
Using Distributed Machine Learning to Predict

Arterial Blood Pressure

by

Ijeoma Emeagwali

B.S., Massachusetts Institute of Technology (2012)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSETTS IN-MTfftE
OF TECHNOLOGY

JUL 15 2014

LIBRARIES
February 2014

@ Massachusetts Institute of Technology 2014. All rights reserved.

Author........Signature redacted
Autho~.

Department of Electrical Engineering and Computer Science

Januar 31, 2014

Certified by. Signature redacted
Una-May O'16illy

Principal Research Scientist

Certified by.......................

Accepted by........

A / //
Signature redacte

Thesis Supervisor

Signature redacted
Erik'Hemberg

PostDoctorial Associate

Thesis Supervisor

Albert R. Meyer
Chairman, Department Committee on Graduate Theses

2

Using Distributed Machine Learning to Predict Arterial
Blood Pressure

by
Ijeoma Emeagwali

Submitted to the Department of Electrical Engineering and Computer Science

on January 31, 2014, in partial fulfillment of the

requirements for the degree of

Masters of Engineering in Computer Science

Abstract

This thesis describes how to build a flow for machine learning on large volumes of

data. The end result is EC-Flow, an end to end tool for using the EC-Star distributed

machine learning system. The current problem is that analysing datasets on the order

of hundreds of gigabytes requires overcoming many engineering challenges apart from

the theory and algorithms used in performing the machine learning and analysing

the results. EC-Star is a software package that can be used to perform such learning

and analysis in a highly distributed fashion. However, there are many complexities

to running very large datasets through such a system that increase its difficulty of

use because the user is still exposed to the low level engineering challenges inherent

to manipulating big data and configuring distributed systems. EC-Flow attempts to

abstract a way these difficulties, providing users with a simple interface for each step

in the machine learning pipepline.

Thesis Supervisor: Una-May O'Reilly

Title: Principal Research Scientist

Thesis Supervisor: Erik Hemberg

Title: PostDoctorial Associate

3

4

Acknowledgments

I would like to acknowledge Erik Hemberg, Kalyan Veeramachaneni, and the other
members of CSAIL's ALFA group that made who's work made this thesis possible.

5

6

Contents

1 Introduction 13

1.1 Motivations . 13

1.2 Challenges with Big Data Machine Learning 13

2 The EC-Star System 15

2.1 D esign . 15

2.1.1 Design Motivations for EC-Star 15

2.1.2 Representation in EC-Star . 15

2.2 Architecture . 16

2.2.1 Clients in EC-Star . 16

2.2.2 Servers in EC-Star . 17

3 EC-Flow 19

3.1 EC-Flow Overview . 19

3.1.1 Data Package Creation . 19

3.1.2 Parallel Data Processing on Open Stack 21

3.1.3 EC-Star Configuration . 21

3.1.4 Running Experiments . 22

3.2 Data Package Creation . 22

3.2.1 File Chunking . 23

3.2.2 Data Cleaning . 23

3.2.3 Feature Selection . 24

3.2.4 Adjusting Lead Time . 25

3.2.5 Adding Headers . 25

3.2.6 Data Package Creation Summary 26

3.2.7 Creating Folds for Cross Validation 26

3.3 Data Packages as a Service (DPaaS) 27

3.3.1 When to use DPaaS . 28

3.3.2 DPaaS test example . 28

3.4 Code Preparation . 30

3.5 Setup EC-Star run . 31

3.6 Analysing Results . 32

7

4 Example EC-Star run, ABP Data 33
4.1 Creating the Data Packages 33
4.2 Generating the Code . 35
4.3 Running EC-Star . 35

4.3.1 Local Run . 35
4.3.2 Distributed Data Host, Clients, and Servers 37
4.3.3 Grid Machine Setup . 39

4.4 Analysing Results . 41

5 Conclusion and Future Work 43

A Tables 45

B Figures 49

C Source Code 51

8

List of Figures

2-1 EC-Star Hub and Spoke Model[1]. Pool servers serve as the hubs in

this model and communicate with the clients that act as the spokes. . 16

2-2 BNF grammer showing how a solution in EC-Star is represented as a

set of conjunctive rules . 16

2-3 Pool servers act as the hubs in EC-Star and receiving solutions from

the clients. The data server responds by sending data packages to the

clients upon request. 17

3-1 EC-Flow Overview. EC-Flow is used both to create the data packages

from raw csv files, as well as set up and execute runs of EC-Star . . . 20

3-2 Sleipnir Overview. Sleipnir is used to process large amounts of data

files in parallel. The system will divide up the data among the available

nodes and run the given script on each set of data on each node. . . . 22

3-3 Data package creation process. 23

3-4 File chunking. 23

3-5 Feature selection. The highlighted features in the original file plus the

label(the final column) are selected for the final data package. 24

3-6 Data package before and after a lead time adjustment of 3. 25

3-7 Sample EC-Star data package header. 26

3-8 10-fold split. The original set of data is broken into a 90/10 split. The

90% split is then further divided into ten 90/10 splits. 27

3-9 Sample tomcat log on data server . 28

3-10 When using data packages as a service, the data host draws from a

pre-made directory of data packages. As the pool of data packages

runs out, DPaaS creates more from the pool of raw data files. 29

3-11 Code preparation overview. 30

4-1 Config file (config.cfg) . 34

4-2 Raw csv file . 34

4-3 Resulting data package(.gdp file, truncated) 34

4-4 Sample client.cfg. 37

9

4-5 This layout consists of 2 pool servers, a database server, the clients,
and a gateway machine to configure the servers from. The pool servers
are setup as virtual machines running Ubuntu loaded with the EC-
Star software. They have 4 core cpus and 8GB of memory each. The
database server also has a 4 core cpu with 22GB of memory. The clients
are run on the grid machines. The grid machines consist of a volunteer
compute network of computers in china. This setup of EC-Star can
handle 3,500 clients without a problem and should be able to scale up
to 25,000. 39

10

List of Tables

A.1 EC-Flow Action Options . 46
A.2 EC-Flow Configuration Options . 47

A.3 Data Package Creation Timings . 48

11

12

Chapter 1

Introduction

1.1 Motivations

When attempting to perform it on large enough datasets, the process of using machine

learning to analyse data can begin to present many difficulties apart from the theories

and algorithms of the machine learning itself. Algorithms that may be easy to run

on a small dataset that can be stored and processed on one machine, may not scale

graciously to run datasets on a terabyte scale. Even if the machine learning technique

is designed to scale well from an algorithmic perspective, the engineering challenges of

storing, processing and analysing big data still present a challenge that will influence

the implementation of such an algorithm in practice. This project focuses on the

use of EC-Star, a software for running Evolutionary Algorithms, an area of machine

learning that lends itself naturally to running in a highly distributed fashion since each

candidate solution can be evaluated in parallel and asynchronously. With the EC-

Star platform, users can perform highly distributed runs of evolutionary algorithms

on large amounts of data. However, the platform does not abstract all of the details of

manipulating the data and moving through the machine learning process away from

the user. At large enough scale, configuring such a distributed system, and preparing

a dataset to run through it becomes an engineering challenge itself. With this project,
EC-Flow attempts to tackle this issue, presenting an end to end solution beginning

with a raw data set, and moving through the process to analysing the end results.

1.2 Challenges with Big Data Machine Learning

Even with a platform like EC-Star to take care of the implementation of the machine

learning algorithm in a distributed fashion, there are still many steps in the process

that become tedious and error prone if the users are forced to perform them every

time they use the system. For example, software like EC-Star accepts data in a stan-

dardized format meaning before a dataset can be run in the system it must first be

manipulated and transformed into an acceptable format. At large scale this can be a

timely and error prone process due to the fact that the usual scenarios don't involve

manipulating millions of files totaling hundreds of gigabytes of data. Furthermore a

13

system like EC-Star must be tweaked and configured to the specific experiment and
dataset being analysed.

