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SUMMARY

The TOR kinase, which is present in the functionally
distinct complexes TORC1 and TORC2, is essential
for growth but associated with disease and aging.
Elucidation of how TOR influences life span will iden-
tify mechanisms of fundamental importance in aging
and TOR functions. Here we show that when TORC1
is inhibited genetically in C. elegans, SKN-1/Nrf, and
DAF-16/FoxO activate protective genes, and in-
crease stress resistance and longevity. SKN-1 also
upregulates TORC1 pathway gene expression in a
feedback loop. Rapamycin triggers a similar protec-
tive response in C. elegans and mice, but increases
worm life span dependent upon SKN-1 and not
DAF-16, apparently by interfering with TORC2
along with TORC1. TORC1, TORC2, and insulin/
IGF-1-like signaling regulate SKN-1 activity through
different mechanisms. We conclude that modulation
of SKN-1/Nrf and DAF-16/FoxO may be generally
important in the effects of TOR signaling in vivo
and that these transcription factors mediate an
opposing relationship between growth signals and
longevity.

INTRODUCTION

The TOR (target of rapamycin) kinase integrates nutrient and

anabolic signals to promote growth (Ma and Blenis, 2009; Wulls-

chleger et al., 2006; Zoncu et al., 2011). TOR is found in two

distinct complexes, TORC1 and TORC2 (Figure S1 available

online). Amino acid, oxygen, energy, and growth signals activate

TORC1, which phosphorylates a set of well-characterized sub-

strates to increase messenger RNA (mRNA) translation and

inhibit autophagy. The amino acid signal is transduced by heter-

odimeric Rag GTPases that recruit TORC1 to lysosomal mem-

branes, where it is activated by Rheb. Growth signals and
C

interaction with the ribosome activate TORC2, which in turn acti-

vates AKT, SGK, and related kinases (Oh et al., 2010; Zinzalla

et al., 2011; Zoncu et al., 2011).

TOR signaling is essential for growth and development,

but has also been implicated in diabetes, cardiac hypertrophy,

malignancies, neurodegenerative syndromes, other diseases,

and aging (Stanfel et al., 2009; Wullschleger et al., 2006; Zoncu

et al., 2011). TOR inhibitors have been approved or are under

investigation for treatment of several conditions, including

various cancers. These inhibitors include the immunosuppres-

sant rapamycin, which is widely used to combat kidney

rejection after transplantation. In model organisms ranging

from yeast to mice, inhibition of TOR signaling increases life

span (Bjedov et al., 2010; Harrison et al., 2009; Kapahi et al.,

2010; Kenyon, 2010; Selman et al., 2009; Stanfel et al., 2009).

TOR has also been implicated in dietary restriction (DR), an inter-

vention that extends life span and protects against chronic

disease. Rapamycin increases mouse life span even when

administered late in life (Harrison et al., 2009), suggesting that

pharmacological targeting of TOR signalingmight be a promising

antiaging strategy. However, rapamycin is associated with

insulin resistance as well as immunosuppression (Zoncu et al.,

2011; Lamming et al., 2012), making it important to identify

specific mechanisms downstream of rapamycin that affect

aging.

TOR inhibition, rapamycin, and DR seem to promote longevity

at least in part by reducingmRNA translation (Bjedov et al., 2010;

Kapahi et al., 2010; Kenyon, 2010; Stanfel et al., 2009; Zid et al.,

2009). A lower level of translation might be beneficial simply

because the burden of protein synthesis is decreased, but recent

evidence indicates that when translation is reduced protective

mechanisms are mobilized, through translation of particular

genes being preserved or even increased (Kapahi et al., 2010;

Rogers et al., 2011; Stanfel et al., 2009; Zid et al., 2009). Genetic

interference with translation initiation increases life span in

C. elegans, and some studies indicate that this effect requires

the conserved transcription factors DAF-16/FoxO (Hansen

et al., 2007; Henderson et al., 2006; Rogers et al., 2011;

Tohyama et al., 2008; Wang et al., 2010) and SKN-1/Nrf (Wang

et al., 2010). This suggests that the benefits of reduced protein
ell Metabolism 15, 713–724, May 2, 2012 ª2012 Elsevier Inc. 713
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Figure 1. Genetic TORC1 Inhibition Increases Stress Resistance through SKN-1 and DAF-16

(A) Increased autophagy after TORC1-pathway gene knockdown. LGG-1::GFP puncta were counted in seam cells (n) in day 3 adults. ***p% 0.0001, **p < 0.001,

unpaired t test.

(B) Decreased protein synthesis after genetic TORC1 inhibition or rapamycin treatment. *p % 0.005, Student’s one-sided t test. Error bars represent ± SEM.

(C) TORC1 inhibition by ragc-1 RNAi increased oxidative stress (TBHP) resistance dependent upon skn-1 but not daf-16. The skn-1(zu67) and daf-16(mgDf47)

alleles were analyzed in all experiments unless otherwise indicated. In all survival plots, ext. refers to mean survival extension associated with the indicated

intervention, and WT to the wild-type. The y axis indicates proportion surviving.

(D) Increased resistance to heat (35�C) is mediated by both skn-1 and daf-16.

Representative experiments are shown in (A)–(D). See also Tables S1 and S2 for statistics and stress resistance analyses of additional TORC1 pathway genes and

Figure S1.
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synthesis might also involve modulation of transcription. DAF-16

and SKN-1 regulate genes that protect against environmental,

metabolic, and proteotoxic stress, and promote longevity in

various species (Kenyon, 2010; Kwon et al., 2010; Li et al.,

2011; Oliveira et al., 2009; Sykiotis and Bohmann, 2010; Tullet

et al., 2008). In C. elegans, they are each inhibited by insulin/

IGF-1-like signaling (IIS), another growth-related pathway that

influences aging across metazoa (Kenyon, 2010; Tullet et al.,

2008).

