
Revised August 1982 LIDS-P-1082-A

SECOND DERIVATIVE ALGORITHMS FOR MINIMUM

DELAY DISTRIBUTED ROUTING IN NETWORKSt

by

Dimitri P. Bertsekas*
Eli M. Gafni**

Robert G. Gallager***

ABSTRACT

We propose a class of algorithms for finding an optimal quasistatic
routing in a communication network. The algorithms are based on Gallager's
method [1] and provide methods for iteratively updating the routing table
entries of each node in a manner that guarantees convergence to a minimum
,delay routing. Their main feature is that they utilize second derivatives
of the objective function and may be viewed as approximations to a con-
strained version of Newton's method. The use of second derivatives results
in improved speed of convergence and automatic stepsize scaling with respect
to -level of traffic input. These advantages are of crucial importance for
the practical implementation of the algorithm using distributed computation
in an environment where input traffic statistics gradually change.

tThis research was conducted at the M.I.T. Laboratory for Information and
Decision Systems with partial support provided by the Defense Advanced
Research Projects Agency Grant No. ONR-N00014-75-C-1183 and the National
Science Foundation under Grant NSF/ECS 79-19880.

*Room No. 35-210, Laboratory for Information and Decision Systems, Ma-
ssachusetts Institute of Technology, Cambridge, Mass. 02139.

**Computer Science Department, University of California, Los Angeles,
California.

***Room No. 35-206, same as*.

1. Introduction

We consider the problem of optimal routing of messages in a communication

network so as to minimize average delay per message. Primarily we have in

mind a situation where the statistics of external traffic inputs change

slowly with time as described in the paper by Gallager [1]. While algo-

rithms of the type to be described can also be used for centralized com-

putation, we place primary emphasis on algorithms that are well suited

for distributed computation.

Two critical requirements for the success of a distributed routing

algorithm are speed of convergence and relative insensitivity of performance

to variations in the statistics of external traffic inputs. Unfortunately

the algorithm of [1] is not entirely satisfactory in these respects.

In particular it is impossible in this algorithm to select a stepsize that

will guarantee convergence and good rate of convergence for a broad range

of external traffic inputs. The work described in this paper was motivated

primarily by this consideration.

A standard approach for improving the rate of convergence and

facilitating stepsize selection in optimization algorithms is to scale

the descent direction using second derivatives of the objective function

as for example in Newton's method. This is also the approach taken here.

On the other hand the straightforward use of Newton's method is inappropriate

for our problem both because of large dimensionaiity and the need

for algorithmic simplicity in view of our envisioned decentralized real time

loop free implementation. We have thus introduced various approximations to

Newton's method which exploit the network structure-of-the problem, simplify

the computations, and facilitate distributed implementation.

-3-

In Section 2 we formulate the minimum delay routing problem as a

multicommodity flow problem and describe a broad class of algorithms to

solve the problem. This class is patterned after a gradient projection

method for nonlinear programming [2], [3] as explained in [4], but differs

substantively from this method in that at each iteration the routing pat-

tern obtained is loopfree. An interesting mathematical complication aris-

ing from this restriction is that similarly as in [1] the value of the

objective function need not decrease strictly at each iteration. Gallager's

original algorithm is recovered as a special case within our class except

for a variation in the definition of a blocked node [compare with equation

(15) of [1]]. This variation is essential in order to avoid unnecessary

complications in the statement and operation of our algorithms and, despite

its seemingly minor significance, it has necessitated a major divergence in

the proof of convergence from the corresponding proof of [1].

Section 3 describes in more detail a particular algorithm from the

class of Section 2. This algorithm employs second derivatives in a manner

which approximates a constrained version of Newton's method [3] and is

well suited for distributed computation.

The algorithm of Section 3 seems to work well for most quasistatic

routing problems likely to appear in practice as extensive computational

experience has shown [5]. However there are situations where the unity

stepsize employed by this algorithm may be inappropriate. In Section 4

we present another distributed algorithm which automatically corrects this

potential difficulty whenever it arises at the expense of additional com-

putation per iteration. This algorithm also employs second derivatives,

and is based on minimizing at each iteration a suitable upper bound to a

quadratic approximation of the objective function.

-4-

Both algorithms of Sections 3 and 4 have been tested extensively

and computational results have been documented in [5] and [6]. These

results substantiate the assertions made here regarding the practical

properties of the algorithms. There are also other related second

derivative algorithms [7], [8] that operate in the space of path flows

and exhibit similar behavior as the ones of this paper while other more

complex algorithms [12], [13] are based on conjugate gradient approximations

to Newton's method and exhibit a faster rate of convergence. These algo-

rithms are well suited for centralized computation and virtual circuit

networks but, in contrast with the ones of the present paper, require

global information at each node regarding the network topology and the

total flow on each link.
We finally mention that while we have restricted attention to the

problem of routing, the algorithms of this paper can be applied to other

problems of interest in communication networks. For example, problems of

optimal adaptive flow control or combined routing and flow control have

been formulated in [9], [10] as nonlinear multicommodity flow problems of

the type considered here, and the algorithms of this paper are suitable

for their solution.

-5-

2. A Class of Routing Algorithms

Consider a network consisting of N nodes denoted by 1,2,...,N and L

directed links. The set of links is denoted by L . We denote by (ik,)

the link from node i to node Z and assume that the network is connected

in the sense that for any two nodes m,n there is a directed path from m to

n. The flow on each link (i,Z) for any destination j is denoted by f ig(j).

The total flow on each link (i,k) is denoted by Fig, i.e.

N

Fi =- fig (j).
j=1

The vector of all flows fig(j), (i,k)eL, j = 1,...,N is denoted by f.

