
Evaluation of QUIC on Web Page Performa

by

Somak R. Das

S.B., Massachusetts Institute of Technology (2014)

nce A
MA SSACHUSETTS INTMl'frE

OF TECHNOLOGY

JUL 15 2014

LIBRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

@ Massachusetts Institute of Technology 2014. All rights reserved.

A uthor
Signature redacted

Department of Electrical Engineering and Computer Science
May 23, 2014

Signature redacted
C ertified by

Hari Balakrishnan
Professor

Thesis Supervisor

Accepted by

S r/e/a
Signature redacted

Prof. Albert R. Meyer
Chairman, Masters of Engineering Thesis Committee

I

2

Evaluation of QUIC on Web Page Performance

by

Somak R. Das

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2014, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This work presents the first study of a new protocol, QUIC, on Web page performance.
Our experiments test the HTTP/1.1, SPDY, and QUIC multiplexing protocols on the
Alexa U.S. Top 500 websites, across 100+ network configurations of bandwidth and
round-trip time (both static links and cellular networks). To do so, we design and
implement QuicShell, a tool for measuring QUIC's Web page performance accurately

and reproducibly.

Using QuicShell, we evaluate the strengths and weaknesses of QUIC. Due to its
design of stream multiplexing over UDP, QUIC outperforms its predecessors over
low-bandwidth links and high-delay links by 10 - 60%. It also helps Web pages with
small objects and HTTPS-enabled Web pages. To improve QUIC's performance on

cellular networks, we implement the Sprout-EWMA congestion control protocol and
find that it improves QUIC's performance by > 10% on high-delay links.

Thesis Supervisor: Hari Balakrishinan

Title: Professor

3

4

Acknowledgments

First and foremost, I thank Prof. Hari Balakrishnan for his guidance and feedback

over the course of my research. It was a cold and windy day in 2010 when I first

walked into his office, inquiring about a UROP position. I have learned a tremendous

amount since then.

Likewise, I am grateful for the supervision I received from my mentors in his

group, who were (in chronological order) Lenin Ravindranath, Tiffany Chen, Anirudh

Sivaraman, and Ravi Netravali. I also thank Keith Winstein and Ameesh Goyal for

useful discussion, along with the rest of my labmates in the CSAIL Networks and

Mobile Systems Group, who made the weekly group meetings enjoyable.

Last but definitely not least, I am forever grateful to my friends and family for

their support.

6

Contents

1 Introduction 13

2 Related Work 15

2.1 M ultiplexing Protocols . 15

2.1.1 HTTP 1.1 . 16

2.1.2 SPDY . 16

2.1.3 QUIC . 17

2.2 Congestion Control Algorithms . 18

2.2.1 TCP Cubic . 18

2.2.2 W ebRTC Inter-Arrival . 18

2.2.3 Sprout-EW MA . 19

3 QUIC 21

3.1 Design . 22

3.2 Implementation . 24

4 Experimental Design 27

4.1 M ahiinahi . 28

4.2 QuicShell . 29

4.2.1 Benefits . 32

4.2.2 Limiitations . 33

4.3 Benchmark Corpus . 34

4.4 Page Load Time Metric . 34

4.5 Putting It All Together. .. 35

7

5 Performance Evaluation 37

5.1 Results and Discussion 37

5.2 C ase Studies . 40

6 Sprout-EWMA for Cellular Networks 45

6.1 Technical Challenges . 45

6.2 Algorithm and Implementation . 47

6.3 Performance Evaluation . 47

7 Conclusion 51

7.1 Summary of Contributions . 51

7.2 Directions for Future Work. 52

8

List of Figures

1-1 Yahoo in 1996 vs. 2014 .

3-1 HTTP, SPDY, and QUIC connection establishment

4-1 Mahimnahi's ReplayShell architecture

4-2 Reproducibility of QuicShell measurements

4-3 Overhead of security and unoptimized implementation

5-1 500-website CDFs of HTTP,/1.1, SPDY, and QUIC page load times

across 9 configurations .

5-2 Heat maps showing % protocol improvement across 100 configurations

6-1 HTTP 1.1, SPDY, and QUIC page load times over a cellular network

6-2 Variability of bandwidth over time in a Verizon 4G cellular network .

6-3 QUIC Cubic vs. QUIC/Sprout-EWMA page load times over Verizon

4G cellular network .

6-4 QUIC Cubic vs. QUIC Sprout-EWMA page load times over AT&T

4G cellular network .

9

14

24

30

32

34

38

41

46

46

49

49

10

List of Tables

4.1 Network conditions and Web pages in experiments 36

5.1 Websites QUIC helps and hurts most 43

7.1 Open-source repositories for code . 52

11

12

Chapter 1

Introduction

Since the invention of the Web, much attention has been devoted to making access

to websites faster for users. Over the past two decades, many methods have been

designed and deployed to improve Web performance, including multiple concurrent

TCP connections, persistent HTTP multiplexed over a small number of TCP connec-

tions, pipelining, prefetching, long polling, framing to multiplex concurrent HTTP

streams over a single TCP connection, request prioritization, HTTP header compres-

sion, and server push (Section 2.1.1 describes prior work). Web delivery protocols

like HTTP/1.1, SPDY, and QUIC incorporate one or more of these techniques.

How well do current techniques that aim to make the Web faster perform with

different link speeds and propagation delays? This question is of interest to sev-

eral stakeholders, including network protocol designers who seek to understand the

application-level impact of new multiplexing protocols like QUIC [13] and website

developers wishing to speed up access to their Web properties.

In this study, we compare two established multiplexing protocols, HTTP/1.1 and

SPDY, to one in development by Google, QUIC. To the best of our knowledge, we

present the first study to do so. This is not an easy task: (i) QUIC is in active

development and is not widely available, (ii) websites have a large variety in compo-

nents (see Figure 1-1 for just one example of how they have changed), and (iii) users

are accessing the Web in many ways (cellular networks, wireless and wired links).

13

(a) Yahoo in 1996 (b) Yahoo in 2014

Figure 1-1: Like many other websites, Yahoo's homepage has become considerably

more complicated over the years. It has added more objects, such as dynamic scripts,
images, and ads. This can degrade Web page performance.

Furthermore, real Web page loads are difficult to model because Web pages have

complex dependencies between their objects (scripts, images, ads, etc.) and involve

both networking (transferring objects) and computation (processing and displaying

objects).

Our approach is to sweep the parameter space and evaluate where QUIC currently

helps or hurts. More specifically, our experiments load the Alexa U.S. Top 500 web-

sites in a real Web browser using the three multiplexing protocols and measure the

page load time. They test 100+ network configurations of bandwidth and round-trip

time (RTT or delay), including both static links and cellular networks. To do so in

an accurate and reproducible manner, we design and implement QuicShell, a tool for

emulating websites over QUIC.

Due to its design of stream multiplexing over UDP, QUIC outperforms its prede-

cessors over low-bandwidth links and high-RTT links by 10 - 60%. It also helps Web

pages with small objects and HTTPS-enabled Web pages. To improve QUIC's per-

formance on cellular networks, we implement the Sprout-EWMA congestion control

protocol and find that it improves QUIC's performance by > 10% on high-RTT links.

14

U.-

uI~*
YAn-

(CI'$29-'owl:

Chapter 2

Related Work

As noted before, there exist no other QUIC studies to compare with this work. There-

fore, in this chapter, we survey the protocols to study. They are organized in two

levels. Multiplexing protocols like HTTP/1.1, SPDY, and QUIC are at the higher

application level. Congestion control algorithns like TCP Cubic, WebRTC Inter-

Arrival, and Sprout-EWMA are at the lower transport level.

