the covariance C is independent of the

parameter vector matrix 0, while the mean 1t depends on 0. In this case the terms

referred to in Equations 2.5- 2.7 are those given in Appendix B of Reference [24].
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2.3 Preparing the covariance matrix and the mean

vector

The covariance matrix for a deterministic signal embedded in zero-mean Gaussian

noise measured on a vertical array is an N x N identity matrix, where N is the

number of elements in the array, in this case 10. We define the SNR as,

SNR = E (2.9)
En

where E, is the energy of the field at the range of the array and En is the energy of the

spatially uncorrelated background noise. For a given source to receiver array range,

the value of E. can be obtained by summing the energy of each of the elements of the

vertical array, as calculated from the complex pressure field value. Re-arrangement

of Equation 2.9 allows the computation of E, and the subsequent scaling of the

covariance matrix. In essence, the covariance matrix, C, is calculated by,

1 0 0 ...

S EN lp12  0 1 0 ...
C = "'=1(2.10)

SNR - N 0 0 1 -2-1-

where N is the number of elements in the hydrophone array, SNR is the signal-to-

noise ratio in dB, Pm is the value of the N-th element of the N element vector of

complex pressure values measured on the vertical array. In our simulations Pm is

calculated by a summation of normal modes, using mode functions and wavenumbers

generated by the KRAKEN software package

In our model, xi = [p(0) + gi, where i = 1, 2, ...n, E. = Pb 2 (0) and the energy of

the average noise is given by

gi = E[gig] = (2.11)
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which gives
E nP2 (2.12)

i.e. this SNR of n measurements is n times the SNR of a single measurement sample.

In realistic situations, it is unreasonable to assume the noise structure is incoherent

when sampled at any time-rate. Even real-world noise that can be approximated as

Gaussian will be coherent when sampled too quickly. For given noise there is a

coherence time, 7., inside of which samples should be considered coherent. Therefore,

if the time over which samples are taken, T, is much greater than Tc, the sample size,

n, is well approximated by ! . If T << c, in effect, only one legitimate sample has

been taken of the signal amplitude.

The computation of the signal mean, p, and its derivatives is described in a later

section. Once these quantities have been obtained, the joint moments are evaluated

and inserted into Equation. 2.5- 2.7 to compute the first order bias and the first and

second order variance of the bias and covariance expansions. These can then be used

to ascertain the number of samples that are required to attain the Cramer-Rao Lower

Bound and assure unbiasedness, using the conditions in Equations 1.9 and 1.9.

It is important to note that P and its derivatives, and for the parameter-dependent

covariance case C and its derivatives, are complex quantities, while the joint moments

required to evaluate the asymptotic expansions in Appendix B presume a real mean

vector, it, and a real covariance matrix, C.

If R = u + iv (the tilde denotes a complex quantity) obeys the complex Gaussian

probability function,

ir 1etC- exp P :"- A' RI(R- (2.13)
7n) gadet(C:R)H

where C = A + jB and ft = I, + j p, then 1 (X) = p(X) where p(X) is the real

Gaussian probability density function,

11
I exp (X- t)TC-1(x -P) (2.14)

(2.r)- det (Cx) 2
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with x = (u U2 .- UN V 1 V 2 ... VN), It (tu,1 i-t u,2 ... 1-u,N 11 v,1 /v,2 ... -v,N), and

C2= 2x=
A

B

-B

A
(2.15)

while i and [I are vectors of length N, x and p are vectors of length 2N, while CR,

A, and B are N x N matrices, Cx is a 2N x 2N matrix.
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Chapter 3

Geoacoustic inversion examples

3.1 Waveguide environment and array geometry

Two shallow water ocean waveguide environments are modeled to examine the effects

of waveguide properties on geo-acoustic inversions. Figures 0-1 and 0-2 display the

two models, their sound speed profiles and bottom compositions. All simulations

employ a 100 Hz deterministic monopole source at 50 m depth, and a ten-element

vertical array at a range, r, from the source. The array is centered in the water

column with 7.5 m spacing between each element so that the shallowest element is at

16.25 m depth, as depicted in the figures.

The first model, hereafter referred to as Case A, is a Pekeris waveguide (Figure 0-

1) where a constant velocity water-column of 100 m depth overlays a halfspace of

constant-velocity sediment. The sound speed, density and sound speed attenuation

in the water column are, respectively, 1500 m/s, 1.0 g/cc and 0 dB/A. The sediment

is modeled as sand but with zero attenuation. As is explained in more detail later, this

case is useful for testing the numerical derivative implementation used to calculate

derivatives of the log-likelihood function which are required to solve Equations 2.5-

2.7. Derivatives for certain inversion parameter sets could be determined analytically

for this non-attenuation case. However, zero attenuation is highly unphysical and

results from this case should therefore be recognized as likely to also be unphysical.

The second waveguide model (Figure 0-2) is similar to the first in water column
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properties: sound speed is 1500 m/s; density is 1.0 g/cc; and attenuation is 0 dB/A.

Beneath the water is a sediment layer overlying an infinite halfspace basement. The

basement has a sound speed of 1700 m/s, a density of 1.75 g/cc, and an attenuation

of 0.35 dB/A. The sediment layer has a density and attenuation of 1.75 g/cc and

0.35 dB/A respectively and is 100m deep. The sound speed in the sediment varies

proportionally with depth, starting at 1600 m/s at the water/sediment interface and

increasing with a slope of 1.5 rn/s per meter until the sediment/basement interface

where it is 1750m/s. This waveguide model, hereafter referred to as Case B, is

chosen as it represents well the sediment structure in many typical continental shelf

environments.

For both waveguides there are relatively few propagating modes' at 100 Hz, six

for Case A and seven for Case B. As is discussed in Section 3.3.6, such a small number

of modes allows attenuation to greatly affect estimation performance at long range.

To gain insight into how the bias and the variance terms behave at varying SNRs,

the SNR is set to a particular value when the source is 1 km distant from the receiver

array, for most examples this is 15 dB. Then, while holding the noise and source levels

constant, the first order bias and variance and second order variance are computed

as this range is increased. Due to attenuation and spreading, the SNR decreases as

range increases.

3.2 Estimates in the Case A waveguide

As a benchmark of the numerical derivative method that is used, analytical derivatives

are calculated for Case A, for a parameter set, E that included only the water sound

speed, c., and the sediment sound speed, c,. For this case, it is possible to determine

the derivatives of the Green function with respect to the inversion parameters via

a decomposition of the modes into downward and upward propagating waves (see

Appendix B). These are compared to derivatives calculated numerically to show

that, for the intents and purposes of this work, the numerical method is valid.
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3.2.1 Estimate of c and c,

Figure 3-1 illustrates the results generated in the Case A waveguide for an inversion for

the sound speed in the water column, c., and the sound speed in the sediment bottom,

c,. For this example, 10 log SNR at 1 km is set to 0 dB. The example is performed

using both numerically (see Appendix A) and analytically (see Appendix B) generated

derivatives. The results via the two methods are visually identical when displayed, so

Figure 3-1 represents the results of both methods. The dashed, lighter curve shows

the first order bias and the black and gray solid curves show, respectively, the square

roots of the absolute values of the first and second order variance terms as a function

of source to receiver array range. All the values are for a single sample.

Figure 3-la shows the three statistical moment terms for the sound speed of the

sediment layer. At a range of 500 m, the first order bias is about 40 m/s. As range is

increased (SNR decreased), this bias drops and becomes more oscillatory. By 2 km,

the bias is around 0.1-3 m/s. The square root of the first and second order variance

are both about 100 m/s (~~ - the true value of the parameter) at the closest ranges

but also drop as range is increased. The second order variance, however, drops less

than the first order term so that, by 2 km range, 10 log SNR is -13 dB, the second

order variance is 30 m/s, while the first order variance is closer to 15 m/s. The

general pattern of decrease in all three statistical moment terms is probably due to

increased sampling of the bottom at greater source-to-receiver range, an effect that

would be countered by attenuation in the bottom were it non-zero as is shown in later

examples. However, it is not unreasonable to believe that the ratio of the second-

to first-order variance terms eventually grows with range, as, per our method, higher

range is coupled to lower SNR due to cylindrical spreading.

Similar behavior is observed for the moments of the water column sound speed

MLE in Figure 3-1b. The biases for the water column sound speed is relatively low

with respect to its true value indicating that the estimates for this example could

possibly be treated as unbiased for all the tested ranges and SNRs as all the higher

order terms are likely to be smaller. This is not true for the bottom sound speed bias
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Figure 3-1: Bias and variance terms for an inversion for parameters c, and c.,, in the
Case A waveguide for a lower range of SNRs. (See next figure for SNR vs. range.)
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bias. The first order and second order variance are also relatively low for the water

speed estimate. The bottom sound speed estimate has significant error. However, of

more import than the value of the second order variance is the ratio of that value

to the first order variance. The larger this ratio, the more likely it is that higher

order terms in the variance expansion could also have higher values which, when all

summed, might result in a non-negligible total variance. Additionally, it is important

to compare the bias to the true value of the parameter to get a sense of how significant

it is. The same goes for the first order variance. Even if the CRLB is attained, if it

is too large the estimate will not be useful.