We are interested in numerical solution of the following multicommodity

network flow problem:

minimize Di (i) (MFP)
(i,Z) zL

subject to fzUi) -ii riC =

Zeo(i) mEI(i)

Vi = 1,...,N, i i j

fi.(j) > 0 V (i,)L , i = ,.,N, j =1, ,N

fjz(j) = O V (j,Z)EL , j = 1,...,N,

where, for i ~ j, ri(j) is a known traffic input at node i destined for j,

and O(i) and I(i) are the sets of nodes t for which (i,Z)EL and (Z,i)EL

respectively.

The standing assumptions throughout the paper are:

-6-

a) ri(j) > 0, i,j = 1,...,N, i J j

b) Each function Dig is defined on an interval O1,Cig) where Cig is either

a positive number (the link capacity)or +c; Dig is convex, continuous,

and has strictly positive and continuous first and second derivatives

on [O,Cig), where the derivatives at 0 are defined by taking the

limit from the right.

c) (MFP) has at least one feasible solution, f, satisfying Fig < Cig for

all (i,Z)EL.

For notational convenience in describing various algorithms in what

follows, we will suppress the destination index and concentrate on a single

destination chosen for concreteness to be node N. Our definitions, opti-

mality conditions, and algorithms are essentially identical for each

destination, so this notational simplification should not become a source

of confusion. In the case where there are multiple destinations it is

possible to implement our algorithms in at least twd different ways.

Either iterate simultaneously for all destinations (the "all-at-once"

version), or iterate sequentially one destination at a time in a cyclic

manner with intermediate readjustment of link flows in the spirit of the

Gauss-Seidel method (the "one-at-a-time" version). The remainder of our

notation follows in large measure the one employed in [1]. In addition

all vectors will be considered to be column vectors, transposition will

be denoted by a superscript T, and the standard Euclidean norm of a vector

will be denoted by 1', i.e. x x = xi 2 for any vector x. Vector inequal-

ities are meant to be componentwise, i.e. for x = (Xl,...,xn) we write

x > 0 if x > 0 for all i = 1,...,n.

Let t. be the total incoming traffic at node i

t.i = r. + i' i (1)

m1I (i)
mZN

and for t i # 0 let Siz be the fraction of t i that travels on link (i,Z)

fik
1Q = t i = 1,.,1N-1 (i,Q)aL.i- t.

Then it is possible to reformulate the problem in terms of the variables

Si% as follows [1].

For each node ijN we fix an order of the outgoing links (i,Z), Zs0(i).

We identify with each collection {Siil (i,9)zL, i = 1,...,N-1} a column

T T TvectorS= (s , S -), where i is the column vector with coordinates

,iz ,0 O(i). Let

-- = 'iZ > Z (i) Oi i 1, (i,Z)£L, i = 1,. .,N-l}

(2)

and let $ be the subset of T consisting of all S for which there exists a

directed path (i,Q),...,(m,N) from every node i = 1,...,N-l to the destination

N along which Sig > 0,...imN > 0. Clearly $ and T are convex sets, and

the closure of D is $. It is shown in [1] that for every #$ and

r = (r1sr 2 . .. , rN 1) with r. > 0, i = 1,.. ,N-1 there exi.st unique

vectors t(S,r) = (tl(4,r),. . .tN-l({,r)) and f(S,r) with coordinates

fi (, r), (i,Q)sL, i # N satisfying

t (,r) > O, f0(,r) > 0

ti.(,r) = r + I f i(r)i i = 12,...,N-1
meI (i)
mAN

i f i(S,r) - 7 fmi (Pr) = r i 1,, .,N-
¢o (i) mI (i)

mAN

f(i r) = ti 9, r)i , i = 1 .oN -l(') Ei Lo

Furthermore the functions t(~,r), f(k,r) are twice continuously dif-

ferentiable in the relative interior of their domain of definition

cx{rlr > O}. The derivatives at the relative boundary can also be defined

by taking the limit through the relative interior. Furthermore for every

r > 0 and every f which is feasible for (MFP) there exists a #s4 such

that f = f(O,r).

It follows from the above discussion that the problem can be written

in terms of the variables fig as

minimize D (,r) (3)
(i,Z)cL

subject to $e:,

where we write D(O,r) = - if fiZ(j,r) > Cit for some (i,Z)£L.

Similarly as in [1], our algorithms generate sequences of loopfree

routing variables C and this allows efficient computation of various

derivatives of D. Thus for a given

00 we say that node k is downstream from node i if there is a directed

path from i to k, and for every link"(Z,m) on the path we have 0Zm > 0.

We say that node i is upstream from node k if k is downstream from i. We

say that ~ is loopfree if there is no pair of nodes i,k such that i is

both upstream and downstream from k. For any OE1 and r > 0 for which

-9-

D(,r)< - the partial derivatives 3D(~,r) can be computed using the follow-
iZt

ing equations [1]

_D = D
ti(D!i + r), (i ,)sL, i = 1,..,N (4)

3D

rN

where D'i denotes the first derivative of Di. with respect to f. The

equations above uniquely determine D and and their computation
Doi a- tr i

is particularly simple if $ is loopfree. In a distributed setting each

3D 3D
node i computes and - via (4),(5) after receiving the value of

from all its immediate downstream neighbors. Because p is loopfree
5ri
the computation can be organized in a deadlock-free manner starting from

the destination node N and proceeding upstream [1].