EC-Flow attempts to tackle these Big Data challenges and hide these details from
the user making the entire pipeline from data formatting to starting the distributed
algorithm appear as a black box. By inputting the high level parameters and experi-
mental settings at the beginning of the pipeline, EC-Flow will automatically prepare
the data and configure EC-Star to the user's specifications making the process much
more seamless and abstracting away the last layer of big data engineering tasks away
from the end user.

14

Chapter 2

The EC-Star System

2.1 Design

2.1.1 Design Motivations for EC-Star

One of the significant challenges in Evolutionary Algorithms as in any machine learn-

ing algorithm is the engineering challenge of being able to scale the actual running of

the algorithm to larger and larger datasets. When datasets are too large and the field

of solution possibilities to vast to fit on a single computer distributed systems must

be utilized to make such expansive analysis practical. The EC-Star system [1]is a dis-

tributed software system that can allow genetic programming experiments to be run

on the scale of a million globally distributed nodes known as "Evolutionary Engines"

or clients. The EC-Star platform is a distributed Evolutionary Algorithms framework

utilizing commercial volunteer resources. These nodes can be independently added

and removed while the software is running with easy integration into a continuously

running evolutionary algorithm. The EC-Star platform distributes the computations

on pool servers using a hub and spoke topology(Figure 2-1). An Evolution Coordi-

nator(also known as pool servers) serves as the hub with an Evolutionary Engine as

each spoke. The coordinator sends the high performing partially evaluated candidate

solutions for further fitness evaluations, mixing and evolution to the Evolutionary

Engines.

2.1.2 Representation in EC-Star

Each Evolutionary Engine in EC-Star hosts an independent evolutionary algorithm

with a fixed population size during the client's idle cycles. They request fitness cases

in the form of data packages from the fitness servers, evaluate and breed them and

eventually dispatch them as migrants to the Evolutionary Coordinator. The solutions

are represented as a set of conjunctive rules(Figure 2-2). Each rule has a variable

length conjunctive set of conditions and associated actions representing a class in the

given classification problem. Each condition can also have a complement operator

15

Graduate

Evolutionary

Evolutionary Evolutionary Evolutionary !Evoludonary
EnieEngine Engine Engine

Population Population PopulatiOn Population

Bedn rdngBreeding BreedingLii~i5J Breedingdi
pool POWl pool pool

Fitness Case
Server

Figure 2-1: EC-Star Hub and Spoke Model[1]. Pool servers serve as the hubs in this
model and communicate with the clients that act as the spokes.

<rules> <rule> I <rule> <rules>
<rule> <conditions> => <action>
<conditions> ::- <condition> J <condition> & <conditions>

<action> :;- prediction label
<condition> <predicate> I !<condition> <condition> [lag]
<predicate> truth value on a feature indicator

Figure 2-2: BNF grammer showing how a solution in EC-Star is represented as a set
of conjunctive rules

which negates the truth value, and a lag which refers to past values of the attribute.
The condition checks if an attribute value currently or in the past given the lag is
greater then a threshold. The thresholds are discretized values for each feature.

2.2 Architecture

2.2.1 Clients in EC-Star

The clients in EC-Star are computers on a volunteer compute network[2] using their
idle cycles to act as the "Evolutionary Engines". Given the nature of using the idle
cycles of volunteer nodes, no guarantees can be assumed about how quickly work will
be completed by the nodes or if it will be completed at all. Furthermore, to limit the

16

clientC1 clt Iclient W cen

pool data
server server

clientlent

Figure 2-3: Pool servers act as the hubs in EC-Star and receiving solutions from

the clients. The data server responds by sending data packages to the clients upon
request.

footprint of running the platform the clients are restricted in the amount of memory
they are allowed to use for their computations. They are however able to write state

to disk such that after a program is shut down it can use its state file in order to
resume where it left off. In addition clients do not communicate with each other to
maintain privacy. Instead, the clients communication is the dedicated pool servers

and data servers.

2.2.2 Servers in EC-Star

Dedicated resources that can communicate with the volunteer compute resources act
as the servers, the hubs in the systems(Figure 2-3). Pool Servers handle commu-
nication with clients using a database for persistence and scalability. Data Servers
serving the data requested by clients. The data servers return random packages to
the clients that request them. The servers therefore act as the hubs in this hub and
spoke model. The dedicated servers run continuously as clients come on and off line

due to the nature of them being volunteer compute resources.

By taking advantage of the massive scale of the volunteer compute resources the EC-
Star platform will allow the use of evolutionary algorithms to solve problems that

would have previously been intractable. The use of idle cycles in volunteer nodes also
makes the system more cost effective compared to owning the equivalent hardware or
using similar cloud services.

17

18

Chapter 3

EC-Flow

Setting up and running EC-Star on a given data set involves many steps from format-

ting the data to configuring he clients and servers with the code to run the software

and harvest data. The following section presents EC-Flow, an end to end system to

set up runs of EC-Star beginning with the raw data set.

3.1 EC-Flow Overview

Running a machine learning algorithm with EC-Star can be broken into 4 phases all

of which can be automated to some extent through the use of EC-Flow. First, data

packages must be created transforming the raw data set the user is working with into

a standard format EC-Star can handle. Next the code and configuration of EC-Star

must be customized to the specific dataset and type of experiment being run. The

computers playing the different roles (clients, servers, data hosts) must be configured

so that the experiment can actually be run (Figure 3-1).

As soon as some initial solutions have been found the solutions can be tested on

another subset of the data. Scripts for getting the accuracy of the solutions can be

used to generate confusion matrices and the overall accuracy percentages.

3.1.1 Data Package Creation

A given dataset of raw csv files must first be transformed into a data package format

that EC-Star expects. Each row is an examplar and each column is a feature. The last

column is a label. At a high level, this includes limiting the size of the data packages

to approximately 5MB each (compressed), changing any formatting or values in the

data packages that EC-Star might not accept, as well as adding a header to each

data package. The process of going from raw csv files to EC-Star data packages is

potentially the longest step in the setup process. This process may take only minutes

for datasets on the order of 1GB, to many hours to perform on the scale of 100GB

if not done in parallel. In general not only does the total amount of raw data affect

the data package creation time, but also the number of data packages one is creating.

19

Create Data
Packages 7

Place them on
data host

Generate and
compile code

Generator S

Server Code (Java

Figure 3-1: EC-Flow Overview. EC-Flow is used both to create the
from raw csv files, as well as set up and execute runs of EC-Star

cripts

Client Code (C)

Clients

Ak

Ak
data packages

20

The smaller the size of the data package, the more packages will have to be created

a given amount of raw starting data. On many computer setups, the increase in the

number of files can drastically slow down the time it takes to create and process all
of them. In addition, the large number of files can slow down the process even if the

packages are created in parallel, if in the end they are stored on the same disk causing

i.o. contention.

3.1.2 Parallel Data Processing on Open Stack

For creation of large amounts of data packages you may wish to utilize the multiple

nodes on the Open Stack platform to simultaneously do processing on the initial csv

files. The sleipnir package (Figure 3-2) will allow you to, given a source directory
and a python or bash script, distribute the processing of data files across nodes on

Open Stack. The processing of creating data packages from raw csv files can in general

be done independently. If multiple compute nodes are available it is possible to split
the work of creating data packages. A script designed to work with sleipnir must

take in at least an input and output directory as arguments, additional arguments

are optional. When sleipnir is called to run the script on the directory of data, it

will automatically partition the data based on the amount of nodes available. It will

then transfer the data and script to each node for processing. Since the only require-
ments are for the script to take an input and output directory so that sleipnir

can point it at its partition of files to work with, converting most steps in the data

processing pipeline to sleipnir scripts is relatively straightforward. See Appendix

C for an example of performing the file chunking step (see section 3.2.1) in parallel

on sleipnir.

