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We present a method for robust timekeeping in which alkali-metal atoms are interrogated in a Ramsey
sequence based on stimulated Raman transitions with optical photons. To suppress systematic effects introduced
by differential ac Stark shifts and optical intensity gradients, we employ atom optics derived from Raman
adiabatic rapid passage (ARP). Raman ARP drives coherent transfer between the alkali-metal hyperfine ground
states via a sweep of the Raman detuning through the two-photon resonance. Our experimental implementation
of Raman ARP reduced the phase sensitivity of Ramsey sequences to Stark shifts in 133Cs atoms by about two
orders of magnitude, relative to fixed-frequency Raman transitions. This technique also preserved Ramsey fringe
contrast for cloud displacements reaching the 1/e2 intensity radius of the laser beam. In a magnetically unshielded
apparatus, second-order Zeeman shifts limited the fractional frequency uncertainty to ∼3.5 × 10−12 after about
2500 s of averaging.
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I. INTRODUCTION

Stable atomic frequency references are essential to a broad
range of modern technologies, including the Global Posi-
tioning System, inertial navigators, distributed networks, and
laboratory instruments. These references recently achieved
an important developmental milestone with the advent of
the chip-scale atomic clock (CSAC). CSACs probe narrow
atomic resonances derived from coherent population trapping
(CPT) of alkali-metal atoms in minute vapor cells. In a
10-cm3 package, and with power consumption of just 100 mW
[1], CSACs provide a fractional frequency stability of 2.5 ×
10−10/

√
τ [2,3]. Their long-term stability, however, is limited

to ∼10−11 at 1000 s by buffer gas-dependent frequency shifts
[4,5]. As a result, CSACs serve as secondary frequency
references. On the other hand, state-of-the-art primary ref-
erences currently realize fractional frequency uncertainties of
3 × 10−16 using laboratory-scale systems [6]. These clocks
achieve high sensitivity at the expense of size and data rate,
launching laser-cooled alkali-metal atoms over ∼1 m distances
[7] and implementing microwave Ramsey sequences with
long interrogation times [8,9]. Between CSACs and fountain
clocks, there remains a vast, unpenetrated performance space
for primary standards that operate in a compact volume and
beyond the laboratory environment.

High sensitivity in fountain clocks can be traded for reduced
size by shortening the Ramsey dwell time and interrogating
atoms in the cooling and trapping region [10–14]. In dynamic
environments, a short Ramsey time has the added benefit
of reducing unconstrained motion of the atom cloud. If,
for example, measurements are completed on a 10-ms time
scale, a cold atom cloud experiencing 1–10-g accelerations is
displaced from the trap site by <5 mm, enabling interferometry
under dynamics, recapture of cold atoms, and fast data-rates
with narrow laser beams [15,16]. The traditional method
of using microwaves for the Ramsey interrogation requires
well-engineered cavities or waveguides, which constrain
minimum size and may be adversely affected by thermal
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environments or vibration [17]. An alternative approach that
circumvents the cavity employs stimulated Raman transitions
between alkali-metal hyperfine ground states [18]. Optical
interrogation, however, introduces challenges distinct from
those of microwave interrogation. Variations in the intensity
of laser fields drive spurious phase shifts via the ac Stark
effect [19]. Furthermore, the Gaussian intensity profile of the
beam creates spatially dependent Rabi rates that, in some
modalities, link Ramsey fringe contrast to radial motion of the
cloud. Nevertheless, a timekeeping demonstration using CPT
with optical fields recently achieved a fractional frequency
uncertainty of 2 × 10−12 at 1000 s, which was limited by
magnetic-field instabilities [16].

We employ a different method for optical Ramsey inter-
rogation that suppresses sensitivity to light shifts and Rabi
rate inhomogeneities [20]. Our approach uses atom optics
based on Raman adiabatic rapid passage (ARP) [21], which
is inspired by, and isomorphic to, ARP techniques used by
the nuclear magnetic resonance (NMR) community [22,23].
In NMR, ARP inverts the population in a two-level system
by slowly sweeping the angular frequency of a rotating
magnetic field through the Rabi resonance [24]. In the frame
of the time-dependent field, the nuclear spin precesses about
the effective magnetic field with a latitude that slowly tilts
from the north to south pole. Our approach with Raman ARP
requires an analogous sweep of the frequency difference of
the Raman optical fields through the two-photon resonance.
Raman ARP reduces the phase sensitivity of a Ramsey
sequence to the differential ac Stark shift, because the first
beamsplitter does not imprint a relative phase on the quantum
state in the adiabatic limit, as will be discussed below. ARP is
also robust to intensity variations, since transfer efficiency is
not a strong function of Rabi rate. As a result, interferometer
contrast is preserved in the presence of intensity fluctuations
and gradients, and the phase is insensitive to small changes in
frequency sweep parameters.

Raman ARP differs in important respects from stimulated
Raman adiabatic passage (STIRAP), in which adiabatic
transfer in a three-level system results from the time-delayed
intensity modulation of two optical fields. Experimental
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demonstrations of STIRAP have produced coherent transfer
of alkali-metal atoms between hyperfine ground states and
targeted Zeeman sublevels, as well as useful atom interfer-
ometers [25,26]. Frequency-swept ARP has two advantages
over STIRAP: In a Ramsey sequence, spontaneous emission
during the second STIRAP pulse reduces the maximum
interferometer contrast by approximately a factor of 2; the
presence of multiple excited levels in alkali-metal atoms rein-
troduces residual Stark shifts to STIRAP, with dependencies
on pulse duration, optical intensity, and single-photon laser
detuning [27].