A necessary condition for optimality is given by (see [1])

3D 3D
= min if fit > 0

DiZ msO (i) im

3D > min D if i = O,
Dit -- mEO (i) 0im

where all derivatives are evaluated at the optimum. These equations are

automatically 'satisfied for i such that t. = 0, and for t. > 0, the con-

ditions are equivalent, through use of (4) and (5), to

-10-

3D min 6. (6)ar. im
1 mO (i) im

where 6.im is defined by

6. = D! + m+O(i) (7)Iimi r
m

In fact if (6) holds for all i (whether t. = 0 or t. > 0) then it is suf-

ficient to guarantee optimality (see [1], Theorem 3).

We consider the class of algorithms

k kfk+l= ~k + Ak , i = 1,...,N-1 (8)where, for each i, the vector A'i with components Akil, ZEO(i) is any

solution of the problem

minimize 6.Ai + 2 AT (9)

ksubject to fi + ai

TAi A = 0, V QZB(i; k).

The scalar a is a positive parameter and 6. is a vector with components

{6 im} given by (7).

-11-

All derivatives in (8) and (9) are evaluated at k and f(~ ,r)..

For each i for which ti(k,r) > 0, the matrix Mk

is some symmetric matrix which is positive definite on the subspace

{vil E v. = }, i.e.
Zc0:(i)

VTM.V > 0 V v ik 0 VvTM1 .vvi O, yvi. , .
Z0 (i)

This condition guarantees that the solution to problem (9) exists and is

unique. For nodes i for which ti(f ,r) = 0 the definition of Mi is immaterial.

The set of indices B(i; k) is specified in the following definition:

Definition: For any #e0 and i=l,...,N-l the set B(i;P), referred to as

the set of blocked nodes for ~ at i, is the set of all gZO(i) such that

0 and either D(,r) DD(~,r)
fiz = °, and either Dr. < , or there exists a link (m,n)

such that m=Z or m is downstream ofZ and we have ~mn > 0,

aD(l,r) > aD(4,r) (Such a link will be referred to as an improper link).
m n

It is shown below that if pk is loopfree, then 4k+l generated by the

algorithm is also loopfree. Thus the algorithm generates a sequence of loop-

free routings if the starting %o is loopfree. We refer to [1] for a

description of the method for generating the sets B(i;4 k) in a manner

suitable for distributed computation. Our definition of B(i; k) differs

from the one of [1] primarily in that a special device that facilitated the

proof of convergence given in [1] is not employed (compare with equ. (15) of [1]).

We now demonstrate some of the properties of the algorithm in the

following proposition.

k k+l
Proposition 1: a) If c is loopfree then P is loopfree.

b) If pk is loopfree and Apk = 0 solves problem (9) then k is optimal.

-12-

c) If 4k is optimal then k+l is also optimal.

d) If A4k ~ 0 for some i for which ti(k,r) > 0 then there exists a

positive scalar Tk such that

D(4 k + qAOk,r) < D(k,r), Vnes(O,k].

Proof: a) Assume that k+l is not loopfree so that there exists a sequence

of links forming a directed cycle along which k+l is positive.
k k

There must exist a link (m,n) on the cycle for which <D() ,r) < D() 'r)
m n

From the definition of B(m;4 k) we must have 4k > 0 and hence (m,n) is an

improper link. Now move backwards around the cycle to the first link

(i,Z) for which 4i) = 0. Such a link must exist since 4k is loopfree.

Since Z'is upstream of m and (m,n) is improper, we have ZeB(i;4 k) which

contradicts the hypothesis k+l > 0.

k T

b) If A k = 0 solves problem (9) then we must have 6TAXi > 0 for each

i and A4i satisfying the constraints of (9)

k ' 0 i vB(i; k)

(10)

kBy writing A4i = 4i-4)i and using (5), (7) we have
Tk = I t izi - 6it >i

aD > 0.

z 1

By considering fii - 1 individually for each ZfB(i; k), we obtain

r - i Vz K B(i;9 k).

From (5) and (7) then

aD k k
r. i= i v, B(i;¢),with Pi > 0.

Since D' > 0 for all (i,Z)eL it follows from (5),(7) and the relation above that

there are no improper links, and using the definition of B(i; k) we

obtain

aD -= m in
1i 2.O (i)

which is a sufficient condition for optimality of $k [cf. (6)]3

c) If $k is optimal then from the necessary condition for optimality (6) we

have that for all i with t. > 0

-min d.
ar i IEO (i)

It follows using a reverse argument to the one in b) above that

A¢k = 0 if t. > 0.
1 1

Since changing only routing variables of nodes i for which ti = 0 does

not affect the flow through each link we have D(k ,r) = D(ks l,r) and

k+l is optimal. (Note that it is possible that k+l k keven f # P~ even if P

is optimal).

d) If t. > 0, then M. is positive definite on the appropriate subspace;
1 1

if in addition AŽk. O, then the second term in (9) is positive. Since

the minimum in (9) is non positive,

-14-

SiA i < 0.
1 1

Using the fact [cf. (4),(7)]

2.

we obtain that

aDT k
DTL Ai < 0

Hence LAk is a direction of descent at 'k and the result follows. Q.E.D.

The following proposition is the main convergence result regarding

the class of algorithms (8),(9). Its proof will not be given in view of

its complexity and length. It may be found in [11]. The proposition

applies to the multiple destination case in the "all-at-once" and the

"one-at-a-time" version.

Proposition 2: Let the initial routing '° be loopfree and satisfy

D(O°,r) < D where D is some scalar. Assume also that there exist two

positive scalars X,A such that the sequences of matrices {Mi } satisfy the

following two conditions:

a) The absolute value of each element of M. is bounded above by A.

b) There holds

lIvi.2 < vT v

for all vi in the subspace {vil k vi = 0}.
1ZB(i;k)

Then there exists a positive scalar a (depending on Do, X, and A) such

that for all

-15-

kce(O,a] and k=O,l1,... the sequence { } generated by algorithm (8),(9)

satisfies

D(4k + l r) < D(k,r) , lim D(Gk,r) = min D(4,r).
k-co

kFurthermore every limit point of {pk} is an optimal solution of problem

(3).

