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SUMMARY

Fragile X syndrome (FXS) is the most common form
of inherited intellectual disability. Previous studies
have implicated mGlu5 in the pathogenesis of the
disease, but a crucial unanswered question is
whether pharmacological mGlu5 inhibition is able to
reverse an already established FXS phenotype in
mammals. Here we have used the novel, potent,
and selective mGlu5 inhibitor CTEP to address this
issue in the Fmr1 knockout mouse. Acute CTEP
treatment corrects elevated hippocampal long-
term depression, protein synthesis, and audiogenic
seizures. Chronic treatment that inhibits mGlu5
within a receptor occupancy range of 81% ± 4%
rescues cognitive deficits, auditory hypersensitivity,
aberrant dendritic spine density, overactive ERK
and mTOR signaling, and partially corrects macro-
orchidism. This study shows that a comprehensive
phenotype correction in FXS is possible with phar-
macological intervention starting in young adult-
hood, after development of the phenotype. It is of
great interest how these findings may translate into
ongoing clinical research testing mGlu5 inhibitors in
FXS patients.

INTRODUCTION

Fragile X syndrome (FXS) is a monogenic developmental

disorder associated with a complex neuropsychiatric phenotype

(Hagerman et al., 2009). FXS is caused by mutations in the

fragile X mental retardation 1 (FMR1) gene, triggering partial or

complete gene silencing and partial or complete lack of the

fragile X mental retardation protein (FMRP) (Oostra and Willem-

sen, 2003).

It has been proposed that exaggerated consequences of

mGlu5-mediated signaling in the absence of FMRP play a causal

role in FXS (Bear et al., 2004). This theory is strongly supported
by the finding that genetic reduction ofmGlu5 expression is suffi-

cient to correct a broad range of phenotypes in the Fmr1

knockout (KO) mouse (Dölen et al., 2007). Additionally, a number

of pharmacological studies have shown that short-acting mGlu5

inhibitors, such as MPEP and fenobam, can ameliorate fragile X

phenotypes in several evolutionarily distant animal models (see

Krueger and Bear, 2011, for review).

Although these studies support the mGlu theory, they do

not address the very important conceptual question of whether

mammalian fragile X phenotypes can be prevented or reversed

with late-onset mGlu5 inhibition. A failure to correct mutant

phenotypes with treatment starting after symptom onset would

suggest a missed critical period and indicate that fragile X

syndrome is a terminally differentiated phenotype of altered

brain development. On the other hand, amelioration of

phenotypes with late treatment would support the notion that

many problems are due to an ongoing imbalance in synaptic

signaling, which can be substantially improved once the

normal balance is restored. The genetic rescue experiments

to date have not addressed this question because they are

germline manipulations present in utero. Neither have the phar-

macological experiments to date been able to address this

question in mammals, because they have relied on compounds

with a short duration of action. Experiments with acute drug

treatment cannot explore the full therapeutic potential of

mGlu5 antagonists in view of the chronic and developmental

nature of FXS.

In the current study, we used a new pharmacological tool,

CTEP, a selective, orally bioavailable, and long-acting mGlu5

inhibitor (Lindemann et al., 2011) to test whether chronic phar-

macological mGlu5 inhibition can reverse FXS phenotypes in

a fully developed brain. We chose to start treatment at an age

of 4–5 weeks, when the mouse brain development is anatomi-

cally complete but highly plastic and when all FXS phenotypes

relevant for the study are established. Our results show that

chronic treatment of young adult Fmr1 KO mice with an mGlu5

inhibitor rescues a broad range of phenotypes, including learning

and memory deficits, hyperreactivity to sensory stimuli, elevated

locomotor activity, and increased dendritic spine density in the

cortex. Our data also reveal correction of elevated sensitivity to

epilepsy, excessive protein synthesis, long-term depression
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Figure 1. CTEP Corrects Protein Synthesis and

LTD and Is Suitable for Chronic Dosing in Fmr1

KO Mice

(A) Drug exposure after a single oral dose of CTEP at

4.5 mg/kg; two mice per time point. (B) mGlu5 receptor

occupancy in vivo as a function of drug exposure; 11mice.

