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Abstract

This thesis presents a new architecture and optimizations to MapD, a database server which uses
a hybrid of multi-CPU/multi-GPU architecture for query execution and analysis. We tackle the
challenge of partitioning the data across multiple nodes with many CPUs and GPUs by means of
an indexing framework. We implement a QuadTree spatial partitioning scheme and demonstrate
how it improves the latencies of many queries when using the index as opposed to not using any.

Moreover, we tackle the challenge of processing many queries (perhaps issued concurrently)
where queries have very fast latency constraints, e.g, for visualization. We implement a software
architecture which allows for scheduling concurrent client query requests to share processing of
many queries in a single pass through the data ("shared scans"). Our experiments exhibit orders
of magnitude improvement in query throughput for both, skewed and non-skewed workloads, for
shared scans as opposed to serial execution.
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Chapter 1 - Introduction

The growth in social media usage and the increase in web content have contributed to a recent

explosive growth in the volume of data that we need to process. As a result, there is greater

demand today for dynamic and interactive visualizations of such datasets to look for trends and

understand social behavior. This increases the need for low latency analytics.

GPUs (Graphical Processing Units) provide memory bandwidth that is orders of magnitude

greater than that of CPUs. Moreover, they deliver hundreds to thousands of cores that allow for

higher degrees of parallelization. The use of general purpose GPUs for query and analysis of

large data sets is, therefore, promising.

In the implementation of low latency analytics hybrid CPU/GPU system, two key challenges

arise. The first is the managing and the partitioning of data sets across multiple nodes with

multiple CPUs and GPUs. The second is the processing of many queries (perhaps issued

concurrently) where queries have very fast latency constraints, e.g, for visualization. This thesis

project presents optimizations to tackle these key challenges. First, it describes the

implementation of data partitioning strategy for a hybrid GPU/CPU system called MapD.

Second, it demonstrates the implementation of a memory buffer pool to manage the data when it

exceeds the size of main memory on GPU and CPU. Finally, it describes the design and

implementation of a software architecture which allows for scheduling concurrent client query

requests to share processing of many queries in a single pass through the data ("shared scans").

In this chapter, I discuss the motivation for hybrid multi-CPU/multi-GPU database

frameworks. Later, I introduce an existent multi-CPU/GPU database framework, MapD. Then, I

present optimization opportunities for MapD and the need of an architecture accustomed for

concurrent query requests to the database server.
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1.1 Overview

The design and architecture of optimized database management systems remains a challenging

task with the growing user demand for real-time big-data analytics and the increasing size of

datasets. Cheaper hardware provides computer systems engineers with opportunities to

parallelize query processing across many devices to improve performance of query execution.

Yet, current technology platforms like MapReduce framework and conventional distributed

DBMSs are not optimized for low latency analytics to support real-time visualizations.

New hardware like the GPUs and Intel many-core devices (e.g Xeon Phi) are delivering

hundreds to thousands of cores. In particular, the GPUs, Graphical Processing Units, optimized

for fast processing for video games and HD videos, have tremendous computational potential in

non-graphical applications. In fact, many have been using the GPUs for general purpose

computation to leverage their capability of fast parallel computation. Furthermore, GPU

parallelism is doubling every year allowing many to exploit the use of these devices, now

available within commodity hardware, for optimizing general purpose applications by means of

running thousands of cores concurrently(See Figure 1.1-1). Not only do they have many cores,

GPUs have memory bandwidth which is orders of magnitude greater than that of modem CPUs.

This makes such devices well suited for low-latency analytics.
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Figure 1.1-1 - GPU vs CPU performance over time

Source: [1]

In addition, the memory (RAM) size for such devices is rapidly increasing with

advancing semiconductor technology. Soon, we will be able to place large datasets in a cluster of

these devices' memory. This can simplify the design of the database system, and in particular, its

memory management. Furthermore, this allows for new optimizations techniques that were not

easily achieved with limited RAM.

Unfortunately, data management software platforms that use GPUs have been slow to

develop due to some limitations. First, not every algorithm is easily parallelizable on the GPUs.

In many cases, algorithms have to be re-written in a completely different way than when written

for sequential CPU application or even parallel CPU application. Second, writing parallel code

on GPU requires the knowledge of unconventional languages like CUDA or OpenCL. Third, the

GPU memory is limited compared to the CPU. For instance, state of art GPUs might have 4GB

or 6GB of RAM, while modem CPU servers routinely have 256 GB or more of DDR3 RAM.

Fourth, the communication bus between the GPU and CPU, called the PCI bus, is a bottleneck in

many applications since it transmits data at orders of magnitude less than the GPU scan rate. For
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example, Nvidia's GeForce GTX 780 has memory bandwidth of about 288 GB/sec when the PCI

transfer rate is only about 12 GB / sec.

Since the emergence of the general purpose GPUs, some research has been done with

regards to optimizing database operators on GPUs [2] [3]. Other work describes database indexes

and parallelized partitions on GPUs [1]. In addition, some previous work focuses on optimizing

and parallelizing machine learning libraries on the GPUs as well [4] .Yet, there is almost no

work describing a full hybrid multi-CPU/multi-GPU architecture of a general database system.

Due to the increasing availability of parallelizable hardware devices like MICs and GPUs, there

is a greater need for the design of general database architecture which leverages multi-

GPUs/MICs along with multi-nodes.

MapD was designed and implemented as a reaction to this need. MapD is a massively

parallel database which exploits multi-node and multi-GPU architectures for querying, analysis,

and visualizations of large datasets. MapD tackles the problems and limitations described earlier

in various innovative ways, namely by means of an efficient architecture to allow for massive

parallelization with ultra-low latency in order of milliseconds.

Database server systems like MapD may receive many concurrent queries. At the

moment, these queries are served one at a time. However, a significant fraction of these queries

involve the scan of the same data chunks whether on the CPU or on the GPU. Therefore, in this

thesis, I present a new architecture for MapD version 2 (MapD2), optimized for shared scans,

allowing concurrent queries to be executed concurrently.

1.2 Massively Parallel Database (MapD)

MapD [5] , designed and implemented by Todd Mostak, is database server which uses a hybrid

of multi-CPU/multi-GPU architecture for query execution and analysis. MapD's front-end

comprises a map that allows users to visualize large geospatial datasets, on the order of hundreds

of millions of records, in milliseconds.(See Figure 1.2-1).

15



rowe mcp

Showing resu.ts2-12 of257 234395 - Son ty Oldest f1w-S,

Fril2Ara 9 13 '9 ,,2 MVa, fcar defendendo 3

Poahft 900/2n13 7 9 42 PM~ouarwo Sal 0 lease( do

ZelCorott 4 3 1 342 Pt ,4Toma no ou

DJ_CH3WNZ 930F201g3 7 59.42 1Mno2-d1 ManfS to sW neseto

Souce fn ~ na~cm ory hto//adfsi myteutwem deko/ onl4//201

Thlle-1 - r0ua201 3 7 59 4b PM@enaooinas @AnaCarofPnaN27

an p kwave d ikeigMea
sdateti i m r0y. M1e 7 5P 4U Pm ot@keaaemp faof e you lodelyi
Tgrjddeefteria than that of he
K M apDloritd 9002013 isc41 PMkumaya gidola u
ilee m yaror95 9th0an 13 7 t9 41 Paorm

good fVeDc3,2"OA -Sp2,M 26P

haha 1o

2011 Apri Jilly October 2012 Apri July October 2013 April July

Figure 1.2-1 - MapD Web User Interface

Source: www.map-d.com, or http://mapd.csail.mit.edu/tweetmap-desktop/, on 4/7/2014

MapD's architecture allows for massive parallelization of querying, analysis, and

visualization of big datasets. It exploits multi-CPU and multi-GPU architectures systematically.

The GPU-generated visualizations, the compressed bitmaps communicated from GPU to CPU,

and the parallel architecture allow for real-time exploration of very large datasets where the

processing time is in the order of milliseconds, as opposed to seconds, minutes, or hours using

other moderm database models including distributed DBMS or distributed frameworks like

MapReduce or Giraph. [5]

MapD was designed as a Main Memory Database System (MMDB). With cheaper

semiconductor memory and higher chip densities it is becoming more feasible to store large

datasets in memory. MapD utilizes the GPU memory to keep most frequently accessed data in

GPU memory while less frequently accessed data in RAM. The GPU memory bandwidth is

greater than that of the CPU.

MapD is column-store database. This implies that the column data is stored contiguously

in memory rather than the traditional DBMS approach of row-store, where complete tuples are
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stored contiguously. The main advantage of column stores is that they make it possible to

read/store, in RAM or GPU memory, blocks of data that contain just the fields (columns) of

interest, rather than having to read blocks consisting of many unrelated attributes.

1.2.1 Database Table Structure

Each table is divided into chunks where each chunk represents a column of a table. The chunk

structure simply defines a pointer in memory to contiguous data of some type on GPU or CPU

main memory. If a table is partitioned across multiple nodes, say N, then column of that table

will have N chunks, each residing on a separate node.

Chunk_0 Chunk_1 Chunk_2 Chunk_3 Chunk_4

tweetid user-name longitude latitude tweettext

1 @saher -71.104 42.365 map-d2 has a new buffer pool!

2 @sam -9.133 38.716 Postgres was written in Lisp!

3 @tmostak 18.064 59.3325 checkout map-d vizualizations

222001890 @abed 17.045 59.332 Just took my flu shot...

222001891 @sameeh 13.088 58.332 The exam wasn't too bad #great

Figure 1.2-2 - Database Table Structure Example - MapD - Tweets Table
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Figure 1.2-2 shows a simple example of one table, representing geocoded tweets, with 5

columns. Each column is stored in a contiguous chunk of memory. For simplicity, the last

column (tweet-text) is shown to store actual string although MapD uses dictionary-encoding of

words as means of compression of text columns and in order to optimize equality joins on such

data.