In this work, we experimentally demonstrated efficient
population inversion and Ramsey interferometry based on
Raman ARP, described in Secs. III and IV, respectively.
We also studied effects of the ac Stark shift and optical
intensity of the Raman fields on the phase and contrast of
Ramsey interferograms. In Sec. V A, we show that Raman
ARP suppressed phase deviations due to ac Stark shifts by
about two orders of magnitude, compared to fixed-frequency
Raman transitions. Section V B discusses the Gaussian spatial
intensity distribution of the Raman beam, which induced
fractional variations in contrast that were a factor of 15 smaller
(over half the 1/e2 intensity radius) for Raman ARP than for
standard Raman transitions. Deliberate perturbations (±10%)
to parameters defining the ARP frequency sweeps did not
introduce resolvable shifts in phase, as shown in Sec. V C.
Finally, Sec. VI presents a preliminary stability assessment of
Raman ARP Ramsey interrogations. In a laboratory setting—
but without magnetic shielding—our apparatus achieved a
fractional frequency uncertainty that was limited by second-
order Zeeman shifts to 3.5 × 10−12 after 2500 s of averaging.

II. RAMAN SPECTROSCOPY WITH COLD ATOMS

To investigate Ramsey sequences based on Raman ARP,
we worked exclusively with the D2 line in 133Cs atoms. Inter-
ferometry experiments occurred inside an octagonal, 80-cm3,
machined-quartz cell, which maintained a background vapor
pressure of 10−9 Torr [Fig. 1(a)]. Environmental magnetic
fields were canceled by three orthogonal pairs of Helmholtz
coils. Each measurement cycle began with the cooling and
trapping of ∼107 atoms in 600 ms using a magneto-optical
trap. Polarization gradient cooling further cooled the cloud to
9 μK. To prepare the atoms in a single hyperfine ground state,
we first applied a vertical bias field of 0.87 G that lifted the
Zeeman degeneracy. The atoms were then optically pumped
on the |F = 4〉 → |F ′ = 4〉 transition (F ′ denotes a hyperfine
level in the 62P3/2 manifold) with light polarized linearly
and parallel to the bias field until 90% of the atoms were
in the |F = 4,mF = 0〉 dark state. Light resonant with the
|F = 3〉 → |F ′ = 4〉 transition simultaneously pumped atoms
out of F = 3. A microwave π pulse tuned to the
clock transition transferred atoms from the dark state to
|F = 3,mF = 0〉. A subsequent laser pulse, resonant with the
|F =4〉 → |F ′ = 5〉 cycling transition, pushed atoms remain-
ing in F = 4 out of the interaction region. Interferometry
began with >97% of the remaining atoms initially in the
|F = 3,mF = 0〉 clock state. These atoms were interrogated
in a Ramsey sequence, which comprised two atom “beamsplit-
ters” (e.g., Raman π/2 pulses) separated by an interrogation

time T that ranged from 1 to 17 ms. The final state of the
interferometer consisted of atoms in superpositions of the
F = 3 and F = 4 clock states. To extract the interferometer
phase, we measured the fraction of atoms in F = 4 after laser
induced fluorescence. Specifically, we applied light resonant
with the |F = 4〉 → |F ′ = 5〉 transition, and associated the
resulting fluorescence with states that had collapsed to F = 4.
A second pulse of the same light then pushed these atoms out
of the interaction region. The remaining atoms in F = 3 were
optically pumped to F = 4 and fluoresced in a similar manner.
The sum of these two fluorescence signals was proportional
to the total population and the ratio of total fluorescence to
fluorescence from the F = 4 atoms provided a normalized
readout. A more detailed description of atom trapping and state
preparation in our apparatus can be found in Refs. [28,29].

We drove the 133Cs clock transition (|F = 3,mF = 0〉 →
|F = 4,mF = 0〉) using stimulated Raman processes via in-
termediate excited states in the 62P3/2 manifold [Fig. 1(b)].
The Raman optical frequencies, ω1 and ω2, were generated
by phase modulating the output of an external cavity diode
laser with an electro-optic modulator (EOM). The optical
spectrum contained frequency sidebands spaced about the
carrier by integer multiples of the Zeeman-shifted hyperfine
splitting frequency ωHFS/2π = 9 192 631 770 + 324 Hz. To
reduce spontaneous emission, we blue-detuned the Raman
laser by 2.02 GHz with respect to the |F = 3〉 → |F ′ = 4〉
transition. At this detuning, the differential ac Stark shift (i.e.,
the difference of the ac Stark shifts of the clock states) was
canceled when the optical power was ∼10% larger in the
carrier frequency than in each first-order sideband. To obtain
agile control over the microwave signal that drove the EOM,
we used a single-sideband mixer (Polyphase SSB90110A) to
combine the 30-MHz output of a 625-MS/s arbitrary waveform
generator (Agilent N8241A) with a constant 9.163-GHz signal
(Agilent E8257D). The phase, frequency, and power of the
resulting rf signal were controlled through the waveform
generator, enabling rapid frequency sweeps for Raman ARP.
An acousto-optic modulator placed before the EOM switched
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FIG. 1. (Color online) (a) Octagonal glass vacuum chamber and
laser beam configuration for atom trapping, state preparation, and
interferometry. During experiments, atoms fall through the center
of the Raman beam because of its vertical orientation. (b) 133Cs
ground-state energy levels |3〉 and |4〉 coupled by a stimulated Raman
transition with single-photon detuning �, Raman detuning δ, and
optical frequencies ω1 and ω2.
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the Raman light in 50 ns, and a tapered amplifier downstream
of the EOM increased the total Raman optical power presented
to the atoms to 40 mW. The optical spectrum of the tapered
amplifier contained a 30-nm-wide pedestal carrying a small
amount of resonant light. To reduce spontaneous emission
during the interferometer, we filtered the resonant light from
the pedestal by passing the output of the tapered amplifier
through a Cs reference vapor cell. The Raman beam was
vertically oriented, circularly polarized, and delivered to
the cell using a fiber-coupled collimator with 7.1-mm 1/e2

intensity diameter. The co-propagating pair of carrier and −1
sideband frequencies drove the dominant Raman transition,
which was Doppler shifted by 30.7 Hz/(m/s), or 0.3 Hz/ms
in a 1-g environment.