Another interesting result which will not be given here but can be

found in [11] states that, after a finite number of iterations, improper

links do not appear further in the algorithm so that for rate of con-

vergence analysis purposes the potential presence of improper links

can be ignored. Based on this fact it can be shown under a mild

assumption that for the single destination case the rate of convergence

of the algorithm is linear [11].

The class of algorithms (8),(9) is quite broad since different

k
choices of matrices M. yield different algorithms. A specific choice

of M. yields Gallager's algorithm [1] [except for the difference in
1

the definition of B(i;4) mentioned earlier]. This choice is

the one for which Mk. is diagonal with all elements along the diagonal

being unity except the (Z,7)th element which is zero where Z is a node

for which

6 = min 6
Zs0 (i)

We leave the verification of this fact to the reader. In the next

section we describe a specific algorithm involving a choice of Mk based

on second derivatives of D ig The convergence result of Proposition 2

is applicable to this algorithm.

-16-

3. An Algorithm Based on Second Derivatives

A drawback of the algorithm of [1] is that a proper range of the

stepsize parameter a is hard to determine. In order for the algorithm

to have guaranteed convergence for a broad range of inputs r, one must

take a quite small but this.will lead to a poor speed of convergence for

most of these inputs. It appears that in this respect a better choice

k
of the matrices M. can be based on second derivatives. This tends to

1

make the algorithm to a large extent scale free, and for most problems

likely to appear in practice, a choice of the stepsize a near unity

results in both convergence and reasonably good speed of convergence for

a broad range of inputs r. This is supported by extensive computational

experience some of which is reported in [5] and [6].

We use the notation

a2Di2
iD 21 [afiz

We have already assumed that Di is positive in the set [O,Ci). We would like

to choose the matrices M to be diagonal with t.2 2D(k' r) along the
1 [afii]

diagonal. This corresponds to an approximation of a constrained version

of Newton's method (see [3]), where the off-diagonal terms of the Hessian

matrix of D are set to zero. This type of approximated version of

Newton's method is often employed in solving large scale unconstrained
32D

optimization problems. Unfortunately the second derivatives
[a3itl2

are difficult to compute. However, it is possible to compute easily

upper and lower bounds to them which, as shown by computational ex-

-17-

periments, are sufficiently accurate for practical purposes.

Calculation of Upper and Lower Bounds to Second Derivatives

a2D
We compute D evaluated at a loopfree psc, for all links

[a iZ]

(i,Z) SL for which ktB(i;). We have using (4)

3D a aD

~it

Since ZgB(i;O) and P is loopfree, the node Q is not upstream of i. It
at. 3D'I

follows that = 0 and a1 i = D" t Using again the fact that Z is
30 it 30 i)3 ii-

at. aD'i
not upstream of i we have a-i = 0, ar = 0 and it follows that

a2D a D a aD = a t
aiar k=rr arD i i (D' i a2

it, Dr9Dr i9 r I [9 r

Thus we finally obtain

[a2D .(D. + aD3. (ll)

[ai], [ar ,]2

2D
A little thought shows that the second derivative 2 D is given by

[ar] 2

the more general formula

3D t a 7j k = q.(Z)q(m)D', V ,m=l,... ,N-1 (12)
9 m (j,k)eL

where qjk(k) is the portion of a unit of flow originating at 9 which

a2D
goes through link (j,k). However calculation of using this

[ar,0]

-18-

formula is complicated, and in fact there seems to be no easy way to

compute this second derivative. However upper and lower bounds to it

can be easily computed as we now show. By using (5) we obtain

D2D D a (D
2r { m (Drm . Z ZDrm[ar9] r m m

Since d is loopfree we have that if 2Lm > 0 then m is not upstream of

Z and therefore arQ = 1 and r DI'm Zmg. A similar reasoning shows

that

a2D = n(D n D 2D a
~ar~ar ar / -' D,(n) rr

2r.r m nrm nn

Combining the above relations we obtain

2D 2 D" + am a2D
aD2 = I Zm lm +, fn ar ar (13)
D[r]m Z mm n m n

a2D D2D
Since arDr > O, by setting arar to zero for min we obtain the

mlower n mbound

lower bound

2 a2D
E Qm(Dzm + 2 2)
m [arm]

By applying the Cauchy-Schwartz inequality in conjunction with (12) we

also obtain

DrmDrn l [rm]2 [arn]2

-19-

Using this fact in (13) we obtain the upper bound

2 + (2cp
m m 2 ['m

It is now easy to see that we have for all Q

2 D
[are2

where R9 and RR are generated by

l = 2 f'm(DIm + R) (14)
m

i~=c~RZ 2 Rm~m 2
R Ek DIm + Im V) (15)

m m

N = RN = (16)

The computation is carried out by passing R and R upstream together with

-D and this is well suited for a distributed algorithm. Upper and lower

bounds i i for 3 D 2 B(i;) are obtained simultaneoulsy by

means of the equation [cf. (11)]

-i t(D"I + a) (17)

_i : 2 -(D (18
)-z = it(DI? + Pt)- (18)

It is to be noted that in some situations occuring frequently in practice

the upper and lower bounds -i_ and DiZ coincide and are equal to the true

-20-

second derivative. This will occur if n rr = for mn. For
m n

example if the routing pattern is as shown in Figure 1 (only links that

carry flow are shown) then Tiz = .- i for all (i,Z).L, Z.B(i;v).