The information displayed in Figure 3-1 is represented differently in Figures 3-2

and 3-3. In Figure 3-2, the minimum sample size for the estimates to be considered

unbiased, as calculated per Equation 1.10, is shown for all ranges for the inversion of

parameters, c, and c., in the Case A waveguide. Shown in the Figure 3-2a is the input

signal-to-noise ratio at all tested ranges. As discussed before, due to the method of

holding source level fixed while moving the source away from the receiver, the SNR

decreases as range is increased. Therefore, at higher ranges, and hence lower SNRs,

the number of samples required for any inversion is expected to be higher. Certainly,

a fractional number of samples is not possible, so very low values serve to say that

a single sample meets our condition for this particular estimate to meet our bias

minimization condition.

It is worthwhile to note that the curves for the bias of the bottom sound speed

estimate in Figure 3-2b follow the same inverse exponential dependence as the signal-

to-noise ratio curve in Figure 3-2a. Minimalization of the bias for the the bottom

speed only requires more than a single sample at ranges less than two kilometers. For

the water speed, the minimum sample size is less than one at all ranges.

Figure 3-3 shows the minimum sample size for the two estimates to attain the

Cramer-Rao Lower Bound, as calculated per Equation 1.8, for ranges from 500m to

10 km. Despite the lack of attenuation and the behavior of the minimum sample size

for bias, the two curves for the minimum sample size for attainment of the CRLB

increase with decreasing SNR. This indicates, as makes intuitive sense, that the second
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Figure 3-2: SNR versus range and necessary sample sizes for estimates of parameters
c. and c., in the Case A waveguide for a lower range of SNRs to be asymptotically
unbiased.
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Figure 3-3: SNR versus range and necessary sample sizes for an inversion for param-
eters c, and c,, in the Case A waveguide for a lower range of SNRs to attain the
Cramer Rao Lower Bound.
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order variance term increases more quickly with decreased SNR than the first order

term. Again unlike the result for bias, the minimum sample size for both the c, and

the c, estimates to attain the CRLB are well above unity for this range of SNRs. For

the water speed estimate, the minimum sample size is very low at the highest value of

10 log SNR of about 3dB but grows in a pattern that definitely appears to be linked

quite strongly to the SNR curve to a value of 10 samples. The bottom sound speed

estimate requires 10-20 samples for this range of SNRs.

3.2.2 Estimate of c, and c, with higher SNRs

The previous example is performed using a range of SNRs that are relatively low

compared to those generally used for geoacoustical inversions. The example gives a

good impression of the possibility of non-negligible values for estimator bias and non-

minimum variance in such regimes. To illustrate how the three statistical moment

terms behave in regimes with higher SNR, the previous example is repeated for the

exact same scenario but where 10 log the SNR at 1 km is set to 15 dB instead of 0 dB.

The results are shown in Figure 3-4 through 3-6. In Figure 3-4, the values of the square

root of first and second order variance and the first order bias of the two parameter

estimates are shown; c, in Figure 3-4a and c, in the Figure 3-4b. The curves in the

two graphs appear to be exactly the same shape, when drawn on a logarithmic scale,

as those generated for the lower SNRs in Figure 3-1. The curves have merely shifted

down the y-axis to lower values due to the reduction in SNR. However, the three

curves shift by differing amounts. The square root of the CRLB shifts by a factor

proportional to SNR-2 while the square root of the second order variance and the

first order bias shift by a factor proportional to SNR 1 . As the curves in Figures 3-5

and 3-6 are generated from those in Figure 3-4 they too are the same shape as those

for the lower SNRs but shifted down. This is an important result, that comes from

a yet unpublished analytical relation between SNR and sample size. Essentially, the

terms of the bias and variance expansions discussed in the Introduction are really

proportional to inverse powers of SNR and sample size so once values are generated

for a particular sample size and SNR they can be scaled in a predictable way for
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another SNR or sample size. Therefore, for further examples in this thesis, I show

the results generated for scenarios where 10 log the SNR at 1 km is fixed as 15 dB

since generating results for different SNRs is only a matter of scaling.

The biases for the two estimates shown in Figure 3-4 are so low as to be definitely

considered negligible and hence the minimum sample sizes shown in Figure 3-2 are

also very low. The bias for the bottom speed estimate is roughly one thousandth of the

true value of the parameter at the close ranges where the signal has not adequately

penetrated the bottom. The minimum sample sizes for the two estimates to be

considered to have attained the CRLB per our condition which are shown in Figure 3-

3 are also less than one. However the CRLB itself for the bottom speed estimate is

roughly 10 m/s for this set of SNRs which is on the verge of being significant error.

3.3 Estimates performed in the Case B waveguide

The Pekeris waveguide of Case A is not a good model of a typical shallow water

environment because bottom attenuation is neglected. Also, most geoacoustic inver-

sions are performed in waters where there are, or there are presumed to be, layers

of sediment overlying a basement instead of sediment half-spaces. Many real-world

shallow water environments can be successfully approximated with models similar to

Case B.

3.3.1 Single parameter estimate

Figure 3-7 illustrates the results generated in the Case B waveguide of an inversion

for the parameter c,. Important to keep in mind is that, while in the Case A example

the SNR at 1 km is 0 dB, in this example and in all successive examples involving

Case B waveguide, the SNR at 1 km is 15 dB. Therefore, the range of values of SNR

tested is from 2-18 dB, similar to those typically used in geoacoustic inversions.

Again, the dashed, lighter curve shows the first order bias and the black and gray

solid curves show, respectively, the square roots of the absolute values of the first and

second order variance terms, all as a function of source to receiver array range. All
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Figure 3-4: Bias and variance terms for an inversion for parameters c, and c, in the
Case A waveguide for a higher range of SNRs.(See next figure for SNR vs. range.)
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Figure 3-5: SNR versus range and necessary sample sizes for estimates of parameters
c. and c in the Case A waveguide for a higher range of SNRs to be asymptotically
unbiased.
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the values are for a single sample.

At a range of 500m the first order bias has a value of close to 10-1 m/s. As

range is increased, the bias value oscillates from as low as 10-3 M/s to as high as

5 x 10-1 m/s. However, there is a general increase of this term as the range goes

up, as SNR goes down. The peak value of the bias, ~ 5 x 10-1 m/s, is very small

compared to the true value of the parameter, 1.6 x 103 m/s.

The square-root of the first order variance is quite stable at a value between

5 - 10 m/s, about - of the value of the parameter, for all the ranges and SNRs.

The square root of the second order variance, while at 500 m range has a value of

about 3 m/s, gradually creeping up as range is increased until, at 10 km (2 dB for 10

log the SNR), it is about 4 m/s, peaking around 8 m/s at 9 km, just under the value

of the square root of the first order variance at that range. The general pattern of

increase in the three statistical quantities, which is more evident in later examples,

is due to the decrease in SNR resulting from spreading as well as attenuation in the

sediment. Bottom attenuation leads to stripping of higher order modes and hence

loss of sensitivity to acoustical parameters in the received field

In essence, this graph shows that, for a single sample, the c, estimate is essentially

unbiased, that for higher SNRs, the second order variance, and ostensibly each of the

additional higher order variance terms, is low in comparison to the first order variance

and that for low SNRs the second order variance is large enough to warrant additional

samples. The CRLB of roughly 6 m/s is on the verge of being negligible as an error

for applications in shallow water acoustics.

Figures 3-8 and 3-9 show the minimum sample size for the c, estimate to be

considered unbiased and to attain the CRLB, respectively, as calculated per Equa-

tions 1.10 and 1.8. Shown in Figure 3-8a is the input signal-to-noise ratio at all tested

ranges. As discussed before, due to the method of holding source level fixed while

moving the source away from the receiver, the SNR decreases as range is increased.

Therefore, at higher ranges, and hence lower SNRs, the number of samples required

for any inversion is expected to be higher. For this single parameter inversion, the

result suggested by the previous figure, that this estimate is essentially unbiased, is
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reinforced in Figure 3-8b, as the required number of samples oscillates never grows

beyond 8 x 10-2 M/s. One sample is all that is required to ensure that this particular

estimate more than meets our bias minimization condition.

In Figure 3-9b, it is shown that at an initial range of 500 m (10 log SNR of

18dB) the samples required is about 3 x 10-2 and remains less than 1 until 4 km

(8 dB), indicating for this range of SNRs that a single sample is all that is required

to meet our criterion for attainment of the Cramer-Rao Lower Bound, beyond 4 km

the minimum sample size continues to grow, peaking at about 9 km, at a value of 4

samples: the first indication that situations could arise where a single sample is not

enough to meet our necessary condition on Cramer-Rao Lower Bound attainment for

estimates in the Case B waveguide.