1.2.2 MapD Architecture Overview

MapD implements a shared-nothing database design and architecture. This implies that each

processor has its own private memory as opposed to a shared global memory. Each process has

its private one or more disks as opposed to having processors having direct access to all disks.

This implies that the data needs to be partitioned across the existent nodes. MapD partitions data

by means of two methods. The first method is a simple round-robin partitioning of the chunks

described. The second method involves explicit clustering of data by values of one or more fields

(columns) of a table.

( Interconnection Network

P1 P 2 Pn

a 0.

Figure 1.2-3 - Basic Shared-Nothing Design
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The main innovative features of MapD are listed as follows:

1. Partitioning data physically over multiple GPUs allow querying over datasets larger than

GPU memory.

2. MapD returns compressed bitmaps or indexes of results from GPU to CPU rather than

returning the rows themselves. This helps overcome the high bandwidth costs of

transferring data over the slow PCI bus.

3. An algorithm to conduct fast spatial joins.

4. Using dictionary encoding for text data (storing text as product of prime numbers).

1.3 MapD Index and Partitioning Opportunity

Indexes are data structures that allow faster retrieval of data from database tables. Famous

database indexes are B+-trees, hash indexes, and spatial indexes. In general, indexes achieve

speedup by directing the query to the relevant table fragments for scan based on the search

key(s).

In the previous section, we have seen that MapD doesn't implement an index of any sort,

but partitions the data across multiple GPUs and scans all table fragments. As discussed earlier,

MapD's current major use case is for geospatial data tables. With the growing size of datasets, it

becomes very costly to scan all data fragments when a user is only concerned with data within a

certain geographical bounds. For instance, a user might want to analyze geocoded tweets coming

from the state of Massachusetts. It will be very wasteful to scan fragments containing all the

tweets in the world to obtain the result of his query. This is where a spatial index can be utilized

to optimize such use cases.

Of course, MapD's use cases also include non-geospatial datasets and queries. For

example, torrent downloads data (torrent title, number of seeders/peers, download time) may

need an index on the torrent category and title for efficient title and category searches, and
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maybe another index on the download time field for queries that animate number of seeders and

peers for torrents over certain time range.

Therefore, we saw that MapD needs a general purpose partitioning architecture. We call

this the "Partition-Scheme" data structure. The architecture should allow adding indexes as

necessary in the future while maintaining the main interface of inserting database tuples and

querying fragments. The key idea is that the database table structure should maintain a pointer to

a Partition Scheme data structure. Partition Scheme should be an abstract class where a particular

implementation of that scheme implements the details of partitioning fragments and bookkeeping

needed for the index.

Database Table

Partition Scheme

QuadTree R-Tree OcTree

Figure 1.3-1 - Partition Scheme: Abstract Class. Three example implementations of
Partition Scheme

For this thesis project, we designed and built the described Partition Scheme

architecture. Furthermore, we implemented a QuadTree [6] [7] partitioning scheme (See Figure

7) which implements the Partition Scheme interface and allows the partitioning of fragments

according to the longitude and latitude values. The idea behind a QuadTree is that once a leaf

20



node, representing a rectangular bound on map, reaches maximum capacity of values; it splits

into four leaves representing: northeast, northwest, southeast, and southwest. (See Figure 1.3-2).

A CC

D

E

(a)

nw se
ne sw

CD GF

E

(b)

Figure 1.3-2 - Sample QuadTree partition scheme.

1.4 Memory Pool Management and Replacement Policy

MapD was initially implemented as an in-memory database. Yet, for real world datasets, we

cannot assume that all the data should fit in CPU/GPU memory. The underlying operating

system implements memory caches, but fetching memory blocks involves overhead. Therefore,

many real-world DMBSs implement DBMS-managed buffer pool in user-space in order to

reduce such overhead.

The buffer pool acts as a memory cache. When the database ExecutorI requests a page in

memory, the buffer pool will return a pointer to that memory chunk if it exists. Otherwise, the

'The Database Executor is the module responsible for interpreting the abstract syntax tree (AST) and
executes the query. It may perform optimizations or act on the query plan of the optimizer to execute it.
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buffer pool needs to evict a page in memory and replace it with the requested page from disk.

The choice of the page to evict/swap is determined by means of an eviction policy.

The eviction policy algorithm used by most commercial systems is LRU (Least Recently

Used). While it might be the best for general random access patterns, it does not perform well in

a database environment. A general-purpose database server involves the combination of the

following access patterns: [8]

1) Sequential access to chunks which will not be referenced.

2) Sequential access to chunks which will be cyclically referenced.

3) Random access to chunks which will not be referenced again.

4) Random access to chunks which will be referenced again with some probability

greater than zero.

For cases (1) and (2), LRU eviction policy will perform worst unless all the data fits in the

buffer pool. For case (2), MRU (most recently used) eviction policy is known to perform the

best. [9] While cases (3) and (4) are common as operating systems access patterns, this is not the

case for MapD.

For the majority of MapD visualization queries, memory fragments are accessed sequentially

and are to be referenced again for other queries. For example, let A be the query of visualizing

tweets in New York state that have the word "taxi" while query B is analyzing tweets in New

York state with the words "rain" and "sick". Let query C be the query that animates over time

range the visualization of the tweets that have the word "love" in New York City. A, B, and C

queries require the scan of the fragments that hold the geo-located tweets in the state of New

York. Such queries fall under cases (1) and (2) above.

While sequential access patterns dominate in MapD for now, the buffer pool manager needs

to have a modular implementation to allow for various eviction policy implementations that are

efficient. This, in turn, allows MapD to become more general purpose database with not many

assumptions about access patterns.
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Memory pages in the buffer pool are multi-sized. This is because the atomic unit in

memory in MapD is a partition of a column, a chunk.2 (See new chunk definition). The

maximum elements a chunk can hold may differ from table to another. Moreover, a chunk that

can hold up to N float values has half the size of one that can hold the same number (N) of

double values from the same table. 3 The eviction policy implementation for this thesis project,

therefore, takes into account the multi-sized pages during replacement.

For this thesis project, we implemented a buffer pool manager for CPU and GPU

memory management. It supports multi-sized pages and offers the flexibility of implementing

different eviction policies. The details of the Buffer Pool Manager are explained in the next

chapter.

1.5 The Deadline Scheduling Problem

The query logs on MapD server reveal that many concurrent requests are arriving. Many of these

queries target data of the same table, in particular MapD's tweet table. This implies that these

queries share the same fragments in common. For example, if we get N requests from users

viewing tweets in the US, they all share the same fragments retrieved by the QuadTree index that

cover the US bounds in the world map. This provides an opportunity to share the scan of these

fragments on the GPU and produce the output of such queries in one scan.

The design of shared scan architecture involves some challenges:

1. We will have a limited space for output buffer which will limit the number of queries

we can scan concurrently.

2. The number of fragments required by each query hitting MapD varies. Consider a

query QA requiring the fragments <1, 2, 3, 4, 5, 6, 7, 8, 9, 10>, and query QB,

requiring the fragment <8>. In this case, executing QB separately and before QA

could be better than sharing the scan, since the user initiating QB will have to wait

2 The new definition of a chunk is a partition of a column.
3 Each float value is represented in 4 bytes while a double is 8 bytes.
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until QA starts to scan fragment 8. On the other hand, one can imagine an approach of

reordering the fragments optimally to minimize latencies.

3. Animated queries may have to be treated in a special way to ensure smooth display of

frames for the client.

These challenges suggest that MapD can be likened to a real-time system. In real-time

systems, the performance is not dependent on the correctness of task results only, but upon tasks

meeting their deadlines. [10] While in many real-time systems, missing deadlines is fatal, it is

not the case with MapD. This gives us flexibility in the design of shared scan architecture to

implement a greedy approach and try our best to meet the assigned deadlines.

In this thesis project, we implement a pipeline to support sharing scan of queries. The

first stage of the pipeline handles the query, estimates its deadline, and passes it along to the next

stage. The second stage places the query in a priority queue while keeping track of the output

buffer size. A separate thread, running continuously, is the scheduler which determines which

fragment it should scan next and which queries can share it. Our query scheduler was

implemented under the inspiration of the different implementations of OS schedulers like EDF

(Earliest Deadline First scheduler) and LST (Least Slack Time scheduler).

1.6 Thesis Road Map

In Chapter 2 we will discuss in detail the design and architecture of MapD2's storage and

indexing. In Chapter 3, we explain the details of the memory management in MapD2 and the

functionality of the Buffer Pool. Later, we introduce the design of shared scan architecture and

the scheduling algorithm for concurrent queries in Chapter 4. We present the results of

experiments performed to evaluate our implementation of indexing and shared scans in Chapter

5. Later, we summarize related work in Chapter 6. Then, we propose future work opportunites

and conclude in Chapter 7 and Chapter 8 respectively.
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Chapter 2 - Database Storage and Indexing

In this chapter, I introduce the design and architecture of the new GPU-optimized database

system we have built, MapD2. First, I describe the database table structure including how a table

in MapD2 is stored in memory. Next, I describe the architecture of our indexing or partitioning

system, Partition Scheme, and describe two specific indexes, the Linear Scheme and the

Quad-Tree Scheme. I conclude this chapter by defining the Catalog Manager, a necessary

component which maintains tables and indexes metadata.

2.1 Database Table Structure

MapD2 decouples the physical partitioning of table data from the logical partitioning. The two

main entities that constitute a database table arefragments and chunks.

Fragments

Every database table in MapD2 consists of a set of logical sub-tables, orfragments. A fragment

is a table partition with a maximum number of records allowed. Each fragment consists of a set

of chunks , one or more per table column.

Chunks

Each column is stored on disk as a set of contiguous chunks. The chunk file stores data for a

particular column contiguously. Chunks are the atomic units of memory management in MapD2.