Figure s

A typical case where # 'iZ and the discrepancy affects materially

the algorithm to be presented is when flow originating at i splits and

joins again twice on its way to N as shown in Figure 2.

-21-

Figure 2

The Algorithm

The following algorithm seems to be a reasonable choice. If ti , 0

we take M. in (9) to be the diagonal matrix with 4 i ZsO(i) along the

diagonal where Tl is the upper bound computed from (18) and (14)-(16) and

a is a positive scalar chosen experimentally. inmost cases a=l is satisfactory.)

Convergence of this algorithm can be easily established by verifying that

the assumption of Proposition 2 is satisfied. A variation of the method

results if we use in place of the upper bound ig the average of the
iz + - -iA

upper and lower bounds 2 -This however requires additional

computation and communication between modes.

Problem (9) can be written for ti f 0 as

iz 2
minimize I {i i+ 2t. (i) }

iZQ ~ i, 2t i(19)

k k
subject to = 0, Ao = 0 VeB(i; k)z iZ

and can be solved using a Lagrange multiplier technique. By introducing

the expression (18) for Ad i and carrying out the straightforward calculation

we can write the corresponding iteration (8) as

.e. o *v..>.tR .v.< ... An,., .w .. .p .v. ,.... And .. .T. w0.F .s. ----.--------

-22-

k+l k (Gi-i)} (20)
= max0, - (20)

ti(D 'z+Rz)

where U. is a Lagrange multiplier determined from the condition
1

k max{ 0, i i } = 1 (21)

kB (i;¢k { (D" +R i)

The equation above is piecewise linear in the single variable W and is

nearly trivial computationally. Note from (20) that a plays the role

of a stepsize parameter. For ti = 0 the algorithm sets, consistently with
k+l

problem (9), i = 1 for the node T for which dig is minimum over all

k+l
6ig, and sets i = 0 for Z 2 Q.

It can be seen that (20) is such that all routing variables fiz

such that 6iz < Ui will be increased or stay fixed at unity, while all

routing variables fig such that dig > li will be decreased or stay fixed

at zero. In particular the routing variable with smallest 6ig will either

be increased or stay fixed at unity, similarly as in Gallager's algorithm.

-23-

4. An Algorithm Based on an Upper Bound to Newton's Method

While the introduction of a diagonal scaling based on second

derivatives alleviates substantially the problem of stepsize selection,

it is still possible that in some iterations a unity stepsize will not

lead to a reduction of the objective function and may even cause divergence

of the algorithm of the previous section. This can be corrected by using

a smaller stepsize as shown in Proposition 2 but the proper range of

stepsize magnitude depends on the network topology and may not be easy to

determine. This dependence stems from the replacement of the Hessian

matrix of D by a diagonal approximation which in turn facilitates the

computation of upper bounds to second derivatives in a distributed manner.

Neglecting the off-diagonal terms of the Hessian has two types of effects.

First, while operating the algorithm for one destination, we ignore changes

which are caused by other destinations. The potential difficulties resulting

from this can be alleviated (and for most practical problems eliminated) by

operating the algorithm in a "one-at-a-time" version as discussed in Section

2. Second, the effect of neglecting off-diagonal terms can be detrimental

in situations such-as the one depicted by Figure 3. Here,

r1 = r 2 = r3 =r 4 > 0, r5 = r6 = 0 and node 7

\ /
\S /

/
/e

-24-

is the only destination. If the algorithm of the previous section is

applied to this example with a =l, then it can be verified that each of

the nodes 1,2,3 and 4 will adjust its routing variables according to

what would be Newton's method if all other variables--remained unchanged.

If we assume symmetric initial conditions and that the first and second

derivatives DI7, DI7 and D7, DI7 are much larger than the correspond-

ing derivatives of all other links, then the algorithm would lead to a

change of flow about four times larger than appropriate. Thus for

example a value of a = 1/4 is appropriate, while a=l can lead to

divergence.

The algorithm proposed in this section bypasses these difficulties

at the expense of additional computation per iteration. We show that if

the initial flow vector is near optimal then the algorithm is guaranteed to

reduce the value of the objective function at each iteration and to con-

verge to the optimum with a unity stepsize. The algorithm "upper bounds"

a quadratic approximation to the objective function D. This is done by

first making a trial change A~* in the routing variables using algorithm

(8),(9). The link flows that would result from this change are then calcu-

lated going from the "most upstream" nodes downstream towards the destination.

Based on the calculated trial flows the algorithm "senses" situations like

the one in Figure 3 and finds a new change Ah. We describe the algo-

rithm for the case of a single destination (node N). The algorithm for

the case of more than one destination consists of sequences of single

destination iterations whereby all destinations are taken up cyclically

(i.e. the one-at-a-time mode of operation).

-25-

The Upper Bound

At the typical iteration of the algorithm, we have a vector of loop

free routing variables ~ and a corresponding flow vector f. Let Af denote

an increment of flow such that f + Af is feasible. A constrained version

of Newton's method [3] is obtained if Af is chosen to minimize the quadratic

objective function

N(Af) = Di!,Af + fi) (22)

subject to f + Af e F where F is the set of feasible flow vectors. Let AQ be

a change in p corresponding to Af and let

+ = ~ + A~ (23)

Let t be the vector of total traffic at the network nodes (cf. (1)), and let

At be the corresponding change in t. Then

AtQ = I Afi (24)

Afit = Ati Tit + tiAi. (25)

Substituting (25) in (22), we can express N(Af) in terms of Ap.

N(Af) = I DiAt i i + ' D!i ti Ait (26)
i,9, i,9

1 2 D [(AtiZ) 2
+ 1 I D [tf) + 2Atifii ti niQi + (tiaqbit2]

We would like to minimize this expression by a distributed algorithm in

which each node i selects Ali for each outgoing link (i,Z). The difficulty

-26-

here is that the nodes are all coupled through the vector At; a change

Api A generates a change Atn at each node n downstream of the link (i,Z).