Interferometry experiments generally involved extract-
ing interferograms while deliberately varying parameters
like the differential ac Stark shift or the two-photon Rabi
rate. To generate an interferogram, we typically measured
the transition probability while shifting the laser phase
difference between the Raman optical fields. This phase
difference was scanned over 17 values in steps of π/4 rad,
and the transition probability at each phase was measured five
times consecutively to enable averaging. With a per-shot data
rate of 1.6 Hz, a full interferogram was acquired every 53 s.
To isolate slow systematic variations due to oscillator drift
and environmental magnetic fields, interferograms for ARP,
Raman, and microwave pulses were acquired consecutively,
within 2.7 min, at a particular parameter setting. Parameters
were varied nonmonotonically to further reduce contributions
from slow systematic trends. Finally, we cycled through
the parameter values of interest three times for additional
averaging.

III. RAMAN ADIABATIC RAPID PASSAGE

Frequency-swept ARP is a standard tool for robust popula-
tion inversion in NMR. Its effect on a two-state system can be
visualized on the Bloch sphere shown in Fig. 2. The pseudospin
polarization p̂ represents a superposition of spin-up and

z
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θ

φ

Ωgen

Ωeff

δ

p̂

FIG. 2. Bloch sphere depiction of Raman adiabatic rapid passage.
The pseudospin polarization p̂ adiabatically follows ��gen when θ̇ �
�gen, where �gen is the rate of precession of p̂ about ��gen.

spin-down states, which correspond to |F = 4,mF = 0〉 and
|F = 3,mF = 0〉, respectively. The generalized Rabi rate ��gen

represents the Raman pulse, or “drive field,” and is analogous
to the effective magnetic field in the traditional NMR problem.
When the drive field is applied, p̂ precesses about ��gen at
the generalized Rabi frequency �gen =

√
�2

eff + δ2, where
�eff is the magnitude of the two-photon Rabi rate, and
δ = ω1 − ω2 − ωHFS is the Raman detuning. The polar angle
of the drive field is defined as θ = − arctan(�eff/δ). The
azimuthal angle ϕ represents the phase difference between
the two Raman frequency components. If the drive field is
rotated at a rate θ̇ � �gen, p̂ encircles ��gen before θ can
change appreciably. As a result, rapid precession causes p̂
to adiabatically follow ��gen. The projection of p̂ onto the drive
field, which we define as �p‖, can thus be dragged anywhere
on the sphere. Experimentally, we control θ by sweeping δ

through resonance, over a frequency range that is large with
respect to �eff . We note that a two-state model is appropriate
for this work because the single-photon detuning � is much
larger than �eff . This parameter regime allows for adiabatic
elimination of all intermediary excited states in the 62P3/2

manifold [30].
ARP is generally advantageous when inversion is required

in the presence of an inhomogeneous drive field [22,31]. Since
the Rabi rate in this case is position dependent, precise control
of spin precession cannot be achieved simultaneously over
the entire ensemble. As a result, fixed-frequency π and π/2
pulses tend to over- or undershoot the desired pulse area for a
given atom. With an ARP sweep, however, transfer efficiency
in the adiabatic limit ultimately depends on the projection of p̂
onto ��gen, namely �p‖, which is independent of precession. In
the standard approach to ARP, δ(t) is linearly chirped through
resonance. For this work, we instead chose a nonlinear sweep
that rapidly changed the polar angle θ at the beginning and
end of the adiabatic passage, when the adiabatic condition was
well satisfied. A short sweep helps minimize dephasing due to
spontaneous emission. Our frequency sweep is described by
the equation

δ(t) = �arp tan

[
α

(
2t

Tπ

− 1

)]
, t ∈ {0,Tπ } , (1)

where Tπ sets the total sweep duration, �arp controls the
sweep rate without perturbing its duration or range, and
α = arctan(δmax/�arp), where δmax is the maximum detuning.
To quantify the adiabaticity of a particular sweep, we define
the unitless parameter Q(t) = �gen/|θ̇ |. Near resonance, and
when δmax � �eff = �arp, Q is equivalent to Tπ in units of
Raman π pulses. In other words, Q = n when Tπ = ntπ , where
tπ is the duration of a Raman π pulse. Previous work has
shown that Q � 5 provides sufficient adiabaticity for robust
population transfer [32]. Since the present work is focused
on interferometry, in which the sweeps begin or end near
resonance (when Q is minimized), we consider more adiabatic
sweeps with Q = 10 and 26. The frequency sweep described
by Eq. (1) is coupled with an intensity modulation I (t) of the
form

I (t) = I0 tanh

[
β

(
1 −

∣∣∣∣ 2t

Tπ

− 1

∣∣∣∣
)]

, (2)
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FIG. 3. (Color online) (a) Time evolution of the transition prob-
ability during the Raman ARP sweep described by Eqs. (1) and (2).
The sweep parameters were Tπ = 10.3tπ , δmax/2π = 15 MHz, and
�arp/2π = �eff/2π = 86 kHz. (b) Scanning the Raman ARP center
frequency (red diamonds) with the same sweep parameters used above
produces a Raman resonance with linewidth five times broader than
that of a Raman π pulse (black circles). All lines represent predictions
based on a model of a two-level atom.

where I0 is the maximum intensity, and the unitless parameter
β is typically 7.5. Since I (0) = I (Tπ ) = 0, the drive field at the
beginning and end of the sweep is essentially parallel with the
z axis of the Bloch sphere. This alignment helps maximize
transfer efficiency when atoms are prepared in one of the
clock states. Variants of this sweep have been proposed and
implemented in Refs. [32–34].

