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Abstract

Maneuvering characteristics of surface combatants in the United States Navy are often
ignored during the design process. Key maneuvering parameters such as tactical diameter
and turning rate are determined during sea trials after the ship enters service. In the "Navy
After Next", the study of maneuvering of surface combatants will become increasingly more
important in efforts to reduce the number of personnel required to operate the ship and
thus reduce life cycle costs. This thesis attempts to address this issue.

The thesis presents an Extended Kalman Filtering (EKF) algorithm to estimate the
linear damping hydrodynamic coefficients for an Arleigh Burke Class Destroyer. Actual
data is generated by conducting maneuvers (with a nonlinear model of the ship developed
in a separate study) where nonlinear effects are small. The EKF then uses that data
to estimate the hull stability coefficients (Y, No, Y, and Nr) on-line in real time. The
coefficient values determined by the EKF are then used in a simulation model and the
results are compared to the actual trajectories. Despite the nonlinearities present in the
actual data, the EKF provides coefficient values that reproduce trajectories with only 15%
error.

The linear coefficients are then used to develop simple controllers to automate maneu-
vering for the actual ship. The parameters determined by the EKF are used to derive a
linear time invariant (LTI) model of the ship. This LTI model then serves as the basis
for model-based compensator designs to automatically control ship maneuvers. The first
controller is an autopilot to regulate the ship's heading and the second is a regulator that
ensures the ship remains on its intended track. The performance of the compensators is
then evaluated by simulating the performance of the LTI controllers on the nonlinear plant.

Thesis Supervisor: Michael S. Triantafyllou
Title: Professor of Hydrodynamics and Ocean Engineering
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Chapter 1

Introduction

1.1 Background

In the present naval ship design environment, reduced manning represents the cornerstone

of any design. Manning reductions significantly reduce the life cycle cost of the project,

which is the main goal given today's shrinking defense budgets. Reduced manning also

implies fewer sailors being placed in harm's way during battle as well as enhanced quality

of life. Reducing manning, however, affects nearly all aspects of a ship: maintenance,

firefighting and damage control, maneuvering, etc. The solution to this problem requires

a major paradigm shift from the Navy's current doctrine, culture, tradition, and training

procedures.

Naval ships must operate in a multitude of different environments and perform well in

each. Maneuvering of the ship in each of these environments currently requires numerous

watchstanders on the bridge and in the Combat Information Center (CIC) during normal

operations. Of these numerous watchstanders, one must be the helmsman, the individual

responsible for manipulating the rudder and engines to keep the ship on its desired course

and speed. With the advances in modern control theory and computing power, the functions

performed by many of these watchstanders may potentially be automated. This represents

a major change in current Navy operational doctrine, however.

Automation of these functions requires some method of automatic control. The evolu-

tion of control can be broken into two distinct periods. The period prior to 1957 can be

considered the "Classical" period and the period from 1957 to the present can be considered

the "Modern" period [33]. Classical control theory deals mainly with single-input/single-
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output (SISO) linear time-invariant (LTI) systems, whereas modern control theory expands

that capability to deal with multiple-input/multiple-output (MIMO) systems.

Automated ship maneuvering has been attempted since the invention of the gyroscope

by E. A. Sperry in 1910. Sperry applied his gyroscope to the stabilization and steering

of ships and later aircraft [33] using classical control methodology. Maneuvering of naval

surface combatants, however, is almost completely neglected in the design process. Naval

architects are content to accept the ship's maneuvering capabilities as determined by full-

scale sea trials after the ship has been built. The manning goal of the USN's 2 1st century

surface combatant (DD-21) is 95 personnel. Automation of maneuvering must surely be

employed in the design if this goal is to be realized.

1.2 Objectives

The main objective of this work is to apply a system identification technique known as

the State Augmented Extended Kalman Filter (SAEKF) to identify the hydrodynamic

coefficients of a model of the DDG-51 on-line in real time from noisy measurement data.

The data obtained from the identification may then be used to develop simple controllers

that can be tested during the design process for implementation on the full-scale ship.

It is worth noting that the simulations performed in this study may not match full-scale

DDG-51 trial data. The model used in this study to generate the ship maneuvering data

was developed in [43]. No attempt has been made to validate this model against full-scale

maneuvering data. The goal is to properly identify coefficients in an assumed form of the

maneuvering equations and attempt to reproduce the states and trajectories produced by

the model from [43]. In terms of developing control laws, the most important factor is the

values of the system states, rather than exact values of the hydrodynamic coefficients for a

particular ship. In fact, linear control systems often perform quite well despite errors as large

as 40% in the states. Therefore, if the identified coefficients produce values of the system

states that are close to those generated by the model in [43], that form of the simulation

equations can be assumed to be accurate and may then be used to develop control laws to

automate the ship's maneuvering.