The genetic evidence that DAF-16 and SKN-1 are important

for the benefits of reducing translation raises the question of

whether TOR signaling might actually regulate these transcrip-

tion factors. It is unknown whether TOR affects SKN-1/Nrf

activity, but it is generally accepted that TOR influences aging

by acting independently from DAF-16/FoxO and IIS, in large

part because daf-16 is not needed for life span to be extended

by reduced TOR kinase (LET-363) activity or most DR regimens

(Bishop and Guarente, 2007; Hansen et al., 2007; Honjoh et al.,

2009; Kapahi et al., 2010; Kenyon, 2010; Panowski et al., 2007;

Sheaffer et al., 2008; Vellai et al., 2003). Lack of the TOR kinase

would eliminate both TORC1 and TORC2, however, making it

critical to establish how TORC1 and TORC2 affect longevity

independently of each other.

Herewe have investigated how longevity is affected by genetic

TORC1 or TORC2 inhibition and, for the first time in C. elegans,

rapamycin. We find that life span is increased in a SKN-1-depen-
714 Cell Metabolism 15, 713–724, May 2, 2012 ª2012 Elsevier Inc.
dent manner when either TOR pathway is inhibited. DAF-16 is

also required for life span to be extended by genetic inhibition

of TORC1, but not TORC2. Genetic interference with TORC1

results in a SKN-1- and DAF-16-mediated transcriptional re-

sponse that may be triggered by lower levels of translation.

Rapamycin induces a similar response but extends life span

independently of daf-16, apparently by inhibiting both TORC1

and TORC2. We conclude that both SKN-1/Nrf and DAF-16/

FoxO are opposed by TOR signaling, and have a central role in

its influence on aging.

RESULTS

SKN-1/Nrf and DAF-16/FoxO Are Required for Stress
Resistance and Longevity fromReduced TORC1 Activity
To inhibit TORC1 but not TORC2, and to obtain results that were

not confounded by its developmental functions (Jia et al., 2004;

Schreiber et al., 2010), we used RNA interference (RNAi)

to knock down the TORC1-specific genes daf-15 (Raptor) and

rheb-1 (Rheb), and the conserved Rag GTPases raga-1 and

ragc-1 (Figure S1) only during adulthood. We monitored

TORC1 activity by examining autophagy and translation. The

GFP-fused vacuolar protein LGG-1 marks autophagic vesicles.

LGG-1 puncta were increased by knockdown of the insulin

receptor DAF-2, as described (Meléndez et al., 2003), and by

ragc-1 or daf-15 RNAi, as predicted (Figures 1A and S1). In
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contrast, autophagy was reduced by knockdown of the S6

kinase RSKS-1, which increases translation downstream of

TORC1 but also promotes autophagy (Scott et al., 2004). As ex-

pected, ragc-1 RNAi decreased overall mRNA translation, as

measured by 35S methionine incorporation (Figure 1B).

Knockdown of each TORC1 pathway gene that we examined

(raga-1, ragc-1, rheb-1, daf-15) dramatically enhanced stress

tolerance. skn-1 but not daf-16was required for increased resis-

tance to the oxidizing agent tert-butyl hydrogen peroxide (TBHP)

(Figure 1C and Table S1). This result mimicked the effect of inhib-

iting translation initiation (Wang et al., 2010). Interference with

TORC1 by ragc-1 RNAi increased heat resistance in daf-16

and skn-1 mutants, but not a skn-1; daf-16 double mutant, indi-

cating involvement of both daf-16 and skn-1 (Figure 1D and

Table S2). The increases in stress resistance that result from

genetic TORC1 inhibition are therefore mediated by both

SKN-1 and DAF-16, with SKN-1 being essential under TBHP

oxidative stress conditions.

Adulthood knockdown of each TORC1 pathway gene that we

tested increased life span (Figures 2A and 2B, Tables S3 and S4).

Reduced TORC1 activity also delayed the age-associated

decline in two health span indicators, fast movements and

pharyngeal pumping, indicating that aging was slowed (Figures

2C and 2D). In most experiments, knockdown of TORC1

pathway genes failed to increase life span in a skn-1mutant (Fig-

ure 2A and Tables S3 and S4). Surprisingly, RNAi against these

four genes also did not increase life span in daf-16mutants (Fig-

ure 2B and Tables S3 and S4), in contrast to the daf-16-indepen-

dent longevity associated with TOR kinase inhibition (Hansen

et al., 2007; Sheaffer et al., 2008; Vellai et al., 2003). We obtained

similar findings with or without inclusion of fluorodeoxyuridine

(FUdR) to prevent offspring production (Tables S3 and S4). Life

span of the skn-1; daf-16 mutant was unaffected by raga-1

RNAi but increased by inhibition of mitochondrial genes (cco-1,

cyc-1; Tables S3 and S4), which involves a distinct longevity

pathway (Durieux et al., 2011; Kenyon, 2010). This indicates

that animals that lack SKN-1 and DAF-16 are not simply refrac-

tory to life span extension. Both SKN-1 and DAF-16 are therefore

required for the delays in aging that result from genetic TORC1

inhibition.

Somatic Effects of TORC1 on Longevity
Given that TORC1 promotes protein synthesis, and that inhibi-

tion of translation reduces fecundity (Hansen et al., 2007; Pan

et al., 2007), it is possible that TORC1 inhibition might increase

longevity indirectly, through effects on the germline. Reductions

in germline stem cell (GSC) number delay aging, presumably to

preserve the organism during adversity (Kenyon, 2010). When

the number ofC. elegansGSCs is reduced, DAF-16 accumulates

in intestinal nuclei. The accompanying longevity extensions

require DAF-16 and the ankyrin repeat protein KRI-1 (Kenyon,

2010).