(C) Drug-exposure monitoring during chronic dosing

at 2 mg/kg per 48 hr p.o. Samples were collected 48 hr

after each drug administration and thus reveal the minimal

levels of drug exposure; two to four mice per time point.

(D) Simulation of mGlu5 receptor occupancy during the

course of 6 week chronic treatment at 2 mg/kg per 48 hr

p.o. This dosing regimen achieved sustained receptor

occupancy of 81% ± 4%. (E) Timeline of the protein

synthesis assay measuring 35[S]-Met/Cys incorporation

in hippocampus sections in vitro. (F) Protein synthesis rate

in WT and Fmr1 KO slices in presence or absence of

CTEP in the bath; mean ± SEM of 9–11 animals per group

with two slices per animal and drug treatment; *p < 0.05.

(G) Timeline of acute s.c. treatment with CTEP or vehicle

24 hr before dissection and LTD induction. (H) Gp1 mGlu

LTD was enhanced in Fmr1 KO and was rescued by

a single CTEP treatment. Two-way ANOVA revealed

a significant effect of genotype (p < 0.05) and treatment

(p < 0.01), but no interaction. Inset: post hoc tests showed

a significant LTD enhancement in KO/vehicle versus

WT/vehicle slices (*p < 0.05), a significant rescue by CTEP

(**p < 0.01), and no significant effect of CTEP in WT slices

(p = 0.14). (I) Timeline of chronic treatment schedule

(2 mg/kg/48 hr p.o) beginning at the age of 4–5 weeks. (J)

The maximal transient depression (MTD) induced by

DHPG was significantly reduced by both acute (*p < 0.05)

and chronic (**p < 0.01) CTEP treatment in KO slices,

showing that the drug efficacy is maintained throughout

chronic treatment. For (H) and (J), mean ± SEM of 14–18

slices per condition.
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(LTD), activity of signaling pathways, and an amelioration of

macroorchidism. Taken together, the data suggest beneficial

effects in a wide range of symptoms and a disease-modifying

potential for mGlu5 inhibitors in FXS.

RESULTS

CTEP Enables Chronic Pharmacological Inhibition
of mGlu5 in Mice
CTEP is a novel potent, selective, and orally bioavailable mGlu5

inhibitor with a unique long half-life of approximately 18 hr in

mice (Figure 1A) (Lindemann et al., 2011). In vivo receptor occu-
50 Neuron 74, 49–56, April 12, 2012 ª2012 Elsevier Inc.
pancy measurements with the tracer [3H]-

ABP688 (Hintermann et al., 2007) revealed

50% mGlu5 occupancy (EC50) by CTEP con-

centrations in plasma and brain of 12.1 ng/ml

and 75.0 ng/g, respectively (Figure 1B). A

regimen of one dose of 2 mg/kg CTEP per os

(p.o.) per 48 hr achieved uninterrupted mGlu5

occupancy. The minimal (trough level) drug

exposure reached after 2 weeks of treatment

was 98 ± 14 ng/ml in plasma and 215 ±

28 ng/g in brain (Figure 1C), corresponding to
an estimated mean receptor occupancy level of 81%, with

a peak to trough range of 85%–77% (Figure 1D).

CTEP Corrects Excessive Protein Synthesis
in the Hippocampus of Fmr1 KO Mice
FMRP binds hundreds of mRNAs in vivo and represses their

translation (Darnell et al., 2011). Accordingly, at the core of

FXS pathophysiology is an elevated rate of protein synthesis

(Qin et al., 2005; Dölen et al., 2007; Osterweil et al., 2010). This

phenotype was confirmed by measuring [35S]-methionine/

cysteine incorporation in acute hippocampal slices (Fmr1 KO:

115% ± 7% of wild-type [WT]; p < 0.05; Figures 1E and 1F). As
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previously shown with MPEP (Osterweil et al., 2010), bath appli-

cation of CTEP (10 mM) corrected the elevated protein synthesis

rate in Fmr1 KO hippocampal slices (KO/CTEP: 104.9% ± 10%

of WT/vehicle) with no significant effects in WT slices.