In order to achieve the goal, a form of the simulation equations for ship maneuvering

must be assumed. This form is then used to develop an SAEKF algorithm that accepts noisy

10



measurement data from ship maneuvers generated by the model in [43] and estimates the

value of the hydrodynamic coefficients in an attempt to make the output of the simulation

model match the actual measured data. The form of the model is based upon physical

principles and contains the salient terms required to describe the coupled surge, sway, and

yaw motions of the ship. Dimensionless quantities are employed throughout the process to

maintain generality and ensure numerical stability of the algorithm.

The identification portion of the study limits its focus to forward motions in deep, calm

seas with no current. The controller simulations, however, relax this condition and use

currents and waves as disturbances to test the performance of the controller designs.

1.3 Contributions

This work describes and evaluates a process by which coefficients in maneuvering equa-

tions of motion can be identified on-line in real time. From these identified parameters,

control laws for automating the ship's maneuvering in real time in the ship's operational

environment can be developed. This method can be utilized early in the design process

on scale models to determine the effectiveness of the automatic control systems and deter-

mine changes that need to be made. This work can be extended to apply to future naval

combatant ship designs such as DD-21.

This work introduces a method by which naval architects can address maneuvering

characteristics early in the design process and develop automatic controllers to reduce the

number of human interfaces required to maneuver the ship. The method is written en-

tirely in the MATLAB computing environment. This work will also help to provide Ocean

Engineering graduate students at MIT with practical experience in guidance and control

of ocean vehicles through its potential future implementation on a scale model. Further,

the simulations developed in the thesis may be used as the basis for future student design

projects in ship maneuvering and control.

1.4 Outline

Chapter two presents a truncated derivation of the governing equations for the SAEKF

algorithm. It then presents an application of the identification process to a very large

crude carrier (VLCC) Esso Osaka. This is an application of the significant work conducted
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by Professor Martin Abkowitz of MIT in the late 1970's and early 1980's. This model

is developed and used for verification of filter operation throughout the remainder of the

thesis.

Chapter three presents a brief description of the United States Navy's Arleigh Burke

Class (DDG-51) Destroyer. It then develops the governing equations of ship motion in the

horizontal plane. The chapter concludes by developing the assumed form of the equations

of motion to be employed in the SAEKF.

Chapter four develops the linear equations of ship maneuvering motion. It describes

the results of the initial identification efforts and problems encountered. The chapter fur-

ther describes bias and divergence in the Kalman Filter and some of the causes of these

phenomena. The methods of addressing the problems encountered are then described. The

chapter concludes with the results of the successful identification of the linear damping

hydrodynamic coefficients for the DDG-51.

Chapter five briefly describes the theory of controller design by loopshaping. Two simple

controllers are then designed using loopshaping and the linear models produced through the

system identification efforts. The first controller is an autopilot designed to maintain the

ship's actual heading about a slowly-varying reference value. Simulations of the controller

are performed on the nonlinear plant to determine its performance. Cross-track errors

evidenced in the autopilot design then lead to the design of a simple track-keeping controller.

Simulations are performed on the nonlinear plant for this design as well.

Chapter six summarizes the work accomplished in the thesis and gives recommendations

for future studies.

12



Chapter 2

System Identification and the State

Augmented Extended Kalman

Filter

This chapter introduces the use of the Extended Kalman Filter (EKF) in system identifica-

tion. The governing equations of the EKF appear along with a brief description of the noise

processes. The chapter concludes with an example application of the EKF to the identifi-

cation of unknown hydrodynamic coefficients for the very large crude carrier (VLCC) Esso

Osaka.

2.1 System Identification

System Identification (SI) is the process of developing or improving a mathematical rep-

resentation of a physical system using experimental data. This process usually assumes a

form of a model for a physical system and adjusts the unknown parameters in that model

to fit physical data collected from the system in question. The State Augmented Extended

Kalman Filter (SAEKF) illustrates one technique for performing SI. The system state vec-

tor is augmented with the system's unknown parameters and estimated as data is collected

from the physical system.

Many methods exist for performing SI on mathematical models of physical systems.

