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How to Run Turing Machines on Encrypted Data
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⋆ MIT CSAIL † Microsoft Research ◃▹ University of Toronto

Abstract. Cryptographic schemes for computing on encrypted data promise
to be a fundamental building block of cryptography. The way one models
such algorithms has a crucial effect on the efficiency and usefulness of the
resulting cryptographic schemes. As of today, almost all known schemes for
fully homomorphic encryption, functional encryption, and garbling schemes work
by modeling algorithms as circuits rather than as Turing machines.
As a consequence of this modeling, evaluating an algorithm over encrypted data is
as slow as the worst-case running time of that algorithm, a dire fact for many tasks.
In addition, in settings where an evaluator needs a description of the algorithm
itself in some “encoded” form, the cost of computing and communicating such
encoding is as large as the worst-case running time of this algorithm.
In this work, we construct cryptographic schemes for computing Turing machines
on encrypted data that avoid the worst-case problem. Specifically, we show:

– An attribute-based encryption scheme for any polynomial-time Turing
machine and Random Access Machine (RAM).

– A (single-key and succinct) functional encryption scheme for any polynomial-
time Turing machine.

– A reusable garbling scheme for any polynomial-time Turing machine.

These three schemes have the property that the size of a key or of a garbling
for a Turing machine is very short: it depends only on the description of the
Turing machine and not on its running time.
Previously, the only existing constructions of such schemes were for depth-d
circuits, where all the parameters grow with d. Our constructions remove
this depth d restriction, have short keys, and moreover, avoid the worst-case
running time.

– A variant of fully homomorphic encryption scheme for Turing machines,
where one can evaluate a Turing machine M on an encrypted input x in time
that is dependent on the running time of M on input x as opposed to the
worst-case runtime of M . Previously, such a result was known only for a
restricted class of Turing machines and it required an expensive preprocessing
phase (with worst-case runtime); our constructions remove both restrictions.

Our results are obtained via a reduction from SNARKs (Bitanski et al) and an
“extractable” variant of witness encryption, a scheme introduced by Garg et al.. We
prove that the new assumption is secure in the generic group model. We also point
out the connection between (the variant of) witness encryption and the obfuscation
of point filter functions as defined by Goldwasser and Kalai in 2005.

Keywords: Computing on encrypted data; Functional encryption; Fully homo-
morphic encryption; Turing machines; Input-specific running time.



1 Introduction

Cryptographic schemes for computing on encrypted data promise to be a major focus
of cryptographic research for years to come. We now have early constructions of fully
homomorphic encryption, functional encryption, and attribute-based encryption, as well
as more established constructions for garbling schemes. An important question for the
practicality and usability of these schemes is how to model an algorithm that computes
on encrypted data in cryptographic constructions.

Modeling algorithms as circuits instead of Turing machines has efficiency and
usability disadvantages. Indeed, almost all known1 cryptographic constructions of fully
homomorphic encryption, attribute-based encryption, functional encryption and garbling
schemes for general algorithms model these algorithms as Boolean or arithmetic circuits.
As a consequence, these constructions suffer from the following two disadvantages.

The first disadvantage is that evaluating an algorithm A modeled as a circuit on
encrypted data is at least as slow as the worst-case running time of algorithm A on all
inputs of a certain size. Ideally, the runtime of A on input x should be the time A takes to
run on x. The reason for this slowdown is that all the known transformations from Turing
machines to circuits essentially work by unrolling loops to their worst-case runtime,
and by considering all branches of a computation. Even if the cryptographic overhead
of these schemes were zero, such worst-case runtime can still make the computation
prohibitively slow: for example, the simplex algorithm for linear programming runs in
polynomial time on most instances one encounters in practice, but in exponential time
on rare inputs.

The second disadvantage arises for schemes that require an evaluator to obtain an
encoded description of an algorithm A (called a token) in order to run A on the encrypted
data. For example, in functional encryption, the token is a key for the algorithm A
and in garbling schemes, the token is the garbling of the algorithm. In these settings,
modeling algorithms as circuits makes the size of the token as large as the running time
of the algorithm, instead of having the token size depend only on the description of the
algorithm, which can be much shorter.

The earliest example of using circuits for computing on encrypted data is Yao’s
secure function evaluation protocol [Yao86] which takes as input any polynomial-
time computable function f – specified by a circuit – and outputs a “garbled
circuit” with the same input-output functionality. Such worst-case runtime also
affects known two-party and multi-party protocols for general secure function eval-
uation [Yao86,GMW87,BGW88,CCD88].

More recent constructions for computing on encrypted data also use circuits to
model computation and thus suffer from the worst-case slowdown: fully homomorphic
encryption schemes (FHE) [Gen09,BV11a,BV11b,BGV12,Bra12], attribute-based en-
cryption (ABE) schemes [GVW13,GGH+13b,GGH13a], and functional encryption (FE)
schemes for general functions [SS10,GVW12,GKP+13b].

In this work, we present cryptographic schemes for Turing machines, thus removing
the two major limitations of circuits discussed above. We construct attribute-based

1 An exception is the garbling scheme of [LO12] for RAMs, but this scheme also suffers from
the worst-case running time problem we address in this paper (see Sec. 1.1).



encryption, (succinct and single-key) functional encryption, reusable garbling schemes,
and a version of FHE for polynomial-time Turing machines. For each of these schemes,
we show that the time to evaluate a Turing machine M on an input x is input specific: it
depends on the runtime of M on x and not on the worst-case runtime of M on all inputs
of length n where n = |x|. Moreover, we show that the token for a Turing machine M
is short: its size depends on the size of the description of the Turing machine M and not
on M ’s runtime. Our schemes are for both uniform and non-uniform Turing machines
(so in particular, they can compute circuits).

