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Label-Free Imaging of Membrane Potential Using Membrane
Electromotility
Seungeun Oh,* Christopher Fang-Yen, Wonshik Choi, Zahid Yaqoob, Dan Fu, YongKeun Park,
Ramachandra R. Dassari,* and Michael S. Feld
G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts
ABSTRACT Electrical activity may cause observable changes in a cell’s structure in the absence of exogenous reporter mole-
cules. In this work, we report a low-coherence interferometric microscopy technique that can detect an optical signal correlated
with the membrane potential changes in individual mammalian cells without exogenous labels. By measuring milliradian-scale
phase shifts in the transmitted light, we can detect changes in the cells’ membrane potential. We find that the observed optical
signals are due to membrane electromotility, which causes the cells to deform in response to the membrane potential changes.
We demonstrate wide-field imaging of the propagation of electrical stimuli in gap-junction-coupled cell networks. Membrane
electromotility-induced cell deformation may be useful as a reporter of electrical activity.
INTRODUCTION
The electrical activity of a cell can modify an optical wave
probing the cell in its amplitude, phase, and polarization
through endogenous mechanisms (1). This fast intrinsic
optical signal (FIOS) can be used as a reporter of changes
in the membrane potential, potentially enabling label-free
imaging with the advantage of simple sample preparation,
low phototoxicity, and no photobleaching (2). Furthermore,
knowledge about the biophysical mechanisms by which the
probe light is altered by a cell’s electrical activity may aid
in the design of voltage-sensing probes, such as second-
harmonic-generation probes (3,4).

Label-free imaging of an individual cell’s electrical
activity has been performed most successfully in inverte-
brate cells. Investigators have observed changes in the
membrane potential of unstained Aplysia neurons with
high signal/noise ratio and subcellular resolution using
dark-field microscopy and angle-resolved light scattering
(5). Optical devices based on interferometry (6), polarimetry
(7,8), and light scattering (5,8) have also been used to
observe optical signatures of electrical activity from various
invertebrate preparations in vitro and in situ. However, to the
best of our knowledge, the FIOS from single mammalian
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cells has never been detected. In mammalian samples,
optical signals have been obtained only from aggregations
of cells or nerve terminals. For example, light-scattering
signals from mouse nerve terminals (9,10), rat brainstem
(11), rat cortex (12,13), and cat hippocampus tissue (14)
have been correlated with electrical stimulation. Also,
several groups have reported (with some controversy
(15–17)) the use of near-infrared spectroscopy to detect
fast changes in light scattering in correlation with the brain
activity of human subjects (18–20). Mammalian cells are
smaller, optically transparent, and scatter significantly less
light compared with invertebrate nerves and neurons, which
explains in part why mammalian single-cell FIOS has been
elusive up to now. Moreover, further advancements in detec-
tion techniques have been limited mainly due to the lack of
information about the structural basis of the optical signals.
Various nonoptical or contact methods have been used to
investigate the mechanical deformation that accompanies
the action potentials in squid giant axon, nerve fibers, and
nerve terminals (21–25). In particular, Kim et al. (21)
showed that the light-scattering signal from a spiking nerve
terminal has characteristics similar to the thickness change
measured by high-bandwidth dynamic atomic force micros-
copy, and hence demonstrated a close relation between the
intrinsic optical signals and structural changes. However,
most existing FIOS techniques rely on assumptions about
the refractive index and shape of cells to test models of
a cell’s structural changes against experimental data, such
as light scattering or optical retardation (5,26). For mamma-
lian cells, which are more complex in shape, it is difficult to
produce an accurate model for each cell. In fact, a micros-
copy-based approach that directly measures the shape of
cell would be more suitable.

In this report, we present an approach that successfully
detects intrinsic optical signatures associated with changes
in the membrane potential from single, nonneuronal
doi: 10.1016/j.bpj.2012.05.020
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mammalian cells. The key instrument that enables us to
observe FIOS of single mammalian cells is a low-noise
quantitative phase microscope, low-coherence diffraction
phase microscope (LCDPM), which combines optical inter-
ferometry with microscopy (27). Previous studies used
optical interferometry to detect FIOS from invertebrate
samples (6,28). In those studies, changes in the optical phase
of light reflected from a sample’s surface provided a highly
sensitive measure of changes in height resulting from the
cell’s electrical activity. In contrast, LCDPM measures the
light that is transmitted through the sample at the image
plane (Fig. S1 in the Supporting Material). Our imaging-
based approach makes it possible to observe the spatial
organization of the optical signals from single cells, and
to interpret the signal without having to rely on questionable
assumptions about the cell’s shape and refractive index.