Several lines of evidence indicate that genetic interference

with TORC1 or translation extends life span independently of

the GSC pathway. Fecundity and presumably GSC proliferation

were not impaired by adulthood knockdown of TORC1 pathway

genes (Figure 2E). Knockdown of raga-1 or the translation initia-

tion factors ifg-1 and eif-1 increased life span in the temperature-

sensitive (ts) germline-defective mutant glp-1(bn18), under
C

conditions where germ cell proliferation was blocked and life

span was extended (Figure 2F and Tables S3 and S4). Finally,

knockdown of either raga-1 or eif-1 extended the life span of

kri-1 mutants (Figure 2G and Tables S3 and S4), in which the

GSC pathway is blocked (Kenyon, 2010). In C. elegans, tissue-

specific RNAi can be performed in strainswhere the RNAi-defec-

tive mutation rde-1 is rescued in individual tissues (Qadota et al.,

2007). ragc-1RNAi increased life span in a strain in which RNAi is

restricted to the intestine (VP288; Figure 2H and Tables S3

and S4). This suggests that aging is delayed when amino acid

signaling to TORC1 is impaired specifically in the intestine, which

corresponds to the mammalian liver, gut, and adipose tissues

and plays a central role in metabolism and longevity (Kenyon,

2010).

TORC1 Inhibits SKN-1/Nrf-and DAF-16/FoxO-Driven
Transcription
Our results raise an important question: are activities of SKN-1

and DAF-16 actually controlled by TORC1, or does longevity

associated with reduced TORC1 activity simply depend upon

constitutive functions of these transcription factors? The finding

that TORC1 regulates SKN-1 and DAF-16 would strongly

support the model that they play central roles in its effects on

aging. When translation initiation factors are knocked down by

RNAi, reporters in which promoters of the conserved SKN-1/

Nrf targets gcs-1 and gst-4 are fused to GFP (gcs-1p::GFP and

gst-4::GFP) are activated in the intestine, and several SKN-1

target genes are upregulated (Wang et al., 2010). If SKN-1

targets are activated by interference with translation, then

genetic inhibition of TORC1 might induce a similar response.

Accordingly, knockdown of TORC1 pathway genes increased

intestinal gcs-1p::GFP and gst-4::GFP expression (Figures 3A,

S2A, and S2B). We next analyzed how expression of endoge-

nous SKN-1 target genes (Oliveira et al., 2009; Wang et al.,

2010) was affected when TORC1 was inhibited through Rag

gene RNAi (Figures 3B, S2C, and S2D). These and other

SKN-1 targets that we analyzed in this study represent various

stress-defense functions (glutathione synthesis, glutathione

S-transferase, ABC transporter, oxidoreductase, lysosomal pro-

tease). Rag gene RNAi increased expression of these genes in

a skn-1-dependent manner, but did not activate control genes

(Figures 3B, S2C, and S2D). We conclude that when TORC1 is

inhibited, SKN-1 induces a protective transcriptional response.

To investigate further whether TORC1 regulates transcription

of SKN-1 target genes, we used chromatin immunoprecipitation

(ChIP) to detect endogenous SKN-1 andmarkers of transcription

activity at the SKN-1 targets gst-10, sdz-8, and gcs-1. TORC1

inhibition (raga-1 RNAi) increased expression of these genes

(Figures 3C and S2E), accompanied by binding of endogenous

SKN-1 to their regulatory regions (Figures 3D and S2F). During

transcription initiation, RNA Polymerase II (Pol II) is phosphory-

lated on Ser 5 of its C-terminal domain (CTD) repeat (P-Ser5)

(Bentley, 2005). Phosphorylation of the CTD repeat on Ser 2

(P-Ser2) also marks transcription, particularly the elongation

step. TORC1 inhibition significantly increased P-Ser5 levels 50

of the gcs-1 coding region (Figure S2G). At gst-10 and sdz-8

we assayed P-Ser2, levels of whichwere similarly increased (Fig-

ure 3E). Together, the data indicate that TORC1 suppresses

SKN-1-mediated transcription of protective genes.
ell Metabolism 15, 713–724, May 2, 2012 ª2012 Elsevier Inc. 715



Figure 2. Life Span Extensions from Genetic TORC1 Inhibition Require SKN-1 and DAF-16

(A and B) skn-1 (A) and daf-16 (B) are required for genetic TORC1 inhibition to increase longevity.

(C and D) Rag GTPase knockdown increases health span. raga-1 or ragc-1 RNAi preserves fast body movements (C) and fast pharyngeal pumping (D). **p %

0.008, log rank for (C); **p < 0.007, *p < 0.08, log rank for (D).

(E) Brood size is unaffected by adulthood TORC1 pathway gene RNAi or rapamycin. n = 3–7 worms. Error bars represent ± SEM.

(F) Genetic TORC1 inhibition extends life span in glp-1(ts) animals independently of the GCS pathway. WT or glp-1(ts) animals were placed at the nonpermissive

temperature (25�C) from the L2 stage until adulthood, then maintained at 20�C, a protocol that prevents germ cell proliferation in glp-1(ts). raga-1 or control RNAi

was initiated at the beginning of adulthood.

(G) TORC1 inhibition by raga-1 RNAi extends life span in kri-1(ok1251) mutants, in which germ cell arrest fails to extend life span.