Each chunk allows for a user-defined maximum number of records. This maximum size is the

same as that of the fragment that the chunk belongs to. If a chunk is taken from a column that

allows null values, it will have a corresponding bitmap to indicate if value at index is null or not.

All column chunks that correspond to a particular set of rows are combined into a fragment.

(See Figure 2.1-1.)
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The user-defined maximum fragment size introduces a tradeoff. As the sizes of chunks

gets smaller, the buffer pool memory cache is able to store more chunks with smaller level of

granularity. Yet, with smaller chunks, we get slower transfer of chunks from CPU to GPU across

the PCI bus as well as slower reading of chunks from disk due to more 1/O operations.

Database Table

Column_0

Fragment 0

Fragment 1

Fragment
F-1

Column_1 Column_2 Column_ (N-1)

records

Chunk(F-1, 0) Chunk(F -1, 1) Chunk(F-1, 2) Chunk(F-1, N-1)

Figure 2.1-1 - MapD2 Database Table Structure'

As a major enhancement to MapD, the new design delegates the control of partitioning

and handling of fragments to the Partition Scheme rather than the table representation. (See

Figure 1.3-1). The main table interface defines two procedures. The first procedure inserts a

batch of tuples into the table. The second procedure takes in a query and returns a list of

fragment IDs that are relevant to the query. (See Figure 2.1-2.)

4 The figure describes a table with N columns and F fragments. Each fragment has a maximum size of M elements.
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Class DbTable {

PartitionScheme * partScheme_;

void insertTuples( List tuples ) {

partScheme_ -> insertTuples ( tuples );

}

List <int> getFragmentIds (QueryBounds queryBounds) {

partScheme_ -> getFragmentIds ( queryBounds );

}

}

Figure 2.1-2 - Database table pseudo code.

QueryBounds is an abstract class that allows the partition scheme of choice to return the

relevant fragments to a specific query. An implementation of QueryBounds class captures the

attributes that the data is partitioned on. If the partition scheme chosen was some kind of a spatial

index, a query bound would be a rectangular bound of coordinates. On the other hand, if the

partition scheme was some kind of a hash index on one or more columns, the query bound may

comprise the prefixes of the columns used to generate the hash bins. The bottom line is that any

QueryBounds implementation associated with a particular Partition Scheme should keep all

necessary attributes to decide on the fragments needed to be scanned to answer queries.
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2.2 Physical Partitioning Scheme Design

Now that we've described the basics of how data is laid out in MapD2, we describe the Partition

Scheme API and two particular implementations of that interface.

2.2.1 Partition Scheme API

The PartitionScheme module is an abstract class that allows MapD2 to be extended with an

arbitrary physical partitioning of the table data. The following describes briefly the API of this

class.5

" Init (int tableId, ..., QueryBounds bounds, vector<int>

colsPartitioned).

o This initializes the partition scheme of choice.

o As described earlier, QueryBounds is another abstract class which its

implementation should capture the required metadata for the partition scheme. For

example, a spatial index would have a QueryBounds which that a rectangular

bounds of the world map. Some partitioning strategies will not require a specific

implementation of QueryBounds, and thus pass an empty instance.

o cois Partitioned is a list of indexes of the columns that the partitioning strategy

is needs to perform its job. A 2D spatial index needs the column indexes that hold the

longitude and latitude values. A hash index needs the column index/ indices of the

keys for the hash buckets.

" InsertTuples( vector<string> colNames, vector<void*> data,

int numTuples)

o This inserts a batch of numTuples to the table using the partitioning scheme

strategy.

" getFragmentIds( QueryBounds bounds)

o Returns the IDs of the fragments specific to the query bounds.

5 Only relevant argument to the API description will be shown for readability reasons.
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" Chunk * getChunk (int fragmentId, int chunkId)

o Returns pointer to a chunk represented by chun kId (column number) and the

fragmentId.

" Fragment * getFragment(int fragmentId)

o Returns pointer to Fragment with f ragment Id.

2.2.2 Linear Scheme

A simple subclass of the PartitionScheme is the LinearScheme. Once the batch of tuples/rows

are read in memory, MapD2 starts inserting the data chunks contiguously in the fragment until

the maximum capacity is reached, where a new fragment is created and so on.

When a query comes in, the getFragmentIds of this scheme can only return all the

fragments of the table. This is because the LinearScheme does not partition the data on any

particular attribute.

This scheme was implemented for three main reasons:

1. It serves as a reference point when compared to a partitioning strategy. With regards

to the batch insert of tuples, LinearScheme is very efficient. Comparing insertion

performance of newly implemented schemes to that of LinearScheme will help apply

optimizations as necessary to the insertion pipeline.

2. The Catalog Manager reuses the Database Table structure to save two tables that keep

MapD2 metadata about the tables and columns respectively. These tables use

LinearScheme as default partition scheme.

3. A MapD2 table created without any partitioning scheme will use LinearScheme by

default.
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2.2.3 QuadTree Scheme

A spatial-index implementation for MapD2 is QuadTree Scheme. It is another subclass of the

PartitionScheme class.

2.2.3.1 Overview

A QuadTree is a spatial data structure which performs disjoint regular partitioning of the space.

This means that when a partitioning needs to be applied, the node in the tree divides the space

into mutually disjoint regions of equal shape and size. A QuadTree may operate on d dimensions

where d> 1. When a division occurs on a leaf node, the space is divided into 2d regions.

For MapD2, a QuadTree Scheme for 2-dimensional spatial data was implemented to

partition on x and y coordinates representing longitude and latitude values respectively.

However, the modular implementation allows for increasing the dimensions with minimal

changes. This is a lightweight in-memory tree structure initialized with the following:

0 bounds: an instance of RectBounds a subclass of QueryBounds, to describe the

bounding rectangle of the root node of the tree.

* maxFragSize: maximum size of the fragment representing the node.

2.2.3.2. Tuple Batch Insertion

Tuples to be inserted are loaded from disk onto the CPU main memory as complete column

chunks. The QuadTree scheme inserts this batch applying the following steps:

1. Pre-Subdivide Phase: pass through all the tuples of the columns involved in the partitioning

(x and y coordinates), adding the points <xi, yi> to the tree and subdividing as necessary.

(See Figure 2.2-2 to see how the current implementation splits and assigns fragment IDs.)
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2. Fragment Grouping Phase: Create an index mapping fragment LDs to indices of tuples. The

resulting structure looks like the one in the following table

Table 2.2-1 - Fragment Grouping Phase - map

3. Pre-flush Phase: iterate through the index from the previous phase and figure out which

tuples need to go to which fragment. Perform disk writes without explicit flushes to disk to

optimize performance.

4. Flush: flush all the chunk files to disk at the very end.

The main design principle we followed here was driven by the need to to eliminate I/O

bottlenecks. The initial phase described above guarantees that, for a single insert, we do not have

to write fragments to disk and then discover that this data needs to redistribute among other

fragments due to a split.

The in-memory implementation of the batch insertion of tuples in the QuadTree outperforms

I/O bounded QuadTree construction and insertion. With this approach, we do not have to

implement bulk loading and z-order sorting [11] since we don't implement an I/O bound

algorithm.

However, what happens if the data to be inserted does not fit into main memory? We solve

this by splitting the insertion into multiple batches. This implies we need to keep track of

fragments that get subdivided after we have synced with disk. We do so during the Pre-

6 Index here means the position of the tuple or its row number.
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Subdivide Phase and end up with a list of fragments that were subdivided after the insertion of

the new batch.

As a result, at a stage prior to the second stage (Fragment Grouping Phase), we read the

fragment chunk data from disk for fragments that will subdivide and append those to the batch

we are about to insert. Then, we advance with the steps 2, 3 and 4 as before.

2.2.3.3 Recovery

We need to recover the in-memory representation of the QuadTree for two main reasons. First,

when the database server fails and restarts, we want to recover the state of the tree before the

failure occurred. Second, to save CPU memory, we allow loading/ unloading of the QuadTree

Scheme upon need. Therefore, when we need to insert a batch of values to a previously unloaded

table with a QuadTree Scheme, we need to recover the previous state of the tree.

The current scheme implements means of recovery by storing two files on disk: points

file and the fragment sizes file. The points file (Figure 2.2-1 (a)), stores contiguous x and y

coordinates of all data inserted so far in the table. The fragment sizes file stores contiguous pairs

of the form <fragment size, maximumfragment size7 > (Figure 2.2-1 (b)). The points file is used

to load the QuadTree Scheme and re-construct the tree so it is ready for new batches. We use the

second file to efficiently determine the fragments that were subdivided and so are not needed to

be kept track of in memory.

7 While the current implementation and benchmarks apply unique maximum fragment size per table, we allow for
variable maximum sizes of fragments.
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X1 y, I2 I 9 1 1 I 1_1_1__

(a) Points file - for recovery

F1 M I F2 M21 I I 1r 1-r 1il

(b) Fragment Sizes file - for recovery

Figure 2.2-1 - Points file and Fragment-Sizes file - for recovery8

2.2.3.4 Retrieve relevant fragments

By means of the getFragment Ids function defined earlier in PartitionScheme API, we

retrieve the relevant fragments in the QuadTree. A recursive call is applied and we prune as

necessary the tree nodes with spatial rectangular bounds that do not intersect the query bounds.

Depending on the query performed, these fragments returned need to be scanned to return the

matching tuples.

8F = size of Fragment i. Mi = maximum size of Frament i.
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(a) Example World Map with Resultant Fragments - QuadTree

6 7

3
30 31

9
32 33

74 75

18 ___

76 77
4

20 21

(b) The QuadTree Representation which Maps to the Resultant Fragments Split Above
in (a)

root

27 7E

6 7 8 9 1819 20 21

30 31 32337 76 7

Figure 2.2-2 - QuadTree Scheme Example - Fragment ID assignments - (NW, NE, SW, SE)
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2.3 Catalog Manager

The catalog manager, as in most database systems [12], stores the metadata about the tables and

their columns in the database system. In MapD2, the Catalog Manager keeps information of the

tables, columns and indexes. It reuses the DbTable structure to store the following two tables:

1. tableTable: This is a table of tables. It has the following columns / fields

o Table name. Variable sized string representation of table name.

o Table identifier. Auto incremented table ID.

o Partition scheme type. Variable-sized string representation of the partition

scheme.

o Maximum Fragment Size. Integer to describe the maximum size of the

fragment.