LCDPM measures the retardation of the optical phase of
the light that traverses a monolayer of cells using light
interferometry. When an incident plane wave passes through
the sample, the wave front is delayed by an amount propor-
tional to the cell’s thickness and relative refractive index. To
measure the phase retardation, 4, a planar reference field is
used to interfere with the light field that has traversed the
sample. LCDPM employs a unique design in which the
sample field and the reference field traverse the same optical
components (Fig. S4) (29). This is achieved by creating the
reference field from the sample field itself. First, the sample
field is split into two closely directed beams with the use of
a diffractive beam splitter. Then one beam is focused
through a pinhole to render it into a Gaussian wave. This
reference beam is recombined with the other beam that
carries the sample information, creating the interference
pattern on the camera. Because of the common path design,
the optical path-length difference between the sample and
the reference field can be smaller than the coherence length
of a low-coherence light source, enabling low-coherence
interferometry. The use of a low-coherence light source is
advantageous because it reduces the speckle noise that often
plagues laser interference microscopes (30,31).

Fig. 1 A shows the map of optical phase retardation in the
light passing through a HEK 293 cell measured by LCDPM.
The optical phase retardation is proportional to the integral
of the refractive index along the axis of light propagation,
which approximately represents the height of the cell (see
Supporting Material). The change of optical phase carries
information about membrane-potential-dependent changes
of the cell. We observe a voltage-dependent optical phase
signal that involves the deformation of the cytoskeleton
but is not caused by cell swelling. We find that the signal
is likely caused by isovolumetric cell deformation through
membrane electromotility, a direct coupling between the
membrane potential and membrane tension. The anticorre-
lation and complexity of the spatial structure of the optical
signals explain why it has been difficult to detect FIOS
with low-spatial-resolution techniques. Our technique can
Biophysical Journal 103(1) 11–18
readily be used to observe a large number of cells simulta-
neously, as we demonstrate by wide-field imaging of a
gap-junction-coupled network of cells.
MATERIALS AND METHODS

Quantitative phase microscopy

Each quantitative phase image was calculated from a single interferogram

by means of a spatial phase modulation algorithm as described previously

(29). Images were typically acquired at a frame rate of 500 frames/s for

10 s. Intensity images were first acquired and stored in the computer, and

then processed into quantitative phase images. The quantitative phase

images were Fourier transformed from the time domain to the frequency

domain to select the relevant frequency component. The optical resolution

was 0.89 mm and the total magnification was 178�. The light source had

a center wavelength of 800 nm with 40 nm bandwidth. Details about the

microscope are provided in the Supporting Material.
Cell culture and electrophysiology

HEK 293 cells were cultured in Dulbecco’s modified Eagle’s medium sup-

plemented with 5% fetal bovine serum and 1% penicillin/streptomycin.

Cells were plated on a poly-L-lysine-coated coverglass 1 day in advance.

The optical and electrophysiology experiments were performed in re-

cording medium consisting of (in mM) NaCl 167, KCl 5.6, HEPES 11,

CaCl2 0.6, and MgCl2 0.6. The pipette solution for the whole-cell patch

clamping consisted of (in mM) KCl 145, EGTA 10, and HEPES 5 (32).