In what follows, we will first eliminate the dependence of N(Af) on

the linear terms in At; we then proceed to upper bound N(Af) in such a way

as to eliminate the quadratic terms in At. Finally then, we show how

each node i can select A4i. for its outgoing links so as to approximately

minimize the upper bound to N(Af). We start by combining the two terms

in (26) that are linear in At,

N(Af) = D iAti fi + Dt (27)
ii iL

1 Z Di , [(Atii%)2 + (tiA4ii)2]

where

D' = Di + D" ti i (28)

We can interpret Di to first order as the derivative of Dig evaluated at

the flow ti i The following simple lemma will eliminate At from the

first term in (27); we state it in greater generality then needed here

since we will use it again on the quadratic term in At.

Lemma 1: Let ip be real for each (i,Z)eL, and for each node i, let Ti ,

T.i d i , di be variables related by

T = Ti pig + T2 ; 1 < < N (29)

di d i+ di ; 1 < i < N (30)
2 2i2 1ii i- --

-27-

Then

diLT.i d.T. (31)

i 1

Proof: Using (30) and then (29), we have

d.T. : T d.T- i diT i
1 1 £

: d diT.i d (TZ-Ti,)
i i

. dZTz Q.E.D.

To use this lemma on the first term of (27), associate 4i with ~iz'

Ati with Ti and Xm tm Ami with Ti. Then (24) and (25) are equivalent to

(29) in the lemma. Defining D! by
1

T!-Dtc + ~D!q DI =0 (32)
1 : XDzit --: i N

and associating D with d and i ithdi, the lemma asserts that

i Di ti t iT = DI ti At (33)
iQ i,Z

It can be seen that D! can be calculated in a distributed fashion starting1

from the destination and proceeding upstream similarly as in algorithm (8),

(9). Using (33) in (27), we have

N(Af) = A.DQ ti [i2 + , D' t i i (34

i, iA i + i, 1, i

+ .D" (Ati i,) 2 1 I D"(tiA,)2
2 , iI i ,2

-28-

All of the terms in (34) except for (Ati)2 can be calculated in a

distributed fashion, moving upstream as in (8),(9). We recall now that

the algorithm is going to use the algorithm of (8),(9) first to calculate

a trial change Aft. We next show how A4* will be used to upper bound

(at.) in such a way that lemma 1 can be employed on the result. For all

(i,1)$L, define

4Aig = max(O,Aci); Ai = min(O,>A)I (35)

At + = C[tiA iW + Ati (* i+Ai3)]6)

At*- = .[tiAciP + At i(37)

The quantities At* , At* are well defined by virtue of the fact that the
Z k

set of links

L* = {(i,)£Lj fi > 0, or fiZ+ Aq > 0}

forms an acyclic network [in view of the manner that the sets of blocked

nodes B(p;i) are defined in algorithm (8),(9)]. As a result At* + and

At* are zero for all nodes g which are the "most upstream" in this acyclic

network. Starting from these nodes and proceeding downstream the computation

of At*+ and At, can be carried out in a distributed manner for each 9 us-

ing (36) and (37).

We next define the same positive and negative parts for AS,

hAiE = max(O,A 9iZ);A i4 = lmin(O,A4i) (38)

+ + +

At = ti+ At(+ Ai(39)
199

-29-

At = ~[ti A1+ ati (40)]

The following constraints are now placed on AS:

> onlyifA > 0 (41a)

AniR < 0 only if AciQ < 0 (41b)

y ai g:= 0 ; fiz + Ali > 0 (41c)

With these constraints At,, At are also well defined; At% is interpreted

as the increase in flow at Z due to increases in AO, omitting the effects of

decreases in AS. Similarly Ati is an upper bound to the magnitude of the

decrease in flow at Z due to decreases in AO. It follows easily that

(Atz) 2 < (At) 2 + (At) 2 (42)

With the constraint (41), it is also easy to see, from (35)-(40), that for

each i

AtI > 0 only if At* + > 0 (43a)

Ati > O only if At*- > 0 (43b)

Finally, using the Cauchy-Schwartz inequality on (39), we obtain

at,) 2 = (ti))
1 1

t+(.+A +
t+ .. 1 -,+ 1Z)

i /'At*(i9

-30-
+ 2 2 +2

< [t.(Ai4 t) 2 (Ati+)2)2 1 +
(Ati + 2]

+ () (44)

iZ i AtI i+

when we have used (36), and where from each summation we exclude all nodes

i for which the denominator (and hence the numerator by (41) and (43)) is 0.

Similarly,

(-t)2 < t(A i z) + Ati) -
(At -1.·; (45)

-- + i (i)
9i j9, A1I

iti

The following proposition yields the desired upper bound.

Proposition 3: Under the constraint (41),

N(Af) < . tiQip(A i) (46)

where

Qi (A~i) = i[(Di f+D)i + 12ti Di+i,) A,2 (47)

9 Q if QA~ > 0
\ afii

0 if 0

and

= ~r 2 + +D"~ . +Ap 9) 2

[Di i At + A D N (49
+i.