Correction of Elevated mGlu-LTD in the Hippocampus
after In Vivo CTEP Administration
Fmr1 KOmice show an elevated group 1 (Gp1) mGlu-dependent

long-term depression (Huber et al., 2002) which can be cor-

rected by genetic reduction of mGlu5 expression levels (Dölen

et al., 2007), but not by bath application of MPEP (Volk et al.,

2006). We therefore determined whether in vivo administration

of CTEP could reduce the elevated LTD ex vivo in the Fmr1 KO

hippocampus to WT levels. WT and KO animals (postnatal day

25–30) received a single dose of CTEP (2 mg/kg, subcutaneous

[s.c.]) or vehicle 24 hr prior to euthanasia and hippocampal slice

preparation. We found that Gp1 mGlu-mediated hippocampal

LTD was elevated in vehicle-treated Fmr1 KO mice compared

to WT (WT/vehicle: 84.6% ± 2.4%; KO/vehicle: 76.1% ± 2.5%;

p < 0.05; Figures 1G and 1H) and was normalized by a single

dose of CTEP (KO/vehicle versus KO/CTEP: 86.9% ± 3.3%;

p < 0.01).

CTEP treatment also reduced the maximum transient depres-

sion (MTD) to DHPG, which represents an electrophysiological

readout of Gp1mGlu activation. After 4 weeks of chronic dosing,

MTD was strongly suppressed by CTEP (KO/vehicle: 57.1% ±

2.2%; KO/CTEP: 33.2% ± 2.6%; p < 0.01; Figures 1I and 1J),

even more so than after a single dose (KO/vehicle: 62.9% ±

3.0% versus KO/CTEP: 49.4% ± 4.6%; p < 0.05), showing that

the drug efficacy is maintained throughout chronic treatment.

Correction of Learning and Memory Deficits
Cognitive impairment is a core symptom in FXS. We confirmed

that Fmr1 KO mice exhibit deficits in inhibitory avoidance (IA)

(Figure 2). Vehicle-treated Fmr1 KO mice showed significantly

reduced latencies to enter the dark compartment compared to

vehicle-treated WT littermates 6 hr after conditioning and during

all extinction trials (6 hr, p = 0.0186; 24 hr, p = 0.0095; 48 hr,

p = 0.0582; Figures 2B–2D). There was no difference in the

pain threshold between Fmr1 KO and WT mice (Figure 2E).

Chronic treatment fully rescued the learning and memory

deficit in the IA paradigm, with CTEP-treated Fmr1 KO mice

exhibiting latencies to enter the dark compartment similar to

vehicle-treated WT mice at all test sessions. Correspondingly,

CTEP-treated Fmr1 KO mice exhibited significantly more avoid-

ance than vehicle-treated Fmr1 KOmice (6 hr, p = 0.0817; 24 hr,

p = 0.0016; 48 hr, p = 0.0007).

Correction of Hypersensitivity to Sensory Stimuli
FXS patients frequently present a hypersensitivity to sensory

stimuli (Miller et al., 1999), mirrored in Fmr1 KOmice by a hyper-

sensitivity to low-intensity auditory stimuli (Nielsen et al., 2002).

The whole-body startle response to short auditory stimuli of

moderate intensity (6–24 dB over background) was measured

in chronically treated Fmr1KOandWTmice. The elevated startle

response of Fmr1 KO mice compared to WT mice was fully cor-

rected by chronic CTEP treatment (genotype effect: p = 0.029;

treatment effect: p = 0.035; Figure 2F). Treatment with CTEP
had no effect on the response of WT animals. There was no

potential bias between the experimental groups due to body

weight (Figure 2G).

Correction of Elevated Locomotor Activity
Hyperactivity is frequently observed in FXS patients, a symptom

that is reproduced in Fmr1 KOmice (The Dutch-Belgian Fragile X

Consortium, 1994). In the open-field test, vehicle-treated Fmr1

KO mice exhibited elevated novelty-induced locomotor activity

compared to vehicle-treated WT mice at the age of 2 and

5 months (2 months, p < 0.001; 5 months, p = 0.014; Figures

2H and 2I). The increased locomotor activity was corrected after

17 weeks (treatment effect: p = 0.009; KO/CTEP versus

KO/vehicle at 2 min, p < 0.001; 4 min, p = 0.06; Figure 2I), but

not after 5 weeks (Figure 2H), of chronic CTEP treatment.