2.1 Multiplexing Protocols

Starting with persistent HTTP [5], researchers have grappled with the problem of

mapping HTTP requests to the underlying transport level. Older work includes

the Stream Control Transmission Protocol (SCTP) [15] that allows multiple distinct

streams, which could correspond to images and text in the Web context, to be multi-

plexed on a single SCTP association. Structured Stream Transport [7] also allows the

application to multiplex different streams onto one network connection, and operates

hierarchically, by allowing streams to spawn streams of their own. Deployed work in

this space includes Google's SPDY [3] and their recent proposal, QUIC [13], each of

which we evaluate in Section 5.1.

15

2.1.1 HTTP/1.1

HTTP/1.1 (shortened to HTTP) is the de facto application-level protocol of the

Web. Web browsers (clients) send HTTP requests to the server and receive HTTP

responses. The requests and responses are data accompanied by header fields. Since

Web pages can be composed of many objects (text, images, etc., each with a different

URL) browsers open a new TCP connection for each request and response.

Several proposed modifications to HTTP/1.1 aim to improve page load times.

HTTP Server Push uses existing connections to push modified data from the server

to the client. This modification targets sites where content changes quickly. Similarly,

HTTP pushlets take advantage of HTTP persistent connections to fool the browser

into continually loading the page. This allows a Web server to update dynamic

content even if the page has already loaded once. HTTP long polling allows the

server to respond to requests whenever it receives new data. Finally, prefetching

allows a client to fetch resources in advance of when they are needed and might often

transmit a lot of unnecessary data [11]. However, we do not individually evaluate these

modifications due to the lack of standardized and authoritative implementations for

any of these techniques.

2.1.2 SPDY

In 2009, Google proposed a new multiplexing protocol called SPDY (and pronounced

"speedy") to be built over HTTP/1.1; today, its design is the basis of the upcoming

HTTP/2.0 standard 13]. Instead of opening a new TCP connection for each request

and response, Web browsers only use a single TCP connection for SPDY. This saves

the round-trip costs establishing new connections, which are especially expensive

when the connection is secured (for HTTPS) by Transport Layer Security (TLS),
and is good for high-RTT links.

In order to work over a single connection, each request /response pair is abstracted

as a stream, and streams are multiplexed (combined) into packets to be sent over the

wire. As a result, several requests can load simultaneously. Unlike HTTP pipelining,

16

where multiple HTTP/1.1 requests are sent on a single TCP connection, the requests

do not have to return in first-in-first-out order. Therefore, if a request is particularly

slow for the server to respond to, it does not hold up the other requests (avoiding

head-of-line blocking).

The benefits of stream multiplexing over a TCP connection also include reduced

packet count, since many small objects can be combined into a single packet to

be sent. It also allows better compression of stream (HTTP request and response)

headers, since many headers are likely to include the same lines, such as User-Agent:

Mozilla/5.0. This is good for low-bandwidth links. However, the issue is that in the

event of a packet loss, the whole TCP connection (and all the streams) is affected;

whereas in HTTP/1.1, only one TCP connection is affected by the packet loss, but

the others running in parallel continue without seeing that loss.

To evaluate SPDY, we enable the mod-spdy extension on Apache servers. SPDY

allows two other features, request priorities (where server schedules the order of re-

sponses) and server push (where the server pushes responses even before the client

requests them), but the SPDY configuration evaluated here does not have them. This

is because there is no canonical implementation in Apache. We considered pushing

objects up to a configured "recursion level" as proposed earlier, but decided against it

because it may send more resources than is actually required by the browser. A recent

paper [171 corroborates this intuition; it shows that the benefits of SPDY under such

a server push policy are slight.

2.1.3 QUIC

QUIC (pronounced "quick") is Google's new (first proposed in 2013) multiplexing pro-

tocol that that runs over UDP [131, attempting to further improve Web performance

compared with SPDY. Since it runs stream multiplexing, it inherits the same benefits

as SPDY. However, because QUIC runs over UDP, it has better resilience to packet

loss and a faster start, as explained in Section 3.1.

17

2.2 Congestion Control Algorithms

Congestion control algorithms schedule when packets are sent on the wire to and from

the client, which directly impacts Web page performance. Many have been designed

over the years, but we study the ones specifically implemented in QUIC.

2.2.1 TCP Cubic

TCP Cubic is the default TCP implementation in Linux. It maintains a congestion

window, which determines how many packets can be sent and outstanding. The win-

dow grows with successful packet deliveries and shrinks with failed packet deliveries

(i.e., packet losses). Cubic increases its window as a cubic function (instead of, say,

linearly) and thus aggressively achieves high throughput.

Google recently proposed several modifications to TCP to enhance its performance

on Web page loads [10, 4]. These include increasing the initial TCP congestion window

from 4 to 10 (the current default on Ubuntu) and TCP Fast Open, which enables

data exchange during TCP's SYN/ACK handshake. Both suggestions are motivated

by the short-flow nature of the Web where a low initial congestion window and the

latency incurred by having to wait for the initial handshake can significantly increase

flow completion times, and by implication, page load times. More recently, Google

proposed Gentle Aggression [6], a technique to combat tail losses that adversely affect

page load times. We do not evaluate these modifications to TCP in this case study

since they are not the current defaults; instead, we run HTTP/1.1 and SPDY using

the default TCP implementation in Ubuntu 13.10, Cubic with an initial window of

10.

2.2.2 WebRTC Inter-Arrival

Besides implementing Cubic, QUIC supports Inter-Arrival protocol (formally called

Receiver-side Real-Time Congestion Control) from WebRTC (a communication plat-

form separate from QUIC). This takes a very different approach to congestion control

18

that Cubic's window. Instead of reacting to failed packet deliveries, Inter-Arrival

proactively paces out packets at a certain rate. It measures the current sending rate

and estimates the available bandwidth from the link; if bandwidth is available, then

it increases the sending rate. However, a previous study [8] showed that the Inter-

Arrival's implementation in WebRTC was not robust to different network conditions.

2.2.3 Sprout-EWMA

Sprout is an end-to-end transport protocol for interactive applications that require

high throughput and low delay [191. It is targeted toward cellular networks, which

differ from traditional links by having highly-variable bandwidths and dropping no

packets. Sprout is a window-based protocol like Cubic, but it calculates the receiving

rate similar to Inter-Arrival. Specifically, Sprout-EWMA takes packet arrival times

at the receiver to estimate the network throughput and applies an exponentially-

weighted moving average to smooth the estimate. It is a simpler version of Sprout,

which uses flicker-noise modeling and Bayesian inference to make a prediction instead.

It multiplies the rate by a target delay to calculate the window.

We chose to implement Sprout-EWMA because it achieved the same through-

put/delay ratio as Sprout but better throughput. In Section 6.3, we compare its

performance to the status quo, TCP Cubic.

19

20

Chapter 3

QUIC

QUIC (Quick UDP Internet Connections) is Google's new multiplexing protocol

that runs over UDP, attempting to further improve Web performance compared with

SPDY [131. It inherits SPDY's features, such as multiplexing streams onto a single

transport-protocol connection with priorities between streams.