In summary of this example, the sound speed at the top of the sediment layer does

not seem to be a difficult parameter to estimate when it is the only unknown. Bias of

this estimate does not appear to be a problem for the full range of SNRs. Although

the gap between the second and first order variance terms lessens for lower SNRs, at

none of the tested SNRs does there seem to be serious need for concern about the

variance of the estimate.

3.3.2 Two parameter estimate of c, and p,

The previous example provides insight into the behavior of the variance and bias for an

inversion for a single parameter. Hardly ever is only one parameter of an environment

unknown and therefore typically multiple parameters are estimated simultaneously.

Figures 3-10 through 3-12 illustrate the effect on the variances and biases of parameter

estimates of adding additional parameters to an inversion. Now, both the previous

parameter, the sediment sound speed at the top of the sediment layer, c8, and another

parameter, the sediment density, ps, are being estimated.

Figures 3-10a and 3-10b are in the same format as the graphs in Figure 3-7 with

an identical line-shading scheme for the first order bias, and the the square root of

first and second order variances. Figure 3-10a shows the three statistical moment

terms for the c. estimate and Figure 3-10b shows them for the p, estimate.
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Figure 3-8: SNR versus range and necessary sample sizes for the bias of an estimate
of parameter cs in the Case B waveguide to be asymptotically unbiased.

45

20

18

16

14

z

0)

|--SNRI

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

12

10

8

6

4

2

0

(b)

10-2

E103

10

10

Sediment Speed at Top

I



(a)

z
U)

0

0)

20

18

16

14

12

10

8

6

4

2

0

(b) 10

0 100

E
E

03

10~

-- SNR |

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Range in meters

Figure 3-9: SNR versus range and necessary sample sizes for an inversion for param-
eter c, in the Case B waveguide to attain the Cramer Rao Lower Bound.
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Examination of Figure 3-10a reveals information about how additional unknowns

affect the resolution of parameters. It can be directly compared to Figure 3-7 to show

how, all other things kept the same, the addition of p, into the vector of inversion

parameters has affected the resolvability of the sediment speed at the top of the

sediment layer.

Like the first order bias in Figure 3-7, the bias in Figure 3-10a begins between

10-2 and 10-i m/s at lower ranges and, as range is increased and the SNR decreased,

oscillates around a gradually increasing mean value. However, while in Figure 3-7a

the bias peaks just barely below a value of one, in Figure 3-10a the average value of

the bias has definitely exceeded 1 m/s by 10 km and peaks at about 2 m/s. This bias

in the sound speed is large enough when compared to the true value of the parameter,

1600 m/s, to cause a significant change in the refraction between the water/sediment

layer. More samples are required to make the estimate asymptotically unbiased.

The square root of the first order variance remains close to 10 m/s, as it did in

the single parameter inversion example. The most obvious and important difference

between Figures 3-7a and 3-10a is the behavior of the second order variance. This

quantity begins, at a range of 500 m, at a value just below 1 m/s and grows steadily,

as range is increased, to a value just over 10 m/s at 10 km range. Essentially, the

second order variance curve from Figure 3-7a has moved higher and grown steeper due

to the addition of the second unknown. This indicates that if the density is unknown

the sediment speed is more difficult to estimate.

Figure 3-10b shows the three statistical moment terms that describe the estimate

for sediment density. For the ranges shown, the first order bias oscillates between

10- and 10-2 g/cc, with a gradual upward creep in the steady state value as the

SNR is decreased. However, at no range or SNR is this bias comparable to the true

value of the parameter, which is 1.75 g/cc.

The square root of the first order variance holds fairly steady, as is the case for

the c. estimate in the previous example, around a value of 10-1 g/cc, about - of10

the true value. The square root of the second order variance, exhibits more drastic

behavior, beginning at a value of 10-2 g/cc at a range of 500 m and growing rapidly
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as range is increased to a value of 10' g/cc, a value equal to the first order variance

at this range. In summary, this graph shows that the density estimate tends to be

unbiased for all ranges and the Cramer-Rao Lower Bound is attained except at all

the lowest SNRs.

Figure 3-11 shows the minimum sample size required for the estimates of the

two parameters to be considered unbiased. The graphs in this figure are similar in

structure and line styles to Figure 3-8 in the single parameter example. Figure 3-11b

shows the minimum sample size for the c, estimate and Figure 3-11c the minimum

sample size for the p, estimate.

Figure 3-11b shows that the minimum sample size for the c, estimate ranges

between 10- and 3 -10' with a general trend, as SNR is decreased, towards higher

values. It is noteworthy that when compared to Figure 3-8b, the comparable graph

from the single parameter example, the minimum sample size has generally increased

and become steeper due to the addition of density as a second parameter.

In Figure 3-11c, the minimum sample size oscillates between 10-4 and 10-1: a

single sample is enough to meet our requirement for low estimate bias.

Figure 3-12 shows the sample size necessary to attain the Cramer-Rao Lower

Bound for each of the two inversion parameters. Figures 3-12b and 3-12c show the

minimum sample size for the estimate of the sediment speed at the top of the sediment

layer, c5, and that of the sediment density, ps, respectively.

The curve in Figure 3-12c shows that a single sample meets our condition for

the estimate to attain the CRLB out to a range of 3 km (10 log SNR of about 10

dB), at which point the minimum sample size exceeds 1, eventually growing to 10

samples at 10 km. Comparison of Figure 3-12b with Figure 3-9b, in the spirit of

examining the progression from a single parameter inversion to a double parameter

inversion, reveals the most interesting information. Basically, while, in Figure 3-9b,

the minimum sample size grew from 0.1 to just over 4, the minimum sample size in

Figure 3-12b grows from 0.1 at low ranges and large SNRs to nearly 20 samples at high

ranges and low SNRs, a difference caused entirely by the addition of the parameter,

p., to the parameter vector. Twenty samples is not a prohibitive number but it is
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Figure 3-11: SNR versus range and necessary sample sizes for estimates of parameters
cs and p, in the Case B waveguide to be asymptotically unbiased.
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Figure 3-12: SNR versus range and necessary sample sizes for an inversion for pa-
rameters c, and p, in the Case B waveguide to attain the Cramer Rao Lower Bound.
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worth recalling that there are only two unknowns in this inversion, while practical

applications of geo-acoustic inversions typically have as many as eleven unknowns [5].

Should the trend continue towards a rapid increase in sample size with increased

length of the parameter vector to be estimated, minimum sample sizes to guarantee

that the Cramer-Rao Lower Bound is attained may, indeed, become prohibitively

large.

3.3.3 Difficulty of estimating density and sound speed to-

gether in the ocean bottom

Some intuition about why the simultaneous estimation of density and compressional

wave speed in the ocean bottom can lead to larger variances and biases can be gained

by looking at some limiting examples. Information about the bottom parameters

comes from source signal waves reflected off the various interfaces and possibly from

waves refracted back up to the receivers after having passed through the sedimentary

layers. This makes it informative to explore how the parameters we are trying to

estimate affect the reflection coefficient at the interfaces.

Single reflected plane wave A field generated by a single plane wave reflecting

from a halfspace as depicted in Figure 3-13 is a function of the Rayleigh reflection

coefficient, 7Z, which is itself a function of the halfspace densities, p and pi, sound

speeds, c and ci, and the angle of incidence, E,

Ec))= cip1 cos E - p c - ci sin 2 (.

R (pi, Ci, I) = (3.1)
c 1pi cos E +p ci sin2 0

The likelihood function is also a function of R. For this case, we can calculate the

Fisher information matrix for the simultaneous estimation of pi and ci:

c aR 19ae _R ae
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Figure 3-13: Single plane wave reflecting off a acoustic impedance interface.
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The determinant of the Fisher information Matrix is therefore given by,

[2f] DR. 2  DR. )2  (D.) (R) 2  0

which means the inverse of i, the CRLB, becomes singular as does the variance. If

both parameters are unknown neither parameter can be estimated separately but

only the combination given by the acoustic impedance.
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Figure 3-14: Two plane waves reflecting off a acoustic impedance interface.