(H) TORC1 inhibition by intestinal ragc-1 RNAi. In VP288, rde-1 is rescued using the intestine-specific promoter nhx-2 (Durieux et al., 2011; Qadota et al., 2007).

Survival plots show composite or individual experiments that were performed in parallel. See also Table S3 for corresponding data, analyses of additional TORC1

pathway genes, and statistics, and Table S4 for individual experiments.
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A genome-scale ChIP analysis revealed that transgenically ex-

pressed SKN-1 is also present at potential regulatory regions of

the TORC1 pathway genes daf-15, rsks-1, raga-1, and ragc-1

(Niu et al., 2010), suggesting that SKN-1 and TORC1might regu-

late their expression. Supporting this idea, ragc-1 RNAi led to an

increase in TORC1 pathway gene expression that was largely

skn-1-dependent (Figure 3F). A reduction in TORC1 signaling
716 Cell Metabolism 15, 713–724, May 2, 2012 ª2012 Elsevier Inc.
therefore directs SKN-1 not only to activate protective genes,

but also to increase TORC1 pathway gene expression in a feed-

back loop.

We also investigated whether DAF-16 might be regulated by

TORC1 and translation inhibition. Knockdown of either Rag gene

led to daf-16-dependent activation of the conserved DAF-16/

FoxO target sod-3 (superoxide dismutase) in the intestine and



Figure 3. Genetic TORC1 Inhibition Induces SKN-1- and DAF-16-Mediated Transcription

(A) skn-1-dependent induction of the SKN-1 target promoter gcs-1 by Rag GTPase RNAi. ***p < 0.0001, **p < 0.001, chi2 method. L, low; M, medium; H, high.

Scoring is described in the Experimental Procedures.

(B) Activation of endogenous SKN-1 target genes by ragc-1 RNAi, measured by quantitative RT-PCR (qRT-PCR) in WT animals, or skn-1mutants. Fold induction

relative to WT vector control is shown for all qRT-PCR data.

(C–E) Transcriptional activation of the SKN-1 targets gst-10 and sdz-8 by raga-1 RNAi, detected by qRT-PCR (C) in lysates that were analyzed by ChIP in

(D and E). The relative ChIP signal is shown for endogenous SKN-1 (D) and Serine 2-phosphorylated Pol II CTD (Ser2) (E) along each gene. Positions indicated

below the graphs correspond to themiddle of each qPCR amplicon relative to the predicted transcription start site. The percent ChIP signal is relative to input and

normalized to the highest signal in each qPCR run (Glover-Cutter et al., 2008). Analyses of intergenic regions and control genes (data not shown) indicated that

signals of 25% and 10% represent thresholds for specific presence of SKN-1 and P-Ser2, respectively.

(F) Activation of endogenous TORC1 pathway genes by ragc-1 RNAi.

(G) Induction of endogenous DAF-16 target genes in response to ragc-1 RNAi. ***p < 0.001, **p < 0.01, *p < 0.05; NS, not significant. All qRT-PCR and ChIP

p values in this study were calculated by one- or two-sided t test, as appropriate.

Error bars represent ± SEM. See also Figure S2.
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to upregulation of multiple endogenous DAF-16 target genes

(Kwon et al., 2010; Murphy et al., 2003) (Figures 3G, S2H, and

S2I). These DAF-16 targets included small heat-shock protein

genes that have been implicated in longevity (sip-1, hsp-16.1,

hsp-12.6). Knockdown of the translation factor ifg-1 also acti-

vated many of these endogenous DAF-16 target genes, con-

sistent with the idea that translation suppression is involved (Fig-

ure S2J). DAF-16 reduced expression of rsks-1 and daf-15,

consistent with a previous report (Jia et al., 2004), and was not

required for genetic TORC1 inhibition to increase raga-1 expres-

sion (Figure 3F), indicating a distinct function from SKN-1 in

TORC1 pathway autoregulation. The data indicate that both

SKN-1 and DAF-16 induce protective gene expression when

TORC1 activity is reduced, and therefore that TORC1 signaling

opposes each of these two transcription factors.

Distinct Transcriptional Responses Regulated
by TORC1 and IIS
The essential role played by SKN-1 in TORC1-associated life

span extension was surprising, because SKN-1 is not as impor-
C

tant as DAF-16 for longevity that is associated with reduced IIS

(Tullet et al., 2008). Our results could be explained if TORC1

and IIS have distinct effects on SKN-1, DAF-16, and their

downstream target genes. IIS inhibits SKN-1 and DAF-16

through phosphorylation, so that they accumulate in nuclei

when IIS is reduced (Kenyon, 2010; Tullet et al., 2008) (i.e.,

daf-2 RNAi, Figures 4A–4C). In contrast, SKN-1 generally

did not accumulate in intestinal nuclei in response to genetic

inhibition of either TORC1 (Figures 4A, S3A, and S3B), or trans-

lation initiation (Wang et al., 2010). TORC1 might influence

whether SKN-1 that is already in the nucleus is recruited to

promoters, a mechanism that is feasible because SKN-1

occupies many promoters even under nonstressed conditions

(Niu et al., 2010). Multiple DAF-16 isoforms accumulate in

nuclei when IIS is reduced (Kenyon, 2010; Kwon et al., 2010),

but only a single DAF-16 isoform (DAF-16f) localized to intes-

tinal nuclei after genetic inhibition of TORC1 or translation initi-

ation (Figures 4B, 4C, and S3C–S3F). This DAF-16 isoform

appears to be particularly important for longevity (Kwon et al.,

2010).
ell Metabolism 15, 713–724, May 2, 2012 ª2012 Elsevier Inc. 717



Figure 4. Distinct Transcriptional Responses to Inhibition of TORC1 and IIS

(A) Genetic TORC1 inhibition generally does not increase intestinal SKN-1 nuclear occupancy. SKN-1B/C::GFP encodes two of three SKN-1 isoforms (An and

Blackwell, 2003). Scoring is described in the Experimental Procedures.