The current implementation of table Table allows for one partition scheme per table.

This can be easily changed by adding two tables, one to define all partition schemes we have in

the system, and another to map table identifiers to partition scheme identifiers. The latter table

defines a many-to-many relationship.For the sake of this thesis project, it was not necessary to

partition the same table by means of more than one scheme. (See Figure 2.3-1 for how the

catalog can easily support multiple partitioning schemes).
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tableTable

PartitionSchemeTable

Table Name Table ID
LinearScheme 1
QuadTree Scheme 2
OcTree Scheme 3

Table partitionSchememapTable

Partition Scheme ID Table ID Maximum Fragment Size
2 5 1000000
1 6 2000000
2 6 500000
3 7 3000000

Figure 2.3-1 - Catalog metadata tables for multi-partitioning schemes support

2. c o lumn s T able: This is a table of columns. It keeps track of the columns of all tables.

o Column name. Variable-sized string representation of column name.

o Table Identifier. Integer identifier of the table the column belongs to.

(Foreign key).

o Type. Variable size string describing the type of data (BigInteger, date,

integer, char, text, datetime, long).

o Column Identifier.

o Variable Length Flag. Boolean flag to indicate if the data in the column are

variable sized (varchar column, text column ... ) or fixed (int column, double

column ... ).

o Is-Partitioned-On Flag. Boolean flag indicating if the column is involved in

the partitioning or not. For example, if a spatial partitioning is used and this

36

Table Name Table ID
tweetTable 5
torrentTable 6
musicDataTable 7



column describes latitude or longitude values, then this flag should be set to

true.

o Null Allowed Flag. Indicates if we allow nulls in this column or not.

To support tables with more than one partitioning scheme in the future, the I s -

Partitioned-On flag may be factored out. A new table which maps partition scheme

identifiers to column identifiers will suffice to keep track of which columns are partitioned on in

what particular partitioning scheme.

Figure 2.3-2 shows an example of metadata in the catalog when the tweet table uses both

QuadTree and OcTree partitioning. The QuadTree partitions on longitude and latitude, while the

OcTree partitions on longitude, latitude and date.
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columnTable

Column name Column ID Table ID Variable Type ID Null Allowed
Length

Tweet user 1 5 True 2 False
Tweet text 2 5 True 2 False
Tweet ID 3 5 False 3 False
Tweet Date 4 5 False 1 True
Tweet longitude 5 5 False 4 False
Tweet latitude 6 5 False 4 False

Typ

1

2

3

4

typesTable isPartitionedOnTable

e ID Type name

Date Partition Scheme ID Colu
2 5

String 2 6
Big Integer 3 5

Double 3 6
3 4

tableTable PartitionSchemeTable

mn ID

Table Name Table ID
tweetTable 5
torrentTable 6
musicDataTable 7

Partition Name Table ID

LinearScheme I

QuadTree Scheme 2

OcTree Scheme 3

Figure 2.3-2 - Catalog metadata - support of multiple partition schemes

When the MapD2 server is initialized, the catalog reads the metadata tables. Instead of

placing the metadata in the memory buffer pool, it is stored in memory data structures like hash

sets, hash maps, lists, and vectors. This is more efficient than having the chunks stored in buffer

pool memory. This is acceptable since this data is not to be used by the query executor for query

processing. This data is to be used mostly by the query parser and query optimizer only.

Briefly, the main API calls of the Catalog Manager are:

* addTable

o Adds a table to MapD2 and updates the catalog metadata.

38



o Client should specify partitioning scheme choice, the columns partitioned

on, the description of the columns (name, data types ... ), and the table

name.

" loadTableFromMySQL

o Similar to addTable, the client should specify all the required fields. The

main difference is that this API call imports an existing table from

MySQL DB server into MapD2.

o The Catalog Manager keeps track of connectors to allow importing tables

from other databases like MySQL.

" getTableByName

o Retrieve a pointer to the DbTable structure of the specified table by name.

" getColumnDesc

o Given a column name and table name, retrieves a pointer to a structure

that describes the specified column. This is mainly column metadata.

2.4 Summary

In this chapter, we learned about the table structure of MapD2 and how the table data is stored in

memory. Moreover, we learned the details of the partitioning scheme implementation and how

the QuadTree partitioning strategy works. We also learned how MapD2 maintains table and

column metadata through the Catalog Manager. Now, we move on to discuss the implementation

of the database cache, also known as the buffer pool.
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Chapter 3 - Database Memory Management

Now that we've described how MapD2 stores tables and allows various indexing schemes, we

need to discuss how it manages table chunks in memory. We've discussed in chapter 1 that many

DMBSs implement their own caching mechanism by means of a buffer pool. Therefore, in this

chapter, I first discuss the design and architecture of the Buffer Pool Manager for MapD2 in a

distributed multi-node setting. Then, I describe in detail the data structures of the Buffer Pool,

their maintenance, and the Buffer Pool API. Finally, I describe how MapD2 supports multiple

Cache Eviction Policies.

3.1 Buffer Pool Manager Overview

In this section, I describe the design and implementation of the Buffer Pool. This serves as an

implementation of memory cache in user-space to accommodate for database access patterns and

thus improve the cache hit rate.

3.1.1 Three-level Memory Hierarchy

Unlike many databases systems, MapD2 does not use a dual-level memory model, where data

moves between the CPU and hard disk. Instead, the MapD2 architecture implements a three-

level model of memory and data synchronization. These three levels are arranged in a pyramid

like arrangement where each level is slower computationally but larger in size than the previous

level. The three levels from fastest to slowest are: GPU, CPU, and the hard disk. Furthermore,

every level is a mirrored subset of the previous level, where the most frequently accessed data

remains in the faster memory level. (See Figure 3.1-1.).
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Figure 3.1-1 MapD2 Buffer Pool Memory Hierarchy

3.1.1 Architecture

MapD2 implements a shared-nothing architecture described earlier. Each processor is a GPU

card with thousands of cores. Every GPU owns its private memory. Furthermore, every GPU

owns private host (CPU) memory and private disk.

This architecture simplifies the design and architecture of the buffer pool. Shared-nothing

design implies we can design independent buffer pools, one per GPU. The figure on the next

page illustrates the high-level design.
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Database Table Structure

Partition Scheme

LinearScheme QuadTree R-Tree Scheme

GPU GPU GPU GPU
CPU CPU Cpu CPU
DISK DISK DISK DISK

node 1 node2 node3

Figure 3.1-2 MapD2 architecture - 4 nodes example

node 4

3.1.2 Data Structure Design and Maintenance

Now, we discuss the data structures that the buffer pool maintains for efficient lookup of table

chunks and efficient eviction of multi-sized memory pages.
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3.1.2.1 Buffer Pool Partitioning

For technical reasons of GPU memory allocation, we allocate pages in memory as integer

multiples of 512 bytes. Hence, in the following discussion, 1 page = 512 bytes.

The buffer pool implementation allows the partitioning of the cache into page segments

based on the chunk sizes. This partitioning is done based on two parameters: number of buffers

(B), and the page dividing size (D). If B= 1, D does not really matter and we have no

partitioning. For example, if B =3 and D 5, then our buffer is partitioned into 3-sub buffers,

one holding chunks of size in range [1,5), the second [5, 10), and the last will hold any chunks of

size 10 or greater. (See Figure 3.1-3).9

BP1 BP2

BP 0

LKu1 K 4KB 4KB 6KB 6KB

LAL

2KB 2KB KB 8KB 8KB

Figure 3.1-3 - Buffer Pool Partitioning Example. B = 3, D = 5.

The sizes of the buffer pool partitions are decided upon database initialization. It is the

responsibility of the database administrator to decide on the B and D parameters and the sizes for

each partition. These parameters and partition sizes can be different for each node in the

distributed MapD2 architecture.

9 Remember that 1 KB = 2 pages in our definition.
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3.1.2.2 Data Structures

Memory Segments

The ChunkInfo structure describes a memory segment in the buffer pool. It stores metadata of

table chunks or other memory chunks stored in the cache. See the figure below.

struct ChunkInfo {

PageBounds pageBounds;

MemStatus memStatus;

bool dirty;

ChunkKey chunkKey;

};

struct ChunkKey

int tableId;

int fragmentId;

int chunkId;

}1;

Figure 3.1-4 - ChunkInfo (Memory Segment) and ChunkKey Definitions

Every memory segment has pageBounds which is simply a pair of page values. The

first value describes at what page the chunk data starts, where the second value is where it ends.

The chunkKey is a unique identifier of a table chunk in MapD2.

The memoryStatus is an enumeration value. It can be one of the following:
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" FREE: Indicates the page is free and available for use.

" PINNED: Indicates the page is pinned in memory and will not be evicted. Such

pages may be allocated to keep track of metadata tables from catalog or even

histograms to be used for query optimizers in the future. Moreover, we use

pinned pages for the output buffers when implementing the shared scan

architecture described in the next section.

" TEMP: Indicates the page is temporary and may not be evicted. The main

purpose of such page is to keep intermediate results of queries.

" USED: Indicates memory page is used for some table chunk. Such page may be

evicted if necessary.

Each buffer pool partition, whether managing GPU or CPU memory uses a linked list,

called MemSegs, to maintain the order in which memory segments are accessed. Many buffer

pool eviction policy implementations need to keep track of access history of memory segments

and/or frequency. Therefore, it made sense to use a linked list representation where the head/tail

pointer points to least recently used page and the tail/head pointer points to the most recently

used page depending on the eviction policy used. If an MRU (most-recently-used) or LRU

(least-recently-used) eviction policy is used, then finding the page to be evicted is 0(1) since it is

either at the head or tail of the linked list depending on the implementation.