Two reflected plane waves If two plane waves are incident on the interface be-

tween two media, see Figure 3-14, the likelihood function is a function of both reflec-

tion coefficients, f(R1, R2).
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- 19E aR 2f O 2 aR E2 [ 2 a a + a 1 a9R I_____2 ' 2 ~
= E E + +- - E

A B a b -y d C

2 2A+b 2B+2-YbC a'-yA+bdB+(ab+yd)C

aiA + bdB + (ab + -yd)C a2 A + d2B + 2adC

A little math gives the determinant of the Fisher Information Matrix,

det(i) = (ab - -yd)2[AB - C2]

where

ab - -yd csin(0 1 + 6 2) sin(E)1 - 02)
(c - ci sin2 2 )!(c - cisin2 6)(

Inspection of Equation 3.2, or Equation 3.1 from the single plane wave example,

reveals that if both waves are perpendicular to the interface the reflection coefficient

will depend only on the impedance, the determinant of i will be zero and thus there

will be no information about the density and the sound speed. If the two plane

waves have the same angle then again the determinant will be zero and there will be

no information. This makes sense since this limits the two wave case to the single

wave case previously discussed for which no information about density and sound

speed can be had. For any other set of grazing angles E) and 92 the determinant

will be non-zero and there will be a non-infinite CRLB i.e. estimation of the two

parameters simultaneously may be possible. The Pekeris waveguide studied in Case

A behaves like the single reflected plane wave case if at a certain range the absorption

has stripped away all but the lowest order mode.

3.3.4 Two parameter estimate of c, and a,

Figures 3-15 through 3-17 show similar graphs as are shown for the other examples,

but now for an inversion for the sound speed at the top of the sediment layer, cs, and

the sediment attenuation, a,. Like the previous examples in the Case B waveguides,

the second order variance and first order bias grow with increased range and reduced
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SNR but both values stay relatively low and therefore one sample meets our criteria on

unbiasedness and CRLB attainment. Attenuation appears to be effectively unbiased

but has a large first order variance so repeated sampling will be necessary to reduce

the variance to a tolerable threshold, i.e. 10% of the true value.

3.3.5 Two parameter estimate of c, and g,

Figures 3-18 through 3-20 illustrate a related point. Once again, an example of a two

parameter inversion is being performed, however, while the first inversion parameter

is still the sediment sound speed at the top of the sediment layer, cs, the second is

no longer the sediment density, ps, but instead the sediment sound speed gradient,

9s. By switching the second parameter and leaving everything else unchanged, it is

hoped to illustrate that the resolvability, as exhibited in the bias and variance, of a

particular parameter is a function not only of the number of inversion parameters but

also of parameter type.

Figure 3-18 shows the values of the three statistical moment terms, the first or-

der bias and the square root of the first and second order variance, for each of the

two inversion parameters versus range between the source and receiver array; c, in

Figure 3-18a and g, in Figure 3-18b.

When Figure 3-18a is placed alongside Figure 3-7a, the same series of comparisons

as are made with Figure 3-10a can be made once more to show that, as is true with

the addition of parameter, ps, addition of g, to the parameter vector increases the

value of all three statistical moment terms and steepens their gradient with increasing

range, especially with the second order variance. More interesting, however, is the

comparison between Figure 3-18a and Figure 3-10a. Now the difference in the statis-

tics of the c. estimate when it is coupled with a g, estimate instead of a p5 estimate,

can be seen. The first order bias has increased by roughly an order of magnitude at

all ranges, beginning, at 500 m, at 0.1 m/s and ending, at 10 km, at about 10 m/s,

oscillating to as low as 10' m/s. The square root of the first order variance has

also shifted up by a factor of roughly three with no obvious increase in the gradient.

The square root of the second order variance has shifted even more, so much that it
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Figure 3-16: SNR versus range and necessary sample sizes for estimates of parameters
c. and a, in the Case B waveguide to be asymptotically unbiased.
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Figure 3-17: SNR versus range and necessary sample sizes for an inversion for pa-
rameters c, and a, in the Case B waveguide to attain the Cramer Rao Lower Bound.
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Figure 3-18: Bias and variance terms for an inversion for parameters
Case B waveguide.(See next figure for SNR vs. range.)
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Figure 3-19: SNR versus range and necessary sample sizes for estimates of parameters
cs and g, in the Case B waveguide to be asymptotically unbiased.
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Figure 3-20: SNR versus range and necessary sample sizes for an inversion for pa-
rameters c, and g, in the Case B waveguide to attain the Cramer Rao Lower Bound.
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actually crosses the first order variance at a range of 5km, where the the SNR is 5

dB, reaching, at the lowest SNRs near OdB, a value of 100 m/s. Even at 500 m range,

10 log SNR of 18 d, the square root of the second order variance is close to 10 m/s,

about ten times the value for this quantity in Figure 3-10a.

In Figure 3-18b, as is the case for the previous examples, the bias is the most

oscillatory of the three quantities, varying between 10- + and 3 r, on average

increasing as range is increased. The first order variance begins at a range of 500 m

with a value of about 4m/, growing fairly linearly to a value of about 81. Worth

noting, is that 8 m/' is the same magnitude as the true value of the parameter, 1 0r/,

and as this is only the first order term of the variance expansion, it is quite possible

that the sum total variance is very much larger. The second order term, grows from

a value of 1m at the closest range to a value of 2 5 m/' at 10 km, exceeding the first

order term at about 5 km, where the SNR equals 6 dB. It is already apparent that this

will yield the least favorable first order to second order variance ratio yet examined

and, in light of the high values of both variance terms with respect to the true value

of the parameter, this gradient, g5, seems particularly hard to resolve.

Figure 3-19 shows the minimum sample size for the two estimates to be considered

unbiased. As might be suspected from the foregoing discussion, the minimum sample

size has shifted up for the c. estimate, shown in Figure 3-19b, from its general level

for the c5 /p, estimate, shown in Figure 3-11b, so that at lower SNRs, the minimum

sample size can be as large as 2 samples.

In Figure 3-19c, the minimum sample size for the g estimate is shown. For ranges

up to and including 5 km, which corresponds to an SNR of 5dB, the minimum sample

size for this estimate is, like all prior examples, less than one. Beyond that point, the

minimum sample size frequently oscillated above 1 sample, peaking at a value of 3.

Figure 3-20 shows the minimum sample size for the variance of estimates of the c,

and gs parameters to attain the Cramer-Rao Lower Bound. As before, Figure 3-20a

shows the SNR at all ranges, Figure 3-20b the minimum sample size for the first

parameter, in this case cs, at all ranges, and Figure 3-20c, minimum sample size for

the second parameter, g5, at all ranges. In this figure, the effect of switching g, for p,
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as the second inversion parameter is clearly evident.

Comparison of Figures 3-20b and 3-12c reveals how the c, estimate fairs when

coupled with a g, estimate instead of a p, one. Essentially, the difference between the

p, and g, minimum sample size profiles is mimicked by the profile for c, in Figure 3-12

versus the c, profile in Figure 3-20: at every range and SNR the minimum sample

size is ten times in Figure 3-20b what it is in Figure 3-12b. Lack of knowledge about

the sediment speed gradient has a much larger effect on the accuracy of an estimate

for sediment speed than does lack of knowledge of sediment density.

Comparing Figure 3-20c to Figure 3-12c reveals that the sediment speed gradient

is, at least for the environment modeled, a more difficult parameter to determine

acoustically. In Figure 3-12c, the minimum sample size for p, is 0.1 at 500 m range

and grew fairly steadily as range increased to a value of 20 at 10 km. For Figure 3-20c,

this whole picture has essentially been shifted up by a factor of 10, beginning at 500

m at a value of 1 and growing to a value of about 100 at 10 km. For all but the

highest SNRs one sample is not enough to resolve g,, while for the same case with p,

virtually the opposite is true.

The resolvability of a particular parameter is affected not only by how many

other parameters are unknown, as is discussed in the previous paragraph, but also

by which other parameters are unknown. In this example, lack of knowledge about

the sediment speed gradient has a much larger effect on the accuracy of an estimate

for sediment speed than does lack of knowledge of sediment density. For a given

environment and parameterization, it is therefore worthwhile to be wary of which

parameters are particularly difficult to resolve as inversions performed with these

parameters unknown could significantly affect the performance of estimates of the

other unknown parameters.

3.3.6 Three parameter estimate of c8, p. and g,

The prior three examples illustrate the effects of unknown parameter choice on the

ability of the MLE to produce estimates that are unbiased and attain the Cramer

Rao Lower bound. The emphasis has been put on the number of geo-acoustic samples
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required to achieve these two goals for each of the examples. Although the number

of samples required to attain the Cramer-Rao Lower Bound has reached has high as

100, no minimum sample size yet discussed has been so large that the given estimate

might be deemed infeasible. In this next example, a three parameter inversion is

discussed and the trend, first noted with the second example, that a greater number of

parameters gives rise to reduced resolvability of all parameters is shown to be worthy

of concern. The three inversion parameters for this example are cs, the sediment

sound speed at the top of the sediment layer; ps, the sediment density; and go, the

sediment sound speed gradient.

Figure 3-21 shows the three statistical moment terms for each of the three pa-

rameters; c, in Figure 3-21a, p, in Figure 3-21b, and g, in Figure 3-21c. At first

glance, the significantly poorer performance of the estimates than in both of the two

parameter examples is quite apparent. All three estimates have higher values of all

three moment terms at all ranges. The curves are steeper and the second order to

first order variance ratios are higher at all ranges.