QUIC solves two drawbacks SPDY has due to its reliance on TCP. First, since

SPDY's streanis run over the same TCP connection, they are subject to head-of-

line blocking - one stream's delayed or lost packet holds up all other streams due

to TCP's in-order delivery requirement. QUIC avoids this issue by using UDP as

its transport, allowing it to make progress on other streams when a packet is lost

on one stream. Second, TCP today starts with a three-way handshake. Paired

with HTTPS's Transport Layer Security (TLS) protocol handshake, several RTTs

are wasted in connection setup before any useful data is sent.

QUIC aims to be O-RTT by replacing TCP and TLS with UDP and QUIC's own

security. The initial packet from client to server establishes both connection and secu-

rity context, instead of doing one after another. It also allows the client to optimisti-

cally send data to the server before the connection is fully established and supports

session resumption. QUIC uses TCP Cubic as its default congestion control today,

although this can be changed because QUIC supports a pluggable congestion-control

architecture. QUIC also includes packet-level FEC to recover quickly from losses. We

21

enumerate these benefits in greater detail below, since no study has discussed QUIC

before (though a technical design document from Google is available [13]).

3.1 Design

The primary goal of QUIC is to be deployable on today's internet. In order to do that

but still improve on TCP, QUIC runs stream multiplexing over UDP. Although this

means that QUIC has to re-implement TCP's reliable delivery, it is able to modify the

semantics for Web page loads: unlike TCP, it is not bound to in-order byte delivery.

Since UDP is connectionless, QUIC establishes its own application-level secure

connection. This is identified by a globally unique ID instead of client/server IP/port

pairs. GUIDs are good for mobile clients that roam between networks, like Wi-Fi

and cellular, and change their IP addresses. By have a GUID instead of IP addresses,

clients using QUIC do not have to re-establish a new connection when roaming.

QUIC sends packets (more accurately, datagrams) over UDP, and these pack-

ets contain frames. The most common frame is Stream Frames, that contain data

for a QUIC stream (a HTTP request /response pair) identified by a unique stream

ID. ACK Frames are acknowledgments for stream data. They contain the highest

contiguous sequence number seen so far and, optionally, a list of missing sequence

numbers. Congestion Feedback Frames contain receiver-to-sender feedback for the

underlying congestion control algorithm like TCP Cubic, WebRTC Inter-Arrival, or

Sprout-EWMA. A packet to or from the client can contain any combination of these

frames, which is less costly than sending the frames in individual packets.

These are the features of the QUIC design:

Stream multiplexing As in SPDY, this reduces the packet count and allows for

better compression of stream headers. The result is consuming less bandwidth.

UDP resilience to loss In SPDY, if a packet was lost, then all following packets

cannot be delivered to the application because TCP guarantees in-order byte

22

delivery. However, it is very likely that the lost packet contains data for one

strean and the following packets contain data for other streams. The lost packet

is holding up the other streams in a form of head-of-line blocking. QUIC, over

UDP, can bypass this and deliver data for other streams.

FEC resilience to loss When a packet is lost over TCP, the client has to wait for

the sender to detect the loss and resend the lost packet. QUIC proactively

sends a redundant packet so that the client can reconstruct a lost packet by

itself. It uses the Forward Error Correction (FEC) technique, where it XORs a

FEC group of n packets and sends the XORed FEC packet. If a single packet is

lost, then the client can recover it using the XORed packet. The speed of this

approach offsets the "+l bandwidth cost.

TLS-like security QUIC provides as much security as HTTPS. In fact, it also en-

crypts all packets under HTTP too.

Low-cost, O-RTT start As shown in Figure 3-1, QUIC ains to establish a secure

connection with O-RTT overhead. Instead of 1-RTT TCP handshake followed

by a 2-RTT TLS handshake, it initializes the security and the connection at

the sane time, and also allows the client to optimistically send data in the first

packet.

Pluggable congestion control Because QUIC implements its own reliable delivery

instead of relying on TCP implementations in the kernel, it allows switching

between congestion control algorithms. The current default is TCP Cubic, but

it allows both window-based and packet pacing-based algorithms like WebRTC

Inter-Arrival and Sprout-EWMA.

To sunmmnarize, QUIC has stream multiplexing and compression for low-bandwidth

links, reduced head-of-line blocking and FEC for lossy links, low-cost starts for high-

RTT links, and roaming support and low overhead for mobile clients. We evaluate

23

Client Server

SYN
I- - I t TPhadhk

SYN/ACK L..P handshakej , t IRTT

SACK/HELLO

HELLO.

Key/Cipher TLS handshake
2 RTT

Ciphe - Client Server

GET! L~H }- No handshake
QUIC/Crypto/GET /0 RTT

(a) 3-RTT TCP and TLS handshake of
HTTP(S) and SPDY (b) O-RTT start of QUIC

Figure 3-1: Overhead of HTTP, SPDY, and QUIC connection establishment. Com-

pared to HTTP and SPDY, QUIC provides a low-cost, O-RTT start, so clients can

(securely) request Web pages sooner.

these features in Section 5.1. We also experiment with our own congestion control

algorithm in Section 6.3.

3.2 Implementation

QUIC is implemented by adding a framing layer to the network stack between HTTP

and the underlying UDP transport. As intended, it works with today's Internet and

is enabled in the Chrome browser (Dev and Canary builds) using the -- enable-quic

and -- enable-quic-https flags.

It is developed as a library inside the Chromium project's repository, not as a sep-

arate project. This enables quick deployment tied to the Chrome browser. The

QUIC library in net/quic/ is currently 38,784 lines of C++ code and includes

congestioncontrol (for pluggable congestion control) and crypto (for built-in

TLS-like security) modules. It is accompanied by a QUIC "toy server" (also known

as the test server or prototype server) in net/tools/quic/, taking 4,332 lines of

code. The toy server is a simple in-memory server that handles requests whose URLs

24

exactly match one of its stored objects.

Since QUIC is in active development, two of its features are not yet fully imple-

mented, so we do not test them in this study:

1. FEC is not available since there is no a canonical heuristic [12]. Some proposals

include calculating the XORed FEC packet near the start of a stream, to reduce

processing delay of stream headers; near the end of a stream, to reduce stream

completion delay; or near the end of a burst, to deal with tail (end-of-burst)

loss. But the current FEC imj)lementation in QUIC only allows enabling FEC

groups strictly of size n for redundancy or code rate of which does not

satisfy any of these strategies. In addition, n is currently set to 0 to disable

FEC.

2. There is no working implementation of WebRTC Inter-Arrival's packet-pacing

algorithm.

25

26

Chapter 4

Experimental Design

Our goal is to measure Web page performance of QUIC versus its predecessors HTTP

and SPDY over a wide variety of network conditions and Web pages. We want to

answer the question: where does QUIC currently help or hurt? To do so, these are

the factors we consider:

" Network conditions

- Bandwidth: Does QUIC's header compression and low-overhead start help

low-bandwidth connections?

- Round-trip time: Does QUIC's O-RTT start help high-RTT connections?

" Web pages

- Number of objects: Does QUIC's stream multiplexing help large numbers

of objects?

- Object sizes: Does QUIC's stream multiplexing help small objects'?

However, there are two main technical challenges when setting up these experi-

nents. The first is availability. The only servers on the Web that understand QUIC

are the Google's properties that include Alternate-Protocol: 80:quic in their HTTP re-

sponses, such as https: //www. google. com/ and https: //www. youtube. com/. But

Google only represents 4 of the Alexa U.S. Top 500 websites (< 1%) [2] and this

27

does not provide variety in Web pages. Moreover, we found that many of Google's

websites do not provide a page load consistently over QUIC because they fall back to

HTTP/1.1 and SPDY. The second is reproducibility. Measurements can have high

variability on the Web, which makes it difficult to compare these protocols when the

variance is greater than difference in their performance.