Correction of Increased Susceptibility to Audiogenic
Seizures
FXS patients have increased rates of epilepsy, and this is re-

flected in Fmr1 KOmice by an increased susceptibility to audio-

genic seizures (AGS) (Musumeci et al., 1999, 2000). Drug-naive

Fmr1 KO mice presented an elevated seizure response to

intense auditory stimuli (120 dB) compared to WT littermates

on both C57BL/6 and FVB genetic backgrounds. This hypersen-

sitivity to AGS was fully corrected by a single dose of CTEP

administrated 4 hr before testing (Table 1). These results are

consistent with the previously reported anticonvulsant activity

of other mGlu5 antagonists in Fmr1 KO mice (Qiu et al., 2009;

Yan et al., 2005).

Correction of the Dendritic Spine Phenotype
in the Visual Cortex
Increased dendritic spine density was reported in postmortem

analysis of FXS patient brain tissue (Irwin et al., 2001) and can

be observed in Fmr1 KO mice (Galvez and Greenough, 2005).

Vehicle-treated Fmr1 KO animals showed a significantly higher

spine density in pyramidal neurons of the binocular visual cortex

compared to vehicle-treated WT animals in basal, but not apical,

dendrites (KO/vehicle versus WT/vehicle: segments 50 mm, p =

0.029; 75 mm, p = 0.030; Figures 3A–3C). Chronic treatment

with CTEP corrected this phenotype, reducing spine density in

Fmr1 KO animals to WT levels. In basal dendrites, spine density

in CTEP-treated KO animals was significantly lower than vehicle-

treated KO animals (25 mm, p = 0.009; 50 mm, p = 0.002; 75 mm,

p = 0.022). In WT animals, CTEP treatment had no significant

effect on the spine density.

Correction of Abnormal Intracellular Signaling
in the Cerebral Cortex
The ERK and mTOR signaling pathways have been implicated in

the coupling of mGlu5 to the synaptic protein synthesis

machinery (Banko et al., 2006; Gallagher et al., 2004). The basal

activity levels of ERK andmTOR in the cortex of mice chronically

treated with CTEP and vehicle were analyzed by semiquantita-

tive phosphospecific western blots. The phosphorylation of

ERK1,2 at Thr202 and Tyr204 and the autophosphorylation of

mTOR at Ser2481 correspond to the active forms of these

kinases (Dalby et al., 1998; Soliman et al., 2010).
Neuron 74, 49–56, April 12, 2012 ª2012 Elsevier Inc. 51



Figure 2. Pharmacological Correction of

Learning andMemory Deficit andHypersen-

sitivity to Auditory Stimuli in Fmr1 KO Mice

(A) Timeline of chronic dosing prior to behavioral

evaluation and the inhibitory avoidance and

extinction (IAE) tests. (B) All experimental groups

exhibited a significant increase in latency following

the conditioning session (different from t = 0;

*p < 0.05; **p < 0.01; ***p < 0.001), and WT/vehicle

animals also showed significant memory extinc-

tion (different from t = 6 hr; +p < 0.05). (C)

Comparison of latency across experimental

groups at 6 and 24 hr test sessions; KO/vehicle

versus WT/vehicle: *p < 0.05, **p < 0.01; KO/CTEP

versus KO/vehicle: �p < 0.1, ++p < 0.01. (D)

Multivariate analysis of latency at 6 versus 24 hr;

the learning deficit observed in KO/vehicle mice

was fully compensated by treatment, and the

effect of treatment was similar in WT and Fmr1 KO

mice. For (B)–(D), mean ± SEM of 15–16 mice per

group. (E) Pain threshold: vehicle- and CTEP-

treated Fmr1 KO and WT mice showed no differ-

ences in response to electrical foot shocks.