Our schemes are based on extractable witness encryption, a variant of the witness
encryption notion of Garg et al. [GGSW13]. We show how to obtain such an extractable
witness encryption scheme using the construction of Garg et al. [GGSW13], by
strengthening their assumption with a knowledge property. We prove the new assumption
secure in the generic group model. Interestingly, we show that extractable witness
encryption is closely related to (weakly) obfuscatable point-filter functions [GK05].

1.1 Our results

We now explain our results in detail.

Attribute-based encryption (ABE) for Turing machines and RAMs. Attribute-based
encryption schemes, originally defined by Sahai and Waters [SW05], allow a user holding
the master secret key msk to generate a function key skf for any predicate f of his choice,
where skf does not hide f . Using the master public key mpk, anyone can encrypt a
message m with respect to an “attribute” x: such a ciphertext is denoted by Enc(x;m).
The ciphertext Enc(x;m) does not hide x, and hides only m. Given a function key skf
and a ciphertext Enc(x;m), one can compute m if f(x) = 1. On the other hand, if
f(x) = 0, ABE leaks no information about m and provides semantic security.

Attribute-based encryption is a powerful primitive and has thus received significant
attention [GPSW06,LOS+10,LW12,GVW13]. The state-of-the-art is the scheme of
Gorbunov et al. [GVW13]: based on the LWE assumption, they construct an ABE for
the class of all circuits of depth at most d, where the efficiency of the scheme (such as
the size of the ciphertexts) decreases polynomially with d. In concurrent work, Garg et
al. constructed ABE schemes with similar properties [GGH+13b], and an ABE scheme
with large ciphertexts [GGSW13], both from candidate multi-linear maps.

In this work, we construct an attribute-based encryption scheme for all circuits,
with no restriction on the depth. More importantly, we model functions as Turing
machines (with possibly non-uniform advice), as opposed to circuits as in previous
work. Computing a function key skM , corresponding to a Turing machine M , takes
roughly linear time in the size of the description of M , independent of the runtime of M .
Moreover, given skM and Enc(x;m) where f(x) = 1, one can compute m in time that
depends only on the time it takes to compute M on input x as opposed to the worst-case
running time of M . We prove the security of our scheme with respect to a non-adaptive
simulation-based definition (we refer the reader to Sec. 3 for details). We then show that
a modification of our construction provides ABE for RAMs.



Theorem 1 (Informal). There exists an attribute-based encryption scheme (as defined
in Defs. 3, 4) for (uniform or non-uniform) polynomial-time Turing machines and RAMs
from the assumptions in Sec. 1.2.

Interestingly, we show how to extend our ABE scheme beyond Turing machines and
RAMs: for example, an evaluator can choose by himself which Turing machines to run
on the ciphertexts, as long as they satisfy some property expressed in a function key.
Functional encryption (FE) for Turing machines. Functional encryption, formalized
by Boneh, Sahai and Waters [BSW11], is a generalization of attribute-based encryption.
In functional encryption, a user holding the master secret key msk can generate a function
key skf corresponding to a function f ; then, anyone having a ciphertext Enc(x) and a
function key skf can compute f(x), but learns nothing else about the input x.

So far, the only many-keys FE schemes known (schemes in which the secret key
owner can securely release an unbounded number of function keys) are for the inner-
product predicates [KSW08,SSW09]. For general functions, Agrawal et al. [AGVW13]
showed that there does not exist a many-keys FE scheme if one wants to achieve a natural
simulation-based security definition2, so the natural question was to construct a single-
key functional encryption scheme for general functions. Sahai and Seyalioglu [SS10],
Gorbunov et al. [GVW12], and Goldwasser et al. [GKP+13b] constructed such schemes
for circuits. The work of Goldwasser et al. [GKP+13b] is the first to provide succinct
ciphertexts: the ciphertext size is much smaller than the circuit size; they constructed
a succinct single-key FE scheme for any depth d circuit, where the parameters of the
scheme grow with d (but are independent of the circuit size).

In this work, we not only remove this depth-d restriction, but we model functions as
(possibly non-uniform) Turing machines, as opposed to circuits as in prior work. Our
schemes have short function keys: computing the function key of a Turing machine M
depends only on the size of M and does not depend on the runtime of M . We note that
in all previous schemes for general functions the size of a function key for a function f
grows (at least linearly) with the worst-case runtime of f . We note however, that as
opposed to our ABE scheme, in a functional encryption scheme, given Enc(x) and skM ,
the time it takes to compute M(x) must be proportional to the worst-case runtime of M ,
since the runtime of M on input x may leak sensitive information about x. However, if
one is willing to slightly relax security and allow leaking the runtime of M on the secret
input x, then we provide a second functional encryption scheme for which the decryption
algorithm has input-specific runtime (i.e., it runs in time polynomial in the runtime of M
on input x) – we denote this by input-specific runtime functional encryption.

Theorem 2 (Informal). There exists a single-key (succinct) functional encryption
scheme and input-specific runtime functional encryption scheme for (uniform or non-
uniform) polynomial-time Turing machines from the assumptions in Sec. 1.2.

Variant of FHE for Turing machines. We construct a variant of FHE where one can
evaluate a Turing machine M on a ciphertext Enc(x) in time that depends on the runtime
of P on the specific input x. We naturally call this scheme input-specific FHE. At first

2 Their lower bound does not apply to weaker security definitions.



glance, this may seem impossible, since revealing the runtime of P on input x may
reveal secret information about x. However, for many Turing machines M , revealing
only the runtime of M is not harmful, and it can provide significant efficiency gains.