The sediment speed at the top of the sediment layer, c8, is once again the most

interesting parameter to examine as Figures 3-7a, 3-10a, and 3-21a can be compared

to paint a picture of how the performance of this parameter estimate has faired as

part of inversions for one, two and then three parameters. As discussed before, when

going from the single parameter case, the statistics of which are shown in Figure 3-7,

to the two double parameter cases, statistics shown in Figures 3-10a and 3-18a, the

performance of the statistical quantities worsened. This trend continues in the three

parameter case. The bias, which peaks at 0.4 m/s in Figure 3-7, peaks at 3 m/s in

Figure 3-10a and now peaks at over 200 m/s for the three parameter case in Figure 3-

21a. The square root of the first order variance which is about 7-9 m/s for all ranges

for the single parameter case, is just over 10 m/s for all ranges in the two parameter

case and about 50-100 m/s for this three parameter example. The square root of the

second order variance has, with the addition of parameters to the inversion, increased

even more dramatically. Lower than the first order variance, with values between .3-8

m/s, for the single parameter inversion, it ranges between 1-10 m/s for the p, coupled
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two parameter case and 3-100 m/s for the g, coupled two parameter case. When all

three parameters are estimated simultaneously, the second order variance begins, at

the highest SNRs, at a value of about 10 and grows to a value of more than 1000 at

the lowest SNRs: a value equal in magnitude to the parameter.

In Figure 3-21b, the first order bias of the g, parameter has a low-range value

of about 1 m and grows to 30 rns, while for Figure 3-18b these values are .3 rn/s

and 3 /S respectively. The first order variance has risen by about half a decade at

every range from its value in Figure 3-18b and the second order variance, which in

Figure 3-18b ranged from 1-20 m, now ranges from 1 to 250

In Figure 3-21c, where the statistics for p, are shown, the bias begins, at the

closest ranges (largest SNRs), with an average value of a little less than 0.01 g/cc and

grows to an average value of just less than 1 g/cc, peaking at about 1 g/cc. The range

for the bias in Figure 3-10b is between 10-5 g/cc and 10-2 g/cc for the same set of

SNRs. The square root of the first order variance has risen a bit, fairly uniformly over

all ranges, with the addition of the third parameter, with an average value in 3-10b

of 10-1 g/cc, and in Figure 3-21c of 2 x 10- g/cc. However, the square root of the

second order variance has risen a decade at the highest SNRs and more than that

at the lowest SNRs, peaking at almost 10 g/cc: about 4 times the true value of the

parameter.

Figure 3-22 shows the minimum sample sizes for the three parameter estimate.

The SNR is shown versus range in Figure 3-22a. Figure 3-22b shows the minimum

sample size for the c, estimate. The bias for this parameter is quite large, especially

where 10 log SNR is greater than roughly 8 dB. At the lowest SNRs the minimum

sample size is nearly 100. Fewer samples will result in poor estimate resolution.

In Figure 3-22c the bias of estimate of the g, parameter is shown to be even

worse. At no range or SNR is one sample enough for the bias to meet the condition

in Equation 1.9. The estimate is very biased. At the highest SNRs, just over one

sample is required. At the lowest SNRs tested, close to 70 samples are required. So,

while the earlier examples could lead one to believe that bias is not a significant issue

for seafloor parameter inversions, this three parameter case indicates it may be one
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Figure 3-21: Bias and variance terms for an inversion for parameters c., g8 and p, in
the Case B waveguide.(See next figure for SNR vs. range.)
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at higher parameter number, even if usually of less concern than variance. It is also

clear that the sediment sound speed gradient is a very difficult parameter to estimate.

Figure 3-23 shows the minimum sample sizes required for the three parameter

estimate in the current example to have a variance that attains the Cramer-Rao Lower

Bound. Figure 3-23a shows the input SNR versus range. Figures 3-23b- 3-23d show

the minimum samples sizes versus range for parameters c8, g5, and p, respectively. All

three graphs follow a very similar pattern. At the lowest ranges (highest SNRs) about

1-10 samples are required for all of the estimates. This number increases fairly linearly

until the lowest SNRs, where the number of samples required for this inversion is more

than 1000. A picture of decreased resolvability with parameter number has decidedly

emerged. It is true that in the areas of high SNR, resolvability has remained good for

all the cases shown. At SNR less than 10 dB, there is marked drop in performance

with the addition of each extra parameter. Due to computational limitations with

Matlab, only examples with a limited number of parameters have been treated in

this paper. In that each parameter has added 1-2 decades to the required samples

at the lowest SNRs, and half a decade at SNRs typical of practical scenarios, it is

reasonable to be concerned about the statistical errors brought on by inversion of

even more unknowns.

3.3.7 Attenuation and Modal Stripping

Attenuation in the sediment is an important parameter in the performance of geoa-

coustic inversions both as a parameter to be estimated and as one of the primary

mechanism for loss of the acoustical energy of the signal and hence information about

any other parameters being estimated.

To give a feel for how attenuation affects the present analysis of necessary sample

size the three-parameter inversion of cs, p, and g, in the Case B waveguide discussed

in the previous section is performed for a range of attenuations, a., between 0 and

1 dB/A. The result is plotted in Figure 3-24 with attenuation on the y-axis, range
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Figure 3-22: SNR versus range and necessary sample sizes for estimates of parameters
cs, gs, and p, in the Case B waveguide to be asymptotically unbiased.
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Figure 3-23: SNR versus range and necessary sample sizes for an inversion for pa-
rameters cs, go, and p, in the Case B waveguide to attain the Cramer Rao Lower
Bound.
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on the x-axis and the necessary sample size to attain the CRLB for the c, estimate 2

represented by tones of gray.

Immediately apparent is the sudden shift in value of the necessary sample size

from negligible to quite large at a particular range for each attenuation. For higher

attenuations this range is much smaller and therefore is definitely linked to a,. It

is possible that the sudden shift in regime can be thought of as the sudden loss in

strength of higher order modes. Possibly at this point, all but the first and zeroth

order modes remain, the first becomes negligibly attenuated and we are left with the

situation discussed in Section 3.3.3 where there is only one reflecting plane wave and

hence little information for estimating p and cs.

3.3.8 Four parameter estimate of c8, ps, go, and h,

This final example is for a four parameter inversion in the Case B waveguide. The

estimation parameters in this example are the top of sediment sound speed, cs, the

sediment sound speed gradient, g5, the sediment density, ps, plus the sediment thick-

ness, h,. As is mentioned in Chapter 1, the number of geoacoustic parameters esti-

mated simultaneously in practice is often greater than ten. A four parameter example

of the application of our technique for determining the necessary conditions for es-

timates to be unbiased and to attain minimum variance only begins to explore the

effects of larger inversion parameter vectors. However, looking at Figure 3-25, which

shows the values of the three statistical moment terms, one can see that already the

variances and biases are extremely large. Figure 3-26 shows the necessary sample

sizes to attain the CRLB 3. There is a limit to how quickly experimenters in the field

can take samples in order to assure that the samples are uncorrelated. To take the

number of samples that the results in these figures indicate are necessary to have

unbiased, minimum variance estimates, experimenters would be sampling for far too

long to be practical or even for them to reasonably assume that the environment has

2 The salient, relevant features of this graph are the same for those generated from the other two
parameters estimated in this example

3 The number necessary to attain asymptotic unbiasedness is less at every range
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Figure 3-24: Effect of attenuation, a, on the necessary sample size to attain the
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changed little enough for the data to be used all together. In essence, these numbers

of samples are prohibitively large in many cases. Increasing the SNR is an option left

open to the experimenter but there are also limits on what SNRs can be generated

by practical means.

The high minimum sample sizes are probably due to an aggregated effect of all

of the previously discussed issues, physical couplings and number of unknowns. It

is likely that poor performance of the four parameter example is an amalgamation

of the various physical couplings, gradient and thickness, sound speed and density,

and, in essence, a result of shear parameter number. It is reasonable to conclude that

sediment layer thicknesses are particularly difficult parameters to estimate although

it is possible that it is a coupling of the thicknesses with other parameters, likely

sediment gradient, that causes the difficulty in its simultaneous estimation with these

parameters. This notion is strengthened by the realization that there appears to be

no general change in the bias and the variances of the four estimates at lower SNR.

For some reason, unlike the previous examples, the statistical moment terms are high

for all ranges and SNRs. Perhaps, the aggregate coupling of the four parameters,

in the way described for density and sound speed in Section 3.3.3 leaves hardly any

information about the seabed parameters and therefore signal strength is not relevant.
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Chapter 4

Conclusion and Future Work

In this thesis I use higher order approximations of the bias and variance of the

Maximum Likelihood Estimator to show that geoacoustic inversions with vertical

array data can very easily be biased and have large variances that do not attain the

CRLB. I then use these same tools to develop necessary conditions on sample size to

asymptotically render estimates unbiased and attain the Cramer Rao Lower Bound.

