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Abstract

We devote this thesis to the exploration of how to define the number of degrees of

freedom in quantum field theory. Intuitively, the number of degrees of freedom should

decrease along the renormalization group (RG) flow, and should be independent of

the RG scale at a conformal fixed point. We argue that a refinement of entanglement

entropy is a promising candidate for such measure. Indeed, in two and three spacetime

dimensions the number of degrees of freedom defined this way can be proven to

monotonically decrease under RG flows.

Firstly, we define renormalized entanglement entropy (REE) and show that it is

finite in the continuum limit in a renormalizable field theory. We argue that it is most

sensitive to degrees of freedom at a scale determined by the size of the entangling

region, and interpolates between the ultraviolet and infrared RG fixed point vales.

We discuss how it can be used to count the degrees of freedom at a given scale.

Secondly, we test whether REE is monotonic along the RG flow. In two dimensions

it was known to be monotonic before our study. In higher dimensions, we study REE

in free theory examples and in the framework of holography. Holography is tailor-

made for the study of RG flows, and allows an efficient determination of entanglement

entropy. We make use of its power and flexibility to conjecture that in three spacetime

dimensions REE is monotonic, while in four dimensions it is neither monotonic nor

positive. Subsequent work has proven the conjecture.

Thirdly, we count the degrees of freedom in three-dimensional superconformal field

theories that are the infrared limit of supersymrnetric gauge theories with matter.

Supersymmetric localization reduces the computation of entanglement entropy to a

matrix integral. We solve this matrix model in the large N number of colors limit using

two different methods; in a saddle point approximation we obtain the next-to-leading

order expression in 1/N, while mapping the matrix model to a non-interacting Fermi

gas enables us to determine the result to all orders in 1/N. We match the leading

piece with N3/ 2 scaling - a strong coupling phenomenon in the field theory - with

the holographic duals of these theories.
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Establishing a measure for the number of degrees of freedom provides nonpertur-
bative understanding of RG fixed points and flows. Our hope is that the constraints
coming from RG monotonicity can be efficiently used to constrain the long-distance
physics of certain systems of interest. The first applications are only starting to
emerge.

Thesis Supervisor: Hong Liu
Title: Associate Professor
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Chapter 1

Introduction

1.1 How do strongly interacting systems behave

at long distances?

The quest to understand the basic constituents of nature and the laws determin-

ing their dynamics has been highly successful. We have a solid understanding of

phenomena occurring from the electroweak scale, 10-18 m to the Hubble distance,

1026 m. Navigating through these 44 orders of magnitude requires us to be able to

relate physics at different scales.

The renormalization group (RG) provides a framework for an effective description

of the system at the scale we are probing it. Starting from microscopic laws, we

average over short distance degrees of freedom in small steps, until we reach the scale

of interest. The task is highly non-trivial, and in practice one needs to expand in

some small parameter, or use an appropriate approximation scheme. Finding the

best way to perform RG is a creative enterprise and this versatile tool has found

its applications in practically all branches of physics, ranging from particle physics,

through astrophysics, to biological systems.

In this thesis we will have particle and condensed matter physics examples in

mind. A central challenge is to understand the dynamics of systems, governed by

simple microscopic laws, at long distances. When interactions are weak, perturbation
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theory provides a powerful tool in obtaining answers of extreme precision.1 However,

when strong interactions are involved, there can be a dramatic change in the nature of

the degrees of freedom as we vary the scale at which we probe the system. In quantum

chromodynamics (QCD) the short distance degrees of freedom are quarks and gluons.

At long distances however, these partons get bound into the zoo of hadrons, and

the properties of microscopic constituents are transformed beyond recognition. In

condensed matter physics, at short distances we have electrons and ions interacting

though the Coulomb interaction. These simple constituents give rise to a myriad

of condensed matter systems, including the fascinating example of the fractional

quantum Hall liquids, which have excitations carrying fractional electric charge.

The RG enables us to organize the theoretical description of these systems. Let

us think about the averaging procedure as a step in the infinite dimensional space of

all Hamiltonians. Then going from one scale to another corresponds to a flow in the

space of Hamiltonians. Thinking in terms of the RG flow makes it possible to identify

the following notions:

1. The RG flow goes between fixed points that are scale invariant. The fixed points

have their basin of attraction, called the universality class.

2. If we perturb a trajectory in a direction, the perturbed trajectory can either

converge back to the original one, or diverge from it. The former case is called

an irrelevant, the latter a relevant deformation. In the vicinity of a fixed point

the question of relevance is decided by the scaling dimension of the fields.

3. In Lorentz-invariant systems recent advances show that one can add a height

function to the RG picture; the RG always flows in a direction that decreases

this function. This does not mean that the RG is a gradient flow, as the flow

does not necessarily go in the steepest direction. 2

'A triumph of quantum electrodynamics is the prediction of the anomalous magnetic moment
of the electron, known to 10-9 accuracy. In the RG language the anomalous magnetic moment is a
term in the effective action of the electron at very low energies in a background magnetic field. The
calculation involves averaging over all standard model fields.

2 In d = 2 spacetime dimensions the RG is a gradient flow, but for d > 2 it is believed not to
have this property.
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These points are illustrated in Fig. 1-1.

UV CFT
UV CFT

UVFT

91

IR CFT

(a) Cartoon of the RG flow of a relativistic system in the space of coupling constants gi.
Short distance (UV) fixed points are denoted by purple, while long distance (IR) fixed points
by red dots. Scale invariance in relativistic systems is believed to enhance to conformal
invariance, hence the fixed points are conformal field theories (CFT).

C(g)

91

(b) A height function adds an extra dimension to the space of couplings, making it into a
landscape. The RG flow can only descend on this landscape.

Figure 1-1: Cartoons illustrating how we think about RG flows of relativistic systems.
Fixed points organize the space of Hamiltonians into universality classes, and a height
function provides additional structure.

The discussion of the thesis revolves around the height function, which is to be

interpreted as the number of degrees of freedom at a given scale. Its monotonicity

along the RG flow is then very plausible: a massive field would contribute to the

count at short distances, but drops out at distances large compared to its Compton

13



wavelength. The existence of a height function formalizes the intuition about the loss

of degrees of freedom along the RG flow.3 It turns out that to define the number of

degrees of freedom in a general field theory in any spacetime dimension d, we have to

use entanglement entropy. Hence, in the following we introduce entanglement entropy,

expand on what we require from the number of degrees of freedom, and combine these

two notions.

1.2 Entanglement entropy

There is a dramatic difference between classical and quantum entropy. While in

classical physics if we divide a composite system AB into two subsystems A and B,

it is always true that

Sci(AB) > max (Sji(A), Sc(B)) , (1.2.1)

this is not true in a quantum system. In particular, if AB is in a pure state, dividing

it into two parts generally produces mixed states for A and B. Then it is obvious

that (1.2.1) is violated.

Entanglement entropy is a specific subsystem entropy, when the subsystems corre-

spond to geometric regions. Let us specialize to a system governed by local dynamics

in its unique ground state, and take a geometric region V. The Hilbert space of

states factorizes into the degrees of freedom corresponding to those in the region V

and its complement V, 71 = 1- 0 'yV. We can define the reduced density matrix

corresponding to V by

Pv = Tr 0)(01 , (1.2.2)

where 0) is the vacuum state of the theory. Then the entanglement entropy of region

V, or more conveniently across the boundary surface E = OV is the entropy of this

3By the number of degrees of freedom we mean the number of fields needed to provide the
continuum description of the system. Hence, it is not the number of lattice sites for a lattice system.
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density matrix:

S _- Tr py log pV, (1.2.3)

where we assumed that the density matrix is normalized, Tr-h Pv = 1.

Quantum entanglement has been seen to play an increasingly important role in

our understanding and characterization of many-body physics (see e.g. [2,3]). Entan-

glenent entropy for spatial regions provides an important set of observables to probe

quantum correlations that go beyond the information encoded in n-point correlation

functions. It plays a major role in the characterization of topological phases of matter,

where it serves as an order parameter for the detection of non-trivial phases.

In spacetime dimensions higher than two, however, the entanglement entropy

for a spatial region is dominated by contributions from non-universal, cutoff-scale

physics [4,5]. This implies that for a region characterized by a size R, the entangle-

ment entropy is sensitive to the physics from scale R all the way down to the cutoff

scale 6, no matter how large R is. As a result the entanglement entropy is ill-defined

in the continuum limit.

The common practice is to subtract the UV divergent part by hand, a procedure

which is not unique and often ambiguous, in particular in systems with more than one

scale. Even with the UV divergent part removed, the resulting expression could still

depend sensitively on physics at scales much smaller than the size R of the entangled

region. As a result, in the limit of taking R to infinity, one often does not recover the

expected behavior of the IR fixed point (see for example the case of a free massive

scalar in Sec. 3.2).

Such a situation is clearly awkward both operationally and conceptually. We

should be able to probe and characterize quantum entanglement at a given macro-

scopic scale without worrying about physics at much shorter distance scales.

In this thesis, we show that there is a simple fix of the problem [6].' Consider

a quantum field theory on Rl d-I which is renormalizable non-perturbatively, i.e.,

4See also [7] for a discussion based on free theories.
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equipped with a well-defined UV fixed point. Suppose SM (R) is the entanglement

entropy in the vacuum across some smooth entangling surface E characterized by a

scalable size R.5 We introduce the following function

S ~ ( -)!!(R -1 - 1) (R - 3) ... (R) - (d - 2)) S()(F ) d odd
d(- ( R) (d2!-d Rd

1 (d-2)!!R (R i - 2) ... (Rd - (d - 2)) S(r)(R) d even

(1.2.4)

We will be mostly interested in the cases d = 2,3, where (1.2.4) takes the form'

dS(R)
S2(R) = R ,SR

dRS 2 (R)R dR(1.2.5)

3 (R) dR -1) S(r .

In Sec. 2.2 we show that it has the following properties:

1. It is UV finite in the continuum limit (i.e. when the short-distance cutoff is

taken to zero).

2. For a CFT it is given by an R-independent constant s .

3. For a renormalizable quantum field theory, it interpolates between the values

sUV) and sE,IR) of the UV and IR fixed points as R is increased from zero to

infinity.

4. It is most sensitive to degrees of freedom at scale R.

The differential operator in (1.2.4) plays the role of stripping S(E)(R) of short-

distance correlations. The stripping also includes finite subtractions and is R depen-

dent; it gets rid of not only the UV divergences, but also contributions from degrees

of freedom at scales much smaller than R.7

5For this definition we consider E to be a closed connected surface. For the strip case, we have
to modify our discussion. Also note that not all closed surfaces have a scalable size. In Sec. 2.2 and
Appendix 2.A we make this more precise.

6 1n d = 2, E is just two points, hence we omit the superscript.
7 S-) (R) can also be used at a finite temperature or finite density where it is again UV finite

in the continuum limit. In the small R limit, it reduces to the vacuum behavior while for large R,
we expect it to go over to the thermal entropy.
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SN(R) may be considered as the "universal part" of the original entanglement

entropy, a part which can be defined intrinsically in the continuum limit. Below

we will sometimes refer to it as the "renormalized entanglement entropy" (REE),

although this name is clearly not perfect. We believe such a construction gives a

powerful tool for understanding entanglement of a many-body system.

1.3 The number of degrees of freedom

The first step towards understanding the physics of a system is to identify its relevant

degrees of freedom, and the role they play in the dynamics. A fundamental question

is how many degrees of freedom the system has. A continuum system has an infinite

dimensional phase space, hence it is challenging to provide a finite measure for the

degrees of freedom. Because the dynamics of a quantum field theory is organized by

scale, we would like to characterize how the number of degrees of freedom changes

with scale.

The first measure that comes to mind is the number of fields needed to describe

the system. However, this cannot be correct: we know quantum field theories, that

do not admit a Lagrangian formulation, 8 and the discovery of dualities has taught

us that one system can have multiple equivalent descriptions with different number

of fields. To avoid these problems, counting degrees of freedom is ought be based

on an observable quantity. As discussed above, based on intuition from RG, this

observable should be a monotonic function of the RG scale. We also require that it

is computable with only the effective action at our disposal, i.e. it should not be UV

sensitive. Finding a quantity that satisfies the above criteria is very difficult; rather

than giving plausibility arguments for why entanglement entropy is the quantity to

base the definition on, we sketch the road paved by landmark results that led to the

current understanding.

In d = 2 Zamolodchikov solved the problem of counting degrees of freedom in a

spectacular manner [8]. Because degrees of freedom have energy and momentum it is

8 The d = 6 (2, 0) theory is an example of a consistent theories without a Lagrangian.
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reasonable to base the measure on the energy momentum tensor. Because (T,1) = 0

in the vacuum, we can use two point functions. In Euclidean signature, let us define

the following functions:

F(r2 ) = 47r2 z4 (T22(z, Z) TZ2(0, 0))

G(r2 ) = 16 r2 z%(T22(z,)T22(0, 0)) , (1.3.1)

H(r2) =64 (0,

where we introduced the complex coordinates z, Z, and used rotational invariance to

conclude that the functions only depend on r 2 = zZ. Using r as a proxy for scale we

can define the number of degrees of freedom by:

3
0(r 2 ) = 2F - G - -H . (1.3.2)

8

Using the conservation of the energy momentum tensor, &T2 + T22 = 0 we conclude

that:

dC 3
= 3-H < 0 (1.3.3)

d log r 2  4

where theinequality follows from unitarity.9 C is stationary if and only if T2, = 0,

implying that the theory is a CFT. Then C = c, the central charge of the CFT.10 For

a flow between a UV and and IR CFT (1.3.3) implies that

CUV CIR - (1.3.4)

After the problem in d = 2 had been solved, the quest for appropriate higher

dimensional generalizations began. Because - as discussed below - the central charge

c can be isolated from many different observables, it is not a priori clear which

quantity provides a good definition of the number of degrees of freedom in higher

91n the Euclidean version of the theory that we invoked here, H > 0 follows from reflection
positivity.

10We define Tab= - 6s, and c by (T,(z,. ) T,(0, 0)) = c/87r2 4
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dimensions. To illustrate how the subject developed, we provide a list of attempts

for a higher dimensional generalizations.

* Perhaps the asymptotic growth of the density of states p(E) is the most intuitive

quantity to base the definition for the number of degrees of freedom on, as it

directly involves counting states. We are interested in the finite temperature

partition function:

Z(T) J dE p(E) -E/T. (1.3.5)

In a d = 2 CFT the Cardy formula [9] determines the high temperature limit

of the partition function and hence of the free energy:

Z(T) ~ exp [ LT]

7c 12 (1.3.6)
F = -LT2

12

where L is the system size. The asymptotic growth of the density of states is

then read off:

p(E) exp [. (1.3.7)
[V 3

The coefficient of the thermal free energy, or equivalently the asymptotic growth

of the density of states was proposed to be a height function [10], but (1.3.4)

fails even for the simple example of the d = 3 critical O(N) model flowing to

the Goldstone phase with N - 1 free bosons [11, 12J.

" c is the coefficient of the energy momentum tensor two-point function, but this

coefficient is not monotonic either in d = 3 [13], or in d = 4 [14,15].

" c is also the coefficient of the trace anomaly

(T a) = - fR . (1.3.8)
247w
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Trace anomalies are present in even dimensions, but for d > 2 there are multiple

independent anomaly coefficients:

(Taa) = -2(-1)d/ 2 A Ed + Bili , (1.3.9)

where Ed is the Euler density, and 1i are Weyl invariants. Note that for d = 2

the Euler density is E 2 = R/47r, there are no Weyl invariants, and A = -c/12."

More than twenty years ago, Cardy conjectured that A obeys the analogue of

the c-theorem [16]. Only very recently was it proven for d = 4 [17,18].

" The universal logarithmic piece in the Sd free energy of an even dimensional

CFT is also related to A by

F -logZsd

dF _(1.3.11) I - Ta,) = 4 (1)d/2 A
d log R Sd

where R is the radius of the sphere. The universal logarithmic term in the Sd

free energy is equal to the negative of the universal terms in the entanglement

entropy across E = Sd-2 [19]. Hence isolating the number of degrees of freedom

for an even dimensional CFT from either of these quantities is equivalent.

" The last point suggests a generalization to odd dimensions: we should isolate

universal terms in the Sd free energy, or equivalently in the entanglement en-

tropy across E = S-2

Recent developments show that the most fruitful generalization to higher dimen-

sions is through entanglement entropy. In addition to providing a measure for the

number of degrees of freedom, a monotonic quantity imposes constraints on the space

"We normalize the Euler density so that fSd Ed = 2. In d = 4 we use the convention

(Ta) = 4 WabcdWabcd + 2a 4E4 , (1.3.10)

with Wabcd the Weyl tensor and E 4 =21 (RabcaRd - 4RabRa + R 2 ) the Euler density.
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of quantum field theories. We briefly discuss how such invaluable information can be

used in applications in Sec. 1.4.5.

1.4 Entanglement entropy and the number of de-

grees of freedom

1.4.1 Relating entanglement entropy to the number of de-

grees of freedom

In Chapter 2 we focus on the behavior of Sd(' (R) in the vacuum, studying its possible

connections to RG flows and the number of degrees of freedom along the flow. The

material presented is based on [6]. In the discussion below (1.2.4), especially item (4)

indicates that S~r) (R) can be interpreted as characterizing entanglement correlations

at scale R. Thus, in the continuum limit, as we vary R from zero to infinity, S (R)

can be interpreted as describing the RG flow of the REE from short to large dis-

tances. In contrast to the usual discussion of RG using some auxiliary mass or length

scale, here we have the flow of a physical observable with real physical distances. Its

derivative

dSE *(R)R (1.4.1)
dR

can then be interpreted as the "rate" of the flow. With the usual intuition that

RG flow leads to a loss of short-distance degrees of freedom, it is natural to won-

der whether it also leads to a loss of entanglement. In other words, could Sr (R)

also track the number of degrees of freedom of a system at scale R? which would

imply (1.4.1) should be negative, i.e. S(E)(R) should be monotonically decreasing.

For d = 2,12 a previous result of Casini and Huerta [20, 21] shows that S 2 (R)

is indeed monotonically decreasing for all Lorentz-invariant, unitary QFTs, which

provides an alternative proof of Zamolodchikov's c-theorem [8]. We present the proof

in Sec. 1.4.3.

12for which E is given by two points and there is no need to have a superscript in S2 (R).
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In higher dimensions, the shape of E also matters. We argue in Sec. 2.5 that

S sphere) (R) has the best chance to be monotonic. At a fixed point, S sphere)(R) reduces

to the previously proposed central charge in all dimensions.13 Its monotonicity would

then establish the conjectured c-theorems [16,20,21,23-25] for each d. (For notational

simplicity, from now on we will denote the corresponding quantities for a sphere simply

as S(R) and Sd(R) without the superscript.)

1.4.2 Calculating entanglement entropy and testing mono-

tinicity

In Chapter 3 we test the monotonicity of S3 (R) and S 4 (R) [6]. Entanglement entropy

is extremely hard to calculate in a general field theory. One can provide a path integral

definition of entanglement entropy through R6nyi entropies, which themselves are

important measures of entanglement properties of quantum states. They are defined

as
1

S - log Tr p' . (1.4.2)
n n - I

The entanglement entropy can be obtained from them by analytic continuation in n:

lim Sr) = S- . (1.4.3)
n-+1

The Renyi entropies can be obtained by the replica method; one has to calculate

the path integral on an n-fold cover of Rd branched over E. The analytic continua-

tion (1.4.3) is in general very hard and has only been performed in a few examples.

This situation leaves us with very few tractable examples:

* A massive free theory undergoes an RG flow from a massless free CFT to the

empty theory. The tracing over the outside degrees of freedom can be performed

explicitly, and the eigenvalues of the reduced density matrix can be obtained.

For the d = 3 free scalar we perform this analysis is Chapter 3. The analogous

13That the entanglement entropy could provide a unified definition of central charge for all di-
mensions was recognized early on in [22] and was made more specific in [20,21] including proof of a
holographic c-theorem.
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test for a free massive fermion was performed in [261. Another free theory that

undergoes an RG flow in d = 3 is the compact U(1) gauge theory; it flows from

the non-compact Maxwell theory in the UV to a non-compact massless scalar

in the IR." The dimensionful gauge coupling constant is playing the role of the

physical scale in this example. The entanglement entropy was obtained along

this RG flow in [27]."5

" As discussed above, for E = Sd-2 in a CFT one can map the problem to the

calculation of the Sd free energy. One can then use a variety of techniques

to do the calculation. In Chapter 5 we use supersymmetric localization and

matrix model techniques to calculate the entanglement entropy for K > 4

gauge theories with classical gauge groups.

" In theories with holographic duals there is a very simple approach to calculating

entanglement entropy. Holographic duality maps a large N gauge theory in the

't Hooft limit to weakly interacting string theory on a weakly curved asymptot-

ically AdSd+1 x M spacetime.16 The field theory can be thought of as living on

the boundary of AdSd+1, and the radial direction geometrizes the RG flow. The

radial direction stands for the RG scale, and different radial slices encode the

field theory degrees of freedom at different scales. In contradistinction to the

other cases, entanglement entropy is easily calculated in these theories. In the

gravitational description, we have to determine the area of the minimal surface

anchored on the entangling surface E, giving

Ami
S =4"D (1.4.4)

4GN

where GN is the d + 1-dimensional Newton's constant. We cannot resist to

emphasize the elegance of this prescription and its profound connection to the

14The d = 3 U(1) gauge theory is dual to the theory of a compact scalar, the two formulations
are related by *F = do.

i5 We note that for this example 83 - - log(g2 R) for R -+ 0, i.e. the REE diverges in the UV.
The reason for this is that in the IV we do not have a CFT.

16 The duality is believed to be exact for all N and any coupling, but we will only use it in the
limit, when the supergravity description of string theory is appropriate.
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Bekenstein-Hawking black hole entropy.

Holography is a tailor-made approach to studying the monotonicity of REE

along RG flows. The RG trajectory is encoded in the geometry, and one can

study a family of examples. We devote most of Chapter 3 to this study. We

find that S 3 (R) is monotonic in all holographic examples, however some cases

give non-monotonic S 4 (R).

1.4.3 Monotonicity from strong subadditivity

Entanglement entropy obeys powerful inequalities. Let us take two geometric regions

A and B. The strong subadditivity property of entanglement entropy states that

S(A) + S(B) > S(A U B)+ S(A n B) . (1.4.5)

In d = 2, using only Lorentz invariance, unitarity, and that S 2 (R) is finite for a

renormalizable theory one can prove the entropic version of the c-theorem [20, 21].

We present the proof here to demonstrate how powerful (1.4.5) is, and to give a flavor

of how the proof in the d = 3 case goes, which is based on the same minimal set

of ingredients, but proceeds through a more elaborate geometric construction [28].

We note that these methods cannot establish the monotonicity of REE in higher

dimensions, in accord with our findings about S 4 (R).

Let us examine the spacetime diagram in Fig. 1-2. In a Lorentz-invariant theory

the entanglement entropy is the property of the casual development1 7 of a region. If

we used time slices that were identical to the usual flat slices outside, but deviated

from them inside the light cone (drawn by blue), the entanglement entropy associated

to the inside part of the Cauchy surface would be the same, see Fig. 1-2a. Hence on

Fig. 1-2b the regions R, A U C, B U D, and A U r U D have the same entanglement

entropy. 18

17i.e. the union of the past and future light cone
18These regions have lightlike segments. A suitable limiting procedure is required to make the

proof precise.
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R

(a) In a Lorentz invariant theory entanglement entropy is the property of the casual devel-
opment; using either of the time slices in the inside region, we get the same result for the
entanglement entropy.

r

A D
B C

R

(b) The future light cone of R and the intervals we need for the proof.

Figure 1-2: Spacetime diagram for the proof of the entropic c-theorem.

As the vacuum of the theory is Lorentz-invariant, the entanglement entropy of an

interval can only depend on its invariant length. Then we can write:

2S(B) = S(B) + S(C)

= S(A U r) + S(r U D)

> S(A U r U D) + S(r)

= S(R) + S(r)

B and C have equal invariant length,

B (C) has the same casual development

as A U r (r U D), (1.4.6)

strong subadditivity (1.4.5),

A U r U D has the same casual development as R.

Using the names of the intervals to denote their invariant length, we have B = vrfR.

25



Taking r = R - c and expanding to second order in E we obtain:

0 > RS"(R) + S'(R) - dS2(R) (1-4.7)
dR

This completes the proof.

1.4.4 Behavior in the vicinity of fixed points

In Chapter 4, based on [6,29], we investigate the behavior of REE across E = Sd-2

in the vicinity of conformal fixed points in the framework of holography. For a (UV)

fixed point perturbed by a relevant operator of dimension A < d, we find that

Sd(R) = sUv) - A(A)(pR) 2 (d-A) + -- , R - 0 (1.4.8)

where p is a mass scale with the relevant (dimensional) coupling given by g = pd-A,

and A(A) is some positive constant.

Based on REE, one can introduce an "entropic function" on coupling space, by

trading the R dependence along a trajectory for the dependence on the coupling

constants. Then (1.4.8) leads to an entropic function given by

Cd(g) = siuv) - A(A)g2 f (A), A -+ oc (1.4.9)

where geff(A) = gA-Ad is the effective dimensionless coupling at scale A. Equa-

tion (1.4.9) has a simple interpretation that the leading UV behavior of the entropic

function is controlled by the two-point correlation function of the corresponding rel-

evant operator, and we would expect (1.4.9) to be valid universally. Curiousy, low

dimensional free theories defy this expectation [30-33]. It is an outstanding challange

to determine a formula valid for all field theories.

Near an IR fixed point, we find that the large R behavior of S(R) has the form

Sd(R) = sf(+ B ()
d (jiR)2(,&-d)
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S + S3 + odd d
+ -92R LUR)3 , t->00 (1.4.10)

+ +---R)4--- even d

where A > d is the dimension of the leading irrelevant operator, A is a mass scale

characterizing the irrelevant perturbation, and B(A) is a constant. The first line,

similar to (4.1.4), has a natural interpretation in terms of conformal perturbations of

the IR fixed point. The coefficient B(A) is expected to depend only on physics of the

IR fixed point. In terms of irrelevant coupling g = dA corresponding to the leading

irrelevant operator, equation (4.1.8) leads to

C(A) =s +- B(A)-2g f(A) +-

sij I - d (A)+ --- odd dJ (,o A -+0 , (1.4.11)

s 2J d(A) + even d

where .eff (A) = jAAd is the effective dimensionless coupling at scale A. It is amusing

that the "analytic" contributions in 1/R in (1.4.10) lead to non-analytic dependence

on the coupling while non-analytic contributions in 1/R lead to analytic dependence

on the coupling. Note the first line dominates for

d + 1 odd d
A < 2 (1.4.12)

d + 1 even d

i.e. if the leading irrelevant operator is not too irrelevant. Note in this range B(A) >

0. The second line of (1.4.10)-(1.4.11) can be expected from a geometric expansion.

As discussed in Chapter 2 the contributions of any degrees of freedom at some lengths

scale f < R should be packaged into terms that come with integer powers of R. Thus

the coefficients ,3,, are expected to depend on the RG trajectory from the cutoff scale

6 to R.1 9

' 9Since here we consider the R -> oo limit s, should thus depend on the full RG trajectory from
6 to CO.
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1.4.5 Applications

For a strongly interacting systems obtaining the effective long distance description in

general involves guesswork. We base our considerations on symmetry, various expan-

sions, and approximation schemes. Non-perturbative results are a valuable aid in the

quest of obtaining the correct description. The established monotonicity property of

REE in d = 2, 3 together with the a-theorem in d = 4 gives us such a tool. We do

not discuss in detail how one can apply these abstract results to concrete physical

systems, we only mention the most recent application of entanglement monotonicity

to the question of confinement in d = 3 gauge theories. For example, we can conclude

that QED with N1 > 12 fermion flavors has to deconfine [34,35], and detailed analysis

of the dynamics reveals that N = 12 is indeed the smallest number of fermions that

deconfines the theory [35].

In Chapter 5, based on [36], we discuss another application: calculating entan-

glement entropy in M2-brane theories enables us to count the number of degrees of

freedom in these supersymmetric CFTs. Applying the holographic correspondence

to the worldvolume theory of N M2-branes, we obtain that in the large N limit the

number of degrees of freedom scales as N3 /2 . It was a longstanding challenge to repro-

duce this result from field theory considerations. The number of degrees of freedom in

vector like theories scales as N, while for matrix large N theories as N 2 . The peculiar

N 3/ 2 behavior hence cannot be reproduced by either of these, and is a strong coupling

phenomenon. Recent advances in supersymmetric field theories allow us to determine

the S 3 free energy [37], which as discussed above is equal to the entanglement entropy

across S'.

1.5 Plan of the thesis

Above we introduced the main thread of the thesis. We aimed at presenting the main

ideas, and glossed over many important details. In this section we list the topics

discussed in the following chapters of the thesis.

In Chapter 2 we introduce the REE and elucidate its properties. The chapter is
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based on [6]. Firstly, we argue for the divergence structure of entanglement entropy.

Secondly, we show that REE, which is obtained from entanglement entropy by acting

with the differential operator (1.2.4), is well-defined in the continuum limit. Thirdly,

we show how it interpolates between UV and IR fixed points, and speculate about

its relation to the number of degrees of freedom at a given scale. Our main focus is

the vacuum state of quantum field theories, but having defined a cutoff insensitive

quantity, we can use scaling arguments to learn about its behavior in systems at finite

temperature and chemical potential. We also obtain REE, and hence entanglement

entropy, for systems with a Fermi surface including non-Fermi liquids.

In Chapter 3 we explore the monotonicity properties of REE through examples.

The chapter is based on [6]. We analyze free field theories, and theories with a grav-

itational dual. For the latter category we develop effective calculational techniques

that determine REE in terms of asymptotic data of the minimal surface. For closely

separated fixed points we prove that REE decreases along the RG flow. We study a

variety of examples numerically and conclude with a conjecture: S3 decreases under

RG flow.20 However, we find that S4 is neither monotonic, nor positive in general.

We also observe "phase transitions" in REE, which could encode information about

the reorganization of the degrees of freedom at a scale.

In Chapter 4 we study the behavior of REE near fixed points in the framework of

holography. The chapter is based on [6,29]. We discuss how REE can be translated

into an entropic function on coupling space. We concentrate on spherical entangling

regions. The case of UV fixed points is treated in perturbation theory in a straight-

forward way. The study of IR behavior is considerably more difficult; we use separate

expansions in the UV and IR regions of the geometry, and match them in an inter-

mediate matching region. We provide an exhaustive list of possible IR behaviors, and

determine the first few terms in the long distance expansion of REE. The techniques

developed are powerful enough to discuss entanglement entropy of arbitrary shapes

in a thermal state; we show that the leading piece in the long distance expansion is

always equal to the thermal entropy.

20The conjecture was subsequently proven in [28], as discussed above.
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In Chapter 5 we calculate the entanglement entropy of d = 3 AK .> 4 super-

symmetric CFTs, the IR limits of gauge theories with U(N), O(N), and USp(2N)

gauge groups and matter hypermultiplets in the fundamental and two-index tensor

representations. The chapter is based on [36]. We present the brane construction,

the Coulomb branch of moduli space, and the gravity dual of these theories. Super-

symmetric localization reduces the computation of REE to a matrix model that we

solve in the large N limit using two different methods. The first method is a saddle

point approximation first introduced in [38], which we extend to next-to-leading or-

der in 1/N. The second method generalizes the Fermi gas approach of [1] to theories

with symplectic and orthogonal gauge groups, and yields an expression for the REE

valid to all orders in 1/N. In developing the second method, we use a non-trivial

generalization of the Cauchy determinant formula.
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Chapter 2

A refinement of entanglement

entropy and the number of degrees

of freedom

2.1 Introduction

In this chapter, we introduce a "renormalized entanglement entropy" which is in-

trinsically UV finite and is most sensitive to the degrees of freedom at the scale of

the size R of the entangled region. We illustrated the power of this construction by

showing that the qualitative behavior of the entanglement entropy for a non-Fermi

liquid can be obtained by simple dimensional analysis. We argue that the functional

dependence of the "renormalized entanglement entropy" on R can be interpreted as

describing the renormalization group flow of the entanglement entropy with distance

scale. The corresponding quantity for a spherical region in the vacuum, has some

particularly interesting properties. For a conformal field theory, it reduces to the

previously proposed central charge in all dimensions, and for a general quantum field

theory, it interpolates between the central charges of the UV and IR fixed points as

R is varied from zero to infinity.
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2.2 A refinement of entanglement entropy

In our discussion below we will assume that the system under consideration is equipped

with a bare short-distance cutoff 60, which is much smaller than all other physical

scales of the system. The continuum limit is obtained by taking J0 -+ 0 while keeping

other scales fixed. The entanglement entropy for a spatial region is not a well-defined

observable in the continuum limit as it diverges in the 60 -+ 0 limit. The common

practice is to subtract the UV divergent part by hand, a procedure which is often

ambiguous. The goal of this section is to introduce a refinement of the entanglement

entropy which is not only UV finite, but also is most sensitive to the entanglement

correlations at the scale of the size of the entangled region.

2.2.1 Structure of divergences in entanglement entropy

In this subsection we consider the structure of divergent terms in the entanglement

entropy. We assume that the theory lives in flat R'd-l and is rotationally invari-

ant. The discussion below is motivated from that in [39] which considers the general

structure of local contributions to entanglement entropy in a gapped phase.1 We

will mostly consider the vacuum state and will comment on the thermal (and finite

chemical) state at the end.

Let us denote the divergent part of the entanglement entropy for a region enclosed

by a surface E as SP. Then SP should only depend on local physics at the cutoffdiv ~ div

scale near the entangling surface. For a smooth E, one then expects that SP should

be expressible in terms of local geometric invariants of E, i.e.

S = j d-2-vf /F(Kabhab) , (2.2.1)

where o- denotes coordinates on E, F is a sum of all possible local geometric invariants

formed from the induced metric hab and extrinsic curvature Kab of E. Note that here

we are considering a surface embedded in flat space, all intrinsic curvatures and their

'We thank Tarun Grover for discussions.
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derivatives can be expressed in terms of Kab and its tangential derivatives, thus all

geometric invariants can be expressed in terms of the extrinsic curvature and its

tangential derivatives. The proposal (2.2.1) is natural as SP, should not depend on

the spacetime geometry away from the surface nor how we parametrize the surface.

Thus when the geometry is smooth, the right hand side is the only thing one could get

after integrating out the short-distance degrees of freedom. In particular, the normal

derivatives of Kab cannot appear as they depend on how we extend E into a family

of surfaces, so is not, intrinsically defined for the surface itself.

