Linear operators of \mathbb{R}^2, November 7, 2005

The purpose of this note is to illustrate the notion of linear operators, by looking at some examples of linear transformations of the plane, $T : \mathbb{R}^2 \to \mathbb{R}^2$. We will consider the standard basis of \mathbb{R}^2 and all matrices associated to a linear transformation will be written with respect to this basis.

1. **Rotations**: Let R_θ be the linear transformation given by rotation counterclockwise by the angle θ. The matrix associated to R_θ is

$$[R_\theta] = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}. $$

This is clearly an invertible transformation and the inverse is the rotation by θ clockwise, or $R_{-\theta}$. The composition of two rotations $R_{\theta_1} \circ R_{\theta_2}$ is again a rotation $R_{\theta_1 + \theta_2}$. Note that the composition of rotations is commutative and that the rotations form a group (the unit element is the identity operator, or the rotation by angle 0). This group is called the special orthogonal group of \mathbb{R}^2, and it is denoted by $SO(2)$.

2. **Dilations**: For $a, b > 0$, let $D_{a,b}$ denote the linear transformation which takes a vector $\begin{pmatrix} x \\ y \end{pmatrix}$ into the vector $\begin{pmatrix} ax \\ by \end{pmatrix}$. The matrix associated is diagonal, $[D_{a,b}] = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$. Since $a \neq 0$ and $b \neq 0$, $D_{a,b}$ is invertible and the inverse is the dilation $D_{a^{-1},b^{-1}}$.

3. **Shear transformations**: typical examples are the shear transformations parallel with the x-axis, that is given by matrices $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$. Such a transformation moves the tip of a vector v parallel with the x-axis (in general parallel to a line) and fixes the vectors in the x-axis. They are invertible transformations and the inverses are given by the opposite shear transformation, e.g. in this case $\begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix}$.

4. **Projections**: having fixed a line L, the map P_L defined by projecting a vector v on the line L is a linear transformation. Denote the projection on the x-axis by P_x and similarly, the projection onto the y-axis by P_y. The projections are not invertible. For example, $[P_x] = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $[P_y] = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

5. **Reflections**: the map S_L defined by taking the symmetric of a vector v about a fixed line L is a linear transformation. They are invertible transformations, in fact each reflection is its own inverse. For example, $[S_x] = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

We should remark that the translations, i.e. $T(v) = v + v_0$, for some fixed v_0, are not linear transformations.

Proposition. Any nonzero linear transformation of \mathbb{R}^2 can be obtained as a composition of linear transformations of types 1-5.

Proof. The heart of the proof is the following decomposition of 2×2 invertible matrices (it’s actually part of a more general result): any invertible 2×2 matrix A
can be written as a product

\[
A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \cdot \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \cdot \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix},
\]

for some \(\theta, a, b, n \). If \(A = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \) has determinant one, set \(\theta = \arctan\left(\frac{x}{z}\right) \), \(a = \sqrt{x^2 + z^2} \), and \(n = \frac{xv + yz}{x^2 + z^2} \) (\(x \) and \(z \) cannot both be zero, since \(A \) is invertible). Verify by a direct calculation that the decomposition above (with \(b = a^{-1} \)) holds.

The case of general invertible \(A \) follows easily, by multiplying the diagonal matrix with \(\det(A) \). We hope to treat this decomposition in a more conceptual way later in the course.

In this decomposition, the first matrix corresponds to a rotation, the diagonal matrix to a dilation \(D_{a,b} \) or a composition of a dilation with a reflection (if \(a \) and \(b \) are not both positive), and the third matrix corresponds to a shear transformation. Therefore the invertible linear transformation with matrix \(A \) can be realized as a composition of a rotation, a reflection, a dilation, and a shear transformation.

Now, consider a general (maybe noninvertible) linear transformation with matrix \(B \neq 0 \). Then \(B = UR \), where \(U \) is an invertible matrix and \(R \) is the row-reduced echelon form. We know the transformation corresponding to \(U \) can be decomposed as above, so it remains to analyze the transformations corresponding to all reduced echelon forms. If \(R \) is the identity (the case when \(B \) is invertible), there is nothing more left to do. Otherwise, \(R \) can only be of three forms \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & s \\ 0 & 0 \end{pmatrix} \), with \(s \neq 0 \), or \(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \). The first form is clearly the projection \(P_x \). The second form can be decomposed as

\[
\begin{pmatrix} 1 & s \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}.
\]

It means that the corresponding transformation is a composition between a projection and a shear transformation.

The third form can be decomposed as

\[
\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},
\]

so it is the composition of \(P_x \) with the reflection about the line \(x = y \).

This concludes the proof. \(\square \)