(B) Analysis of DAF-16 nuclear occupancy in the intestine. This transgene encodes the DAF-16a isoform (Henderson et al., 2006).

(C) Accumulation of DAF-16f (Kwon et al., 2010) in intestinal nuclei after genetic inhibition of TORC1 or translation.

(D) Transcriptional activation of certain genes after genetic inhibition of TORC1 but not IIS, analyzed by qRT-PCR.

***p < 0.0001; NS, not significant; chi2 method; L, low; M, medium; H, high for (A)–(C). ***p < 0.001, **p < 0.01, *p < 0.05 for (D). Error bars represent ± SEM. See

also Figure S3.
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Genetic inhibition of TORC1 or translation initiation also

induced transcription of various genes that are not activated

by reduced IIS. These included skn-1 and daf-16 themselves,

the superoxide dismutase sod-4, which is upregulated by DR

(Panowski et al., 2007), and the insulin peptide ins-7, which is

inhibited by SKN-1 and DAF-16 under normal and reduced IIS

conditions, respectively (Murphy et al., 2003; Oliveira et al.,

2009) (Figures 4D and S3G). We conclude that TORC1 and IIS

act through different mechanisms to regulate SKN-1 and

DAF-16, and thereby modulate transcription of overlapping but

distinct sets of downstream genes.

SKN-1/Nrf- and DAF-16/FoxO-Mediated Transcriptional
Responses to Rapamycin
Rapamycin has not been reported to affect C. elegans longevity

or stress defense, but our findings provided a readout of TORC1

inhibition that allowed us to optimize rapamycin concentration.

Exposure of adults to 100 mM rapamycin upregulated gcs-

1p::GFP in a skn-1-dependent manner, and reduced translation

(Figures 1B, 5A, and S4A). This rapamycin concentration is

higher than that used in cultured cells, but high concentrations of

compounds are often required for bioavailability in C. elegans

(Kokel et al., 2006). Importantly, rapamycin treatment upregu-
718 Cell Metabolism 15, 713–724, May 2, 2012 ª2012 Elsevier Inc.
lated genes that were activated by genetic TORC1 inhibition,

including skn-1, daf-16, and genes that encode TORC1 pathway

components (Figures 5B–5E, S4B, and S4C). Rapamycin did

not interfere with bacterial proliferation, indicating that these

effects did not derive artifactually from food limitation (Fig-

ure S4D). As seen with genetic TORC1 inhibition, rapamycin

did not increase the levels of SKN-1 in nuclei and affected only

the DAF-16f isoform (Figures 5F, S4E, and S4F). SKN-1 target

activation was accompanied by increased presence of SKN-1

and transcription markers at these genes, however, indicating

direct regulation by SKN-1 (Figures 5G–5I and S4G–S4L). Rapa-

mycin-induced activation of SKN-1 target genes was, in general,

SKN-1 dependent (Figure 5B), and DAF-16 target gene induction

was largely abolished in a daf-16 mutant (Figure 5E). We

conclude that rapamycin induces transcription of SKN-1- and

DAF-16-regulated protective genes.

We investigated whether the transcriptional responses to

rapamycin we have detected might be conserved in mammals.

Rapamycin-treated or control mice were fasted overnight to

control for feeding status and its effects on TORC1, and then

were either refed or not. In the liver, rapamycin increased ex-

pression of the FoxO target G6Pase under refeeding but not

fasting conditions, as described (Figures 5J and 5K) (Lamming



Figure 5. Rapamycin Activates SKN-1- and DAF-16-Mediated Transcription

(A) Activation of gcs-1::GFP by rapamycin. 100 mM (in the agar) was the lowest concentration at which near-maximal induction occurred. ***p < 0.0001; NS, not

significant; chi2 method. L, low; M, medium; H, high.

(B–E) Rapamycin-induced activation of endogenous SKN-1 target (B), TORC1 pathway (C), other TORC1-regulated (D), and DAF-16 target (E) genes, analyzed by

qRT-PCR.

(F) Rapamycin does not induce nuclear accumulation of SKN-1B/C::GFP in worms grown on OP50.

(G–I) Activation of SKN-1 target gene transcription by rapamycin, with accumulation of SKN-1 (H) and Serine 2-phosphorylated Pol II CTD (Ser2) (I) detected by

ChIP as in Figures 3C–3E.

(J and K) Rapamycin increases Nrf/SKN-1 target gene expression in mouse liver. Vehicle- or rapamycin-treated male mice were fasted (K), or fasted then refed (J)

(n = 5 for each) prior to analysis of RNA by qRT-PCR. Genes that are regulated by Nrf1 (Mt1) (Ohtsuji et al., 2008) or Nrf2 (others) (Malhotra et al., 2010; Wu et al.,

2011) were assayed along with the FoxO target G6Pase (Mihaylova et al., 2011).

***p < 0.001, **p < 0.01, *p < 0.05; NS, not significant (B–K). Error bars represent ± SEM. See also Figure S4.
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et al., 2012). Similarly, in the refed group, rapamycin upregulated

most of the ten Nrf/SKN-1 targets we tested, each of which is

involved in stress defense, with five genes reaching statistical

significance (Figure 5J). These effects were also largely attenu-

ated by fasting (Figure 5K). We conclude that rapamycin treat-

ment activates SKN-1/Nrf-regulated protective genes in vivo in

mammals, as we observed in C. elegans.