So, instead of conducting experiments on the real, we conduct experiments using

Web page emulation. In this process, we record a Web page (save the content during

a real page load) and replay it (serve that content during the emulated page load)

over emulated network conditions (a chosen bandwidth and minimum RTT). This

addresses availability because we extend QUIC to a much wider corpus of websites

(all of the Alexa U.S. Top 500 websites, as explained in Section 4.3) and compare it

to HTTP/1.1 and SPDY. Emulation also addresses reproducibility, because we select

a record-and-replay framework that has been verified to produce reproducible Web

measurements.

The initial difficulty was that while some frameworks support HTTP and SPDY,

no framework supports QUIC. So, the following sections describe how we modify an

existing framework, Mahimahi [91, to measure the page load time of Web pages served

over QUIC.

4.1 Mahimahi

Mahimahi is a recently proposed Web measurement toolkit that records websites and

replays them under emulated network conditions [9]. It is structured as a set of four

UNIX shells:

1. RecordShell records Web content (from a website, mobile application, etc.),

writing a folder of objects.

2. ReplayShell replays Web content, reading a folder of objects.

3. DelayShell emulates a link that adds a fixed one-way delay d to both directions

of the link. This increases the minimum RTT by 2 -d.

28

4. LinkShell emulates a link using packet-delivery traces, which either specify

static links of bandwidth r or dynamic links that vary bandwidth over time.

We use this feature to test cellular networks in Section 6.3.

It has several benefits over previous work such as Google's web-page-replay: has low

overhead, produces reproducible and accurate (preserving the multi-origin nature of

Web pages by mirroring all unique server IP/port pairs) measurements, has compos-

able shells, and is isolated from other test environments on the same machine.

However, the most important reason we chose Mahimahi is its extensibility. It

replays by starting Web servers which talk to a CGI script which finds a matching

response from the folder of recorded content for an incoming request. As explained in

Section 4.2, we replace the existing Web server (Apache 2.4.6) with the QUIC server

and added support for CGI scripting in the QUIC server.

4.2 QuicShell

Chrome browser has experimental support for QUIC on the client side. On the server

side, ReplayShell currently uses Apache to replay content over HTTP/1.1 and Apache

with the mod.spdy module to replay content over SPDY. However, there is currently

no mod-quic module available for Apache, and we do not have access to the front-

end QUIC servers for Google's properties. Therefore we invent our own solution,

modifying the QUIC toy server from the Chromium project (commit a8f23c). The

major obstacle was that the toy server cannot replay the folder of recorded content

because it cannot perform the complicated matching needed to match a request to

a response. We modify the QUIC toy server to support CGI scripting, so that it

can use the same CGI script that the Apache server uses. Put together, we create

QuicShell, which replays Web content over QUIC.

Modifying QUIC toy server The toy server simply reads a folder of objects

from disk into memory as a key-value store with the requests as keys and responses

29

Recorded \
Site

CGI I CGI CGI
Apache Apache ApacheI
Server Server Server

Browser

\ Private Network Namespace

User Computer

Figure 4-1: Mahimahi's ReplayShell handles all HTTP traffic inside a private net-
work namespace. Arrows indicate direction of HTTP request and response traffic. To
create QuicShell, we replace the Apache server (which does not support QUIC) with
a modified QUIC server.

as values. It then finds the stored request which matches the incoming request URL

exactly. This is insufficient for replaying Web pages.

Since we need more complicated matching of HTTP/1.1 request header fields, we

rewrote the server to support the matching semantics in ReplayShell's CGI script.

On an incoming request, our modified QUIC server sets up the request header fields

as environment variables, executes the CGI script, reads the response generated by

the CGI script, and sends it back to the browser.

The CGI script uses environment variables as input. For example, if the

server reads the request header field Accept-Language: en-US, then it sets

HTTPACCEPTLANGUAGE=en-US. Our goal is to match Apache's support for CGI

scripting (via the modrewrite module) as closely as possible. To do so, we imple-

ment a URL parser to separate the incoming request URL into the correct parts, and

we pass the remaining request header fields as environment variables. For example,

say the incoming request is:

GET https://www.google.com/search?q=mit HTTP/1.1

30

It also has header fields for cookies, compression encodings, languages, etc., which we

pass directly into the environment variables HTTPCOOKIE, HTTPACCEPTENCODING,

HTTPACCEPTLANGUAGE, etc. Our parser separates the request into:

1. REQUESTURI=www.google.com/search?q=mit

2. REQUESTMETHOD=GET

3. SERVERPROTOCOL=HTTP/1. 1 (since QUIC does not change the HTTP/1.1 con-

tent, only how it is sent over the wire)

4. HTTP_HOST=www.google.com

5. SCRIPTNAME=/search

The host is important for accurate matching, since the recorded content may contain

multiple hosts (as the Web is multi-origin). On the other hand, the script name (the

URL path without the parameters like ?q=mit) is important for approximate match-

ing. We want as many requests to be accurately matched to responses as possible, and

sometimes a dynamically generated URL contains the current timestamp, which is

not present in the recorded content. The CGI script uses the script name to perform

a longest-substring match across URLs.

Finally, we change the QUIC server to run on any IP address, instead of its

previous default of 127.0.0.1, to mimic the multi-origin nature of websites.

Modifying ReplayShell For the last step of creating QuicShell, we modify Re-

playShell to spawn a child process running a QUIC server for each IP/port pair

(replacing the previous Apache server). As a result, a user simply has to run:

$ quicshell mitrecorded-objects/

QUIC server started on 18.181.0.46:80

[quicshell] $ chrome --enable-quic http://mit.edu/

Internally, QuicShell converts that to a child process executing:

31

4.2.1 Benefits

QuicShell provides a QUIC emulation platform that meets both of our goals. For

availability, we can record any website using RecordShell and replay it using Quic-

Shell. Then, for reproducibility, we run an experiment to verify that QuicShell mea-

surements are reproducible. Since https: //www. youtube. com/ is served over QUIC

on the real Web, we measured its page load time (Section 4.4) over 100 runs. We

also measured the emulated page load time using QuicShell. As shown in Figure 4-2,

real measurements have much higher variance and are fat-tailed. The means and

standard deviations are 718 ± 95 ms (over 13% deviation) for the real Web, compared

to 743 ± 18 ms (only 2.5%) for the emulated version.

Reproducibility of QuicShell measurements

Real
QuicShell Replay - - - -

U.
400 600 800 1000

Page Load Time (ms)

Figure 4-2: CDF of 100 runs loading YouTube over QUIC
loading a recorded YouTube over QUIC using QuicShell.

1200

on the real Web vs.

32

quicserver --ip=18.181.0.46 --port=80

--recordfolder=mit-recorded-objects/

--replay-server=replayserver.cgi

1

S0.75

.
0
0

S0.5

E
U0.25

1-

I

4.2.2 Limitations

As mentioned in Section 3.2, QUIC does not currently implement Forward Error

Correction or WebRTC Inter-Arrival. Therefore, we test on TCP Cubic without

FEC. Additionally, we build the QUIC server code in debug mode because all QUIC

transfers were unsuccessful in release mode. While this incurs a slight performance

penalty due to debug-only code (e.g., extra checks), we minimize the impact by

disabling logging.