Figure 3(a) shows the ensemble-averaged time evolution of
the transition probability during this tangent sweep. For �eff =
�arp, the measured transition probabilities follow the sinusoid
predicted by our model (described below). Measurements of
the transition probability as a function of the center frequency
of the sweep, shown in Fig. 3(b), reveal a full width at
half maximum of 8�eff , which is about five times broader
than the corresponding bandwidth of a Raman π pulse. Near
resonance, the coherent transfer efficiency is limited to 93% by
spontaneous emission. Agreement between the measurements
and model helped validate our hardware implementation of
Raman ARP.

The predictions plotted in Fig. 3 were based on a model of
a two-level atom. The dynamics of this system, viewed in the
reference frame of Fig. 2, are given by the equation

dp̂
dt

= ��gen × p̂. (3)

With a set of initial conditions for the drive field and the
pseudospin polarization, the model numerically integrates
Eq. (3). Numerical integration is necessary because Raman
ARP frequency sweeps introduce time dependencies to ��gen

that generally preclude analytic solutions. The framework can

be extended to model interferometer sequences by incorporat-
ing a period of free precession about the z axis of the Bloch
sphere during the time between two pulses. Following a pulse
sequence, the model reports the atom transition probability in
response to a varied parameter (e.g., Raman detuning or phase).
The model is also capable of accounting for ensemble effects
by repeating the calculation for many atoms with randomly
assigned positions and velocities, making �eff a Gaussian
function of position, and averaging over the resulting transition
probabilities. In this work, predictions from our model do not
include ensemble averaging effects.

IV. INTERFEROMETRY WITH RAMAN ARP

Ramsey sequences are commonly viewed as atom in-
terferometers comprising two π/2 pulses, or beamsplitters,
separated by an interrogation time T . An atom beamsplitter
divides the atomic wave packet in two, with the resulting partial
wave packets assuming different hyperfine and momentum
states. In practice, the co-propagating Raman optical fields
used in this work impart a negligible momentum kick. A
Ramsey sequence derived from these beamsplitters is then
primarily an atom interferometer for the internal hyperfine
states of the atom. Raman ARP serves as an effective
beamsplitter for a Ramsey atom interferometer when the sweep
is stopped midway, at the Raman resonance [21]. In Fig. 4(a),
the first Ramsey pulse begins with ��gen and p̂ initially parallel.
The drive field then slowly drags the pseudospin into the
x-y plane [see Fig. 4(b)], creating a coherent superposition
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FIG. 4. Raman ARP Ramsey sequence on the Bloch sphere.
(a) Following state preparation, ��gen is parallel to p̂. (b) The first
sweep transfers the pseudospin polarization into the x-y plane when
its center frequency matches the Raman resonance condition. (c) After
a Ramsey interrogation time T , the second beamsplitter generally
begins with nonparallel ��gen and p̂, which leads to precession of
p̂ about ��gen. (d) The second beamsplitter drags �p‖ to the z axis,
mapping the relative phase between the drive field and pseudospin
polarization to population difference.
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of the clock states. After an interrogation time T , a second
beamsplitter starts nearly on resonance to complete the
Ramsey sequence. At the beginning of this pulse, ��gen and
p̂ are generally nonparallel, because of discrepancies between
the oscillator and atomic resonance frequencies—which the
atomic reference is intended to correct. The misalignment
leads to the precession shown in Fig. 4(c). The drive field
then drags �p‖to the z axis [Fig. 4(d)], thereby converting the
interferometer phase into population difference.

Rapid completion of this pulse sequence is beneficial for a
device operating in dynamic environments. A short measure-
ment sequence ensures that an atom cloud experiencing large
transverse acceleration remains within the Raman laser beam
during the Ramsey interrogation. It also enables averaging
of noise processes to lower levels in shorter times, thereby
affording excellent short-term sensitivity. For example, an
interrogation time of T = 10 ms, coupled with a sampling
rate of fs = 80 Hz and a phase signal-to-noise ratio of
SNRφ = 200, results in a fractional frequency stability of

1/SNRφ

ωHFST
√

fs

≈ 1 × 10−12 (4)

for an averaging time of 1 s. Moreover, the cloud remains
within the 1/e2 intensity radius of the Raman beam for
transverse accelerations up to 5 g. Figure 5 shows examples
of Ramsey fringes based on Raman π/2 pulses and Raman
ARP beamsplitters with Tπ = 10tπ and 26tπ . The interrogation
time was T = 10 ms, the magnitude of the two-photon Rabi
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FIG. 5. (Color online) Ramsey fringes with an interrogation time
of T = 10 ms. Lines are best-fit cosine functions and points are
measured values. At a given detuning, the three pulse types were
applied sequentially, and measurements were collected at 1.6 Hz
over 10 min. The condition δ = 0 includes a Zeeman shift of
324 Hz. Uncertainty in the frequency offset δ0/2π was ±0.24 Hz for
the Raman and Tπ = 26tπ cases, indicating comparable short-term
stability.

rate was �eff/2π = 73 kHz, and the ARP sweep parameters
were δmax/2π = 15 MHz and �arp/2π = 73 kHz. To reduce
discrepancies arising from oscillator drifts and environmental
magnetic fields, the three pulse types were applied sequentially
at a given detuning, and measurements were collected at 1.6 Hz
over 10 min. The measurements were fit to a cosine function
given by

P = 1

2
+ A

2
cos[(δ − δ0)T ] + B, (5)

where P was the measured transition probability, and free
parameters such as contrast A, background offset B, and Ra-
man detuning offset δ0, were determined through minimization
of the sum of squares of the residuals. For both the Raman
π/2 and Tπ = 26tπ cases, the fit uncertainty in δ0/2π was
±0.24 Hz, indicating similar short-term stability.