Patch pipettes had a bath resistance of ~4 MU. The sine wave voltage

stimulus had a 200 mV peak-to-peak amplitude in addition to a �60 mV

holding potential, unless otherwise noted. The electrical coupling between

gap-junction-coupled cells was measured in double patch-clamping exper-

iments in which two cells were simultaneously whole-cell patch clamped,

or one cell was whole-cell patch clamped with two electrode pipettes simul-

taneously. One patch pipette was voltage clamped to deliver the bipolar

voltage pulse, and the other pipette was current clamped to measure the

propagation of the pulse. Cells were not electrically coupled right after

plating, because gap junctions were lost during the process of cell trypsini-

zation. The coupling strength of adjacent cell pairs increased with the

incubation time and reached a maximum in ~36 h.
Cytochalasin D treatment

To apply cytochalasin D (CD), we first diluted a CD-DMSO mixture with

culture medium and then added it to the cell culture. The final concentration

of CD was 0.01 mg/mL (20 mmol), and the final concentration of DMSO

was 0.4 mL/mL. Cells were incubated at 37� for 30 min in the CD-contain-

ing media before measurements were obtained. Control cells were main-

tained in the normal culture media. Both experiments with CD-treated

cells and experiments with control cells were performed in the normal

recording media, which does not contain CD.
RESULTS

Optical correlates of the membrane-potential
changes

We observed changes in optical phase retardation while the
membrane potential of the cell was driven with a 100 mV
peak amplitude sine wave through whole-cell patch clamp-
ing. We found that the potential-dependent phase changes
were ~3 orders of magnitude smaller than the cell’s optical
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FIGURE 1 Oscillating membrane potential induces an oscillation in the optical phase of the probing light at the same frequency. (Color online) (A) Quan-

titative phase map of a HEK 293 cell. The patch-clamping pipette is marked with a black triangle. Color bar indicates phase in radians. Scale bar¼ 10 mm. (B)

Diagram defining the time delay and amplitude of the optical phase modulation 4(t) to the electrical stimulation VCMD. (C) Quantitative spectrum of the

phase fluctuations from the area marked by a black square in panel Awith (blue) and without (red) electrical stimulation at 25 Hz. (D) 2D map of the ampli-

tude of the frequency component of the optical phase fluctuations at the stimulation frequency (25 Hz). (E) Delay of the signals in panel D relative to the

electrical stimulation VCMD. (F) Composite image of the amplitude (D) and delay (E) of the optical phase fluctuations. (G) 2D amplitude map of various

frequency components of the optical phase fluctuations: at the stimulation frequency (25 Hz) and at frequencies just below (24.95 Hz) and above

(25.05 Hz) the stimulation frequency while the cell is electrically stimulated at 25 Hz, and at 25 Hz while the electrical stimulation is not applied.

(D–G) Grayscale color bars indicate the amplitude of the fluctuation in mrad. Hue color bars show the delay of the fluctuation relative to the electrical stim-

ulation in radians. (H) Optical phase signal versus the amplitude of the electrical stimulus. The y axis is the amplitude of the optical phase signals averaged

over a 4.7 mm2 area. Open circles: experimental data. Error bars drawn at one standard deviation above and below the mean. The solid line in blue is a fit from

the model (see text). The solid line in black is the measured background noise level, with the 2-s range marked by the dotted black lines.
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phase retardation. To separate these small changes in phase
from background phase fluctuation noise, we drove the
membrane potential at a single frequency f (Fig. 1 B).
Fig. 1 C shows the frequency spectrum of the optical phase
retardation acquired at the area marked by the black square
in Fig. 1 A. The sharp peak at the stimulation frequency
corresponds to the electrically induced optical phase modu-
lations, which are much larger than the instrumental noise
(white noise) and are well separated from the low-frequency
spontaneous fluctuation of the cell. The absolute value
j4jðf Þ and the complex argument :4ðf Þ of the peak
at the stimulation frequency correspond to the amplitude
and the time lag of the electrically induced optical phase
modulation as shown in Fig. 1 B. Therefore, the optical
phase modulation at the stimulation frequency will be called
the optical phase signal throughout this work. The ampli-
tudes measured from the cell in Fig. 1 A are displayed in
Fig. 1 D, and the associated time lags are shown in
Fig. 1 E. The two quantities are shown together in the
composite image of Fig. 1 F, which indicates the amplitude
of the optical phase signal by brightness and the amount
of time delay by hue.