DN = [D' --i At- + D"i i N (50)
1 i+

D' = D' = 0
N N

-31-

Proof: In view of (34), it will suffice to show that

M DIt (At i ~i 2 < E ti iK(Aid)2 (51)
i, , i iZ

From (42),

D D" 2 -2 +2 -2i D (<tj 4 iQ) (i D (iQ (Ati) + I D'IgJ ((At.) (52)
1,, 1, 2,

Define TJ, for all nodes Q, to satisfy

+21 ¢.Q i (+ e +)

By comparing with (44), we see that (At+)2 /At+ T T Thus

2 +2 2 +
iQ iQ (At) < I D', fi 2 At* T1 T

dT = D' t A*it (+54)1 9 19, it9, +

Applying lemma 1, associating T9 with the first term of (53) and di with

D.+ in (49), we have

(.)2
-2 +)2 < DI (55)*

1 D" iZ (Ati < D- t i -t+i.Z i i% ii i

The second term can be considered as a sum over just those terms for which

Bayq > 0. Handling the Ati term in the same way,~~~~i;~~~~ I ~ D~~c-""~~;-----'----` At*·-·------- +-- ·- T-·· =·····- -·----·- · d··- T

-32-

i i i2 (At-) < D'i i t (56)
iZ i, A*-

Combining (55), (56) with (51), (52) completes the proof. Q.E.D.

The Alaorithm

The algorithm can now be completely defined. After the routing in-

crement Ai* is calculated in a distributed manner by means of algorithm

(8),(9), each node i computes the quantities At* + and At . This is done
i 1

recursively and in a distributed manner by means of equations (36), (37)

starting from the "most upstream" nodes and proceeding downstream towards

the destination. When this downstream propagation of information reaches

the destination indicating that all nodes have completed the computation

of At. + and Ate- the destination gives the signal for initiation of the

second phase of the iteration which consists of computation of the actual

routing increments Api. To do this each.node i must receive the values

of D I, D' and D'" from its downstream neighbors Z and then determine

the increments AOiA which minimize Qi(A4i) subject to the constraint (41)

and the new routing variables

i = fiz + AOi-Z

Then node i proceeds to compute D!, D , and DMI via (32), (49), and (50)1' 1 1

and broadcasts these values to all upstream neighbors. Thus proceeding

recursively upstream from the destination each node computes the actual

routing increments AOi in much the same way as the trial routing increments

AO. were computed earlier.

~I- ' -~--- ~ ~ I- ------ ~·- ·1·-

-33-

We not analyze the descent properties of the algorithm. We assume

a single destination but the proof ,extends trivial-

ly to the case where we have multiple destinations and the algorithm is

operated in the one destination at a time mode. In view of the fact that

each function Dig is strictly convex it follows that there is a unique

optimal set of total link flows {f.il (i,Z)eL}. It is clear that given

any s>0 there exists a scalar y such that for all feasible total link

flow vectors f satisfying

} Ift it < ¥, v (i,Z)SL (57)

we have

1 DI (fi) < D" (f) < (l+e)D" (f* V (i Z)eL. (58)
l+s i- iti i, iZ fi i ' i

The strict positivity assumption on DI also implies that for each

Y¥>0 there exists a scalar 6(y¥) such that every feasible f satisfy-

ing I Dig(fig) < 6(YE) also satisfies (57) and hence also (58). Further-
i, .Q

more 6(y) can be taken arbitrarily large provided y is sufficiently

large. We will make use of this fact in the proof of the subsequent

result.

Proposition 4: Let 4 and p be two successive vectors of routing

variables generated by the algorithm of this section (with stepsize a=l)

and let f and f be the corresponding vectors of link flows. Assume

that for some £ with 0 < <j - 1 we have

[Di (fit) < 6(Ye) (9)
1, {

where Ys is the scalar corresponding to E as in (57), (58), and 6(Y)

is such that (57) [and hence also (58)] holds for all feasible f

satisfying (59). Then

-34-

D(T,r) - D(O,r) < - () (DiQL (i2 Z iQ i .60)'

where p(s) = 1 z-2e > 0 for all £ with O <4 < _[_ 1.

Proof: Let Af be the increment of flow corresponding to the increment

A= = O-O. We have

Q1i 2 D " C (fienaf1 2
D(O,r) - D(O,r) D= AfiDiz + fi) if

i,l i,iZ

for some n*'[0,1]. Denoting D"Cfi+n*Aifi g) = D" t and using an argument

similar to the one employed earlier in this section [cf. (233-(34-)] we obtain

D(G,r) - D(O,r) i= E + t i (D! Z+D) + 7 (Di'D i)t t Ai
i,Z i9R. 1 iZ1Z ji-iz

2 " Zz _ Dil9 [(tig.9) + (t' 2 (61)

We will derive upper bounds for each of the three terms in the right

side of (61).

From the necessary condition for A4i to minimize the function

Qi (Ai) of (47) subject to the constraint (41) we obtain

[Dig+ D-- + (tiD' +S i)Aig]Ai _< 0

or

I (Dig + D-)Afi < - i (tiDiQ + i)(2ig (62)Ther is n ls o gnriy neli ea futn(62)iT 2e rZ i n i rl

There is no loss of generality in replacing each function D by
iz

m-~~-35-

a function Di0 which is continuously differentiable, is identical with Dit

on the set of flows satisfying (57) and is quadratic outside this set,

provided that, as part of the subsequent proof, we show that

D Dij(fiQ++Arfi) < 6(y¥) for all n[[0 ,1]. By using this device we can assume

that D" satisfies (58) for all fi.' Hence from (58)

iz D

Mi < (l+e)2. (64)
D

t

Using (51), (63), the Cauchy-Schwartz inequality and the arithmetic-geometric

inequality we have

£(l^) 2 i
i(DI!t tifi~tifi < [(1+MI) -4 ti. tlDQ<At. lt

1 1

< (l+) 21][Y D%(t.i.)] D MI(t 2 2

<12 22 2 2 2

12[1) -1 i i2 i2iai)
1 2.