Raman ARP Ramsey sequences are insensitive to dynamic
phase associated with pseudospin precession in the adiabatic
limit. The source of dynamic phase becomes clear in the
dressed-atom basis [21]. Eigenstates in this basis are parallel
and antiparallel to ��gen, with eigenenergies of ±��gen/2.
When ��gen is varied adiabatically, a dressed eigenstate
acquires a phase γ = ± ∫ t

0 �gen(t ′)dt ′/2, in a manner anal-
ogous to the evolution of eigenstates in a time-independent
system. During the first ARP beamsplitter, p̂ is the dressed
eigenstate parallel to ��gen, so adiabatic evolution introduces an
undetectable overall phase γ1. For subsequent pulses, however,
��gen and p̂ are typically nonparallel [Fig. 4(c)]. The state
is therefore a superposition of dressed eigenstates, which
acquire differential phases ±γ2 during the sweep. The two-
pulse Ramsey sequence is insensitive to this relative dynamic
phase, because γ2 remains a phase prior to state readout.
Interferometers involving more than two beamsplitters map
dynamic phases to population difference if subsequent ARP
sweeps do not cancel them (e.g., by reversing the direction of
��gen). In this case, inhomogeneities in �eff and δ may dephase
the ensemble and wash out interference fringes.

V. SYSTEMATIC EFFECTS

A cold atom frequency standard based on Ramsey se-
quences is likely to experience parameter fluctuations during
operation outside the laboratory. In dynamic environments,
variations in optical power, rf power, and atom cloud position
could systematically affect Ramsey interferograms. In this
section, we demonstrate how Raman ARP beamsplitters in
a Ramsey sequence suppress some of these systematic effects.

A. Light shifts during a pulse

A Ramsey sequence based on Raman ARP affords an
important advantage over Raman π/2 pulses: light shifts
during a pulse leave the interferometer phase unperturbed.
The presence of a light shift during Raman ARP moves the
center frequency of the sweep off resonance. The beamsplitter
shown in Fig. 4(b) ends outside the x-y plane, as does the
parallel pseudospin p̂. This error in polar angle does not affect
the phase of the Ramsey interferometer, which instead depends
on the azimuthal separation between p̂ and ��gen. Errors in polar
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FIG. 6. (Color online) (a) Large-scale sensitivity of Ramsey phase to differential ac Stark shifts. The Raman pulse case (black circles and
solid line) was about 75 times more sensitive to δac than Raman ARP interrogations with Tπ = 10tπ (red diamonds) and Tπ = 26tπ (blue
squares). All lines are based on a model. (b) A detailed view of Raman ARP measurements reveals residual phase variations not predicted by
our model. Predictions for Raman ARP with Tπ = 10tπ (red dash-dot line) are restricted to detunings where the model produced controlled
phase shifts. (c) Sensitivity of Raman ARP interrogations to the smaller differential ac Stark shifts expected in a practical device. In this regime,
the Raman pulse case was roughly 100 times more sensitive to δac than Raman ARP interrogations with Tπ = 26tπ .

angle, however, do affect interferometer contrast. When the
second beamsplitter is initially π rad out of phase with p̂, the
light shift reduces the transfer efficiency, causing the troughs of
the interferogram to rise up. For the small light shifts relevant
to a practical device, we show that the resulting variations
in contrast and background offset have a minor impact on
sensitivity.

We tested the sensitivity of three types of Ramsey sequences
to the differential ac Stark shift δac. In particular, we compared
Raman π/2 pulse sequences to Raman ARP sequences with Tπ

durations of 10tπ and 26tπ , recording contrast A, background
offset B, and systematic phase offset � for each interferogram.
The transition probability P is related to these quantities by
Eq. (5), where the detuning dependence in the argument of
the cosine function is replaced by � + �ϕ, and �ϕ is the
programed phase difference between the two Ramsey pulses.
We extracted entire interferograms to determine A, B, and �

simultaneously, which suppressed undesirable cross-coupling
effects in the measurement of P . This technique differs from
a simpler one in which each measurement of phase is related
to a single measurement of transition probability made with
�ϕ = π/2 and � ≈ 0. In that approach, phase measurements
are susceptible to variations in A and B since the transition
probability varies with these parameters [see Eq. (5)].

For each δac setting, the three types of interferometers were
measured sequentially, three times over 8 min. To extract an
interferogram, �ϕ was scanned over two fringes in steps
of π/4 rad (to enable averaging, each phase condition was
repeated five times, consecutively). We controlled δac with
the modulation depth of the EOM in the Raman beam path,
which adjusted the ratio of the optical powers in each Raman
frequency. At each setting of the modulation depth, the overall
optical power was adjusted with the tapered amplifier to
maintain �eff/2π = 73 kHz to within ±2%. The light shift
was assumed to be the Raman detuning at which population
transfer with a Raman π pulse was maximized. Following
these calibration steps, the oscillator frequency was set to
the Zeeman-shifted clock resonance before interferometry
commenced. In doing so, the oscillator was detuned by
the light shift during application of the pulse, but resonant

with the atoms during the Ramsey dwell period. The short
T = 1 ms interrogation time suppressed the sensitivity to os-
cillator instabilities and helped isolate phase shifts associated
with pulse dynamics.