Chunk Page Map

This is a simple hash table implementation mapping chunk keys to the iterator of the memory

segment. This data structure is maintained to achieve 0(1) time operation of accessing the cache

if the memory chunk resides in it. An alternative will be iterating over the linked list which is

O(n) in the worst case where n is the number of memory segments in the buffer pool partition

accessed.
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3.1.3 API summary

The following are the main API calls to the buffer pool:

* allocateSpace(size, gpuFlag, memStatus).

o Allocates space of specified page size on GPU if the gpuFlag is set,

otherwise it is allocated on the CPU.

o Set the memory status of the page. Can be only TEMP or PINNED.

* getHostChunk( chunkKey)

o Returns a pointer to the data in CPU RAM for the chunkKey specified. It

follows this simple algorithm:

" If the chunk exists, return pointer in memory.

- Otherwise, look for free space

i.* If there is free space, read the chunk from disk allocate space

in buffer pool, update the data structures, and return memory

pointer.

* If there is no free space we need to evict some memory

segment(s), copy the chunk over from disk in place of evicted

segment(s), update data structures, and return pointer to the

data.

* getDeviceChunk(chunkKey)

o Returns a pointer to the data in device/ GPU memory for the specified

chunk key. It follows the following algorithm:

- If chunk exists in GPU memory, return pointer

- Otherwise, look for free space

* If free space found, call getHostChunk on the same

chunkKey, allocate space on device, update data structures,

and copy data over to the GPU, and then return pointer to

data.

4 Otherwise, we need to evict one or more memory segments

from the GPU, use getHostChunk to get the chunk data,
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update data structures, copy over to the GPU, and finally

return pointer to data on device.

3.1.4 Eviction Policy Design

Now, we discuss how our buffer pool implementation allows for the implementation of different
cache eviction policies.

3.1.4.1 Overview

This discussion of eviction policy design applies to any buffer pool partition whether it manages

GPU or CPU memory. The eviction policy is governed by two main functions / methods in the

buffer pool manager:

" updateAccess( MemSegs::iterator it)

o When a page is accessed by the buffer pool by means of the API calls

defined above, this method is called on the new iterator of the

memory segment accessed.

o This method moves the element to a different position in the linked

list in constant time. The destination position of the segment depends

on the policy of choice. For example, if an MRU policy is applied,

we place the accessed segment in front of linked list. This means that

the list goes in order of most accessed to least accessed memory

segments. This implies that MRU will evict always the first segment

of the linked list since it is the most recently used.

" getMemSegToEvict
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o This function iterates over the linked list according to policy of

choice and returns an iterator of the memory segment to be evicted.

o This function makes sure it does not choose TEMP or PINNED

pages for eviction.

3.1.4.2 Eviction Cases

When a memory segment is chosen for eviction according to the policy implemented, we need to

deal with the following cases:

1. The segment evicted is equal in size of pages to that replacing it.

This case simply evicts the memory segment and places the new segment perfectly.

2. The segment evicted is greater in size than that of replacing page.

In this case, the replacing page utilizes the space needed, and we split the rest creating

a new segment with a FREE memory status. We place that FREE segment at the

beginning of the linked list to speed up the lookup for free segments.

3. The segment evicted is smaller in pages size that that of replacing page.

This case is more complicated. It requires us to evict more than one page until the

combined size of evicted pages is enough for the page coming in. Since we evict in

order governed by the policy, we are not guaranteed contiguous space in memory.

Therefore, we implement a coalescing of a copy-in-place approach to de-fragment the

cache and reorder the segments. (See Figure 3.1-6). The coalescing only happens

when it is needed by the buffer pool since it is an expensive operation.
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Figure 3.1-6 shows an example where we need to evict El, E2, and E3 memory segments

(order depends on policy) from a buffer pool partition of 2 million pages - 1GB. The figure

shows the physical location in the buffer and how coalescing is done to gain a free segment to

allocate our new segment.

E2 El E3

0 O.5M 0.7M 0.9M iM 1.3 M 1.6M 2.0

FREE

0 0.5M 0.7M 1 M 1.4 M

M

2.0M

Figure 3.1-5 - Eviction Case 3 - Buffer Pool Coalescing

3.2 Summary

In this chapter, we discussed how MapD2 manages memory by means of a three-level buffer

pool per node. We explained the data structures and API calls supported by the buffer pool.

Then, we explained the partitioning of the buffer pool based on page sizes. Finally, we described

how our implementation allows for the implementation of reference-aware cache page-

replacement policies. Now, we are ready to discuss the design of the shared scans architecture

which allows MapD2 to handle many concurrent queries.
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Chapter 4 - Shared Scan Design

In this chapter, I start by introducing the scheduling problem in real-time systems and show how

it relates to the problem we are trying to solve with shared scans. Then, I describe the high level

architecture and the pipeline for shared scan. Finally, I describe the detailed design and

implementation of the components involved including the Task Wrapper, the Query

Information Estimator, and the EDF Shared Scheduler.

4.1 Overview

In order to understand the need for an asynchronous query scheduler for MapD2, we need to

discuss general real-time systems, scheduling models, and task parameters. Then, we can map

the relevant portions to our application, MapD2.

A real-time system consists of a set of tasks T = {T1 , T 2, ... , T and associated

deadlines D = {D 1, D 2 , ... , Dn}.

Usually, tasks have the following timing properties: [10]

" Release time (or ready time): Time at which the task is ready for processing.

" Deadline: Time by which execution of the task should be completed, after the task is

released.

" Minimum delay: Minimum amount of time that must elapse before the execution of the task

is started, after the task is released.

" Maximum delay: Maximum permitted amount of time that elapses before the execution of

the task is started, after the task is released.

" Worst case execution time: Maximum time taken to complete the task, after the task is

released. The worst case execution time is also referred to as the worst case response time.
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* Run time: Time taken without interruption to complete the task, after the task is released.

" Weight (or priority): Relative urgency of the task.

Furthermore, a task in real-time systems has the following types of properties:

1. Hard/ Soft real-time: a hard task ri needs to be completed before its absolute deadline Di.

Failing to meet a deadline is fatal for the system. On the other hand, soft task ri gets

penalized if delayed beyond specified deadline Di. In other words; it is not fatal for such task

to miss its deadline.

2. Periodic, aperiodic, and/or sporadic. Periodic tasks are activated regularly every fixed

period of time. Aperiodic tasks happen unpredictably at no fixed period. Yet, sporadic tasks

fall in between periodic and aperiodic, since these tasks are expected to be activated within

some bounds or time range.

3. Preemptive/ Non-Preemptive. A task is preempted to allow a higher priority task to use the

resources in a preemptive system. Otherwise, once the task starts, it needs to complete before

a higher priority task starts.

In the context of MapD2, tasks are the queries originated by the clients. We view queries

as soft real-time tasks since we cannot guarantee that all tasks received at server finish by their

assigned deadlines. Furthermore, these tasks are aperiodic in nature and appear at arbitrary

times.

In order to implement a sub-optimal priority driven dynamic scheduling algorithm, we

need the queries to be preemptive. Some real-life schedulers [13] define pre-emption points for

the tasks. These are points at which preemption can occur and higher priority tasks will take over

the execution. With our definition of a task as a query, we place the preemption points at the end

of the scan of a fragment. (See Figure 4.2-1). Note that, at the moment, we deal with queries that

consist of fragments from the same table.
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Figure 4.1-1 Example Task with Preemptive Points

4.2 Architecture of Shared Scan Pipeline

At the high level, MapD2's shared scan pipeline is as shown in Figure 4.2-1. The clients send a

query request to the server, which then passes through the first stage, the Task Wrapper. As the

name suggests, this stage decodes the query information and wraps it into an object, QueryInfo,

with attributes describing the query. This information is then passed onto the next stage, the

Query Info Estimator.

At the second stage, we analyze the query for important attributes relevant to the

scheduler. One important property is the size of the query output. Depending on the query and its

type, we expect different size of query output where some can be calculated exactly while others

need to be estimated. If the query, QA, generates a 2D histogram of 1600 * 900 pixels and

counts, then we expect 1600 * 900 * 4 = 5760000 bytes = 5.76 MB of output. (The count at each

pixel is a 32-bit / 4 bytes integer). On the other hand, a different query, QB, which groups unique

(GROUP-BY) words and counts occurrences may need 12 bytes for each row of output (8 bytes

for word identifier if we index words by long primes, and 4 bytes for integer count). An estimate

of the number of unique words, hence the number of rows, is needed for QB in order to predict

the size of its' output buffer.

52



Moreover, at this stage of the pipeline we estimate the relative deadline of the query.

This procedure is of key importance to the performance of the scheduler. Any implementation of

the Query Information Estimator may use the QueryInfo attributes to estimate the deadlines.

Finally, after estimating other attributes required by the scheduler, we add this new

information to the QueryInfo structure and send this to the final stage, the Query Scheduler.

The next stage, the Query Scheduler, is implemented in a producer-consumer design

pattern. In this scenario, the producer is the function inserting the query information to the

internal data structures of the scheduler while the consumer is the asynchronous function running

endlessly picking fragments for shared scanning among queries.