Several of these methods have been successfully applied to the ship maneuvering problem.
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Maximum Likelihood Parameter Estimation was successfully applied in [41] to identify

linear coefficients. Reference [13] covers several other methods such as Indirect Model

Reference Adaptive System, Continuous Least Squares Estimation, and Recursive Least

Squares Estimation. Abkowitz [3] successfully applied the SAEKF method to tanker ships

in the early 1980's. The SAEKF method provides a means to update a system model on-line

in real time. The success of the work presented in [3], coupled with the real time estimation

capability, forms the basis for the choice of the SAEKF method in this study.

2.2 The Extended Kalman Filter

In the most general case, nonlinear systems and subsequent sets of discrete measurements

of those systems can be described by a set of nonlinear, stochastic differential equations of

the following form 1:

'yt) = f(j(t), t) + w(t) (2.1)

ik = hk((tk)) + Vk (2.2)

where:

1(t) represents the system state vector,

f(x_(t), t) represents the system description matrix,

w(t) represents a zero-mean Gaussian sequence with covariance matrix Q(t),

,k represents the measurement vector,

hk(X(tk)) represents the measurement description matrix, and

Ek represents a zero-mean Gaussian sequence with covariance matrix Rk.

In the ship maneuvering problem, system measurements typically consist of direct mea-

surements of the state variables. Thus, the matrix hk(x(tk)) reduces to a constant identity

matrix. For example, ships often utilize a Global Positioning System (GPS) to directly

measure the ship's position and speed. The ship also has a gyrocompass to directly mea-

sure the instantaneous heading angle. The direct state measurements require no additional

calculations to determine the value of the state. Therefore, the system measurement matrix

'The derivations that follow appear in more detail in [19].
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reduces to a constant function equal to the identity matrix.2 Keeping this fact in mind,

equation 2.2 reduces to the following:

k hkgL(tk + ?-Vk (2.3)

The equation of motion 2.1 and the measurement equation 2.3 now govern the dynamics

of the entire system. The EKF method seeks the minimum variance estimate of x(t) as a

function of time and the measurement data accumulated up to time tk. The sequel presents

an abbreviated derivation of the theory behind the EKF algorithm. Reference [19] presents

a more detailed derivation of the intermediate steps.

2.2.1 Process and Sensor Noise

The noise sequences w and Vk in equations 2.1 and 2.3 represent the process and sensor

noise, respectively. Their properties and associated covariance matrices have yet to be

addressed.

In the ship maneuvering problem, the process noise represents the uncertainty in the

assumed form of the model as well as uncertainty in predicting external disturbances. For

example, the sea may not always exhibit a wave spectrum exactly consistent with that

predicted by statistical data. In calm seas, however, this uncertainty is removed and only

the uncertainty in the model form remains. Thus, the process noise covariance may be

assumed to be constant. This is not a limitation, however, because even in a high sea state,

the additional uncertainty due to the wave excitation will vary slowly over time and can

be considered piecewise constant [32]. Furthermore, because the process noise represents

uncertainty, it is assumed that the state vector and process noise are independent and

uncorrelated random variables.

The sensor noise represents the uncertainty in the measurements. For example, GPS

systems available in the commercial market provide position information to within +/- 100

feet in some instances, but not the exact location. The measurement model must address

this uncertainty. Therefore, in the sequel, the following assumptions hold for the process

and sensor noise:
2If all state variables are not measured, the matrix will consist of ones and zeros of sufficient size to

perform the required linear algebraic operations.
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1. White noise processes. 3

e The ship motions are slow compared to the dynamics of waves, structural vibrations,

etc. Thus, the time constant of the process noise is much, much faster than the time

constant of the ship motions.

e The observation interval must be long compared to the correlation time of the sensor

noise. Typical shipboard sensors exhibit the capability of sampling rates as high as 100

hertz. Therefore, a sampling interval of not less than one second meets this condition

and is more than adequate to fully capture the slow ship motion dynamics.

2. Independent, uncorrelated, zero-mean, Gaussian random variables (denoted N(0,Q)).

Thus, E [w(t)T = E [Kkw(t)T = 0 for all k and t.

3. Covariances are constant or piecewise constant varying slowly with time.

These assumptions are quite important in the derivations that follow. Reference [19] pro-

vides a more detailed discussion of the noise processes.

2.2.2 State Estimate and Error Covariance Propagation

The EKF method seeks to minimize the error of the estimate in some statistical sense as a

function of time. Thus, the error obviously depends on time. Define the error, ;(t), and its

associated error covariance matrix, P(t) as follows:

;yt) XM(t - 1#t) (2.4)

P(t) E[.;c(t).;yt)T] (2.5)

where 3(t) denotes the minimum variance estimate determined by the EKF, and E[ 0 I
denotes the expectation operator. From the definitions in equations 2.1, 2.4, and 2.5, it can

be shown [19] that equations 2.6 and 2.7 govern the state estimate and its associated error

covariance propagation. Equation 2.7 omits the time dependence of f and x for notational

3Nature does not exhibit white noise processes. Thus, the white noise assumption is only valid subject
to the conditions presented.
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convenience.