Figure 6(a) shows the systematic phase offset � of each
interferometer as a function of δac. The Raman-pulse mea-
surements show good agreement with the predictions from our
model. Linear fits to the predictions and measurements give a
light shift sensitivity of 26 mrad/kHz. The ARP interferometers
strongly suppress this sensitivity. A closer view of the Raman
ARP data, shown in Fig. 6(b), reveals an overall linear trend of
0.34 mrad/kHz with localized curvature, neither of which our
model predicts. The predictions for Tπ = 10tπ (red dash-dot
curve) are restricted to detunings where the sweep is adiabatic
enough for the model to produce controlled phase shifts. That
the corresponding measured phases at δac/2π = ±100 kHz
are not completely randomized may result from ensemble
averaging effects.

In practice, the differential Stark shift, with � ≈ 2 GHz,
will likely be restricted to ±0.02�eff ≈ ±2π × 1 kHz, due
to ∼1% power fluctuations in the rf signal modulating the
EOM; below this bound, the measurement and stabilization of
rf power is challenging. We therefore repeated this experiment
over a narrower detuning range near δac = 0, using the data
acquisition procedure described in Sec. II. In this case, �eff

was not calibrated from one condition to the next, because
the measured variation was just ±2% of the nominal setting.
The light shift was calibrated to the modulation depth of
the EOM, which was then tracked via real-time rf power
measurements. Linear fits to the Raman ARP phase offsets,
which are shown in Fig. 6(c), and the Raman phase offsets (not
shown) were compared to determine the relative sensitivity
to δac. The ratios of the two ARP slopes to the Raman slope
were 0.063 ± 0.008 for the Tπ = 10tπ case and 0.005 ± 0.008
for the Tπ = 26tπ case. Since drifts in δac on the order of
±0.02�eff are expected in a practical device, the measured
sensitivity of the Raman π/2 sequence to δac implies that
the phase will drift by 26 mrad. In the case where δac is a
white noise process, the fractional frequency stability for the
example presented in Eq. (4) becomes 5 × 10−12 after 1 s
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FIG. 7. (Color online) Sensitivity of (a) contrast and (b) back-
ground offset to differential ac Stark shifts for Ramsey sequences
based on Raman (black circles), Raman ARP with Tπ = 10tπ
(red diamonds), and Raman ARP with Tπ = 26tπ (blue squares)
beamsplitter pulses. Lines represent predictions from a model. For
small δac, the ARP offsets should vary by 0.07%, leading to a phase
error (<2 mrad) below the expected signal-to-noise ratio of a practical
system. This error could be further suppressed by alternating phase
measurements at �ϕ = ±π/2.

of averaging, because the phase signal-to-noise ratio drops to
SNRφ = 40. By comparison, the Raman ARP interferometer
with Tπ = 26tπ brings the noise process due to ac Stark shifts
below the atom shot noise limit for 107 atoms.

The extraction of full interferograms also enabled the
study of contrast and background offset variations in response
to the light shift. When phase shifts are estimated from
single measurements of transition probability, made near
�ϕ = π/2, variations in background offset can lead to large
apparent phase shifts. Small changes in contrast, however,
are inherently tolerable near �ϕ = π/2, since they merely
scale existing errors in transition probability [see Eq. (5)].
Figure 7(a) shows the contrast response to δac for the three
pulses considered above. In each case, the maximum measured
contrast serves to normalize the associated predictions. This
normalization qualitatively accounts for spontaneous emission
losses during Raman ARP sweeps and yields good agreement
with measurements when the sweep is adiabatic. For Raman
pulses, normalization approximately accounts for dephasing
due to inhomogeneities in �eff and δac (spontaneous emission
makes a minor contribution). Since these inhomogeneities
scale with �eff and δac and are coupled, it is reasonable that
the model overestimates the contrast away from resonance. For
small differential Stark shifts of ±0.02�eff (within the bounds
of reasonable rf power control), the contrast is expected to
vary by about 0.13% and should scale phase deviations from
�ϕ = ±π/2 by this fraction.

Variations in background offsets follow the unmodified
predictions of our model, as shown in Fig. 7(b). The rise in
Raman ARP offsets in response to detuning indicates that the
troughs of the interferograms are pulled up due to impaired

transfer efficiency during the second pulse. For Stark shifts
of ±0.02�eff , the offset is expected to vary by about 0.07%,
leading to <2 mrad error in phase and a fractional frequency
stability at 1 s of 3 × 10−13—a minor contribution to SNRφ

[see Eq. (4)]. Sensitivity to background offsets can be further
suppressed by sequentially measuring transition probability
near �ϕ = ±π/2 and estimating the phase error from the
difference of consecutive measurements. Slow variations in
this parameter are then immaterial since they produce the same
differential phase.

B. Laser beam intensity profile

Raman ARP also achieves a high degree of robustness
against optical intensity variations. Since �p‖ is unaffected by
�eff in the adiabatic limit, Ramsey sequences based on Raman
ARP maintain high contrast despite fluctuations in optical
power or poor beam quality. An important cause of power
variation, particularly on dynamic and mobile platforms, is
motion of the atom cloud along the beam radius. During a
T = 10 ms interrogation, for instance, a cloud accelerating
transverse to the beam axis at 3.5 g traverses the 1σ radius
of a Gaussian beam with a 7-mm 1/e2 intensity diameter.
Over this distance, the beam profile introduces substantial
position-dependent changes to the gradient and average of
the optical intensity experienced by the cloud. A practical
timing reference might measure such accelerations using
an inertial sensor. With a T = 10 ms interrogation time, a
low-performance accelerometer with 10-mg resolution can
determine the radial position of the cloud to within 5 μm.
Such accurate position information, along with knowledge of
the beam profile, enables compensation for changes in the
average intensity via modification of optical power or pulse
duration.