To verify that the observed fluctuations of optical
phase retardations are actually induced by the electrical
stimulation of the cell, we displayed images at frequencies
0.05 Hz below and 0.05 Hz above the frequency of the
stimulating electric field, and we also recorded an image
at the same frequency with the stimulating field turned
off. In each case, as shown in Fig. 1 G, the signal disap-
peared. Also, the amplitude of the optical phase signal
increased with the amplitude of the stimulus (Fig. 1 H).
Because the background noise is constant with frequency
in the relevant frequency range and has a random time
lag, the optical phase signal that would otherwise be
Biophysical Journal 103(1) 11–18
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proportional to the stimulus amplitude is expressed by

j4jðf Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� V2

CMD þ n2
q

, where n is the average noise,

VCMD is the amplitude of the electrical stimulation, and
a is the fitting coefficient. The observed data are well fitted
by this model.
Mechanism of electrical-to-optical coupling
in the cell

How does electrical stimulation of a cell generate changes
in optical phase such as those shown in Fig. 1? Three conse-
quences of cellular electrical activity have been proposed as
the origin of FIOS. First, the cell swells because water trans-
port accompanies the transmembrane ion current (21).
Second, the physical state of the plasma membrane is
altered by the transmembrane electric field: the thickness
of the cell membrane changes through the electrostriction
effect (33) and the membrane birefringence changes through
the interaction with membrane dipole structures (5). Third,
the cell deforms in a potential-dependent manner due to
direct coupling between membrane potential and membrane
tension. This effect is called membrane electromotility
(MEM) (32). Each of these biophysical phenomena changes
the refractive index or the thickness of the cell in a different
way, as illustrated in Fig. 2 A, and can be detected using
LCDPM. In the case of cell swelling, both the refractive
index and the thickness of the cell change. The second
model predicts optical and physical changes confined to
the plasma membrane. The optical phase signal associated
with MEM would be solely due to the shape change and
not from the refractive index change.

To test the above models, we performed three experi-
ments that characterize the optical phase signals. First, we
studied how the optical phase signals depend on the
frequency of the electrical stimulation. We obtained data
by electrically stimulating a cell with sine waves of various
frequencies and the same amplitude. Because the cell
membrane resistance, cell membrane capacitance, and
series resistance of the patch-clamp pipette act together
as a low-pass filter (see Supporting Material for discussion,
and Fig. S6 a), the membrane potential is not the same as the
potential applied to the patch-clamping electrode (34).
Therefore, before taking optical data, we determined each
cell’s circuit parameters and used them to calculate the
membrane potential from the pipette potential. Fig. 2 B
shows the optical phase signal amplitude per 100 mV of
membrane potential modulation versus frequency. Note
that the amplitude of the optical phase signals at high
frequencies stays nearly constant or tends to decrease very
slowly with frequency. This behavior is different from the
swelling model in which the volume change due to swelling
is equal to the integral of the water influx during each duty
cycle, and hence should have amplitude inversely propor-
tional to frequency.
Biophysical Journal 103(1) 11–18
To test whether the cytoskeleton is involved in generating
the observed changes in phase, we compared the size of
the optical phase signals from cells treated with CD with
that of signals from untreated cells. CD softens the cell by
inhibiting polymerization of the actin, the major component
of the cytoskeleton (35). If mechanical deformation of the
cell body is involved, as in the case of membrane electromo-
tility, the optical phase signals should be larger for softened
cells than for unsoftened ones. Fig. 2 C shows that this is
indeed the case. The voltage-induced optical phase signals
averaged over the area of each cell for CD-treated cells
(N ¼ 5) are ~50% larger than those of the control cells
(N ¼ 10). This strong effect of cytoskeleton mechanics on
the optical phase signals leads us to conclude that a pure
membrane model does not account for most of the observed
signals.

The membrane electromotility model, on the other hand,
is consistent with the above observations. In the MEM
model, the membrane potential generates membrane tension
that deforms the cytoplasm and changes the shape of the
cell. The membrane tension of MEM responds extremely
rapidly (<150 ms response time) to the applied voltage
(36), which is consistent with the nearly constant optical
phase signals at high frequencies (Fig. 2 B). Also, the
mechanical deformation of a cell in response to a given
MEM-induced membrane tension will be larger for mechan-
ically softer cells, as in Fig. 2 C. As another test of the MEM
model, we added salicylate to the external solution. This
small, negatively charged molecule can partition into the
lipid bilayer, and a low concentration (4 mM) of salicylate
in the external solution can alter the density of surface
charge on a cell membrane and reduce the membrane elec-
tromotility (32). Fig. 2D shows that when salicylate ions are
added, the optical phase signal diminishes, just as predicted
by the MEM model.
Cell deformation caused by MEM