Mean ± interquartile range, with six mice per

group. (F) Sensitivity to auditory stimuli: mice were

exposed to short auditory stimuli at 72 (+6),

78 (+12), 84 (+18), and 90 (+24) dB over a white

background noise at 66 dB, and the whole-body

startle response was recorded. Genotype effect:

*p <0.05; treatment effect: p<0.05;mean±SEMof

13–16 mice per group, with eight presentations of

each sound intensity. (G) Body weight: there was

no significant difference in body weight between

the experimental groups on the day of the whole-

body startle response experiment; mean ± SD of

13–16 mice per group. (H and I) Locomotor activity

in the open field: Fmr1 KOmice exhibited elevated

novelty-induced activity compared to WT mice at

the age of 2months (H) and 5months (I). Correction

of the hyperactivity phenotype was observed after

17 weeks (I), but not after 5 weeks (H), of chronic

CTEP treatment. KO/vehicle versus WT/vehicle:
�p < 0.1, *p < 0.05, ***p < 0.001; KO/CTEP versus

KO/vehicle: +p < 0.05, ++p < 0.01; mean ± SEM of

16–17 (H) and 13–15 (I) mice per group.

Neuron

Pharmacological Correction of FXS in Mice
The ERK phosphorylation level was significantly higher in the

cortex of vehicle-treated Fmr1 KO animals compared to

vehicle-treated WT littermates (KO/vehicle: 122.9% ± 9.3% of

WT/vehicle; p = 0.010; Figures 3D and 3H). Chronic treatment

with CTEP specifically reduced the elevated ERK activity in

Fmr1 KO cortex (KO/CTEP: 89.5% ± 6.5% of WT/vehicle; KO/

CTEP versus KO/vehicle; p = 0.0012) with no effect on ERK

activity in WT cortex. Chronic CTEP treatment also triggered

a modest increase of the total ERK expression level in Fmr1

KO mice compared to vehicle-treated KO animals (KO/CTEP:

109.0% ± 6.5%; KO/vehicle: 95.1% ± 6.0%; p = 0.013;

Figure 3E).
52 Neuron 74, 49–56, April 12, 2012 ª2012 Elsevier Inc.
The mTOR phosphorylation level was

nonsignificantly increased in vehicle-

treated Fmr1 KO animals compared to

vehicle-treated WT littermates (KO/
vehicle: 109.1% ± 5.0% of WT/vehicle; p = 0.13; Figure 3F).

Chronic CTEP treatment significantly reduced the mTOR phos-

phorylation level specifically in Fmr1 KO mice and not in WT

animals (KO/CTEP: 92.0% ± 4.6% of WT/vehicle; KO/CTEP

versus KO/vehicle; p = 0.006). mTOR expression levels were

similar in WT and KO animals and were unchanged by treatment

(Figure 3G).

Partial Correction of Macroorchidism upon Chronic
Treatment
The postadolescent macroorchidism observed in FXS patients

is reflected in elevated testis weight in Fmr1 KO mice



Table 1. Pharmacological Rescue of Elevated Susceptibility for

Audiogenic Seizure

Wild Running Seizure Death Incidence

FVB

WT/vehicle 1/13 1/13 0/13 8%

WT/CTEP 0/12 0/12 0/12 0%

KO/vehicle 12/17 10/17 5/17 71%*

KO/CTEP 5/16 6/16 0/16 31%**

C57BL/6

WT/vehicle 1/14 0/14 0/14 7%

WT/CTEP 0/12 0/12 0/12 0%

KO/vehicle 8/19 3/19 2/19 42%*

KO/CTEP 1/15 1/15 0/15 7%**

Fmr1 KO mice display an elevated susceptibility to audiogenic seizure in

both C57BL/6 and FVB genetic backgrounds, which was rescued by

acute administration of CTEP (4 hr before testing, 2 mg/kg, s.c. or p.o.).

The tables present for each experimental group the number of mice ex-

hibiting wild running and/or jumping, tonic-clonic seizures, or death

compared to the total number of animals tested. Pairwise group compar-

isons with the Fisher’s exact test: different from WT/vehicle, *p < 0.05;

different from KO-vehicle, **p < 0.05.
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(The Dutch-Belgian Fragile X Consortium, 1994). Testis weight

was monitored starting with drug-naive 5-week-old mice

throughout 17 weeks of chronic treatment with CTEP and

vehicle. Fmr1 KO mice presented significantly increased testis

weight compared to WT animals at all adult ages (effect

size: +32.8 mg, p < 0.001; Figure 3J; see Table S2 available

online), which was partially corrected upon chronic treatment

(effect size: �13.5 mg, p < 0.001). No significant differences in

plasma levels of testosterone (Figure 3K) and progesterone

(Figure 3L) were observed between genotypes and treatment

groups.