Our construction is an improvement of Goldwasser et al. [GKP+13b] who showed
how to construct input-specific runtime FHE from single-key functional encryption. As
in Goldwasser et al. [GKP+13b], we also encrypt a Turing machine M and x together
into a token tkM,x. Producing such a token depends only on the size of x and M , and
not on the running time of M . The evaluator can use tkM,x and public information to
compute M(x) in input-specific time. The reason we provide a token for M at all is for
security: the FHE evaluator must no longer be able to evaluate TMs of its choice on the
encrypted inputs because the running time of those TMs can leak the input entirely. We
combine M and x in tkM,x for a technical reason stemming from the fact that the FE
scheme we use in the construction is single-key – we elaborate in our full paper.

Comparing to [GKP+13b], we make the following improvements:

– Remove costly preprocessing. [GKP+13b] had an expensive preprocessing phase
taking as long as the worst-case runtime. With our scheme, the preprocessing is cheap:
polynomial in the size of the TMs and independent of the worst-case runtime (so in
fact it can be performed in the online phase).

– Works for any polynomial-time Turing machine. Because the ciphertext size
in [GKP+13b] depended on the depth of the worst-case circuit representation of
the class of Turing machines, [GKP+13b] only allowed a restricted class of Turing
machines: the class of TMs that can be expressed by shallow-depth circuits (e.g.,
log-space Turing machines). Our result does not have the depth restriction and thus
applies to any class of Turing machines with runtime upper-bounded by a polynomial.

Theorem 3 (Informal). There exists an input-specific-runtime fully homomorphic
encryption scheme for (uniform or non-uniform) polynomial-time Turing machines
based on the assumptions in Sec. 1.2.

Reusable garbling scheme for Turing machines. Garbling schemes, introduced in the
seminal work of Yao [Yao86], have found many applications in cryptography. In such
schemes, a user can “garble” a function f and then encode an input x in a token tkx.
Given a garbling of f and a token tkx, one can compute f(x), but learns nothing else
about f or x. Some works also considered an authenticity property [BHR12,GVW13],
on which we do not dwell. Traditional garbling schemes are one-time: they are secure
only if an adversary gets a token for at most one input. A reusable garbling scheme is
secure when the adversary gets an unbounded number of tokens.

In known garbling schemes (even non-reusable ones), the size of the garbling is as
large as the worst-case runtime of f . Often, the reason is that programs are modeled
as circuits, and the size of the garbling is at least the size of the corresponding circuit.
In this work, we construct a (reusable) garbling scheme for (uniform or non-uniform)
Turing machines, where the size of the garbling depends only on the size of the Turing
machine, and is independent of its runtime. The work of [LO12] is an exception from the
circuit model: they model computation as RAM, but their scheme still has large garbling
size, at least as large as the worst-case running time.



As in our FHE and FE schemes, if one allows leaking the runtime of M on input x, we
can additionally avoid worst-case evaluation time and obtain an input-specific reusable
garbling scheme: given a garbling for a Turing machine M and a token tkx, the time to
compute M(x) is polynomial in the runtime of M on the specific input x.

Goldwasser et al. [GKP+13b] provide a reusable garbling scheme only for depth
bounded circuits; our schemes remove the depth dependency, provide short garbling size,
and can additionally avoid worst-case running time.

Theorem 4 (Informal). There exists a reusable garbling scheme and an input-specific
reusable garbling scheme for (uniform or non-uniform) polynomial-time Turing machines
from the assumptions in Sec. 1.2.

In summary, our work models computation on encrypted data as Turing machines
and thus avoids the worst-case “curse” for a set of well-known cryptographic notions.

Remark 1. Interestingly, we can easily overcome the worst-case curse for interactive
tasks such as two-party and multi-party protocols as follows. To securely evaluate a
Turing machine M , we evaluate the Turing machines M1, . . . ,Mω(logn) sequentially,
where Mi runs the Turing machine M for 2i steps and outputs M ’s answer if M halted
in 2i steps, otherwise ⊥. To evaluate Mi, we simply use existing multi-party protocols.
Note that the circuit size for Mi is poly(2i), and since we halt the computation as soon
as we get a non-⊥ answer, the protocol runs in input-specific time. The reason we can
overcome the worst-case curse in this manner is that interaction is allowed. In this work,
we focus on non-interactive tasks, which are more challenging.

1.2 Our Assumptions

Our schemes rely on two assumptions: extractable witness encryption and the existence
of SNARKs.
Extractable Witness Encryption. The recent work of Garg et al. [GGSW13] constructs
a new primitive called witness encryption (WE). Such a scheme is associated with some
NP complete language L. Given an instance x and a message m, any user can encrypt m
with respect to x; this is denoted by Encx(m). Given Encx(m) and a valid witness w
of x, any user can decrypt x efficiently. On the other hand, if x is not in the language,
the scheme provides semantic security.

In our work, we additionally assume that the [GGSW13] scheme is extractable: if
an adversary can break semantic security for an instance x, an extractor can extract the
witness for x. Such an extractable scheme can be constructed from an extractable version
of the [GGSW13] assumption (called extractable DGE No-Exact-Cover assumption) so
we strengthen their assumption. While we state our assumption in a decisional form for
simplicity, the search version of the assumption suffices for our schemes because we can
use hard-core predicates to mask the one bit we care to hide (m).

We validate our assumption in the generic group model: we prove that no polynomial-
time adversary can break the assumption in the generic group model where adversaries
can only use multilinear map operations as a black-box. We refer the reader to our full
paper for more details on the assumption, and emphasize that we view our result as a



reduction from any extractable witness encryption scheme, as opposed to a result that is
tied to the specific computational assumption.