Here we are considering a pure spatial entangled region in a flat spacetime, for

which the extrinsic curvature in the time direction is identically zero. Thus in (2.2.1)

we only have Kab for the spatial normal direction. In more general situations, say

if the region is not on a spatial hypersurface or in a more general spacetime, then

E should be considered as a co-dimensional two surface in the full spacetime and

in (2.2.1) we will have Kib with a running over two normal directions.

Given (2.2.1), now an important point is that in the vacuum (or any pure state),

S- = S (2.2.2)

where S5 denotes the entanglement entropy for the region outside E, and in partic-

ular

S s . (2.2.3)

Recall that Kab is defined as the normal derivative of the induced metric and is

odd under changing the orientation of E, i.e., in S L it enters with an opposite

sign. Thus (2.2.1) and (2.2.3) imply that F should be an even function of Kab. In

a Lorentz invariant theory, there is also an alternative argument 2 which does not

use (2.2.2) or (2.2.3). Consider a more general situation with both K'b as mentioned

above. The a index has to be contracted which implies that F must be even in Ka.

Then for a purely spatial surface we can just set the time component of Kib to zero,

and F is still even for the remaining Kab.

2 We thank R. Myers for pointing this out to us.
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As a result one can show that for a smooth and scalable surface E of size R, the

divergent terms can only contain the following dependence on R

S = a1R-2 + a2 Rd-4 + - . (2.2.4)

See Appendix 2.A for a precise definition of scalable surfaces. Heuristically speaking,

these are surfaces whose shape does not change with their size R, i.e. they are specified

by a single dimensional parameter R plus possible other dimensionless parameters

describing the shape. For such a surface, one can readily show that various quantities

scale with R as (see Appendix 2.A for more details)

hab ~ R2 , Kab~ R, Da ~ R0  (2.2.5)

where Da denotes covariant derivative on the surface. As a result, any fully contracted

quantity which is even in K, such as F in (2.2.1), can only give rise to terms propor-

tional to R-2n with n a non-negative integer, which then leads to (2.2.4). Below we

restrict our discussion to scalable surfaces.

Now let us consider a scale invariant theory in the vacuum. On dimensional

ground, the only other scale can appear in (2.2.4) is the short-distance cutoff 60. We

should then have
1 1

ai ~d-2 a2  4, (2.2.6)
0 0

and so on. For odd d, the O(RO) term is not among those in (2.2.4) and thus should

be finite. For even d, there can be a log 6o term at the order O(R) and should come

with log A in order to have to the right dimension. We thus conclude that for a scale

invariant theory, the entanglement entropy across a scalable surface E in the vacuum

should have the form

R d-2RS(E)= +- -- + +() s + +--- odd d1 - 2 = d (2.2.7)
-- + R+2  () log R +const+ +-- ± vendadf simp- T d6 0 dev d

where for notational simplicity we have suppressed the coefficients of non-universal
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terms. It is important to emphasize that S does not contain any divergent terms

with negative powers of R in the limit 6o -± 0. The form (2.2.7) was first predicted

from holographic calculations in [22] for CFTs with a gravity dual. sd is an R-

independent constant which gives the universal part of the entanglement entropy.

The sign factors before s( in (2.2.7) are chosen for later convenience. As indicated

by the superscript, s in general depends on the shape of the surface.

For a general QFT, there could be other mass scales, which we will denote collec-

tively as p. Now the coefficients ai in (2.2.4) can also depend on p, e.g., we can write

a, as

a, = - (pOo) (2.2.8)

and similarly for other coefficients. Note that by definition of 60, we always have

p 6o < 1 and h, can be expanded in a power series of p 6o. Now for a renormalizable

theory, the dependence on IL must come with a non-negative power, as when taking

po -- 0, a, should not be singular and should recover the behavior of the UV fixed

point. In other words, for a renormalizable theory, the scale(s) p arises from some

relevant operator at the UV fixed point, which implies that p 6o should always come

with a non-negative power in the limit p6o -+ 0. This implies that the UV divergences

of ai should be no worse than those in (2.2.6). In particular, there cannot be divergent

terms with negative powers of R for even d, and for odd d the divergence should stop

at order O(R). These expectations will be confirmed by our study of holographic

systems in Sec. 3.3.4 and 3.3.5 (see e.g. (3.3.41)), where we will find that hi(P6o) has

the expansion hi(p0) = cO + c2 (po)2 a + c3(to&)3 o + ... , where a = d - A with A

the UV dimension of the leading relevant perturbation at the UV fixed point.

So far we have been considering the vacuum. The discussion of the structure

of divergences should work also for systems at finite temperature or finite chemical

potential. In such a mixed state, while (2.2.2) no longer holds, equation (2.2.3)

should still apply as the short-distance physics should be insensitive to the presence

of temperature or chemical potential. Also recall that for a Lorentz invariant system,

there is an alternative argument for (2.2.4) which does not use (2.2.3).
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2.2.2 Properties of S07)(R)

Given the structure of divergent terms in S (R) discussed in the previous subsection,

one can then readily check that when acting on S (R) with the differential operator

in (1.2.4), all the UV divergent terms disappear and the resulting S( (R) is finite in

the continuum limit 60 - 0. In fact, what the differential operator does is to eliminate

any term (including finite ones) in S (R) which has the same R-dependence as the

terms in (2.2.4). We believe, for the purpose of extracting long range correlations, it

is sensible to also eliminate possible finite terms with the same R-dependence, as they

are "contaminated" by short-distance correlations. In particular, in the continuum

limit this makes S(F(R) invariant under any redefinitions of the UV cutoff 60 which

do not involve R.3 With a finite o, S(E) (R) does depend on 60, but only very weakly,

through inverses powers of LO. This will be important in our discussion below.

In the rest of this section we show that the resulting S( (R) is not only UV finite,

but also have various desirable features. In this subsection we discuss its behavior

in the vacuum, while in Sec. 2.2.3 discuss its properties at a finite temperature and

chemical potential.

For a scale invariant theory, from (2.2.7) we find that for all d

S () = Es (2.2.9)

is R-independent. The sign factors in (2.2.7) were chosen so that there is no sign

factor in (2.2.9). Note that if we make a cutoff redefinition of the form JO ->

60 (1 + c1it6o + c2(bt6o) 2 + -.) where p is some mass scale, for odd d the UV finite

term in (2.2.7) is modified. But S(E)(R), and sr as defined from (2.2.9), is indepen-

dent of this redefinition.

Let us now look at properties of S((R) for a general renormalizable QFT (i.e.

with a well-defined UV fixed point). Below we will find it convenient to introduce a

floating cutoff 6, which we can adjust depending on scales of interests. At the new

3Since R is the scale at which we probe the system, reparameterizations of the short-distance
cutoff should not involve R.

36



cutoff 6, the system is described by the Wilsonian effective action Ieff(J; 6o), which

is obtained by integrating out degrees of freedom from the bare cutoff o to 6. The

entanglement entropy SM (R; 6O, 6) calculated from Ieff (J; Jo) with cutoff 6 should be

independent of choice of 6. So should the resulting S((R). Below we will consider

the continuum limit, i.e. with bare cutoff JO -4 0.

First consider the small R limit, i.e. R is much smaller than any other length

scale of the system. Clearly as R -* 0, these other scales should not affect SP)(R),

which should be given by its expression at the UV fixed point. Accordingly, S( (R)

also reduces to that of the UV fixed point, i.e.

S (R) -+ ,UV) R - 0. (2.2.10)

As we will see in Sec. 4.1.1, studies of holographic systems (with E given by a sphere)

predict that the leading small R correction to (2.2.10) is given by

Sd(R) = s V- 0 ((t)IR ) R -+ 0 (2.2.11)

where a = d - A with A < d the UV dimension of the leading relevant scalar pertur-

bation. Equation (2.2.11) has a simple interpretation that the leading contribution

from a relevant operator comes at two-point level. We believe it can be derived in

general, but will not pursue it here.

The story is more tricky in the large R limit, as all degrees of freedom at scales

between the bare UV cutoff O and R could contribute to the entanglement entropy

S (f) in this regime. Nevertheless, one can argue that

S ()(R) -+ , s'IR) R- o(..2

as follows. When R becomes much larger than all other length scales of the system,

we can choose a floating cutoff 6 to be also much larger than all length scales of the
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system while still much smaller than R, i.e.

1 1
- -, -- < 6 < R (2.2.13)

where pi, i = 1, 2, - - - denote possible mass parameters of the system. Now the

physics between 6 and R is controlled by the IR fixed point, i.e. we should be able

to write SM)(R) again as (2.2.7), but with 6o replaced by 6, and s by s(EI). Then

equation (2.2.12) immediately follows. In other words, while in terms of the bare

cutoff 6o, the entanglement entropy S(r)(R) = S(r)(60 , R, l, [ 2 , - - - ) could be very

complicated in the large R regime, involving many different scales, there must exist a

redefinition of short-distance cutoff 6IR = 6IR(6, [l, [2,-), in terms of which S(r)(R)

reduces to the standard form (2.2.7) with 6 replaced by 61R, and s7 by s,IR). In fact,

higher order terms in (2.2.7) with negative powers of R also imply that generically

we should expect the leading large R corrections to (2.2.12) to have the form

Sd(R) = slEIR) OQj) odd d , R - oc . (2.2.14)

O() even d

This expectation is supported by theories of free massive scalar and Dirac fields as we

will see in Sec. 3.2, and by holographic systems as we will see in Sec. 4.1.1. Holographic

systems also predict an exception to (2.2.14) which happens when the flow away from

the IR fixed point toward UV is generated by an irrelevant operator with IR dimension

AIR sufficiently close to d, for which we have instead (see Sec. 4.1.1)4

d5<1 oddd
( EIR) ( ) , for 2, R -+ oo , (2.2.15)

d2 <1 evend

where 6 = AIR - d.

By adjusting the floating cutoff 6, one can also argue that S(F')(R) should be

4The expression below is derived in Sec. 4.1.1 for E given by a sphere and closely separated
UV/IR fixed points. We believe the result should be more general, applicable to generic systems
and smooth E, but will not pursue a general proof here.
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most sensitive to contributions from degrees of freedom around R. Consider e.g. a

length scale Li which is much smaller than R. In computing S )(R), we can choose

a floating short-distance cutoff 6 which satisfies

L, < 6 < R . (2.2.16)

As discussed at the beginning of this subsection, by design S5': (R) is insensitive to

short-distance cutoff 6 when 6 < R.5 We thus conclude that S()(R) should be

insensitive to contributions of from d.o.f around L 1 .

While our above discussion around and after (2.2.12) assumes a conformal IR

fixed point, the discussion also applies to when the IR fixed point is a gapped phase,

where there are some differences depending on the spacetime dimension. For odd d,

using d = 3 as an illustration, the entanglement entropy for a smooth surface E in a

gapped phase has the form (see e.g. also [39])

Sf (R) = R - 7 + O(R-1 ) (2.2.17)

where 7 is the topological entanglement entropy [40,41] . We then have

S3 (R) -+y, R -+ 00 . (2.2.18)

In gapped phases without topological order, -y = 0. Thus a nonzero S (R -+ oc)

signals the system has long range entanglement, i.e. the system is either gapless

or topological-ordered in the IR. The two cases can be distinguished in that for

a topological ordered phase y should be shape-independent, but in a gapless case,

("I) in (2.2.10) is shape-dependent.

For even d, in a gapped phase we expect that S(E) (R) does not have a term

5 0f course ultimately as mentioned earlier S(E) (R) should be independent of choice 6, when one
includes all possible dependence on 6 including those in coupling constants. Here we are emphasizing
that even explicit dependence on 6 should be suppressed by negative powers of j.R
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proportional to log R for large R, and thus we should have

s2 (R) - 0, R - oo, n=1,2, - . (2.2.19)

Nevertheless, it has been argued in [39] that the size-independent part of the entan-

glement entropy contains topological entanglement entropy. Such a topological term

could not be captured by S(Y-)(R), as all terms in (1.2.4) contain derivatives with

respect to R for even d. This is not surprising, as in even d, the R-independent part

of the entanglement entropy also contains a finite non-universal local part, as is clear

from the discussion around (2.2.4). Thus it is not possible to separate the topological

from the non-universal contribution using a single connected entangling surface, and

one has to resort to constructions like those in [40, 41] to consider combination of

certain regions in such a way that the local part cancels while the topological part

remains [39].

2.2.3 Finite temperature and chemical potential

As discussed at the end of Sec. 2.2.1, we expect S5'3(R) should also be UV finite in

the continuum limit at a finite temperature or chemical potential. Here we briefly

discuss its properties, and for simplicity will restrict to a scale invariant theory.6

For a scale invariant system at a finite temperature T, since there is no other scale

in the system, SP7') (R, T) must have a scaling form, i.e.

S - S (E(RT) . (2.2.20)

In particular, in the high temperature limit, i.e. RT > 1 it must be dominated by

thermal entropy at leading order, while in the low temperature limit RT -4 0, it

should reduce to s(E). For a scale invariant theory, the thermal entropy has the form

Sjh = dT 1 Vy- (TR)d- 1 , where Vr is volume of the spatial region enclosed by E

6 See also [42] regarding scaling behavior of the entanglement entropy at finite T. In ref. [42]
considered the entanglement entropy itself with UV part subtracted manually.
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and Ni is some constant. Thus we should have

sTh odd d
SM (RT) { s , RT -+ oo. (2.2.21)

(d-1)!! STh even d(d- 2)!! d ee

More explicitly, for d = 3 we expect when RT >> 1,

S (RT) =rdT2 + ± + -- (2.2.22)

where the first term is simply the thermal entropy, - denotes terms with negative

powers of RT. The second term cd is a constant. It would be interesting to compute

this constant for some explicitly examples to see whether some physical interpretation

(or significance) can be attached to it.

Similarly, with a nonzero chemical potential it, as a generalization of (2.2.20) we

expect that

Sd (R,,,T) =S> Ii, RT) . (2.2.23)

2.3 Entanglement entropy of a (non)-Fermi liquid

In this section we show that the entanglement entropy of a (non)-Fermi liquids can

be obtained by simple dimensional analysis.7 Consider a d-dimensional system of a

finite fermions density whose ground state is described by a Fermi surface of radius

kF. We have in mind a Fermi liquid, or a non-Fermi liquid described by the Fermi

surface coupled to some gapless bosons (as e.g. in [47]). In either case, the low energy

dynamics of the system involves fermionic excitations locally in momentum space near

the Fermi surface, and different patches of the Fermi surface whose velocities are not

parallel or anti-parallel to each other essentially decouple. In particular, kF drops out

of the low energy effective action. In this picture the number of independent degrees

of freedom is proportional to the area of the Fermi surface AFS Oc kF 2 , which can be

7 See also a recent discussion in [42] based on finite temperature scaling and crossover. See

also [43-46] for recent discussion of logarithmic enhancement of holographic "non-Fermi liquids."
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considered as the "volume" of the available phase space. We thus expect in the large

R limit, the "renormalized entanglement entropy" S((R) should be proportional to

the area of the Fermi surface AFS. Since there is no other scale in the system than

R, S(E)(R) should then have the form

d k 2 Rd 2  AFSAE, R -+ oo . (2.3.1)

where AE denotes the area of the entangling surface E. In other words, our "renor-

malized entanglement entropy" should satisfy an "area law." Using (1.2.4) one can

readily see that the area law (2.3.1) translates into the well-known area law violating

behavior in the original entanglement entropy [48,49] (see also [50])

S'3 (R) oc k - 2 Rd~2 log(kFR) + - oc AFSAy log(AFSAy,) + - , (2-3.2)

where kF in the logarithm is added on dimensional ground and ... denotes other

non-universal parts. We note that this result does not depend on whether the Fermi

surface has quasi-particles or not, i.e. whether it is a Fermi or non-Fermi liquid, only

depends on the expectation that S(E)(R) is proportional to the area of the Fermi

surface.

This analysis can also be immediately generalized to predict the qualitative be-

havior of the entanglement entropy of higher co-dimensional Fermi surfaces. For a

co-dimensional n Fermi surface we should have8

S(E)(R) oc (k g)d-nSd(R c(FR~d (2.3.3)

which implies that in the entanglement entropy itself9

S(E (R) oc (kFR)d-n log(kFR) n even (2.3.4)
(kFR)d-n n odd

8We define the co-dimension with respect to the full spacetime dimension d.
9These results were also obtained by B. Swingle (unpublished).
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Thus we find that there is a log R factor only for even co-dimensional Fermi surfaces.

These results are again independent of whether there are quasi-particles. Note that

for a Fermi point where n = d, equation (2.3.4) in consistent with one's expectation

that for massless fermions there is a universal log R term only for even d. For general

n, at least for free fermions, the alternating behavior of logarithmic enhancement

in (2.3.4) may also be understood (by generalizing an argument of [50]) as follows:

at each point of a co-dimensional n Fermi surface, there is an n-dimensional free

fermion CFT. The log R appearance in (2.3.4) is then consistent with the fact that

for an n-dimensional CFT, there is a universal log R piece only for n even.

It would be interesting to see whether our discussion may also be used to under-

stand the logarithmic enhancement in the entanglement entropy of the critical spin

liquids in [51] which are described by a projected Fermi sea state.

2.4 Renormalized R6nyi entropies

The discussions of Sec. 2.2--Sec. 2.3 for the entanglement entropy can be applied

almost without any change to R6nyi entropies. The main results include:

1. The divergent pieces of SnE) should be expressible in terms of the local geometric

invariants as in (2.2.1).

2. For a pure state, equations (2.2.2)-(2.2.3) apply to R'nyi entropies. As a re-

sult the renormalized Renyi entropies S(, obtained by acting the differential

operators in (1.2.4) to S , are UV finite.

3. For a CFT, the R6nyi entropies S have the same structure as (2.2.7), i.e.

[I= 2+---+ j+(-1) s8+) + odd d
S (R)

n Rd- R 2  
52)S'1

- + + s( log + const + A +- even d

(2.4.1)

with

SQ (R) =Es = const . (2.4.2)
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4. For a general (renormalizable) QFT S(])(R) interpolate between the values of

the UV and IR fixed point

s(" v R 0
S ()(R) { ' , (2.4.3)

Sn I) R -oo

and are most sensitive to the degrees of freedom at the scale R.

5. For a scale invariant theory at finite temperature and chemical potential, S(1

should take the scaling form

S() (R, it, T) = Srl , RT .(2.4.4)

Unlike for entanglement entropy we do not expect a simple relation with the

thermal entropy in the high temperature limit.

6. All R6nyi entropies contain logarithmic violations of the area law for a (non)-

Fermi liquid

S, )(R) oc AFSA, log(AFSA ) ± .+ (2.4.5)

This generalizes a previous result for the free Fermi gas [52].

The key difference between entanglement entropy and the Renyi entropies is that

strong subadditivity does not hold for the latter. In the following sections we discuss

how entanglement entropy is related to the number of degrees of freedom. These

relations do not appear to have obvious generalization to Renyi entropies.

2.5 Entanglement entropy as measure of number

of degrees of freedom

For the rest of this chapter we will restrict our discussion to the renormalized entan-

glement entropy in the vacuum. In Sec. 2.2 we showed that in the vacuum Sf') (R)

introduced in (1.2.4) has various desirable features:
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1. It has a well-defined continuum limit.

2. For a CFT, it is independent of R and given by the universal part of the entan-

glement entropy (2.2.7)

Sd (R) =sj . (2.5.1)

3. For a renormalizable quantum field theory, it interpolates between the values of

UV and IR fixed points as R is increased from zero to infinity.

[(EUV) R 0
SP (R) -+ . (2.5.2)

S(,IR)

It should be understood that in (2.5.2) if the IR fixed point is described by a

gapped phase, then sIR) is either given by the topological entanglement entropy

(for odd d) or zero (for even d).

4. It is most sensitive to degrees of freedom at scale R.

Thus Sr (R) provides a set of observables which can be used to directly probe and

characterize quantum entanglement at a given scale R. As discussed in the Introduc-

tion, these properties also imply that we may interpret the dependence on R as a RG

flow. A natural question which then arises is whether S (R) could also provide a

scale-dependent measure of the number of degrees of freedom of a system. Given the

physical intuition that RG leads to a loss of degrees of freedom, a necessary condition

for this interpretation is then

dS) (fR)
R d < 0 (2.5.3)

dR

which in turn requires (given (2.5.2))

(s"uv) (,'IR) (2.5.4)

Note that (2.5.4) alone is enough to establish Sd as a measure of the number of

degrees of freedom for CFTs, while establishing S(ft(R) as a measure of degrees of
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freedom for general QFTs requires a much stronger condition (2.5.3).

For d = 2, the entangled region becomes an interval (there is no shape difference)

and equation (1.2.4) reduces tol0

S 2(R) = R dS (2.5.5)
dR

which for a CFT then gives [53-55]

c
S2 = - (2.5.6)

3

where c is the central charge. In this case, Zamolodchikov's c-theorem [8] ensures (2.5.4)

and there exists a beautiful proof by Casini and Huerta [56,57] showing that S 2 (R) is

indeed monotonically decreasing for all Lorentz-invariant, unitary QFTs. Note that

while there already exist an infinite number of c-functions [14] including Zamolod-

chikov's original one, S 2 (R) has some special appeal, given that it also characterizes

the entanglement of a system. We would like to propose that it gives a "preferred"

c-function which best characterizes the number of d.o.f. of a system at scale R.

In higher dimensions, the shape of E also matters. Could (2.5.3) and (2.5.4)

apply to generic or only certain shapes? For this purpose, consider first the weaker

condition (2.5.4).

For even d > 4, since s appears as the coefficient of the divergent term log o

in (2.2.7), it can be expressed in terms of integrals of the geometric invariants asso-

ciated with E (recall (2.2.1)), and in particular related to trace anomaly [22,58]. For

example, for d = 4 [22,58]

(Y-1) 2/ d f 1h 257
s = 2a 4  d2vh E 2 + c4  d2 o/I 2  (2.5.7)

1OThe function (2.5.5) has also been discussed e.g. in [7, 32] as the universal part of the entan-
glement entropy in d = 2.
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where a 4 and c 4 are coefficients of the trace anomaly and (below K = Kabh6)

E 2  = -- R = I (K 2 - KabKab) (2.5.8)
4 r 47r

2 = -K2 - KabKab . (2.5.9)

In (2.5.8) R is the intrinsic curvature on E and in the second equality of (2.5.8) we

have used the Gauss-Codacci relation in flat space. E 2 is the Euler density for d = 2

and J d2o'vihE 2 is a topological invariant with value 2 for a surface with spherical

topology. 12 is a Weyl invariant and is zero for a sphere. For a sphere we then have

(sphere) = 4a 4  (2.5.10)

while for other shapes, sY will be a linear combination of a4 and c4. More than twenty

years ago, Cardy conjectured that [16] a 4 and its higher dimensional generalizations

obey the analogue of c-theorem. Only very recently was it proven for d = 4 [17,18].

In addition, there are strong indications any combination of a 4 and c4 (including c4 )

will not satisfy such a condition citeKomargodski:2011.vj,Komargodski:2011xv. Thus

for d = 4 only for E = sphere could the condition (2.5.4) be satisfied. For higher even

dimensions the situation is less clear, but one again has [19-22]"

s(sphere) = 4 ad . (2.5.11)

dd

For odd d, s0-1 does not arise from local terms in (2.2.7), thus we do not expect

that it can be expressed in terms of local geometric invariants on E. This is in contrast

to the local shape dependence in the even dimensional case. It would be interesting

to understand how s(r depends on the shape of the entangling surface. It was found

in [19] that for a sphere

(sphere) (log Z)finite (2.5.12)

"In addition, the structure of (2.5.7) persists in higher even dimensions except that there are
more Weyl invariants [20, 21,59].
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where (log Z)finite is the finite part of the Euclidean partition for the CFT on Sd.

Some support has been found that ssphere) (equivalently (log Z)fite) satisfies the

condition (2.5.4) [20,21,23-25].

To summarize, for E given by a sphere, there are (strong) indications that s(sphere)

could satisfy (2.5.4) and thus provide a measure of the number of degrees of freedom

for CFTs in all dimension (including both odd and even) [19-21]. Below we will

simply call s(sphere) the central charge of a CFT. For d f 4, other shapes could still

provide a similar measure, which will be left for future investigation. For the rest

of the chapter we study the stronger condition (2.5.3) for E = sphere in d = 3 and

d = 4. For notational simplicity, we will drop the superscript "sphere" in various

quantities and denote them simply as S(R), Sd(R) and sd.

2.A Induced metric and extrinsic curvature for a

scalable hypersurface

Denote the spherical coordinates in R' as (r, 0a) where 0a, a = 1, ... n - 1 denote all

the angular variables. Then a scalable hypersurface E can be specified as

r = Rf(Oa) , (2.A.1)

where f(Oa) is a smooth function of the angular variables only and R denotes the

size. Clearly as we change R, the shape of the surface which is specified by f does

not change. Plugging (2.A.1) into the metric for R" we find that the full flat space

metric for Rn can be written as

ds 2 = (fdfR + Rdf )2 ± R2 f 2dQ 2 = f 2 dR 2 + 2RdRf df + ds2, (2.A.2)

where dQ 2 is the standard metric on a unit sphere and ds2 is the induced metric on

ds = R2 ( 2d 2 + (df) 2) = habd~ad. (2.A.3)
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Note that since R 2 appears in hab as an overall prefactor, the Christoffel symbol F

built from hab is clearly independent of R, and thus the intrinsic covariant derivative

Da = 0O. + F on E is independent of R. From (2.A.2) one can also read that the

standard lapse function N is independent of R, while the shift vector Na Oc R. Thus

the extrinsic curvature Kab which can be written as

1
Kab = -N- 1 (ORhab - DaNb - DbNa) oc R . (2.A.4)

2

Thus we have established (2.2.5). Since in F of (2.2.1) all indices have to contracted

and there are an even number of Kab, thus F can only depend on R through R-2 n

for n some non-negative integer. This then establishes (2.2.4). Note that n = 2 is a

bit special as in this case, both the curvature K and h have only a single component,

but the same conclusion applies.

For illustration, let us also give an example of a surface which is not scalable.

Consider in R2 a curve specified by

4

F2 + = R 2  (2.A.5)
b2

whose shape clearly changes with R. For this curve there is an additional dimensional

parameter b, and our previous discussion does not apply.

1 2For theories breaking parity it is possible to have terms with different powers from those in-

dicated in (2.2.4) [39], but they have negative powers of R. From our discussion in the main text,

they will not give rise to divergent terms.
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Chapter 3

Monotonicity of renormalized

entanglement entropy

3.1 Introduction

In this chapter we explore the properties of the renormalized entanglement entropies

(REE) S 3 and S4.1 We test whether the REE satisfies the properties required from

a measure of the number of degrees of freedom. We start by the study of REE in

free theories, where the RG flow is between a UV massless fixed point and the empty

theory in the IR. We then move on to field theories with holographic duals. After

setting up the machinery, we perform a detailed study of a variety of RG flows.

These examples allow us to conjecture that in three dimensions REE is always

non-negative and monotonic, and provides a measure of the number of degrees of

freedom of a system at scale R. In four dimensions, however, we find examples in

which it is neither monotonic nor non-negative.

3.2 Free massive scalar and Dirac fermions in d = 3

In this section we consider S 3 (R) for a free massive scalar and Dirac field. For a

free massive field, we expect that S3 (R) should approach that for a massless field as

'In Sec. 1.4.3 we have already showed that S 2 is monotonic in any quantum field theory.
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R -+ 0, and 0 as R -+ oc. We would like to see whether it is monotonic and positive

in between. Recently, in the limit of mR > 1, it was found in [7,60] that (6 is a

short-distance cutoff)

ft 'z i 1
Sscalar(mR) #- -mR- + (3.2.1)

6 6 240 mR
R -x 7 1

SDirac(mR) = -mR- - +---. (3.2.2)
6 6 40 mR

From (1.2.4) we thus find that

Sscaiar(mR) = +_w + - (3.2.3)
120 mR
7F 1

SDirac(mR) +- - + ' (3.2.4)
20 mR

which are indeed monotonically decreasing with R. Note that the fall-off in the

above expressions is also consistent with our earlier expectation (2.2.14).

We emphasize that if one simply subtracts the divergent part in (3.2.1), then the

resulting

S(fnite) F - 1
scala, (mR) = 4mR - m (3.2.5)6 240 mR

approaches minus infinity linearly as R - oo and thus does not have a good asymp-

totic limit. The presence of such a linear term can be understood as a finite renormal-

ization between the short distance cutoffs of the UV and IR fixed points, as discussed

in Sec. 2.2. In contrast, S 3 (R) approaches zero as R -+ oc as one would expect of a

system with a mass gap.

We have also calculated S 3 (R) numerically for a massive scalar field 2 for a range of

mR as shown in Fig. 3-1 (see Appendix 3.A for details for the numerical calculation).

The numerical result is consistent with our expectation of the limiting values of S3 (R)

in the small and large R limits, and also suggests that it is monotonic in between.

2Compared to that of a scalar, the computation for a Dirac fermion requires significantly more
computer time to achieve the same accuracy. We will leave it for future investigation.
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Figure 3-1: S 3 (R) for a free massive scalar field: The red point is the value for m = 0.
The black dashed line is the result of the asymptotic expansion (3.2.3). The numerical
results are computed following the method of [5] with a radial lattice discretization.
We choose the system size to be LIR = 200a, where a is the lattice spacing. To avoid
boundary effects the restriction to 10a < R < 45a was made. To extend the range of
rmR we obtained the results for 1/m = 20a, 40a, 120a. In the plots, the orange dots
are data points for 1/m = 120a, the blue ones are for 1/m = 40a, and the green ones
are for 1/m = 20a. As expected all our data points collapse into one curve as S 3(R)
can only depend on mR in the continuum limit. For more details see Appendix 3.A.

3.3 Sd(R) for Holographic flow systems

In this section we discuss properties of Sd(R) (defined for a sphere) for systems with

a gravity dual using the proposal of [22,61] (see [62] for a review), which relates the

entanglement entropy to the area of a minimal surface. Other recent discussion of

entanglement entropy in holographic RG flow systems include [20,21,63-67]

We will restrict our discussion to d > 3. After a brief discussion of the general set-

up, we derive a relation between Sd and the undetermined constant in the asymptotic

expansion of the minimal surface. We then show that when the central charges of

the IR and UV fixed points are close, for all dimensions, Sd is always monotonically
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deceasing with R at leading order in the expansion ot difference of central charges of

the UV and IR fixed points. Thus for flows between two sufficiently closely separated

fixed points, S(R) appears to provide a good central function.

3.3.1 Gravity set-up

We consider a bulk spacetime which describes a renormalization group flow in the

boundary theory. We assume that the system is Lorentz invariant. The flow can

be induced either by turning on the source for some relevant scalar operators or by

certain scalar operators developing vacuum expectation values (without a source).

Below we will refer to them as source and vev deformation respectively. We denote

the corresponding bulk fields by Oa.

The bulk action can be written as

I = Jd+lx VZ- [R - Gab8q.&q5 - V(45a) (3.3.1)

where Gab is some positive-definite metric on the space of scalar fields. The spacetime

metric can be written in a form

ds2= - (-dt2 + dp 2 + pd 2 + .z (3.3.2)

We assume that V(#4a) has a critical point at Oa = 0 with V(0) - ,which

corresponds to the UV fixed point. Near the boundary z = 0,

0#(z) -+ 0, f (z) - 1, z -> 0 (3.3.3)

and the spacetime metric is that of AdSd+1 with curvature radius L. Einstein equa-

tions and positive-definiteness of the kinetic term coefficients Gab require that the

evolution of f with z should satisfy [68]

&2f (z) > 0 (3.3.4)
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i.e. f(z) is a monotonically increasing function. More generally, equation (3.3.4)

follows from the null energy condition and Einstein equations, regardless of specific

form of the scalar action.

At small z, f(z) can be expanded as

f (z) = 1 + . 2az 2a +- , Z - 0 (3.3.5)

where p- is some mass scale and a some positive constant. For a source deformation,

a = d - A with A the UV dimension of the leading relevant perturbating operator

(i.e. the one with the smallest Z).3 For a vev deformation we have a = A.4

In the IR, as z -* 00, we can have the following possibilities:

1. Flow to an IR conformal fixed point. In this case #a approaches a neighboring

critical point 0a = OT) with V(0(0)) = _ -, and V(0( 0)) < V(0), L >
LIR

LIR. The flow solution then describes a domain wall with the metric (3.3.2)

interpolating between two AdSd+l with curvature radius given by L and LIR

respectively, i.e.

L 2f() =f>1, z-a+o. (3.3.6)
IR

Near the IR fixed point, i.e. z - oo, f can be expanded as

f (z) = fo I -1 -& , (3.3.7)

where z A - d, with E being the dimension of the leading irrelevant per-

turbing operator at the IR fixed point, and jA is a mass scale characterizing

irrelevant perturbations.

2. The spacetime becomes singular at z = oo: since f has to increase with z,

3 Note that when A =! for which a =, we should replace the second term in (3.3.5) by

(z)d(logpz)2 
2

4 The above description is for the standard quantization. In the alternative quantization (which

applies to - 1 < A < -), we have instead a = A for a source deformation and a = d - A for a

vev deformation.
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instead of approaching a constant as in (3.3.6), f(z) can blow up as z -* 00,

e.g.

f(z) oc z", n > 0 . (3.3.8)

Given n > 0, the z = oo singularity in fact sits at a finite proper distance away.

From the standard IR/UV connection the naive expectation is the corresponding

IR phase should be gapped. As we will discuss later, it turns out this is only

true for n > 2, an example of which is the GPPZ flow [69]. We also discuss

the Coulomb branch flow that has n = 2 [70,71] that can also be regarded as

gapped.5

For n < 2, the story is more intricate and there exist gapless modes in the

IR. Below we will refer to n < 2 geometries scaling geometries, examples of

which include the near horizon geometries of D1, D2 and D4-branes. In these

examples, the IR fixed point either does not have a good gravity description

(like in the case of DI or D4 branes) or the number of degrees of freedom

at the IR fixed point scales with N with a lower power than N 2 (like in the

case of D2 branes, where the IR description is in terms of M2 branes giving

N 3 / 2 degrees of freedom). Thus one should interpret the scaling region (3.3.8)

as describing an intermediate scaling regime of the boundary theory before the

true IR phase is reached. While one should be wary of such singular spacetimes,

they appear to give sensible answers for correlation functions consistent with

the interpretation of a gapped phase (see e.g. [72]).In this thesis we will assume

such singular geometries make sense.