Absence of Chronic Treatment Effect on Motor
Coordination and General Fitness of the Animals
Chronic treatment was well tolerated by the animals indepen-

dent of the genotype. There was a minimal reduction in body

weight gain (Figure S1A) and amodest decrease in body temper-

ature of 0.5�C on average (Figure S1B) in animals receiving

chronic CTEP treatment compared to vehicle in both genotypes.

Chronic drug treatment for 4 weeks had no effect on the rotarod

performance (Figure S1C). A small but significantly reduced grip

strength in vehicle-treated Fmr1 KO compared to WT mice and

in CTEP-treated mice of both genotypes compared to vehicle-

treated WT mice was observed (Figure S1D). A modified version

of the Irwin battery of simple neurological and observational

measures (Irwin, 1968) did not reveal any noticeable alteration

in the general fitness of the animals resulting from the mutation

or the treatment (Table S1).

DISCUSSION

This study assessed the therapeutic potential of chronic phar-

macological mGlu5 inhibition in a mouse model of FXS, with

treatment starting in young adulthood. The study became
possible with the discovery of the novel mGlu5 inhibitor CTEP

(Lindemann et al., 2011), enabling continuous mGlu5 inhibition

with a receptor occupancy of ca. 81% ± 4% (Figure 1). Acute

treatment with CTEP rescued elevated protein synthesis in

hippocampal slices, and single-dose administration in vivo

normalized LTD ex vivo and suppressed the audiogenic seizure

phenotype. Four weeks of chronic CTEP treatment starting at the

age of 5 weeks reversed the learning and memory deficit in the

inhibitory avoidance test (Figure 2), the hypersensitivity to audi-

tory stimuli, the increased dendritic spine density in the primary

visual cortex (Figure 3), and the elevated ERK and mTOR activ-

ities in the cortex of Fmr1 KO mice. Chronic CTEP treatment

for 17 weeks also corrected elevated locomotor activity (Figures

2H and 2I) and partially reversed macroorchidism (Figure 3J)

without affecting testosterone and progesterone plasma levels

(Figures 3K and 3L). For some measures (e.g., elevated protein

synthesis, auditory hypersensitivity, basal dendrite spine

density, and ERK phosphorylation), the corrective effects of

CTEP were specific for Fmr1 KO mice, whereas for others

(e.g., LTD, inhibitory avoidance, and locomotor activity) CTEP

treatment also had a proportional effect on WT mice. Regard-

less, CTEP treatment moved fragile X phenotypes closer to the

untreated WT situation for all these measures. The important

and therapeutically relevant conclusion is that a broad spectrum

of FXS phenotypes—biochemical, structural, and behavioral—

can be improved with treatment onset in early adulthood in

mammals.

Our results are in good agreement with the comprehensive

phenotypic rescue obtained by genetic reduction of mGlu5

expression levels (Dölen et al., 2007). A limitation of the genetic

approach, however, was that mGlu5 expression levels were

reduced at the earliest stage of embryonic development and

thus may prevent the development of phenotypes rather than

correct them. With respect to pharmacological mGlu5 inhibition,

a study by Su et al. (2011) reported a rescue of increased

dendritic spine density in cortical neurons in vivo by 2 weeks of

MPEP administration when treatment started at birth, but not

when treatment started in 6-week-old animals. All other experi-

ments reporting correction of the increased spine density pheno-

type with mGlu5 antagonists (MPEP, fenobam, and AFQ056)

were limited to in vitro experiments on primary cultured neurons

(de Vrij et al., 2008; Levenga et al., 2011). In contrast to the

results of Su et al. (2011), our data show that starting treatment

immediately after birth is not a requirement; instead, chronic

treatment starting in young adulthood can reverse an estab-

lished phenotype. The difference in the outcomes of these

experiments could be due to the duration of treatment (2 versus

4 weeks), continuous or fluctuating receptor inhibition achieved

with long versus short half-life molecules (CTEP and MPEP),

respectively, as well as the targeted mGlu5 receptor occupancy

range, which is not available for previous studies.