M~) = f GE ),1t)(2.6)

p(t) = XS fT + fXT - tXT + Q (t) (2.7)

In order to solve these equations, f must be known at each instant. The value of f, however,

depends upon the entire probability density function of x at each instant of time as shown

by the following relation:

f(X, t) = f-... - f(x, t)p(x, t) dxi ... dXn f (1, t) (2.8)

where p(x, t) denotes the probability density function of x. Practical algorithms require

methods of computing x and P without knowing p(x, t). One method of accomplishing this

is by expanding f in a Taylor series about the current estimate, i, as follows (assuming the

required derivatives exist):

Of
f (_,t) = f (,t) + _(X - )+ --- (2.9)

Ox x:::x

Truncating equation 2.9 to include only the first order terms, taking the expected value,

and substituting into equations 2.6 and 2.7, yields the following approximate expressions

for the propagation of the estimated state vector and its associated error covariance:

a = f(.;, t) (2.10)

P(t) F(;, t)P(t) + P(t)F T (:, t) + Q(t) (2.11)

where F(:, t) is the matrix whose ijth element is defined as follows:

&fi(x, t)
fij = 0(2.12)

09xi I =::

2.2.3 State Estimate Update, Error Covariance Update, and the Kalman

Gain Matrix

The filtering equations 2.10 and 2.11 propagate the state estimate and error covariance

over the time period between measurements (tk-_ < t < tk). Therefore, to complete the
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filter and update the state estimate for the next time step, the actual state measurement

must be taken into account. Because the EKF algorithm produces a minimum variance

estimate of the state vector, there will likely be a difference between the propagated state

estimate (denoted bk(-) 4) and the actual measurement (denoted zk). Thus, the updated

state estimate (denoted _k(+)) can be computed by a linear combination of the propagated

state estimate and the difference between the actual measurement and propagated state

estimate. The scaling factor in this linear combination is known as the Kalman Gain

matrix, Kk. Equation 2.13 illustrates this relation.

k = _k(-) + Kk[zk - hk(Xk(-))] (2.13)

Measurements affect the error covariance in a manner similar to the state estimate

update. Therefore, denote the propagated error covariance as Pk(-) and the updated

error covariance as Pk(+). The optimum Kalman Gain matrix, Kk, minimizes the error

covariance update, Pk(+). Expressing Pk(+) as a function of of Kk yields the following

expression to be minimized:

Pk () Pk(-) + KkE [Lk - k(Ek)]i k(- (.

Like the state estimate update, -k(+), equation 2.14 is a linear combination of the prop-

agated error covariance and the estimation error. Minimizing equation 2.14 yields the

following expression for the optimum Kalman Gain matrix (see [19] for details):

Kk = -E k(-)[zk -- hkk()] E[z - hk(Xk)][zk - hk(k)]] + Rk (2.15)

Note that hk depends upon the entire probability density function of x(t) similar to f in

2.2.2.5 Employing the method in 2.2.2 and expanding hk in a Taylor series about the

current propagated state estimate, ,ik(-), yields the following expression:

Zk = hk(i (-)) + Hk(i (-)) (k - 14(-)) + - - - (2.16)

4
k(-- and Pk(-) represent the solutions to equations 2.10 and 2.11 on the interval tk-1 <t < tk.

5 See equation 2.8.
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where:

H('(-)) - (4) (2.17)

Thus, similar to F, Hk is a matrix whose ijh element is given by the following expression:

(Hk)ij - )(hk) ( k) (2.18)
09(Xk)j K i k ~(-)

Truncating equation 2.16 after two terms, taking the expected value and substituting into

equations 2.13, 2.14, and 2.15 yields the Extended Kalman Filter update equations:

k k(-) + Kk z, - hk (4(-))] (2.19)

Kk = Pk(-)Hk(14H(-)) IHk(i(-))Pk(-)HkT(lk()) + Rk] (2.20)

Pk(+) = [I - KkHk(i(-))]Pk(-) (2.21)

Figures 2-1 and 2-2 illustrate the process with a flowchart and timing diagram. Table 2.1

presents a summary of the Extended Kalman Filter algorithm. Each block in the flowchart

represents a section from Table 2.1. Figures 2-1 and 2-2 should be used in conjunction with