Still, there are a couple limitations that we identify with QUIC. First, because it

is in active development, it may not be as fully optimized as the HTTP/1.1 imple-

mentation in Apache. The ideal case is an Apache mod-quic module, instead of the

toy server, but that is not currently available. Second, it provides TLS-like privacy on

HTTP (not just HTTPS). While we can enable no-TLS SPDY, QUIC always encrypts

the packets to and from the client. Therefore there is overhead there, especially if

the toy server is unoptimized. Only 8.6% of the Alexa U.S. Top 500 websites have

HTTPS; for the other 91.4%, QUIC incurs extra encryption.

To gauge these two overheads, we measure the page load times of a simple

single-object (8 MB) Web page over HTTP, HTTPS and QUIC over infinite and

14 Mbits/sec bandwidth links with zero minimum RTT. Thus, comparing HTTP and

HTTPS shows the overhead of HTTPS's security. Comparing HTTPS and QUIC

shows the overhead of QUIC's unoptimized implementation: in theory, the protocols

should be comparable because a single object has no multiplexing, RTT is zero so

QUIC's 0-RTT start does not give it an advantage, and both are using TCP Cubic

for congestion control. However, in practice, the implementation in Apache vs. QUIC

toy server differ a lot.

As shown in Figure 4-3a, security adds 1.4x overhead. QUIC is 7.3x worse, which

we know is due to QUIC's TCP Cubic implementation having capped throughput (at

roughly 25 Mbits/sec [161). In Figure 4-3b, security much adds less (< 0.5%) over a

14 Mbits/sec link because encryption and packet transmission can happen in parallel.

However, even though the bandwidth is less than the measured 25 Mbits/sec cap,

33

1 ,,I1

HTTP HTTP
HTTPS HTTPS

QUIC QUIC
0.75 0.75

o 0

2 2

0.5 - -0.5

E E

0.25 0.25

0 0
0 1000 2000 3000 4000 0 1000 2000 3000 4000

Page Load Time (ms) Page Load Time (ms)

(a) Infinite-bandwidth link with minimum (b) 14 Mbits/sec link with minimum RTT
RTT of 0 ms of 0 ms

Figure 4-3: HTTP, HTTPS, and QUIC page load times of a simple single-object (8
MB) Web page.

QUIC is still 12% slower.

4.3 Benchmark Corpus

We use Mahimahi's corpus (https: //github. com/ravinet/sites) of the 500 most

popular Web pages in the United States [2]. We add the results discussed in Sec-

tion 5.1 to the corpus, so that we compare future iterations of QUIC to these bench-

mark measurements and track performance improvements or regressions. These mea-

surements include page load times, recorded over more than one hundred network

configurations, for each recorded site when HTTP/1.1, SPDY, and QUIC. Lastly, the

corpus provides 3G and 4G cellular network traces for Verizon, AT&T, T-Mobile,

and Sprint. These traces were originally collected in 1191 and are modified to be

compatible with LinkShell. We use them to test cellular networks in Section 6.3.

4.4 Page Load Time Metric

Page load time is defined as the time elapsed between two timing events,

navigationStart and loadEventEnd, in the W3C Navigation Timing API [18].

34

navigationStart is the time at which a browser initiates a page load as perceived by

the user, and loadEventEnd is the time immediately after the browser process's load

event is fired which corresponds to the end of a page load. This difference represents

the time between when the page was initially requested by the user and when the

page is fully rendered. Note that bytes can continue to be transferred for the page

load even after loadEventEnd [14].

To automate the page load process and measure page load times, we use

Selenium 2.39.0 and ChromeDriver 2.8, a widely used browser-automation tool.

To ensure Chrome does not load any objects from its local cache, we pass the

-- incognito flag instructing it to open a private instance. We also pass the

-- ignore-certif icate-errors flag to override certificate warnings for HTTPS sites.

To ensure Chrome uses QUIC, we pass the -- enable-quic and

-- enable-quic-https flags and modify Chrome to force QUIC on all origins.

The previous behavior of the Chrome browser was to either force QUIC on a

single origin, passed by the -- origin-to-f orce-quic-on flag, or to first contact

the server using HTTP and then, if the response contains Alternate-Protocol:

*:quic, try QUIC which is too much overhead. Finally, we download the latest

Flash Player plug-ins and configure Chronic to use them to support websites like

http: //www. pandora. com/, because the Chromium project does not contain any

such plug-ins.

We use the WebDriver API to obtain timing information from Selenium and

define page load time to be the time elapsed between the navigationStart and

loadEventEnd events.

4.5 Putting It All Together

To emulate page loads over specific network conditions, we use QuicShell in combi-

nation with LinkShell and DelayShell. For instance, to emulate a page load over a

1 Mbit/sec link with 150 nis minimum RTT:

35

1. We first run QuicShell to setup a recorded website for replay over QUIC.

2. Within QuicShell, we run DelayShell with a one-way delay of 75 ms.

3. Within DelayShell, we run LinkShell with a 1 Mbit/sec packet-delivery trace.

4. Within LinkShell, we run the Chrome browser.

For each network configuration, we emulate a finite buffer size of 1 bandwidth-delay

product and evaluate all sites stored in our corpus. Each of these experiments was

performed on an Amazon EC2 m3.large instance, configured with Ubuntu 13.10 and

located in the US-east-la region.

The experiments sweep 10-10 = 100 configurations: 0.2 Mbps (3G link) to 25 Mbps

(broadband link) bandwidth x 30 ms (intra-coast) to 300 ms (cross-continent) min-

imum RTT. For each network configuration, they cover all 500 recorded websites,

providing a wide variety of Web page attributes. These are shown in Table 4.1.

Category Factor Range Median

Network Minimum RTT 30 - 300 ms 150 ms
Bandwidth 0.2 - 25 Mbits/sec 3 Mbits/sec

Web page Number of server addresses 1 - 66 22
Number of objects 2 - 680 100
Object size 53 bytes - 43 MB 3.0 kB
Total size 15 kB - 51 MB 1.2 MB

Table 4.1: Full range of network conditions and Web pages studied in this work.

This setup achieves our objective of testing a variety of network conditions and

Web pages. More importantly, this accurately forecasts QUIC on the real Web, where

users are navigating to websites on their browsers (which load them, concurrently

doing networking and computation) over many different links.

36

Chapter 5

Performance Evaluation

We evaluate HTTP/1.1, SPDY, and QUIC on the 500 websites over 100 network

configurations: the Cartesian product of a logarithmic range of link speeds from

0.2 Mbits/sec to 25 Mbits/sec and a linear range of minimum RTTs from 30 ns to

300 ms. We selected this range of link speeds to incorporate the range in global

average link speeds reported by Akaiai [1]. Similarly, we selected the RTT range

to incorporate a variety of different network conditions, from websites located within

the same city to satellite links.

5.1 Results and Discussion

For a first analysis of the 150,000 data points, Figure 5-1 shows the 500-website dis-

tributions of page load times with HTTP/1.1, SPDY, and QUIC and the optimal

page load times for 9 different configurations out of the 100. These network config-

urations represent every combination of three link speeds {low, medium, high} and

three minimum RTTs {low, medium, high}. On these 9 configurations, QUIC con-

sistently performs 1 - 2 x worse than SPDY. However, when compared to the most

popular protocol used today, QUIC outperforms HTTP 1.1 on high-RTT links (all

links with minimum RTT of 300 ms) as well as low-bandwidth links (1 Mbit/sec link

with minimum RTT of 120 ins).