Previous studies have noted impaired inhibitory avoidance

acquisition and exaggerated extinction in the Fmr1 KO mice

(Yuskaitis et al., 2010; Dölen et al., 2007). Consistent with find-

ings in Fmr1 KO (Dölen et al., 2007) and Grm5 KO (Xu et al.,

2009) mice, chronic mGlu5 inhibition retarded memory extinc-

tion. We were surprised to discover, however, that long-term

CTEP treatment also increased acquisition in both genotypes.
Neuron 74, 49–56, April 12, 2012 ª2012 Elsevier Inc. 53



Figure 3. Pharmacological Correction of Elevated Dendritic Spine Density and Altered Intracellular Signaling In Vivo and Partial Correction of

Macroorchidism

(A) Timeline of chronic dosing for morphological and biochemical analyses. (B) Representative images of Golgi-stained neurons in the primary visual cortex; each

photograph represents a 10-mm-long spine segment. (C) Spine density was increased in basal, but not apical, dendrites of KO/vehicle compared to WT/vehicle

littermates (*p < 0.05) and normalized in chronically treated KO animals (KO/CTEP versus KO/vehicle: +p < 0.05, ++p < 0.01). Mean ± SEM of ten mice per group,

with three dendrites on three different neurons counted per animal. (D–I) Quantification of phosphorylation and expression levels of ERK and mTOR in cortical

extracts collected from chronically treated animals. (D) Elevated ERK1,2 phosphorylation (Thr202/Tyr204) in KO/vehicle mice was corrected in chronically treated

KO mice (**p < 0.01). (E) Treatment also increased ERK expression levels in KO animals (*p < 0.05). (F) Similarly, mTOR phosphorylation (Ser2481) levels were

significantly decreased in chronically CTEP-treated mice compared to vehicle-treated Fmr1 KO mice (*p < 0.05). (G) mTOR expression levels were not altered in

Fmr1 KO mice and were not altered upon chronic treatment. For (F) and (G), mean ± SEM of 11 mice per group and triplicate measurements. (H and I) Typical

western blot results. (J) Testis weight (Table S2). Adult Fmr1 KOmice presented an increased testis weight compared toWTmice (genotype effect: ***p < 0.001),

which was partially corrected (�40% correction) upon chronic treatment (treatment effect: +++p < 0.001). There was no significant genotype 3 treatment

interaction. Mean ± SD of 9–12 mice per age and per group. (K and L) Testosterone and progesterone levels were determined in the plasma of animals subjected

to 17 weeks of chronic treatment. For both hormones, the levels were similar in WT and Fmr1 KO animals and were not affected by treatment. Mean ± SEM of

7–10 mice per group and duplicate measurements.
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We speculate that metaplasticity after chronic partial mGlu5 inhi-

bition promotes the synaptic modifications that accompany

inhibitory avoidance acquisition (Whitlock et al., 2006).

FXS patients frequently present a hypersensitivity to sensory

stimuli (Hagerman, 1996) and a deficit in the prepulse inhibition

(PPI) of the startle response (Frankland et al., 2004). In Fmr1

KOmice, correction of the increased PPI by acute MPEP admin-

istration could be demonstrated based on eye-blink response

(de Vrij et al., 2008), but not by measuring whole-body startle

response (Thomas et al., 2012). The interpretation of these PPI

results in mice is confounded, because Fmr1 KO compared to

WT mice show a reduced whole-body startle in response to

loud (>110 dB) auditory stimuli but an elevated whole-body
54 Neuron 74, 49–56, April 12, 2012 ª2012 Elsevier Inc.
startle response to low-intensity auditory stimuli (<90 dB)

(Nielsen et al., 2002). On this background, we studied the

elevated whole-body startle response in Fmr1 KO compared to

WT mice to low-intensity stimuli, which was fully corrected by

chronic CTEP treatment (Figure 2F).