We define the parameter MAXOUTPUTBUFFERSIZE which is the maximum amount of

output memory needed, in bytes, for concurrent queries. All queries processed by the scheduler

need to have their output buffer allocated prior to the scheduling phase. We use the PINNED

memory feature of the buffer pool to ensure the output buffers are not evicted. The queries that

cannot be processed, because we might exceed the maximum output buffer size we can allocate,

are kept in the waiting queue. The query scheduler keeps track of the memory amounts allocates

so far for output and will only pull out a new query from the waiting FIFO / queue if the total

sum of the output buffer sizes does not exceed MAXOUTPUTBUFFERSIZE.
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Figure 4.2-1 - High Level Pipeline for Shared Scan

4.2.1 Task Wrapper

Once a query request initiates from the client, the Task Wrapper's job is to classify the type of

the query and identify what table(s) it needs. On the basis of this classification and the

partitioning strategy of the table(s) required, this module finds the fragment information of all

fragments needed to answer the query. This includes the identifiers of fragments, their sizes, and

the column/chunk identifiers needed by the query. The module, as its name suggests, wraps all

this information in QueryInfo structure and passes it to the next stage.
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4.2.2 Query Information Estimator

This is an abstract module which takes in the QueryInfo structure and uses information to

estimate deadline of the query. Depending on the implementation, example deadline (D)

estimation implementations include one or a mixture of the following:

* Fixed Deadline D = d.

" D (n). as a function of the number of fragments n

" D (f', f 2, ..., fn): as a function to the fragment information.

* D (query lype): as a function of query type.

" D( QueryBounds , partition scheme): as a function to the query bounds and the

partitioning strategy.

Furthermore, this module estimates the output buffer sizes for the queries as mentioned

earlier. The current implementation deals with HISTOGRAM_TYPE queries. Such queries

generate a 2D histogram of pixels, where each pixel maintains a count. These histograms are

used to generate PNG / JPEG images to show geo-located data on the map. Moreover, we deal

with animated HISTOGRAMTYPE queries. Based on two parameters, one describing the frame

width, and the other describing the number of frames, such query produces histograms

describing different time ranges. At the client side, this is an animation on the map of geo-

located data over time.

4.2.3 Query Scheduler

This is the final and the most critical stage in the pipeline. The Query Scheduler is an abstract

class with the interface defined as follows:

* addQuery( QueryInfo &qInfo)

o This adds the query to the internal scheduler structure. It involves bookkeeping of

necessary information about the query including fragment information and deadlines

to aid the scheduler pick the next fragment to be scanned.
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* consumeAndScan( )

o This function runs asynchronously in a separate thread. As the names suggests, it is

consumes available queries and applies sharing scan of fragments among queries.

4.2.3.1 EDF Shared Scheduler

For this thesis, we implemented a dynamic priority driven scheduling. One algorithm that stands

out is EDF (Earliest Deadline First) scheduling. It is a preemptive scheduling algorithm that

allows jobs with the earliest deadline to run first. This algorithm is used in real-time operating

systems by placing processes in a priority queue. Furthermore, EDF is known to be optimal for a

schedulable set of tasks. It is optimal in the sense that it minimizes the maximum lateness for n

independent tasks arriving at arbitrary times. [14]

In MapD2's EDF shared scheduler, we maintain an invariant such that the sum of output

buffer sizes of all queries in the priority queue is less than MAXOUTPUTBUFFERSIZE . We

achieve that by placing queries we cannot schedule in a waiting queue. The waiting queue

processes queries in order of arrival or in FIFO order. We chose this particular implementation

for two main reasons:

1. The invariant maintained simplifies the scheduling and sharing implementation. We

know that any query in the priority queue must already have output buffer space

allocated. On the other hand, if we didn't maintain such invariant and let any query be

placed directly in the priority queue, we will end up facing a deadlock. Such deadlock

arises when there is not enough output buffer space left and the next fragment to scan is

needed by at least one query with no output buffer space allocated. Avoiding such

deadlock requires extra bookkeeping and involves a more complex implementation of the

scheduler. With such implementation, the choice of next fragment to scan will need to

take into account the number of queries requiring the scan of such fragment that have

allocated output buffer space.
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2. The waiting queue processes queries in arrival order and not by earliest deadline to avoid

starvation. Starvation can happen if many users are sending query request with very short

deadlines and always getting preference of execution by EDF algorithm. By having a

FIFO waiting queue, we can guarantee that queries with longer deadlines end up being

executed.

Now that we've argued for our choice of implementation, we describe the details of how the

addQuery and consumeAndScan interface implementations work for

EDFSharedScheduler.

The addQuery API call simply adds queries to the waiting queue. The conumeAndScan

API call is responsible for two main jobs:

1. As long as the waiting queue is not empty, pull as many queries as possible and

place them in the priority queue as long as the invariant is maintained. For each query placed

in the priority queue, we allocate PINNED memory in the buffer pool so that these pages are

not evicted.

2. Pick the query with the earliest deadline from the priority queue. Once this is

done, the scheduler picks an un-scanned fragment from this query that can be shared amongst

most of the queries. A GPU kernel runs the scan allowing the queries sharing the fragment to

fill results of their output buffer in parallel. When fragment scan is done, we mark this

fragment as scanned. When all of the fragments of a query have been scanned, we run a

separate thread to deliver the query result to the client, which then signals to the scheduler to

release the output memory buffer the query had to allow for newer queries to be processed.

4.3 Summary

In this chapter, we presented the architecture of the shared scan design. We explained a greedy

EDF algorithm and described how our implementation chooses the fragment it needs to scan next

in order to share amongst as many queries as possible. Now, we move on to discuss the

experiments we have performed for evaluating our work in the next chapter.
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Chapter 5 - Experiments and Results

In this chapter, we present experiments on MapD2 to evaluate and analyze the performance of

the QuadTree partitioning index and the EDF Shared Scheduler.

5.1 Datasets

We experimented with three real-life datasets:

1. Small-sized geocoded tweet data ~ 14.2 million tweets.

2. Medium-sized geocoded torrent data ~ 45.3 million IP addresses of torrent seeders /

peers worldwide. This data was collected by means of a periodic scraper implemented

to download torrent files, connect to trackers, and extract IP addresses using the Bit-

Torrent protocol.

3. Large-sized geocoded tweet data ~ 200 million tweets.

In each of these datasets, we have at least the following three fields (columns):

1. Latitude: a double (8-byte) value representation of latitude / x - coordinate.

2. Longitude: a double (8-byte) value representation of longitude / y - coordinate.

3. Time: a 4-byte representation of time values. In the context of tweets, it is when a tweet

was posted, while in the context of torrents, it is the time at which the IP address was

received by the tracker.
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5.2 Benchmark Query

Throughout the experiments to follow, we use the generate2DHistogram query for analysis

and evaluation of geo-coded data. This result of this query is a 2-dimensional histogram of

integer values that represent counts of records for a given bounding box in space in a specified

time range.. This query can be thought of as a simple GROUP-BY pixels query. The result is

therefore, a count of records of data found at each pixel.

This query needs the following parameters:

- Bounding Box: represents s rectangular bounding box in space on the world map. At the

client side, these values are obtained from the zoom level the user does on the map.

o xMin: minimum x coordinate / latitude

o xMax: maximum x coordinate / latitude.

o yMin: minimum y coordinate / longitude.

o yMax: maximum y coordinate / longitude.

- Screen Resolution (pixels)

o Width: integer number of pixels for width of screen

o Height: integer number of pixels for height of the screen.

- Time range

o tMin: the minimum time.

o tMax: the maximum time.
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Figure 5.2-1 An example histogram result of 9 * 10 pixels

5.3 Partitioning Scheme Experiments

In the following sections, we explain and show results of experiments performed to evaluate the

performance of the QuadTree and the Shared Scans architecture. All of these experiments are run

on a server with 256 GB of CPU RAM and having 8 Nvidia Tesla K40m GPU cards. The GPU

name is GK1 OB and has 12.288 GB of GDDR5 memory with bandwidth of 288 GB/second.

5.3.1 QuadTree Index vs Linear Scheme

As mentioned in chapter 1, this thesis project implementation is geared towards minimizing the

query latency to support fast analytics and visualizations. Our QuadTree partitioning strategy /

index enables MapD2 to scan the necessary fragments only and not all fragments in a table.

Our performance metric for evaluating the QuadTree partitioning scheme is simply the

CPU/GPU scan time of the generate2dHistogram query. We vary the selectivity of the data to

obtain measurements. Selectivity, S (q) for query q is defined as the result of dividing the number

of records after applying the filter o (q) on table T by the total number of records in the table.
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Equation 5.3-1 Selectivity S

s(q) ITI

We use the LinearScheme as a point of reference to compare the performance of the

query for a table partitioned on. In following experiment, we insert two batches of about

14.2 million records resulting in about 28 million. The parameters are defined in table

below.

Table 5.3-1 QuadTree experiment parameters - small dataset

Data Size 28 x 106

Maximum Fragment Size 3 x 106

GPU buffer pool size 3 GB

CPU buffer pool size 16 GB

GPU bandwidth 280 GB / sec

Width * Height (pixels) 1366 x 768

Figure 5.3-1 and shows a plot of query time against selectivity for running the histogram

generation query on the GPU. Figure 5.3-2 makes the same plot, but only runs the query on the

CPU.
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Figure 5.3-2 QuadTree vs. LinearScheme on CPU - Small Data

We see how the QuadTree partitioning provides us with lower query latency with less

selectivity. This is mainly because we need to scan less number of fragments, whereas the

LinearScheme will always scan all fragments in the table. We find it interesting that the
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QuadTree achieves slightly lower latency even for 100% selectivity and this is because of

increase in cache hit rate when writing to the histogram. When scanning a fragment in a

QuadTree, we are more likely to write to pixels that are close by in the histogram due to the geo-

spatial partitioning the QuadTree does, and this increases the probability that the memory pages

holding these pixels are in cache.

Notice how the LinearScheme shows almost constant performance on the GPU for

variable selectivity. The slightly positive slope is mainly due the increase in GPU writes to the

resulting histogram. While theoretically this should be the same on the CPU, it shows a slightly

negative slope there mainly because of the CPU caching which we cannot control with such

experiment.

We now run the same experiment on a large data set of 200 million tweets. The following

table lists all of the constant parameters of the following experiment.