37

1 Mbit/sec link with minimum RTT of 30 ms

QUIC is
1.10 x worse than HTTP
1.10x worse than SPDY

HTTP/1.1
SPDY
QUIC

Optimal -

0 5000 10000 15000 20000 2500
Page Load Time (ms)

0

a-

a
2

0

14 Mbits/sec link with minimum RTT of 30 ms

QUIC is
1.96x w. t. HTTP
2.13x w. t. SPDY

-/1
HTTP/1.1

SPDY --
QUIC

Optimal -

5000 10000 15000 20000 250
Page Load Time (ms)

1 Mbit/sec link with minimum RTT of 120 ms
1

.75-

0.5-
QUIC is
1.12x better than HTTP
1.11x better than SPDY

.25-

HTTP/1.1 -
SPDY
QUIC

Optimal - -
00 50_0 10000 15000 20000 2500

Page Load Time (ms)

14 Mbits/sec link with minimum RTT of 120 ms

0.75-

0.5-

0.25 -

0
)0

25 Mbits/sec link with minimum RTT of 30 ms

0 5000 10000 15000 20000
Page Load Time (ms)

QUIC is
1.17x w. t. HTTP
1.29x w. t. SPDY

HTTP/1.1
SPDY
QUIC

Optimal

5000 10000 15000 20000
Page Load Time (ms)

250

1 Mbit/sec link with minimum RTT of 300 ms

0.7

a.

20.

0.

0.2

5

5-
QUIC is
1.04x b. t. HTP
1.48x w. t. SPDY

5 -

HTTP/1.1
SPDY
QUIC

Optimal -

0 5000 10000 15000 20000 2500
Page Load Time (ms)

V

14 Mbits/sec link with minimum RTT of 300 ms
1 , I - 1-- ..

0.75-

0.5 -

2

0.25 -

0

25 Mbits/sec link with minimum RTT of 120 ms
1~

0.75-

0.5

02
U

0.25 -

25000

QUIC is
1.21x w. t. HTTP
1.34x w. t. SPDY

HTTP/1.1
SPDY
QUIC

Optimal - --

5000 10000 15000 20000 25000
Page Load Time (ms)

1 5000 10000 15000 20000 250
Page Load Time (ms)

25 Mbits/sec link with minimum RTT of 300 ms

0.75

2

a 0.5

U
0.25

0

Page Load Time (ms)
0

Figure 5-1: 500-website CDFs of HTTP/1.1, SPDY, and QUIC page load times
across 9 bandwidth/RTT configurations: {1, 14, 24} Mbits/sec x {30, 120, 300} ms.

38

1

0.75

0

a 0.50.5
2

U
0 .25

0

1

0.75

a

2
0.5

0.25

01

QUIC is
1.04x b. t. HTTP
1.46x w. t. SPDY

HTTP/1.1
SPDY
QUIC

Optimal

0.7

0

a0.a

E

0

5 -

QUIC is
.5 - 1.44x w. t. HTTP

1.58x w. t. SPDY

HTTP/1.1
SPDY
QUIC

Optimal - -

QUIC is
1.02x b. t. HTTP
1.39x w. t. SPDY

-

HTTP/1.1
SPDY
QUIC

Optimal --
0 5000 10000 15000 20000 250(

................

0

6

For a second analysis, our goal is to observe the overall trends across all 100

configurations, so that we can investigate high-RTT and low-bandwidth links further.

In Figure 5-2, we plot heat maps showing the protocol improvement of 500-website

median page load times across the 100 configurations. For instance, the bottom heat

map shows QUIC's percent improvement in median page load time over SPDY. The

color scale ranges from red (negative improvement: QUIC is worse than SPDY) to

green (positive improvement: QUIC is better than SPDY).

This uncovered some interesting trends in the data. For each one, we explain why,

based on our analysis.

1. SPD Y is almost always better than HTTP 1.1. There is almost no performance

regression. SPDY improves high-RTT links because it uses a single TCP con-

nection for each server, so it avoids the overhead of establishing a TCP (and

TLS) connection than HTTP/1.1 incurs.

2. HTTP outperforms QUIC, which outperforms SPDY on very low bandwidth

links. For these (0.2 Mbits/sec), the finite buffer (whose size is set to the

bandwidth /delay product) is very small, and it drops many packets. SPDY's

single TCP connection ramps down due to the packet loss, but only one of

HTTP/1.1's multiple connections is affected. QUIC is affected similarly, and so

both QUIC and SPDY are worse than HTTP/1.1. However, QUIC outperforms

SPDY because its UDP-based protocol avoids head-of-line blocking.

3. QUIC is better than HTTP 1.1 on low-bandwidth links. For these (from 0.3

to 1.0 Mbits/sec), QUIC's stream multiplexing and compression leads to less

packets and smaller packets.

4. QUIC iMproves as RTT increases. As explained in Section 3.1, QUIC has a

lower cost of establishing a connection by incurring less round trips: 0-RTT vs.

3-RTT start. For minimum RTTs > 210 ms, it is better than HTTP/1.1. The

trend also holds against SPDY; QUIC comes closer to SPDY as RTT increases.

39

5. QUIC needs to improve on high-bandwidth, low-RTT links, for which HTTP 1.1

is better. In theory, QUIC improves on SPDY and thus should be better than

both predecessors. However, for reasons discussed in Section 4.2.2, there are

throughput caps and other inefficiencies in the current QUIC implementation.

As expected, Apache's HTTP/1.1 and SPDY implementations are more perfor-

mant.

5.2 Case Studies

In Section 5.1, we establish the network conditions QUIC performs well: primarily

low-bandwidth, high-RTT links. Next, we study the specific Web pages for which

QUIC helps or hurts. This is enabled by the wide variety of the 500 websites in our

benchmark corpus, in terms of number of objects, object sizes, etc.

This final analysis is summarized in Table 5.1. For each of the 500 websites, we

compute a score of how QUIC improves its page load time relative to HTTP/1.1,

averaged across all 100 configurations. Then, we find the bottom 10 (most hurt

by QUIC) and top 10 (most helped by QUIC) and list them with their Web page

attributes. Finally, we compute the change in these attributes from the bottom 10 to

the top 10.

For instance, the websites QUIC helps the most have a 12x smaller total size, on

average, than the websites QUIC hurts the most. In fact, we find that the website's

total size is the best predictor of whether QUIC helps or hurts it. This is followed

by mean object size: QUIC's best have 4x smaller objects, on average, than QUIC's

worst. We explain this by noting QUIC's unoptimized implementation compared

to HTTP/1.1 and SPDY (Section 4.2.2). In particular, when the object is large,

QUIC's built-in techniques like header compression and low-cost start matter less

and raw throughput matters more, because a larger fraction of the load time is spent

transferring the object (e.g., not establishing the connection).

Lastly, in Section 4.2.2, we noted the overhead of security. QUIC encrypts 100% of

40

30
-20

2
5
1
3
3
6
5
8
9

300 ms60
31

17
3
0
2
4
5
4
8

10

QUIC over HTTP
30 60 90 120 150 180 210 240 270 300 ms

0.2
0.3
0.6
1.0
1.7
2.9
5.0
8.6

14.6
25.0

Mbits/s

0.2
0.3
0.6
1.0
1.7
2.9
5.0
8.6

14.6
25.0

Mbitsls

0.2
0.3
0.6
1.0
1.7
2.9
5.0
8.6

14.6
25.0

Mbits/s

300 ms

Figure 5-2: Heat maps showing % protocol improvement of 500-website median
page load times across 100 bandwidth/RTT configurations: {0.2, 0.3, 0.6, 1, 1.7, 3,
5, 8, 14, 25} Mbits/sec x {30, 60, 90, 120, 150, 180, 210, 240, 270, 300} ms.