Table 2.1 to illustrate the flow of the algorithm and the governing equations for each stage

of the process.
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Figure 2-1: EKF Algorithm Flowchart
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Table 2.1: Summary of the Extended Kalman Filter Equations

System Model 1(t) = f(x_(t), t) + w(t)

Measurement Model Zk = hk(x(tk)) + -Vk

Initial Conditions x(O) - N( 0O, Po)

Other Assumptions E W(t)VI = 0 V k and t

State Estimate X= f(1, t) (Plant Simulation Model)
Propagation

Error Covariance P(t) F(;, t)P(t) + P(t)FT(, t) + Q(t)
Propagation

State Estimate k(+) -k (-) + Kk[ k - hk(tk (-))
Update

Error Covariance Pk(+) = [I - KkHk(-k(-))]Pk(-)
Update

Kalman Gain Kk = Pk(-)HkT(ik (-))S-( (--))

Definitions F(i(t), t) = f((t),)
x (t)=1(t)

S~ (-) H) = [Hk(- ))Pk(-)Hk( (-)) + Rkl

Adapted from Table 6.1-1 of [19]
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2.3 System Identification of the Esso Osaka

No a priori information on the parameters of the DDG-51 was available in this study. Thus,

if the identification process produced erroneous values of the coefficients, there would be

no definitive method of isolating the problem to the model or the filter. In an effort to

ensure proper operation of the filter prior to use in identifying the DDG-51 hydrodynamic

coefficients, a linear model of the Esso Osaka was developed using coefficient values provided

in [3].

The Esso Osaka is a 280,000 dead-weight-ton VLCC with principal characteristics listed

in Table 2.2. Abkowitz conducted a series of experiments outlined in [3] in the late 1970's

Table 2.2: Esso Osaka Principle Characteristics

LBP 1066.3 ft
Beam 173.9 ft
Draft 92.8 ft
A, (rudder area) 1289.67 ft 2

AR (rudder aspect ratio) 1.538
A 314,410 lton
LCG (aft of midship) 25 ft

and early 1980's to evaluate the EKF technique as a candidate for identification of ship

hydrodynamic derivatives. The study produced favorable results and simulations using the

identified coefficients matched the full-scale data quite well. The successful results presented

in [3] formed the basis for choosing the EKF method in this study.

The mathematical calculations involved in formulating the EKF are quite involved. The

potential for error, therefore, is rather high. Thus, in order to ensure that no mathematical

errors had occurred, it was necessary to test the filter against a dynamical model with

known parameters. Successful operation of the filter in identifying the known parameter

values would indicate that the filter had been properly formulated. The values of the

coefficients appear in Table 2.3. The negative signs have been included in the coefficient

definitions of Y, and N, to follow the convention outlined in [49].
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Table 2.3: Esso Osaka Nondimensional Hydrodynamic Coefficients

- YV 0.0244

(m - Y) 0.0138
-Nv 1.4578e-3

(mxg - Nr) 8.093e-4

The results of the identification appear in Figures 2-3 and 2-4. These figures clearly

indicate that the filter operates correctly. Notice how the parameter estimates converge to

the exact values of the actual coefficients over time in Figure 2-4. This is indicative of the

fact that the dynamical model in the filter is identical to the dynamical model producing

the measurements. The fact that there are no modeling errors removes the requirement for

process noise (i.e. Q = 0). Thus, the filter trusts its own state estimates and converges

quickly to the proper values based upon the initial measurements. Figure 2-3 shows how the

estimates of the physical states converge immediately. This is due to the exact dynamical

model in the filter and the fact that each of the four physical states are measured. Figure 2-4

indicates that each of the parameter estimates requires about 3 minutes to converge. This is

because each of these states must be estimated by the filter and some dynamic information is

required before the filter can produce good estimates. After about three minutes, the error

between the actual and estimated state vectors has decayed to zero. Thus, the computed

gains are very small and the filter has effectively "learned" the dynamics of the system and

no longer requires measurement information to produce good estimates.
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Results of simulations performed using the identified coefficients appear in Figures 2-

5 and 2-6. The identified coefficients reproduce the states and trajectory with very small

error. This, again, can be attributed to the fact that the filter contained an exact dynamical

model during the identification process. Note also that the trajectory shown in Figure 2-6

is identical to the maneuver used to identify the coefficients.
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Figure 2-5: Simulated States of the Esso Osaka During a 100/100 Zig-Zag Maneuver
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Figure 2-6: Simulated Trajectory of the Esso Osaka During a 10'/10' Zig-Zag Maneuver

25

Simulation of Esso Osaka 10/10 Zig-Zag Maneuver Using Identified Coefficients

-Actual
7 --- -Identified

7-

7-

1



Figure 2-7 shows the simulation results in a 100 steady turn maneuver. The simulation

results are still quite accurate despite the differing maneuver. The error shown in the figure

is less than 5% in the turning diameter. The error can most likely be attributed to roundoff

errors in determining the coefficient values. This small error, however, is certainly ideal for

control system design.