SKN-1/Nrf but Not DAF-16/FoxO Is Required for
Longevity from Rapamycin or TORC2 Inhibition
Exposure of adult C. elegans to rapamycin dramatically in-

creased both stress resistance and life span. Rapamycin in-

creased oxidative stress (TBHP) resistance dependent upon

skn-1 but not daf-16, and increased life span in a skn-1-depen-
C

dent manner, as seen with genetic TORC1 inhibition (Figure 6A

and Tables S1 and S5). In contrast, rapamycin robustly in-

creased life span in two daf-16 mutants (mgDf47 and mu86).

Similar results were obtained with or without FUdR, and with

growth on either the standard strain OP50 or the feeding RNAi

strain HT115 (Table S5). The daf-16 independence of longevity

deriving from adulthood rapamycin treatment, together with

our finding that rapamycin did not impair fecundity (Figure 2E),

argued that rapamycin does not increase life span through the

GSC pathway.

Our finding that rapamycin increased life span independently

of daf-16 indicates that rapamycin influences an additional

longevity pathway besides TORC1, and parallels previous anal-

yses of the TOR kinase, in which daf-16 was not required
ell Metabolism 15, 713–724, May 2, 2012 ª2012 Elsevier Inc. 719



Figure 6. Rapamycin-Induced Life Span Extension May Involve TORC1 and TORC2

(A) Longevity from rapamycin requires skn-1 but not daf-16.

(B and C) TORC2 inhibition (rict-1 RNAi) increases life span dependent upon skn-1 (B) but not daf-16 (C).

(D) rict-1 RNAi extends life span in VP288, in which RNAi is active specifically in the intestine (see the main text). Representative (rapamycin) or composite (rict-1)

experiments are shown, with statistics and additional analyses presented in Tables S6 and S7.

(E) TORC2 or TOR kinase (let-363) inhibition by feeding RNAi increases SKN-1 nuclear occupancy.

(F and G) SKN-1 nuclear accumulation in rict-1 mutants (F) and after rapamycin treatment (G) depends upon the food source.

***p < 0.0001; NS, not significant; chi2 method. L, low; M, medium; H, high. Error bars represent ± SEM. See also Tables S5–S7.
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(Hansen et al., 2007; Sheaffer et al., 2008; Vellai et al., 2003).

Although rapamycin is generally considered to be a TORC1

inhibitor, in some mammalian cell lines prolonged rapamycin

treatment also interferes with TORC2, apparently by physically

disrupting the TORC2 complex (Zoncu et al., 2011). Recently

rapamycin has also been observed to disrupt TORC2 in vivo in

multiple tissues in the mouse (Lamming et al., 2012). Our results

could be reconciled with the C. elegans TOR kinase literature if

(1) rapamycin interferes with both TORC1 and TORC2 in

C. elegans, as would be the case for TOR loss, (2) TORC2 inhibi-

tion increases life span, and (3) the life span extension associ-

ated with TORC2 inhibition requires skn-1 but not daf-16.
720 Cell Metabolism 15, 713–724, May 2, 2012 ª2012 Elsevier Inc.
C. elegans with mutations in the TORC2 complex gene rict-1

(Rictor, Figure S1) grow slowly and have a small body size, and

live slightly longer than WT when maintained on ‘‘rich’’ food

such as the RNAi feeding strain HT115 and at elevated temper-

ature (25�C) (Soukas et al., 2009). We investigated whether

TORC2 inhibition might increase longevity at a lower tempera-

ture (20�C), and when TORC2 activity was reduced by adulthood

rict-1 RNAi, a strategy that would bypass developmental func-

tions of TORC2. Under these conditions, rict-1 RNAi increased

life span substantially, dependent upon skn-1 (Figure 6B and

Tables S6 and S7). Importantly, daf-16 was not required for life

span to be increased by rict-1 RNAi, or when we blocked both
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TORC1 and TORC2 by ragc-1; rict-1 RNAi (Figure 6C and Tables

S6 and S7). Our results suggest that the daf-16-independent

longevity associated with TOR kinase (let-363) loss (Hansen

et al., 2007; Sheaffer et al., 2008; Vellai et al., 2003) is mediated

by lack of TORC2, not TORC1 and that the effects of rapamycin

we observed may also involve inhibition of both TORC1 and

TORC2. rict-1 RNAi extended life span in the intestine-specific

RNAi strain VP288 (Figure 6D and Tables S6 and S7), indicating

that TORC2, like TORC1, modulates life span at least in part by

acting in the intestine.

Given the importance of SKN-1 for the life span increases

associated with TORC2 inhibition, we investigated whether

TORC2 influences SKN-1 nuclear accumulation. Genetic evi-

dence suggests that in C. elegans, as in mammals, TORC2

increases activity of the AKT and SGK-1 kinases, which phos-

phorylate SKN-1 and inhibit its accumulation in intestinal nuclei

(Figure S1) (Soukas et al., 2009; Tullet et al., 2008). Accordingly,

SKN-1 accumulated in intestinal nuclei after rict-1 RNAi (Fig-

ure 6E). This result contrasted sharply with the failure of rapamy-

cin to increase SKN-1 nuclear accumulation (Figure 5F), but in

those earlier rapamycin experiments worms had been grown

on OP50, on which the life span of rict-1 mutants is decreased

(Soukas et al., 2009). Strikingly, either rict-1mutation or rapamy-

cin dramatically increased SKN-1 nuclear accumulation when

worms were grown on rich food (HT115 or HB101), but not

OP50 (Figures 6F and 6G). This differs from the effect of daf-2

mutation (reduced IIS), which increases SKN-1 nuclear accu-

mulation in worms maintained on OP50 (Tullet et al., 2008). In

addition, the longevity and life span extensions associated with

rapamycin seemed to be more robust on HT115 than OP50

(Table S5). Finally, RNAi knockdown of the TOR kinase let-363

also increased SKN-1 nuclear accumulation, as would be pre-

dicted for an effect on TORC2 (Figure 6E). Taken together, our

experiments suggest that rapamycin promotes longevity by

interfering with both TORC1 and TORC2, with the resulting

effects on SKN-1/Nrf being essential.