41

QUIC over SPDY
150 180

the websites, while only 43 (8.6%) of the 500 websites are HTTPS and thus encrypted

over HTTP/1.1. Six of them are in QUIC's best, and none of them are in QUIC's

worst. Moreover, we find that QUIC improves all 43 HTTPS websites. The first

reason is that both HTTPS and QUIC encrypt all packets. The second is that while

HTTP has 1-RTT start (just TCP handshake), HTTPS has the full 3-RTT start

(both TCP and TLS handshakes). As a result, QUIC's low-cost, 0-RTT start has a

larger impact on reducing the page load time.

Let us revisit the questions posed in the experimental design phase:

* Network conditions

- Bandwidth: Does QUIC's header compression and low-overhead start help

low-bandwidth connections? Yes. Reduced head-of-line blocking

helps too, when low-bandwidth connections have small buffers

with packet loss.

- Round-trip time: Does QUIC's O-RTT start help high-RTT connections?

Yes. It especially helps when comparing against HTTPS.

* Web pages

- Number of objects: Does QUIC's stream multiplexing help large numbers

of objects? Inconclusive. In our benchmark corpus, Web pages

with large numbers of objects also had large objects.

- Object sizes: Does QUIC's stream multiplexing help small objects? Yes.

QUIC helped Web pages with small objects.

42

Website % # Server # Ob- Mean Total Size HTTPS
Improve- Addresses jects Object (kB)

ment Size (kB)
Websites QUIC hurts the most

Answers -8028 31 156 18 2830
BuzzFeed -1979 31 680 17 11304
CVS -666 31 203 12 2524
People -345 51 392 27 10417
Credit 6 -127 1 2 1 2
Twitch -113 28 181 91 16599
Pogo -88 55 262 14 3530
TMZ -81 48 301 176 53276
Fast Daily -74 1 3 6 22
Find
Zeobit -72 1 6 23 157

Websites QUIC helps the most
HootSuite +43 11 33 22 731
USPS +45 3 83 15 1261 /
ADP +45 11 79 12 943
SiteScout +45 39 108 6 697
Linkedln +46 7 35 7 260 /
Sears +54 44 202 8 1463
SunTrust +58 10 106 9 917 /
Wikimedia +58 5 20 10 214
U.S. Bank +60 3 59 8 455 /
Washington +88 52 223 8 1695
Post

Mean A -+ 1.5x less 2.3x 3.6x less 12x less 60% more
less

Table 5.1: The websites QUIC helps and hurts most: bottom 10 and top 10 websites
ased on mean improvement in page load time from HTTP to QUIC across all 100
configurations. They are accompanied by Web page attributes, such as objects per
page and mean object size, and the mean change from QUIC's worst to QUIC's best.

43

44

Chapter 6

Sprout-EWMA for Cellular Networks

Mobile traffic is rapidly accounting for larger fraction of overall Web traffic; its volume

increased 70% from 2012 to 2013 [1]. To evaluate the state of the mobile Web, we use

the cellular network traces provided in our corpus (Section 4.3). We consider 4G LTE

networks from both Verizon and AT&T. Our objective is to implement a congestion

control algorithm in the QUIC congestioncontrol module and compare it to the

default algorithm, TCP Cubic.

6.1 Technical Challenges

To evaluate performance on cellular networks, we use the cellular network traces

provided in our corpus (Section 4.3). We consider HTTP/1.1, SPDY, and QUIC

over a Verizon 4G trace and a minimum RTT of 120 ms. Figure 6-1 shows the

distribution of page load times recorded when loading all 500 Web pages in our

corpus over a Verizon LTE link with 120 ms minimum RTT. The 4G bandwidth is

high (9.1 Mbits/sec uplink and 19.1 Mbits/sec downlink) so, applying the results from

Section 5.1, both HTTP/1.1 and SPDY outperform QUIC.

Our goal is to improve mobile Web performance over QUIC. QUIC's default con-

gestion control algorithm is TCP Cubic, but there are two technical challenges for

QUIC's TCP Cubic to adapt to a cellular network. First, cellular networks almost

45

1

o0.75

0

0

9 0.5

E
: 0.25

0

Figure 6-1: HTTP/1.1, SPDY,
network, 120 ms RTT.

Verizon 4G LTE link with 120 ms minimum RTT

QUIC is
1.18x worse than HTTP
1.30x worse than SPDY

HTTP/1.1
SPDY ----
QUIC

Optimal --

4000 8000 12000 16000
Page Load Time (ms)

and QUIC page load times over a Verizon 4G cellular

never drop packets, so packet loss is a poor congestion signal. Therefore, during a

network outage, Cubic does not adapt until its retransmission timer fires - a slow

reaction. Second, these networks have high variability of bandwidth over time, as il-

lustrated in Figure 6-2. Once Cubic reduces its window due to retransmission, it may

not adapt to the changing bandwidth quickly enough. We take advantage of QUIC's

pluggable congestion control by introducing a congestion control algorithm which is

specifically purposed for cellular networks: Sprout-EWMA, as described in [191.

15

CL,

.

0,

10

5

n

0 5 10 15 20
Time (s)

Figure 6-2: The high variability of bandwidth over time, measured on the uplink of
a Verizon 4G cellular network.

46

6.2 Algorithm and Implementation

We implement Sprout-EWMA based on the description in [191. Sprout-EWMA takes

packet arrival times at the receiver to estimate the network throughput and applies

an exponentially-weighted moving average to smooth the estimate. It multiplies the

rate by a target delay to calculate the congestion window and, from there, acts like

a window-based sender similar to TCP Cubic. We implemented this algorithm in

QUIC. It required us to place the receiver's data about packet arrival times in a Con-

gestion Control Frame specifically for Sprout-EWMA. We also froze the algorithm's

parameters to avoid tuning to the Verizon and AT&T packet-delivery traces, leaving

the EWMA gain c = I and the target delay 6 = min{100 ms, minimum RTT}.8

Sprout-EWMA does not optimize for page load time; it is intended to achieve

high throughput at a low per-packet delay (e.g., for long-running flows that need

interactivity; not the many short, concurrent flows to transfer small Web objects).

However, we believe that it may still outperform Cubic for two reasons. As mentioned,

cellular networks are highly variable, and Cubic may take too long to adapt to the

current network capacity. These networks are also very reliable, so there is very

little packet loss, but that is Cubic's congestion signal. Sprout-EWMA's approach of

proactively measuring the network throughput (i.e., receiving rate) and adjusting its

window accordingly addresses these issues.

6.3 Performance Evaluation

Figures 6-3 and 6-4 show the benefits Sprout-EWMA provides over Cubic on these

cellular networks when the minimum RTT is high. For 300 ms minimum RTT, Sprout-

EWMA's median page load time is 10% lower than Cubic's over the Verizon 4G LTE

link and 13% lower over AT&T. However, we find that Cubic outperforms Sprout-

EWMA when we impose a much smaller RTT of 30 ins; Cubic's 95th percentile page

load time is 13% lower than Sprout-EWMA's over Verizon and 16% lower over AT&T.

The two providers' links differ for the intermediate 120 is; Sprout-EWMA's median

47

page load time is 13% higher than Cubic's over AT&T but 10% lower over Verizon.