We show that, interestingly, extractable witness encryption is highly related to another
task that was already well-known in the cryptographic literature: (weakly) obfuscating
point-filter functions, defined by Goldwasser and Kalai [GK05]. Informally, point-filter
functions for a language L ∈ NP with witness relation RL are a class of functions
{δx,b}, indexed by a string x ∈ {0, 1}n and a bit b ∈ {0, 1} that behave as follows:

δx,b(w) =

{
(x, b), if (x,w) ∈ RL,
(x,⊥), otherwise.

It can be shown that extractable witness encryption is indeed equivalent to (weakly)
obfuscating point filter function. Thus, the former implies the consequences of the
later regarding the impossibility of obfuscation for a wide range of natural tasks based
on [GK05]. See our full paper for more details.
The existence of SNARKs (Succinct Non-interactive Arguments of Knowledge).
Bitansky et al. [BCCT13] construct SNARKs in a generic way (via a reduction from
weaker SNARKs). Their work is based on “knowledge of exponent assumptions”, and
the existence of collision resistant hash functions.

If we remove SNARKs from our constructions, we still obtain novel schemes over
prior work because the sizes of the function keys and of the garbling remain short,
linear in the size of the Turing machine. Without SNARKs, though, the loss is that the
ciphertext size grows with the running time of the Turing machines.

Our FE, FHE, and reusable garbling schemes additionally rely on the existence of a
fully homomorphic encryption scheme, which can be obtained from the LWE assumption
with circular security [BGV12].

1.3 Techniques overview

ABE for Turing machines. The main technical challenge in this work is constructing
an ABE scheme for Turing machines.

Our construction starts with witness encryption and a signature scheme. The function
key for a Turing machine M is simply a signature of M . The master secret and public
keys generated during setup are the secret and verification keys (SigSK,VK) for the
signature scheme. To encrypt a bit b with respect to a (public) attribute x, we compute a
witness encryption Encx∗(b), where x∗ = (x,VK) and where a valid witness for x∗ is a
tuple (M,σ, π), where M is a Turing machine, σ is a signature of M using SigSK, and
π the tableau of the computation, which can be interpreted as a “proof” that M(x) = 1.

Loosely speaking, the security proof proceeds as follows. Suppose there exists a
successful adversaryA for our ABE scheme. Then, given Encx∗(b), the ABE encryption
of a random bit b, and several secret keys skMi = σi such that Mi(x) = 0, A succeeds
in guessing b with non-negligible advantage. The security of the extractable witness
encryption implies that there exists a poly-time extractor that extracts a valid witness
from A with non-negligible probability. Recall that a valid witness is a triplet of the
form (M∗, σ∗, π∗) where σ∗ is a valid signature of the Turing machine M∗ and π∗ is a



proof that M∗(x) = 1. Note that since Mi(x) = 0 for every i, it must be the case that
M∗ ̸= M , which contradicts the unforgeability of the signature scheme.

Unfortunately, this idea does not quite give us the results we want. The reason is
that the time to check a witness for an instance x∗ = (x,VK) is very long because it
involves checking the tableau π of M on input x. In this case, the witness encryption
of Garg et al. [GGSW13] is not “succinct”: the size of the ciphertext Encx∗(b) grows
with the time to check the witness. Thus, the approach above gives us a non-succinct
ABE scheme, where the size of a ciphertext depends on the worst-case runtime of any
(allowed) Turing machine.

To obtain succinctness, we use a SNARG scheme [BCCT13]. A SNARG has a
common reference string crs, which is assumed to be securely generated. Any user can
prove any NP statement by computing a proof π. The length of the crs, the length of
the proofs, and the time to verify a proof are all short: depending only on the security
parameter, and not on the time to verify the NP witness.

Encx∗(b) now proceeds as follows. It generates a crs corresponding the underlying
SNARG scheme. To encrypt a bit b w.r.t. a public attribute x, it simply computes
Encx∗(b), where x∗ is now (x, crs,VK). A valid witness for x∗ is a tuple of the form
(M,σ, π) where σ is a valid signature of the Turing machine M , and π is a succinct
SNARG proof that M(x) = 1. The fact that π can be verified in a short time makes the
WE ciphertext succinct, as desired.

This gives us an ABE for Turing machines. Because SNARKs are for NP, our
resulting ABE scheme is for any class of Turing machines for which there exists a
polynomial that upper bounds the runtime of all machines in the class.

There scheme still has a slight drawback: it is succinct only for uniform Turing
machines. If the Turing machines have non-uniform advice as large as the runtime,
the resulting ABE ciphertexts are non-succinct. We would like our ABE scheme to
be a generalization of previous work on circuits, and in particular to be succinct for
any non-uniform Turing machine. To this end, we replace the SNARG scheme with a
SNARK scheme (succinct non-interactive argument of knowledge) scheme. SNARKs
have the additional property that if an adversary A succeeds in proving that x ∈ L, an
extractor can extract a corresponding witness w from A.

The final ABE scheme is as before, except that now a valid witness for x∗ =
(x, crs,VK) is a pair (π, t) (without the Turing machine and the signature), where π is
a proof-of-knowledge of a Turing machine M and a signature σ such that σ is a valid
signature of M and M(x) = 1. Now the witness size and the verification time is efficient
(independent of the size of the Turing machine or its runtime). We refer the reader to
Sec. 3 for more details on our ABE scheme and the security proof.