Fig. 2 E illustrates how MEM induces a voltage-dependent
shape change in a cell. A change in the membrane potential
alters the density of adsorbed ions on the plasma membrane:
their mutual electrostatic repulsion gives rise to voltage-
dependent membrane tension, and this change in tension
induces changes in the shape of the cell (32). How much
and how fast a cell will deform in response to a given magni-
tude of change in the membrane tension depends on the
mechanical properties of the cytoplasm. The behavior of
a cell that elastically deforms to sudden forces but is viscous
in slow deformation is described by the Maxwell model
of a spring (k) and a dashpot (h) in series (37). In the
frequency domain, the mechanical response x to a force F
applied with an angular frequency u is given by
x ¼ ðk�1 � iu�1h�1Þ � F. In this model, the response
rapidly decreases at low frequencies and slowly converges
to a constant at high frequencies, in agreement with our
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FIGURE 2 Mechanism of electrical-to-optical coupling. (Color online)

(A) Changes in the membrane potential may give rise to changes in the

cytoplasm refractive index, membrane refractive index, membrane thick-

ness, or cell shape. All of these changes can be detected by changes in

the optical phase of light transmitted through the cell. (B) The amplitude

of the optical phase signal depends on the frequency of the electrical stim-

ulus. Circles and error bars are the average and the standard deviation of

the amplitude of optical phase fluctuations in the presence (blue) and

absence (red) of electrical stimulus. The solid line is the fit from the model

(shown in Fig. 2 E; see text for details). (C) CD, an actin polymerization

inhibitor, magnifies the amplitude of the optical phase signals. Blue circles

are the amplitude of optical phase signals driven by 15–25 Hz electrical

stimulation, averaged over the entire area of each cell. Red circles are

the optical phase fluctuation in the absence of the stimulation. The

difference between the two groups is statistically significant (p < 10�4).
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observations, as shown in Fig. 2 B. In applying this model to
the experimental data of Fig. 2 D, we assumed that the
driving force F is proportional to the membrane potential,
and that the optical phase signal is linearly proportional to
the response x. By fitting the data points to the Maxwell
model, we find the characteristic frequency fc ¼ k=h to be
~80 Hz, which is ~10 times larger than the characteristic
frequency of mechanical behavior of adherent cells (37).
This result suggests that the nanoscale motion induced by
membrane electromotility may involve a different set of
structural molecules from those responsible for the
micron-scale displacements observed in conventional cell
microrheology experiments.

Mechanical deformation provides a straightforward ex-
planation for the observed variations of phase signals over
the area of the image. Fig. 2, H and I, show that a cell
exhibits domains in which time delays of the optical phase
signals have similar values. Also, when a cell has a domain
with a given time delay, it will have at least one other
domain in which the time delay is ~180� out of phase.
This indicates that these domains are moving synchro-
nously in opposite directions; that is, when one part of
a cell becomes thicker, the other part gets thinner and
vice versa. The arrangements of these domains in Fig. 2,
H and I, are best explained by the cell deformations shown
in Fig. 2, J and L, which change the optical phase retarda-
tions as shown in Fig. 2, K and M. This observation is
consistent with the requirement that cell volume be
unchanged during the MEM-induced deformation. A conse-
quence of this anticorrelation is that the size of the optical
signal does not increase when the size of the sampling
area is increased. When averaged over the area of a single
cell, the optical signals from the opposite domains cancel
each other out. It is likely that similar anisotropy of the
cell’s changes accounts for the fact that higher spatial reso-
lution increased the detectability of the FIOS in tissue
studies (38).
N ¼ 5 for CD-treated cells, and N ¼ 10 control cells. (D) Effect of salic-

ylate ions. Blue circles are the amplitude of optical phase signals averaged

over the cell area when the cell is electrically stimulated (30–40 Hz), and

red circles are the same measurement in the absence of stimulus. The

number of cells is N ¼ 3 for the salicylate condition (Sal) and N ¼ 6

for the control. (E) Membrane electromotility couples the membrane

potential with membrane tension, and the membrane tension then mechan-

ically deforms the cytoskeleton. Optical phase signals reflect the change of

cell morphology. (F and G) Quantitative phase images of patch-clamped

HEK 293 cells with different degrees of attachment to the substrate. Scale

bars ¼ 5 mm. (H and I) Optical phase signals induced by the electrical

stimulations (both 87 Hz). From the spatial distribution of the optical

phase signals, we can infer the morphological changes. (J and L) Simple

models of cell deformation can explain the amplitude and direction of the

optical phase signals in H and I. Schematic side views of a loosely

attached cell (J) and a cell attached to its substrate (L). The cells deform

between the solid and dashed outlines. (K and M) The height difference

of the alternating shapes results in optical phase signals such as those in

H and I.