These results suggest than Sprout-EWMA improves page load times over high-RTT

links because the receiver's feedback (in a single Congestion Control Frame) allows the

sender to more quickly adapt to changing bandwidths, compared to TCP's reliance

on packet loss and ACKs. But Cubic is more aggressive in throughput and that helps

it for the low-RTT links.

The exact crossover RTT depends on the link in question. While Verizon's band-

width is high (9.1 Mbits/sec uplink and 19.1 Mbits/sec downlink), AT&T's bandwidth

is 3 - 8x lower (1.1 Mbits/sec uplink and 6.7 Mbits/sec downlink). Based on our

analysis, we suggest the benefits of Sprout-EWMA (e.g., ramping up to a sudden

bandwidth increase) are lower when the network's bandwidth is lower. Ultimately,

we note that developing a congestion control algorithm for page loads over cellular

networks, across all RTTs, is an area for further work.

48

1

0.75

0.5

E

0 Cubic 30 ms min RTT
0.25 Cubic 120 ms min RTT - -- -

Cubic 300 ms min RTT
Sprout 30 ms min RTT

Sprout 120 ms min RTT
0 'Sprout 300 ms min RTT

0L
0 5000 10000 15000 20000

Page Load Time (ms)

Figure 6-3: QUIC/Cubic vs. QUIC Sprout-EWMA page load times over a Verizon
4G cellular network, {30, 120, 300} ins RTT.

1

0.75 -

0

0.5 -

E

Cubic 30 ms min RTT
0.25 Cubic 120 ms min RTT --- -

Cubic 300 ms min RTT --

Sprout 30 ms min RTT
Sprout 120 ms min RTT ----

Sprout 300 ms min RTT
0 1

0 5000 10000 15000 20000
Page Load Time (ms)

Figure 6-4: QUIC/Cubic vs. QUIC /Sprout-EWMA page load times over a AT&T
4G cellular network, {30, 120, 300} ms RTT.

49

50

Chapter 7

Conclusion

7.1 Summary of Contributions

This work present the first study of QUIC on Web page performance. Our experiments

span 500 Web pages across at least 100 network configurations of bandwidth and

minimum RTT and test the HTTP/1.1, SPDY, and QUIC multiplexing protocols.

We summarize our other contributions below.

* Providing QuicShell, a tool for measuring QUIC's Web page performance in an

accurate and reproducible way. It can be easily used by future researchers to

check for performance improvements or regressions across QUIC versions.

" Studying QUIC across a large benchmark corpus and many network conditions

and finding that:

- QUIC outperforms (has a lower page load time than) HTTP/ 1.1 and SPDY

over low-bandwidth as well as high-RTT links.

- QUIC outperforms HTTP/1.1 for Web pages with small objects as well as

HTTPS-enabled Web pages.

- QUIC/Sprout-EWMA outperforms QUIC/Cubic over high-RTT cellular

networks.

51

e Making all implementations and results open-source (see Table 7.1)

Implementation URL Code A (lines)

Benchmark corpus, results, https: 22
Python scripts measuring //github. com/ravinet/
page load time sites/tree/scripts
QuicShell https: 88
(within Mahimahi) //github.com/ravinet/

mahimahi/tree/quicshell

Modified QUIC server for https: //github. com/ 207
QuicShell anirudhSK/chromium/
(within QUIC) tree/cgi-script

Sprout-EWMA https: 646
(within Q UIC) //github. com/anirudhSK/

chromium/tree/mycubic

Table 7.1: Open-source repositories for the code written for this work.

7.2 Directions for Future Work

In the future, we are looking to investigate the features that are missing from the

current version of QUIC.

" Evaluate Forward Error Correction (FEC) strategies for lossy networks

" Evaluate packet pacing (e.g., in WebRTC Inter-Arrival) on Web page perfor-

mance

" Evaluate the dependencies between computation and networking (similar to like

Epload and WProf [17] which were used to study SPDY in an 2012 version of

Chrome, except for QUIC in a modern version of Chrome instead)

52

Bibliography

[1] Akamai. State of the Internet report. http://www.akamai.com/

stateoftheinternet/, 2013.

[2] Alexa. Top sites in the United States. http://www.alexa.com/topsites/
countries/US, 2014.

[3] Chromium. SPDY: An experimental protocol for a faster Web. http://www.
chromium.org/spdy/spdy-whitepaper, 2009.

[4] Nandita Dukkipati, Tiziana Refice, Yuchung Cheng, Jerry Chu, Tom Herbert,
Amit Agarwal, Arvind Jain, and Natalia Sutin. An argument for increasing

TCP's initial congestion window. SIGCOMM CCR, 40(3):27-33, 2010.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Persistent connections. http://www.w3.org/Protocols/

rfc2616/rfc2616-sec8.html, 1999.

[6] Tobias Flach, Nandita Dukkipati, Andreas Terzis, Barath Raghavan, Neal Card-

well, Yuchung Cheng, Ankur Jain, Shuai Hao, Ethan Katz-Bassett, and Ramesh

Govindan. Reducing Web latency: The virtue of gentle aggression. In SIG-

COMM, 2013.

[71 Bryan Ford. Structured streams: A new transport abstraction. In SIGCOMM,
2007.

[8] Albert Abello Lozano. Performance analysis of topologies for Web-based

real-time communication. https: //aaltodoc. aalto . f i/bitstream/handle/

123456789/11093/masterAbellAgLozanoAlbert_2013.pdf, 2013.

[9] Ravi Netravali, Anirudh Sivaranian, and Keith Winstein. Mahimahi: A

lightweight toolkit for reproducible Web measurement. http: //mahimahi. mit.

edu/, 2014.

[10] Sivasankar Radhakrishnan, Yuchung Cheng, Jerry Chu, Arvind Jain, and Barath

Raghavan. TCP Fast Open. In CoNEXT, 2011.

[11] Lenin Ravindranath, Sharad Agarwal, Jitendra Padhye, and Christopher

Riederer. Give in to procrastination and stop prefetching. In HotNets, 2013.

53

[12] Jim Roskind. Is FEC enabled by default? https: //groups. google. com/a/
chromium.org/forum/#!topic/proto-quic/olOlwEjCucI, 2013.

[13] Jim Roskind. QUIC: Multiplexed stream transport over UDP. https:
//docs.google.com/document/d/RNHkxVvKWyWg6Lr8SZ-saqsQx7rFV-
ev2jRFUoVD34/edit, 2013.

[14] Ashiwan Sivakumar, Vijay Gopalakrishnan, Seungjoon Lee, Sanjay Rao, Sub-
habrata Sen, and Oliver Spatscheck. Cloud is not a silver bullet: A case study
of cloud-based mobile browsing. In HotMobile, 2014.

[15] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Ry-
tina, M. Kalla, L. Zhang, and V. Paxson. Stream Control Transmission Protocol.
http://www.ietf.org/rfc/rfc2960.txt, 2000.

[16] Ian Swett. A performance problem of QUIC: Low throughput.
https://groups.google.com/a/chromium.org/forum/#!topic/proto-
quic/-TbOoODDSZU, 2014.

[17] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. How speedy is SPDY? In NSDI, 2014.

[18] Zhiheng Wang and Arvind Jain. Navigation timing. https : //dvcs .w3 . org/hg/
webperf/raw-file/tip/specs/NavigationTiming/Overview.html, 2013.

[19] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. Stochastic forecasts
achieve high throughput and low delay over cellular networks. In NSDI, 2013.

54