Optical intensity gradients, however, are more challenging
to correct in real time. An alternative approach is to provide
uniform intensity with a “flat-top” beam. Unfortunately,
uniform intensity only occurs in a small region along the
propagation axis of this beam, and the resulting optical
wavefronts are distorted. Being limited to a Gaussian beam,
we tested the effect of the intensity gradient on interferometer
contrast by displacing the Raman beam relative to the atom
cloud and using pulse duration to compensate for changes
in the average intensity. Specifically, we corrected pulse
durations at each position so that tπ = π/�eff . During real
transverse accelerations, the first Ramsey pulse occurs with
the cloud near beam center, while the second occurs with the
cloud closer to the beam edge, where the gradients are larger.
In our experiments, conditions were more adverse: the Raman
beam position was kept constant for a given experimental
condition, meaning both pulses imposed deleterious intensity
gradients.

To control the radial position of the cloud within the
beam, the Raman beam collimator was mounted to a linear
translation stage. Prior to the experiment, the beam was
centered on the cloud by maximizing �eff with a fixed
optical intensity, and then minimizing decoherence during
Rabi flopping experiments. �eff and δac were extracted at each
position from measurements of the Raman π pulse resonance
as a function of detuning [e.g., Fig. 3(b)], and the differential ac
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FIG. 8. (Color online) Contrast variation due to laser beam inten-
sity gradients for Ramsey sequences based on Raman (black circles),
Raman ARP with Tπ = 10tπ (red diamonds), and Raman ARP with
Tπ = 26tπ (blue squares) beamsplitter pulses. To change the intensity
gradient, a Raman beam with Gaussian intensity profile was displaced
relative to the cloud. To compensate for changes in the average
intensity, we adjusted pulse durations so that tπ = π/�eff at each
position. Over the e−1/2 intensity radius, the fractional variation in
contrast was 15 times larger for Raman π/2 pulses than for Raman
ARP with Tπ = 26tπ .

Stark shift was reduced to |δac| � 0.02�eff . The ARP sweeps
were adjusted to maintain �arp = �eff so that in units of tπ , the
frequency profile remained the same. Interferometry was then
carried out using Raman π/2 pulses and Raman ARP pulses
with Tπ = 10tπ and Tπ = 26tπ . A realistic interrogation time
of T = 10 ms captured contrast loss associated with cloud
expansion.

Figure 8 shows that over a 2σ range of the beam radius, the
fractional variation in contrast is three times smaller for ARP
sweeps than for resonant Raman pulses. While the contrast
of the Tπ = 10tπ ARP interferometer still trends with beam
position, the more adiabatic Tπ = 26tπ interferometer exhibits
just a 1.5% contrast variation out to half the 1/e2 intensity
radius. This robustness should improve the stability of clock
interferometers operating in dynamic environments without
the need for larger beam diameters and higher optical power.

C. Sweep parameters

Parameter fluctuations in practical frequency sweeps will
introduce instabilities to a Raman ARP-based clock. Variations
in �eff typically arise from drifts in optical power, polarization,
and rf power, whereas perturbations to the sweep parameters
Tπ , �arp, and δmax may result from reproducibility issues
associated with broad frequency sweeps in rf systems. To
provide a robust timing reference, a Raman ARP Ramsey
sequence must withstand reasonable variations in these pa-
rameters. Our model predicted <1 mrad phase deviations and
contrast variations consistent with zero in response to ±10%
changes in the parameters listed above. We experimentally
tested the sensitivity by extracting ARP interferograms with
T = 1 ms interrogation times, while deliberately adjusting the
sweep parameters over ±10% of a nominal value (as described
in Sec. II). For each parameter, we acquired Raman ARP
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FIG. 9. (Color online) Phase sensitivity of Raman ARP Ramsey
sequence to 10% variations in parameters defining the ARP frequency
sweep. Nominal settings: Tπ = 10tπ (red diamonds) or Tπ = 26tπ
(blue squares), δmax/2π = 15 MHz, �arp/2π = 73 kHz, and
�eff/2π = 73 kHz. The residual instability in these measurements
was driven largely by magnetic-field fluctuation.

interferograms with Tπ = 10tπ and Tπ = 26tπ . The phase
responses plotted in Fig. 9 represent weighted averages, and
error bars signify standard errors. Over the ∼1000-s averaging
times relevant to these experiments, second-order Zeeman
shifts resulting from the large 870-mG bias field limited
the long-term stability. At about 4 × 10−11, the fractional
frequency uncertainty of our open-loop clock was consistent
with the <3 mrad phase uncertainty seen in this experiment,
given a T = 1-ms interrogation time. In the next section, we
discuss improvements in stability resulting from a reduction
in bias field strength.

Due to spontaneous emission, the contrast responded
linearly to changes in Tπ and �eff . The Tπ = 26tπ and 10tπ
cases exhibited maximum contrast deviations of 3.8% and
1.8%, respectively. The maximum respective deviations in
background offset were 0.7% and 0.4%. This sensitivity is
unlikely to limit a deployed sensor, in which Tπ and �eff will
be controlled to 1% or better. With this stricter bound on pulse
parameters, the resulting 0.07% instability in offset yields a
fractional frequency stability at 1 s of 3 × 10−13. These effects
will be further suppressed by averaging of sequential phase
measurements at �ϕ = ±π/2.

By scanning the single-photon Raman laser detuning, we
confirmed that spontaneous emission reached a broad mini-
mum between 2 and 3.5 GHz. The magnitude of the detuning
scan was bounded by the hyperfine splitting frequency to
enable the cancellation of light shifts through the correct choice
of optical intensity ratios.