These tools can be used by researchers to design future experiments to have desired

parameter resolutions. In the process, the physical couplings and effects that cause

bias and high variance in geo-acoustic inversions are explored.

The results suggest that as signal-to-noise ratio (SNR) at the receiver array de-

scends, the MLE exhibits variances that can exceed the Cramer-Rao Lower Bound by

orders of magnitude and has significant biases. The resulting estimates can, therefore,

be virtually useless for inferring environmental parameters or for use in environmen-

tal models employed by other acoustical schemes. High sample sizes would allow for

unbiased, minimum variance estimates, however the required number of samples, can

for some scenarios, be so high as to be infeasible.

The examples given indicate that some parameters are more difficult to estimate

than others, insofar as the bias and the variance of estimates for these parameters are

more likely to be undesirably high for low sample size. Sound speed and sound speed

gradients in the sediment layers and sediment layer thicknesses appear to be difficult

parameters to resolve. Sediment density also appears to be difficult to estimate,
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especially if the sediment sound speed is also unknown. Attenuation does not appear

to be difficult to estimate, at least for layers near the interface between the water and

the seabed.

Regardless of which parameters are estimated, the more estimated simultaneously

the higher the biases and the variances of the estimates of all the parameters will

be. Sound speed may have relatively low biases and variances when estimated alone.

However, if density is also unknown, the increased general uncertainty will result in

worse bias and variance for the sound speed estimate. If then the sediment sound

speed gradient is assumed to be unknown, the estimates of the first two parameters

will lose resolution. The results of this thesis suggest that this trend will continue ad

infinitum as yet more parameters are assumed to be unknown.

In reality, little is usually known a priori about the structure of the seabed and

the values of the acoustical parameters. Hence the true number of unknowns in

these kinds of problems are not even approached by the examples in this thesis. Yet

already in these examples, situations are shown where the biases and the variances

are very large. There is good reason to be cautious when dealing with the ten to one

hundred parameter models often used by field experimenters and researchers running

simulations.

Since geo-acoustic parameter inversions are playing an increasingly important role

in oceanography, it is hoped that this work will help in the design of future schemes

and that their designers will remain aware of the baseline statistical limitations of

performing geo-acoustic inversions in the typical ocean environment.

Future work could involve the use of more realistic noise models; the use of a

fully-randomized signals; the incorporation of source and receiver array positional

uncertainty; the investigation of more diverse waveguide models, perhaps with multi-

ple levels of sediment and different sound-speed profiles in the water-column; and the

use of more complicated parameterizations with large parameter vectors that reflect

the true number of unknowns encountered in field experiments.
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Appendix A

Numerical derivative calculations

Evaluation of Equations 2.5- 2.7 requires knowledge of the first, second and third

order derivatives of the log likelihood function with respect to all combinations of the

components of 8. Assuming the experimental data is given by a deterministic part,

due to the source, embedded in zero-mean, additive Gaussian noise, can be simplified

to expressions that are functions of only a signal-independent covariance matrix and

derivatives of the deterministic part of the signal [24].

In our case, the signal vector, X, is the pressure field measurements on the ten

element vertical array. For ranges greater than a few ocean depths (for the waveguide

models used, > 300 m), the field received by the j-th array element from a discrete

acoustic source at range r and depth z at angular frequency w can be expressed as a

sum of normal modes [31]

ie-K eiklr
G(zj, Z, r, w) = 1 (I(z)4i (zj) (A.1)

p(z) 8 ir VI

where k, is the horizontal wavenumber of the mode 1 with modal amplitude 41(z).

Equation A.1 defines the j-th element of the vector pressure field, G. For a signal

embedded in zero mean noise, the mean vector, A, is equal to G. Therefore, it is

the derivatives of Equation A.1 with respect to the geo-acoustic inversion parameters

that are required.

Although numerical calculation and differentiation of the modes can lead to in-
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stabilities, the necessary derivatives for all but the simplest case, Case A, were too

difficult to obtain analytically. Therefore normal modes functions and wave numbers

were generated using commonly available normal modes codes and these were then

plugged into Equation A.1 to compute pressure fields. Pressure fields were calculated

for all the perturbations on the environment in the inversion parameters to provide

the inputs necessary to use the finite difference equations given at the end of this

appendix (Equations A.2 through A.4) to calculate the derivatives required for the

asymptotic expressions.

Initially the KRAKEN [7] normal modes package was used to calculate the neces-

sary mode functions and wave numbers. As conventional wisdom held that KRAKEN

might yield unacceptable instabilities when used in the calculation of derivatives, the

use of another normal modes package, SNAP [8], was also explored. In order to

check the accuracy of the close range results from KRAKEN, KRAKENc cite was

run for some of the cases. The derivatives resulting from using KRAKEN and SNAP

appeared to be virtually identical. As ranges must be suitably large to assume Gaus-

sian noise distribution (more than a few wavelength, for our models > 300 m) and

KRAKENc is intended to provide a more accurate modal solution than KRAKEN for

short ranges, the differences between the two sets of derivatives calculated using the

two programs was only significant at ranges where the noise model was inapplicable.

Therefore, KRAKEN was used for all the results present in this paper.

A. 1 Determination of optimal step sizes for deriva-

tives

A necessary part of accurately executing finite difference equations for function deriva-

tives is a well-chosen step-size. If the step-size is too small, quantization error will

be an issue i.e. the step-size is smaller or on the order of the smallest quantity the

computer can resolve and calculated perturbed function values will either not change

from the unperturbed function or change in a spurious manner due to sudden jumps
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Figure A-1: Demonstration of how too large a step-size can cause errors in derivative
calculations.

in the perceived perturbation. Because of binary coding by the computer, it is not

always easy to determine this smaller limit. On the other hand when the step-size is

too large it is possible to skip features of the function and also get inaccurate deriva-

tives. This is demonstrated in Figure A-i for a function, F(E) where E is a scalar

parameter.

Clearly, the optimal step-size is somewhere in between, probably closer to the

smaller side. For complicated functions that are non-linearly related to the parameter

with respect to which one would like to take derivatives, such as the pressure field in

our scenario, it can be difficult to predict the optimal step-sizes. My approach was

to calculate the derivatives of the function with respect to each of the parameters of

interest for a range of reasonable step-sizes to locate the section of that range that

contains step-sizes that all produce similar values for that section i.e. locate the flat

section in a plot of derivatives versus step-size. Before performing the calculations

for a particular set of parameters in a particular waveguide, I would go through

this operation for the first, second and third derivatives with respect to each of the
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parameters and use the determined step-sizes for all the other derivative calculations

required, assuming that the mixed derivatives would still be sound with these step-

sizes.

For this work, I needed to calculate derivatives of the pressure field for a number

of ranges between the source and the receiver array. This range could effect optimal

step-size for each of these derivatives. however for the sake of ease and to minimize

processor demand, I ideally wanted to find a single step-size that would work well

enough for all ranges. A weighted, range-summed step-size optimization is also used.

df (E) f (or + h) - f (E - )(A2)

d(Er) h

d2f(0) _ f(er + h) - f ( ) - f (E' - h) (A-3)
d(Er) 2  h2

d3f (E)) f (E~r + I) 3 - f (E8' + h ) + 3 - f (E) - h) - f (E8r - 3) (A4df(E)r) 2 2 h3 (A.4)
d(et)3  se i-

where h is the step-size.
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Appendix B

Analytic Derivatives for Pekeris

Waveguide with Zero Attenuation

in Bottom

The pressure field can be modelled as the sum of a set of normal modes:

ze 4ein
p(r, ZR) -- n n(zs)F n(zR) knr

p(zR) 8ir 1

C gn

where p(zR) is the density of the water-column as a function of depth; r is the range

of the source from the receiver; kn are the modal wavenumbers; zs is the depth of the

source; ZR is the depth of the receiver; n is the mode number; and Tn are the mode

functions. This equation can be simplified so that each element of the sum consists

of two terms, An and gn:

p(r, z) = C E Angn
n=1

B.1 Pressure field derivatives

Using the above representation, derivatives of the pressure field with respect to any

quantity upon which it depends can be worked out via the chain rule. Shown here
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are the first, second and third order derivatives with respect to all the necessary

permutations of any two parameters.