Functional encryption for Turing machines. We use the reduction of Goldwasser
et al. [GKP+13b] to construct a (single-key and succinct) FE scheme from FHE and
ABE. Their reduction is for circuits so we need to adapt it to Turing machines. The
main technical issue is that we need to perform the FHE evaluation of a Turing machine
M . To achieve this goal, we construct a new Turing machine MFHE that evaluates
homomorphically the transition function of M for a t number of times. The problem
is that MFHE needs to know what inputs to read from M ’s tape to feed into the FHE
evaluation, but the movement of the head in M is an output of the transition function, so



it is encrypted with FHE and unavailable to MFHE. To solve this issue, we transform M
into an oblivious Turing machine using Pippenger-Fischer [PF79]: now the movement
of the head follows a fixed and known pattern independent of the input to M .

If one allows the runtime of M on x to leak, we can provide a second FE scheme FE∗

whose decryption algorithm runs in input-specific time. We construct FE∗ as a reduction
from our FE scheme above using the idea of [GKP+13b]: instead of generating a function
key skM for a Turing machine M , we generate many function keys skM1 , . . . , skMlog Bn

,
where Mi is the Turing machine that runs M for 2i time steps, and either outputs the
output of M or⊥ if M did not halt in 2i steps; the parameter Bn is a global bound on the
runtime of the Turing machines we consider. To generate logBn function keys, we use
logBn instances of our single-key functional encryption scheme above, by generating
fresh keys for every instance of it. Moreover, since the underlying functional encryption
scheme is for Turing machines, generating skMi can be done very efficiently, in time
polynomial in the size of Mi, independent on the runtime of Mi.

On input a ciphertext Enc(x) and a function key (skM1
, . . . , skMlog B

) for the Turing
machine M , the decryption algorithm first tries to decrypt with skM1

, then tries with
skM2 , and so on. The first time that it succeeds it stops. Note that the runtime of this
decryption algorithm depends on the runtime of M on the specific input x, denoted
by tx. This is the case since it runs the original decryption algorithm (which runs in the
worst-case) only with the secret keys skM1

, . . . , skMlog tx
, and all the Turing machines

M1, . . . ,Mlog tx run in time at most tx.

Reusable garbling and a variant of FHE for Turing machines. In our full version,
we show how to construct these schemes from our FE scheme using a similar reduction
to [GKP+13b].

Other related work. We discuss other related work in the full version of our paper.

1.4 Paper Roadmap

The rest of this paper is organized as follows. We provide definitions for extractable
witness encryption and ABE in Sec. 2, and refer the reader to our full paper [GKP+13a]
for other relevant preliminaries. Next, Sec. 3 presents our ABE scheme for Turing
machines, which we prove formally in our full paper. Finally, Sections 4 and 4.2 show
how to construct functional encryption for Turing machines. Due to space constraints, in
our full paper [GKP+13a], we present the construction of extractable witness encryption
and prove the new assumption in the generic group model, we show that extractable
witness encryption implies (weakly) obfuscatable point filter functions and deduce
implications to obfuscation, and we present the construction of FHE for Turing machines.

2 Preliminaries

In this section, we define extractable witness encryption and ABE for Turing machines,
and refer the reader to our full paper for definitions of FE for Turing machines, SNARKs,
and other relevant preliminaries.



2.1 Notation

We let κ denote the security parameter throughout this paper. For a distribution D, we
say x ← D when x is sampled from the distribution D. If S is a finite set, by x ← S,
we mean x is sampled from the uniform distribution over the set S.

We say that a function f is negligible in an input parameter κ, if for all d > 0, there
exists K such that for all κ > K, f(κ) < k−d. For brevity, we write: for all sufficiently
large κ, f(κ) = negl(κ).

2.2 Witness encryption (WE)

The syntax of WE is as defined by Garg et al. [GGSW13], but the security definition has
an additional extractability property.

Definition 1 (Witness Encryption). A witness encryption for a language L ∈ NP
with corresponding witness relation RL consists of two polynomial-time algorithms
(WE.Enc,WE.Dec) such that

– Encryption WE.Enc(1κ, x, b): takes as input a security parameter κ, x ∈ {0, 1}∗
and a bit b and outputs a ciphertext ct.

– Decryption WE.Dec(w, ct): takes as input w ∈ {0, 1}∗ and a ciphertext ct and
outputs a bit b or the symbol ⊥.

Correctness: For all (x,w) ∈ RL, for all bits b, for every sufficiently large security
parameter κ:

Pr[ct←WE.Enc(1κ, x, b) : WE.Dec(w, ct) = b] = 1− negl(κ).

Definition 2 (Extractable security). A witness encryption scheme for a language L ∈
NP is secure if for all p.p.t. adversaries A, and all poly q, there exists a p.p.t. extractor
E and a poly p, such that for all auxiliary inputs z and for all x ∈ {0, 1}∗, the following
holds:

Pr[b← {0, 1}; ct←WE.Enc(1κ, x, b) : A(x, ct, z) = b] ≥ 1/2 + 1/q(|x|)
⇒ Pr[E(x, z) = w : (x,w) ∈ RL] ≥ 1/p(|x|).

2.3 Attribute-based encryption (ABE) for Turing machines

We define the syntax and security of ABE for Turing machines.

Definition 3 (ABE for Turing machines). An attribute-based encryption scheme ABE
for a class of Turing machines T is a tuple of four algorithms (ABE.Setup, ABE.KeyGen,
ABE.Enc, ABE.Dec), the first three of which are p.p.t., such that:

– ABE.Setup(1κ) takes as input the security parameter 1κ and outputs a master public
key mpk and a master secret key msk.

– ABE.KeyGen(msk,M) takes as input the master secret key msk, a Turing machine
M ∈ T , and outputs a function key skM .