In our subsequent discussion we will assume that there exists a crossover scale

zCO such that (3.3.7) or (3.3.8) is valid for

z > zCO- (3.3.9)

5 1n Coulomb branch flow [70,71] which describes a Higgs phase of the K = 4 SYM theory, there
is a single Goldstone mode corresponding to spontaneous breaking of conformal symmetry. In the
large N limit, the effect of such a gapless mode on observables like entanglement entropy can be
neglected. We will thus still call it a "gapped" phase.
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While in this chapter we will be focusing on vacuum solutions (i.e. with Lorentz

symmetry), since the holographic computation of the entanglement entropy for a

static system only depends on the spatial part of the metric [61], the techniques we

develop in this chapter for calculating the large R behavior of the REE also apply to

a more general class of metrics of the form

ds2 = - -g(z)dt2 + d 2 + z (3.3.10)
z2 (_fz)

This is in fact the most general metric describing a translational and rotational in-

variant boundary system including all finite temperature and finite chemical potential

solutions. g does not directly enters the computation of the REE. Its presence is felt in

the more general behavior allowed for f; the null energy condition no longer requires

f to be monotonically increasing. For example, for a black hole solution f decreases

from the boundary value 1 to zero at the horizon. The null energy condition also

allows n < 0 in (3.3.8) for certain g. One such example is the hyperscaling violating

solution [43-45,73,74] (at T = 0), where the metric functions have the scaling form

g(z) = bz'm  f(z) = az", z _ oc0. (3.3.11)

We will discuss the black hole case in section 4.5.

3.3.2 Holographic Entanglement entropy: strip

We first discuss the holographic entanglement entropy of the strip region (4.1.11). It

is obtained by minimizing the action:

Sstrip(R) = Ld. 2A (3.3.12)4 GN

where GN is the bulk Newton constant and A is the area functional [61, 75]. If

the spacetime is singular, as in the case of (3.3.8), the minimal surface can become

disconnected. In this case, the minimal surface consists of two disconnected straight

planes x(z) = ±R. The minimal surface area is independent from R due to the
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translational symmetry of the problem. If the surface is connected, its area is given

by

A = d
_R Zdl

1+ .z, 2 (3.3.13)

The shape of the entangling surface is specified by the boundary conditions

z(x = R) = 0, z'(x = 0) = 0 .

Since the action has no implicit dependence on x, we have an associated conserved

quantity:

= const
zThi 1 t fie

This reduces the equation of motion to first order:

(3.3.15)

z' - v f(z) (2(d1)

where zt = z(x = 0) gives the tip of the minimal surface. zt is determined by requiring

z(R) = 0. i.e.

R =
Ud-1

du
1 dv Vd-1

S f(z)v1 V2(d-1))
(3.3.17)

Inverting this implicit equation gives the relation zt(R). Using (3.3.16) we can also

write (3.3.13) as
2

A=2
zi 2

dv I
d-1 f (f(ztv)1 -2 )

(3-3.18)

where J is a UV cutoff.

Expanding (3.3.16) near the boundary z = 0, we find the expansion

zd
x(z) = R - z 1 + (3.3.19)
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Varying (3.3.13) with respect to R and using (3.3.19), we find that

RdIdA
dR

(R ) d
= t-

which implies that Rd(R) defined in (4.1.13) is given by

Rd = Ld-I (R)d1
2GN zt

(3.3.21)

Thus to find Rd it is enough to invert (3.3.17) to obtain zt(R). (3.3.21) was obtained

before in [76].

3.3.3 Holographic Entanglement entropy: sphere

From the prescription of [611, the entanglement entropy for a spherical region of radius

R is obtained by

S(R) = 2 W-2A Z

where Wd-2 is the area of a unit (d -

minimizing the surface area

2-xLd-
K 2 Wd-2 (3.3.22)

2)-dimensional sphere and A is obtained by

jZrn z0
= R pd-2 2

A = dp d- 1-
o z f(z)

dz
zd-1 p' + , (3.3.23)

with the boundary condition at infinity

p(z = 0) = R . (3.3.24)

Depending on the spacetime metric, there can be two kinds of minimal surfaces as

indicated in Fig. 3-2. For the disk type, the minimal surface ends at a finite zm with

P(Zm) = 0, P'(Zm) = 00 . (3.3.25)
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The cylinder type solution extends all the way to z = oo with

p(z) -+ Po, p'(z) -+ 0, z - +00 (3.3.26)

with po a finite constant. When the IR geometry is given by another AdSd+l as

in (3.3.6), the minimal surface is always of disk type. In Appendix 3.B we show

that for singular IR geometries with (3.3.8), cylinder type solution can exist when

the exponent n > 2. As also discussed in Appendix 3.B, for n > 2, there exists

a critical minimal surface which closes off exactly at z = 00, i.e. it can be viewed

either as a surface of cylinder topology with po = 0 or a surface of disk topology with

Zm = 00. This critical surface will be important for "second order phase transitions"

in entanglement entropy we observe in some examples of Sec. 3.4.

Z -> 00

z= O

Figure 3-2: Cartoon of a minimal surface of disk topology (black) v.s. a minimal
surface of cylinder topology (red). The cylinder type surface is possible only for (3.3.8)
with n > 2.

The equation of motion can be written as

(3.3.27)
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or

Slf + z d1) (f + z' 2 ) _ z' 2 =O . (3.3.28)
p z 2

At the UV fixed point, f - 1, the minimal surface is given by the hemisphere [22]

p 0(z) = v/R2 - z 2 , zmo = R . (3.3.29)

Evaluating on (3.3.29), the action (3.3.23) is divergent near z - 0. We introduce a

UV cutoff z = 6 and the regularized action becomes

Rd (R2 - z2>)Y

= dZ Zd . (3.3.30)

One then finds the entanglement entropy has the form (2.2.7), with

S (UV) (UV) - (d - 3) K. (3.3.31)
d d (d - 2)!

Similarly at the IR fixed point with f - + we find

(IR) (IR) (d - 3)!K R , Kilt 27rL R d2 (3.3.32)
(d - 2)!! r2 d-23

3.3.4 Sd in terms of asymptotic data

We now derive a formula to relate Sd directly to a finite coefficient in the asymptotic

expansion of the minimal surface solution near the boundary. For definiteness we will

restrict our discussion to a single scalar field, but the conclusion is general.

Consider the action (3.3.23) with a cutoff at z = 6,

A dz pd'2 dz2 f (3.3.33)
A 's zd-1 f 15

with boundary conditions (3.3.24) and (3.3.25) (or (3.3.26) with zm = oo). In the

above equation, varying R with 6 fixed, and using the standard Hamilton-Jacobi
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method we find
dA -(zm) _ = - (6) (3.3.34)
dR dR dR 6  dR

where

Of p d-2 d- 1
-- = d 1 Up' - = - (3.3.35)
09p' za- 12 + 'za- f V/ 2 +

and we have used that Wt(zm) = 0 due to the boundary condition there (for both (3.3.25)

and (3.3.26)). Equation (3.3.34) only depends on the local solution near infinity and

can be evaluated using the asymptotic expansion there.

For small z, f(z) has the expansion (see e.g. also [77])

00 00

f(z) = 1 + E f.zd+n + c rnaZM (3.3.36)
n=O m=2

where a was introduced in (3.3.5). Note that here we are considering a flat boundary,

so the first series of (3.3.36) starts only at order O(zd). The second series comes from

the scalar contribution. Similarly, p(z) can be expanded as [77-79]6

z2 Zd+ + 00 Z~
p(z) = R - + - - - + cd(R) + anm(R)zn+mn . (3.3.37)

n=2,m=2

In (3.3.37), the first - - - contains only even powers of z up to zd and the second

... contains integer powers greater than d. Note that the structure of expansion

in (3.3.37) excluding the last term follows from the standard Fefferman-Graham ex-

pansion applied to a submanifold in AdS [78], while the last term comes from the

similar series in the expansion of f. In (3.3.37), cd is undetermined and all other

coefficients can be determined in terms of coefficients in (3.3.36) and Cd from local

analysis of the minimal surface equation of motion near z = 0.

6 There are also logarithmic terms when two series share common terms. For example, when
n + mu = d, there is a term proportional to zd log Pz with p a mass scale associated with relevant
perturbation. Presence of these additional logs will not affect our discussion. So below we will not
make them explicit.
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Plugging the expansion (3.3.37) into (3.3.34) we find that in the limit 6 -+ 0

dA ed dAA= -dRd- 2cd(R) - + (3.3.38)
dR R dRnon-universal

where

eCd (I + (-1)d) I1 - (-1)"2 d-3! (3.3.39)
2 )J(d - 2)!!

in non-vanishing only in d = 4k, k 1, 2, -- dimensions. The non-universal part has

the form
dA bi(6)Rd- 3 + b2(6)Rd- 5 + (3.3.40)
dR non-universal

with only terms of non-negative powers of R. b. can be expressed in terms of a

divergent series of 6, with 6 2-d the most divergent term in b], 6 4-d for b2 , and so on.

More explicitly, introducing a dimensional parameter p to characterize the dimension

of c, (with c, ~ p"), then the series in b1 can be schematically written as

1
b1 ~ 2 (1 + (L6)2" + (p6)3 +--) + const . (3.3.41)

The structure of non-universal terms (3.3.40) are consistent with that argued in

Sec. 2.2 (recall the discussion below (2.2.8)). They go away when acted with the

differential operator in (1.2.4) and do not appear in Sd.

As a result Sd(R) can be solely expressed in terms of cd(R). More explicitly,

from (3.3.38) and (??) we find that for d = 3

-S 3 (R) = -3R 2c 3 (R) + 3 dR' R'c3 (R') + C (3.3.42)
K ,i

where C is determined by requiring S3(R = 0) reduces to the value at the UV fixed

point. Also note
1 dS3KI dR -3R OR [Rc3 (R)] . (3.3.43)
K d R

Similarly, for d = 4,
1 3 4 dC4

-S4 = 1 - 2RC4(R) - 2R (3.3.44)
K dR
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3.3.5 Two closely separated fixed points

Let us now consider the situation in which the bulk cosmological constants of the

UV and IR fixed points are close to each other, which translates into the boundary

theory as that the central charges Sd (3.3.31) of the UV and IR fixed points are close.

In this case we have

f (z) = 1 + Cg(z),
L2

S= - I <
IR

0
'(z) > 0, g (z)-+

We expect the minimal surface to be close to that of a CFT, i.e.

p(z) = pO(z) + Ep 1(z) + - - - (3.3.46)

with po given by (3.3.29), and

A = Ao+A+---. (3.3.47)

Under variations of f, the variation of the cutoff action (3.3.33) can be written as

6A =]Z dz 6,C6f - 71(Zrn,)6zm, - 116PL'6f (3.3.48)

where W and 11 were introduced in (3.3.35) and 6 zrn and 6p denote the induced

variations due to 6f. Now apply the above equation to (3.3.45)-(3.3.47), we find that

A1 =jdzC g(z) + (6) 1p 1 (6)
6fPO

(3.3.49)

where R(zrn) again vanishes due to the boundary condition (3.3.24) at zm. p1(z) is

obtained by solving the linearized equation following from (3.3.23) around (3.3.29).

To find its value at the short-distance cutoff 6, it is enough to use the leading order
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expression (3.3.5) for f (with y(z) = (pz)2 a + - - - ), and we find that'

62
pt(6) =2, A-- --

R2 _ 62

2 + a - d
c(a) = .)(2 2a-d) (3.3.50)

Plugging the explicit form (3.3.29) of po and (3.3.50) into (3.3.49), we find that

1
J R

2(R
2 

- 2)d23 T6)d ±262
dz (R 2 - z2) 2 zd g(z) + c(a) R6d-4 _ 21+6--a-+ (3.3.51)

The divergent terms in the above equation are again consistent with the structure

described in Sec. 2.2.1 and thus will not contribute to Sd(R).8

Now applying (1.2.4) to (3.3.51) we find that, for odd d,

(d - 1)!! K f
Sd (R) - J

(d - 2)!! 2R 0
dz g(z) =dJ d g(xR)

(d - 2)!! 2 JO

and for even d

S 1  (d - 1)!! K R

(d - 2)!! 2R Jo
dz zg(z)

VR 2 - z
2

It is interesting to note that for a monotonic g(z), both (3.3.52) and (3.3.53) are

monotonic

dal < 0.
d R

(3.3.54)

Also note that in the limit R -+ oc, we can replace g(xR) in both expressions by its

value at infinity g(oo) = 1, leading to

S() ((d- 1)!! K
(d - 2)!! 2

(3.3.55)

which is precisely the expected difference between the values of the IR and UV fixed

point (see (3.3.31) and (3.3.32)) expanded to first order in c. Thus to first order in e

d-2'When u z---2 equation (3.3.50) becomes pi (6) d-2 (p,,)d-2 _52 log j.

8 Note that for some special values of a, both terms in the above equation can lead to logarithmic

terms which contain log y6, as pointed out before in [7,77]. These terms are also consistent with the

structure described in Sec. 2.2.
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we have recovered

Sd(R -+ oc) = S IR). (3.3.56)

3.4 Some numerical studies

We now consider some specific holographic RG flows, including some "realistic" ones

which describe known field theory flows at large N and strong coupling. In these ex-

amples, the minimal surface cannot be found analytically and numerical calculations

are needed. In some examples, the gravity solutions are only known numerically. In

computing the entanglement entropy, one could to choose to evaluate (3.3.23) directly

after obtaining the numerical solution for the minimal surface. The numerical inte-

grations can sometimes be time-consuming. It is often more convenient to use (3.3.42)

or (3.3.44) to obtain Sd directly from the coefficient cd(R) in the asymptotic expansion

of the minimal surface solution near the boundary.

We will first consider d = 3, where we find that S 3 (R) is always non-negative and

monotonic. This is no longer the case for d = 4. The non-monotonic examples include

the GPPZ flow [69] which describes the flow of the M = 4 SYM theory to a confining

phase under a mass deformation and the so-called Coulomb branch flow [70,71] which

describes the A = 4 SYM theory in a Higgs phase.

The two realistic examples below in Sec. 3.4.1 and 3.4.2 have also been considered

recently in [67].

3.4.1 d = 3

A realistic flow

We first consider the holographic RG flow of [80] which describes the flow from M2

brane theory at UV to an A" = 2 superconformal theory with an SU(3) x U(1) global

symmetry at IR. The flow involves two scalar operators whose UV and IR dimensions
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are respectively

A = (2, 2), AIR = (2(1+ -i7), (5 + V17) . (3.4.1)

3

Thus in (3.3.5) and (3.3.7), a = 1 and = j(v/i7 - 1) = 1.562. Also L 3
TUv

1.299. The numerical results are presented in Fig. 3-3. Clearly, S 3 (R) is positive, and

monotonic. Note that for this flow, 6 in (3.3.45) is c ~ 0.3, and thus equation (3.3.52)

should be a reasonable approximation, which is confirmed by numerical results. Since

a > 1, from (4.1.27) we expect S 3 (R) should fall off as 1/R for large R. This appears

to fit the numerical data very well.

A sharp domain wall: first order phase transition

The earlier example is a rather shallow domain wall. Let us now consider a sharp

domain wall. Unfortunately, there appears no realistic example of this type. We will

thus play with toy examples by coming up with various monotonic functions f(z), a

strategy which we will repeatedly use below. By scanning through various examples

we find that even for L > 1, S 3 (R) remains monotonic and approaches to the right

asymptotic value. However, a new phenomenon arises when the domain wall becomes

steep, as in the left plot of Fig. 3-4. In this case, the minimal surface action (3.3.23)

can have more than one extrema for certain range of R, as indicated in the middle

plot of Fig. 3-4. The minimal surface prescription instructs us to pick the one with

the smallest area. While the entanglement entropy itself is continuous as a function

of R, after taking derivative to obtain S 3 (R), we find there is a discontinuous jump

at some value R, as shown in the right plot of Fig. 3-4. In other words, there is a

first-order "phase transition" in the entanglement entropy at R,. Despite the jump,

S3 is still monotonic and approaches the right asymptotic value.

"Gapped" phases

We now consider some examples where the IR is described by a "gapped" phase. We

are interested in systems with Lorentz symmetry, and thus are forced to consider
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-. -- (S (R)-Suv(R))/K
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10 20 30 40 p o R

Figure 3-3: Left: f(z) for the domain wall solution describing the flow of M2-brane
theory to an IR fixed point preserving K = 2 supersymmetry. Middle: plot of
S(R) - Suv(R) where SUv denotes that at the UV fixed point. The UV divergences
cancel when taking the difference, but the resulting expression does not have a well-
defined large R limit, with a linear R-dependence. As in the case of a free massive
scalar and Dirac field of Sec. 3.2, the presence of such a linear term can be understood
as a finite renormalization between the short distance cutoffs of the UV and IR fixed
points, as discussed in Sec. 2.2. Right: S 3 (R) for this flow. We normalize the value
at UV to be 1. The horizontal dashed line denotes the expected value (3.3.32) for
the IR fixed point. The black line (lower line) is obtained from numerical calculation
by using (3.3.42). For this flow, c in (3.3.45) is c ~ 0.3, and thus equation (3.3.52)
should be a reasonable approximation, whose results are plotted using the red line
(upper line). Note that the part linear in R in -Sinite as seen in the second plot is
automatically eliminated when considering S 3 (R).

singular geometries discussed around (3.3.8). An example of gapped phase with a

regular geometry is the AdS soliton [81]. But the corresponding boundary theory

contains a circle direction. Our discussion of the divergence structure of the entangle-

ment entropy in Sec. 2.2 thus does not apply, and one needs to modify the definition

of Sd(R), which we will not pursue here. The holographic entanglement entropy for

an AdS soliton was considered before in [82]. A first-order phase transition between

minimal surfaces with disk and cylinder topology similar to our third example below

(right plot of Fig. 3-5) was found there.

Again due to lack of simple explicit examples, we will consider some toy examples
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f(z)
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S3(R)/K
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0.2.
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Figure 3-4: Left: a steep domain wall (toy example) with f(z) 1 + 514zoo.

Middle: plot of S(R) -ScO,(R) where Sco1n (R) denotes the entanglement entropy for

the UV fixed point. The short-distance divergences cancel when taking the differences.

For the indicated range of R, the action (3.3.23) has three extrema, all of disk type.
The entanglement entropy of the system is given by the smallest of them. There

is a first-order "phase transition" at R, = 4.4. Right: S 3 (R) has a discontinuous
jump, which is indicated by the vertical green line. The dashed horizontal line is the
expected asymptotic value for the IR fixed point.

by postulating certain f(z). In Fig. 3-5, we consider three such examples which

illustrate three possible scenarios.

In the left plot we consider f(z) = I+ z2 . In this case since f(z -+ 00) ~ Z2 with

an exponent 2, only minimal surface of disk topology is possible. There appears to

be a unique minimal surface solution for all R, and S 3 (R) is smooth.

The middle plot is for f(z) = 1+z3, in which case, when R is sufficiently large, the

minimal surface is of cylinder type (see discussion around (3.3.26) and Appendix 3.B).

This is indicated in the plot by the red curve. The black curve for smaller R values

has minimal surface of disk type. S3 (R) appears to be continuous at the transition

point where the minimal surface changes topology. Thus the entanglement entropy

has a "second-order phase transition." Note that approaching the transition point

from the smaller R side, the end point zm of the disk-like surface approaches infinity,

while from the larger R side, po for the cylinder-like surface approaches zero. The
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Figure 3-5: Left: S 3(R) for f (z) = 1 + z2. Middle: S 3 (R) for f (z) = 1 + z3 which
exhibits a "second-order phase transition" from minimal surface of disk topology
(black curve) to cylindrical topology (red curve). Right: S3 (R) for f(z) = (1+ z2)2,
which exhibits a "first-order phase transition" between the surfaces of two topologies.
The dashed curve corresponds to other extrema of the minimal surface action. There
is a discontinuous jump in S 3(R) which is indicated by the green vertical line.

two branches meet at the critical surface discussed in Appendix 3.B (see Fig. 3-6

for a cartoon). It may be interesting to understand the critical behavior of such a

transition which we will leave for future study.

The right plot of Fig. 3-5 is for f(z) = (1+z2)2, which exhibits a "first-order phase

transition." Again the red and black curves have minimal surface of cylinder-type

and disk-type respectively. Now near the transition between the two topologies, the

action (3.3.23) now has three extrema, with the non-minimal area extrema indicated

in the plot by dotted lines. There is a discontinuous jump in S 3 (R) at the transition

point.

In all these examples, S 3 (R) appears to approach zero at large R, although our

numerics cannot go to too large R.
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Figure 3-6: Cartoon of a "second-order phase transition" from a minimal surface of
disk topology (black) to a minimal surface of cylinder topology (red) as we increase
R. The surface (brown) at R, is the critical surface discussed in Appendix 3.B.

Non-monotonic f (z)

Finally just for comparison, in Fig. 3-7 we show a toy model of f which is not

monotonic, neither is the corresponding S3. This toy example illustrates nicely several

important aspects of the properties of S 3 (R):

1. As mentioned earlier, the monotonicity of f is tied to the imposing of null energy

condition, which can be interpreted as the bulk reflection of boundary unitarity.

This indicates that the monotonicity of S 3 (R) is closely tied to unitarity of the

boundary system.

2. The location in R where the non-monotonicity of S 3 (R) occurs appears to

roughly scale with z. From the IR/UV connection, z translats into a boundary

length scale. That the non-monotonicity of f (z) at certain z directly translates

into non-monotonicity of S 3 (R) at certain R which roughly scales with z in-

dicates that S3 (R) is most sensitive to contributions from degrees of freedom

around scale R. In contrast, as shown in the figure the entanglement entropy

itself is rather featureless as a function of R.
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Figure 3-7: Left: A toy model of f(z) which is non-monotonic. Middle: The
entanglement entropy itself is not sensitive to the non-monotonic feature of f. Right:
the corresponding S 3 (R) is sensitive and also becomes non-monotonic.

3.4.2 d = 4

Leigh-Strassler flow

We first consider the flow from the K = 4 SYM theory (d = 4) to an K = 1

superconformal fixed point with SU(2) x U(1) global symmetry [68,83]. The flow

involves two scalar operators whose UV and IR dimensions are respectively

A = (2, 3), AIR =(+-f7, 3 + V7- (3.4-2)

10
Thus in (3.3.5) and (3.3.7), a = 1 and d = vf7 - 1 ~ 1.646. Also L2 = 2- 1.12.T217- 9 ~.2
The numerical results are given in Fig. 3-8. S 4 (R) is positive and monotonic. For this

flow, c in (3.3.45) is E ~ 0.12, and thus equation (3.3.53) should be a good approxi-

mation, which is confirmed by the numerical results. Since & > 1, from (4.1.27) we

expect S 4 (R) should fall off as 1/R 2 for large R. Our numerical data for large R are

not good enough to test this conclusively, but does not appear to directly contradict

with it.
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Figure 3-8: Left: f(z) for the domain wall solution describing the Leigh-Strassler
flow from M = 4 SYM theory to an IR fixed point preserving K = 1 supersymmetry.
Right: S 4 (R) for this flow. The horizontal line denotes the expected value for the IR
theory. The dotted line is obtained from direct numerical calculation. For this flow,
c in (3.3.45) is E ~ 0.12, and thus equation (3.3.53) should be a good approximation,
whose results are plotted using the solid line.

A sharp domain wall

In the Leigh-Strassler flow discussed above, the central charges of the UV and IR

fixed points are close. Our discussion in Sec. 3.3.5 indicates that in such a situation

Sd(R) should be monotonic and positive. Now let us consider a toy example in which

the domain wall is steep and the separation of central charges is large. As indicated

in Fig. 3-9, S 4 (R) is neither monotonic nor positive definite. In contrast to the d = 3

example of Sec. 3.4.1, there is no phase transition here.
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Figure 3-9: Left: A steep domain wall (toy example) in d = 4 with f(z) = 1+ .z15
Right: In contrast to the example of Sec. 3.4.1 in d = 3, S 4 (R) is smooth, but is
neither monotonic nor positive definite. The dash line is the expected asymptotic
value for the IR fixed point.

Gapped phases I: GPPZ flow

We now consider the GPPZ flow [69] which describes the flow of the K = 4 SYM

theory to a confining theory under a mass deformation, which has UV dimension

A = 3. For this flow the metric is known analytically with

I~z = + - .) (3.4.3)AZ) = ( L2

Note that as z -+ o, f ~ Z 4 -+ oo. Low energy excitations of this system have a

discrete spectrum with a finite mass gap (see e.g. [721). For such a gapped phase

we expect S 4(R) -> 0 for large R. Fig. 3-10 gives the entanglement entropy and S 4

for this system. While the finite part of the entanglement entropy appears to grow

linearly with R at large R, S 4 approaches zero from negative side. Similar to the

f (z) = 1 + z3 example in d = 3 discussed in Sec. 3.4.1, there is a "second order

phase transition" from minimal surface of disk topology (black curve) to cylindrical

topology (red curve), where S 4(R) remains continuous (as far as our numerics could

tell). Again as in the discussion of f(z) = 1 + z3 the transition goes through the

critical surface of Appendix 3.B, as indicated in Fig. 3-6.
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Figure 3-10: Left: plot of entanglement entropy S(R) - Suv(R) for GPPZ flow where
Suv(R) denotes the entanglement entropy for the UV fixed point. The short-distance
divergences cancel when taking the differences. Right: plot of S 4 (R) for GPPZ
flow, which is neither positive-definite nor monotonic. The system also exhibits a
"second order phase transition" from minimal surface of disk topology (black curve)
to cylindrical topology (red curve), where S 4 (R) remains continuous (as far as our
numerics could tell).

Gapped phases II: Coulomb branch flow

The Coulomb branch flow describes the spontaneous breaking of the gauge symme-

try (and also conformal symmetries) of the M = 4 SYM by a vacuum expectation

value for an operator which is bilinear in the fundamental scalars [70,71]. Thus here

there is no operator deformation, and the end point describes a point on the Coulomb

Branch. It involves a scalar field of UV dimension A = 3. The metric is also known

analytically, although through an implicit function

1 1 (v +2)2
Z = -(1- V)2V3, f = 2 (3.4.4)

IL 93
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with M a mass scale characterizing the expectation values of the adjoint scalars of the

K = 4 theory. Near z = 0 (boundary),

f + + , (3.4.5)

and near z = oo,

f 4 -2z2 + . (3.4.6)
9

While the singularity z = oo lies at a finite proper distance away, but it takes a

null geodesic an infinite time in t. The low energy excitations of the system include

a massless Goldstone mode from spontaneous breaking of scaling symmetry, and a

continuous spectrum above a finite mass gap (see e.g. [72]). Note that the single

Goldstone mode will have a nontrivial 0(1) contribution to S 4 , but is not visible in

the order O(N 2 ) we are considering. So we expect S 4 (R) -+ 0 for large R as in a

gapped phase. With large z behavior given by (3.4.6), there can only be minimal

surface with a disk topology. The numerical result is shown in Fig. 3-11, with a

unique minimal surface solution for all R. However, S4 (R) is neither monotonic nor

positive-definite.

2S4 (R)/K

1.0

0.5

R
1 2

Figure 3-11: 84 (R) for the Coulomb branch flow.
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3.4.3 Summary

To summarize, we find that in d = 3 all examples (which are Lorentz invariant and

satisfy the null energy condition) have a monotonic and non-negative S 3 (R), while

this is no longer the case for S 4 (R) in d = 4. We also find that the monotonicity

of S3 (R) is tied very closely to the null energy condition, which can be interpreted

as the bulk reflection of boundary unitarity. Thus it is tempting to conjecture it is

always monotonic in the vacuum of a Lorentz-invariant, unitary QFT.

Note that although S 4 (R) is not monotonic, given the relation (2.5.10) and the

recently proved a-theorem [17, 18] for d = 4, we still always have S 4 (R -+ 0) >

S 4 (R -+ oo).

Even if S 3(R) turns out to be monotonically decreasing in the vacuum we do not

expect it to remain so at a finite temperature/chemical potential. As discussed in

Sec. 2.2.3 at a finite temperature we expect Sd(R) to be proportional to the thermal

entropy, i.e. proportional to the volume of the entangled region in the large R limit

with a positive coefficient. Similarly for a system with a Fermi surface (i.e. at a

chemical potential), we argued in Sec. 2.3 that Sd(R) should be proportional to the

area of the entangled region at large R. While our dimensional analysis could not

determine the prefactor, we expect it to be positive on physical ground. Clearly the

corresponding Sd(R) which starts as a constant for small R, cannot not be monoton-

ically decreasing in either situation. In the holographic context, the function f(z) in

the spacetime metric for states of finite chemical potential or finite temperature does

satisfy (3.3.4) (instead it decreases to zero at the horizon).

We also observe first-order and second-order "phase" transitions in Sd(R).' By

first-order, we mean Sd(R) has a discontinuous jump, while in a second-order transi-

tion, Sd(R) is continuous, but not smooth. When the IR is described by a conformal

fixed point (corresponding to a different AdS geometry), the phase transitions appear

to be first-order and do not involve change of the topology of the minimal surface, as

in a sharp domain wall in d = 3 discussed in Sec. 3.4.1. When the IR is described

9Note that "phase" transitions in the holographic entanglement entropy have also been observed
in various other contexts [82,84-88], but all appear to be the first-order.
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by a "gapped" phase corresponding to certain singular bulk IR geometries, the phase

transitions (which can be first- or second-order) appear to involve change of topol-

ogy of the minimal surface. Second-order transitions appear to be controlled by the

critical surface discussed in Appendix 3.B. Examples which exhibit a second-order

transition include the GPPZ flow [69] which describes the flow of the M = 4 SYM

theory to a confining phase under a mass deformation.

Such phase transitions are interesting, as they signal drastic changes of some

underlying physics. In the example of a sharp domain wall, the system transitions

very quickly (i.e. in a very short range of scales) from the UV to IR regimes, thus

it appears that the entanglement entropy does not have "time" to respond to that

quick change, which results in a discontinuity. Similarly the phase transitions in the

case where the IR is a gapped phase likely signal that the system is opening a gap.

Similar first-order phase transitions have been observed before in [85-87] and were

interpreted as a confinement/deconfinement transition.

3.5 Conclusions and discussion

We introduced a "renormalized entanglement entropy" S(F7) (R) which appears to cap-

ture only the "universal" part of the entanglement entropy. We illustrated the power

of this construction by showing that the qualitative behavior of the entanglement

entropy of a system with a Fermi surface could be obtained by simple dimensional

analysis.

We also showed that (in the vacuum) SF(R) has various nice features (as listed

in the Introduction) which make it natural to interpret it as describing the RG flow

of the entanglement entropy with distance scale. We were particularly interested in

finding out whether it could be monotonic and provide a scale-dependent measure of

the number of degrees of freedom of a quantum system. In d = 3 our studies of free

theories and holographic systems support the conjecture that S 3 (R) is non-negative

and monotonic for Lorentz-invariant, unitary QFTs. In d = 4, this is no longer true.

We find examples in which S 4 (R) is neither monotonic nor positive-definite.
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Let us now mention some future questions:

1. In our discussion S (R) was constructed by using the differential operator

in (1.2.4) to strip shorter-distance correlations (including cutoff dependence)

away from the entanglement entropy S) (R). In particular, to show its UV

finiteness we had to examine the the specific structure of divergent terms in

SM)(R). It would be interesting to have an intrinsically finite way to define

it. One possibility is that one may obtain it from certain limit of the mutual

information (and their generalizations involving more than two regions).' 0

2. The monotonicity of S 3 (R) would imply that

RdS3(R) ftdS <R = R 2  < 0 (3.5.1)dR dR2

i.e. as a function R, S(R) is a concave function. This feels like a relation that

can perhaps arise from a clever use of the strong subadditivity condition of the

entanglement entropy, which is also responsible for the monotonicity of S 2 (R)

in d = 2 [56, 57]. It is also important to examine more examples for further

confirmation or counterexamples. In the holographic context, for example, it

would be interesting to generalize our discussion to gravity theories with higher

derivatives as in [20,21,59,63-66,91,92] to test the robustness of the conjecture.

3. Suppose S 3 (R) turns out to be monotonic, it is then rather curious this is no

longer true for S 4 (R) in d = 4.

(a) One logical possibility is that S4 (R) is monotonic, but the holographic

examples in which it is not are pathological." The example of Sec. 3.4.2

is a toy model with a very sharp domain wall which is clearly artificial,

while those of Sec. 3.4.2 and 3.4.2 involve singular geometries. It would be

important to completely settle this using more examples.

'0 See e.g. [89, 90] for discussions mutual information in general quantum field theories and of
possibility of a c-theorem from mutual information.

1 Another possibility is that the holographic entanglement entropy formula needs to be modified
in these cases.
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(b) Now let us assume that S 4 (R) is indeed not always monotonic. Then one

possibility is that some modifications on the definition of S4 are needed in

order to construct a central function out of the entanglement entropy on

a sphere. Another possibility is that the c-theorem for d = 4 may require

physical information which is not encoded in the entanglement entropy

for a spherical region. One hint which points to this thinking is that for

d = 4 or higher, the monotonicity of Sd(R) would involve more than two

derivatives on S(R), e.g. for d = 4, it amounts to

±0,3S+ R2 2S < R9RS, (3.5.2)

while the strong subadditivity condition can only lead to the second deriva-

tive of S(R) when applied to infinitesimally separated regions. From this

perspective, it appears likely Sd(R) will also not be monotonic for d > 5.

It would be good to check this explicitly. It would also be interesting to

understand whether non-monotonic regions signal some interesting under-

lying physics at those distance scales.

4. All examples of this thesis have been on relativistic theories. It would be inter-

esting to explore non-relativistic systems and also time-dependent systems.

5. We find in holographic systems that when the difference of the central charges

of the UV and IR fixed points of a QFT is sufficiently small, then Sd is positive

and monotonic for all d.

6. In both d = 3 and d = 4 we observed first-order and second-order "phase"

transitions in Sd(R). For a first-order transition, Sd(R) has a discontinuous

jump, while in a second-order transition, Sd(R) is continuous, but not smooth.

It would be interesting to understand whether such "phase transitions" are due

to artifacts of the the large N approximation one is working with. Even if they

are, their presence should still reflect some underlying features of the system at

finite N. For example, as mentioned earlier, the transition in the GPPZ flow
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may signal the opening of a gap of the system.