Pc = C A,c gn + A g'kn,
n

C C 1j k +/ ~ ~ (k c~)2

n

Pece = C An,ccegn + + 3Ancn + A ' k
n

+3ncf nc + 3Aglnc + I A~(k c~)3

Pcb= CE~~bnA~9 k, 1 k ng + n~c+ + Afl$klC
n

Pebb = C An,cb ng + Anbbg' kn,c + 2An,cbg' kn,b + Ancg"(kn, )2
n

+2An,bg"(kn,ckn,b) + Ang'kn,c(kn,b )2 + An,c +

+ A n,ckn,bb + 2Ang"kn,cbkn,b + Ang' kn,cbb

Pccb = C An,ccgn + 2An,cbg' kn,c + An,bg' kn,cc + Anbg"(knc)2
n

+An'ceg' kn,b + 2 An,cgqlkn,ckn,b + 2A A 1c knc

+Angnkneckn,b + Ang' kn,ccb + Ang'" (kn,) 2 kn,

+2 Ang" knc knct

He I I',f" and g'". represent the first through third derivatives with respect to

kn.

n [ 1

, 1
g" = -9n2k2n

+ ir] gn

1

2kn

2

+ ir] gn
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g"' = + +iR) + + ir n

As can the An term derivatives

A,c = q4l,c(zs)'Fn(zR) 'In(zs)4!n,c(zR)

An,cc = 4fl,cc(Zs)4'n(zR) + 2'n,c(zS)'n,c(ZR) + 'Jn(Zs)'n,cc(ZR)

An,ccc = 4Jn,ccc(zS) In(ZR)+34 Jn,cc(ZS)In,c(zR)+3q'n,c(zS)Fn,cc(ZR)+n (ZS) n,ccc(ZR)

Ancb = ln,cb(zS)'n(zR) + 'Fn,c(Zs)4 'n,b(ZR) + 'In,b(ZS)'In,c(ZR) + 'Fn(ZS)'Fn,cb(zR)

An,cbb = Xn,cbb(ZS)X'n (ZR) + 2 1Fn,cb(ZS)'Fn,b( ZR) + 'n,bb (ZS) 'n,c(ZR)

+In,c(ZS)4'n,bb(ZR) + 2qn,b(ZS)'Fn,cb( ZR) + 'Fn(ZS)'Fn,cbb(ZR)

Anccb = 4'n,ccb(ZS) 4'n(ZR) + 21Fn,cb(zS)'Fn,c(ZR) + ''n,b(ZS)'Fn,cc(ZR)

+ 4'F,cc(zs)4 'n,b(zR) + 2qfn,c(ZS)'Fn,cb(zR) + 'n (ZS )'n,ccb(zR)

All that is left to solve the pressure field derivative equations shown above are

the derivatives of the mode function amplitudes, 'Fn, and of the modal wavenumbers,

kn. Unlike the formulas above not all of these can be derived in general. Instead,

they must be derived with respect to the particular acoustical parameters of interest.

For a geo-acoustical inversion in the Case A waveguide where the bottom speed and

water speed are unknown, the two unknowns are the derivative parameters.

B.2 Wavenumber derivatives

Let ke = g and kb = g- be the medium wavenumbers for the water column andcc Cb

bottom halfspace, respectively, and pc and Pb are the corresponding densities. Let

kn - k, be the horizontal wavenumber for mode n. Define ac and ab as the ver-

tical wavenumbers for the water column and bottom halfspace. Expressions of the
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form X...,b represent derivatives with respect to bottom speed Cb, and x...,.c represent

derivatives with respect to water speed cc.

Then from the relationships

a2 + k = k2 and a2 + k = k2 and the characteristic equation for a Pekeris

waveguide of depth D

tan(ecD) =
Pcab

one obtains, using kb, = k,b = 0

krb-kbkb,back=
kr1F

kr,c= _ 1 +

where

IF= (k -k - aQ)

Q = ZD sec2(acD)
Pb

The vertical wavenumber first-order derivatives are also needed for the next section

on modal derivatives:

ab,b =

CC ~

kbkb,b - krkr,b

ab

kekec) - krkrc

c

cb~b - kr kr,c

krkr,b
&cY~b --

'yc
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The second-order derivatives can be found, and after some algebra:

kr,bb= kr,b

kr,cc = -kr,c -
1cc

2kbkbb
F

+ kr
kr

3 k-,b Fb

Cb k r]

+ k r1F

krbkr c kkec 2ac,bac
kr,cb = R k r

Fb = 2 kbkb,b - 3a ab,bQ - Ce3Qb

F_ = -2kekc,c - 3a ab,cQ - a 3c

Qb = 2Da,,b tan (acD)Q

QC = 2Dac,c tan(acD)Q

k,b + krkr,bb + acb
ac,bb ~ac

k , + kkr,cc + a 2
ab,cc -b

ab

i2 i

+bb-t Ekbk,bb - k ,bb - krkr,s -- - ab,b

ab

k2,c + keke,cc - k 2c - k k ,cc -- Ce2
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ac,bc -

ab,bc -

The third-order wavenumber derivatives are

+ 3
+ kr,b c +

kr,ccc = -kr,cc

acc
kr

k2, b kr,bb 2k 2kos -- 2 n -2k bkr
kb 2 b + 2 kbkbbb - Fbb 2bk

r kI

3 k
-+ ' + k c

(cc kr )

k,c c- accc
k2 kr

(2 c,cc

Pc
- rc~cy

+k2 kr,c
rb k2r

acc
kr (

rb'~ , F

kr2b
r

Ebbac
IF

3
- +
c

(2acc

(kr,c 2kr
kr,cc
kr

-ac )

+ p2

ac~c
kr ) ( 2 b -a

-+ ac b

]F2

kr,bckr,c + k r,bkr,cc

kr

ac'c

kr

+ k 2 kr7 ,b
+ k'' k2rc + acc

Fbc
-ac r, +r

krkc - 2 2ac,b - ac b
rk2 k IFcc

FbFc

ac r1

9b
20c,bc - LAC,C I
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ac,cac,b + kr,ckr,b + krkr,bc

ac

Ob,bab,c + kr,bkr,c + kr kr,bc

kr,bbb = krbb
kr,b

kr,bbc kr,bbkr,c + kr,bkr,bc
kr

kr,bcc =



where

Pcc = -2k 2 - 2kekecc - 6aba2cQ - 3a ab,,cQ - 6a 2ab,c~Q - ab3ec

- Q
ccc= '"c +

Q2
- + 2Q [ac,cD sec(acD)] 2

Q

Ebb = 2kb,b + 2 kbkb,bb - 6ab b bQ - 3cbab,bbQ - 6c abbQb - aeb~bb

+ + 2Q [ac,bD sec(acD)]2

Fbc = -6abab,cab,bQ - 3a 2acbbQ - 3aab,bQe - 3a bb - b

Qc~b + 2 Qac,cac,b [D sec(ceD)]2

Q

and the first four second-order vertical wavenumber derivatives are

ac,bbb = -(3kr,bbkr,b + krkr,bbb + 3ac,bac,bb)/ac

ab,bbb ( 3 kb,bkb,bb + kbkb,bbb - 3 kr,bbkr,b - krkr,bbb - 3ab,bOab,bb)/ab

ac,bbc ~(kr,bbkr,c + 2 kr,bkr,bc krkr,cbb + ac,cac,bb + 2ac,bac,bc)/ac

ab,bbc -(kr,bbkr,c + 2 kr,bkr,bc + krkr,cbb + 2 ab,bab,bc + ab,bbab,c)/ab
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The other four third-order derivatives can be obtained by swapping b and c in the

expressions above.

B.3 Amplitude Derivatives

The modal amplitude derivatives for the Pekeris waveguide are shown here:

j2i H
Pb

sin(2acH)

2aJ

i sin2  acH 2

Pbab .
N

where

Ie = N sin(acz)

Te = N, sin(acz) + ac,czN cos(acz)

eC = N, sin (acz) + 2ac,czNc cos(acz) - a2, z 2N sin(acz) + accezN cos(acz)

4f bc - Nbc sin(acz) + Ncac,bz cos(acz) + ac,czN cos(acz)

+ac,bcZN cos(acz) - ac,cac,bz 2N sin(acz)

= Ncc sin(acz) + 3ac,cezNe cos(acz) + 3ac,czNcc cos(acz) - 3aecz 2Nc sin(acz)

-3oc,ccc,ccz2 sin(acz) - a3,cz3 N cos(acz) + a cccZN cos(acz)

ceb Nccb sin(acz) + 2cxc,bczNc cos(acz) + 2ac,czNbc cos(acz)

-2ac,cac,bz 2Nc sin(acz) + Nccac,bz cos(acz) - 2ac,cec,bcz2N sin(acz)

a2 , z 2 Nb sin(acz) - a 2 ac,bz 3N cos(acz) + ac,ccbzN cos(acz)

+ac,cczNb cos(acz) - cYc,ccac,bz 2N sin(acz)

= N 6c sin(acz) + 2ac,bczNb cos(acz) + 2ac,bzNc cos(acz) - 2ac,bac,cz2 Nb sin(acz)
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+Nbboac,cz cos(acz) - 2ac,,ac,bcz2N sin(acz) - a 2z2 N sin(acz)

-a2ac,cz 3N cos(acz) + cbbczN cos(acz) + ac z cos(cz) - acbb&ccz2N sin(acz)

N3

Nc= - 4 l1c,cyl + &b,cTC2

N 2  N3

Nc = - -[acccT + e,cCT2 - ac,cTic + ab,c T2cIN 4

6NcNcc 3N3 3N2 N
cc N N 2 - 4 [ac,ccT1 + ab,cc T2 + ac,c + acT2c

The expressions for Nb, Nbb, and Nbbb are found by substituting b for c in the terms

Nc,Nec,and in derivatives with respect to c. For example, ac,c will become ac,b and so

on.