– ABE.Enc(mpk, x, b) takes as input the master public key mpk, an attribute x ∈
{0, 1}∗, and a bit b and outputs a ciphertext ct.

– ABE.Dec(skM , ct) takes as input a key skM and a ciphertext c and outputs a bit.

Correctness. For all Turing machines M ∈ T , for all attributes x ∈ {0, 1}∗, for all bits
b, for κ sufficiently large,

Pr[(mpk,msk)← ABE.Setup(1κ); fskf ← ABE.KeyGen(fmsk, f);

c← ABE.Enc(fmpk, x) : ABE.Dec(fskf , 1
t, c) = f(x)]

= 1− negl(κ).

Efficiency. There exists a polynomial p such that the running time of ABE.Dec(skM , ct)
is at most p(κ, runtime(M,x)).

The efficiency property states that the work of the decryption depends on the run time
of a Turing machine on the attribute. Since ABE.Setup, ABE.KeyGen and ABE.Enc are
p.p.t.-s, their running time depends only on the security parameter and not on the running
time of the Turing machines (except for a logarithmic dependency on it).

Our security definition is full (the adversary can choose the challenge attribute based
on the public key) and non-adaptive (the adversary chooses the Turing machines before
getting the challenge ciphertext).

Definition 4 (Attribute-based encryption security). Let ABE be an attribute-based
encryption scheme for a class of Turing machines T and let A = (A1, A2) be an
adversary. Consider the following experiment.

ExpABE(1
κ):

1: (mpk,msk)← ABE.Setup(1κ)

2: (x, state)← A
ABE.KeyGen(msk,·)
1 (mpk)

3: Choose a bit b at random and let ct← ABE.Enc(mpk, x, b).
4: b′ ← A2(state, ct).
5: If, b = b′ and for all Turing machines M that A requests to oracle

ABE.KeyGen(msk, ·), we have M(x) = 0, output 1, else output 0.

We say that the scheme is a secure attribute-based encryption for Turing machines if
for all p.p.t. adversaries A, and for all sufficiently large κ:

AdvABE,A := |Pr[ExpABE,A(1κ) = 1]− 1/2| = negl(κ).

3 Attribute-based Encryption for Turing Machines and RAMs

We construct an ABE scheme for Turing machines based on three ingredients:

1. an extractable witness encryption scheme WE = (WE.Enc,WE.Dec) based on the
work of [GGSW13], on which we elaborate in Sec. 2.2,



2. a succinct argument of knowledge scheme, SNARK = (SNARK.Gen, SNARK.Prover,
SNARK.Verify), based on the work of [BCCT13],

3. an existentially unforgeable signature scheme secure against adaptive chosen message
attacks SIG = (SIG.KeyGen,SIG.Sign, SIG.Verify) [GMR88].

Theorem 5. Assuming the above three primitives, there exists a secure attribute-based
encryption scheme (as per Def. 4) for any class of (uniform or non-uniform) Turing
machines T , for which there exists a polynomial p such that the runtime of every machine
in T is upper-bounded by p.

The p restriction comes from the fact that SNARKs are for NP. From now on,
for brevity, we will refer to such a class by “a class of Turing machines with runtime
upper-bounded by some polynomial".

Corollary 1. There exists a secure attribute-based encryption scheme for any class of
(uniform or non-uniform) Turing machines whose runtime is upper-bounded by some
polynomial under the extractable DGE No-Exact-Cover assumption, “knowledge of
exponent assumption”, and the existence of collision-resistant hash functions (Sec. 1.2).

3.1 Construction preliminaries

We advise the reader to recall the intuition we provided in technique overview, Sec. 1.3.
The language L for SNARK. We define L by defining its relation, RL. Let RL be
the following instance-witness relation: the instance is of the form y = (VK, x, t)
(a verification key VK for a signature scheme, an input x, and a time bound t)
and the witness is of the form w = (M,σ), for M a Turing machine and σ a
signature. Then, (y, w) ∈ RL iff SIG.Verify(VK,M, σ) = 1 and M halts on x in
at most t steps and outputs one. Moreover, t < p(|x|), where p is a polynomial
upper-bound on the runtime of every Turing machine in the class of interest. Let
(SNARK.Gen,SNARK.Prover,SNARK.Verify) be a SNARK system for L.
The Language L∗ for WE. Based on the above language L and the SNARK system
(SNARK.Gen, SNARK.Prover, SNARK.Verify) for L, we define a language L∗ for the
witness encryption scheme using the witness relation RL∗ as follows:

RL∗
[
x∗ = (x, crs,VK), w∗ = (π, t)

]
= 1 iff SNARK.Verify(crs, (VK, x, t), π) = 1.

Let WE = (WE.Enc,WE.Dec) be an extractable witness encryption scheme for the
witness relation RL∗ .

3.2 Construction of ABE for Turing machines

Our construction of ABE = (ABE.Setup, ABE.KeyGen, ABE.Enc, ABE.Dec) for Turing
machines proceeds as follows. Let T be the class of (uniform or non-uniform) polynomial
time Turing machines for the ABE scheme.
Setup ABE.Setup(1κ) where κ is the security parameter:



1. Sample a verification key / signing key pair (VK,SigSK)← SIG.KeyGen(1κ), and
output mpk := VK and msk := SigSK.

Encryption ABE.Enc(mpk, x, b) where mpk = VK, x ∈ {0, 1}∗ and b ∈ {0, 1}:
1. Run the SNARK generator SNARK.Gen to get crs← SNARK.Gen(1κ).