3.A Details of the numerical calculation of S 3(R)

for a free massive scalar

We start with the Hamiltonian for a free massive scalar in d = 3

H = d'x [r12 + (VO) 2 + m 2 2
2J

(3.A.1)

where H is canonical momentum for 0. In terms of the Fourier transform of b and H

in the angular 0 direction

dO 0(0, r),

dOH (0, r),

b 4- i#51

H+ + ilI=

Id ef d (O, r),

r J dO eio(0, r),

1 > 0
(3.A.2)

1 > 0

the Hamiltonian then can be written as H l=_ H1 with

H1 = dr [W ± r(r9 (3.A.3)

Also note that #1, H, satisfy the canonical commutation relation

[{1 (r), fl1,(r')] = 16u' 6(r - r') .

We discretize (3.A.3) with a uniform lattice in the radial direction:

H =, U(1)2 + + #0N(j + 1) ]2 + 2
2a 2 17vj

(3.A.4)

122
+ _01(.)2]

(3.A.5)
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where a is the lattice spacing and r = ja and we introduced an IR cutoff AIR = Na.

The radius of the disk is taken to be:

R= n+)a. (3.A.6)

The Hamiltonians (3.A.5) can be written in a general form

N IN

H2 =K-1.7 ,.7 (3.A.7)
i=1 ij=1

and we are interested in the entanglement entropy S(n, N) for the subset of degrees

of freedom 0,, a = 1, 2, - n < N when the system is in the vacuum. The problem

was solved in [5] and the result can be written as follows. Decompose Q.- v'K as

A B
Q =(3.A.8)

B T C

where A has rank n and let

/3 1AiB 1 1 # /'2 = A- CB- '=3' = 1 . (3.A.9)2 'VC- VC - # 1 + V'l - 0'2

Then, S(n, N) can be written in terms of the (N - n) x (N - n) matrix E as

S(n, N) = tr [log(1 - log ] . (3.A.10)

For our case:

3 +2 2

2
12

K133= 2+ -+m2

-Kj'j+l j + 1/2 - Kj+1,j (3. A. 11)
V/j(j + 1) n
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and the entanglement entropy for a spherical region of radius R can then be written

as
00

S(R) = S1(n, N) (3.A.12)
1=-00

where S1(n, N) is given by (3.A.10) with El obtained from (3.A.11) via (3.A.9) for

each 1.

To get S1(n, N) we need the eigenvalues of Ej. It can be checked that all square

roots and inversions are well defined, and all the eigenvalues of E lie between 0 and

1. One can also show that the sum over 1 converges at fixed n, N.

For 'n = 0, S(R) entropy should have the form

- na RtN

S(R) = C1R - S3 + 0 , (3.A.13)
a (R AIA

where s3 is known analytically [93]

1 3 _(3)

S3 = - 2 log 2 - (~) 0.0638 . (3.A.14)16 ( 2r

From our numerical calculations we get for m = 0

ci = 0.4643821 s3 = 0.0635 ± 0.0004 (3.A.15)

The calculations were performed with the choice of IR cutoff N = 200. To avoid the

boundary effects from both the UV (small n) and IR (large n) cutoffs, we needed to

restrict to the range 10 < n < 45. We require 10-6 absolute accuracy for the result of

the entropy calculation in order to be able to extract S 3 (R) with satisfactory precision.

To achieve this we followed the analysis of [94] which shows that the finite volume

corrections (accounting for a finite N) go as N- 21 +'). With our choice N = 200, they

are thus negligible for 1 > 3. For 1 < 3 we determine the coefficient of the correction

by doing the calculation for several choices of N > 200 and extrapolate to infinite N.

We refer the reader to [94] for details.

At finite m, given the limited range of 10 < n < 45 (thus limited range of R) for
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which we can do calculations for a given m, we extend the range of mR by working

with different choices of m in lattice units. Since S 3 (R) can only depend on mR in the

continuum limit, data points from different choices of m should collapse into a single

curve, and they indeed do. The results are shown in Fig. 3-1 of Sec. 3.2. Choosing

1/m = 20a enabled us to cover the range 0.55 < mR < 2.25, while 1/m = 40a, 120a

cover the range 0.275 < mR < 1.125 and 0.09 < mR < 0.375 respectively. In Fig. 3-

1 one can see that in the overlapping regimes the data points agree, justifying the

continuum extrapolation of the lattice results, i.e. the S 3 (mR) determined here is

independent of the discretization.

3.B Cylinder-like solutions

In this Appendix we discuss when a cylinder-like solution minimal surface could ap-

pear. We will show that for a bounded f, the minimal surface solution is always

disk-like, while when f(z) - z" for large z, a cylinder-like solution can appear only

when n > 2.

Extremizing the minimal surface action (3.3.23) leads to the equation of motion

(d - 2) + (d - 1)P = p P'2 + a8 .(3.B.1)
f z p/2 _+

Let us first consider a bounded f, i.e. with asymptotic behavior

f(z) = fo + fz-"+-, m > 0, z -4 00. (3.B.2)

Then with a cylinder-like solution

p(z) = pO + piz, , < 0, z -+oo , (3.B.3)

in the equation of motion (3.B.1), the leading term on the left hand side (LHS) is

of order 0(1) while that on the right hand (RHS) is of order O(z,~ 2), and thus a
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solution is not possible.

Now let us consider an unbounded f(z) with the large z behavior

(3.B.4)z - 00 .0

With (3.B.3), in the equation of motion (3.B.1), the leading term on the left hand

side is

LHS = (d - 2)az-n + (d - )popiez'-2 + - - - (3.B.5)

The leading behavior on the RHS is given by

jpopi(2 - -)z-

RHS= popi(n+2a - 2) Z,-2

~z ,# > 11 +1

S> n2

Ce < n i2

Ce 1 n

(3.B.6)

Comparing (3.B.5) and (3.B.6) we find that the leading order equation can only be

satisfied for the case of the second line of (3.B.6) with

oz = 2 - n . (3.B.7)

Note that since a < 0, this requires n > 2. We also find that the equation of motion

requires
2(d - 2)a

P/9o(n - 2)(n - 2d - 4)
(3.B.8)

We thus conclude that for n > 2, a cylinder-like solution could exist with the large z

behavior given by

p(z) ± = + 2(d - 2)a
po(n - 2)(n + 2d - 4)

z - 04 .0 (3.B.9)

We notice that in (3.B.9) the coefficient before the second term becomes singular

when po - 0. This implies if there is a solution with po = 0 it should comes with

a larger power than (3.B.7). Writing for large z, p(z) = p'z' + - - - with a' < 0, we

85



again find that a solution is possible only for n > 2, for which the leading behavior

of the solution is given by

2(d - 2)a (
p(z) = zF-d (n +2) - (3. B.10)

Equation (3.B.10) describes a solution in which the minimal surface just closes off at

z = oo. Note that (3.B.10) can be considered as the po -+ 0 limit of (3.B.9) in the

following sense. Equation (3.B.9) was derived assuming that the second term is much

smaller than the first term, i.e. for

zn-2 1 _ 2(d - 2)a - n-2 (3.B.11)
po (n - 2)(n + 2d - 4) (

When po < a, equation (3.B.10) is valid in the region 1 < z < zo, while one

has (3.B.9) for z > zo. In the limit po -* 0, zo -+ oc, and thus (3.B.10) becomes

valid in the full large z region.

The solution (3.B.10) can be considered as the critical surface lying at the bound-

ary between the spaces of disk-like and cylinder-like solutions. As discussed in Sec. 3.4,

indeed it appears to control the transition point of certain "second order phase tran-

sitions" from minimal surface of disk topology to cylindrical topology.
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Chapter 4

Renormalized entanglement

entropy in the vicinity of fixed

points

4.1 Introduction and summary

For a general quantum field theory the REE can be interpreted as characterizing

entanglement at scale R. In particular, the R-dependence can be interpreted as

describing the renorinalization group (RG) flow of entanglement entropy with distance

scale. In [6], it was conjectured that in three spacetime dimension the REE for a

sphere Ssphere is monotonically decreasing and non-negative for the vacuum of Lorentz

invariant, unitary QFTs, providing a central function for the F-theorem conjectured

previously in [20,21,23--25]. The monotonic nature of S3Phere, and thus the F-theorem,

was subsequently proved in [28]. In (1 + 1)-dimension, S 2 reduces to an expression

previously considered in [56,57], where its monotonicity was also established. There

are, however, some indications [6] that in four spacetime dimensions S3 phere is neither

monotonic nor non-negative.

More generally, regardless of whether it is monotonic, REE provides a new set of
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observables to probe RG flows. 1 From REE, one can introduce an "entropic function"

defined in the space of couplings (or in other words the space of theories)

C(F) (_g"(A)) = (F-) (RA, ga (A))| IR! = S(E) (1, a (A))(4.)
A

where ga(A) denotes collectively all couplings and A is the RG energy scale. Given

that S() is a measurable quantity, it should satisfy the Callan-Symanzik equation

dS(- (RA, ga(A))
A =A 0 ,(4.1.2)A dA

which leads to

A dC(E) g(A)) -R dS( (RA, ga(A)) (4.1.3)
dA dRR=

The R-dependence of S() is translated into the running of CM(g(A)) in the space

of couplings, with R -+ 0 and R -- oo limits correspond to approaching UV and IR

fixed points of RG flows. At a fixed point g., CQ(gE ) -= sF and the monotonicity of

Sr with respect to R translates to the monotonicity of CM with respect to A.

For E being a sphere, some partial results were obtained earlier in [6, 33] for the

small and large R behavior of REE (or equivalently for C near a UV and IR fixed

point) in holographic theories. From now on we will focus on a spherical region and

suppress the superscript (E) on S and C. For a (UV) fixed point perturbed by a

relevant operator of dimension A < d, it was found that

Sd(R) = s(" ) - A(A)(puR) 2(d-A) + R , -- 0 (4.1.4)

where M is a mass scale with the relevant (dimensional) coupling given by g = Pd-A,

and A(A) is some positive constant. The above equation leads to an entropic function

given by

Cd(g) = sIvv) - A(A)g2 f (A), A - oc (4.1.5)

where gejj(A) = gA-Ad is the effective dimensionless coupling at scale A. Equa-

'See [95,96] for other ideas for probing RG flows using entanglement entropy.
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tion (4.1.5) has a simple interpretation that the leading UV behavior of the entropic

function is controlled by the two-point correlation function of the corresponding rel-

evant operator. We expect this result to be valid also outside holographic systems.

This appears to be also consistent with general arguments from conformal perturba-

tion theory [97]. It is curious, however, that low dimensional free theories defy this

expectation. For example in d = 2, as R -+ 0 [30-32]

1 1
free scalar: S 2 (R) - + + (4.1.6)

3 log (m 2 R 2 )
1

Dirac fermion: S 2(R) = - 4m 2 R 2 log 2 (m 2R 2) +-- , (4.1.7)
3

while for a d = 3 free massive scalar [98] ruled out the m 4 R 4 short distance behavior

based on numerics. 2 It is interesting that the logarithmic terms in (4.1.6), (4.1.7)

do not appear in holographic theories. The physical origin of these terms is not

fully understood, and it would be desirable to have a field theory computation that

reproduces both (4.1.4) and (4.1.6), (4.1.7).

Near an IR fixed point, it was argued in [6] that the large R behavior of S(R)

should have the form

Sd (R) () B(A)
d ( 1 R)2(-d)

- 83+ " + - - - odd d
+ oR (dd)d R -> , (4.1.8)

89g + +4 - even dTpLR) (ftR) 4  vn

where A > d is the dimension of the leading irrelevant operator, A is a mass scale

characterizing the irrelevant perturbation, and B(A) is a constant. The first line,

similar to (4.1.4), has a natural interpretation in terms of conformal perturbations of

the IR fixed point. The coefficient B(A) is expected to depend only on physics of the

IR fixed point. In terms of irrelevant coupling j = Ad-A corresponding to the leading

2Note that the relevant deformation of the massless scalar UV fixed point, <2 has dimension
A = 1, hence (4.1.4) would predict an r 41R4 behavior.
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irrelevant operator, equation (4.1.8) leads to

C(A) = s') + B(n) 2 f (A) +

sig-,(A)+--- oddd
+ ev A --+ oo, (4.1.9)

s 2 jd (A) evend

where jeff (A) = jAA- is the effective dimensionless coupling at scale A. It is amusing

that the "analytic" contributions in 1/R in (4.1.8) lead to non-analytic dependence

on the coupling while non-analytic contributions in 1/R lead to analytic dependence

on the coupling. Note the first line dominates for

d +1 odd d
< 2 (4.1.10)

d +1I even d

i.e. if the leading irrelevant operator is not too irrelevant. Note in this range B(A) >

0. The second line of (4.1.8)-(4.1.9) can be expected from (2.2.4): the contributions of

any degrees of freedom at some lengths scale f < R should have an expansion of the

form (2.2.4). Thus the coefficients se, are expected to depend on the RG trajectory

from the cutoff scale 6 to R.3

Support for (4.1.8) was provided in [6] by examining holographic RG flows between

two closely separated fixed points. In this chapter we prove (4.1.8) for all Lorentz

invariant holographic flows with an IR conformal fixed point, which is described on

the gravity side by a domain wall geometry interpolating between two AdS spacetimes

of different cosmological constant. In particular, we show that B(A) is the same as

that obtained earlier for RG flows between two closely separated fixed points; this is

consistent with the expectation that it should only depend on the physics at the IR

fixed point. We obtain a general expression for si in d = 3 in terms of an integral of

the spacetime metric over the full spacetime. With more diligence, other coefficients in

generic d dimensions can be straightforwardly obtained using our techniques, although

3 Since here we consider the R -+ oc limit s, should thus depend on the full RG trajectory from
6 to 00.
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we will not determine them here.

In addition to domain wall geometries, we also consider a class of geometries,

which are singular in the IR. These correspond to either gapped systems, or systems

whose IR fixed point does not have a gravity description (or has degrees of freedom

smaller than O(N 2 )). We will see that for these geometries the asymptotic behavior

of REE provides a simple diagnostic of IR gapless degrees of freedom.

While in this chapter we focus on the vacuum flows, the techniques we develop

can be used to obtain the large R expansion of the entanglement entropy for generic

static holographic geometries, including nonzero temperature and chemical potential.

As an illustration we study the behavior of extremal surfaces in a general black hole

geometry in the large size limit. We also show that, in this limit, for any shape of the

entangling surface the leading behavior of the EE is the thermal entropy. While this

result is anticipated, a general holographic proof appears to be lacking so far.

For d = 2,3, the monotonicity of Sd in R leads to a monotonic Cd in coupling

space, i.e. Cd is a c-function. Equations (4.1.6)-(4.1.7) show that for a free massive

field, C2 is not stationary near the UV fixed point, and neither is C3 for a free massive

scalar field, as pointed out in [98]. From (4.1.9) we see that Cd is in fact generically

non-stationary near an IR fixed point for A - d > 1 (A - d > 1) for odd (even)

dimensions. The physical reason behind the non-stationarity is simple: while the

contribution from degrees of freedom at short length scales are suppressed in Sd, they

are only suppressed as a fixed inverse power of R, and are the dominant subleading

contribution, when the leading irrelevant operator is sufficiently irrelevant. The non-

stationarity of S (or C) is independent of the monotonic nature of S (or C) and

should not affect the validity of c- or F-theorems. In contrast to the Zamolodchikov

c-function [8], which is stationary, in our opinion, the non-stationarity of C should be

considered as an advantage, as it provides a more sensitive probe of RG flows. For

example, from (4.1.9) by merely examining the leading approach to an IR fixed point,

one could put constraints on the dimension of the leading irrelevant operator.

While in this chapter we will be mainly interested in taking the entangling surface

to be a sphere of radius R, for comparison we also examine the IR behavior for a
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strip. Since the boundary of a strip is not scalable, the definition (1.2.4) has to be

modified. Consider a strip

X E (-R, R), xi c (0,), f i = 2,... , d - 1 (4.1.11)

where for convenience we have put other spatial directions to have a finite size f -+ 00.

Note that due to translational symmetries of the entangled region in xi directions, the

EE should have an extensive dependence on f, i.e. it should be proportional to ed-2.

Furthermore, for the boundary of a strip the extrinsic curvature and all tangential

derivatives vanish. Hence we conclude that the only divergence is the area term

S(p(R) = fd-2 2 -+ finite . (4.1.12)

In particular, the divergent term should be R-independent. This thus motivates us

to consider R- which should be finite and devoid of any cutoff dependent ambigu-dR'I

ities. Given that all the dependence in S on f comes from the over factor fd-2 it is

convenient to introduce dimensionless quantity Rd defined by

dS fd-2
R - -Rd(R) . (4.1.13)

dR - fd-2

This quantity was considered earlier in [22,76]. For a CFT there is no scale other than

R, hence Rd should be a R-independent constant, which can be readily extracted from

expressions in [22,61]. For a general QFT, Rd should be a dimensionless combination

of R and other possible mass scales of the system.

Calculating Rd for a domain wall geometry describing flows among two conformal

fixed points, we find an interesting surprise. The second line of (4.1.8) can be under-

stood from a local curvature expansion associated with a spherical entangling surface.

Such curvature invariants altogether vanish for a strip and thus one may expect that

for a strip only the first line of (4.1.8) should be present. We find instead find that
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Rd has the large R behavior

Rd(R) R + c(n)(AR)- 2 (A+d) .

+td(IJR) ±d +. (4.1.14)

where JIZ(R) is R-independent constant characterizing the IR fixed point, c(n) is a

constant which depends only on the IR data, while the constant td involves an integral

over the whole radial direction, signaling that this term receives contributions from

degrees of freedom of all length scales. Note that similarly to the sphere case, the

terms in the second line is the leading approach to the IR fixed point value for

A > 3d/2. Note that the terms we find come from the following terms in Sstrip(R):

Sstri (R) = -R-(2A-d-2) +...6d-2 (d - 2) Rd-2 (2A - d - 2 )A2(A-d)

- d (tR) -2(d-1) + ... .(4.1.15)
2(d - 1)Ad

It would be interesting to see, whether it is possible to identify a geometric origin for

the terms in the second line.

The chapter is organized as follows. In Sec. 3.3.1 we discuss the holographic

geometries to be considered, and outline a general strategy to obtain the large R

expansion of REE for a spherical region for generic holographic geometries. In Sec. 4.2

we consider holographic theories which are gapped or whose IR fixed point does

not have a good gravity description. In Sec. 4.3 we elaborate more on the physical

interpretation of such geometries and consider some explicit examples. In Sec. 4.4 we

consider domain wall geometries with an IR conformal fixed point. We conclude in

Sec. 4.5 with some applications of the formalism to the black hole geometry.

4.1.1 Leading small R dependence

In this section we examine the leading small and large R-dependence of Sd(R).

When R is small, the range of z covered by the minimal surface is also small.

Thus we can use the asymptotic form (3.3.5) of the function f(z) = 1 + 6f + - - -
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with 6f = (Az) 2,, and treat the deviation from pure AdS as a small perturbation.

To first order in 6f, equation (4.D.6) then again applies with g there replaced by 6f.

The calculation then becomes very similar to that of section 3.3.5, and we find the

following leading behavior

Sd(R) = S (UV) (d-1)!! a(a)(pR)" + R -+ 0 (4.1.16)d (d - 2)!! 2

with S5U") given by (3.3.31) and a(a) is given by

a() 1+2a (4.1.17)
vr (1 +) d even

Recall that for a source deformation a = d - A where A is the UV dimension of

the leading relevant operator. Equation (4.1.4) has a simple interpretation that the

leading contribution from a relevant operator comes at two-point level, and should

be valid also outside holographic systems. Also note that the sign of the numerical

coefficient in (4.1.16) is such that at this order Sd(R) is monotonically decreasing

with R.

4.1.2 Leading large R dependence for closely separated fix-

points

In the large R limit, estimating the leading R-dependent correction to the asymptotic

value Sd(R - oo) = S(IR) for a general holographic system becomes more challenging.

Here we will consider the case of two closely separated fixed points discussed in the last

subsection where we can take advantage of the closed expressions (3.3.52) and (3.3.53).

At large R, the argument xR for g(xR) is large except near x = 0, thus we should be

able to use the asymptotic expansion of g(z) for large z (from (3.3.7) and (3.3.45)),

g(z) =1 - (Az)~2 + - - . (4.1.18)
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Recall that & = AIR - d where AIR is the IR scaling dimension of the leading irrelevant

operator at the IR fixed point. Plugging (4.1.18) into (3.3.52) and (3.3.53), the 1

in (4.1.18) will give (3.3.55). To to first order in c we can write

Sd(R) = Sf(IR) + Id(R) + (C2) (4.1.19)

where

(d - 1)!! KfK 1 (1+ - - odd d
Id(R) = dx 1 . (4.1.20)

(d - 2)!! 2 JO (1 Rx) 2 & - ±... evend

In (4.1.20) the ... denotes contributions from higher order terms in (4.1.18) (repre-

sented by ... there). Now notice that the integral in (4.1.20) becomes divergent when

6 > 1 for odd d and d > 1 for even d. In fact, even if the leading term in (4.1.20)2

is convergent, higher order terms in (4.1.18) will still eventually lead to divergent

integrals (and will be more and more divergent). Physically such divergences reflect

that higher order terms in the expansion of g are more irrelevant and thus are more

sensitive to the short-distance structure near x = 0.

When (4.1.20) is convergent we find

d (R) - (d - 1)!! cK b(6) + ... (4.1.21)
(d - 2)!! 2 (jR)26

with

(1< -, d odd
b(6) 1 2. (4.1.22)

2F(P1 z <1 d even
2r(?-5)

Now using odd d for illustration, consider > -. Since the large R expansion of
2

g assumes that iz > 1, we should split the integral at x ~ g, i.e.

dxg(xR) = g(xR) + dxg(xR). (4.1.23)

Since g(z) is well defined near z 0, the first term in the above is convergent and
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is of order 0(-). Now plugging the large R expansion of g into the second term

of (4.1.23) we find the previously divergent term becomes

1 1 dx' -1
( 1 -+ (4.1.24)

(AR)2& _; AR

Similarly, the leading contribution of a term of the form z-' with n > 1 in the large

z expansion of g(z) will always be of order O(R-1 ) regardless of the value of n. We

thus conclude that for > 1
1

Id(R, 6) ~ (4.1.25)
A R

where the numerical coefficient now receives the contribution from all orders of the

large z expansion of g(z). We treat this problem with the technique of subtractions

in Appendix 4.E, and determine the prefactor of the 1 term. When 5 < I, then[i R 2'

the leading dependence is given by (4.1.21) as potentially divergent higher order

terms give only a contribution which is of order O(1) and is subleading compared

to (4.1.21).

Exactly the same can be said regarding (3.3.53) for even d except that the range

becomes & > 1 and the leading order contribution becomes of order O(R- 2 ).

We thus conclude that

SI)(d - 1)!! cK b(&) d odd
Sd (R) - d(I) + (d - 2)!! 2 (AR)25 + (C2), a < d (4.1.26)

1 d even

with b(6) given by (4.1.22), and

-1 a- > 1 (odd d)
S(R)=S + fK jR 22Sd(R) = O( 2) (4.1.27)

(ftR >1 (even d)
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where s, and s 2 are a functional of y(z):

'S (d - 1)!! A 0 zz'zsi = dz zg'(z),
(4.1.28)

S2 (d - 1)!!. 2 co d 9 Z
4(d - 2)!! d (

where the integrals are convergent for 6 > 1 and d > 1 respectively. In Appendix 4.E

we also determine the result, when & is outside of these ranges.

Note that equations (4.1.27) agree with the general expectation (2.2.14) of Sec. 2.2.

Here we find that when the IR dimension of the involved irrelevant operator is not

too large one should instead have (4.1.26), which can be considered as predictions

from the holographic duality.

Finally when 6 = for odd d and & 1 for even d, similar argument leads to
2

(d - 1)!! (K log" 5 = 1 (odd d)
Sd(R) = SIR) ± 1)!! 2 piR 2 (4.1.29)

(d-2)!! 2 5 = 1 (even d)
k(fiR)

2

4.1.3 Strategy for obtaining the entanglement entropy for a

sphere

In general it is not possible to solve (3.3.27) or (3.3.28) exactly. Here we outline a

strategy to obtain the large R expansion of S(R) (or Sd(R)) via a matching procedure:

1. Expand p(R) in (3.3.27) in 1/R as

p(z) = R - p1(z) _ p3(z) p(z) + .... (4.1.30)
R R 3  fv

Note that the above expansion applies to the vacuum. For a black hole geome-

try one should include all integer powers of 1/R as we will discuss in more detail

in section 4.5. The expansion (4.1.30) should be considered as an ansatz, mo-

tived by (4.1.8) one wants to show, but should be ultimately confirmed by the

mathematical consistency of the expansion itself (and the matching described
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below).

Depending on the IR behavior of a system, the large R expansion (4.1.30) can

contain terms which are not odd powers of 1/R. We have denoted the exponent

of the first such term in (4.1.30) as v, whose value will be determined later.

The expansion is valid for p(z) close to R, i.e. L < R etc. It is clearly valid

near the boundary (i.e. small z where (3.3.37) applies), but depending on the

configuration of the minimal surface it may also apply to regions, where z is

not small, as far as higher order terms in (4.1.30) remain small compared to R.

2. Determine the IR part (i.e. in the region where (3.3.6) or (3.3.8) applies) of the

minimal surface in a large R expansion. This has to be done case by case, as

the IR expansions are different for different IR geometries.

3. Match the two solutions in the appropriate matching region. At the end of the

matching procedure all free constants get determined including cd(R) of (3.3.37).

See Fig. 4-1 for an illustration of the matching procedure and in Fig. 4-2 we show

how the minimal surfaces look for different IR geometries.

Figure 4-1: Sketch of the R -+ oo minimal surface in a domain wall geometry (3.3.2)-
(3.3.6). The violet and red regions represent the UV and IR regions of the expansion.
The UV and IR solutions overlap in the matching region, which is used to determine
the parameters of the two expansions.
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(a) Minimal surface for a gapped geome-
try (3.3.8) with n > 2.

3 -2 -1 I 2 3 P

5-

10 -

15-

(b) Minimal surface for a scaling geometry
with 0 < n < 2.
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(c) Minimal surface for a domain wall geom-

etry with IR geometry given by (3.3.6).

Figure 4-2: Samples of minimal surfaces for

categories.

P

(d) Minimal surface for a Schwarzshild black
hole. The beyond the horizon region is
marked by gray.

IR geometries that fall into four different

From (4.1.30) we see that cd(R) in (3.3.37) takes the following expansion

b1  b3  b___
dR dR3 dRV

(4.1.31)

where b, and b are some R-independent constants. It follows from (3.3.38) and (1.2.4)

that a term proportional to 1/R' in (4.1.31) contributes to Sd a term of order

1/Rn-d+1, whose coefficient contains a factor (n - 1)(n - 3) - - (n - (d - 2)) for odd d,

or (n - 1)(n - 3) ... (n - (d - 3)) for even d. Thus, among the integer powers of 1/R

in (4.1.31), in odd d the first possible nonvanishing contribution to Sd comes from

bd giving a term proportional to 1/R, and in even d the first possible nonvanishing

contribution comes from bd_1 giving a term of order O(R). Furthermore, the terms

in (4.1.31) with odd integer powers will only give rise to odd inverse powers of R in
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odd dimensions and even inverse powers in even dimensions, as in the second line

of (4.1.8). Finally from (3.3.38) and (1.2.4), a term proportional to R-" in (4.1.31)

gives a contribution

Kb f 2 + )

(d - 12 )P i A 2 ]p(d+l-v)

odd d

even d
+ - - - . (4.1.32)

4.1.4 UV expansion

We now examine more explicitly the UV expansion (4.1.30) for the sphere, which is

the same for all geometries of the form (3.3.2). The IR expansion and matching will

be discussed in later sections case by case.

The equation for pj(z) can be written as

zd-l (''
Sd- d-1P / Si

(4.1-33)

where si denotes a source from lower order terms with, for example,

d - 2
S, f

(4.1.34)

The equation for p1 can be readily integrated to give

p1 (z) = biphom(z) - (d - 2) / z d-1 uo,Idu Idv
Jo fu J3 vdl Vf (V)

where b1 is an integration constant and Phm is the homogenous solution to (4.1.33)

(4.1.36)Ph.( 
z du d-1

O f(u)

In particular because its unique R-dependence there are no source terms for ,(z),

thus it takes the form:

#(Z) = bPhom(Z) . (4.1.37)
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As z -+ 0, p1 and 3 has the leading behavior (for d > 2)

p1 (z) = 0(z 2 ), p(Z) = - zd + ---
d

Note that the normalization of Pham in (4.1.37) was chosen such that the contribution

to cd(R), read off from (4.1.38), gives the term appearing in (4.1.31).

4.2 Gapped and scaling geometries

In this section we consider the large R behavior of the REE for holographic systems,

whose IR geometry is described by (3.3.8). As mentioned below (3.3.8) there is an

important difference between n > 2 and n < 2, to which we refer as gapped and

scaling geometries respectively. For comparison we will treat them side by side. We

will first consider the strip and then the sphere case.

4.2.1 Strip

In (3.3.17) to leading order in large zt, we can replace f(z) in the integrand by its

large z behavior f(z) = az", leading to

[1 d-1

R(zt) = z I dv V -
:0o Va(ztv)n(1 -V2a-1))

with
'2 VT F (+ !Z)

2 =4
(2 - n) F()

For small zt we can replace f (ztv) in (3.3.17)

R(z) = + --
d

=-z +I- - ,Z + 00 (4.2.1)

2 - n

d - I

by 1 and thus

zt -+ 0 .

For n > 2, the function R(zt) then goes to zero for both zt -+ 0 and zt -+ oc, and
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thus must have a maximum in between at some zma). Introducing

Rmax = Z (max) [ d1 vd-1 (4.2.4)R mf (za" v)v)(1 
- V2(d-1))

we conclude that for R > Rmax there is no minimal surface with strip topology.

Instead, the minimal surface is just two disconnected straight planes x(z) = ±R. The

minimal surface area is independent from R due to the translational symmetry of the

problem. We conclude that for n > 2 in the R -+ oo limit S becomes independent of

R, hence Rd(R > Rmax) = 0. For n = 2, R(zt) -+ const at large zt, and again in this

case there is no minimal surface of strip topology and Rd(R > Rmax) = 0

For n < 2, inserting (4.2.1) into (3.3.21) we find that

Ld-1 02
Rd= +() ... oc R-,3 0<n<2 (4.2.5)

2GN (aRn

with
d-1 n

#3=n = - . (4.2.6)
2 - n 'T

This result also applies to a hyperscaling violating geometry (3.3.11), and agrees with

the scaling derived in [74].

4.2.2 Sphere

Since for d = 2, the sphere and strip coincide (the answer is then given by (4.2.5)),

we will restrict our discussion below to d > 3.

IR expansion

We first consider the behavior of the minimal surface in the IR geometry (3.3.8).

Plugging f (z) = az' into (3.3.27) we notice that if ,i(z) satisfies the resulting equation

with a = 1, then

p(z) = p (a-iz) (4.2.7)
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satisfies (3.3.27) for any a.

scaling

Furthermore, equation (3.3.27) is invariant under the

-- z -+ Az , (4.2.8)

which implies that if p(z) is a solution to (3.3.27), so is pA(z) = A p(A-'z).

Solutions of two different topologies are possible. As discussed in [6], for n > 2, in

the large R limit the minimal surface has the topology of a cylinder, while for n < 2,

the minimal surface has the topology of a disk. See Fig. 4-2a and Fig. 4-2b.

For a solution of cylinder topology (i.e. for n > 2) the IR solution satisfies

p(z) -+ Po, >p,(z) -4 A 2Po, z -+ 00 . (4.2.9)

Introducing a solution pc(z) to (3.3.27) with a 1, which satisfies the condition

P (z -+ 00) 1, (4.2.10)

we can write a general p(z) in a scaling form

p(z) = poPc(V), v = (p2a)L-2z (4.2.11)

From (3.3.27), p(z) has the large z expansion (see also Appendix C of [6])

z -+ 00, (4.2.12)

For a solution of disk topology (i.e. for n < 2), there should exist a zt < oo, where

(4.2.13)

Now introducing a solution Pd(z) to (3.3.27) with a = 1, which satisfies the boundary

condition pd(1) = 0, we can write p(z) in a scaling form

z (2-n)/2

p (Z) = z- rPd (U) , with
z

U E ,Pd(U1)0

103

2(d - 2)
poa(n - 2)(n + 2d - 4)

zt = z(p = 0) or p(zt) = 0 .
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Note that by taking zt sufficiently large, u can be small even for z >> zCO, where (3.3.8)

applies. Expanding pd in small u one finds that

pd(U) d o + CU2-n ± 2 2(2-n) +
_do Moa0

+ 2 udn/2 , u -+ 0, (4.2.15)

where q was introduced in (4.2.2) and

d) = - 2(d - . (4.2.16)
(2 - n)(2d - 4 + n)

do and h are numerical constants that can be obtained by numerically solving the

equation of motion. Using (4.2.15), we then get the expansion for p(z):

p(z) ='+ z2-n + 2(2-n) +--
aa + a2a3

+ ih2 zd-n/2 + - (4.2.17)

0

with
do z (2-n)/2

Ceo = .- (4.2.18)

This is all the information we need about the IR solution. Note that the above

expansion applies to the range of z, which satisfies

z
z >> zC0 , -<1 . (4.2.19)

The small u expansion (4.2.15) is singular for n = 2, as can be seen from (4.2.16).

Hence the n = 2 case should be treated separately, see Appendix 4.A.
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Matching

We first examine the UV solutions (4.1.35) and (4.1.37) for a sufficiently large z so

that (3.3.8) applies. At leading order in large z, we then find that

P1 (Z) = z du Ud1 b1 +(d -2) 00dv
o yf (U)J Vd- I ffV

b,(I + . 2(d -2) z2-n (1 + .. .)(4.2.20)
v/,a d - n/2 (2 - n)(2d - 4 + n) a
b zd-n/2

p(z) = (d1- (1+...). (4.2.21)
/a d - n/2

Plugging (4.2.20) and (4.2.2 1) into (4.1.30), we see that to match the UV expansion

with the n > 2 solution (4.2.12) at large z, we require

bi = b = 0, po = R. (4.2.22)

We see that the UV expansion in fact directly matches to the behavior at z -+ 00

without the need of an intermediate matching region. Thus in this case the UV

expansion (4.1.30) can be extended to arbitrary z without breaking down, which can

be verified by showing that higher order terms are all finite for any z. This is also

intuitively clear from Fig. 4-2a where for large R the minimal surface has a large

radius at any z. Note that, since b = 0, the non-integer v term in (4.1.30) is not

present.