3.1.3 EC-Star Configuration

Beyond the data packages to be used in the experiment, every run of EC-Star has

a multitude of settings and configurations that must be adjusted depending on the

type of data packages used and the specific parameters of the experiment. As a result,
much of the client and server code must be generated and remade each time new data

is used. To avoid the tedious and likely error prone method of manually copying and

pasting numbers in the client and server code whenever changes are made, EC-Flow

provides methods through which the code an automatically be re-generated and made

whenever necessary. Settings passed in at a high level, either through the command

line or the EC-Flow config file, will automatically be integrated into the client and

server code during the code generation phase so that users can expect that the code

will be consistent across the client and server and that values will be changed in all

the proper places. In addition, after generating the code EC-Flow will also compile

the code, creating executable and configuration files for the client and jar files for the

server, as well as run unit tests.

21

Figure 3-2: Sleipnir Overview. Sleipnir is used to process large amounts of data files
in parallel. The system will divide up the data among the available nodes and run
the given script on each set of data on each node.

Script(python/bash)

csv files

L -Fri mi P=- _z

3.1.4 Running Experiments

Once the data packages have been created and the EC-Star code has been configured,
the final step is to run the experiments. EC-Star can be configured to run in a number
of ways from running the server and clients locally, to using multiple machines to
serve as clients, data hosts and machines dedicated to analysing the results. While
determining which machines play which roles in a given experiment is determined
by the user, setting up a given machine for a its desired role is a process EC-Flow
can automate. Depending on the role a machine is playing, certain files must be
generated, data placed in certain directories, and network settings must be adjusted
all of which can be done through various EC-Flow commands. Once an experiment
has been started, EC-Flow and scripts it has access to can be used to analyse the

results.

3.2 Data Package Creation

EC-Flow (ecflow. py) contains several useful commands to individually perform
each step in the process of going from raw csv files to data packages to be used by
EC-Star. Steps can be performed individually or all at once with parameters being
passed in from the command line or through a config file.

22

Raw csv file

..... File Feature Lead

chunking selection times H

Figure 3-3: Data package creation process.

3.2.1 File Chunking

Break the large files into equal sized smallerfiles of data

527 A16L3.6 56f273l5-0.W67,0.0=31

527524023C2K0.010.82-021M,001-40 M1
527G,435 .,D2.L lL.2.Q035,O.=,2@ODL

1279.7AL5723W100=45L731Ol775.-O-4&5OW2 I
527s6,59J32L5u2aD0..Muo5.As570.2Uom~
5274 5AUL43.6ULC515e97.D325-om70o2
526L951520l085.3120&800$

5278L,94AS,~i038512,O0OOMO2O -t.O 0iO1
I276.523OII.5A5-eJXDL12IL4523I-'3-O0QA

S27&L553462O12 W34.O371450I.-OOII4

52609415.22.806D07-m0/0E
5266A03m-DD03L02LDD-.C0

527SA0.E± E0m5208Ax0-o2202,

Figure 3-4: File chunking.

$ python ecflow.py -d src.directory -- chunk -- rows N

The above command chunks every file in src..dir into multiple files of N rows.

Files leftover after chunking that have less than N rows will be deleted if the exact
setting in EC-Flow is set to true. This step will roughly determine the number of

data packages that will be produced as a final output(some data packages may be

deleted during data cleaning). Choosing a smaller value of N will result in more data

packages and cause the rest of this pipeline to run slower due to the amount of files

even given the same total storage size. Note that the chunking scripts will specifically

look for files ending in . csv.

3.2.2 Data Cleaning

In this step we discard packages that contain bad values (e.g. NaN). In some sources

of data values such as NaN that EC-Star cannot process will be present. We therefore

must throw out data packages containing such values.

23

EC-Star
GDPfile

Select desired columns
5276,56,59.86,1.5635,0.00038,2.0187,0.00102,-0.00135,0.0010,1
5276,57,61.37,2.3075,0.00080,1.734,0.17773,-0.00148,-0.0020,1
5276,58,59.49,1.5967,0.00018,2.2387,-0.24829,-0.00174,0.0000,1
5276,59,59.572,1.5182,0.000000,2.5666,0.20645,-0.00268,0.00,1
5276,60,61.243,3.6681,0.00103,1.6927,0.03825,-0.00067,-0.000020,1
5276,61,59.54,1.4652,0.00020,2.8036,0.30172,-0.00098,-0.0010,1
5276,62,63.018,3.4628,-0.00010,1.821,-0.12131,0.00133,-0.0030,1

59.86, 8,2.0187,0.0010, 2,
61.37,1.734,0.17773,1
59.49, 8,2.2387,-0.24829,1
59.572,2.5666,0.20645,1
61.243, 3,1.6927,0.03825,1
59.54,,2.8036,0.30172,1
63.018,,1.821,-0.12131,1

Figure 3-5: Feature selection. The highlighted features in the original file plus the
label(the final column) are selected for the final data package.

$ python ecflow.py -d src-directory -- clean

Running this command will clean the values of the src-directory of NaN, deleting
any packages that contain it.

Scientific notation is another data format that EC-Star is unable to handle. If the
generated data contains scientific notation, these entries will have to be converted to
decimal to be used by EC-Star. This will be done automatically during the feature
selection step (section 3.2.3).

1.23759e4 becomes 12375.9

3.2.3 Feature Selection

Rather than taking all features of the data, you may wish to use only certain features
of the data by deleting certain columns in the data set. Both of these tasks are ac-
complished simultaneously by using -select.

$ python ecflow.py -d src-directory -- select -f [0,1,2,7]

This command will alter all data packages in the directory to only contain features

0,1,2 and 7. In addition all scientific notation will be converted to decimal. If you

wish to simply remove all scientific notation but retain all features, you may either

pass in a list of all features, or simply not use the -f flag at all, ECFlow will take all

24

5276,56,59.86,1.5635,0.00038,2.0187,0.102,-0.00135,0.00,1
5276,60,61.243,3.6681,0.00103,1.6927,0.025,-0.00067,-0.020,2
5276,61,59.54,1.4652,0.00020,2.8036,0.372,-0.00098,-0.10,1
5276,62,63.018,3.4628,-0.00010,1.821,-0.131,0.00133,-0.30,2
5276,56,59.86,1.5635,0.00038,2.0187,0.002,-0.00135,0.0010,1
5276,57,61.378,2.3075,0.00080,1.734,0.173,-0.00148,-0.20,0
5276,58,59.49,1.5967,0.00018,2.2387,-0.229,-0.00174,0.00,2
5276,59,59.572,1.5182,0.000000,2.5666,0.245,-0.00268,0.00,2

I
5276,56,59.86,1.5635,0.00038,2.0187,0.102,-0.00135,0.00,2
5276,60,61.243,3.6681,0.00103,1.6927,0.025,-0.00067,-0.020,1
5276,61,59.54,1.4652,0.00020,2.8036,0.372,-0.00098,-0.10,0
5276,62,63.018,3.4628,-0.00010,1.821,-0.131,0.00133,-O.30,2
5276,56,59.86,1.5635,0.00038,2.0187,0.002,-0.00135,0.0010,2

Figure 3-6: Data package before and after a lead time adjustment of 3.

features by default. Note that if your data contains scientific notation, this step must
be performed even if you intend to keep all columns in the dataset, because this step
will also convert any instances in the data of scientific notation into decimal.