Esso Osaka 10 Degree Steady Turn Maneuver
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Figure 2-7: Simulated Trajectory of the Esso Osaka During a 10' Rudder Steady Turn
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Chapter 3

Nonlinear Simulation Model

Many of the intricate details of the hullform described in the sequel have been omitted. This

work uses a model developed in [43] to generate the data for the full-scale ship. Classification

restrictions prevent verification of this model against any full-scale data for the DDG-51.

Thus, no attempt has been made here to do so. The focus of this work lies in using the

SAEKF process to identify the unknown parameters in the equations of motion and develop

control systems based upon the identified parameters. The goal then becomes using the

identified values of the parameters to reproduce ship trajectories generated by the model

from [43].

The sequel develops the general equations of rigid-body motion and the assumed form of

the simulation model to be used in the SAEKF. Note that the form of the simulation equa-

tions developed in this study are in no way related to the form of the equations used in [43].

This ensures that the SAEKF does not merely estimate the parameters of a model identical

to that which it contains. In fact, the form of the simulation equations is unimportant as

long as the trajectory of the actual data is reproduced. Thus, the issue of coefficient can-

cellation described in [3] becomes moot. The goal of this study is not to identify individual

coefficient values, but to reproduce trajectories. This implies that the forces and moments

have been adequately modeled, which is the most important factor in control system design.

3.1 The Arleigh Burke Class Destroyer

The United States Navy (USN) Arleigh Burke (DDG-51) Class destroyer represents the

state of the art in operational warships today. It is a twin-screw vessel powered by four
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LM2500 gas turbine engines coupled to controllable-reversible pitch (CRP) propellers. The

vessel has a wider beam than conventional warships, but is still considered to have fine

lines. Table 3.1 lists the ship's principal characteristics. The vessel uses two mechanically-

linked rudders located downstream of the propellers to maintain course control. The ship's

propellers maintain 100% pitch for all speeds above approximately 10 knots, and thus will

be considered fixed for the duration of this study. The ship has port-starboard symmetry

as do nearly all ships in existence today.

Table 3.1: DDG-51 Principal Characteristics

Length (LBP) 466 ft
Beam (B) 59 ft
Draft (T) 21 ft

Displacement (A) 8500 iton
Waterplane Area (A,) 29896 ft 2

Long Ctr Gravity (LCG) 2.8 ft aft midship

Block Coeff (Cb) 0.522
Prismatic Coeff (CP) 0.615

3.2 Governing Equations of Motion

3.2.1 Rigid-Body Inertial Forces and Moments

The following sections develop the equations governing the inertial forces and moments ex-

perienced by the body in dynamic motion. Simplifications ultimately reduce the generalized

equations to only those governing motions in the horizontal plane.

3.2.1.1 Generalized Equations of Rigid-Body Motion

The complete derivation of the generalized equations of motion for a rigid body moving on

the surface of the earth begins by choosing an inertial coordinate system with its origin

located at the earth's center of gravity. This is necessary to account for centrifugal forces,

coriolis forces, etc. The body experiences these forces due to the earth's gravitational

field and its relative linear and angular velocity to that of the body. The effects of these

phenomena, however, can be considered small (and thus neglected) for large objects such

as ships. Reference [2] details this portion of the derivation, so it will not be reproduced
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here.

Based upon the assumptions outlined in [2], the coordinate system is transformed into

a body-fixed reference frame with its origin located at the midship section. Figure 3-1

illustrates the coordinate system in a body-fixed reference frame.

In the most general case, the Motions:

ship may exhibit coupled mo- u=way y 
w = heave x, u

tions in all six degrees of free- p roll
q pitch
r = yaw

dom shown in Figure 3-1. All 0= origin (midship)

three forces and all three mo-
0 Forces and Moments:

ments shown in Figure 3-1 act cr= rudderX = surge force
Y = sway force

on the ship during normal op- Z = heave force
Cr K = roll moment

M = pitch moment
erating conditions while under- N =yaw moment

way at sea. Equating the forces

and moments acting on the ship Figure 3-1: Body-Fixed Coordinate System

to the rates of change of linear and angular momentum experienced by the ship yields the

generalized equations of motion shown in equations 3.1 through 3.6.