Biophysical Journal 103(1) 11–18
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FIGURE 3 Wide-field imaging of electrical activities. (Color online) (A)

Quantitative phase image of HEK 293 cells 36 h after plating. The cell

marked by the black triangle is directly stimulated through a patch pipette.

Color bar in radians, scale bar¼ 10 mm. (B) The optical phase signal shows

that the electrical stimulus has propagated to neighboring cells. Grayscale

bar in mrad, color bar in radians. (C) Double patch-clamping measurement

of the gap junction coupling in HEK 293 cells. A voltage-clamped cell was

electrically stimulated with a 10 mV bipolar pulse and the pulse size in the

other cell is observed for pairs with different degrees of separation. Electri-

cal coupling strength is defined by the ratio of the two pulse sizes. (D and E)

The size of the optical phase signal decreases as a function of the distance

from the electrical stimulation. Cell 1 is directly stimulated through a patch

pipette. The rest of the x axis indicates the neighboring cells grouped in

order of closeness to the patch-clamped cell. The y axis is the mean ampli-

tude of the optical phase signal averaged over each cell area. (D) The ampli-

tudes of the optical phase signals are similar regardless of the distance from

the patch pipette, indicating a very small gap-junction resistance. (E) The

same cells with 100 mmol/L gap junction blocker CBX. The optical

phase signal amplitude decays rapidly with distance, as would be expected

from increased gap-junction resistance. Number of cells in groups 2, 3,

and 4: N ¼ 4, 5, and 3, respectively.
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Imaging electrical activity with optical phase
signals

As noted above, FIOS imaging allows label-free measure-
ments of cellular electrical phenomena. To demonstrate
this, we observed the propagation of an electrical stimulus
over the gap junctions of HEK 293 cells. A gap junction
is a membrane structure that provides channels between
two cells, through which they can exchange ions and metab-
olites (39). We used double patch clamping to confirm that
our HEK 293 cells were strongly gap-junction coupled
(Fig. 3 C).

In the experiment, one cell was stimulated by patch
clamping while quantitative phase images were acquired
from the entire area, including the neighboring cells.
Fig. 3 A shows the quantitative phase image of a low-density
culture of HEK 293 cells with well-developed gap-junction
coupling. The cell marked by the arrowhead was electrically
stimulated by a sine wave of 42 Hz frequency and 100 mV
half-amplitude while quantitative phase images of the entire
field of view were acquired for 10 s at 500 frames/s. The
optical phase signals in Fig. 3 B appear on both the stimu-
lated cell and the neighboring cells, revealing that the elec-
trical stimulus has propagated. Note that the optical phase
signals clearly reveal a fine structure connecting two of
the cells (see Supporting Material for further discussion).
The variations in the cells’ substrate adhesion and cytoskel-
eton organization are the likely causes of the variations in
optical signals within a cell and among different cells.

To confirm that our optical phase signals truly indicate the
electrical activity of a cellular network, we added the gap-
junction blocker carbenoxolone (CBX) to a HEK 293
culture (40). In this experiment, we obtained optical phase
signals from a confluent cell monolayer including 13 cells,
where cell 1 was directly stimulated by whole-cell patch
clamping. The neighboring cells were labeled according to
their proximity to cell 1 (i.e., group 2 cells are direct neigh-
bors of cell 1, group 3 cells are direct neighbors of group 2
cells, and so on). We acquired optical phase signals from
cells in the usual bath solution while cell 1 was electrically
stimulated. Then we replaced the bath solution with a solu-
tion containing 100 mM CBX, and acquired optical phase
signals as described above. Fig. 3, D and E, show the distri-
bution of the amplitude of the optical phase signals averaged
over each cell in the normal and CBX solutions. The marked
difference between these two distributions confirms that
the optical phase signals in the remote cells are induced
by potential modulations propagated through gap-junction
channels (see Supporting Material for discussion, and
Fig. S6, b and c).
DISCUSSION