2. Let x∗ = (x, crs,VK). Compute ctWE ←WE.Enc(1κ, x∗, b).

3. Output ct := (x∗, ctWE).

Key generation ABE.KeyGen(msk,M) where M is a Turing machine:

1. Compute σ ← SIG.Sign(SigSK,M) and output skM := (M,σ).

Decryption ABE.Dec(skM , ct) where skM = (M,σ) and ct = (x∗ = (x, crs,VK), ctWE):

1. Run M on x and let t be the number of steps after which M halts (note that M is
a polynomial time Turing machine so it must halt within a polynomial number of
steps).

2. If M(x) = 0, output ⊥ and exit.

3. Otherwise, let w := (M,σ) and note that
(
(VK, x, t), w

)
∈ RL.

4. Run SNARK.Prover to obtain a proof π ← SNARK.Prover(crs, (VK, x, t), w).

5. Let w∗ = (π, t). Compute and output WE.Dec(w∗, ctWE).

Proof Intuition. We prove Th. 5 formally in our full version, and we only provide
intuition here for the security proof. We start by assuming the ABE scheme is not
secure, and reach a contradiction by showing that one can forge signatures using the
extractability properties of the WE and SNARK schemes. Therefore, assume there is
an adversary for ABE, AABE = (AABE,1, AABE,2). We will show how to construct an
adversary AWE for the WE scheme: AWE simply embeds its challenge ciphertext into
the ciphertext for AABE and lets AABE decide.

Once we have the adversary AWE, by the security definition of WE, we also have an
extractor EWE which on input x∗, outputs a valid witness w∗ = (π, t) of (x∗, w∗) ∈ RL∗ .
Using EWE, we construct a prover P ∗ for the SNARK system that is able to construct
an instance y = (VK, x, t) and a proof π for which the SNARK verifier accepts. By
the proof of knowledge property of the SNARK, there exists an extractor ESNARK

that outputs a witness for the SNARK language L, namely w = (M,σ), such that
(y, w) ∈ RL. This means that M(x) = 1 and that σ is a correct signature on M ; but
AABE only asked for signatures of Turing machines Mi for which Mi(x) = 0. Therefore,
(M,σ) are a new signature pair and thus we used P ∗ and ESNARK to forge a signature
and reach a contradiction.

3.3 ABE for RAMs

In this section, we discuss how to construct ABE for RAMs. This construction is similar
to our construction for Turing machines, so we only mention the main differences here:
the language L for the SNARK and ABE.KeyGen. See our full paper for more details.
Let (M,D) be a RAM pair: a RAM machine M and memory D.



The language L for SNARK. Let RL be the following instance-witness relation:
the instance is of the form y = (VK, x, t) (a verification key VK for a signature
scheme, an input x, and a time bound t) and the witness is of the form w =
(r,M, σ(r,M), S, {i,Di, σ(r,i,Di)}i∈S), where r is a nonce, M a machine, σ(M,r) is
a signature on the description of the machine M and the nonce r, S is a set of integers
that represent memory addresses (the memory accesses M makes to D), Di is the value
in the i-th slot of memory and σr,i,Di

is a signature on r and Di. Then, (y, w) ∈ RL iff

1. SIG.Verify(VK, (r,M), σ(r,M)) = 1,
2. SIG.Verify(VK, (r, i,Di), σ(r,i,Di)) = 1 for all i ∈ S,
3. M halts on x in at most t, all of its memory queries are in S, and outputs one.

Key generation ABE.KeyGen(msk,M,D) where M is a RAM and D its memory:

1. Choose r ← {0, 1}poly(κ).
2. Compute σ(r,M) ← SIG.Sign(SigSK, (r,M)).
3. For every i ∈ 1 . . . |D|, compute σ(r,i,Di) ← SIG.Sign(SigSK, (r, i,Di)).
4. Output (r,M, σ(r,M), {Di, σ(r,i,Di)}

|D|
i=1).

Key generation runtime and the function key size are polynomial in the description
of the RAM and the size of |D|, but they do not depend on the runtime of the RAM. (As
a remark, to obtain a slightly shorter key size, one can sign a Merkle tree over the entries
in D.) The time to decrypt also only depends on the time to run the RAM and not on its
worst case running time or on the memory size.

3.4 Beyond ABE for Turing machines and RAMs

Interestingly, it turns out the expressivity of our ABE construction goes beyond that of
Turing machines and RAMs. The ABE construction can be easily changed to allow the
evaluator to provide an additional input α to the computation. That is, given a function
key skM , a ciphertext ctx,m, an evaluator can choose an input α by himself; then if
M(x, α) = 1, ABE.Dec outputs m, otherwise, it outputs ⊥. To construct such an ABE,
one only has to change the SNARK language L such that an instance has the form
(VK, x, t) and a witness is (M,σ, α) with M(x, α) = 1 and σ verifies M .

This extra input α makes the scheme significantly more expressive. We illustrate on
two examples. The first example allows the secret key owner to delegate the choice of
Turing machines to another user, say Alice, by issuing a function key for Alice; then Alice
can choose Turing machines of her choice to run on the ciphertexts, without contacting
the secret key owner. To construct this example, the secret key owner generates skUAlice

where UAlice is a universal circuit containing Alice’s public key. UAlice takes as input
α = (TM, σ(TM)) and x: it first checks that σ(TM) verifies with Alice’s public key as
being a signature of TM, and if so, it runs TM(x). Now Alice can choose any Turing
machine TM she wishes, and as long as she signs it, she will be able to evaluate it on the
ciphertext. In fact, the secret key owner can delegate the choice of Turing machines to
any group of people, and he can even express complex policies, e.g. “allow any Turing
machine that is signed by (Alice and Bob) or Chris”.

The second example is to run any approved RAM on any approved database, where
approved means that it was signed by the secret key owner. We do not elaborate further
on this construction and its applications in this short paper version.