X= i + qw -rv - xg(q2+r2)+ yg(pq - + zg(pr + (3.1)

Y= m[iJ +ru - pw - yg(r2 + p2 ) + zg(qr - + x(qp + (3.2)

K =IxP+ (z-y)qr+m lYg(ib+ pv - u)-zg (ii + ru-Pw)] (3.4)

M = Iy + (Ix - I)r + m zg(6 + qw - rv) - x(b + pv - qu) (3.5)

N = Iz + (Iy - Ix)pq + m [xg(b + ru - pw) - yg(tb+ qw - rv) (3.6)

where m represents the mass of the body and I, Iv, and I represent the moments of inertia

about the appropriate axis. Because the longitudinal center of gravity is sufficiently close

to the origin, and the ship is nearly symmetric, the cross-coupling inertia terms can be

considered small and neglected.
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3.2.1.2 Equations of Motion in the Horizontal Plane

Despite the appearance of the tight coupling of all the motions in equations 3.1 through

3.6, motions in the horizontal plane exhibit weak coupling to the out-of-plane motions [37],

[49]. Therefore, motion in the horizontal plane can be considered separately from motions

out-of-plane. This simplification implies the following:

w=p=q=Z=K=M=0 (3.7)

For a ship with no list (the usual case), the transverse component of the center of gravity,

y., must lie somewhere on the x-axis. Orthogonality of the coordinate system implies the

following:

Yg = 0 (3.8)

Substituting equations 3.7 and 3.8 into equations 3.1, 3.2, and 3.6 yields the equations of

motion in the horizontal plane:

X = m [ - rv - xgr2 (3.9)

Y =m 1b + ru + Xgj (3.10)

N = Iz + m [x (b + ru) (3.11)

The right-hand sides of equations 3.9 through 3.11 describe the inertial forces and mo-

ments acting on the body during dynamic motion in the horizontal plane. The remaining

derivations address the external forces that balance the inertial forces.

3.2.2 Balancing Forces and Moments

Many different forms for the equations governing the balancing forces and moments exist

in the open literature. These models can be classified in three main categories [10]:

1. Input-Output models.

2. Holistic (regression) models.

3. Modular models.
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Input-output models describe the direct effect of varying control parameters on the maneu-

vering response of the ship. Holistic models treat the ship as a complete entity with forces

and moments described by a Taylor series expansion containing the pertinent kinematic and

geometric parameters. Modular models treat all major contributing elements as separate,

interactive modules which can be developed and tested separately. Developments over the

last decade indicate that the flexibility of the modular approach makes it very attractive

for future applications [10]. Thus, this type of approach has been adopted in this work.

The following sections develop the equations governing the forces and moments which

balance the inertial forces and moments derived in 3.2.1. The total force and moment can

be subdivided into forces and moments resulting from the following modular contributions:

1. External influences (wind, waves, etc.), Xext, Yxt, Next.

2. Steady-state effects, Xo, Yo, No.

3. Propulsive devices (propellers, thrusters, etc.), Xp, Yp, Np.

4. Rudder forces, XR, YR, NR-

5. Interactions between the fluid and the hull, Xf, Yf, Nf.

Thus, the total forces and moments may be described by the following equations:

X Xext +XO +XP +XR+Xf (3.12)

Y Yext + Yo + YP +YR +Y (3.13)

N = Next + No + Np + NR + Nf (3.14)

3.2.2.1 External Forces and Moments

This study considers maneuvering only in calm, deep water with no wind or current effects.

This is not a likely operational environment for a full-scale ship. The goal of this study,

however, is to reproduce maneuvering trajectories produced by the model developed in

[43]. No environmental forces were considered in that study and therefore will not be

considered here. Once the SAEKF method proves effective in the absence of environmental

forces, the next logical step would be the addition of environmental forces to determine

'X, Y, and N from equations 3.9 through 3.11.
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their effects. Therefore, Xet, Yext, and Next are taken to be zero for the duration of

the identification portion of this work. These effects will be considered, however, during

simulation of controller designs. This is not a limitation because a scale model may be

tested in a pool or tank where the environment can be carefully controlled to perform the

identification.