For n < 2, where the minimal surface has the topology of a disk, the UV expansion

is destined to break down at certain point before the tip of the minimal surface

is reached. In the region (4.2.19) both the IR and UV expansions apply, and by

comparing (4.2.20) and (4.2.21) with (4.2.17), we find that they match precisely

provided that

ao = R, b1 = 0, b= -d - -ha' , v = - . (4.2.23)
2 7
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From (4.2.18) we conclude that zt scales with R as

2

zt ~ R--n R -+ o. (4.2.24)

Again, the story for n = 2 is discussed in Appendix 4.A with equation (4.2.24)

replaced by

zt exp (- 1)2) R2 . (4.2.25)
2(d - 2)

Asymptotic expansion of the REE

We will now obtain the leading order behavior of the REE in the large R limit.

1. n > 2

Let us first consider n > 2. From the discussion below (4.1.31), we expect the

leading order term for odd d to be proportional to 1/R, which comes from the 1/Rd

term in the expansion of Cd. For even d, the leading term can in principle be 1/R 0 ,

which comes from the 1/Rd-i term in the expansion of cd. Note, however, since this a

gapped system, we expect the order 1/fR term to vanish. So, for even d, the leading

term should come from the 1/Rd+l term.

Since even for d = 3 we would need to know c3(R) to 1/R 3 order, and we only

worked out p, (which only determines c3 (R) to 1/R), our results seem insufficient to

determine the 1/R contribution to S3. However, the 1/R contribution to S3 can be

obtained by directly evaluating the on-shell action [33], as the 1/R piece is the next

to leading term in the large R expansion of S. For d = 4, we can use p1 to verify

that the 1/fR term (in the REE) vanishes as expected for a gapped system. With

due diligence, it is straightforward to work out higher order terms, but will not be

attempted here.

For d = 3, plugging (4.1.30) into (3.3.23) we have the expansion

/_ _ _ 1 I' [ (z) , 2 _ p1 (z)z+ -zp' z 2_ (A ftjdz ±-Iz P, z) Z) +
fz2 /f(z) tRJ e 2z2  f(z ) R3

=# R + dz I 2z2) p'((z) , (4.2.26)
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where in the second line we have used (4.1.33). Integrating by parts the second term

in the integrand we find that

1
A=#R- -I

R
I Cf(z)dz 2 P1(Z)

0 2z 2
(4.2.27)

where the boundary terms vanishe due to (4.1.38) and (4.2.12). We thus find that

dvA=#R-
2R

+- 1z )
+ a , - o d f ( z )

S -v)2

v 2 f (V)
(4.2.28)

It is desirable to make work with dimensionless coefficients that only depend on ratios

of scales. We can use

A f al/l

as an energy scale and define the dimensionless coefficient

fCC z2[ ~.oo i]-
sI ft ai = dz ]dv

10 V(z _I) z v 2 Vf (V1A)

(4.2.29)

2

(4.2.30)

where all integration variables are dimensionless, and si only depends on ratios of

scales, e.g. (ft z 0O). Finally, we obtain

S 3 - s 1 K

pR
n > 2 . (4.2.31)

This result agrees with those in [33]. It is interesting to note that the coefficient of

1/R term depends on the full spacetime metric, i.e. in terms of the boundary theory,

the full RG trajectory.

For d = 4, the expansion of A has the form

A = aoR2 + a2 + O(1/R 2 )
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where

ao = dz 13  f ,z)' a2 = dz f (zV ( ) (4.2.33)
J zs f6z)J 2z3 fz

with 6 a UV cutoff. Neither of the first two terms indicated in (4.2.32) will contribute

to S 4 after differentiations in (1.2.4). As expected, ao ~ 1/62 is UV divergent. a 2

contains a logarithmic UV divergence log 6p, where p is mass scale controlling the

leading relevant perturbation from the UV fixed point. At large z, from (4.2.20)

and (4.2.22) p1 ~ z 2 -,, hence the integrand for a 2 goes as ~ z-1-3n/2 , and the

integral is convergent at the IR end. An IR divergent a 2 would signal a possible log R

term. Thus we conclude that the leading order contribution for d = 4 is of order

1/R 2 , consistent with our expectation that the system is gapped.

2. n < 2

For n < 2, b in (4.1.31) is nonzero and its contribution to Sd can be directly

written down from (4.2.23)

K O(R- 1) d odd
Sd = e n -, + ,(4.2.34)

a-R 3  O(R- 2) d even

where y and 3 were defined in (4.2.2) and (4.2.6) respectively, and

h - n/2 g .1v/ n d odd
en = x . (4.2.35)

n F !1 2F (I - d even

For n= 2 the first term in (4.2.34) should be replaced by (see (4.A.9) and Ap-

pendix 4.A)

Snon ic) oc (a R2) t exp (d - 1)2 a R2) __ d - 3 [1 . (4.2.36)
\ 2(d - 2) J 2 2

Below for convenience we will refer to the first term in (4.2.34) (or (4.2.39)) as

"non-analytic", while terms of inverse odd powers in odd dimensions (and even inverse
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powers in even dimensions) as "analytic." Note that the non-analytic term is the

leading contribution in the large R limit when

2 d odd
n < n. d(4.2.37)

4 d even
d+1

in which case one can check that the coefficient e, is positive. In Fig. 4-3 we plotted

en for d = 2, 3 and 4. Note that for odd d, en diverges as n -+ ne, while for even d it

stays finite.4 Despite appearances the numerical factors multiplying h in (4.2.35) do

not diverge at n ne, hence the features described in Fig. 4-3 are caused by h.

e,

4-

d= 3

.0 02 0I4 0! 0.8 1!0 . . n

Figure 4-3: en plotted as a function of n for d = 2, 3 and 4.. The vertical dashed

lines indicate n,. (4.2.35) consists of numerical factors and h, which is a constant

determined by the IR solution, Pd. h was obtained by numerically determining Pd
and fitting the small u expansion (4.2.15). For d = 2 we know the exact answer

from (4.2.5); the data points lie exactly on the analytically determined curve. For

d = 4 the dotted part of the line is an extrapolation of the solid line; we do not have

reliable numerical results in that region for h.

Let us consider the n --+ n, limit of (4.2.34) for odd d. Because en diverges as

n -+ ne, in order for (4.2.34) to have a smooth limit, we expect the coefficient of the

1/R term in (4.2.34) to diverge too, in a way that the divergences cancel resulting in

a logarithmic term

Sd = log R + --- , n = , d odd . (4.2.38)
R d7

4 For d = 2 apart from the numerical results, we can analyze the analytic answer given in (4.2.5).
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The coefficient of the logarithmic term is given by the residue of (4.2.35) in the limit

n -4 n,. In contrast, for even d, en is finite at n = n,. Thus, the leading term

will simply be of order 1/R 2 with no logarithmic enhancement (there can still be

logarithmic terms at higher orders).

For d = 3 one can calculate the coefficient of 1/R term in (4.2.34) similar to n > 2

case discussed. See Appendix 4.B for a derivation. One finds

K Ks1S3(R) = en K2 + Ks +- , (4.2.39)
R)2-_ AR

where si is given by (4.2.28) for n > 1, and for n < 2 by

1 dz ( 2 0I dv 2 . (4.2.40)
/ z v2 / (2+n)2 z 3n/ 2

In this case, we can work out explicitly how the divergence in the limit n -* n,

cancels between the coefficients of the analytic and non-analytic pieces. Note that

the divergence in si comes from the second term in the integrand in (4.2.40)5

3
=- 8(2/3 . . (4.2.41)

8 (2/3 - n)

The numerical results presented in Fig. 4-3 are consistent with the behavior

3
en = .3 , (4.2.42)

8 (2/3 - n)

to 1% precision. Plugging into (4.2.39) then gives

27 logftR #
S 3(R) = K ~7+l+g-A- - . (4.2.43)

32 uR R

We can perform the same calculation with n = 2/3 fixed from the beginning, and we

get the same result, see (4.B.14).

5 At first sight it seems puzzling that the divergence comes from the UV region, z = 0. However,
this is just an artifact of the subtraction we chose.
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4.2.3 Discussion

We now briefly summarize the results by comparing between the strip and the sphere,

and between n < 2, n > 2 and n = 2 geometries.

The presence of analytic terms for the sphere can be expected from the general

structure of local contributions to the entanglement entropy [6, 39], which implies

the existence of terms of the form 1/R + 1/tR3 +-- ... for odd dimensions and 1/R 2 +

1/R"+- - - for even dimensions. Note the coefficient (4.2.28), (4.2.40) of the 1/R term

in (4.2.31) and (4.2.39) depend on the full spacetime metric and thus the full RG

trajectory. This is consistent with the physical interpretation that such coefficients

encode the contributions from degrees of freedom at all shorter length scales compared

to R.6 For a strip, other than the area, all curvature invariants associated with the

entangling surface vanish, and thus the analytic terms are altogether absent.

For n < 2 geometries, non-analytic terms are present for both the strip and the

sphere, and have the same scaling. We note that the non-analytic terms (including the

coefficients) are solely determined by the IR geometry. From the boundary perspective

they can be interpreted as being determined by the IR physics. The presence of

these non-analytic terms (despite the fact that they could be subleading compared

to analytic terms) imply that the IR phase described by (3.3.8) is not fully gapped,

and some IR gapless degrees of freedom are likely responsible for the non-analytic

scaling behavior. For this reason we refer to such geometries as scaling geometries.

Note that due to the singularity at z = oc, we should view the region (3.3.8) as

describing an intermediate scaling regime. It likely does not describe the genuine IR

phase, which depends on how the singularity is resolved. Thus our discussion above

should be interpreted as giving the behavior of S(R) for an intermediate regime. We

will see some explicit examples in the next section.

In contrast for n > 2, there is no non-analytic term and we expect the dual system

to be fully gapped in the IR.

For n = 2 the strip and sphere entanglement entropies show different behaviors

as emphasized recently by [99]. For R -+ oc the minimal surface for a strip is discon-

6 in (4.2.28), (4.2.40) the upper himits of the integrals are oc, as we are considering R -+ oo limit.

111



nected, and hence there is no non-analytic term in the expansion of Rd. However,

for a spherical entangling surface the topology of the minimal surface is a disc, and

Sd contains an exponentially small term (4.2.36). In next section, by examining the

spectral function of a scalar operator, we argue that an n = 2 geometry describes a

gapped phase, but with a continuous spectrum above the gap.

4.3 More on scaling geometries

In this section, we discuss further the properties of a scaling geometry with n < 2 by

examining the behavior of a probe scalar field. We show that the system has gapless

excitations in the IR. We emphasize that here the term IR is used in a relative sense,

i.e. IR relative to the UV fixed point. The understanding of "genuine" IR phase of

the system depends on how the singularity at z = oo is resolved. In this sense, the

scaling region (3.3.8) should be considered as characterizing an intermediate regime,

and our discussion of the entanglement entropy of the last section and correlation

functions below should be considered as applying only to this intermediate regime.

In the second part of this section we consider some explicit examples, where a scaling

geometry arises as an intermediate phase.

4.3.1 Correlation functions

Consider a probe scalar field in a spacetime (3.3.2) with (3.3.8). A similar analysis

was done in [72] for two specific flows in d = 4 dimensions with n = 3 and n =

2 respectively, 7 and more recently in [74] in the context of hyperscaling violating

geometries.

The field equation for a minimally coupled scalar in momentum space can be

written as

f'(z) d - I m2 + k 2z 2

#"() 4'z)- (z) =0 , (4.3.1)
(Zhe2f(z) z czr f2f (Z) Oere

7There the scalar fields of interest mixed with the metric, here we assume no mixing.
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where k is the energy-momentum along the boundary spacetime directions and k2

r7ukfkv.

First, consider the gapped case, corresponding to n > 2. For z - oo the two

allowed behaviors for the scalar field are:

2k2

12- 2 z-(n- 2 ) + (4.3.2)
(n - 2)(2d + n - 4)

_ -dn/2_ 2k2  zd-n/ 2 -(n- 2 ) + --- (4.3.3)
(4 + 2d -3n)(-2 + n)

where we have set a =1 for simplicity of notation. The null energy condition requires

that n/2 < d [74], hence only 0+ is regular. Near z -+ 0, the normalizable solution

Onorm(Z) can be written as a linear superposition of 0+, i.e. #norm(Z) = A+(k)o+ +

A_(k)#_ where A+(k) are some functions of k 2 . Requiring both regularity at z -* oc

and normalizability at the boundary then leads to A_(k) = 0, which implies that

the system has a discrete spectrum. This is in agreement with the findings of [72] in

specific examples, and is consistent with our discussion at the end of last section that

such a geometry should be describe a gapped theory.

For n = 2, in the scaling region (4.3.1) can be solved analytically

(m)-(d-1)/2 m d - 1 2

0+ = I Iv- 2, (4.3.4)

where I is the modified Bessel function of the first kind. For k 2 
< _A 2, i/ is imag-

inary and 0+ behave as plane waves near z -4 oo. Then following the standard

story [100], choosing an infalling solution leads to a complex retarded Green func-

tion and a nonzero spectral function. We thus conclude that in this case, there is

nonzero gap A - d and the system has a continuous spectrum above the gap. The

presence of a continuum above a gap is presumably responsible for the exponential

behavior (4.2.36) in the entanglement entropy.

Now we consider n < 2. For k 2 < 0 and z -+ 00, the solutions to (4.3.1) have the
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"plane wave" form

b+ -+ z(d-1)/2 exp [ 2v/-k2 z(2-n)/2]
. 2 - nI

(4.3.5)

Thus in this case one finds a continuous spectrum all the way to k2 - 0_.

corresponding spectral function can be extracted from [74]

p(k2 ) = Im GR(k 2 ) o (Vk2)7,
2d - n

2 - n

The

(4.3.6)

This continuous spectrum should be the origin of the "non-analytic" behavior in (4.2.34)

for a sphere and (4.2.5) for a strip. It is also interesting to note that the exponents

# in (4.2.5), (4.2.34) and -y in (4.3.6) satisfy a simple relation

-y = + d . (4.3.7)

It would be interesting to understand further the origin of such a relation.

4.3.2 Explicit examples: near horizon Dp-brane geometries

We now consider the near-horizon Dp-brane geometries [101], which exhibit the scal-

ing geometry (3.3.8) in some intermediate regime. EE in these geometries was an-

alyzed previously in [74]. While these geometries are not asymptotically AdS, our

earlier result for the non-analytic term in (4.2.34) is nevertheless valid, since it only

relies on the geometry of the scaling region. We will focus on this leading non-analytic

contribution in 1/R.

The near horizon extremal black p-brane metric in the string frame can be written

as

1 r \ )/2 r -(7-p)/2
ds a =- "2  N -

string,1O \/q*N is ( ' is

elo = g (gN)-(p- 3)/ 4 (r) (p-3)(,-p)/4
is

[dr2 + r 2dQ2(4.].8)

(4.3.9)
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where g and i, are the string coupling and string length respectively. As we will only

be interested in the qualitative dependence on R and couplings, here and below we

omit all numerical factors. We will restrict our discussion to p < 5, for which a field

theory dual exists. After dimensional reduction and going to the Einstein frame, the

metric can be written as (see also [74])

d 2  
- (yN) l2 [ 2sEinstein,p+2 z 2

s y ± gN2

which is of the same form as (3.3.2) and (3.3.8) with

2(p - 3) 2

(9 - p)

In our convention, the bulk Newton constant is

metric (4.3.10) is valid in the range [101]

(gN)-(9-P)/2 < )

GN 2 ld- 1 = N-2(gN) 2 l -1 . The

« N 7 (9 )/2 (4.3.12)

The LHS condition comes from the requirement of small curvature, while the RHS

imposes small sting coupling (dilaton). For p = 1, 2 as z is increased the system

eventually settles into a CFT with degrees of freedom of order O(N) and O(N2)

respectively, while for p = 4, 5 the system is eventually described by the free U(N)

Yang-Mills theory (i.e. with O(N 2 ) degrees of freedom) as z -a oc.

For our analysis of the previous section to be valid, zt should lie inside the re-

gion (4.3.12). For both strip (4.2.1) and sphere (4.2.24) we have zt ~ (VaR)2n

which then leads to
2(5-p)

<gN (4.3.13)
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(z/js)2(p-
3)2/( 9 -p)

(4.3.10)

1

2
7

0

2

(2

p

p

p
p

p

=3 , a
gNln"

(4.3.11)

=5

I R 3-p
< -R

gN is



Now plugging (4.3.11) into the "non-analytic" term in (4.2.34) for sphere (or simi-

larly (4.2.5) for strip) we find that

S oc N2 A-P(R) (4.3.14)

where Aejj(R) is the effective dimensionless t' Hooft coupling at scale R,

Aef f(R) = gN (R) 3-P. (4.3.15)
is

In terms of Aejj equation (4.3.13) can also be written as

1 < Aeff(R) < N7- . (4.3.16)

For p = 1, 2, Aeff increases with R but appears in S with a negative power. For

p = 4, the opposite happens. In all cases S decreases with R. The p = 5 case, for

which n = 2, has to be treated differently and one finds from (4.2.36)

S Coc N2exp - 2 . (4.3.17)
(gN) 3/ 2 Aej f(R)9/ 2  8Aeff (R)

4.4 Domain wall geometry

We now consider the large R behavior of the REE for holographic systems, whose IR

geometry is described by (3.3.6), i.e. the system flows to a conformal IR fixed point.

We will again consider the strip story first.

4.4.1 Strip

Again we start with (3.3.17) which can be written as

j [ I V d-1
R(zt) =_ - ad+ - & V -d(4.4.1)

vz 1 JO y/1-V2(d-1)) f~zo
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with

ad v~ (2($-1))
a = .(d 1 (4.4.2)

r(2(d,-1)

The leading behavior in large zt limit of the integral in (4.4.1) depends on the value

of

S=n-d . (4.4.3)

For & < 4 we can directly expand f(ztv) using (3.3.7)2

___ 1
_ - f(= ~+ + - (4.4.4)

f ( zev) 2foo(=ZtV)2&

and find

R(z,) z ad+ (b) 2&±] (4.4.5)
VTZ~ (pzt)2

with
~/J(d-2&

bd = -26 (4.4.6)
2fco (1 -2&) 17 -

Note that bd is positive for any d > 1. For ;> 4, the term on RIIS of (4.4.4) leads to

a divergence in (4.4.1) near v = 0 and should be treated differently.8 In particular, the

divergence indicates that the leading contribution should come from the integration

region v < 1. We will thus approximate the factor 1/ 1 - v 2 (d- 1 ) in the integrand

of (4.4.1) by 1, leading to

R( zt) = t ad + -+ (4.4.7)

where

bd = du ud-( -1 . (4.4.8)

8Notc that even for & < , higher order terms in the expansion on the RHS of (4.4.4) can

similarly lead to divergences. They can be treated similarly as for 6 > d, and give rise to higher
order terms compared to the second term of (4.4.5).
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Inverting (4.4.5) and (4.4.7) we find from (3.3.21)

d-1 a d-1 I + (d -1)P ( R + ( d
=x 1 (d ad ad (4.4.9)

2GN ( ~Zb ;R d

We discuss the physical implication of this result in Sec. 4.4.3.

4.4.2 Sphere

With (3.3.6) as z -+ oo the system flows to a CFT in the IR, and, as discussed in [6],

to leading order in the large R expansion the REE Sd approaches a constant, that

of the IR CFT. Here we confirm that the subleading terms have the structure given

in (4.1.8).

IR expansion

Since the IR geometries approaches AdS, in the large R limit the IR part of the

minimal surface should approach that in pure AdS. In particular, in the limit R -+ 00,

we expect most part of the minimal surface to lie in the IR AdS region, hence the IR

solution z(p) can be written as

z(p) = zo(p) + zi(p) +.-. , zo(p) = /f. (R 2 - p2) . (4.4.10)

zo(p) is the minimal surface with boundary radius R in a pure AdS with f = f".
z1 and ... in (4.4.10) denote subleading corrections which are suppressed compared

with zo by some inverse powers of R. Below we will determine the leading correction

zi(p) by matching with the UV solution.

Plugging (4.4.10) into (3.3.27), and expanding to linear order in zi, we find that

(d - 2)R2 - 2p2 (d - )R2 S
1 p( R2. _ '2) (R2 _ p2)2 (P

118



where the source term s(p) is given by

I -

fZ-' (d - I)R 2 + ( )p2
S (p) =;2je (.R2 _ P 2)3/2+&

(4.4.12)

The homogenous equation, obtained by setting s(p) to zero in (4.4.11), has the fol-

lowing linearly independent solutions

R

VjF2 R 2 -_
2

2 -1+Q p2 R_2

02 = (R-p)
2

-,/v2 p R
2

_p
2

5(R 2+2p 2 ) 15 R arctanh R2p2
8P 8 NR 2 _p 2 R

(4.4.13)

(d =3)

(d 4) (4.4.14)

(d 5)

3R
2p)R 2 -p 2

10'2 - O'IR2 R-
v/2

5RV/R2_,2
4p3

(d =3)

(4.4.15)(d = 4)

(d = 5)

Note that there is an expression for 02 in terms of hypergeometric functions for all

dimensions, but we find it more instructive to display explicit expressions in various

dimensions. The final results will be written down in general d. #1 is singular at

p fR, while 02 ~ is singlar asp - 0 (for d = 3, there is a logarithmic

divergence) with W - - R d-
3 Also note that

+ -1

dd-4d 62
W -+ -

85 R '
R - p <

R
(4.4.16)

In order for z(p) to be regular at p = 0, zi should be regular there, and can be

written as

zi(p) = cR#(p) + 01(p) dr (r) -+ 02 (p) dr VV(rs(r)
jp Wfr H ~

(4.4.17)
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where c is an integration constant. Note that the first integral above is convergent in

the upper integration limit only for & < 1. For & > 1 some additional manipulations

are required. For example for 1 <& < 2, we should replace the first integral by

0 1 (p) [f Rdr (r)(r - + cjR (4.4.18)
W(r) A2&R&(R - r)j (6z - 1) ( R)25 J&-i

where ci is the numerical constant appearing in the limit (s(r) C +-c--)

as r -+ R, and is given by

2- fk2-s-2 + d +- )
-C, 2 ~- d + (4.4.19)ci = d

For & > 2 further subtractions may be needed. We will not write these separately, as

they are irrelevant for our discussion below.

Matching

The IR expansion (4.4.10) and (4.4.17) is valid for z > zO0 , where (3.3.7) applies.

For sufficiently large R, this includes the region where

R p < 1 Rv > zco, ' ,-.- (4.4.20)
R

where the -.. on the right hand side of the second inequality includes all other scales of

the system. The UV expansion we discussed earlier in Sec. 4.1.4 applies to the region

6 < 1. Thus the IR and UV expansions can be matched for p satisfying (4.4.20).

Let us now consider the behavior of (4.4.17) in the overlapping region (4.4.20).

The first integral gives

011(p) dr 02(r) s(r) = d±R (I + 0(6)) , (4.4.21)
P W (r ) (AR )2j,

where for all &

(d - 2 + &) (2f,) 1 /2-(
i= - 21-)d(4.4.22)

2(1 - )d
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The second integral in (4.4.17) gives

/2(P) dr W(r)s(r)= d2R ( (1 + 0()) + hR ( (1 + 0(6)) (4.4.23)
J0 W~) (A) 25(A~R)

2 5

where

d- d 2 + 6 (2f ) 1/2-5 h = fi/2-5 2 (d-23)/2g F (d)

d(d -- 2 + 26) 00d sin ({+2 6) 2 2{-6U( 6
(4.4.24)

Putting the two expansions together we get:

cR 31/2- e

zi(p) = + d3R 2 &(1 + O(6)) + hR 2 (1+0(6)) , (4.4.25)
v/26 ([tR)2& (fiR)2

where

d3 = - (2fco) 1/2-& (4.4.26)
2(1 - 6)(d - 2 + 26)

One could consider the next order in the IR expansion, i.e. including a z2

in (4.4.10). The equation for z2 only differs from (4.4.11) by having a different

source term, and the corresponding terms in (4.4.25) coming from the source will

be proportional to (AR)- 4 &. Similarly, the corresponding terms at the nth order are

proportional (AR) 2n

Now including zo in the region (4.4.20), we have the expansion

z(p) cd3 1 h 6 (d+25-2)/2

+ V2f 6 + + + +
R 4 f6 ft2 Rv)2& 2fo (fR Vfj)2 &

(4.4.27)

Clearly we have a double expansion in terms of 6 and inverse powers of AR V1 6. The

consistency of the expansion also requires that the constant c have the scaling

c = (4.4.28)
(1R)2
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with a now an O(R) constant. Now inverting (4.4.27) we find that

z2

= 2fooR 2

C
+ d4 Z2 1 ~ zd

2foo R2 (iz)
2
& - 2& d-2+

which can be considered as a double expansion in z/R and 1/(ftz) and

d4 = d -2 + & I
(1- )(d - 2 + 26z)'

h = 2h(2f,d)- 2

Now consider (4.1.35) with z large, with f(z) given by (3.3.7). We find that pi

can be expanded as (see Appendix 4.C for details)

p1 (z) = zd ± ( + - - ) + z a(Az) -25
d j 2foo 2foo (±z)4

(4.4.31)

Note the above equation applies to all &, but the expression for constant 'y depends

on the range of &. For example, for & > 1,

f = 0 du (d - 2) _ d-1

0 1 vf(u) I C -0 dv 1 - oU vd-1 Vf (v) f00J

At higher orders in 1/R, it suffices to determine the leading term:

Pn(Z) b zd +---
d f 0 o

Using (4.4.31) and (4.4.33) in (4.1.30) we find that

6= b, zd(I+-- -+ z2(
dVj~R2 2fooR2

bZd

dVf f Rv
(4.4.34)

Comparing (4.4.34) with (4.4.29) we find they match provided that

b1 =0, = - 2 b= -df ,
h

v = d + 25 - 1 .
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(4.4.30)

(4.4.32)

b z d +
df 0

(4.4.33)

(4.4.35)

4a(z) -2&+ --- )+ +-
R2



Asymptotic expansion of REE

With I and v given by (4.4.35), from (4.1.32) we find the leading "non-analytic"

contribution in Sd is given by

I (d - 1)!. f -5d
Sd - 2KI- --- K! b(1 ) - - (4.4.36)

2 (d - 2)!! (j#R)2 a

with

d odd
KIR - Kf-(d-1)/2, b(6) = -. (4.4.37)

d even

This above expression agrees with that obtained in [6] for two closely separated fixed

points, which we review and extend in Appendix 4.E. As discussed in the Introduction

this can be anticipated on the grounds that the coefficient of the non-analytic term

should depend only on the physics at the IR fixed point.

As discussed earlier our UV expansion (4.1.30) was designed to produce the second

line of (4.1.8), and the fact that the UV expansion is consistent with the IR expansion

confirms the second line of (4.1.8).

In d = 3 using pi and zi obtained in last subsection we can obtain the coefficient

of 1/R term by directly evaluating the action as we have done for the gapped and

scaling geometries. The calculation is given in Appendix 4.D. The final answer is:

S3 = ) + Ki+Ks+... , (4.4.38)
(1 - 2&)(AR) 2& AR

where si is given by (4.D.11):

[ 2

f dz z2 [oo dv -] -d + <
/ f(z/ ) 322 2(12

S') -- - ' d - 2+42

(4.4.39)

The expressions for smaller values of 6 are similar but require more subtractions. s,
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(and the integration variables, z and v) is dimensionless, hence only depends on ratios

of RG scales.

Our results are compatible with the F-theorem; for & < - the non-analytic term

dominates in (4.4.38), and b(d) > 0 in this range (4.4.37). For 1 < 6, where the 1/R2

term dominates over the non-analytic term, s, > 0 follows from (4.4.39).

As a consistency check, we apply these formulae to closely separated fixed points in

Appendix 4.E. We recover (4.E.6) that is obtained using different methods. Another

consistency check is that the f, -+ oo limit of (4.4.39) recovers s, for the scaling

geometries (4.2.40). This had to be the case, as a scaling geometry can be viewed as

a limit of domain walls with increasing fo.

4.4.3 Discussion

We conclude this section making a comparison between the result for the strip (4.1.14),

(4.4.9) and that for the sphere (4.1.8).

First, let us look at the strip result (4.4.9). When & < , Rd can be written in

terms of an effective dimensionless irrelevant coupling gef (R) = (jifR) as

Ra= RiIR) + #g2 ff(R) + - (4.4.40)

with a coefficient # only depending on the data at the IR fixed point. As for the

sphere case (4.1.9), such a term can be expected from conformal perturbations around

a fixed point. For ci> d, we see that the leading approach to the IR value saturates at

R-d no matter what the dimension of the leading irrelevant operator is. In particular,

the coefficient bd (4.4.8) involves an integral over all spacetime, suggesting this term

receives contributions from degrees of freedom at all length scales (not merely IR

degrees of freedom). This term may be considered as the counterpart for a strip of

the second line in (4.1.8). But note that for a sphere the second line of (4.1.8) can

be associated with a curvature expansion of a spherical entangling surface, while for

a strip all such curvature terms are absent.
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4.5 Black holes

In this section we consider the large R expansion of the entanglement entropy for

strip and sphere for a holographic system at a finite temperature/chemical potential,

which is described by a black hole on the gravity side. Compared with examples

of earlier sections, there are some new elements in the UV and IR expansions. The

setup is exactly the same as discussed in Sec. 3.3.2 and Sec. 3.3.3 except that now

the function f(z) has a zero at some z = zh:

f(zh) = 0, f(z) = f1(zh - z) + f 2 (z - zh) 2 +-- , z - Zh . (4.5.1)

In our discussion below, we will assume fi is nonzero. For an extremal black hole,

fi vanishes, which requires a separate treatment and will be given elsewhere. For

notational simplicity, we will set zh = 1 below, which can be easily reinstated on

dimensional grounds. We also introduce

(d -1)fiza
2 = , (4.5.2)2

which will appear in many places below.

4.5.1 Strip

We again look at the strip first. As R -+ oo we expect the tip of the minimal surface zt

to approach the horizon Zh 1. This can be seen immediately from equation (3.3.17):

with zt = 1, due to f(1) = 0, the integrand develops a double pole and the integral

becomes divergent. To obtain the large R behavior, we thus take

zt = 1-, C < 1, (4.5.3)

and expand the integral in c. From (3.3.17) we find that

1 C
R =- log- +b +O(logE) , (4.5.4)

2-y 4
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where -y was introduced in (4.5.2) and

bo = fdV .dI (4.5.5)
j v [/f(v)(1 -v 2 (d-)) 

2 y (1 (45)

Then we can express c as a function of R:

E = 4e2-o -2yR (I + O(Re -2-yR)) . (4.5.6)

Reinstating Zh, from (3.3.21)

R d =L d- (+ )+- ) .I (4.5.7)
2GN Zh

The entanglement entropy itself can be written as

Ld 1 2R ld- 2  2(d - 1)zh 2 2yR
SStip =4G zh- - eoe zh +-) , (4.5.8)

which is given by the Bekenstein-Hawking entropy with exponential corrections. For

the d = 2 BTZ black hole one simply recovers the well known expression for a 2d

thermal CFT by evalutaing (3.3.17) exactly.

4.5.2 Sphere

UV expansion

Anticipating a volume term and possibly other subleading terms in the entanglement

entropy, we modify the UV expansion (4.1.30) to include terms of all integer powers

in 1/R, i.e.

p(z) = R - po(z)- Pi (Z - . (4.5.9)
R

At finite temperature, we do not expect non-integer power law terms in 1/R in (4.5.9),

except exponentially small terms. Here will focus on the lowest two terms in (4.5.9).
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The equations for po and pi are

f' d- 1
PO+2fPo- z P(lAfp 0

,,1 f' (d -1) (1 +3f p0') , d -2(1f/)
S( (Pi + (1+po)= , (4.5.10)

2f z f0

which can be solved by

/z d-1

po = dy a- 1  (4.5.11)
10 f 3 a-- - y2(d- 1)

and

/Z d-1 I y2a1

p 1 (z) j dz 1 3 b + (d - 2) dy I- (4.5.12)
fo f 2 az(-)) fz f Ya-

with a and b integration constants.

The expansion (4.5.9) should break down for small p when po or higher order

terms become comparable to R. As in the strip case we again expect that the tip of

the surface z(p = 0) = zt approaches the horizon z = 1, when R is large. We thus

expect the UV expansion to break down near the horizon. This indicates that we

should choose

az= . (4.5.13)

An immediate consequence of the above equation is that the expansion of po near the

boundary has the form

po = 1 + -4 C(R) d- (4.5.14)

which from (3.3.38) immediately gives

s Ld-1 -d2 Rd-1 Ld-1 /sphere + (4.5.15)
S=4GN d - I Z d-1- 4GN Z d-1+---, .. 1

h Zh

where Vsphere is the volume of the sphere and we have reinstated zh. In Sec. 4.5.4 we

generalize this result to an arbitrary shape.
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IR expansion

It is clear both from general arguments and the numerical solution shown in Fig. 4-2

that the IR part of the minimal surface is very flat and stays in the near horizon

region for a large range of p. This motivates us again to write

zt = 1 - C C -+ 0 . (4.5.16)

The part of minimal surface near the horizon can then be expanded in terms of E

z(p) = 1 - Czi(p) - C2 z2 (p) + - - - (4.5.17)

with boundary conditions

(4.5.18)

Below we will relate c to R by matching (4.5.17) with the UV expansion (4.5.9).

Plugging (4.5.17) into the equation of motion (3.3.28) we find that zi

equation
z" 1 Z'2 d - 2 z' 72

- 14 + - =0,
z1 2z p z1 2

satisfies the

(4.5.19)

where -y was introduced in (4.5.2). Setting zi = h2, one finds that h satisfies the

Bessel equation which then leads to

Zi = r2 (d - 1) (p3-d
2 2 2

where we have imposed the boundary condition at p = 0.

that

2d - 1 3-d ep
2 2 27yp

9

At large p we then find

-2)) . (4.5.21)
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zi (0) =r 1,z(0) = 0, m > 2, z' (0) = 0, n -> I .