3.2.4 Adjusting Lead Time

For time series data you may wish to adjust the lead time in the data packages. In
time series data, the rows are ordered because each is features from a certain time
point. Adjusting the lead time by N will move the label in each line N rows higher
resulting in deletion of the final N rows of the original data package(Figure 3-6). To
do this as a final step before adding the header, use the command

$ python ecflow.py -d src-directory -- adjust -- lead N

where N is the amount of lead time you wish to include.

3.2.5 Adding Headers

The final step in data package creation is to add a header to each file. The headers
are required by EC-Star to process the data packages. This can be done with the
following command

$ python ecflow.py -d src-directory -- header

An example header is shown in figure 3-7. The header contains the file name, a
unique id for the file, the number of data points in the file, and a list of column
names.

25

example.f ile . gdp
samples 1
sampleIds 167

events 1000

fields 17

sampleId, eventId,v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,vll,v12,v13,v14,label

Figure 3-7: Sample EC-Star data package header.

3.2.6 Data Package Creation Summary

If you wish to perform all of the above steps at once simply run

$ python ecflow.py -d src-directory -- all

This will chunk, clean, select features and finally add headers to the data packages.

Note that EC-Flow will use default values for all parameters not passed in via the

command line or a configuration file. (See Appendix C Table A.2 for full details)

3.2.7 Creating Folds for Cross Validation

For the purpose of cross validation EC-Flow can, given a percentage of data to use

for testing and training, generate multiple random folds of the data.

$ python ecflow.py -d src-directory/ -- split

The above command will create a file called splits . csv. This file will for each

fold list which data packages belong in the test set (the training data packages can be
found by taking the compliment of this set). EC-Flow can than parse this file moving

test and training files to desired directories with the command

Moving files

$ python ecflow.py -d src-directory/ -- move -- movesplit N -- train-dest

train/ -- test-dest test/

In the above command N is the fold number, train/ and test/ will be the di-

rectories the data packages will be copied into.

10-Fold Cross Validation

The -- xf old flag will allow you to in one step make two splits files. 90-10_splits . csv

will be a splits file splitting the data directory with 90% training. splits . csv will

26

Figure 3-8: 10-fold split. The original set of data is broken into a 90/10 split. The

90% split is then further divided into ten 90/10 splits.

100%

- 90% 10%

be a splits file that takes 9 folds (90% of the first split) and re-splits them 10 ways

(equivalent to splitting with 90% training, see Figure 3-8). To do this run

$ python ecflow.py -d src-directory/ -- xfold

Note that this will only create the two splits files but will not actually move any

data packages. To do this, first move 90% of the files into one directory and 10%

into another using the move command as in the previous section. Use the flag

-- split-f ile to pass in 90-10-splits . csv. Next, specifying the directory

with 90% of the files as the target directory with -d call move again move-split N

to move the Nth split into your specified train and test directories. It is not necessary

to pass in split s . csv since it will be chosen by default.

3.3 Data Packages as a Service (DPaaS)

Even when making data packages in parallel, on the scale of hundreds of gigabytes of

raw data, the creation of data packages can lead to hours of overhead in setting up
EC-Star runs. Since it may be impractical to repackage hundreds of gigabytes of data

every time a new type of data package is desired, generating the data packages on the

fly as a service may be a more logical approach. Depending on the architecture for

processing and storing the data packages, the i.o. contention on the disk where the

packages are being stored can limit the rate at which data packages can be created,

even if computers are available to perform some parts of the process in parallel.

In general, the larger amount of data, and the more data packages you expect to

end with after the data as been processed the less amount of parallelization can be

achieved(see Table A.3 for empirical data on data package creation using OpenStack

virtual machines). The program dpaas .py (data packages as a service) uses a subset

of EC-Flow to create the requested amount of data packages from a directory of csv

27

Figure 3-9: Sample tomcat log on data server

Nov 17, 2013 10:16:27 AM com.gf.eacore.clientserver.DataServer fetchDataPackageFromFolderRandomly
INFO: Loaded data package webappsIdataPackagesisyncardiotocography_17_101_482.gdp
Nov 17,2013 10:16:27 AM com.gf.eacore.clientserver.DataServer fetchDataPackag eFromFold erRandomly
INFO: Loaded data package webappsldataPackagesisyn-cardiotocography_710_549.gdp
Nov 17, 2013 10:16:27 AM com.gf.eacore-clientserver.DataServer fetchDataPackageFromFolderRandomly
INFO: Loaded data package webappsidataPackagesfsyncardotocgraphy_17_101_246.gdp
Nov 17,2013 10:16:27 AM com.gf.eacore.clientserver.DataServer fetchDataPackageFromFolderRandomly
INFO: Loaded data package webappsidataPackage s/syncardiotocography_17_10_650.gdp
Nov 17, 2013 12:16:28 PM com.gf.eacore.clientserver.DataServer fetchDataPackage FromFolderRan domly
INFO: Loaded data package webappsidataPackagesisyn cardiotocography_17_101_753.gdp

files. Passing in a config file specifying the data package parameters, dpaas can be

used to through a simple interface randomly create a limited amount of data packages
from a much larger directory of raw data.

3.3.1 When to use DPaaS

In the case of creating data packages for EC-Star, one can examine the EC-Star logs
to determine approximately the rate at which data packages are being requested to

learn if it is necessary to preprocess all of the data or if using DPaaS may be more

convenient and practical.

Examining the timestamps in the logs we can see the rate at which data packages
should be supplied. Rather than have a single static directory from which data pack-

ages are randomly drawn we can use two directories. One directory to hold the data

packages from which clients randomly draw from and another in which we can store
data packages as they are continuously created. Data packages can be randomly

switched into the pool of data packages the client is drawing from to keep up with

the rate at which clients are requesting packages(Figure 3-10). If the requested data
package configuration changes (e.g. change in size of data packages) the nodes creat-

ing the packages can be updated to begin producing the new configuration. Clients

can begin to collect these new packages without waiting for the entirety of the original
dataset to be reprocessed, something that could take many hours depending on the

size of the dataset.

3.3.2 DPaaS test example

To test DPaaS on a local system, we can simulate writing and reading to and from a

test log, calling on DPaaS to create more data packages when some threshold number

of packages have been created. To begin the data package creation demo simply cd

in to the demo directory and run demo.sh

$ bash demo.sh

This short script first calls write log . py, which begins to continuously write to the

28

6. - Requests data packages

Replenishes data
packages

Raw csv files

Figure 3-10: When using data packages as a service, the data host draws from a

pre-made directory of data packages. As the pool of data packages runs out, DPaaS

creates more from the pool of raw data files.

29

Generating

ECFIow (ptn Java/C files

Passes parameters, generates
calls generate

-- Calls make
calls tests

Unit Tests

Figure 3-11: Code preparation overview.

file testlog. log in the background. It then calls readlog. sh which will contin-
uously check this log, creating more data packages (according to the configuration file
in src/dpconfig. cfg) after some threshold number of files have been created.
readlog. sh takes three arguments. The first is the location of the log to be read.
The second is the number of new files requested in the log before new packages will
be created.The final argument is the number of seconds to sleep in between checking
the log file (the first argument) for updates. To adjust the parameters of the created
data packages, make changes to dpconf ig. cf g.

numfiles Increasing the parameter num-files will increase the number of source
csv files that will be turned into data packages.

num.xows This parameter determines how many rows will be in each data package.
The lower this number, the more data packages will be created from the same
number of source files. Note that the length of time it takes to create the
packages depends mostly on the number of packages created, not the combined
storage size of the packages.

randomtseed The random-seed parameter is not used for demo purposes and
changing it will have no effect.