DISCUSSION

OurC. elegans experiments have uncovered an important mech-

anism of TORC1 action: TORC1 opposes both SKN-1/Nrf and

DAF-16/FoxO, so that when TORC1 is inhibited, these factors

increase transcription of protective genes. Previous work had

identified effects of TORC1 inhibition that may enhance lon-

gevity, including decreased protein synthesis, preservation of

protective gene translation, and increased autophagy (Bjedov

et al., 2010; Kapahi et al., 2010; Kenyon, 2010; Stanfel et al.,

2009; Zid et al., 2009). Here we have shown that these

TORC1-associated mechanisms fail to increase C. elegans life

span in the absence of either SKN-1 or DAF-16, and therefore

that the SKN-1- and DAF-16-dependent transcription responses

we detected are essential effectors of the longevity that results

from genetic TORC1 inhibition.

We were surprised to find that DAF-16 is required for genetic

TORC1 inhibition to extend life span (Figure 2B and Tables S3

and S4), given that lack of the TOR kinase extends life span inde-

pendently of DAF-16 (see the Introduction). It has been reported

that daf-16 is needed for life span extensions associated with

daf-15 heterozygosity or raga-1 mutation (Jia et al., 2004;
C

Schreiber et al., 2010), but several considerations made it

unclear how to interpret those findings: these mutations impair

larval development, DAF-16 inhibits daf-15 expression, and

longevity from TOR kinase loss does not require daf-16. Our

observation that TORC2 inhibition increases life span indepen-

dently of daf-16 (Figure 6C and Tables S6 and S7) reconciles

these seemingly conflicting studies with each other and our

extensive data on TORC1. It also raises the intriguing possibility

that the daf-16-independent longevity associated with many

C. elegans DR regimens (see the Introduction) might involve

TORC2, especially considering that many rict-1 phenotypes

are influenced by the food source (Figure 6F) (Soukas et al.,

2009). C. elegans DR has been observed to require neuronal

SKN-1 expression and the FoxA transcription factor PHA-4,

which is also needed for life span to be extended by TOR kinase

inhibition (Bishop and Guarente, 2007; Panowski et al., 2007;

Sheaffer et al., 2008). Perhaps some differences among DR pro-

tocols could be explained if SKN-1, DAF-16, and possibly PHA-4

have some overlapping functions and are affected differently by

these DR regimens.

It was particularly striking that SKN-1/Nrf was required for life

span extensions associated with genetic inhibition of either

TORC1 or TORC2, or rapamycin treatment, and therefore must

be central to the influence of TOR pathways on aging (Figures

2A, 6A, 6B, and 7 and Tables S3–S7). In contrast, SKN-1 is

only partially required for life span extension associated with

reduced IIS, in which daf-16 is essential (Kenyon, 2010; Tullet

et al., 2008). We have determined that TORC1 and IIS not only

act through different mechanisms to regulate SKN-1 and DAF-

16, but also regulate expression of overlapping but distinct

sets of their target genes (Figures 3 and 4). Regulators like

SKN-1 and DAF-16 affect longevity through control of numerous

genes that function in stress defense, metabolism, and other

processes (Kenyon, 2010). If these transcription factors influ-

ence overlapping biological processes, it could explain why

the life span extensions associated with genetic TORC1 and

TORC2 inhibition are not additive (Table S6), and why rapamycin

increases DAF-16 activity but extends life span independently of

DAF-16 (Figures 5, S4, and 6A). It will be an important challenge

to understandwhy the requirements for SKN-1 andDAF-16 differ

with respect to longevity associated with reductions in IIS,

TORC1, or TORC2 (Figure 7). This will involve identification of

critical downstream genes, and analyses of how these signaling

pathways (1) act in different tissues, (2) affect the action of

SKN-1, DAF-16, and possibly other transcription factors, and

(3) are influenced by other signals. For example, TORC2

and IIS activate kinases that regulate SKN-1 and DAF-16 (AKT

and SGK) (Kenyon, 2010; Zoncu et al., 2011) but seem to mirror

each other with respect to the relative importance of these tran-

scription factors for longevity (Figure 7).

The TORC1 and IIS pathways involve an intricate set of auto-

and interregulatory networks. While we have shown that pro-

tective DAF-16/FoxO targets are activated when TORC1 is in-

hibited, in Drosophila and mammalian cells a feedback loop

has been described in which high TORC1 activity leads to accu-

mulation of reactive oxygen species (ROS), and, in response,

FoxO increases expression of sestrins that inhibit TORC1 (Buda-

nov et al., 2010; Hay, 2011). In mammals IIS increases TORC1

activity, but is inhibited by feedback loops emanating from
ell Metabolism 15, 713–724, May 2, 2012 ª2012 Elsevier Inc. 721



Figure 7. Regulation of SKN-1 and DAF-16 by TOR Signaling

The IIS, TORC1, and TORC2 pathways are involved in growth (see the main

text). IIS inhibits SKN-1 and DAF-16 directly, through phosphorylation. TORC1

inhibits SKN-1 and DAF-16 expression and activity, at least in part by

increasing mRNA translation. TORC2 regulates SKN-1 nuclear occupancy in

a nutrient-dependent manner. DAF-16 is required for longevity that derives

from inhibition of IIS or TORC1, but not TORC2. SKN-1 plays a contributory

role in the effects of IIS on longevity but is essential for TORC1 or TORC2

inhibition to extend life span. When TORC1 is inhibited, SKN-1 increases

transcription of TORC1 pathway genes in a feedback loop.
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TORC1 (Hsu et al., 2011; Yu et al., 2011; Zoncu et al., 2011).