4 Functional encryption for Turing machines

In this section we construct a (single-key and succinct) functional encryption scheme for
Turing machines. We refer the reader to our full paper for a definition of FE for Turing
machines.

Theorem 6. Assuming we have:

– an attribute-based encryption scheme for any class of (uniform or non-uniform)
Turing machines with running time upper-bounded by a polynomial, and

– a fully homomorphic encryption scheme,

there is a (single-key and succinct) functional encryption scheme for any class of (uniform
or non-uniform) Turing machines with running time upper-bounded by a polynomial.

Theorem 7. Assuming there exists a (single-key and succinct) functional encryption
scheme for any class of (uniform or non-uniform) Turing machines with running time
bounded by a polynomial, there is a (single-key and succinct) input-specific runtime
functional encryption scheme for any class of (uniform or non-uniform) Turing machines
with running time bounded by a polynomial.

Corollary 2. There exists a secure (single-key and succinct) functional encryption
scheme FE and a (single-key) input-specific runtime functional encryption scheme FE∗

for any class of (uniform or non-uniform) Turing machines with runtime bounded by
a polynomial under the extractable DGE No-Exact-Cover assumption, “knowledge of
exponent assumption”, and the LWE assumption with circular security (Sec. 1.2).

4.1 FE for Turing machines construction (FE)

Recall the construction overview provided in Sec. 1.3. We follow the reduction of
Goldwasser et al. [GKP+13b] who showed how to construct a (single-key and succinct)
functional encryption scheme from any ABE and FHE scheme, where functions were
modeled as circuits.

Our construction of FE = (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec) proceeds
similarly to the [GKP+13b] construction, with the main difference being that we work
with Turing machines instead of circuits. There are two places in the reduction where
the treatment of circuits is different from the treatment of Turing machines: in the use
of the ABE and FHE schemes. To adapt the reduction to Turing machines, we first use
our ABE for Turing machines scheme. Second, we need to construct a Turing machine
MFHE that performs the FHE evaluation of another Turing machine M . We only present
here the construction of MFHE and delegate the full FE construction to our full paper.

Based on the intuition provided in Sec. 1.3, we describe a compiler CompileFHE
that takes as input a Turing machine M and a number of steps t and produces a Turing
machine MFHE that computes the FHE evaluation of M for t steps. In the following, let
x̂ denote the FHE encryption of x.

Algorithm 1 (CompileFHE(M, t))



1. Use the Pippenger-Fischer transformation [PF79] for time bound t to transform M
into an oblivious Turing machine MO with head movement function next. next is
a function that takes as input i, the current step in the computation, and outputs
whether the head of MO should move left or right on the tape. The Turing machine
MO has a transition function δ: δ takes as input a tape input bit b, a state state and
outputs a new state state′, and the new content b′ for the new tape location which is
indicated by next.

2. Based on (MO, next), construct a new Turing machine MFHE that takes as input an
FHE public key hpk and an input encryption x̂. MFHE evaluates homomorphically
the transition function δ of MO for t steps. Each cell of the tape of MO corresponds
to the FHE encryption of the cell value for MFHE. At step i, MFHE maintains the
FHE encryption of the state of MO at time i: ŝtatei. At step i, MFHE takes as
input the encrypted bit from the input tape b̂ that the head currently points at, the
current encrypted state ŝtatei, and outputs an encrypted new state ̂statei+1 and a
new content b̂′. MFHE updates the current cell with b̂′ and then computes next(i) to
determine whether to move left or right.

3. Output the description of MFHE.

Note that the running time of CompileFHE and MFHE is polynomial in t.

4.2 Input-specific runtime functional encryption for Turing machines (FE∗)

In what follows we show how to convert a (single-key) functional encryption scheme for
Turing machines FE into one where the decryption algorithm, on input a function key
for M denoted fskM and FE.Enc(MPK, x), runs in time that depends on the runtime
of M on input x. Denote by FE∗ such a functional encryption scheme. We refer the
reader to Sec. 1.3 for the construction overview and to our full paper for the definition of
input-specific runtime functional encryption.
Setup FE∗.Setup(1κ):
1. Generate τ := logBn independent pair of keys for the FE scheme: (mski,mpki)←

FE.Setup(1κ).

2. Output MPK := (mpk1, . . . ,mpkτ ) and MSK := (msk1, . . . ,mskτ ).

Key Generation FE∗.KeyGen(MSK,M): with MSK = (msk1, . . . ,mskτ ).

1. Let Mi be the Turing machine that runs M for 2i steps and outputs M(x) if M
finishes in that number of steps, otherwise, it outputs ⊥. Let ti be the number of steps
Mi runs for.3

2. Let fskMi ← FE.KeyGen(mski,Mi, ti), for i = 1 . . . τ .

3. Output fskM := (fskM1 , . . . , fskMτ ).

Encryption FE∗.Enc(MPK, x) with MPK = (mpk1, . . . ,mpkτ )

1. Compute cti ← FE.Enc(mpki, x) for i = 1 . . . τ .

3 Note that ti may be slightly larger than 2i, since ti is the number of steps it takes to simulate a
Turing machine that runs for 2i steps.



2. Output ct := (ct1, . . . , ctτ ).

Decryption FE∗.Dec(fskM , ct): for fskM = (fskM1 , . . . , fskMτ ), ct = (ct1, . . . , ctτ ).

1. Starting with i = 1, repeat until v ̸= ⊥:

(a) v ← FE.Dec(fskMi , cti)

(b) i← i+ 1

2. Output v.

Based on this construction, we prove Th. 7 in our full paper.
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