3.4 Code Preparation

Some aspects of the source code for EC-Star must be generated and compiled in
advance because values can depend on the specific dataset you are working with.
Before the code can be generated you must first create the file conditions . txt.
Since conditions .txt will depend on the data packages you must also let EC-
Flow know which directory contains the data packages either through the command
line or a config file.

30

$ python ecflow.py --conditions -d ProcessedData

Once conditions . txt has been creating code can be generated with the -g
flag and made with -- make(Figure 3-11).

$ python ecflow.py -g

During code generation a series of python scripts are called which will generate the

C files and Java files that vary depending on the input data packages being used for

the run, as well as other run specific values such as lag time.

Fitness The fitness function to be used is defined in this step and is placed in

the generated C and Java code. This fitness function can be passed into EC-Flow

(selected from a pre defined list) which is then written into the generated client and

server code.

Feature Discretisation By default, EC-Flow will automatically generate feature

discretisation values by looking at conditions . txt and selecting a uniform num-

ber of values between the min and max values of each feature. It will placed in a root

directory file called buckets . txt which will later be read by the generating scripts.

If you wish to supply your own buckets .txt pass in the flag -- readbuckets

to EC-Flow. This will tell EC-Flow not to generate its own bucket s . t xt allowing

the user to pass one in without it being overwritten.

$ python ecflow.py -- make

Running make uses the make file in the directory to compile the C code and run

unit tests. The C code will then be copied into the client directory. Note that the

generation and making of the code assumes the directory structure for the client and

server code is already present for the generated files to be placed into. Making the

server files results in the following jar files being placed in the target/ directory

class-server-jar-with-dependencies.jar

pool-server-jar-with-dependencies.jar

Making the C code will result in the executable file Bp.client.exec as well as

the configuration file client. cf g being placed in client/ src/resources.

3.5 Setup EC-Star run

Now that the data packages have been created and the EC-Star code has been gen-

erated and configured an actual EC-Star run can be started. The work to be done in

this step will vary depending on the hardware setup you are attempting to proceed

with. For a small scale local run little more configuration is needed and all that is

needed is to start the clients and servers. For a distributed setup further configuration

will be necessary. The next chapter walks through how to configure various types of

EC-Star setups.

31

3.6 Analysing Results

Once solutions have been found they can be downloaded from the pool server and and
tested against the test partition of the dataset. This can be done either on the local
computer running EC-Star or a remote computer depending on the setup available.
The next chapter walks through sample scripts to test the results.

32

Chapter 4

Example EC-Star run, ABP Data

This section presents a sample run of EC-Star going through the commands necessary

to move from raw csv files, up through launching a run of EC-Star. In the following

example we use the problem of predicting arterial blood pressure as our dataset. The

data describes through time the arterial blood pressure (ABP also referred to as BP)

signal of a patient, which is a periodic signal that correlates with the frequency of

a heartbeat[3]. The data for each includes features derived from the mean pressure

values measured in mmHg for a given beat. By analysing the data the goal is to be

able to predict short term future values of the ABP which can aid in the treatment

of patients.

4.1 Creating the Data Packages

Starting with a directory of BP csv files we wish to transform this directory of raw

csv files into a directory of EC-Star data packages of a specific size. Each line in each

csv file consists of 9 features as well as a label. For our data packages, we will take

all features and limit each data package size to 300 lines a piece (discarding a few

left over lines at the end). In addition a header must be placed on each data file.

Passing in a configuration file(Figure 4-1), these steps can all be performed with the

command.
$ python ecflow.py -c config.cfg -- all

Note that in addition to the header, the ending data package(Figure 4-3) lacks

scientific notation, such values have been converted into decimal so that they can be

read by EC-Star. In addition 1 has been subtracted off of the label(the final line) in

each row to make them 0 indexed.

33

Figure 4-1: Config file (config.cfg)
[configs]
data-dir = /home/evo-gf/ECSTAR/BPData/
datadest = /home/evo-gf/ECSTAR/ProcessedData/
#TAKE ALL FEATURES
FEATURES = [I
ROWS = 300
exact = true

Figure 4-2: Raw csv file
73.704,6.3187,-0.00094293,4.3605,0.69608,-0.0017475,8.4688e-06,100,55,2
70.661,3.1971,-0.00067276,13.415,-1.8354,-0.011407,-2.0078e-05,80,67,2
71.446,4.1731,-0.00013142,5.584,1.3112,-0.0010823,-3.1455e-05,83,62,2
72.448,2.47,0.00046213,2.1085,0.20528,0.00057651,-2.3426e-05,73,73,2
70.885,3.1221,-0.00045619,2.5173,0.083632,-0.0011856,-0.00012744,72,72,2
70.409,2.499,0.00028749,2.3742,-0.34978,-0.016183,-0.00015269,72,72,2
68.689,2.6465,0.00022919,2.224,-0.17673,-0.0029468,-0.00015216,72,72,2
69.12,2.8538,1.8462e-OS,2.3003,0.045016,-O.014447,-0.00014337,72,72,2
73.184,2.7885,0.00089788,2.2236,-0.14085,0.0022069,-0.00025025,73,73,2
74.002,2.7135,-1.1935e-05,2.G483,0.0057571,-0.0062129,-O.O0019792,72,72,2
74.756,2.6364,-0.00065962,1.9315,-0.13984,-0.00059797,-0.00035315,71,71,2
72.209,2.8126,0.00015768,2.7075,-0.065053,-0.0087458,-0.0002053,71,71,2

Figure 4-3: Resulting data package(.gdp file, truncated)
examplejfile.gdp
samples 1
samplelds 0
events 184
fields 12
sampleld, eventld,v1,v2,v3,v4,v5,v6,v7,v8,v9,label
0,0,73.704,6.3187,-0.00094,4.3605,0.69608,-0.00174,0.000000,100.0,550,1
0,1,70.661,3.1971,-0.00067,13.415,-1.8354,-0.01140,-0.000020,0.0,67.0,1
0,2,71.446,4.1731,-0.00013,5.584,1.3112,-0.00108,-0.000030,83.0,62.0,1
0,3,72.448,2.47,0.00046,2,1085,0.20528,0.00057,-0.000020,73.0,73.0,1
0,4,70.885,3.1221,-0.00045,2.5173,0.08363,-0.00118,-0.00012,72.0,72.0,1
0,5,70.409,2.499,0.00028,2.3742,-0.34978,-0.01618,-0.00015,72.0,72.0,1
0,6,68.689,2.6465,0.00022,2.224,-0.17673,-0.00294,-0.00015,72.0,72.0,1

34

4.2 Generating the Code

Now that the data packages have been created we must generate code for EC-Star

specific to this data. So that EC-Star knows the layout of the data we must first

generate conditions.txt. Finally the code must be made. Since according to

our last configuration file we placed our generated data packages in the directory

ProcessedData/, we must now update EC-Flow to point to the new directory so

that it knows what files to look over when creating conditions . txt. This can be

done by updating config. cf g, or more simply by passing in ProcessedData/

into the command line call(command line parameters override config file parameters).
For the purpose of generating code, we can also update our configuration file to in-

clude the values for the lag and lead settings (see appendix A Table A.2 for more

config file details)

tick = TRUE

lag = 0
lead = 0

We can perform all of the tasks to generate and make the code at once with the

command.
$ python ecflow.py -c config.cfg -d ProcessedData -C -g -- make

-C, -g, and -- make are the commands to creating conditions . txt, generate

new code, and make the code respectively. It is important to note that conditions .txt

should be recreated each time you are working with a new set of data packages.

4.3 Running EC-Star

With the data packages created and the code generated and compiled we must now

start the client and servers for the actual run. This step can vary in the amount of

preparation needed depending on if the clients and servers are all on a local machine

or spread among various computers. In this section we walk through 3 types of

setups, running everything locally, distributing the EC-Star runs among multiple

virtual machines, and setting up a large scale Grid Machine run.