Matching

We now try to match the two sets of expansions in their overlapping region with

1 <o-ER-p<R, C<u a1-z<1 . (4.5.22)

In the above region equation (4.5.21) can be expanded in large R as

zi = Ae-~2-yo(I1

A = P 2 (d1

c1R )+ c1 2 (-)

2 d-4 es2,R

wryd-2 Rd-2

+

cu(o-) = (d - 2)o-,

One can show that z2 has a similar structure, i.e.

z2 =A 26-4"c 2o (I + c21(-)+ c 2 (-)-

We thus have

U = z + E2 Z2 +- - ACj(o-)e 2 y + (cA) 2 C 2 (u-)e 47" +

One now expands po and p for small u

Po - logu-+bo+bOIu+---2-y
b 1

P1 = -4-bio logu+bio+biiu+--- (4.5.28)
4-y(d - 1) u o

where various coefficients bo, bol, - -- can be found explicitly from (4.5.11)-(4.5.12). In

particular bo is given by (4.5.5). Using (4.5.27)-(4.5.28) in (4.5.9) we then find that

-= po + i +b 1 - 1 BB(R) log u + B(R) + B 1 (R)u± (R u , (4.5.29)
R 4(d - 1) u 2-
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C1 (o)Ae-2-,, (4.5.23)

(4.5.24)

(4.5.25)

(4.5.26)

(4.5.27)

.. ) - A 3 2e-4-oC2 (0)



where

Bc(R) = I + 2 O(R- 2 ), Bo(R) = bo + b o + O(R 2 ), . (4.5.30)R R

Now matching (4.5.26) and (4.5.29) we find they precisely match provided that

b= 0 and

=CO 1+ d+ d2 +---(4.5.31)

with

/ d- i\ 2d-4 e2yR -1
CO = e2y9OA-1 = d 1 2 d -2f e 2,bo di = 2bio -(d -2)bo,

(4.5.32)

4.5.3 Large R behavior of the entanglement entropy

By carrying out the procedure outlined above one could in principle obtain the large

R expansion for the entanglement entropy to any desired order. As an illustration we

now calculate the constant term (i.e. R-independent term) in S for d = 3.

We divide the area functional (3.3.23) into a UV and IR piece and calculate to

O(R):

A Auv +AIR (4.5.33)

AuV = dz p (4.5.34)
dz -P p'() 2 f

AIR dp - 1 f zp 2  (4.5.35)

where z,, is an arbitrary point in the matching region and p(z*) = p" and 6 is a UV

cutoff. Plugging in the UV expansion (4.5.9) and (4.5.11) into AuV we get:

Auv =Z dz - R (z+ P1(z) + 0 - (4.5.36)
Z2Vf(Z)(1 - Z4) R
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This has an expression for small u,, =1 - z,:

1 ft-b0  ft
A ~ log 2 U, + * logU ± pi(U) + auv + O(u,) ,(4.5.37)

2-y

auv -ft+ I [d F R - po(z) R 1 log(1 - z) (4.5.38)
F1  Z2f(z)(1- z 4) z 2  4-y2 (1 - z)

- R - boo

2-y I - z I

Note that p1(u') contains log u, and constant terms, but we chose not to expand it

for later convenience. We isolated all u,, and 6 dependence, hence auv is a finite term

independent of u,. It includes finite area law terms. AIR is given by

AIR =j dp P + p z(p) i 22Z(P)) + O(2)] (4.5.39)

Plugging in the results of the IR expansion we find

Ar = + O(U R _ (+,0u)) 2 - +po(u) +(AIR 2-r 2 (-piu) + 0 (U*)
2  1 2 2 b2  (4.5.40)
- + 2 lg2 Uo - log u* + - i- P(u)
2 8 27 2

Adding together (4.5.37) and (4.5.40), we find that the u, dependence cancels which

provides a nontrivial consistency check, and the final result is

A #- R± (area law terms) -F a, (4.5.4 1)
2

bf (z)1- 1 - (1 - z) + bo
a = dz .OW - (4.5.42)

2 O z2 (z)( -- Z4) 27 (1 - z) I (

bo is the constant term in the expansion (4.5.27) of po, and it is given by (4.5.5).

4.5.4 Leading order result for an arbitrary shape

For arbitrary shape we cannot go into as much detail as for the sphere case. Here

we demonstrate that at leading order in the large size limit the entanglement entropy

goes to thethermal entropy in an explicit calculation. To the best of our knowledge
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this is the first demonstration using the holographic approach, although the result is

widely expected.

We choose spherical coordinates on each z slice of the spacetime:

ds 2 1to = - ( +d p2 p2dQ_2 ] + dz,2  (4.5.43)
z2 d-1 f (Z)

d-2

d -2  gid9| , (4.5.44)

where gi are just the conventional metric components:

gi = 1 , g2 = sin2o , 93 = sin 2 01 sin 2 02 (4.5.45)

We will use the notation

d-2 1 8
(&OF)2 I ,F _ 2 (4.5.46)

and denote the set of Oi's as Q.

We parametrize the entangling surface in polar coordinates as

p = Rr(Q) (4.5.47)

where r(Q) specifies the shape of the surface, while R gives its size. The minimal

surface p(z, Q) then satisfies the boundary condition p(z = 0, Q) = R r(Q).

The entanglement entropy is given by the minimal surface area:

2lrLd- 2irLd-
S(R) = 2 A = K'A, K' - 2 , (4.5.48)

where

A = j dzJ dQd-2 pd2 zP)2 ± + dz dQ C.

(4.5.49)

One can go through the same steps as for the sphere case, where r(Q) = 1, to
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obtain the near boundary expansion:

p(z,) R r(Q) - - f(Q) + ...±4cd(R, Q)zd±..±S anm(R, Q)Zn+mc,. (4.5.50)
2R

n=2,m=2

r(Q) and the functions appearing in higher orders can be determined by solving alge-

braic equations only involving r(Q) and its derivatives. One can use the asymptotic

data, cd(R, Q) to obtain dA/dR, by using the Hamilton-Jacobi formalism [6]. We

take z to be time, and introduce the canonical momentum and Hamiltonian

1_= dQ dQ , (4.5.51)
(9P) zd ( ±p)2+ 1+ (,0)2

a-2 1+
' p' - '=- d9 2d+( +. (4.5.52)

f (O2p)2 + I1+

One can show that

d= --dRd 2 Cd(R) - + . .. , (4.5.53)

where ed is proportional to ed in (3.3.38), dots denote non-universal terms that drop

out when acted on with the differential operator (1.2.4), and

d(R) = dQ r(Q)d C(R,Q) (4.5.54)
V I+r(Q)2

As a result Sd(R) can be solely expressed in terms of cd(R), and the same formulae

apply as in section 3.3.3.

In the large R limit we consider the expansion

p(z, 0j) =R r(tQ) - po(z, Q) + - - -. (4.5.55)
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Plugging in the above expression into the equation of motions we can readily solve po

PO/ (Z zz d-1 4(air(Q))2 (.-6
po(zQ) ] dz 1  ) - 1± ( (4.5.56)

0 f 2 a()- - Z2(d-)r(

where a(Q) is an integration "constant" to be determined. As in (4.5.13), considering

that the UV expansion (4.5.55) should break down precisely at the horizon, we require

that

a(Q) = 1 . (4.5.57)

Then po factorizes and we obtain:

(r())2() (&Qr(Q)) 2  Z _ _d-1

po(z,)= 1± +Po 1+ 2(Q)] dy f 1_ y2(d)

(4.5.58)

where p6() is the sphere result given in (4.5.11). We readily obtain:

1 (Or(Q))2

Cd(R, Q) = ± + 2 (4.5.59)
d 1 G

/ r(Q)d-1 1 (~- (d - 1) VE
Cd R) = dC 2 Cd(R,Q) d-

1+ (aorQ)) d

(4.5.60)

where VE is the volume enclosed by E. Plugging into (3.3.37) yields the result

S(E) = K'VE + ---. (4.5.61)

4.A The n - 2 case

In the n = 2 case the minimal surface ending on the boundary theory sphere has

disk topology. This was seen before in [6], where the Coulomb branch flow of d = 4

MSYM [70] was analyzed.

Firstly, we analyze the IR region. In section 4.2.2 we saw that the small u expan-

sion (4.2.15) of the reference solution Pd was singular for n = 2. Unlike in the n < 2
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case, the expansion does not start with a constant term:

pd (U) 2(d-2) log +
V id

+ h d-1
+d-1
U0

(4.2.14) then implies that p(z) has the small z/zt expansion valid in the region (4.2.19):

2(d:- 2)
(d - )a

2(d:- 2)
(d -)a

log +-- zd + .
z Na (UO Zt d-I

1
log(,/ uo zt) [I

log (/a z)

log(V- uo zt)

+i h d1z d-1 + ..
a- (no zt)d-d

Let us turn our attention to the UV expansion (4.1.30). We have to modify it

so that p is multiplied by a general function F(R), not R-". To obtain the large z

behavior of p 1 (z) we go through the same steps as in (4.2.20) to get:

p1(z)= dl)_Zd-1 (1 +
(d - 1)/ fa

. d -2 ogz(1+...)
(d - 1)a

(4.A.3)

We note that taking the n -+ 2 limit of (4.2.20) can also give us this result. Plugging

in n = 2 into (4.2.21), and combining all this together in (4.1.30) gives:

p(z) = R -
1

(d -1) Vfa
i+ -- -+ F(R)) d-1z

d- 2
- log z+..

(d - 1)aR

Matching this expansion to the IR solution (4.A.2) determines

2(d:-2)
R = (d -1)a

b 0

b -(d - 1) h

F(R) = a(d-l/2 exp ( (d - 1) 2 a

2(d - 2)

(4.A.5)

(4.A.6)

(4.A.7)

(4.A.8)R2 .

It would be very interesting where exponential behavior comes from in field theory.
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+
(4.A.2)

. (4.A.4)
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The non-analytic contribution to Sd is also exponentially small for n = 2. Us-

ing (3.3.38) and (4.1.31) the leading large R contribution we get for Sd is

S non-anaytic) oc (a R 2)t exp( (d - 1)a R2 t d- 3 . (4.A.9)
2(d - 2) 2 2

4.B 1/R term in the d = 3 scaling geometries

Let us divide the area func an IR part and let z,, be some z in the matching region

that divides between the two regions. It is clear that the result should not depend on

z*.

A = Auv + AIR dz - p'(z2 +j ±jdz - p'(z)2 ± . (4.B.1)
Jo Z2 fz) J Z2 +fTz)

For AUV, we can go through the same steps leading to (4.2.27). We obtain

Auv = #R+ dz [ p'(z)2 _Pz +0 . (4.B.2)

Because the integrand for AUV is the same as in the first line of (4.2.26), and only the

upper limit of the integral differs, in analogy with (4.2.26) and (4.2.27), we obtain

-2
f 1** z) + f(z)I (

AuV= # R+ 1 1J*dz z2dv + Vf()p'(Z) p1(Z)
AUR [j (Z) z V2 z21 z=z*

(4.B.3)

where the last term is a boundary term that vanished in (4.2.27); here it will play an

important role.

For z > zCO we will assume for simplicity that f(z) = a zn exactly. We set a = 1

to avoid clutter. Corrections to f(z) can be understood in a perturbative setup, and

for fast enough convergence to the asymptotic behavior, the results obtained below

should hold. In Appendix 4.D, we show how to incorporate subleading terms in f(z)
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for domain wall flows. Because we have the full scaling symmetry in the IR, we can

evaluate the IR on-shell action by using the solution pd(z) introduced in (4.2.14).

AIR j dz p'(z) 2 + z n du 1 )

For small u we can plug in the UV expansion (4.2.15) of pd(z) into the integral to

obtain the leading behavior of the integrand

Pd(u)
2

P(
pgu) f+ -

a0 at + (2-n)2 O
± + +

2+n/2 do 3n/2 --

I (I + Q - 1) )+ n 2) n -n/ 2 + ... . (4.B.5)

We have to subtract the divergences from the integrand coming from the first line

of (4.B.5), in order to be able to obtain the 1/R expansion of AIR. Note that for

n < 2/3, only the first term gives a divergence. For 2/3 < n < 4/5, only the first

two terms give a divergence, and so on. It does not hurt to subtract arbitrary regular

terms from the integrand, so we can proceed by subtracting the first few terms in the

first line of (4.B.5). Finally, we can write down the result for AIR

o"1p(u) a,__ ci + (2-n)2 2A du I'ju)2 1 2AIR z n 2 Pd ±i + 2 +n/ 2  60

L (1 + ) Ul+n/ 2  (3n U3n/2-1 --

zt 2) 2 -U z*t
(4.B.6)

For n 2/3 the above equation is replaced by

1 f1  pd(d) , 1 e + 8a
AIR z2/3 z /i U2  

2/3)2 7/3 +

1 Fci 010± U
1 a i+ q

z 2/3 4 + do log (4.B.7)
t en-c.ti

The lower limit of the integral in the first line can be sent to zero wi thout encountering
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divergences. Using (4.2.18) we can trade zt for R

z = - .2(2-n) (4.B.8)II\aol

We obtain

#f 1 c + (2na2
AIR - R 2n/( 2 -n) ± (1 ± g) z+n/2 - 1) Z3n/2-1 (4.B.9)

where the expansion is a double expansion as in (4.2.19). For n = 2/3 the answer is:

# R 27 log R
AIR- = + 4 +n/2 64 R ... (4.B.10)

3 *

We know the coefficient of the first term from the analysis performed in the main

text. In this approach it is given by a more complicated expression: the integral in

the first line (with the lower limit sent to zero) and the u 1 boundary terms in

the second line in (4.B.6). It is related to en by some simple factors. The second

term is an uninteresting area law term. The third term is the 1/R term we are after.

Combining this term with the boundary term in (4.B.3) we get for the 1/R term:

A~#ft#
R 2 n/( 2 -n)

I*dz Z 0dv + 2 2 1 + . ..

R 2 / f K d V2_ f (V) (3n/2 - 1)(2 + n)2 z3n/21

(4.B.11)

where we plugged in the value of oz (4.2.16) and the UV expansion of p, (4.2.20).

For n > 2/3 the two terms beautifully combine to give:

#__ ai
A = #R+ #2fa/( 2 fl) 2+ (4.B.12)

/ R 2/2n 2R

a = j dz z 2  fv ] (4.B.13)
0 f(Z) z V2f (V)
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For n = 2/3 there are no terms coming from (4.B.3) that could contribute to the

log R/R term of (4.B.10). Hence we obtain:

27 log R
A = #R- 64R (4.B.14)

R

For n < 2/3 we have to apply subtractions, then a1 is given by

a, = jdz
z 2(Y 1(z)

dv
. z V2 /f (V) (2 + n) 2 z3n/2

Note that in the main text we use a dimensionless version of a1 denoted by S1. Because

we set a = I in this appendix, plugging in i = 1 in the expression of si gives the

result for a1 obtained here.

4.C Details of the UV expansion of pi for the do-

main wall case

We are interested in the behavior of pi at large z beyond the crossover scale z0O:

zco < z < R. We assume that f(z) takes the form:

f (z) = f. 1 (z > zCo) . (4.C.1)

where we introduced A - f~25. From (4.1.35)

pi = bipham(z) + (z) (4.C.2)

with

(z) = (d - 2) du U J
For large z, Phcym(z) has the expansion

dv
vd-1 f(v)

Phom(z) = 1 -+ dA z-25 +
2(d -26)
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(4.C.3)

+ O(zdO) (4.C.4)

- z2je 
..



The large z behavior of (z) is a bit more complicated. For & > 1 we have

Ud-1
(d-2)

- ± -
2foo

100 
1

U dv d e f-V

JU 0 du Ud1(d -- 2) JUWdvJ 00 -(Ud

7U]

z A (d - 2 + ) z2-2+ O(z2-45)
2foo 2foo (-1)(d - 2 + 2&)

with

Y = du (d - 2)0 dv
JoV1 f(u) J

1

vdl1 ff (v)
& > 1 . (4.C.6)

For 1 > & > 1/2 we have to do more subtractions:

du (d - 2)f dv 1 -

I f (u) vd- fAv)

+ A(d - 2 + 6)
(1+ ( - 6)(d - 2 + 26

+ A(d -2+) z
(1 - &)(d - 2 + 25)

z- 25

-2& + +

z 2

2foo

z2 1
2fco

U

foo

A (d - 2 + 5) 1_2]

(d - 2 + 2&) foo I

0 (Z2-4)

(4.C.7)

where now 7 is given by

ojdu (dl -(2) dv1
U v- 1 f(v)

U

foo

A(d-2+6) 1-2&

(d - 2 + 2&)foo (
(4.C.8)

For & outside the above ranges one has to do more subtractions, but the leading

expressions remain the same as (4.C.7) with the explicit value of -y being different.

4.D 1/R term in the d = 3 domain wall geometry

In the domain wall case we follow the same logic as in Appendix 4.B, i.e. we divide

the area functional into UV and IR parts as in (4.B.1). The UV expansion for scaling
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z2A

z 2

2foo

(4.C.5)
vd-1 ff (v

(z) -

U

foo



and domain wall geometries takes the same form, and correspondingly Auv has an

identical form to (4.B.3). z,, is an arbitrary point in the region (4.4.20).

AIR can be obtained by regarding f(z) as a perturbation of f. and working to

first order. We set up the IR problem a bit differently, than in section 4.4:

p(z) =ro(z) + Arm(z) = R 2 - + Ari(z) (4.D.1)

Ari(z) - -2 pi(z) + , (4.D.2)
2fooR R

where A = ji-26 as in (4.C.1), and the above equation follows from

pi(R) 72
? - + - R 2 - + Ar 1 (z)+... . (4.D.3)

ftf

Let us consider how the on-shell action AIR changes, if we change f(z). If we

regard z as time, this is as a Hamilton-Jacobi problem in classical mechanics, when

we are interested in how the on-shell action changes. In this analogy, we are holding

the initial time and the endpoint of the trajectory fixed. There will be a term coming

from the explicit change of f (z) in the Lagrangian. Because the original trajectory was

an extremum of the action there is only a boundary term coming from the change of

trajectory. Finally, there is a term coming from the change of time, when the particle

reaches the endpoint. Hence we get, in the order we listed the terms above:

6AIR ] dz 6f - H 6Pz - W (zt)6zt , (4.D.4)

where 6 zrn and 6 p denote the induced variations due to 6f, and the canonical variables

have the expressions

H d-2 = - , L . (4.D.5)
Op' z- 1 ,2 ±z- f 12 +
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Applying the above results to the current problem, we find that

6AI- = dz fo -- rlz,I Ar1 (z,) (4.D.6)
z*ro (

where we used W-(zt) = 0. Evaluating these with zm = VIfZ R we get:

R A 1
6AIR =# R - f '+6)A + z ~2 + Ari(z.)

1-4&2 2(1 - 25)f 2 R * v z
(4.D.7)

The zeroth order contribution gives:

AR) 1 - #R- 1 (4.D.8)IR - JJ7z foof

Adding all this up and using (4.D.2) we get:

1 ' - & R -2 i* z 2 00 2

A=#R- f -- dz f z)[j dv fv)J
fo1 - 4E2 2R f~V2 Vf {-(

Nf (zI) A 1-2 1 z
z2R p1(z)p1(z,) + 2 p1 (z-) + f32Z* 12 (1 - 2) VrfhZR Jj-7-00Z'R 2f0 R

(4.D.9)

Note that this result is in the double expansion (4.4.20), just like all expressions in the

matching region appearing in the main text. Now the common theme of this chapter

has to be applied: subtractions. Subtracting the divergence(s) from the integral

allows us to go with the upper limit to infinity and gives the result:

1 - - a1A = #R- I -o '-A R -45 2R (4.D.10)

2 '

fOO dz Z2 f' dv < 6)

fd00 zZ2 f: 1 1 )3+2 A Q ~ 1
f d V fl 32 2(1+25) Z2c04]

(4.D.11)
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The rest of the terms in (4.D.9) (after adding back the subtracted part to the integral)

can be shown to cancel to the order in z,/R and 1/(Az,) that we wrote them down.

The final answer is:

S 3 = S(IR) -IKR ( ± Ks1 +
3 -I 2&)R2&

(4.D.12)

where s, = j!ai, as explained around (4.2.28).

4.E Some results for closely separated fixed points

We review and extend some results from [6] for closely separated fixed points:

f (z) =1 + Cg(z) g(z) -+1- - (z -+ CX)

d odd

d even.

Let us start with the odd d case and expand for large R

traction:

dx g(x.R) 1 + dx [g(xR) - 1] = I+ [xg(xR)]' 0

1 - ] dx (xR)g'(xR) +...

with the technique of sub-

+ jdx [-xg'(xR)R - 1]

= 1 - dz zg'(z) +..

(4.E.3)

where we used partial integration and assumed fast enough (d > 1) decay at infinity.

If the decay is slower, we need additional subtractions. For the even dimensional case

we encounter an integral similar to (4.4.7), so we can use the approximation technique

from there. After subtraction the integral is expected to be dominated by the x < I
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region and we have:

dx xg(xR) - x = 1+ 1 dx [xg(xR) - x]+
-X2 Jo

dx x 2 g'(xR)R +...

= 1 - 1 0O dz z2g'(z)]
1

1
+ c K -

2

(d - 1)!!
(d - 2)!!

A Ks,
7-2& -AR

The final result in odd d is:

Sd (d- 1)!!K
Sd 2 (d -2)!!

(d - 1)!! A
2(d - 2)!!

where A = - Of course we might need to apply more subtractions, if & is small

enough.

The final result for even d takes the form:

V _(d -1)!!K
Sd = Sv 2(d -2)!

(d - 1)!!A2
82 4(d -2)!! -

1
+,EK 12

(d - 1)"!
(d - 2)!! b()

foG dz z 2g'(z)

fooG dz [z 2 g'(z) - _ r]

(&>1)

(& <1).

Let us compare (4.E.6) to (4.4.39). We are interested in s, to first order in 6,

which we repeat here for convenience for 1 < 5:

s1 = J dz
f(z/) Jz dv

1

v2 f(v/t)
]2 ]

f32
(4.E.9)

Let us first take the integral over v. Using (4.E.1) we obtain:

J O d v 1I -z V 2 /f (v/fA)

I dE g(v/ )
z 21 z V2
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V1-X2

(4.E.4)

+

{ f~7odz zg'(z)

fo dz [zg'(z) - 2]

(4.E.5)

(4.E.6)

A
R 2&+

Ks2
K82 +

(AR) 2 . (4.E.7)

(4.E.8)

(4.E.10)

= 1+ J

2e



The next step is to examine the full integrand:

2
z2 ) oo

V1f-zA) fz
dv

v2 f(v/ft) J

1

fC/2

- z2

6 12
3c

2

j O dv /_)

z2 z fz V2

+z j dv (/) .E.11)
z V ( E.2

(4.E.12)

Combining the above terms we get that si has the expression to first order in c:

si= / dz [ 1
- g(z/I) + z j0dv g(v/A)

dz V2

We can define a new function 4(z) g(z) - 1 that vanishes sufficiently fast as z -+ 00.

In terms of this new function

si dz - (z/I)

00-C jo dz j(z/ft)

SEft dz zg'(z)
0

+z j dv X(A)]

(4.E.14)

where in the second line we integrated the second term partially in z. In the third

line we did a second partial integration in z, and used that '(z) - g'(z).

For 6 < - the same steps lead to the subtracted version of (4.E.13):

C j dz
_ 2 g(z/ ) + z J 0 g(v/j) 3 3+25 1z d 2 + 2 2(1+ 26) z2&

(4.E. 15)

Defining j(z) -- g(z) - 1 + b allows us to absorb all the subtracted terms, and get

the simple formula:

S=- j dz (z/)

Partially integrating in z and using j'(z) - g'(z) - 26A we obtain (4.E.6).

(4.E.16)
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Chapter 5

Entanglement entropy for

superconformal gauge theories

with classical gauge groups

5.1 Introduction

In the absence of a perturbative understanding of the fundamental degrees of free-

dom, one can learn about M-theory only through various dualities. A promising av-

enue is to use the AdS/CFT correspondence [102-104] to extract information about

M-theory that takes us beyond its leading (two-derivative) eleven-dimensional super-

gravity limit. Such progress is enabled by the discovery of 3-d superconformal field

theories (SCFTs) dual to backgrounds of M-theory of the form AdS4 x X [105-112],

as well as the development of the technique of supersymmetric localization in these

SCFTs [37, 113, 114] (see also [115]). For instance, computations in these SCFTs

may impose constraints on the otherwise unknown higher-derivative corrections to

the leading supergravity action.

In this chapter we study several 3-d SCFTs, with the goal of extracting some

information about M-theory on AdS4 xX that is not accessible from the two-derivative

eleven-dimensional supergravity approximation. These theories can be engineered by
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placing a stack of N M2-branes at the tip of a cone over the space X. A good

measure of the number of degrees of freedom in these theories, and the quantity we

will focus on, is the S 3 free energy F defined as minus the logarithm of the S3 partition

function, F = - log IZs31 [21,23,24,28]. At large N, the F-coefficient of an SCFT

dual to AdS 4 x X admits an expansion of the form [38,116]

F = f 31 2N 3/ 2 + f1 / 2 N 1 /2 + . .. . (5.1.1)

The coefficient f3/2 can be easily computed from two-derivative 11-d supergravity

[38,116]

2;6
f3/2 = Vo(X) (5.1.2)

whereas the coefficient f1/2 together with the higher-order corrections in (5.1.1) cannot

[117, 118]. In this chapter we will calculate f1/2 for various SCFTs with M-theory

duals.

The universal terms in ZS3 and in the entanglement entropy of the vacuum state

across S1 are equal [19]. Thus, by calculating F we are evaluating entanglement

entropy. In this chapter we will use the language of free energies.

We focus on SCFTs with M > 4 supersymmetry. In such theories, supersymmetric

localization reduces the computation of ZS3 to certain matrix models [119]. For

instance, for the K = 6 ABJM theory [105], which is a U(N)k x U(N)-k Chern-

Simons matter gauge theory, one has [37,116]

1 N -< sinh 2(r(Ai - Aj)) sinh 2(7r(i - A3))
(N!)2 J dA2 -[J cosh 2 (7r(Ai - 1))

flij (5.1.3)

x exp irk (A ]

where the integration variables are the eigenvalues of the auxiliary scalar fields in the

two K = 2 vectormultiplets. This theory corresponds to the case where the internal
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space X is a freely-acting orbifold of S7 , X = S7/Zk. The integral (5.1.3) can be

computed approximately at large N by three methods:

I. By mapping it to the matrix model describing Chern-Simons theory on the Lens

space S 3 /Z 2 , and using standard matrix model techniques to find the eigenvalue

distribution [116]. This method applies at large N and fixed N/k. To extract

f3/2 and f./2 in (5.1.1) one needs to expand the result at large 't Hooft coupling

N/k.

I. By expanding Zs3 directly at large N and fixed k [38]. In this limit, the eigen-

values Ai and A2 are uniformly distributed along straight lines in the complex

plane.

III. By rewriting (5.1.3) as the partition function of N non-interacting ferinions on

the real line with a non-standard kinetic term [1]. The partition function can

then be evaluated at large N and small k using statistical mechanics techniques.

Using the Fermi gas approach (III), for instance, one obtains [1]

Z =A(k) Ai 1/3 N - - )1±o (-~ , (5.1.4)

where A(k) is an N-independent constant. From this expression one can extract

f3/2 = k2 V/ f2 k3 /2 + . (5.1.5)
3 2 24 3k/2

These expressions can be reproduced from the first method mentioned above [116],

and f3/2 can also be computed using the second method [38].

While ABJM theory teaches us about M-theory on AdS 4 x (S 7 /Zk), it would be

desirable to calculate F for other SCFTs with M-theory duals, so one may wonder

how general the above methods are and/or whether they can be generalized further.

So far, the first method has been generalized to a class of K = 3 theories obtained

by adding fundamental matter to ABJM theory [120].1 The second method can be

'Grassi and Marifio informed us that they have also applied the first method to the K = 4 U(N)
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applied to many A ;> 2 theories with M-theory duals [23,121-125], but so far it can

only be used to calculate f 3/2. The third method has been generalized to certain

r ;> 2 supersymmetric theories with unitary gauge groups [126]; in all these models,

ZS3 is expressible in terms of an Airy function.

We provide two extensions of the above methods. We first extend method (II) to

calculate the k 3/ 2 contribution to fl/2 in (5.1.5), and provide a generalization to other

SCFTs. We then extend the Fermi gas approach (ILL) to SCFTs with orthogonal

and symplectic gauge groups. This method allows us to extract fl/2 exactly for

these theories, and we find agreement with results obtained using method (II). The

extension of the Fermi gas approach to theories with symplectic and orthogonal gauge

groups requires a fairly non-trivial generalization of the Cauchy determinant formula

that we prove in the Appendix. This formula allows us to write ZS3 as the partition

function of non-interacting fermions that can move on half of the real line and obey

either Dirichlet or Neumann boundary conditions at x = 0. We find that the result

for ZS3 is again an Airy function.

The rest of this chapter is organized as follows. In Section 5.2 we describe the

field theories that we will consider in this chapter. These theories are not new. They

can be constructed in type IIA string theory using D2 and D6 branes, as well as 02

and 06 orientifold planes. In Section 5.3 we extend the large N expansion (II) to the

next order. In Section 5.4 we extend the Fermi gas approach (III) to our theories of

interest. We end with a discussion of our results in Section 5.5. We include several

appendices. In Appendix A we determine the moduli space of vacua using field theory

techniques. Appendix 5.A provides a brief summary of the Fermi gas approach [1].

Appendix 5.B contain some details of our computations. Lastly, in Appendix 5.C we

prove the generalization of the Cauchy determinant formula used in the Fermi gas

approach.

gauge theory with an adjoint and Nf fundamental hypermultiplets. They obtained the free energy
in the large N limit at fixed N/Nf.
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5.2 Review of K= 4 superconformal field theories

and their string/M-theory description

5.2.1 Brane construction and M-theory lift

We restrict ourselves to the simplest M = 4 superconformal field theories in d = 3 with

weakly-curved eleven-dimensional supergravity duals. The field content of our theo-

ries of interest have an K = 4 vectormultiplet with gauge group U(N), O(2N), O(2N+

1), or USp(2N), a hypermultiplet transforming in a two-index tensor representation

of the gauge group, and N1 hypermultiplets transforming in the fundamental (vector)

representation. The two-index tensor representation can be the adjoint in the case of

U(N), or it can be a rank-two symmetric or anti-symmetric tensor representation in

the other cases.

These SCFTs can be realized as low-energy effective theories on the intersection of

various D-branes and orientifold planes in type IIA string theory as follows. In all of

our constructions, we consider D2-branes stretched in the 012 directions, D6-branes

stretched in the 0123456 directions, as well as 02-planes parallel to the D2-branes

and 06-planes parallel to the D6-branes-See Table 5.1. Our constructions will have

either an 02-plane or an 06-plane, but not both. The gauge theory lives in the

012 directions, and the choice of gauge group and two-index tensor representation is

dictated by the kind of 02 or 06-plane that is present. The role of the D6-branes

is to provide the fundamental hypermultiplet flavors. See Figure 5-1 for a picture of

the brane configurations, and Table 5.2 for which gauge theories correspond to which

brane/orientifold constructions.

Object 0 1 2 3 4 5 6 7 8 9

D2/02 . . .

D6/06 . . . . . . .

Table 5.1: The directions in which the ingredients extend are marked by .
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0123

3456

N D2-branes

- N, D6-branes

7894 06-Plane

(a) Brane construction with an 06-plane.
0123

3456

N D2-branes

7N D6-branes

02-plane

(b) Brane construction with an 02-plane.

Figure 5-1: Type IIA brane construction of the theories considered. Exactly which
figure applies, and what type of orientifold plane is needed can be read from Table 5.2.

More precisely:

* N D2-branes spanning the 012 directions and Nf D6-branes extending in the

0123456 directions yields the M = 4 U(N) gauge theory with an adjoint hyper-

multiplet and Nf fundamental hypermultiplets.

* To get the O(2N) (or O(2N +1)) theory with an adjoint (antisymmetric tensor)

hypermultiplet we add an 02~--plane (or 02-plane) coincident with the 2N D2-

branes. 2 The 2Nf D6-branes3 give Nf fundamental flavors in the field theory

living on the D2-branes.

2What we mean by this is that we have N half D2-branes and their N images. The 02 can be
thought of as having a half D2-brane stuck to an 02- plane, and hence naturally gives an O(2N+ 1)
gauge group.

3In the case of orientifold planes, the D6-branes should be more correctly referred to as Nf half
D6-branes and their Nf images under the orientifold action.

152



" If, on the other hand, we want to construct the O(2N) (or O(2N + 1)) theory

with a symmetric tensor hypermultiplet we add an 06+-plane coincident with

the 2Nf D6-branes. To get the O(2N) theory we need 2N D2-branes, while to

get O(2N + 1) we need a half D2-brane to be stuck at the 06+-plane.

" Similarly, to get the USp(2N) theory with an adjoint (symmetric tensor) hy-

permultiplet we add an 02+-plane coincident with 2N D2-branes. The same

theory can be obtained by using an 2-+-plane.4

" To get the USp(2N) gauge theory with an antisymmetric hypermultiplet, we

should instead use an 06--plane.

" There are further ingredients in type IIA string theory, such as 06 -planes, but

we do not use them in our constructions, because they do not yield 3-d SCFTs

with known weakly-curved M-theory duals.5 6

The type IIA brane construction presented above can be straightforwardly lifted

to M-theory, where one obtains N M2-branes probing an 8-(real)-dimensional hy-

perkdhler cone.7 Indeed, if one ignores the D2-branes and orientifold planes for a

moment, the configuration of Nf separated D6-branes lifts to a configuration of Nf

unit mass Kaluza-Klein (KK) monopoles, and near every monopole core the spacetime

is regular [130]. Nf coincident D6-branes correspond to coincident KK monopoles,

whose core now has an ANf-1 singularity; in other words, the transverse space to the

4 In a similar construction involving 2NV D3-branes coincident with an 03+ or with an 03 plane
one does obtain two distinct gauge theories with symplectic gauge groups denoted by USp(2N) and
USp'(2N), respectively. These theories differ in their spectra of dyonic line operators.

5We do not consider 06 planes in our brane constructions, as they require a non-zero cosmo-
logical constant [127,128] in ten dimensions. These orientifold planes therefore only exist in massive
type IIA string theory and their M-theory lifts are unknown. From the effective 2 + 1-dimensional

field theory perspective, an 6--plane would introduce an extra fundamental half hypermultiplet
compared to the 06- case. The extra half hypermultiplet introduces a parity anomaly, which can be
canceled by adding a bare Chern-Simons term. This Chern-Simons term reduces the supersymmetry
to M= 3 [128] and is related to the cosmological constant in ten dimensions.

6We remind the reader that it is impossible to have a half D2-brane stuck to an 06--plane,
because the way the orientifold projection is implemented on the Chan-Paton factors requires an
even number of such branes [129].