To better understand the molecular underpinning of the treat-

ment effects, we studied ERK and mTOR phosphorylation in the

cortex of adult animals after chronic CTEP treatment. ERK is an

important component of the signaling cascade downstream of

Gp1mGlu receptors, and ERK inhibition is sufficient to normalize

the elevated protein synthesis rate in Fmr1 KO hippocampus

sections and to suppress seizures (Chuang et al., 2005; Oster-

weil et al., 2010). Like ERK, mTOR is an important regulator of
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protein synthesis and also modulates Gp1 mGlu-dependent

hippocampal LTD (Hou and Klann, 2004). In Fmr1 KO mice, the

level of mTOR activity is elevated in some preparations and unre-

sponsive to mGlu1/5 activation (Osterweil et al., 2010; Sharma

et al., 2010). These observations suggest that the normalization

of ERK and mTOR activity in Fmr1 KO mice by chronic CTEP

treatment is likely an integral part of the cellular mechanism

through which mGlu5 inhibitors correct the altered hippocampal

LTD, elevated AGS susceptibility, and deficient learning and

memory in FXS.

Taken together, our data provide evidence for the potential of

mGlu5 inhibitors to correct a broad range of complex behavioral,

cellular, and neuroanatomical phenotypes closely related to

patients’ symptoms in Fmr1 KO mice. The data further reveal

that a pharmacological correction of key FXS phenotypes

can be achieved with treatment beginning in young adulthood

after anatomically completed brain development. The breadth

of phenotypes addressed and the degree of normalization by

mGlu5 inhibition supports the expectation that mGlu5 inhibitors

might have the ability to change the developmental trajectory of

FXS patients and thus could hold the potential for disease

modification. Currently, several mGlu5 inhibitors are under

clinical examination in FXS (RO4917523, F. Hoffmann-La Roche;

AFQ056, Novartis; STX107, Seaside Therapeutics). It will be of

great interest to see whether the clinical phenotype can be

addressed in a similar broad fashion and with a similar magni-

tude as suggested by the preclinical data.
EXPERIMENTAL PROCEDURES

Animals

Fmr1 KO mice (The Dutch-Belgian Fragile X Consortium, 1994) were initially

obtained from The Jackson Laboratory and were maintained on congenic

C57BL/6J and FVB genetic backgrounds, respectively. All animal work was

approved by local veterinary authorities. All experiments were conducted

with experimenters blind to genotype and drug treatment.

Drug Treatment, Characterization of CTEP Pharmacological

Properties, Metabolic Labeling, Electrophysiology, Inhibitory

Avoidance, Audiogenic Seizure, Golgi Analysis, and Western

Blot Analysis

Methods were identical to the ones described previously (Dölen et al., 2007;

Lindemann et al., 2011; Osterweil et al., 2010). Full method descriptions are

provided in Supplemental Experimental Procedures.

Whole-Body Startle Response to Auditory Stimuli, Locomotor

Activity, Neurological Assessment, Motor Coordination

and Grip-Strength Test, Testis Weight, and Hormone Levels

For method descriptions, see Supplemental Experimental Procedures.

Statistics

Data were analyzed with two-way analysis of variance (ANOVA) with genotype

and treatment as independent factors and repeated measures as covariate

when appropriate. Post hoc tests were used to compare groups only if the

global analysis indicated a statistically significant (p < 0.05) main effect or

a significant interaction. A post hoc Bonferroni test was applied to LTD data,

and a protected post hoc Fisher’s test was used for all other experiments.

Testis weight was analyzed with a three-way ANOVAwith genotype, treatment

and age as independent factors, and the corresponding effect sizes are

reported. AGS experiments were analyzed with nonparametric statistics for

small sample size (Fisher’s exact test).
SUPPLEMENTAL INFORMATION

Supplemental Information includes one figure, two tables, and Supple-

mental Experimental Procedures and can be found with this article online

at doi:10.1016/j.neuron.2012.03.009.
ACKNOWLEDGMENTS

We would like to thank Neil Parrott for the modeling of mGlu5 receptor occu-

pancy; Christophe Fischer and Catherine Diener for hormone measurements;

Gerhard Hoffmann, Thomas Thelly, Christophe Flament, and Daniela Doppler

for analyzing CTEP exposure; Michael Honer, Edilio Borroni, Patricia Glaent-

zlin, and Celine Sutter for in vivo binding experiments; and Marco Celio and

coworkers at Frimorfo for Golgi-Cox analysis of dendritic spines. We would

like to thank Anita Albientz (animal breeding and genotyping), Marie Haman

(inhibitory avoidance extinction, locomotor activity, and neurological assess-
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