4.3.1 Local Run

The simplest case of an EC-Star is to run everything locally. Running locally al-

lows us to do experiments and ensure that the system works before scaling it up to

larger datasets and more computing resources In this case the clients and servers are

launched on the same machine and the data packages are also hosted locally.

Software Installation Before beginning, the following example assumes that the

software necessary to run EC-Star locally has already been installed. Before attempt-

35

ing to start EC-Star, ensure that you have the following software installed in addition
to the EC-Star code itself (version numbers shown were those used in this example).

Java (1.6.0-24)
GCC (4.6.3)
Python (2.7.3)
MySql (14.14)
Maven (2.2.1)
Make (3.81)
tomcat (7.0.26)
EC-Star GFDataServer

For the MySql database, if not already created you must create and configure a
database for use by EC-Star(See Appendix C for example). The EC-Flow code it-
self consists of e c f low .py and the folder ec flow-s cript s which contains several
python and bash script use by ecflow. py. After checking out the code for EC-
Star, the, ecflow.py and ecflow-scripts should be placed in the top level
directory of the EC-Star code. The code for EC-Flow can be found in the git repo at
https://webdav.csail.mit.edu/groups/EVO-DesignOpt/ECFlow.git/
while the code for EC-Star can be found at https: / /webdav. csail .mit . edu/groups /EVO-De s

Placing Data Packages You may have partitioned your data into test and train-
ing sets manually or you may have used EC-Flow to create such a partition for you
resulting in a split s . csv file. In this case we can move the data packages to the
appropriate locations using the command

$ python ecflow.py -c config.cfg -- prep

which will move data packages to the test, train and tomcat directories. By default
this will look for the file splits . csv, and take the first fold, moving the training
data to data/train the testing data to data/test and also moving the training
date to /var/lib/tomcat-dir/webapps/dataPackages where EC-Star reads
data packages from. EC-Flow will automatically clear files out from these old direc-
tories, but the directories themselves should already exist.

Configuration Files Next we must point EC-Star at the correct location to find the
data packages. This IP address can be changed in the file client . cf g located under
src/main/resources. In client . cfg shown in figure 4-4, the default IP address for
the DataHost is by default set to the correct local IP address.

36

Figure 4-4: Sample client . cf g.
Programmatically generated file
File: client.cfg

RPCHost = 127.0.0.1
RPCPort =8181

DataHost 127.0.0.1
DataPort =8080

MaxNumberOfRules = 16
DefaultPoolSize = 500
ElitistPercentage = 20
Debug = true
fitnessHistory = false
maturityAge = 10

Starting EC-Star Finally, we start
cutable as seen in the below script.

#! /bin/bash
./run-class-server. sh &> class.log
./run-pool-server. sh &> pool.log &

ed client/src/resources
if [-e clientState.esb] #remove
then

rm clientState.esb
fi

#Wait for servers to start
sleep 5

the class server,pool server and client exe-

& #st art class server

#start pool server

client state log

#start client
./Bp..client.exec client.cfg &> .. /../../ client .log &

This will start EC-Star locally, the progress of which can be monitored in

pool. log and client. log.

class. log,

4.3.2 Distributed Data Host, Clients, and Servers

To run EC-Star efficiently on more data then can be handled locally the data host,
client and servers can be configured to run on different computers. This largely

involves adjusting configuration files to point EC-Star at the correct IP addresses,
and making sure data is on the correct server. In our example we use the OpenStack

platform to create 3 virtual machines, one for each role data host, client and server.

Once each VM has been instantiated we can configure them for each role as follows.

Data Host

Setting up the data host on a server running tomcat is simply a matter of taking all

the data packages you expect your client to have access to, and placing them in the

37

directory /var/lib/tomcat.dir/webapps/dataPackages. In addition, you
should ensure that port 8080 is open so the clients can access the files.GFDataServer
must also be installed on the machine to serve as the data host. Once tomcat has
been started, you can test that the files are accessible by manually seeing if you can
download them from

http://127.0.0.1:8080/GFDataServer/data/

replacing the local IP address with the IP address of the data host if attempting to
download from another computer.

Clients

To setup a client, we repeat the same process of generating and making the code
that we did when running locally. When running just a client on a machine, we only
need Bp-client-exec and client . cfg found in the client/src/resources
directory of EC-Star. These files, once created, can be zipped and transferred to any
machines serving as clients. We also need not store the data packages in the tomcat
directory because they will be requested from the data host set up in the previous
step. Since we are using a remote date host, we must update the file client . cfg
changing the field DataHost from the default IP address to the address of the data
host created in the previous step. We must also update the field RPCHost to point to
the IP address of the pool servers(created in the next step). Once the configuration
files have been updated we can start the clients.

#! /bin/bash
ed client/src/resources
if [-e clientState.esb] #Remove client, state log
then

rm clientState .esb
fi
#start client
./Bp.client..exec client .cfg &> .. /../../ client .log &

Multiple clients can be run on one server because they are designed to run in a vol-
unteer manner and therefore rarely use all available resources when run on dedicated
hardware. However, you must launch the clients in separate directories to avoid
overwriting to and reading from the same state files.

Servers (Pool Server and Class Server)

To set up the servers. we must place the generated EC-Star server code (ie the jar
files) on the machine . Next in the file class-server.properties and the file
pool-server. properties we update the field gf . serverclasses. dbhost
to point to the class server(same machine as the pool server in this setup).

gf . serverclasses . dbhost = X.X.X.X (ip of pool/class server)

Finally, start the class and pool servers on the machine.

38

ALFA - Grid Machines Layout
Pool Server 1

Gateway Machine

Figure 4-5: This layout consists of 2 pool servers, a database server, the clients, and a
gateway machine to configure the servers from. The pool servers are setup as virtual
machines running Ubuntu loaded with the EC-Star software. They have 4 core cpus
and 8GB of memory each. The database server also has a 4 core cpu with 22GB of
memory. The clients are run on the grid machines. The grid machines consist of a
volunteer compute network of computers in china. This setup of EC-Star can handle
3,500 clients without a problem and should be able to scale up to 25,000.

L! /bin/bash
./ run-class -server . sh &> class . log &
./run-pool-server .sh &> pool.log &

4.3.3 Grid Machine Setup

In the Grid Machine setup we prepare to scale EC-Star to a large scale installation
capable of running thousands of clients (Figure 4-5).

Clone Virtual Machines

Clone 3 instances of an Ubuntu virtual machine with tomcat installed. This should
include a computer to serve as the database server, as well as computers to serve
as the pool servers. In the above shown example we have 2 computers, evo05O and

evo051 to act as our two pool servers. The class servers are also hosted on these two

39

machines. Computer evo052 serves as the database server. Finally one additional
machine is provisioned as a gateway machine to the others. Through this machine
we can ssh into the others to configure them for EC-Star.

Configure firewall

The firewalls of the pool servers and data server must be configured to secure the
server to allow access to designated ports for the pool servers(ports 80 and 8080),
database (port 3306) server and s sh access (port 22)to other machines. ufw - Un-
complicated Firewall, is a convenient tool for this step to open up the necessary
ports.

Update Configuration files

So that the machines know which machines that they are communicating with, the
files pool-server .properties and class-server properties must be up-
dated with the appropriate IP addresses for the servers created in the previous steps.
This can be performed in the same manner as shown in the previous section.

Install Load Balancer

Install and configure HAproxy load balance server on one of the pool servers, this
will balance the load of requests from the clients to the servers.