Using again (51) and (64)) we obtain for each i

< (1+£) 2 [Dt1'Aia 'Dia(ti~i ~] 266)2

2 2 2< (1+z) -] [ti it i(AbiD) + D'l" (tiA~i%)2]

- 12 ti i i(t
2 Z1 2.

-36-

By combining now (61), (62), (65), and (66) we obtain

DiP,r) - D(P,r) < [-l+(l+E)2 1 + (1+) t D" +2 (

-p(-) I t (tiD i' + Sig)
(i,Z)eL 1 1it g£

and (60) is proved. It is also straightforward to verify that

p(e) > 0 for £ in the interval (0, 2- -1). Q.E.D.

The. preceding proposition shows that the algorithm of this section

does not increase the value of the objective function once the flow

vector f enters a region of the form {fl I Dig(fii) < 6(y)}, and that the size
i,2 i

of this region increases as the third derivative of Dig becomes smaller.

Indeed if each function D.i is quadratic then (58) is satisfied for all

£ > 0 and the algorithm will not increase the value of the objective for

all f. These facts can be used to show that if the starting total flow

vector f is sufficiently close to the optimal the algorithm of this section

will converge to the optimal solution. The proof is similar to the one

of Proposition 2 as given in [11] and is omitted.

We cannot expect to be able to guarantee theoretical convergence when

the starting routing variables are far from optimal since this is not a

generic property of Newton's method which the algorithm attempts to approx-

imate. However in a large number of computational experiments with objec-

tive functions typically arising in communication networks and starting

flow vectors which were far from optimal [5] we have never observed

divergence or an increase of the value of the objective function in a

single iteration. In any case it is possible to prove a global convergenc

result for the version of the algorithm whereby the expression Qi(ALi) is

replaced by

-37-

Qi(A i) = Y L(Diz + D') i+ i (t i(.

where a is a sufficiently small positive scalar stepsize. The preceding

analysis can be easily modified to show that if we introduce

a stepsize a as in (67) then the algorithm of this section is a

descent algorithm at all flows in the region {fl Di (fii) < (y¥)} where

<' -< 1.

From this it follows that given any starting point 0¢°z, there exists

a scalar c->O such that for all stepsizes ae(O,c] the algorithm of this

section does not increase the value of the objective function at each

subsequent iteration. This fact can be used to prove a convergence

result similar to the one of Proposition 2. The proof parallels the

one of Proposition 2 as given in [11] but is lengthy and will not be

given here.

-38-

References

[1] Gallager, R.G., "A Minimum Delay Routing Algorithm Using
Distributed Computation", IEEE Trans. on Communication, Vol.
COM-25, 1977, pp. 73-85.

[2] Goldstein, A.A., "Convex Programming in Hilbert Space", Bull.
Amer. Math. Soc., Vol. 70, 1964, pp. 709-710.

[3] Levitin, E.S. and B.T. Polyak, "Constrained Minimization Problems",
USSR Comput. Math. Math. Phys., Vol. 6, 1966, pp. 1-50.

[4] Bertsekas, D.P., "Algorithms for Nonlinear Multicommodity Network
Flow Problems", in Proc. of International Symposium on Systems
Optimization and Analysis, A. Bensoussan and J.L. Lions (eds.),
Springer-Verlag, 1979, pp. 210-224.

[5] Bertsekas, D.P., Gafni, E., and Vastola, K.S., "Validation of
Algorithms for Optimal Routing of Flow in Networks", Proc. of
IEEE Conf. on Decision and Control, San Diego, Calif., Jan. 1979,
pp. 220-227.

[6] Vastola, K.S., "A Numerical Study of Two Measures of Delay for Net-
work Routing", M.S. Thesis, Dept. of Electrical Engineering, Univ.
of Ill, Urbana, Ill., Sept. 1979.

[7] Bertsekas, D.P., "A Class of Optimal Routing Algorithms for Com-
munication Networks", Proc. of the Fifth Internatinnal Conference
on Computer Communication (ICCC-80), Atlanta, Ga., Oct. 1980, pp.
71-76.

[8] Bertsekas, D.P., and Gafni, E., "Projection Methods for Variational
Inequalities with Application to the Traffic Assignment Problem",
Report LIDS-P-1043, Mass. Institute of Technology, Cambridge, Mass.,
June 1980, Math. Programming Study 17, 1982, pp. 139-159.

[9] Golestaani, S.J., "A Unified Theory of Flow Control and Routing in
Data Communication Networks", Report LIDS-TH-963, Laboratory for
Information and Decision Systems, Mass. Institute of Technology,
Cambridge, Mass., Jan. 1980.

[10] Gallager, R.G., and Golestaani, S.J., "Flow Control and Routing
Algorithms for Data Networks", Proc. of the Fifth International
Conference on Computer Communication (ICCC-80), Atlanta, Ga.,
Oct., 1980, pp. 779-784.

[11] Gafni, E.M., "Convergence-of a Routing Algorithm", Report LIDS-TH-907,
Laboratory for-Information and Decision Systems, Mass. Institute of
Technology, Cambridge, Mass., May 1979.

-39-

[12] Bertsekas, D.P., and Gafni, E.M., "Projected Newton Methods and
Optimization of Multicommodity Flows", Report LIDS-P-1140, Laboratory
for Information and Decision Systems, Mass. Institute of Technology,
Cambridge, Mass., August 1981, IEEE Trans. on Aut. Control, to appear.

[13] Gafni, E.M., "The Integration of Routing and Flow Control for Voice
and Data in Computer Communication Networks", Ph.D. Dissertation,
Dept. of Electrical Engineering and Computer Science, Mass. Institute
of Technology, Cambridge, Mass., August 1982.

·--- ·- -- 1--·-- 1