In this work, we combined an optical apparatus with data
processing to develop an approach that allows us to detect
Biophysical Journal 103(1) 11–18
the intrinsic optical signals from single mammalian cells.
In contrast to previous approaches, our technique allows
cells to be observed with microscopic resolution. Spatial
averaging, which is often employed in other techniques
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to increase sensitivity, would result in canceling out positive
and negative signals. On a similar note, a previous FIOS
study on amphibian retina also showed that higher spatial
resolution improved the signal detection (38). We think
that the high-resolution approach can be combined with
various other techniques, such as light scattering (11–14)
and optical coherence tomography (41), to enable the
detection of FIOS signals in single mammalian cells. In a
subsequent study, we were able to demonstrate that an
instrument based on optical coherence microscopy could
be used to detect membrane electromotility FIOS in
HEK 293 cells, as will be reported in a follow-up article
(T. Yamauchi, S. Oh, D. Fu, W. Choi, R. R. Dasari, and
Z. Yaqoob, unpublished). Further development of a detection
methodology based on reflected light will make FIOS useful
for a broader range of applications in tissue preparations and
in vivo.

We detected FIOS in the frequency domain and studied
its dynamic property from the frequency response. From
our observations, we deduced that the majority of the
observed FIOS is caused by deformation of the cell body
as the result of membrane electromotility. The frequency
dependence, effects of CD and salicylate, and spatial distri-
bution of the optical phase signals are well explained by our
model. Because membrane electromotility is an intrinsic
property of the lipid bilayer (32), which is common to all
cells, the phenomenon described here should be found
in all cell types, including spiking neurons. However, this
does not exclude the existence of other types of FIOS mech-
anisms in neurons. In invertebrate neurons and mammalian
nerve terminals, ion flux across ion channels or osmotic
imbalance associated with the action potential can cause
net water transport across the cell membrane (21,43).
This causes cell swelling that can be detected by light scat-
tering, birefringence signals, and high-bandwidth dynamic
atomic force microscopy (1,8,21). Although we initially
expected to observe the swelling effect in HEK 293 cells,
we found that this was not the case (Fig. 2 B). The absence
of a swelling effect in HEK 293 cell indicates the role of
neuron-specific ion transporters in cell swelling. Moreover,
our finding that there exists a mechanism other than
swelling is not unprecedented. In a study using squid giant
axons, Cohen et al. (44) observed that electrostriction causes
the dominant part of the forward light-scattering signal
from action potentials. Both electrostriction and swelling
effects were shown to exist in squid giant axons, but the
relative magnitude of the optical signals depended on the
window of the scattering angles and the time window of
the observation. Similarly, membrane electromotility and
swelling would be distinguishable by different temporal
characteristics because the membrane electromotility is
potential-dependent and swelling is dependent on the time
integral of current.

The approach presented here, which combines frequency
domain analysis and transmission quantitative phase
microscopy, can be applied to detect the intrinsic optical
signals from spiking neurons. From the reciprocity of
temporal and frequency domains, the dynamical property
of the intrinsic optical signal can be inferred from the spec-
tral response of repeated action potential spikes. Because
the bandwidth from 0.2 to 5 kHz captures the characteristics
of the action potential in extracellular recordings (45), and
this frequency window is accessible for the frequency
domain analysis, LCDPM will be able to observe the optical
signal of the action potentials from mammalian neurons.
Detection of a single action potential spike is more chal-
lenging and will require a different strategy to increase the
signal/noise ratio. We suggest that a possible solution to
this problem would be to use the band-pass filtering and
spike-detection technique employed for extracellular
recording of neuronal action potentials (46).

FIOS is an interesting biophysics phenomenon that is
based on the interaction of chemical, mechanical, and elec-
trical forces at the plasma membrane. Despite various care-
ful studies on invertebrate FIOS (1,5,8), little is understood
about its biophysical mechanism in vertebrate systems. We
anticipate that the approach presented here will provide
a useful tool for further investigating FIOS biophysics,
i.e., the mechanical and optical consequences of a cell’s
electrical activity.
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