7The M-theory description is valid at large N and fixed Nf. When Nf is also large, a more
useful description is in terms of type IIA string theory.
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U(N) +adj N N_ S T /ZNf

O(2N) +A 2N 2Nf / (S 7 / Nf )free

O(2N) + S 2N 2Nf / S7 /DNf +2

O(2N + 1) + A 2N 2Nf I/ (S71bNf )free

O(2N+1) +S 2N + 2Nf / S71 N+2

USp(2N) + A 2N 2Nf S 7 /bNf--2

USp(2N) + S 2N 2Nf (S71bNf)free

Table 5.2: The ingredients needed to construct a theory with gauge group G, N
fundamental flavors, and a two-index antisymmetric (A) or symmetric (S) hypermul-
tiplet in Type IIA string theory. The dual M-theory background is also included.

monopole is C 2/7 Nf in this case. The infrared limit of the field theories living on the

D2-branes is captured by M2-branes probing the region close to the core of the ld

KK monopole. Let us write the transverse directions to the M2-branes in complex

coordinates. Let z1 , z2 be the directions along which the KK monopole is extended,

and z3 , z4 be the directions transverse to it. Then the M2-branes probe the space

C 2 x (C2/ZNf) [1051, where the ZNf action on the coordinates is given by

2,ri

(z3, z4) -+ eNf (z3, z4) . (5.2.1)

The orbifold acts precisely in the direction of the M-theory circle, which therefore

rotates (z3 , z4 ) by the same angle and is non-trivially fibered over the 7 directions

transverse to the D2-branes. 8

Back-reacting the N M2-branes and taking the near horizon limit yields AdS 4 x

(S 7 /ZNf), where the ZNf action on S7 is that induced from C4, namely (5.2.1). This

orbifold action is not free, hence S 7 /ZNf is a singular space. Since we have not

included orientifold planes yet, this AdS 4 x (S 7 /ZNf) background of M-theory is dual

8Explicitly, the coordinates X3 , ... , X9 transverse to the D2-branes can be identified with
(Re z1 , in zj, Re z2 , Im z2 , Re (z 3z ), Im (z 3 z), Z3 2 - z4 

2 ). The M-theory circle is parameterized
by = 1(arg z3 + arg Z4) C [0, 27r), and (5.2.1) identifies V) ~ 4+ 27r/Nf.
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to the U(N) theory with an adjoint and Nf fundamental hypermultiplets. Note that

for N1 = 1 the monopole core is regular, the transverse space to the monopoles is C2 ,

and the gravitational dual is M-theory on AdS 4 x S'. At low energies, M-theory on

this background is dual to ABJM theory at Chern-Simons level k = 1 [105]; therefore,

the U(N) gauge theory with an adjoint and a flavor hypermultiplet described above

is dual to ABJM theory at CS level k = 1 [119].

Introducing orientifolds in the type IIA construction corresponds to further orb-

ifolding the ld geometry.' The case of 02-planes is simpler: the orbifold in ld is

generated by the action:

02 lift: (zi, z 2,z 3 , z 4 ) -+ (-zi, -z 2 , iz,-iz*) . (5.2.2)

(See [131] for a similar orbifold action.) This action can be derived from the fact

that in type IIA an 02-plane acts both by flipping the sign of all the transverse

coordinates as well as of the R-R one-form A 1. This R-R one-form lifts to the off-

diagonal components of the 11-d metric involving the M-theory circle and the type IIA

coordinates (see for example [132]), so in ld the orientifold acts by a sign flip on the

M-theory circle. Eq. (5.2.2) then follows from the relations given in footnote 8. We

should combine the orbifold action (5.2.2) with (5.2.1) (with Nf - 2Nf). Together,

the two generate the dicyclic (binary dihedral) orbifold group, DNf of order 4Nf.10

For Nf = 0 there are no D6-branes, hence the orbifold group is just Z2. For N1 = 1

the orbifold group is D1 = Z4.

In M-theory, we therefore have N M2-branes probing a C 4 /DNf singularity, where

DNf is generated by (5.2.1) (with N1 -+ 2Nf) and (5.2.2). In the near-horizon

limit, the eleven dimensional geometry is AdS 4 x (S 7 /DNf)free. The subscript "free"

emphasizes that the orbifold action induced from (5.2.1)-(5.2.2) on the S' base of C 4

is free, and hence the corresponding eleven-dimensional background is smooth. Note

9 We thank Oren Bergman and especially Ofer Aharony for helpful discussions on the lift of
orientifolds to M-theory.

10Let us denote the 02 action in (5.2.2) by a and the orbifold action (5.2.1) (with Nf -> 2Nf) by b.
We then get the presentation of the dicyclic group Nf =(a, b b 1, a2 bN, ab = b2 Nf -)
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that the DNf orbifolds here are not the same as those in [131] obtained from similar

brane constructions.1 1

The 06 case is more involved. The 06--plane lifts to Atiyah-Hitchin space in

M-theory [133,134]. The 06--plane together with 2Nf coincident D6-branes away

from the center of the Atiyah-Hitchin space can be thought of as a KK monopole with

mass (-4) (as the D6-brane charge of 06- is (-4) [135]) and a KK monopole of mass

2Nf, which we discussed above. When the D6-branes coincide with the 06--plane,

we get a KK monopole of mass 2Nf - 4 (away from the center). We should therefore

consider the orbifold (5.2.1) with N1 - 2Nf - 4. In addition, the 06 plane yields an

extra orbifold in ld generated by

06 lift: (z3 , z4 ) 3 (iz*, -iz*) . (5.2.3)

As in the 02 case, this action can be derived from the fact that in type IIA an

06-plane acts by flipping the sign of all the transverse coordinates and of the R-

R one-form A1 . Together, (5.2.3) and (5.2.1) (with N1 -> 2Nf - 4) give a DNf

singularity. The corresponding orbifold group is again the dicyclic group, -Nf-2, SO

we have N M2-branes probing a C2 X (C2/f N!-2) transverse space. 1 2

The M-theory lift of the 06+ plane is a peculiar kind of D 4 singularity, perhaps

with extra fluxes that prevent the possibility of blowing it up [136, 137]. Further

adding adding 2Nf D6-branes results in a DNf +4 singularity. The corresponding orb-

ifold group isDNf +2, so in this case we have N M2-branes probing a C2 x (C2/ fNf +2)

transverse space. Note that if we shift N1 -+ Nf +4 in the 06- case, we get the same

orbifold singularity as in the 06+ case, perhaps with different torsion fluxes. As we

"The Nf = 0 case is special, because there are no D6-branes in this case. In M-theory one
obtains a pair of Z 2 singularities corresponding to a pair of OM2 planes sitting at opposite points on
the M-theory circle. The gauge theory is simply N = 8 SYM with O(2N), O(2N + 1), or USp(2N)
gauge group, and just like K = 8 SYM with gauge group U(N), its infrared limit is non-standard.
We expect K = 8 SYM with orthogonal or symplectic gauge group to flow to an ABJ(M) theory
with Chern-Simons level k = 2.

1
2The cases Nf = 0, 1, 2 are special. When N1 = 0, 1, the 11-d geometry is smooth, and we

therefore expect that the low-energy dynamics is the same as that of ABJM theory at level k = 1.
When Nf = 2, the 11-d geometry has a pair of Z2 singularities. Near each singularity the hyperkiiler
space looks like C 2 X (C 2/Z 2).
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will see, the corresponding field theories do not have the same S3 partition functions,

so they are not dual to each other.

For theories that are constructed with 06 planes, the near horizon limit of the

M2-brane geometry is AdS 4 x (S 7 /bNtf 2), where the DNf +2 action on S7 is that

induced from (5.2.1) (with N1 -> 2Nf ± 4) and (5.2.3). Within C4, the orbifold leaves

the C2 at z3 = Z4 = 0 fixed, hence S 7 /DNf ±2 is singular along the corresponding S3.

In Appendix A we provide some evidence that the field theories mentioned above

are indeed dual to M-theory on the backgrounds summarized in Table 5.2 by comput-

ing the Coulomb branch of the moduli space. In these moduli space computations an

important role is played by certain BPS monopole operators that satisfy non-trivial

chiral ring relations. The Coulomb branch of the U(N) theory with an adjoint and Nf

fundamental hypermultiplets is (C2 x (C 2 /7N/ N SN, where the symmetric group

SN permutes the factors in the product; this branch of moduli space is precisely what

is expected for N M2-branes probing the hyperkhhler space C2 x (C 2/Z Nf). The

Coulomb branch of the theories constructed from 02-planes is (C/Db Nf)N SN, again

as expected for N M2-branes probing C 4 /bNf - The Coulomb branch of the theories

constructed from 06-planes is (C2 x (C2 /Nf 2 ) )N SN if the gauge group is O(2N)

or USp(2N), matching the moduli space of N M2-branes probing C2 x (C2 /Nf ±2). If

the gauge group is O(2N + 1) the moduli space has an extra factor of C2 correspond-

ing to the half D2-brane stuck to the 06+ plane that cannot move in the directions

transverse to the orientifold plane.

It is worth pointing out that the moduli space computations in Appendix A pro-

vide agreement with the 11-d geometry only if certain details of the field theory are

chosen appropriately. For instance, the trace part of the symmetric tensor representa-

tions of O(2N) and O(2N +1) should be included, and so should the symplectic trace

part of the anti-symmetric representation of USp(2N). In the O(2N) cases, one finds

agreement only if the gauge group is O(2N), and not for SO(2N)-the two differ in

a Z 2 gauging of the global charge conjugation symmetry present in the SO(2N) case.

In the O(2N + 1) case, the moduli space computation would yield the same answer
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as if the gauge group were SO(2N + 1).13

In all the cases, the eleven-dimensional geometry takes the form:

2 R 2 2 2Sh(256 N 6
ds2 = dAdS4 + R 2 dsx , R = /, ,

4 3 Vol (X) (5.2.4)
33

G4 = -R3 VOlAdS 4 ,8

where R is the AdS radius, VOlAdS 4 is the volume form on an AdS 4 of unit radius,

X is the internal seven-dimensional manifold (tri-Sasakian in this case), and fp is

the Planck length. This background should be accompanied by discrete torsion flux

through a torsion three-cycle of X, but we do not attempt to determine this discrete

torsion flux precisely. Since the volume of X is given by the volume of the unit S'

divided by the order of the orbifold group, we predict using (5.1.2) that

N/2 no orbifold,

v/27r
f3/2 = [4Nf] 1/2  02, (5.2.5)

[4(Nf ± 2)]1/2 06+.

These results will be reproduced by the field theory calculations presented in the

remainder of this chapter. See Table 5.5.

5.2.2 Matrix model for the S 3 free energy

The S 3 partition function of U(N) gauge theory with one adjoint and Nf fundamental

hypermultiplets can be written down using the rules summarized in [125]:

1 NX R <j [4 sinh2 (7r(Ai Aj))] X l1(526Z J d~7 VLz x .1 1(5.2.6)
2N N! J [Ji [4 cosh 2 (r(A - Aj))] " (2 cosh (7rAi))Nf

1 3 The gauging of the charge conjugation symmetry in the SO(2N + 1) gauge theory does not

seem to affect the dynamics provided that 2N + 1 > Nf. When 2N + 1 < Nf, the SO(2N + 1)
theory has baryonic operators of the form q 2

N+ , where the color indices are contracted with the

anti-symmetric tensor of SO(2N + 1). These operators are odd under charge conjugation, and are

therefore absent from the O(2N + 1) theory. When 2N + 1 > Nf, however, the operator content of

the SO(2N + 1) and O(2N + 1) gauge theories is the same. See also [138].
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The normalization includes a division by the order of the Weyl group IW = N! and

the contributions from the N zero weights in the adjoint representations.

The S 3 partition function for the theories with orthogonal and symplectic gauge

groups is given by:

-JI<3 [16 sinh 2 (ir(Ai - Aj)) sinh2 (7r(Ai + Aj))]
Z J C A [Li<j [16 cosh 2 (wr(Aj - A)) cosh 2 (r(Ai + A))]5.27)

(4 sinh 2 ( rAi))a (4 sinh2 (27rAi))b
(4 cosh 2 ( ,A))Nf+c 4 cosh 2 (2 rA ))d

The constants a, b, c, d, and C are given in Table 5.3 for the various theories we

study. The normalization C includes a division by the order of the Weyl group W (see

Table 5.4) and the contributions from in the zero weights the matter representations:

1
C = (5.2.8)

2z J a

where z is the total number of zero weights in the hypermultiplet representations. In

the O(2N) and O(2N+1) cases, (5.2.8) should be multiplied by an extra factor of 1/2

coming from the gauging of the Z2 charge conjugation symmetry that distinguishes

the O(2N) and O(2N +1) gauge groups from SO(2N) and SO(2N + 1), respectively.

In the rest of this chapter, we find it convenient to rescale Z by a factor of 2 N and

calculate instead

Z = 2N (5.2.9)

The numerator in the integrand of (5.2.7) comes solely from the K = 4 vector-

multiplet; note that an K = 4 vector can be written as an KV 2 vector and an

K = 2 chiral multiplet with R-charge Ac = 1, and only the K 2 vector gives a

non-trivial contribution to the integrand. The first factor in the denominator comes

from the two-index hypermultiplet, while the additional factors come from both the

two-index tensor and the Nf fundamental hypermultiplets.

Note that there is a redundancy in the parameters a, b, and c. Using sinh 2A =
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0(2N) +A 0 0 0 0 1/(22NN!)

O(2N) + S 0 0 0 1 1/(2 2
NN!)

O(2N + 1) + A 1 0 1 0 1/(22N+Nf+1N!)

O(2N + 1) + S 1 0 1 1 1/(22N+Nf+2N!)

USp(2N) + A 0 1 0 0 1/(2 2NN!)

USp(2N) + S 0 1 0 1 1/(2 2
NN!)

Table 5.3: The values of the constansts a, b, c, and d appearing in (5.2.7) for gauge
group G, N1 fundamental flavors, and a two-index antisymmetric (A) or symmetric
(S) hypermultiplet.

G |WI

U(N) N!

SO(2N) 2N-1 NI

SO(2N + 1) 2N N!

USp(2N) 2N N!

Table 5.4: The order of the Weyl group, IWI, for various groups G. In the case where
the gauge group is 0(2N) or O(2N + 1), one should use the Weyl groups of SO(2N)
and SO(2N + 1) in (5.2.8) and multiply the answer by an extra factor of 1/2 coming
from the gauging of the Z 2 charge conjugation symmetry, as mentioned in the main
text.

2 sinh A cosh A, one can check that (5.2.7) is invariant under

b--b- A , a -+ a + A, c -* c - A , (5.2.10)

hence any expression involving a, b, and c should only contain the combinations

c - a - 2b or a + b. This requirement provides a nice check of our results.
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5.3 Large N approximation

In this section we calculate the S3 partition functions of the field theories presented

above using the large N approach of [38], which we extend to include one more order

in the large N expansion. Explicitly, we do three computations. In Section 5.3.1 we

present the computation for ABJM theory, whose S 3 partition function was given in

(5.1.3). In Section 5.3.2, we calculate the F-coefficient of the g = 4 U(N) gauge

theory with one adjoint and Nf fundamental hypermultiplets for which we wrote

down the S 3 partition function in (5.2.6). Lastly, in Section 5.3.3 we generalize this

computation to theories with a symplectic or orthogonal gauge group, for which the

S 3 partition function takes the form (5.2.7) with various values of the parameters a,

b, c, and d-see Table 5.3.

5.3.1 ABJM theory

At large N one can calculate the S3 partition function for ABJM theory (5.1.3) in a

fairly elementary fashion using the saddle point approximation. Let us write

Z = J (dAidj) eF(Aj,I) , (5.3.1)

for some function F(Aj, A) that can be easily read off from (5.1.3). The factor of

(N!)2 that appears in (5.3.1) is nothing but the order of the Weyl group W, which

in this case is SN x SN, SN being the symmetric group on N elements. The saddle

point equations are

F(Ai, A) = F (Ai, Aj)=. (5.3.2)

Since F(Aj, ,X) is invariant under permuting the Ai or the A1 separately, the saddle

point equations have a SN X SN symmetry. For any solution of (5.3.2) that is not

invariant under this symmetry, as will be those we find below, there are (N!)2 - I

other solutions that can be obtained by permuting the Ai and the Aj. That our saddle
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point comes with multiplicity (N!)2 means that we can approximate

Z ~ e-F. , (5.3.3)

where F, equals the function F(A, 1) evaluated on any of the solutions of the saddle

point equations. In other words, the multiplicity of the saddle precisely cancels the

1/(N!)2 prefactor in (5.3.1).

The saddle point equations (5.3.2) are invariant under interchanging )j -+ A*,

and therefore one expects to find saddles where Ai = A . If one parameterizes the

eigenvalues by their real part xi, the density of the real part p(x) = -- Z 1 6(X - Xi)

and Ai become continuous functions of x in the limit N -+ oo. The density p(X) is

constrained to be non-negative and to integrate to 1. Expanding F(Aj, A3 ) to leading

order in N (at fixed N/k), one obtains a continuum approximation:

F -J dx p(x) Jdx' p(x') log cosh 2 [ (A(x) - A(X')

N2 sinh r (A(x) - A(x'))] sinh H7 ( (x) - A(X')

- i- J dx p(x) (A(x)2 _ A(X)2) + O(1/N).
N

(5.3.4)

The corrections to this expression are suppressed by inverse powers of N. In the

N -+ oo limit the saddle point approximation becomes exact, and to leading order

in N one can simply evaluate F on the solution to the equations of motion following

from (5.3.4).

At large N/k, one should further expand [38]:

N N
A(x) = X + iy(x) + .. A (x) = -x - iy(x) + --- , (5.3.5)

rs f k

with corrections suppressed by positive powers of Vk/1N. Plugging (5.3.4) into (5.3.4)
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and expanding at large N/k, we obtain

F[p, y] 1/2 K J d [p2 (1 - 16y 2) + 8xpy]

-+ 3/2 .dx p (1 - 16y 2 ) [64p'yy' + 16p (3y'2 + 2yy") - (1 - 16y 2 ) P"/

(5.3.6)

Note that the double integral in (5.3.4) becomes a single integral in (5.3.6) after using

the fact that, in the continuum limit (5.3.4), the scaling behavior (5.3.5) implies that

the interaction forces between the eigenvalues are short-ranged. The expression in

(5.3.6) should then be extremized order by order in k/N. To leading order, the

extremum was found in [38]:

for |xj <

0 otherwise ,
(5.3.7)

for jx< ,

0 otherwise.

This eigenvalue distribution only receives corrections from the next-to-leading term

in the expansion (5.3.6), so it is correct to plug (5.3.7) into (5.3.6) and obtain

F. N (k )1/2 V/27 k )3/2 7 (.38F, N2 [+)/ k)! 4~ .1+.... (5.3.8)
N 3 N 2 49/2

If one wants to go to higher orders in the k/N expansion, one would have to consider

corrections to the eigenvalue distribution (5.3.7).

The result (5.3.8) is in agreement with the Fermi gas approach [1], when the latter

is expanded at large N/k and large N as in (5.3.8). The coefficients f3/2 and fi/ 2 of

the N3/ 2 and N'/ 2 terms in the large N expansion of the free energy obtained through

the Fermi gas approach were given in (5.1.5). Note that F, does not capture all the
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terms at O(N 1 /2 ), but only the contribution that scales as k 3/ 2 . This result is still

meaningful, as the other terms of O(N 1 /2 ) in (5.1.5), coming from the fluctuations

and finite N corrections, have a different dependence on k.

5.3.2 K = 4 U(N) gauge theory with adjoint and fundamental

matter

We now move on to a more complicated example, namely the M = 4 U(N) gauge

theory introduced in Section 5.2 whose S 3 partition function was given in (5.2.6). Let

us denote

Z= dN Ae-F(Aj). (5.3.9)
|WI

Explicitly, we have

F(A) = - Elog tanh2 (7r(A - A)) - slog 1(5.310)
F(A~) - -(2 cosh(TrAi))Nf

As in the ABJM case, every saddle comes with a degeneracy equal to the order of

the Weyl group (SN in this case), so we can approximate Z ~ e-F*, where F* equals

F(Aj) evaluated on any given solution of the saddle point equations OF/&Aj = 0.

In the U(N) gauge theory the eigenvalues are real, and in the N -4 oo limit we

again introduce a density of eigenvalues p(x). We will be interested in taking N to

infinity while working in the Veneziano limit where t = N/N is held fixed and then

taking the limit of large t. At large N, the free energy is a functional of p(x):

F[p] dx p(x) dx'p(x') log coth (7(A(x) - A(x')))(
N2 f (5.3.11)

+ Jdx p(x) log (2 cosh(rA(x)))

As in the ABJM case, the appropriate scaling at large t is A oc Vti, so we can
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define

A(X) = Vi x. (5.3.12)

It is convenient to further introduce another parameter T and write (5.3.11) as

F[p] [dx p(x) d'p(x')
N2 I

+ I dx p(x)
7t vT

log coth (w"r (x
(5.3.13)

log (2 cosh(7rvfTx)) .

Of course, we are eventually interested in setting T = t, but it will turn out to be

convenient to have two different parameters and expand both at large t and large T.

Expanding in t we get

7 I p(X)2

1 f p(x)

7F

192 t3/2

log (2 cosh(7v/T)) .

If we assume that p is supported on [-X, x'] for some x, > 0, we should extremize

(5.3.14) order by order in N under the condition that p(x) > 0 and that

dxp(x) = 1. (5.3.15)

We can impose the latter condition with a Lagrange multiplier and extremize

F[pl
N2

F[p]
N2 -in- (I dx p(x) - I

(5.3.16)

instead of (5.3.14).

Leading order result

To obtain the leading order free energy we can simply take the limit T -+ oo in

(5.3.14) and ignore the l/t 3/ 2 term in the first line of (5.3.14). The free energy takes
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F[p] =1 dx
N2 V~d j [4p(X)2 + 7rX p(X). (5.3.17)

The normalized p(x) that minimizes (5.3.17) is

1xI < ,,

otherwise,

1
X -- -- (5.3.18)

The value of F we obtain from (5.3.18) is

N - 3 . + o(t- 1/ 2 ) . (5.3.19)

After writing t = N/Nf, one can check that this term reproduces the expected N 3 / 2

behavior of a SCFT dual to AdS 4 x S7 /7ZNf

Subleading corrections

To obtain the t-3 / 2 term in (5.3.19) we should find the 1/T corrections to the ex-

tremum of the t- 1/ 2 terms in (5.3.14), and we should evaluate the t- 3/ 2 term in

(5.3.14) by plugging in the leading result (5.3.18).

Focusing on the t- 1/ 2 terms first, the equation of motion for p gives

p(x) = 2p - log (2 cosh(7rV T) ) (5.3.20)

Up to exponentially small corrections (at large T), the normalization condition (5.3.15)

fixes y-t to

(5.3.21)
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Plugging this expression back into F[p] and minimizing with respect to x, one obtains

1 1
X= -+ (5.3.22)

-2 + 12T '

again only up to exponentially suppressed corrections.

Then (5.3.14) evaluates to

F, _irv1 wr 1 r 1
- = - t + (5.3.23)

N2 3 v/t 6-v/-2 T v/t 24v/-2 t3/2 ---

where we included the t- 3 / 2 term. We see now that if we had taken T -+ o directly

in (5.3.14) we would have missed the second term in (5.3.23). Setting T = t = N/Nf,

we obtain

ir V2N / 7rN 3/2 /
F, = NN3/2 + + .N (5.3.24)

3 8VZ

In analogy with the ABJM case we expect that fluctuations and finite N corrections

will contribute to the free energy starting at N 1 / 2 order. However, they will have

different Nf dependence then the term (5.3.24), and the saddle point computation

can be thought of as the first term in the large Nf expansion. 14 These expectations

will be verified in the Fermi gas approach in Section 5.4.

5.3.3 M = 4 gauge theories with orthogonal and symplectic

gauge groups

As a final example, let us discuss the A = 4 theories with symplectic and orthogonal

gauge groups for which the S3 partition function was written down in (5.2.7). (See

Table 5.3 for the values of the constants a, b, c, d, and C.) In this case one can define

F(AX) just as in (5.3.9). The saddle point equations OF/OAj are now invariant both

under permutations of the A and under flipping the sign of any number of Aj. In

particular, from any solution of the saddle point equations one can construct other

4 One could think of t = N/Nf as the analog of the 't Hlooft coupling in this case.
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solutions by flipping the sign of any number of A). We can therefore restrict ourselves

to saddles for which Ai > 0 for all i. If F, is the free energy of any such saddle, we

have Z ~ e-F*, up to a O(N) normalization factor coming from the constant C in

(5.2.7) that we will henceforth ignore.

Instead of extremizing F(Aj) with respect to the N variables Aj, i = 1,... , N, it

is convenient to introduce 2N variables [i, i = 1,..., 2N, and extremize instead

F (t) I~ >3 log tanh2 (_(i - It) > log (2 sinh(1ryi))" (2 sinh(27rpi))b-
2 (2 cosh(rpui)) Nf (2 cosh(27rpti))d 1

(5.3.25)

under the constraint pi+N = -14. In the case at hand, one can actually drop this

constraint, because the extrema of the unconstrained minimization of F(pi) satisfy

pi+N -Pi (after a potential relabeling of the pi).

If the pi are large, then extremizing (5.3.25) is equivalent up to exponentially

small corrections to extremizing

F(ti) = - E log tanh (r([p - t)) - E log c [, (5.3.26)
. i<j (2 cosh(gpi))29f

where

N =Nf +c+2d-a-2b. (5.3.27)

We performed a similar extremization problem in the previous section. From com-

paring (5.3.26) with (5.3.10), we see that the extremum of (5.3.26) can be obtained

after replacing Nf -+ 2N 1f, N -+ 2N in (5.3.24) and multiplying the answer by 1/2:

2ir -3/2

F, = 2 - 2N 3/ 2 + rrNj N 11 2 + ... . (5.3.28)
3 4 /2

The first term reproduces the expected N3 / 2 behavior of an SCFT dual to AdS 4 x

X where X is an orbifold of S' of order 4NV, in agreement with (5.2.5). We will
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reproduce (5.3.28) from the Fermi gas approach in the following section, where we

will also be able to calculate the other terms of order N1/ 2 that have a different Nf

dependence from the one in (5.3.28).

5.4 Fermi gas approach

5.4.1 M = 4 U(N) gauge theory with adjoint and fundamental

matter

For SCFTs with unitary gauge groups and M > 3 supersymmetry, the Fermi gas

approach of [1, 126] relies on the determinant formula

11< [4 sinh (7(xi - xj)) sinh (r(yi - yj))]

H2i, [2 cosh (7r(xi - yj)]
det s ,)

2 cosh (7r(xi - yj))

which is nothing but a slight rewriting of the Cauchy determinant formula

7I< (ui - Uj)(Vi - vj)
H Lj (u ±j v)

1
det

ui + vj

that holds for any ui and vi, with i = 1,..., N. Eq. (5.4.1) can be obtained from

(5.4.2) by writing ui = e 2 " and vi = e

Using (5.4.1) in the particular case yj = xi, we can write (5.2.6) in the form

1
N!I 1

dNx det
(4 cosh2( Xi))Nf 2 cosh (ir(xi -x ))

Z can then be rewritten as the partition function of an ideal Fermi gas of N nonin-

teracting particles, namely

1
z-N! dNX p (Xi, zX(i)) (5.4.4)E (-)

UE SN

where p(XI, X2 ) (X= (IpX 2 ) is the one particle density matrix, and the sum is over

the elements of the permutation group SN. We can read off the density matrix by
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comparing (5.4.4) with (5.4.3). In the position representation, p is given by

1 1
p(Xi, X2) = x

(2 cosh(7rxi))Nf/ 2 (2 cosh(7r 2 ))Nf/ 2 2 cosh (7r(xi - X2 )) (5.4.5)

We can put this expression into a more useful form by writing it more abstractly in

terms of the position and momentum operators, i and P, as

p = e-(.z)/2 -T(P-C (i)/2 (5.4.6)

In units where h = 1, which imply [zi3] = i/(27), one can show as in (5.B.3) that

U(x) = log (2 cosh(/rx)) Nf ,

We then rescale x = y/(27Nf) and p = k/(27r) to get

-= 2 1
) -T k - (e )/2

U(y) = log 2 cosh (JY))Nf T(k) = log (2 cosh (.)) (5.4.9)

The rescaling was motivated by the following nice properties:

y - oo)

k - oc)

(5.4.10)

We identify h = 2rNf, and perform a semiclassical computation of the canonical

free energy of the Fermi gas. In Appendix 5.A we give a brief review of the relevant

results from [1]. These results enable us to calculate the free energy from the above

ingredients. In summary, we calculate the Fermi surface area as a function of the
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T(p) = log (2 cosh(irp)) . (5.4.7)

where

(5.4.8)

Q , I] = 27iNf

U(y)- (

k
T(k)-+- (

2



energy for the Wigner Hamiltonian (5.A.11). In the semiclassical approximation, to

zeroth order the phase space volume enclosed by the Fermi surface is:

V = 8E2 , (5.4.11)

while the corrections are:

AV = 4 [jOo dy (y - 2U(y)) + j

h2 0

4810I
dkT"(k) .

h2 fo
dp (k - 2T(k)) + h 1 dy U"(y)

24 fo (Y
(5.4.12)

We can perform the calculation and conclude that n(E) defined in (5.A.1) takes the

form:

V Vo + AV
(E = = 27rh

2E 2

7r2 Nf

NJ
8

1
(5.4.13)

In (5.A.5) we parametrized the E dependence of n(E) as

n(E) = CE 2 + no 0 (E e-E)

ir2C
B -- no + ,r2

3

(5.4.14)

so from (5.4.13) we can read off

Cz 
2

7r 2Nf'
B =-

8
1

+±,N
2Nf

(5.4.15)

and the partition function takes the form [1]

Z(N) = A(N) Ai [C 1 1 3 (N - B)] + 0 (e-)
(5.4.16)

A(N 1 ) is an N-independent constant that our approach only determines perturba-

tively for small N1 , and we are not interested in its value. Expanding the F = - log Z
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we obtain:

F = f3/2N3/2 + f/2N ... , 3 , f/2 = . (5.4.17)
3 v/CO V U

We conclude that the free energy goes as:

ir V2N rN3/2
F = - N3/2 + 7F(NY . ) N1/2+... . (5.4.18)

3 v/2 8 2,,[-f

The Fermi gas computation is in principle only valid in the semiclassical, small h,

i.e. small N regime. However, because the small N1 series expansions terminate, we

obtain the exact answer. Then we can compare to the matrix model result (5.3.24)

valid at large N1 , and find perfect agreement to leading order in N. 15

As discussed in Section 5.2, at N = 1 the U(N) theory is dual to ABJM theory

at k = 1, and the free energy computation in both representations should give the

same result [119]. Plugging k =1 into (5.1.1) and (5.1.5) indeed gives (5.4.18) with

Nf = 1.

5.4.2 . 4 gauge theories with orthogonal and symplectic

gauge groups

To generalize the Fermi gas approach to SCFTs with orthogonal and symplectic gauge

groups, one needs the following generalization of the Cauchy determinant formula

(5.4.2):

R< 3 (Ui - uj)(vi - vj)(uinu - 1)(vjvj - 1) 1

Hi, (Uj + vj)(ujvj + 1) (Uj + Vj)(UjVj + 1) '

15Grassi and Marinio informed us that they calculated the free energy of this theory in the large
N, fixed N/Nf limit using method (I) discussed in Section 5.1. Their result is

F = N 3/2 1 + Nf 3/2
3 8N)

up to exponentially small corrections in N/Nf and subleading terms in 1/N. This expression agrees
with the large N, fixed N/Nf limit of the Fermi gas result (5.4.15)-(5.4.16) of this section. We
thank Marcos Mariio for sharing these results with us.
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which holds for any ni and vi, with i =1,.. . , N.16 Upon writing ui = e2,,i and

Vi - e2-y, this expression becomes

H~<[ [16 sinh (r(xi - xj)) sinh (r(yi - yj)) sinh (ir(xi + xj)) sinh (lr(yi + yj))]

Hi, [4 cosh (7r(xi - yj) cosh (r(xi + yj)]

det 1
4 cosh (wr(xi - yj)) cosh (7r(xi + yj))

(5.4.20)

In addition to this generalization of the Cauchy determinant formula, our analysis

involves an extra ingredient. The one-particle density matrix of the resulting Fermi

gas will be expressible not only just in terms of the usual position and momentum

operators i and P as before, but also in terms of a reflection operator R that we will

need in order to project onto symmetric or anti-symmetric wave-functions on the real

line.

Using (5.4.20) in the particular case yi = xi, one can rewrite (5.2.7) as

(4 sinh 2 (7rXi))" (4 sinh2(27xi))b

Z (4 cosh2 (Trxi)) Nf+c (4 cosh2 (27rxi)) 1/2 (5.4.21)

x det 1
4 cosh (r(xi - xj)) cosh (r(xi + xj))

As in (5.4.4) we recognize the appearence of the partition function of an ideal Fermi

gas of N noninteracting particles, and can read off the one-particle density matrix p

from comparing (5.4.4) with (5.4.21). From Table 5.4 we see that 2NC 1/(2NN!),

up to a O(NO) pre-factor that we will henceforth ignore. In the position representa-

16 After completing this chapter, it was pointed out to us by Miguel Tierz that this determinant
formula can be found in the literature. See, for example, [139].
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is given by

p(Xj' 12 )

x

x

(4 sinh2 (7rXi))' (4 sinh2( 2 7rxi))b

(4 cosh 2 (7rFX)) Nj+c (4 cosh 2 (27rxi))d-1/2

(4 sinh 2 (wX2 ))a (4 sinh 2 (27X 2))b

(4 cosh 2(wX2 )) Nj+c

1

(4 cosh 2 (2 2))d1/2

4 cosh (7(x 1 - x 2 )) cosh (7r(xi + X2 ))

To put this expression in a more useful form, we note that if we set h = 1, we can

write

4 cosh(7rxi) cosh(wX2 )
4 cosh (ir(x1 - X2 )) cosh (ir(xi + X2))

1 + RK 2 cosh(4rP) 2

where R is the reflection operator that sends x -+ -x. For the derivation of this

identity see Appendix 5.B. Then we can write

(5.4.24)

where

(4 cosh 2 (X)) Nf+c+1 (4 cosh 2 (27rx)) d-1/2

(4 sinh2 ( rX))a (4 sinh2(2 7rx))b
T(p) = log (2 cosh(-rp)) .