VI. STABILITY ASSESSMENT

To assess the stability of our atomic reference, we computed
the Allan deviations of Ramsey frequency measurements
based on Raman ARP pulses with Tπ = 26tπ , as well as
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Raman π/2 pulses and microwave π/2 pulses. For these
measurements, the bias field was reduced to 87 mG to suppress
contributions from environmental magnetic fields. Since the
clock state Zeeman shift has a quadratic dependence on
field strength, drifts in the magnetic environment, acting in
conjunction with a small bias field, produce smaller systematic
phase shifts. Phase deviations were related to frequency shifts
through precise knowledge of the interrogation time, which
was set to T = 16.667 ms to synchronize with (and thereby
suppress) environmental electromagnetic noise at 60 Hz.
Contrast values for the ARP and microwave interferometers
were not noticeably changed by the increase in interrogation
time from 10 to 16.667 ms. The three pulse types were applied
sequentially with a data rate of 1.6 Hz. However, the effective
data rate for a particular pulse type was 0.13 Hz, because
frequency measurements were based on interferogram fits.
Interferograms were extracted from four consecutive measure-
ments with phase shifts of �ϕ = {−3π/4, − π/4,π/4,3π/4}.
This scheme allowed simultaneous measurements of interfer-
ometer contrast and background offset. The rf signal generator,
provided with a 10-MHz reference from a separate Cs beam
clock (Symmetricom 5071A), produced a stable signal that
enabled examination of the long-term stability of our atomic
reference. The fractional frequency stability of the Cs beam
reference is 5 × 10−12/

√
τ .

The Allan deviations, plotted in Fig. 10(a), indicate that
the fractional frequency uncertainty for all interferometers
was limited to ∼3.5×10−12 around 2500 s. The similarities
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10−11

10−10

τ (s)

σ y(τ
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FIG. 10. (Color online) (a) Allan deviations of fractional fre-
quency measurements acquired with three interleaved pulse types.
The similarity between the three responses indicates that light shifts
were not the limiting systematic effect during this experiment. In our
unshielded apparatus, magnetic-field instability was the dominant
noise source, as confirmed by Ramsey interrogations of magnetically
sensitive mF states. As a result, the fractional frequency uncertainty
was limited to ∼3.5×10−12. (b) Repeating the stability measurement
with a higher data rate (5 Hz) improved the short-term stability of all
pulse types to ∼1.5×10−11 for an averaging time τ = 1 s. Magnetic
fields remained the limiting source of instability for τ > 5 s.

in Allan deviations across all pulse types suggest that light
shifts were not a limiting factor in this experiment. Subsequent
Ramsey spectroscopy with mF = 1 states, which carry first-
order sensitivity to the Zeeman shift, revealed magnetic-field
instability to be the dominant noise source. In that measure-
ment, Ramsey phase jitter was attributed to magnetic-field
fluctuations, which were then used to predict the instability
in the clock resonance [see purple diamonds in Fig. 10(a)].
At short averaging times from τ = 10 to 100 s, the slopes
of the Allan deviations indicate a white noise process driven
largely by the low effective data rate. As shown in Fig. 10(b),
frequency measurements acquired at 5 Hz—a 38-fold increase
in data rate—improved the short-term stability to ∼1.5×10−11

at τ = 1 s, though white noise was no longer the limiting
process. Beyond τ = 5 s, magnetic-field instability once again
became the limiting systematic effect. We note that frequency
measurements at the higher data rate were based on single
shots acquired near quadrature phase and that the pulse types
were not interleaved.

An important source of frequency instability not addressed
in this work is atom motion along the Raman beam axis, which
Doppler shifts the clock resonance. The Doppler shift could
ultimately be measured with a low-cost inertial sensor and
compensated by adjusting the Raman detuning. An accelerom-
eter with 10-mg resolution determines the Doppler-induced
phase shift to within 1 mrad, limiting the short-term stability to
2 × 10−13 if one assumes an averaging time of 1 s, a sampling
rate of 80 Hz, and a Ramsey interrogation time of 10 ms.
Alternatively, one could discern Doppler shifts that are stable
over consecutive measurements by cycling between forward-
and backward-propagating Raman beams. This technique
relies on the fact that reversal of beam propagation changes
the sign of the Doppler shift but not the clock frequency.

VII. CONCLUSION

We have presented frequency-swept Raman ARP as a
tool for robust Ramsey interrogation. With a sufficiently
adiabatic sweep, we have produced Raman ARP Ramsey
fringes that agree well with those of corresponding sequences
based on Raman π/2 pulses. Raman ARP Ramsey sequences
strongly suppress phase sensitivity to light shifts during the
pulse. For the small differential ac Stark shifts expected
in a practical timing reference (|δac| � 0.02�eff), the phase
sensitivity is reduced by about two orders of magnitude,
effectively eliminating light shift contributions to short-term
noise and improving the prospects for long-term stability
with an optical Ramsey interrogation. Our approach also
reduces the sensitivity of Ramsey fringe contrast to Gaussian
laser beam intensity gradients, which is a critical attribute
for cold atom clocks operating in dynamic environments.
Potential phase sensitivity to the frequency sweep parameters,
if present, is below the resolution limits of our system. Single
pulse experiments indicate that the tangent frequency sweep
characterized by Eq. (1) is faithfully reproduced by our rf
electronics and electro-optics.

Our results suggest Ramsey sequences based on Raman
ARP provide a promising path toward realizing a compact
primary frequency reference capable of operating in dynamic
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environments. Future work will focus on increasing the data
rate while maintaining signal-to-noise ratio, adding magnetic
shields to suppress ambient field fluctuations, and using our
atomic reference to actively stabilize a 10-MHz oscillator.
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