Table 5.3-2 QuadTree experiment parameters - large dataset

Data Size 200 x 106

Maximum Fragment Size 35 x 106

GPU buffer pool size 10.2 GB

CPU buffer pool size 16 GB

GPU bandwidth 280 GB / sec

Width x Height (pixels) 1366 * 768
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With the large dataset, the CPU result is more like what we expect. The LinearScheme

graph with a low positive slope, and the QuadTree graph showing latency decreasing linearly

with selectivity. For the GPU, however, at a selectivity of a little less than 70% and upwards, the

LinearScheme performs better. The reason is due to the unequal number of fragments for both

schemes. The QuadTree at this point has many more fragments needed for scan than the

LinearScheme causing it to perform worse.

5.4 Shared Scan Evaluation and Analysis

The following experiments aim to evaluate the performance of the shared scan and the EDF

scheduling algorithm. First, however, we need to define the performance metrics for shared scan.

The performance metrics we use for this project are Query Throughput, QMD (Queries Miss

Deadline), and Average Lateness.

1. Query Throughput: (Queries / second) number of queries per second.

2. QMD: percentage of queries that missed their deadline.

3. Average Lateness (L): The average lateness value over all queries. Lateness for query

Qj is defined as the difference between the task absolute completion time (Cj) and the

absolute deadline (Dj). A positive value of lateness indicates that the query has missed its

deadline. For an experiment with N queries, the following is the definition of average

lateness.

Equation 5.4-1 Average Lateness for N Queries

L =O(Ci - Di)
N
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5.4.1 Overlap

In this experiment, we investigate the effect of the degree of overlap among the queries on the

performance of shared scans. We define Overlap as the number of fragments shared among all

queries divided by the total number of fragments in the table.

The constant parameters for the following experiment are as follows:

Table 5.4-1 Overlap Experiment Parameters

Data Size 200 x 106

Maximum Fragment Size 35 x 106

Number of queries (N) 1000

Deadline (fixed) 100 ms

Output Buffer Pool Size 380 MB

Width x Height (pixels) 1366 * 768

The table below demonstrates that the shared scan, in this particular case, provided an

average of 300x speedup over serial execution. We don't get a 1 000x speedup (number of

queries) because the output buffer of 380MB will only allow 90 queries at a time.
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Table 5.4-2 Shared Scan vs. Serial Execution Performance

Overlap GPU time - Serial GPU time - Shared Approximate

Execution (ms) Execution (ms) (Serial Exec. /

Shared Exec.)

Ratio

100% 86000 225 382
84.60% 77500 260 298

61% 69500 250 278
38% 60000 198 303
15% 54500 186 293

Next, we have two charts, one showing QMD vs. Overlap while the other demonstrating

Average Lateness vs. Overlap. QMD starts out about constant with high overlap and then starts

to fall down. While we define a constant deadline for queries of lOOms, our implementation

when choosing a query will pick a fragment that is most shared among other queries, thus

queries with less number of fragments to scan will finish earlier. As the overlap decreases, the

number of queries with less number of fragments increases. This is due to our definition of

Overlap.

70% - -

60% --

50%
QMD (%
queries 40%

miss 30%
deadline)

20% -

10%

0%
100% 84.60% 61% 38% 15%

Overlap

Figure 5.4-1 QMD vs. Overlap
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Figure 5.4-2 Avg. Lateness vs. Overlap

5.4.2 Deadlines

In this section, we investigate the effect of varying the deadlines values on the performance of

shared scans.

5.4.2.1 Fixed

This section investigates the shared scan performance for different fixed deadline values. By

fixed deadline, we mean that the value of relative deadline is some constant d regardless of query

type or any attribute of QueryInfo described earlier. The following experiment parameters are

found in the table below.

Table 5.4-3 Deadline Experiments Parameters

Data Size 200 x 106

Maximum Fragment Size 35 x 106

Number of queries (N) 3600

Output Buffer Pool Size 512 MB
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Figure 5.4-3 shows almost a linear relationship between QMD and deadline values. As

the fixed deadline set for the queries increases, the QMD or the percentage of queries that miss

the deadline drops. Figure 5.4-4 shows the Average Lateness plot against deadline. At a deadline

of 500 ms we start to see that on average, queries are being early rather than late.
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5.4.2.2 Dependent on Number of Fragments

For skewed deadlines depending on the fragments, we leave it for the last section for evaluating

EDF algorithm.

5.4.3 Number of Queries

In the following experiment, we investigate the effect of the number of concurrent queries N on

the performance metrics of our shared scan implementation.

Table 5.4-4 Parameters for Number of Queries Experiments

Data Size 200 x 106

Maximum Fragment Size 35 x 106

Output Buffer Pool Size 256 MB

Deadline 60 ms

Width x Height (pixels) 1366 * 768

Query Bounds All queries are rectangular bounds of the whole

world map - 100% Overlap.
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Figure 5.4-5 Throughput vs. Number of Queries
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Figure 5.4-6 Time vs. Number of Queries

Figure 5.4-5 and Figure 5.4-6 show us how we are able to gain throughput with

increasing number of concurrent queries. Yet, for more than 512 queries, the throughput starts to

decline due to the limited output buffer size and overhead of sharing many queries where the cost

of writing the resulting histograms dominates the overall cost.
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It was interesting to see that with the choice of deadline (60 ms), we only started to miss

deadlines when the number of queries was about 256. Yet, the average lateness became positive

only near 512 concurrent queries. (See Figure 5.4-7 and Figure 5.4-8).
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5.4.4 Output Buffer Size

This experiment varies the maximum size of the output buffer used, or

MAXOUTPUTBUFFERSIZE introduced in the previous chapter, to save the answers of the

queries. We expect better performance with more output buffer size since we are able to keep

more queries in the priority queue.

Table 5.4-5 Parameters for Output Buffer Size Experiment

Data Size 200 x 106

Maximum Fragment Size 35 x 106

Number of Queries N 600

Deadline min (number offragments x 10, 70)

Width x Height (pixels) 1366 * 768

Query Bounds Queries have 12 unique rectangular bounds

in space.

Figure 5.4-9 shows the increase in query throughput with increasing the maximum output

buffer size. Figure 5.4-10 plots the QMD vs. output buffer size and shows a best fit line. This

clearly shows how percentage of queries that miss the deadline is linearly related with output

buffer size. Finally, Figure 5.4-11 plots average lateness against output buffer pool. A similar

linear relationship is observed.
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Figure 5.4-9 Throughput vs. Output Buffer Size
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Figure 5.4-11 Average Lateness vs. Output Buffer Size

5.4.5 Scheduling (EDF vs. FIFO)

In this section, we evaluate the scheduling aspect of our shared scan implementation. By
scheduling we mean the EDF algorithm for the choice of the next query to scan. We compare
EDF to FIFO (queue order: first in, first out) scheduling. In both cases, however, after a query is
picked, the fragment chosen to scan is still the one shared amongst the highest number of queries

in the priority queue.
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A. Small-Sized Output Buffer

We start by experimenting with a small value for the maximum output buffer size. This

means that the priority queue will not be able to hold all the queries at the same time and

perform scans to answer all of them.

Table 5.4-6 Parameters for EDF vs. FIFO Experiment - Small Buffer

Data Size 200 x 106

Maximum Fragment Size 35 x 106

Output Buffer Size 512 MB

Deadline(ms) min (number offragments x 10, 100)

Width x Height (pixels) 1366 * 768

Query Bounds Queries have 12 unique rectangular bounds in

space, uniformly distributed among queries.
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Figure 5.4-12 EDF-FIFO. Throughput vs. N -Small Buffer
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Figure 5.4-14 EDF-FIFO. QMD vs. N - Small Buffer

Figure 5.4-12 shows how EDF starts performing better than FIFO while it performs worse

with higher number of queries. This is mainly because of output buffer limit and the invariant we

maintain. Only the queries in the priority queue, which already have been allocated space for

their output, are valid choices for EDF algorithm. This implies that the waiting queue holds

queries with earlier deadlines that have to wait for enough space to be freed when other queries
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finish. We see this worse performance of EDF vs. FIFO in the other figures too (Figure 5.4-13,

and 5.4-14).

B. Large-Size Output Buffer

For this experiment, we alter the parameters such that all queries end up being able to be

present in the priority queue. In other words, all queries will have output buffer space

allocated.

Table 5.4-7 Parameters for EDF vs. FIFO Experiment - Large Buffer

Data Size 200 x 106

Maximum Fragment Size 35 x 106

Output Buffer Size 512 MB

Deadline (ins) min (number offragments x 10, 100)

Width x Height (pixels) 1366 * 768

Query Bounds Queries have 12 unique rectangular bounds

in space. Equally represented in each set.
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While the throughput plot shows EDF and FIFO perform about the same, we see the

difference in QMD and Avg. Lateness (Figure 5.4-16 and Figure 5.4-17). In both of these cases

EDF performs better than FIFO. This makes sense since EDF chooses the query that is closest to

its deadline.
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C. Skewed Deadlines

We now experiment with varying deadlines and comparing EDF's to FIFO's performance. We

start with the experiment with the following fixed parameters.

Table 5.4-8 Parameters for Skewed Deadlines Experiment

Data Size 200 x 106

Maximum Fragment Size 35 x 106

Output Buffer Size 768 MB

Number of Queries (N) 150

Width x Height (pixels) 1366 * 768

Query Bounds Queries have 12 unique rectangular bounds

in space that are equally represented.

We start by experimenting with the following
for scan by the query)

1.
2.
3.
4.

deadlines: ( F is the number of fragments needed

min (F x 20, 200)
min (F x 15, 100)
min (F x 10, 50)
min (F x 5, 40)
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Figure 5.4-18 and Figure 5.4-19 show how EDF performs better than FIFO. In particular,
the QMD values are much higher for FIFO since FIFO does not take query deadline into
account. Now we perform a similar experiment on the following deadline values (in ms - F is the
number of fragments the query needs to scan).