(5.4.25)

Similarly, we could use the identity

4 sinh(irxi) sinh(wrX2 )
4 cosh (7(xi - x 2 )) cosh (7r(xi + X2 ))

and write

# = e-U-(.)/2-T(P)
( R U)/ 2
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(5.4.23)

U+(X) = log

1-fR

2 cosh(7rp)
(5.4.26)

(5.4.27)

tion, P(Xi., X2) =(XI| J J2)

# C-U+(-Z)/2e-T(P) 1 + R)-U+(.-)/2



U(X) log (4 cosh2(rx))NIc (4 cosh2(2 7rx))d-1/
2

I
(4 sinh (irx)) (4 sinh2 (2-rx))b

and the same expression for T(p) as before.

To be able to use N1 as a parameter analogous to k in ABJM theory, we rescale

x = y/(4irN1 ) and p = k/(27r). Under this rescaling, we have

eU±()/ 2e-T()-U± ()/ 2 1 i R)

-+ # = ~ - *( )/2 - k e-U ( ),/2 I )
47rNf 2

(5.4.29)

where we used that U(s) commutes with R, and for the (+) sign

U+(y) =log

T(k) =log

while for the (-) sigr

U_ (y) = 0o

(4 cosh2 -L- Nf+c+1
(4Nf))

4 cosh 2 ())d1/2
2Nf

4 sinh 2 ( ) 4 sinh 2 (

2cosh(k))

4 cosh2 (.))NfC 4 cosh2 (Y))d 1 / 2

g 4,f -129f- ,9

(4 sinh 2 4N 1 )) 4 sinh2 R

and T(k) is as above.

After rescaling, we get the following nice properties:

K# = 4wrNjji,

U,(y) - 2

k
T (k) k2

(5.4.32)(y -+ oo)

(k -oo).

We then identify h = 47rN 1 , and calculate the area of the Fermi surface as a function
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of energy using the Wigner Hamiltonian (5.A.11). It is important to bear in mind

that the projector halves the density of states, as consecutive energy eigenvalues

correspond to eigenfunctions of opposite parity.17 To zeroth order, the phase space

volume enclosed by the Fermi surface is again given by (5.4.11), and the correction

is given by (5.4.12).

The fo dy U"(y) part of the latter formula seems to be problematic at first sight.

For generic a, b parameter values

U(y) ~ log 1y1 (y - 0) ,(5.4.33)

and the integral is divergent. Physically, this divergence would be the consequence of

the careless semi-classical treatment of a Fermi gas in a singular potential (5.4.33).

We will not have to deal with such subtleties, however, for the following reason. In

the cases of interest we either have a + b = 0 or a + b = 1-see Table 5.3. If a + b = 0,

we choose U(y) of (5.4.30) corresponding to the projection by (1 + R)/2, which is

regular at the origin. If a + b = 1 we choose U(y) of (5.4.31) corresponding to the

projection by (1 - R)/2, and the potential is again regular. With these choices, we

can go ahead and calculate (5.4.12).

For the number of eigenvalues below energy E we get:

V V+AV E 2  N 1 + I - 2d 1 (5.4
4h 4rh 27r2Nf 8 24N

where we have 47h instead of the conventional 27rh due to the projection. The

constants C and B from (5.4.16) take the values

1 7r2 C Nf + 1 - 2d 1
C = ~ , B = no + = - _+ ~ . (5.4.35)

272Nf 3 8 8Nf

17We can also think of the projection as Neumann or Dirichlet boundary conditions at the origin.
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Analogously to (5.4.36), the free energy F has the following large N expansion:

~-3/2 
~/

2 -r -1/2 3/2 ( ±(1 - 2d) Ngf1 2  N 1 /2
FN N±2+ + N1/2 1/2 N

3 4 ,2 4v/- 4 v/ 5

(5.4.36)

This result matches with the saddle point computation of Section 5.3.3-see (5.3.28).

As another check, note that the answer (5.4.36) is invariant under the redefinition of

parameters in (5.2.10), as should be the case.

5.5 Discussion and outlook

We summarize the results obtained in this chapter for the partition function of A = 4

gauge theories with classical gauge groups with matter consisting of one two-index

tensor (anti)symmetric and N1 fundamental hypermultiplets. The partition function

takes the form

Z(N) = A(Nf) Ai [C- 1/ 3 (N - B)] + 0 (e- , (5.5.1)

where C and B are given in Table 5.5. Using the relation f3/2 = 2/(3v/U) from (5.4.17),

we get agreement with the supergravity calculation (5.2.5).

From Table 5.5 one can see that there can be different field theories with the same

AdS 4 x X dual. For instance, the theories O(2N) +A, O(2N+1) +A, and USp(2N) +

S are all dual to AdS 4 x (S 7 /DNf)free, whereas O(2N) + S and O(2N +1) + S, as well

as USp(2N) +A with the shift N1 -4 N1 +4, are all dual to AdS 4 x (S7 /bNf +2), where

the orbifold action on S' is not free. As mentioned in Section 5.2, the supergravity

backgrounds must be distinguished by discrete torsion flux of the three-form gauge

potential. Remarkably, the S3 free energies of O(2N) and O(2N + 1) theories agree

both with symmetric and antisymmetric matter to all orders in 1/N. However, there

are non-perturbative differences, as the two matrix models are not the same. 18 For

1 8The equivalence (5.2.10) does not take the two integrands into each other. See Table 5.3.
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other pairs of theories with a same dual M-theory geometry, the subleading N1/ 2

contributions to the free energy are different.

More generally, the results collected in Table 5.5, together with the results of [1,

126] for U(N) quiver theories, represent predictions for M-theory computations that

go beyond the leading two-derivative 11-d supergravity. In the case of ABJM theory,

the k31/ 2 contribution to f1/2 appearing (5.1.1) is accounted for by the shift in the

membrane charge from higher derivative corrections on the supergravity side [117].

It would be very interesting to derive the shifts in membrane charge and to take into

account higher derivative corrections on the supergravity side for the other examples.

Note that from the large N expansion of the Airy function (5.5.1), one obtains a

universal logarithmic term in the free energy equal to - log N; this term matches a

one-loop supergravity computation on AdS 4 x X [118].19 Perhaps one could derive

the full Airy function behavior from supergravity calculations.

II II M-theory on I
G+ matter IIA orientifold I AdS4 xX C B

S7Z2 N

U(N) + adj no orientifold S7 /ZNf -____ 8 2Nf

O(2N) + A 02- (S/bN )free 21 N+1 

S7_____ ___1_ _ 8f -1 +

O(2N) + S 06+ 7/DN+ 2  27r2 (Nf +2) 8 8(Nf+2)

O(2N + 1) + A 02 (S/bN )free 22 N +1 +
S1Nf+1 Nf-1±+ 1O(2N + 1) + S 06+ 27 N+2 2(N +2) 8 8(N +2)

S/1 - Nf-1±+ 1USp(2N) + A 06- S/bN-2 2_2(N_-2) 8 8(Nf -2)

USp(2N) + S 02+ (S 7  Nf )free 21N N-1 +
27r

2
N 8 8Nf

Table 5.5: The values of the constants C and B appearing in (5.5.1) for a gauge
theory with gauge group G, Nf fundamental flavors, and a two-index antisymmetric
(A) or symmetric (S) hypermultiplet. We also listed the type IIA construction, and
dual M-theory geometry. To compare with the gravity calculation (5.2.5), one needs
the relation f3/2 = 2/(3VU).

It would be desirable to generalize the methods in this chapter to more complicated

quiver theories with classical gauge groups and Chern-Simons interactions. Although

19We thank Nikolay Bobev for discussions on this issue.
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at first sight it may seem straightforward to generalize the large N approximation

of Section 5.3 to the more general setup, there are additional complications related

to the non-smoothness of the eigenvalue distributions at leading order in large N

and the non-exact cancellation of long-range forces between eigenvalues at subleading

order. We leave such a general treatment for future work. The Fermi gas approach

explored in Section 5.4 is very powerful, but it relies crucially on non-trivial determi-

nant formulae. It would be interesting to understand better the set of SCFTs with

orthogonal and symplectic gauge groups that lend themselves to this approach. One

may hope that the S 3 partition functions of all theories with K > 3 supersymmetry

can be written as non-interacting Fermi gases.

5.A Lightning review of the Fermi gas method of [1]

In this Appendix we review briefly the approach of [1] for computing the partition

function of a non-interacting Fermi gas. For such a system, the number of energy

eigenvalues below some energy E is given by:

n(E) = Tr O(E - fI) = E O(E - En) (5.A.1)
n

where En is the nth energy eigenvalue of the full system. The density of states is

defined by

p(E) = dn(E) (E - En) - (5.A.2)
n

In the thermodynamic limit, p(E) becomes a continuous function. The grand canon-

ical potential of the non-interacting gas is given by:

J(p) = dE p(E) log (1 +- e-E+p) , (5.A.3)
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where p is the chemical potential. The canonical partition function and the free

energy can be obtained from evaluating

Z(N) = f dp eJ()-piN
27r j (5.A.4)

F(N) = -log Z(N).

In the thermodynamic limit where N -s oc, we only need the asymptotic form

of n(E) in order to determine the free energy to all orders in 1/N. In the models of

interest, we find that

n(E) = CE 2 +no+O(Ee-E) (5.A.5)

Then a short calculation gives

J (p) = - p3 +BA+A+ (Pe-") , B =no+ ,
3 3 (5.A.6)

Z(N) = AAi [C /3 (N - B)] + 0 (e~ ,

where A and A = C-1/3eA are N-independent constants.

The constants C and no can be determined by semiclassical methods, as they

describe the large energy behavior of the density of states of the non-interacting

Fermi gas. The semiclassical computation can be performed in the Wigner-Kirkwood

formalism. Firstly, we introduce the Wigner transform of an operator A:

Aw (x, p) =Jdy (x- 2Ax + ) e "/. (5.A.7)

The Wigner transform obeys the product rule

(AL) AW*Bw, 
(5.A.8)

* =exp iho-
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The trace of an operator is given by the phase space integral of the Wigner transform:

TrA J = p j Aw(x, p). (5.A.9)
21r h

In the Fermi gases of interest in this chapter, we will encounter one particle density

matrices of the form 20

Se-U(i)/
2eT(j)e-U()/ 2 , (5.A.10)

where U(x) and T(p) approach linear functions exponentially fast for large x or p.

One can then calculate the Wigner Hamiltonian

Pw

52 (5.A.11)
HFw(x,p) = T(p) + U(x) + h [U'(x) 2 T"(p) - 2T'(p) 2 U"(x)] + 0(h 4 )24

Combining (5.A.1) and (5.A.9) we get

n(E) dxdp O(E - H)w (x, p) . (5.A.12)
27h

Along the lines of the argument in [1], one can show that up to exponentially small

corrections n(E) is given by the phase space area

n(E) = dxdp+ 0 (Ee-E) (5.A.13)
JI )(xp)<E 27 h

where H is the Wigner Hamiltonian through 0(h) displayed in (5.A.11). n(E) is

just the Fermi surface area the non-interacting Fermi gas fills up. (5.A.13) can be

evaluated using the explicit form of U(x) and T(p).

20We have additional an projection operator multiplying this density matrix. We discuss the
consequences of the projector in the main text.

181



5.B Derivation of (5.4.23)

Let us note that using simple trigonometric identities

4 cosh(7rxi) cosh(wX 2)

4 cosh (r(xi - X2)) cosh (7r(x 1 + X2))

1 1
2 cosh (7r(xi - X2)) 2 cosh (wr(xi + X2))

(5.B.1)

Using the Fourier transform

Jdx e2iPx
1 _ 1

coshirp coshwrx

it is easy to see that

1
2 cosh (7r(xi - X2))

1K 1 £2
2 cosh(r3)

where in h = 1 units P = - 1O in position space. Finally, we make use of RJX 2)=

-X2) to combine (5.B.1) and (5.B.3):

4 cosh(7x) cosh(wrX 2 )
4 cosh (ir(x 1 - X2)) cosh (r(xi + x2))

I + R
xj2 cosh (7rp)

This expression is the same as (5.4.23), which is what we set out to show.

5.C Derivation of the determinant formula

The Cauchy determinant formula states that for any numbers ui and vi, with 1 <

i, j ; N, the following identity holds

i ( ui )(v - v)
-1- (j vj)

=det .
ui + vj
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In this Appendix we derive a similar determinant formula 2 1 :

i7J (n ) - U )(vi )- - i)(vv -u, 1)

H i (j + vj)(u vj + 1)
1

det .
(Ui + Vj) (Uivj + 1

The proof of (5.C.2) is very similar to the proof of the Cauchy formula (5.C.1).

Let us compute the determinant of the matrix M(N) where

IAn 1

(Ui -+ vj) (u ± v-
(5.C.3)

Subtracting the last column from each column j < N, one obtains the following

entries

1 1

(Ui + vU)(U + v 1 ) (Ui + VN) ui + V-')

ui(VN - V,)(VN - V

vN(Ui - VN) (Ui + VI) (uj + VX)(Ui ± ))

(5.C.4)

Extracting a factor of 1/(Ui VN)(ui - vN') from each row i and a factor of (VN -

'Vj)(VN - N from each column j < N, one obtains

fN-1-1H7 1 (VN - Vj)(VN - V;1)

vN- j= 1(U ±- VN) (ni + <)

iUl
(ui+vi)(ui+v- )

U2

(U2+vi)(u2+v )

UN

(UN+Vl)(UN+v)

Ul

(ul+VN)(U1+VUi)

U2

(U2+vN)(U2+VT )

UN

(UN+VN)(UN+VN)

(5.C.5)

In the determinant in (5.C.5) we now subtract the last row from each row i < N.

2"This formula has previously appeared in the literature. See for example [139]. We thank Miguel

Tierz for pointing this fact out to us.
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The entries for i, j < N become

ni

(Ui + vi)( Ui + v 1)
UN

(UN±+Vj) (UN +V7)

(UN - Ui)(UNui - 1) 1

(UN VJ) (UN + V.7 (Ui ± 'V) (U + V3
1 )

(5.C.6)

Extracting a factor of (UN - Ui)(UNUi - 1) from each row i < N and a factor of

1/(UN ± Vj (UN + V 1 ) from each column j < N one obtains

det M(N) -

N1( - Ui) (UN Ui 1 N - Vj (VN - v;1)

vN- 1 N='Li ± NV?(i +v-N 1) N-
1(N - N

By induction, we can then show

det M(N) = Hj>N(Uj - Ui)(UiUJ - 1)(v 1 - vi)(vj - v7 1)
1=1 H1j(Ui + vj)(Ui + v)

Since

1 _____________ 1
det det M(N)

(aa U )j + ( ) we h1v

after rearranging the factors of vi in (5.C.8) we have

det 1
(Ui + vS)(nUsv + 1)

J7iJi>(U 3 - Ui) (UiUj - 1)(vj - vi)(v v - 1)
H ij(Ui + vU)(Uivj + 1)

which is the same expression as (5.C.2).
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(5.C.8)

(5.C.9)

' (5.C.10)



Appendix A

Quantum-corrected moduli space

As a check that the field theories presented in Table 5.2 are dual to M-theory on

AdS 4 x X, where X is the quotient of S' in Table 5.2, one can make sure that the

moduli space of these field theories does indeed match the moduli space of N M2-

branes probing the ld geometry. We will do so at the level of algebraic geometry,

without explicitly constructing the full hyperkdhler metric on the moduli space. In

this computation, monopole operators play a crucial role, because they parameterize

certain directions in the moduli space [106, 107]. It is very important to include

quantum corrections to their scaling dimensions, which essentially determine their

OPE as in [106,107, 110, 111].

To define monopole operators, one should first consider monopole backgrounds.

We use the convention where for a gauge theory with gauge group G, the gauge field

A corresponding to a GNO monopole background centered at the origin takes the

form

A = H(1 - cos O)d5, (A.0.1)

where H is an element of the Lie algebra g. Using the gauge symmetry, one can

rotate H into the Cartan {hi} subalgebra, namely

r

H qihi, (A.0.2)
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where r is the rank of G. The Dirac quantization condition requires

q -w E Z/2 (A.0.3)

for any allowed weight w of an irreducible representation of G. These monopole

backgrounds should be considered only modulo the action of the Weyl group.

The background (A.0.1) above breaks all supersymmetry by itself. To define a

supersymmetric background, one should supplement (A.0.1) with a non-trivial profile

for one of the three real scalars in the AF = 4 vectormultiplet. Let this scalar be o-;

we must take - = H/ xj. The choice of such a scalar breaks the SO(4)R symmetry

of the K = 4 supersymmetry algebra to an SO(2)R subgroup corresponding to an

K = 2 subalgebra. In this K = 2 language, one can define chiral monopole operators

Mq corresponding to the GNO background described above. Being chiral, one can

identify their scaling dimension Aq with the SO(2)R charge. As shown in [107,140],

the BPS monopole operator Mq acquires at one-loop the R-charge

Aq S q "- E I w, (A.0.4)
hypers vectors

where the sums run over all the weights w of the fermions in the hyper and vector-

multiplets. As far as the K = 4 supersymmetry is concerned, these chiral monopole

operators Mq are the highest weight states of SO(4)R representations of dimension

2 Aq + 1. However, only the chiral operators with scaling dimension (A.0.4) will be

relevant for us.

A.1 K=4 U(N) gauge theory with adjoint and Nf

fundamental hypermultiplets

Let us start by reviewing the construction of the geometric branch of the moduli

space for the K = 4 U(N) gauge theory with an adjoint hyper and N1 fundamental

hypermultiplets. In K = 2 notation, the matter content of the theory consists of
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adjoint chiral multiplets with bottom components X, Y (coming from the adjoint

K = 4 hypermultiplet), and Z (coming from the K = 4 vectormultiplet), as well

as chiral multiplets with bottom components qi, i = 1,..., Nf transforming in the

fundamental of U(N) and i transforming in the conjugate representation. The K = 2

superpotential,

W = tr (Z [X, Y] + ; Zqi) ,(A. 1.1)

is consistent with the R-charges of X, Y, qi, and 4, being equal 1/2, and that of Z

being equal 1, as can be derived for instance using the F-maximization procedure

[23,113,141].

In the N = 1 case, the moduli space of this theory should match precisely the

eight-dimensional transverse space probed by the M2-branes. Indeed, in this case the

chiral multiplets corresponding to X and Y completely decouple, and the expectation

values of these complex fields parameterize a C2 factor in the moduli space of vacua.

The rest of the moduli space is parameterized by expectation values for Z and for the

monopole operators T = M 1 / 2 and T = M-1/ 2 . These operators are not independent;

in the chiral ring, they satisfy a relation that can be determined as follows. According

to (A.0.4), we can calculate their R-charge to be

A = f + 0_-0 = f (A. 1.2)
22

where in the middle equality we exhibited explicitly the contributions from the N1

fundamentals, the adjoints, and the K = 4 vector, respectively. One then expects

the OPE [106,107,110,111]

Tt ~ ZNf, (A.1.3)

which should be imposed as a relation in the chiral ring. Giving T, T, and Z ex-

pectation values obeying (A.1.3) describes the orbifold C
2
/ZNf, as can be seen from
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"solving" (A.1.3) by writing T = aN!, bNf, and Z = ab. The coordinates a and

b parameterize C2 /2Nf because both (a, b) and (ae 2
7,i/Nf, be-2i/Nf) yield the same

point in (A.1.3). The moduli space of the U(1) theory is therefore C2 x (C2/ZNf),

where the C2 factor is parameterized by the free fields X and Y, and the C 2 /7 Nf

factor is really just the complex surface (A.1.3). Defining

z 1 = X , z 2 = Y , z3 = a , z 4 = b*, (A.1.4)

we obtain the description of C2 x (C 2 /Z Nf) used around eq. (5.2.1).

When N > 1, the theory has a Coulomb branch where the fundamentals vanish

and the adjoint fields X, Y, and Z have diagonal expectation values

X = diag{xi, X2,... , xN, Y diag{y, Y2, ... YN, Z diag{Z1, Z2 , - - - , ZN}

(A.1.5)

(to ensure vanishing of the F-term potential), thus breaking the gauge group generi-

cally to U(1)N. In addition, there are BPS monopole operators corresponding to

H = diag{ql, q2 , ... ,qN}; (A.1.6)

we can denote the BPS monopole operators with qi = +1/2 and qj = 0 with i # j by

Ti (for the plus sign) and i (for the minus sign). An argument like the one in the

Abelian case above shows that for every i, we have

T s ff (A.1.7)

For each i we therefore have a C2 x (C 2 /Z Nf) factor in the moduli space parameterized

by (Xi, yi, zi, T, Ti). The Weyl group of U(N) acts by permuting these factors, so the

Coulomb branch of the U(N) theory is the symmetric product of N C2 x (C2 / Nf)

factors. This space is precisely the expected Coulomb branch of N M2-branes probing

C2 x (C 2/INf). In addition to the Coulomb branch, the moduli space also has a Higgs
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branch where the fundamental fields q and j acquire expectation values. This branch

is not realized geometrically, however, and is therefore of no interest to us.

A.2 The USp(2N) theories

Let us now consider the M = 4 USp(2N) theories with N fundamental and either a

symmetric or an anti-symmetric hypermultiplet. As in the U(N) case, let us denote

the bottom components of the K = 2 matter multiplets by X, Y (transforming either

in the symmetric or anti-symmetric representations of USp(2N)), Z (transforming in

the adjoint (symmetric) representation of USp(2N)), qj, and 4 (transforming in the

fundamental representation). A superpotential like (A.1.1) determines the R-charges

of these operators just like in the U(N) case.

In the N = 1 case, we expect that the Coulomb branch of the USp(2) a SU(2)

theory should match the geometry probed by the M2-branes. In this case, Z is

an adjoint field, while X and Y are either adjoint-valued or singlets under SU(2)

(corresponding to symmetric or anti-symmetric USp(2N) tensors, respectively). On

the Coulomb branch, the gauge group is broken to U(1) by expectation values for the

adjoint fields. Without loss of generality, we can consider these expectation values to

be in the J3 = 5-13 direction and take Z = zJ 3 . If X and Y are adjoint-valued, we

should also take X = xJ 3 , Y = yJ3 (such that the bosonic potential following from

the first term in (A.A.1) vanishes); if X and Y are SU(2) singlets, we can take X = x

and Y = y. The expectation values of the fundamental fields qi and ; must vanish

for any of the vacua on the Coulomb branch.

As in the U(1) case, a full description of the moduli space also involves monopole

operators. For an SU(2) gauge theory, the monopole operators can be taken to

correspond to a GNO background (A.0.1) with

H = qJ3k. (A.2.1)

Since the possible weights 7 are half-integral, the Dirac quantization condition (A.0.3)
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implies q c Z. Note that all these operators are topologically trivial, because the

group SU(2) has trivial topology. The operators with smallest charge are T = M1

and T = M_ 1 . In fact, in the SU(2) gauge theory, T and i are identified under the

action of the Weyl group, but on the Coulomb branch they will be distinct. According

to (A.0.4), the R-charge of T and T is

A Nf + 2 - 2 = N if X, Y are adjoints, (A.2.2)
Nf + 0 - 2 = Nf - 2 if X, Y are singlets,

where, as in (A.1.2), in the middle equality we exhibited explicitly the contributions

from the N1 fundamental, from the adjoints / singlets, and from the K = 4 vector,

respectively. From (A.2.2), one expects the OPE

Ti tr Z 2A = (tr Z 2 )A, (A.2.3)

where the trace is taken in the fundamental representation of SU(2). The relation

(A.2.3) should be imposed as a relation in the chiral ring. Note that A in (A.2.2) is

always an integer, so tr Z2A does not vanish. Also note that if Nf = 0 in the adjoint

case and N1 < 2 in the singlet case we obtain monopole operators with R-charge

A < 0, which signifies that one of the assumptions in our UV description of the

theory must break down as we flow to the IR critical point. Such theories were called

"bad" in [140], and we will not examine them. See also footnotes 11 and 12.

We are now ready to give the full description of the Coulomb branch. It is pa-

rameterized by the complex fields x, y, z, T, and T. The latter three satisfy

TT ~ z2A , (A.2.4)

as can be easily seen from (A.2.3). In addition, SU(2) has a Z 2 Weyl group, which

sends J3 -> -J 3 and consequently also acts non-trivially on the Coulomb branch by
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flipping the sign of the adjoint fields and interchanging T with i:

X, Y adjoints (symmetric): (x, y, z, T, T) ~ (-X, -y, -z, T, T), (A.2.5)

X, Y singlets (anti-symmetric): (x, y, z, T, T) - (x, y, -z, i, T).

We can relate this description of the Coulomb branch to the one used in Section 5.2.1.

First, we solve (A.2.4) by writing T = a2A, ? = (c*)2A, and z = ac*, for some complex

coordinates a and c. There is a redundancy in this description that forces us to make

the identification

(a, c) ~ e-i/A (a, c) . (A.2.6)

In terms of a and c, the Weyl group identifications (A.2.5) yield

X, Y adjoints (symmetric): (X, y, a, c) ~ (-X, -y, ic*, -ia*),
(A.2.7)

X, Y singlets (anti-symmetric): (x, y, a, c) ~ (x, y, zc* , -%'a*) .

Redefining x = z1 , y = z2 , a = z3 , c = z4 , we obtain precisely the orbifold description

used in Section 5.2.1. In the case where X and Y are adjoint fields, the Coulomb

branch is a freely acting DNf orbifold of C4, while in the case where X and Y are sin-

glets the Coulomb branch is a D-Nf2 orbifold of C4 (more precisely C2 X (C 2/ Nf -2))

that now has fixed points because the coordinates z1 = x and z 2 = y are invariant

under the action (A.2.6)-(A.2.7).

When N > 1, the moduli space of vacua has a Coulomb branch where the fun-

damentals vanish and X, Y, and Z acquire expectation values and break USp(2N)

generically to U(1)N. A straightforward analysis shows that if X and Y are symmet-

ric tensors, the Coulomb branch is the Nth symmetric power of the space C 4 /DNf

found above in the N = 1 case; if X and Y are anti-symmetric tensors, the Coulomb

branch is the Nth symmetric power of C2 X (C 2 /Nf -2). These spaces are precisely

the expected moduli spaces of N M2-branes probing C 4 /pNjf or £2 X (C2 Nf-2)- In

addition to the Coulomb branch, the theory also has a Higgs branch where the fun-
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damentals qj and & acquire VEVs, but the Higgs branch is not realized geometrically

in M-theory.

It is worth noting that if X and Y are anti-symmetric tensors of USp(2N), one

could consider imposing a symplectic tracelessness condition on these fields. When

N = 1, the fields X and Y would be completely absent, because what survived in the

analysis above was precisely their symplectic trace. The moduli space would therefore

be only C 2 / DNf if the symplectic trace were removed from X and Y, and it would

not match the eleven-dimensional geometry. The correct field theory that arises from

the brane construction of Section 5.2.1 is that where X and Y are not required to be

symplectic traceless.

A.3 The O(2N) theories

The discussion of the Coulomb branch for A1 = 4 O(2N) gauge theory with either

a symmetric or anti-symmetric hypermultiplet and N1 hypermultiplets in the the

fundamental representation of O(2N) parallels the discussion of the USp(2N) case

above. Let X, Y, Z, qj, and & be the bottom components of the chiral multiplets

arising from the K = 4 hyper and vectormultiplets as before. Now Z transforms

in the adjoint (anti-symmetric) representation of O(2N), while X and Y transform

either in the symmetric or antisymmetric tensor representations of O(2N). While

the representations of O(2N) are real, and therefore there exists the possibility of

considering real scalar fields, our scalar fields X, Y, Z, qj, and i are all complex.

In the case N = 1, one can again study the Coulomb branch where the funda-

mentals all vanish and X, Y, and Z have expectation values. Let

0 -i
J=( (A.3.1)

Z 0

be the Hermitian generator of 0(2). On the Coulomb branch, we should take Z = zJ.

If X and Y are symmetric matrices, the scalar potential vanishes if these matrices
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commute with Z, so we should take X = xI 2 and Y = y12, where I2 is the 2 x 2

identity matrix. If X and Y are anti-symmetric matrices, the only option is X = xJ

and Y = yJ for some complex numbers x and y.

The monopole operators for an 0(2) gauge theory correspond to backgrounds

(A.0.1) with

H = qJ. (A.3.2)

Since the possible weights of 0(2) representations are all integral, Dirac quantization

implies q c Z/2. The monopole operators of smallest charge are T = M 1 / 2 and

T = M-1 1 2 . These operators are independent at generic points on the Coulomb

branch. If the gauge group were SO(2) they would also be distinct at the CFT fixed

point at the origin of the Coulomb branch, but for an 0(2) gauge group they get

identified: Indeed, one can consider the charge conjugation

1 0
C =E (2), (A.3.3)

0 -1

(which in the 0(2) theory is gauged) under which J -+ CJC-1 = -J. Charge

conjugation identifies T with T at the origin of moduli space because it identifies the

defining backgrounds (A.3.1). The R-charge of T and i is

Nf + 2 - 0 = Nf + 2 if X, Y are symmetric, (A.3.4)

N -- 0= N if X, Y are anti-symmetric.

These R-charges imply that T and T satisfy the OPE (A.2.3), as in the SU(2) case.

The Coulomb branch is parameterized by the complex parameters x, y, z, T, and

T satisfying the constraint (A.2.4). Charge conjugation (A.3.3) imposes the further
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identifications

X, Y symmetric: (X, y, z, T T) ~ (x, y, -z, T, T),
(A.3.5)

X, Y anti-symmetric: (X, y, z, T, T) ~ (-X, -y, -z, T, T).

Writing T = a2A, T = (c*)2A, and z = ac* as in the SU(2) case, we obtain a

description of the Coulomb branch in terms of the complex parameters (x, y, a, c)

subject to the identifications (a, c) - eni/A(a, c) and

X, Y symmetric: (X, y, a, c) ~ (X, y, -z, ic*, -ia*) ,
(A.3.6)

X, Y anti-symmetric: (x, y, a, c) (-X, -y, ic*, -ia*).

Denoting x = z1 , y = z2 , a= z 3, and c z4 as in the SU(2) case we obtain

the same description of the eight-dimensional hyperkdhler space that appears in the

eleven-dimensional geometry, as described in Section 5.2.1.

In the N > 1 case, one can check that the Coulomb branch is the Nth symmetric

power of C2 X (£2/Nf) or C£l/Nf, depending on whether X and Y are symmetric

or anti-symmetric tensors, respectively. This geometry matches precisely the moduli

space of N M2-branes probing, respectively, C2 X (C 2 / Nf) or C DNf. As in the

U(N) and USp(2N) theories discussed above, there is also a Higgs branch where the

fundamentals have expectation values, but this branch is not realized geometrically

in M-theory.

Note that having an O(2N) gauge group as opposed to SO(2N) was very impor-

tant for matching the eleven-dimensional geometry. In an SO(2) gauge theory, the

identifications (A.3.5) and (A.3.6) would not be present. Note also that in the case

where X and Y are symmetric tensors of O(2N), one has in principle the possibility

of imposing a tracelessness condition on X and Y. When N = 1, the moduli space

would then be C2/ Nf, and would therefore have complex dimension two. For the

field theory that arises from the orientifold construction in string theory one should

therefore not require X and Y to be traceless.
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A.4 The O(2N + 1) theories

Lastly, let us consider the M = 4 O(2N +1) gauge theories with either a symmetric or

anti-symmetric tensor hypermultiplet and N1 fundamental hypermultiplets. We use

the same notation for the bottom components of the various A = 2 chiral multiplets

as in the previous section.

In the N - 1 case, we can take the theory to the Coulomb branch by giving

an expectation value to Z = zJ 2 to the complex scalar Z belonging to the Ar = 4

vectormultiplet. Here,

0

J 12 = i

0

-i 0

0 0

0 0

(A.4.1)

is the generator of rotations in the 12-plane in color space. To ensure that the scalar

potential vanishes, one should also take X = XJ1 2 and Y = yJ 2 in the case where

X and Y are anti-symmetric tensors, and X = diag{x, X, }, Y = diag{y, y, #} in

the case where X and Y are symmetric tensors. In both cases, the vanishing of the

F-term potential requires qj = qj = 0.

The relevant BPS monopole operators in this case correspond to

H = qJ 1 2 . (A.4.2)

Dirac quantization implies q E Z/2, and as before we denote T = M 1 / 2 and T =

M-1/ 2 . The operators T and T are distinct on the Coulomb branch, but at the CFT
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fixed point they get identified. Indeed, the gauge transformations corresponding to

100
1 0 0

0 0 -1 0 E O(3) (A.4.3)

0 0 ±1

send J12 -> 0J 12 0 1 = -J12, so they identify T with T. Note that the minus sign

in (A.4.3) yields a group element of SO(3) as well, while the plus sign does not; the

transformation corresponding to the plus sign is the charge conjugation symmetry of

the SO(3) theory, which is gauged when the gauge group is 0(3). Unlike the 0(2)

case discussed above, the operators T and T are not identified only in the 0(3) gauge

theory. They would be identified in the SO(3) gauge theory as well. The R-charge

of T and T is

N + 3 - 1 N + 2 if X, Y are symmetric , (A.4.4)
N + 1-1 = N if X, Y are anti-symmetric.

Based on these R-charges, one can infer that T and T satisfy the OPE (A.2.3).

The Coulomb branch in this case is parameterized by x, y, z, T, T, as well as Y and

j in the symmetric tensor case. The fields z, T, and T satisfy the chiral ring relation

(A.2.4). The transformation (A.4.3) imposes the same relations as in (A.3.5)-(A.3.6)

and does not act on Y and j. The Coulomb branch is therefore C 4 /bNf +2 if X and

Y are anti-symmetric tensors, just like in the 0(2) case discussed above. If X and Y

are symmetric tensors, the Coulomb branch is C2 x C2 x C
2

/ Nf+2, where the extra

C2 factor relative to the 0(2) case is parameterized by Y and .

This discussion generalizes to N > 1. If X and Y are anti-symmetric tensors,

the Coulomb branch is the Nth symmetric power of C4 /DNf+2, as expected from N

M2-branes probing C 4 /bNf. If X and Y are symmetric tensors, the Coulomb branch

is C2 times the Nth symmetric power of C2 X C2/ Nf+ 2 . This moduli spaces is also
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as expected from N M2-branes probing C2 x (C2/ Nf), together with a fractional

M2-brane that is stuck at the C 2 /DNJ singularity and can only explore the C2 part

of the geometry. This fractional M2-brane corresponds to the half-D2-brane that is

stuck to the 06+-plane. As in the previous cases, the moduli space also has a Higgs

branch where the fundamental fields qj and i have expectation values, but this branch

is not realized geometrically.
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