Start pool sever

To run a Pool server via Tomcat, you need to build the .jar file by running Ant,
stop Tomcat, copy the new jar file to the Tomcat folder, and then start Tomcat.

Setup data server

As in the previous setup(section 4.3.1), the data server should have the data packages
placed in the directory /var/lib/tomcat-dir/webapps/dataPackages.

Code QA

One the code has been completed and compiled it must be sent to Grid Machines for
QA. The code must be checked that it can run within the footprint limitations of the
volunteer nodes and not disrupt it.

Launch clients

On an individual basis, clients can be launched following the same procedure as
shown in section 4.3.2. Simply copy the client code to the computer and adjust the
configuration files to point the IP addresses at the correct machines. This provides
an effective way to locally see how a large scale run is behaving by creating your own
client.

40

4.4 Analysing Results

Once EC-Star has had time to run and produce solutions, the solutions can be eval-

uated by checking them against the partition of data set aside for training. This can

be performed either locally or on a remote computer.

First we must pull solutions from the pool server. We can use the following bash
script to do this. The script will pull solutions from the pool server and place them
in results/saved-genes/solutions-dir.

#!/ bin/bash
NR.GENES=1
POOL.SERVER=127.0.0.1 #Running locally
PORT=8181

#Directory genes will be placed in
SAVE-DIRresults/saved..genes/solutions-dir/

java -cp target /pool-server-jar-with-dependencies. jar \
edu.mit.evodesign.bp. test. Classifier save ${POOLSERVER}\
${PORT} ${SAVE..DIR}/ ${NTLGENES} > savegenes . log

Now that there is an example solution in results/ saved-genes /solutions-dir
the solution can be tested by running the java classifier from the command line.

$ java -cp target/pool-server-jar-with-dependencies.jar

edu.mit.evodesign. bp. test.Class if ier testAll result s/saved-genes /solution-dir

data/test/ > accuracy.log

Here the solution in re sults / saved-gene s / solut ion-dir will be tested against
the files in data/test/. The results will be output to the file accuracy.log. If

EC-Star is running on a remote computer, the testing framework can be config-

ured to take in an IP address of the machine containing the solutions to evaluate.
See Appendix C, Sample Code 2 for a more in depth script example. The the file

accuracy. log will contain statistics you can use to analyze the how effective the

solutions are including confusion matrices and overall accuracy percentages.

41

42

Chapter 5

Conclusion and Future Work

Conclusion EC-Star allows the running of evolutionary algorithms in a highly dis-

tributed manner, that is also cost efficient because of the use of a volunteer compute

network. Overall EC-Flow provides a framework for easily using EC-Star by providing

automation to the greatest extent possible at each step in the process. This automa-

tion make the use of EC-Star more standardized, user friendly, and less error prone

because not as much human input is required. Finally by taking the complexities of

manipulating large amounts of data away from the user, it makes the entire process

much more efficient and leaves the user to focus on the actual machine learning task

at hand.

Future Work Through the use of EC-Flow, every step in the pipeline of using EC-
Star is made easier due to the automation EC-Flow provides. There are however ways

in which EC-Flow could be further extended to be both more efficient, as well useful

in more situations. Firstly, several steps of EC-Flow could benefit from parallelization

which could reduce time necessary to do steps such as creating data packages, and

testing solutions. Sleipnir (Section 3.1.2) already begins to touch on this possibility

allowing individual scripts to be executed in parallel virtual machines. However this

functionality could further be extended to the entirety of the EC-Flow pipeline in

steps where work is able to be split up. In addition, the paradigms introduced in

EC-Flow might also be extendable to other machine learning frameworks besides

EC-Star. While some aspects of EC-Flow are clearly EC-Star specific many aspects

of EC-Flow are likely generalisable to other frameworks, and EC-Flow could in the

future be extended to accommodate them.

43

44

Appendix A

Tables

45

Table A.1: EC-Flow Action Options

Command Line Flag Description

-h,-help Shows the help message describing all ecflow parameters.
-chunk Chunk the csv files into files of the specified size.

-s,-select Select features from the data. Also converts scientific
notation to decimal in any selected features.

-adjust, Goes through the data packages adjusting the lead time
in each. (specify lead time through config file or -lead)

-X,-header Add header to the files. Must pass in he list of feature
names for the header using -f or the config file. (Should
be the last step called in data package creation.

-C,-conditions Creates conditions.txt,places it in src/main/resources
-split Creates a splits.csv file

-xfold Produces two splits files. Split the files into 10% test
and 90% train(90-10_splits.csv). Then splits the the 90%
partition into 10 folds(splits.csv).

-clean, Removes all data packages that have NaN values
-g,-gen Runs scripts which generate the client and server code

-make Uses the make file in the top level directory to make the
code

-zip Calls gfcompress on all files in target directory

-unzip Calls gfuncompress on all files in target directory
-move Moves a split (given by config file or -move-split) using

splits.csv to train-dest and test-dest
-prep Moves a split (given by config file or -move-split) using

splits.csv to train-dest and test-dest and /var/lib/tom-
cat6/webapps/dataPackages

-readbucket Tells ECFlow not to overwrite buckets .txt so that
user defined buckets can be passed in

46

Table A.2: EC-Flow Configuration Options
Config File Parameter Default Value Cmd line flag Description
data-dir src-data/ -d, -data Source directory of csv files

that you wish to process. The
path given must be absolute.

data-dest ProcessedData/ -o -datadest Directory processed data
packages will be placed in if
the data processing proce-
dures creates new files(e.g.
chunking).

FEATURES [-f, -feats list of features to be selected
from the data. Passing in [}
(the empty list) takes all fea-
tures.

TRAINPERCENT 90 -train-percent Percentage of files to be used
in training when making a
partition of the data into test-
ing and training files.

test-dest data/test -test-dest Directory testing files will be
moved to if -move is called.

train-dest data/test -train-dest Directory training files will be
moved to if -move is called.

ROWS 400 -r, -rows Number of lines per data
package to chunk files into
during data package creation.

exact true NA If set to true all data packages
that do not have the exact
number of specified rows will
be deleted. Otherwise they
will remain.

move-split 0 -move-split If -move is used, move-split
specifies which fold to read
from the splits. csv file.

NA splits.csv split-file Tells ecflow to use an alterna-
tive splits file.

lead 0 -- lead If a lead time is desired in the
data packages, this value ad-
justs how far the values are
shifted.

lag 0 -- lag This value sets the max-tick
index in the c and java code.

tick TRUE -- tick If set to TRUE it indicates to
ECStar that there will be a
not time lag. If FALSE, there
will be a time lag.

47

Table A.3: Data Package Creation Timings

1GB 4GB 12GB

3 nodes 698 secs 1672 secs n/a
6 nodes 232 secs 1200 secs 4530 secs

speedup 1.71x 1.4x n/a I
Timings measured in seconds taken to process given amount of csv files into ECStar
data packages and are meant to indicate the relative speeds to accomplish the task
for various levels of parallelism.