1. F x 20
2. F x 15
3. F x 10
4. Fx5

The results are shown in Figure 5.4-20 and Figure 5.4-21. A similar performs win for EDF is

observed in these two figures. This gives us confidence that EDF is the right approach, but the

limited output buffer size remains a challenge.
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Chapter 6 - Related Work

In this project, we tackle two main challenges in implementing a database system architecture

optimized for low latency analytics. The first is the managing and indexing of the data in hybrid

CPU-GPU architecture. The second is the scheduling of a large number of concurrent queries by

means of a shared concurrent scan.

6.1 Partitioning Schemes and QuadTree Indexes

Using tree based filters/indexes for spatial data is not a novel idea. Kothuri et al [15] describe

and compare the use of QuadTree and R-tree filters or indexes for Oracle Spatial. Furthermore in

[15], they implement an indexing framework which allows for the implementation of domain-

specific indexes. This is similar to what we do with regards to the Partition Scheme described

earlier. Our Partition Scheme acts as an indexing framework allowing the implementation of

spatial or non-spatial domain specific indexes.

Samet et al in [16] and [11] describe a fast 10-bound algorithm for construction of

QuadTree even if main memory size is less than that of the resulting tree. They use z-ordering of

the spatial points to minimize the I/O operations in the QuadTree construction. Since new

computer architectures are now based on multi-core devices with more RAM, the bottleneck is

now the memory bandwidth, replacing the IO bottleneck. This is why our QuadTree construction

occurs in main memory with the assumption that main memory can hold all the points in the

QuadTree. With hardware getting cheaper, and considering that our design is for GPU-based

systems with limited amounts of RAM, this is a safe assumption to make.

Other related work to the QuadTree indexing is found here [1] where a hybrid CPU-GPU

parallel sorting-based algorithm is used to increase the speed of the construction of the QuadTree

index.
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6.2 Buffer Pool Partitioning and Replacement Policy

With regards to the implementation of the memory buffer pool, there has been a great deal of

related work on managing memory in database systems. In [17], IBM demonstrated the

implementation of buffer pool partitioned based on page size. This is similar to the buffer pool

partitioning we implement except that we handle multi-sized pages. DeWitt et. al [18] compare

various eviction policies on different workloads. They mainly present DBMIN, an algorithm to

manage the buffer pool for relational database systems by predicting future reference behavior.

We on the other hand focus on implementing a general purpose buffer pool which is extendible

with eviction policies proven to work well with different workloads according to the database

literature (LRU-2 / LRU-K [19] [20] , LRU-MRU or LRU2-MRU [21]).

6.3 Shared Scans and Scheduling

There hasn't been much prior work addressing the specific problem of scheduling shared scans

for concurrent queries arriving at a database server. Yet, the research work by Agrawal et. al [22]

is very similar to what we implement. They study how to schedule tasks that can share scans

over a common set of large input files. The main goal is to amortize the expensive file scans

across as many jobs as possible. They do so by implementing a simple stochastic model of job

arrivals from each input file. Their system takes into account anticipated future jobs when

attempting to schedule the jobs in the input queue. Stochastic modelling of job arrivals for

MapD2 may be promising for the future, yet we focused on a simple Earliest Deadline First

(EDF) implementation. They do not estimate deadlines for tasks but define a PWT (average

perceived waiting time) performance metric which is the average of difference between the

system's response time in handling the task and the minimum possible response time. Their work

shows clearly that shortest-job-first (SJF) scheduling policy doesn't perform well in the presence

of opportunity for job sharing.

On a different line of work, Qiao et. al [23] address the bottleneck of memory bandwidth

of CPU-bound scans by implementing a novel scan sharing technique for main memory query

processing. They attach many queries to the same scan, amortizing the overhead of data scanning
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from main memory into the CPU's cache. By exploiting data skew and statistical metrics, they

group queries in a way to avoid thrashing. While they claim that in main memory DBMS, the

cache takes over the buffer pool, this is not quite the case when GPUs are involved. Shared

memory and constant memory on GPUs (equivalents to cache memory on CPU) are orders of

magnitude smaller than CPU caches. Therefore, our shared scan implementation focuses on

global GPU memory. Furthermore, with GPU memory bandwidth being orders of magnitude

higher than that of CPU, it does not represent a bottleneck at the moment. In the near future

though, GPU cards will have greater cache sizes allowing for optimization opportunities similar

to the work done by Qiao et al.

We are not aware of any prior work that addresses scheduling queries for shared scan

such that a limited memory is allocated for output memory buffers for the queries and where

deadlines are estimated for use in the scheduling policy. In particular our work is unique in terms

of defining a software pipeline and architecture that is extendible for online dynamic scheduling

of concurrent queries.
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Chapter 7 - Future Work

There are many opportunities for interesting projects aimed at systems that are optimized for

low-latency, like MapD. The most interesting future projects, however, is that related to

improving the shared scans performance and the EDF scheduling algorithm.

7.1 Partition Scheme Architecture

Future research may focus on the PartitionScheme architecture. One can compare the

performance of different indexes on the same table and come up with a strategy to choose which

index to use based the client's query. Allowing an automated choice of a partitioning scheme /

index to access when a query arrives helps improve the performance of shared scans as well.

With regards to the QuadTree implementation, an interesting future work would extend

the QuadTree with Bloom Filters to allow for pruning on text. This provides opportunities for

shared scans of queries involving filters on both text and space.

At the moment, each QuadTree index allows for one maximum fragment size at which

the split occurs. If we relax this condition and allow the QuadTree to split based on variable

maximum fragment sizes, by maintaining statistics of the current data, we may end up with more

balanced fragments. This can lead to better estimation of deadlines for many concurrent queries,

and thus an improved shared scans throughput.

An interesting future research can evaluate partitioning the spatial data across multiple

nodes, each with multiple GPUs. One approach is by delegating to each node a spatial partition

(e.g. NW, NE, SW, SE for 4-node system), where each node has its' own QuadTree index. This

can benefit shared scans of skewed queries as we can determine the node(s) to send the query to.

However, this approach does not balance the load of data. Realistic spatial data sets are not

distributed uniformly in space, and therefore, a round robin or hash partitioning across many

nodes may work better. It will be interesting to evaluate shared scans with these two approaches
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and evaluate the overhead of combining the result from multiple nodes to obtain the overall

query result.

7.2 Buffer Pool Manager

The buffer pool design provides opportunities for future work as well. A reasonable optimization

is the implementation of a functionality that, when the system is idle, looks for free/ un-used

non-contiguous pages and combines them into one. This will increase the likelihood of finding

free pages of desired size or greater, thus avoiding eviction in many cases.

Moreover, future work will evaluate different combinations of replacement policies and

research the possibilities of automating the choice of policy depending on statistics based on

history referencing of memory chunks and the history of query workload. We know that a better

eviction policy implies better cache hit rate.

7.3 Shared Scans and EDF

A good optimization to the current shared scans implementation involves sharing output buffers.

This includes using less space to compute the output of more queries. For example, we can use

xor optimizations where outputs of queries are xor-ed to save output space. Furthermore, sparse

array representation of the histogram result can reduce the output space per query, and this is due

to the fact that the output histogram can be a sparse matrix in many cases (many values are zero).

Reducing the size of the output buffer space per query is definitely a prioritized future work.

We've seen in Chapter 5 how the limited output buffer caused the EDF implementation to

perform poorly in terms of average query lateness.

Another interesting future work relates to devising policies to optimize for the percentage

of queries missing the deadline (QMD) and average lateness when sharing scans of many

concurrent queries. This includes formulating a cost model as a function of query parameters and

other factors (e.g buffer pool partitions, memory size, maximum fragment size, ..etc ). We
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believe this will greatly help in optimizing shared scans and achieving a higher quality of

service.

Finally, interesting research involves the prediction of future queries based on historical

data of previous requests. This can benefit animated queries in particular. If we predict that the

client will perform an animation on some table, we can insert the queries that produce future

frames, with their future deadlines, into the priority queue and thus be able to have the frames

ready when the client needs them.
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Chapter 8 - Conclusion

In this thesis, we tackled two key challenges that arise when implementing software architecture

optimized for low latency analytics. The first is the managing and the partitioning of data sets

across multiple nodes with multiple CPUs and GPUs. The second is the processing of many

queries (perhaps issued concurrently) where queries have very fast latency constraints, e.g, for

visualization. We implemented an indexing framework or a partition scheme which enables

scanning the relevant partitions of the data only as opposed to the whole dataset. We also

implemented a three-level memory pool hierarchy to serve as a database cache with support of

various replacement policies. Finally, we implement an algorithm "EDF Shared Scan" which

allows for scheduling concurrent client query requests to share processing of many queries in a

single pass through the data.

We found that the QuadTree partitioning strategy provides lower latency for queries with

lower selectivity. Yet, we perceived that with large datasets, at a high selectivity rate, the cost of

scanning more fragments due to the QuadTree leaves subdivision overcomes that of scanning

less number of fragments. As discussed in the previous section, implementing a new QuadTree

that splits on various maximum fragment sizes will result in a more balanced partitioning. This

can speed up the queries with high selectivity on large datasets partitioned by a QuadTree.

Another approach may be simply implementing another spatial index like an R-Tree.

Furthermore, our results and experiments section shows how shared scans improve

throughput (queries / second). Furthermore, we saw that when the maximum size of the output

buffer is enough to process all concurrent queries, our EDF algorithm, choosing the query with

earliest deadline from the priority queue, performs very well as opposed to FIFO

implementation. Additionally, we observed how EDF achieves less QMD rate and less average

lateness than FIFO for queries with skewed relative deadlines. While a limited output buffer size

caused EDF to perform poorly compared to FIFO, we are sure that reducing the output buffer

space needed per query, as discussed in the previous section will improve EDF performance and

decrease the rate at which queries miss their deadline.
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