When mammalian TORC1 activity is low, autophagy-driven

nutrient accumulation eventually drives a compensatory activa-

tion of TORC1 (Yu et al., 2010). We have described a feedback

loop that may help compensate for reduced TORC1 activity:

a SKN-1-driven induction of TORC1 pathway gene transcription

(Figure 7). These complex interregulatory loops may allow for

effective coordination of the TORC1 and IIS pathways with

each other, and with growth factor, ROS, and nutrient levels.

Several lines of evidence suggest that TORC1 regulates

SKN-1 and DAF-16 at least in part through modulating transla-

tion. Genetic inhibition of either TORC1 or translation initiation

resulted in similar effects on stress resistance and life span,

SKN-1 and DAF-16 nuclear occupancy, and regulation of down-

stream genes, including skn-1 and daf-16 themselves (see the

Results). Many genes encoding regulatory proteins are among

those that are translated preferentially when translation is glob-

ally reduced, and translation of both SKN-1 and DAF-16 seems

to be spared when translation initiation is suppressed (Kapahi

et al., 2010; Rogers et al., 2011; Stanfel et al., 2009; Zid et al.,

2009; Zoncu et al., 2011). We speculate that functional interac-

tions among SKN-1, DAF-16, and other preferentially translated

proteins may lead to the transcriptional responses that result

from inhibiting either TORC1 or translation, although some of

the many phosphorylation targets of TORC1 could also be

involved (Hsu et al., 2011; Yu et al., 2011; Zoncu et al., 2011).

Our findings establish paradigms for understanding the bio-

logical effects of TORC1 signaling and rapamycin-related TOR

inhibitors. They predict that in mammals transcription programs

regulated by SKN-1/Nrf and DAF-16/FOXO may be important in
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the effects of TORC1, including its influence on stress resis-

tance, growth, proliferation, development, stem cell function,

and TOR-associated diseases. Consistent with this idea, rapa-

mycin treatment upregulated SKN-1/Nrf target genes in the

mouse, as seen inC. elegans (Figure 5). OurC. elegans evidence

indicated that rapamycin interferes with TORC2 in addition to

TORC1 in vivo (Figure 6), also in agreement with recent observa-

tions in the mouse (Lamming et al., 2012). In C. elegans, SKN-1

was required for longevity associated with genetic inhibition of

TORC1 or TORC2, or rapamycin treatment, strongly predicting

that Nrf proteins may mediate critical effects of rapamycin on

mammalian longevity. Development of agents that promote

particular SKN-1/Nrf or DAF-16/FoxO activities might therefore

capture beneficial effects of TOR inhibition without interfering

with critical TOR functions, or inducing unwanted effects of rapa-

mycin on immune function or insulin sensitivity.

Together, our data show that the IIS and TOR pathways each

influence aging by regulating SKN-1 and DAF-16 (Figure 7).

Why would these pathways converge upon these two transcrip-

tion factors? IIS, TORC1, and TORC2 are each involved in

growth, and SKN-1 and DAF-16 functions include maintenance

of protein homeostasis and resistance to various stresses (Ken-

yon, 2010; Lee et al., 2003; Li et al., 2011; McElwee et al., 2007;

Murphy et al., 2003; Oliveira et al., 2009). Under anabolic condi-

tions it might be advantageous to inhibit these defenses, which

would influence regulatory processes in addition to consuming

resources. For example, IIS is suppressed by redox-regulated

phosphatases, andmay functionoptimally under oxidizingcondi-

tions (Lohet al., 2009). Perhapsunder conditions that donot favor

growth, such as poor nutrient availability, it is important to mobi-

lize stress defenses that are regulated by SKN-1 and DAF-16. A

critical determinant of longevity seems tobe the tradeoff between

growth and reproduction on one hand, and mechanisms that

increase stress resistance and delay aging on the other. Given

that the TOR and IIS pathways influence aging by regulating

SKN-1andDAF-16,weconclude that theprotectivemechanisms

controlled by these two transcription factors are of central impor-

tance for the balance between growth signals and longevity.

EXPERIMENTAL PROCEDURES

Rapamycin Treatment of C. elegans

Rapamycin (LC laboratories) was dissolved in DMSO at 50 mg/ml and added

to plate agar to 100 mm unless otherwise indicated. Control plates contained

an appropriate DMSO concentration.

Life Span and Health Span

Life spanswere carried out at 20�C essentially as described (Wang et al., 2010)

and were measured from hatching. RNAi or rapamycin treatments were

continued throughout life. Mitochondrial gene RNAi was initiated at the L2

stage. Health span assays were performed essentially as described (Huang

et al., 2004). Animals that crawled off the plate, ruptured, or died from internal

hatching were excluded.

ChIP

ChIP was performed as essentially as described (Glover-Cutter et al., 2008),

using a lysate protocol that was modified for C. elegans.

Transgenic Reporter Scoring

Expression or nuclear accumulation of transgenic GFP proteins was scored as

‘‘low,’’ ‘‘medium,’’ or ‘‘high’’ essentially as published (An and Blackwell, 2003;
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Tullet et al., 2008; Wang et al., 2010). Details are in the Supplemental

Experimental Procedures.

Other methods are available in the Supplemental Experimental Procedures.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and seven tables and can be found with this article online at

doi:10.1016/j.cmet.2012.04.007.
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