48

Appendix B

Figures

49

50

Appendix C

Source Code

Sample SQL Code 1. script to set up a database to host ECStar solutions on the
pool server

* Programmatically generated file -
* File: serverTrainingDb.sql

CREATE DATABASE 'mitServer';

USE 'mitServer ';

DROP TABLE IF EXISTS 'classes';

CREATE TABLE 'classes ' (
' classid ' char (10) DEFAULT NULL,
'timestamp' datetime DEFAULT NULL,
'totalHandshakes ' bigint (20) DEFAULT NULL,
'handshakes ' bigint (20) DEFAULT NULL,
'realhandshakes ' bigint (20) DEFAULT NULL,
'convergenceFactor ' float DEFAULT NULL,
'indicatorSet ' blob,
'snapshotlHandshakes' bigint (20) DEFAULT NULL,
'snapshotConvergenceFactor ' flo at DEFAULT NULL

) ENGIE=MyISAM DEFAULT CHARSET=I a t in 1;

DROP TABLE IF EXISTS 'pool';

CREATE TABLE 'pool' (
' geneid ' char (50) DEFAULT NULL,
' masterfitnessO ' double DEFAULT NULL,
'age' bigint (20) DEFAULT NULL,
' classid ' char (10) DEFAULT NULL,
'xml' blob ,
' avgFitness ' bigint (20) DEFAULT NULL,
' autoinc ' bigint (20) NOT NULL AUTOJNCREMENT,
'xml.vb' varbinary(65000) DEFAULT NULL,
'dead' bigint (20) DEFAULT 0,

UNIQUE KEY 'autoinc ' ('autoinc')

51

) ENGJIN4EMyISAM AUTOJNCREMENT=72205 DEFAULT CHARSET=1atin1;

DROP TABLE IF EXISTS 'redirections ';

CREATE TABLE 'redirections ' (
'classFrom' char (10) DEFAULT NULL,
' classTo ' char (10) DEFAULT NULL

) ENGINE-MyISAM DEFAULT CHARSET=1atin1;

*The below code creates users gfReader , and
* gfWriter to read and write from the
*database with password 'password

DELETE from mysql.user where user 'gf\Yriter";
DELETE from mysql.db where user =g riter
DELETE from mysql.user where user = Tgflecder';
DELETE from mysql.db where user = e ;
FLUSH privileges;

CREATE USER 'gffleader '@'localhosti
IDENTIFIED BY pass word ;

GRANT SELECT ON mitServer.* TO gFPea 'i ©
IDENTIFIED BY 'pUssword ';

GRANT SELECT ON mitServer.* TO 'g feader 'alocal1ost
IDENTIFIED BY "password ";
CREATE USER 'gfr\Vie r ' uloralhosi " IDENTIFIED BY password
GRANT ALL PRIVILEGES ON mitServer.* TO 4 fWrer '.'

IDENTIFIED BY 'password
GRANT ALL PRIVILEGES ON mitServer.* TO >fWrit.'r '@' localhost
IDENTIFIED BY ' password ;

}

52

Sample Code 2. Script to check accuracy of a solution against test data packages.
POOL-SERVER should refer to the IP address where the pool server is running (be it
local as in the below example or a remote machine).

#! /bin/bash

NRGENES=1
POOLSERVER=127.0.0.1
PORT=8181
PREFD=$(date -utc +'%s') #Tirnestanp for unique solution

POOLSERVER-PROCESS=$(ps aux grep pool-server I grep -v grep)
if [-z {P(OLSER\TLPRCESS}
then

echo INo o p rver
exit

fi

SAVED-GENESDIR=s avedgenes /$ {PREFIX}

if [! -e ${SAVEDRGENES-DIR}
then

mkdir ${SAVED.GENES._DIR}
fi

Save genes
ed
SAVEDIr e s u1t s /${SAVED-GENESDIR}

java -cp target /pool-server -jar -with-dependencies. jar \
edu.mit.evodesign.bp. test. Classifier save ${POOLSERVER}\
${PORT} ${SAVEDIR}/${PREFIX} ${NRLGENES} > save._genes.log

if [[Is(II I DIR} wPREF1X}:xml |v -eq "W"]] then
echo "No files in H (KAVEDIR} {PfEFIX}
exit 0

fi
for packages in I n aCa tesi

do
name=$(basename ${packages})
log-fie=${SAVE..DIR}/${PREFIX}..${name}. log

TestAll genes
java -cp target/pool-server -jar-with-dependencies . jar \
edu.mit.evodesign.bp. test. Classifier testAll ${SAVEDIR}\
${packages} > ${log-file}

cat globalConf.log >> totGlobalConf.log

conf..file=${SAVE-DIR}/${PREFX}_$ {name} _-confusion .dat

Local confusion matrix
grep -A 16 -e "Lw Coifsison Matrix-\
${log-file} I grep -e 012]- > ${conf-file}

53

in d- a cc fi I e=${SAVEDIR}/${PREFIX} -${name} _ind-acc. dat

Individual accuracy
grep -H -e "Individual accuracy ${log.file} > ${ind-acc-file}
rm ${log..file}

done

54

Sample Code 3. Sleipnir wrapper script.
This python script creates an instance of sleipnir, and uses the script chunk. sh
to do file chunking. In the below script (and with sleipnir in general) it is assumed

that your OpenStack account is already set up and your environment is set up to

use OpenStack's nova command line tool. The only step once you have created an

instance of sleipnir, is to call the runjob.The first two arguments are the name of
the script and the arguments to the script in the form of an array. You must then

pass in the local source directory.This is the path to the files on the local computer

used by sleipnir to create a partitioning of the data. Finally pass in the source and
destination directories (should be relavitve to the nodes sleipnir is running) and the

number of workers (equal to the number of workers listed when we created the instance
of sleipnir).

from sleipnir import Sleipnir
#Create Sleipnir Instance and pass in OpenStack node names

#(IP address will be aut omatically looked up)
cloud = Sleipnir ([Sn Jpij- ,Sleipnir. , Thiipir_2)]

#src directory (data is stored on an nfs)
src = data/ clf erst v 1) 1bp) Da

#directory for output files
dest= 'data aIf c'i r lp abp(bunked/

#src dlirectory (on local conputer)

local-src = /dt n sar -bp'abpata

#'Call runjob method of Sleipuir
rows = 100W

Iargs
#script ,[script args . src directory destination directory number of workers

cloud. run...job (chiniuk sh ,[rows] , local-src , src , dest ,3)

55

Sample Code 4. Chunking Sleipnir Script
The below script for chunking using sleipnir is nearly identical to that used by

ECFlow. Note that the only requirements imposed by sleipnir is that the first in-

put be the src directory and the final input be the output directory. Any other

inputs are optional. In this case there is one additional input, the number of rows.

#! /bin/bash

#Puts chunked files in original directory and removes original files

D-$1 #src directory

ROWS=$2 #if 0, do not split files
OUTPUT-DIR=$3 #output directory
SUFFD= .csv'
CORES=4

T= 'S (date +s)

echo "Splitting"

find ${DLR} -name S{PREFIX} !FFIX}" I\
xargs -P ${CORES} -I {} split -a 3 -d -1 ${ROVS} {} $(basename {})

echo "Renainig file,

find ${DIR} -name 'S{P{REFIX}V" -type f I
xargs -P ${CORES} -I '{}' rename 's/.csv_//g' '{}'

echo "Adding S{SUFFIX}
find ${DIR} -name {PRFIX}NV -type f \
xargs -P ${CORES} -I {} mv {} {}${SUFFIX}

T= (L Pdat e +s)-- T)"
echo - Time in seencins S{T} > time.txt
iniove to output directory on afs

T= S(d te -! s '
find ${DIR} -type f I xargs -P ${CORES} -I {} mv {} $OUTPUTDIR

echo Tmee to move in sec1onos: jT}" >> time.txt

56

Bibliography

1. O'Reilly UM, Wagy M, Hodjat B (2012) Ec-star: A massive-scale, hub and
spoke,distributed genetic programming system. In: Genetic Programming Theory
and Practice X, Springer

2. Hodjat B,Hemberg E, Shahrzad H and O'Reilly UM (2013): Maintenance of a
Long Running Distributed Genetic Programming System For Solving Problems Re-
quiring Big Data

3. Hemberg E, Veeramachaneni K, Dernoncourt F, Wagy N, O'Reilly UM (2013):
Efficient Training Set Use For Blood Pressure Prediction in a Large Scale Learning
Classifier System

57