3N N N
Nbc N 4 [aCaC T1 -+ Oa,cbT2 + c,cTmi + 0ab,cT2b]

3NebNb 3NcNbb
N N

3NcNb2

N 2

N 3
4 [cc, bbT1 + 2 c,bcTIb + C4a

3NebNe 3NbNec
N N

3NbNc2
N2

3N 2No
4 [ 0c,bcT 1 + ab,cOT 2 + ac,cT 1 I + anCT 2b]

b,cbbT2 + 20Q,,cbT2b + ac,cT 1bb + Ceb,c T2bb]

S3N [2 N ac,cT + ab,cbT2 + ac,bTlC + ab,bT2c]
4

N3
S [ac,ccT + 2 ac,cbT1Ic + aOb,bccT2 + 2 aLb,bcT2c + ac,bTIce + ab,cT2cc

sin(2acH) H cos(2acH) iHsin(2acH)Ti --

T1, = cos(2acH)

2aOpZb Pbac

i sin2 (a H)
2

Pb b

+ sin(2acH)

Pbab

2H2 ccy

Pbac
_acc

a3 Pb
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Nccb

3Hac,c i2H2 ac,c2capb Pbab

iHab,c1
+ 2

Pbab I



iHac,csin(2acH) 2i sin 2((acH)ab,c
P2c 2 e3

The quantities Tib and T2b are found by replacing derivatives with respect to c

(after the commas) to those with respect to b in the two expressions above.

= -2ac,cH sin(2acH)
~H c,c

. 2 2Pb

i 2 H 2a ,, 1
Pbab

~3HaCcc 3Ha 2  i2H2acCC+ cos(2acH ) 2 ' +4
[ 2acPb acPb Pbab

-2H~2H~~2H2ace~ 0a, iHxb,
-2ac,cHcos(2aCH) 2 - ' 2'

L Pbac &cPb Pbab

+ sin(2ac H) accc
2H2

Pbac cc Pb)
(-2H 2

+ a2,c (2C Pbac

i2H2 c]
21
b I

+ )
a4pb

iHabcc
+ 2

2iH 2
abc

iHac,Tc sin(2acH)
2cc 2Pbab

4iHec,cab,c sin(2acH)
3

Pbab

2iH2Ce,c cos(2acH)
+ c2

Pb b

6ia2 sin2 (cecH) 2ia, sin 2 (ceH)
+ 4 2

Pbaeb Pbab

The quantities Tlbb and T2bb are found by replacing derivatives with respect to c

(after the commas) to those with respect to b in the two expressions above.
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Appendix C

Joint moments for asymptotic

Gaussian inference: general

multivariate Gaussian data

C.1 General multivariate Gaussian data

For the general multivariate Gaussian case, both the mean /a and the covariance

matrix C depend on the parameter vector E. The joint moments required to evaluate

the first order bias are

ab = -tr(C- 1 CaC-1 C) + ny _C-ab, (C.1)2

Vabc = tr(C~1 CaC-CC-Cc)
a,b,c

- E tr(C-CabC-Cc) - E -
a,b,c a,b,c

+_ E [TC- 1CC[,
a,b,c

(C.2)

Vab,c = E (tr)(CCaC-CbC 1 Cc) + C
a,b

98



+ tr(C 1 CabC1 Cc)
2

-n a VC-CbC-/c,

a,b

(C.3)

where, for example, Za,b,c indicates a sum over all possible permutations of a,b, and

c orderings, leading to a total of six terms. Teerms such as Cab and pab represent the

derivatives of the covariance matrix C and the mean vector p with respect to Oa and

6b, respectively.

C.2 Multivariate Gaussian data with parameter-

independent covariance: deterministic signal

in independent additive noise

For this case the covariance matrix is independent of the parameters to be estimated,

i.e. OC/96) = 0 for all i. The joint moments required to evaluate the first order bias,

as well as the second order error correlation and covariance are

(C4)

Vabc(ni) -

a,b,c
(C-5)

(C.6)Va,b,c(T 1n 0,

Vab,c(nl) - nUb c- 1

Vabcd(l) = -5 Cpcd - - bcC- Pd,
8 a,b,c,d a,b,c,d
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(C.8)

iab = ~ 1-t~ b



2

la,b,c,d(l) 2 b d

abc,d

Va,b,cd~nl) - 0,

/a,b,c,de(n2 -

2

(C.11)
2E M b ade

a b'c

(a,b) x (cd,ef)

-a 1 -tcd14C 1 Pef

+n2 C~ Pef PCPb,

1 a,b,c,def (n2 )
2

= M CIb C [def,
abc

where the notation Z(a,b)x(cd,ef) indicates a sum over all possible permutations of a

and b orderings combined with permutations of cd and ef orderings, leading to a total

of four terms.

C.3 Multivariate Gaussian data with zero-mean:

random signal in noise

The following equations are useful only for scenarios where the signal has zero mean

and is randomized. None of the exmaples discussed in this thesis use such a signal.

However, the code written for the project is designed to allow the calculation of the

bias and variance for such signals. Therefore the formulas are included.

For the case of a randomized signal with zero mean in additive noise, the joint

moments required to evaluate the first order bias, as well as the second order error
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correlation and covariance are

n
iab n-tr(C1 CaC-ICb), (C.14)

2

Vabc (72) - E tr(C1 'CaC1 CbC1 'Cc) - ~- t( 1 CiC-C),(.5
34a,o,c

Vabc(ni) = E tr(C- 1CaC-CbC 1 Cc),
6a~bc

(C.16)

Vab,c(ni) = - E tr(C-CaC1 'CbC-1 C) + n tr(C-1CabC-Cc), (C.17)
2 abc 2

372
Vabcd(ni) - 8 E tr(C 1 CaC1 CbC-lCcC-lCd)

a,b,c,d

+ n tr(C-CabC 1 CcC-Cd) - 1 tr(C-1 CabC-1 Ccd)
2a,b,c,d 16a,b,c,d

-n I tr(C 1 CabcC-'C), (C.18)
a,b,c,d

Va,b,c,d(n2) = 22 tr(C- 1 CaC 1 Cb)tr(C'CcC-Cd), (C.19)
32 a,b,c,d

Va,b,cd(n)= - E tr(C 1 CaC1 CbC-1 CcC1 Cd)
(a,b) x (c,d)

+ - 1 tr(C-1 CaC-CbC 1 Ccd), (C.20)
2 a,b

Va,b,c,de(n2 ) S tr(C 1 CdC1 Cc)tr(C1 CaCCbC1 Cc)
(a,b,c) x (d,e)
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tr(C 1 CaC-Cb)tr(C--CcC- 1 CdC- Ce)b2 1:

8(a,b,c) x (d,e)

+ nE tr(C-CaC-1 Cb)tr(C1 CcCCde),
(a,b,c)

va,b,c,ef((n) _

n 2

8(cd,ef) x(a,b) x(c,d) x(e,f)

tr(C1 CcC1 Cd) [tr(C-CaC-CbC1ICeC-Cf)

-1/2 tr(C-CaC-CbC1Cef)]

8 (cd,ef) x (a,b) x (c,d) x (e,f)

tr(C-CaC- 1 Cb) I tr(C-CcCCdC-CeC1Cf)

1 i1
-2tr(CICcC-CCd-Cef)+ tr(C-ICcdC1 Cef)

28

8 (cd,ef) x (a,b) x (c,d) x (e,f)

tr(C 1 CaC-lCcC 1 Cd)tr(C 1 CbC 1 CeC-Cf)

+ E tr(C-CaC-1 Cd)tr(C-CbC 1 Cef)8 (cd,ef)(a,b)

I S tr(C-CaC 1 Ce)tr(C- 1 CbC- 1 CeC- 1 Cf),
(cd,ef) x (a,b) x (c,d) x (e,f)

Va,b,c,ef (n
2 ) =

n tr(C 1 CaC1 CbC1 Cc)tr(C- 1 CdC-d CeC 1 'Cf)
(a,bc) x (d,e,f)

2

-{ 2 tr(C-CaC 1 CbC-1 Cc)tr(C-CdeC-lCf)
(a,b,c) x (d,e,f)

+ E tr(C-1 CaC-Cb) [tr(C-1CcC'CdC1 CeC1Cf)
(a,b,c) x (d,e,f)

- tr(C-1 CcC-CdeC-Cf) + 1/6tr(C-CcC1Cdef)]

(C.22)

(C.23)

where the notation E(a,b,c)x(d,e,f) indicates summation over all possible permutations

of d,e,f and a,b,and c, leading to a total of 36 terms.
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