3.2.2.2 Steady-State Effects

Steady-state effects consist of forces and moments present in steady-state motion. Thus, the

steady-state X0 is taken to be the ship resistance at the steady-state forward speed when

all other dynamic terms are zero. Y and No represent steady-state sway force and yaw

moment, respectively. These phenomena exist primarily on single-screw ships and mani-

fest themselves through a tendency for the ship's stern to "walk" in a particular direction

when the propeller thrust is small. DDG-51 has two shafts and two propellers that rotate

in opposing directions. Thus, for this platform, the steady-state sway forces and yaw mo-

ments cancel and can be considered zero. Furthermore, because the steady-state forces and

moments cancel, the dynamic forces and moments will cancel as well. Thus,

Y = No = Yp = Np = 0 (3.15)

3.2.2.3 Propulsive Forces and Moments

When a ship propels itself through water, the longitudinal force must be equal to the

difference between the hull resistance and the propeller thrust. The open-water thrust

provided by the propeller can be expressed as follows [49]:

To = pn2D4 [Ko + K1 J + K2 J2 (3.16)

J (1-w)u (3.17)
nD

where n represents the propeller speed, D represents the propeller diameter, and J represents

the advance coefficient. The constants (KO, K1 , and K2 ) represent the coefficients in a

parabolic fit of the thrust coefficient to the open-water propeller curve and (1 -w) represents

the Taylor wake fraction. Inserting equation 3.17 into equation 3.16 and carrying out the
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requisite algebra results in the following expression:

T0 = Xp -= 1n2 + 12nU + 73U2 (3.18)

where:

71 = pD 4 Ko (3.19)

'q2 = (1 - w)pD3 Ki (3.20)

q3 = (1 - W) 2 pD2 K2  (3.21)

Modeling of propeller thrust and torque introduces an additional state variable, n, into

the equations of motion. Appropriate models for this variable depend heavily upon the

type of propulsion machinery the plant contains. The DDG-51 propulsion system consists

of four LM2500 gas turbine engines mechanically coupled to two shafts via a set of reduction

gears. Reference [49] recommends the following form for modeling a gas turbine propulsion

system:

. rAgQEQE - P
n = 7~ (3.22)

where QE and Qp represent the engine and propeller torque, respectively, Ip represents

the polar moment of inertia for the entire engine/gear/shaft/propeller arrangement, A rep-

resents the reduction gear ratio, and qr and qg represent the propeller relative rotative

efficiency and reduction gear transmission efficiency, respectively. This model is intended

only to adequately model the changes in propeller speed during maneuvers. It is not in-

tended to completely capture the performance of the engine itself. Adequate modeling of

propeller speed changes captures the salient dynamics required for maneuvering and tra-

jectory simulation. Therefore, this model suffices for the task at hand. Thus, the engine

model used in this study is the same as that used in [43] 2.

QE = Qmax (afr + b) + cfr (3.23)
nmax I

Qp = pn2D 5 KQ(J) = pn2 D5 [Qo + QIJ + Q2J21 (3.24)

2 Reference [1] provides a more detailed model to capture the performance of the engine.
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where all coefficients in equation 3.23 are taken directly from [43], f, represents the fuel

rate, and the constants (Qo, Q1, and Q2) represent the coefficients in a parabolic fit of the

torque coefficient to the open-water propeller curve.

3.2.2.4 Rudder Forces and Moments

Modeling the rudder forces and moments is somewhat more complicated than the derivations

presented thus far because the angle of attack decreases due to the sway and yaw motions.

Figure 3-2 illustrates the coordinate system and vector diagrams of the rudder forces. The

ultimate goal is to determine expressions for XR and YR. An expression for NR then follows

directly.

.X r

u

A R= Rudder Area

CL(O( R) = Lift Coefficient

CD(5( R) = Drag Coefficient

UR

0<
R

SL

v-(-x rr)

v -x rr R

D
NR

Figure 3-2: Vector Diagram of Rudder Forces

It is well-known that rudders are foils that act as lifting devices when positioned at some

angle of attack, aR, measured with respect to the oncoming flow velocity, UR. The finite
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radius at the leading edge of the foil requires that the lift force, L, act perpendicular to

the oncoming flow [49]. Orthogonality of lift and drag requires that the drag force, D, act

parallel to the flow. The lift and drag forces are defined in equations 3.25 and 3.26.

1
L = -pARUCL(aR) (3.25)

2
1

D =-pARUSCD(!R ) (3.26)2

When v and r equal zero, ac is simply the rudder angle, 6. When the ship experiences

sway and yaw motions, however, aR decreases as shown in Figure 3-2 3. The angle '

represents the decrease in the angle of attack due to sway and yaw. Thus, the instantaneous

lift and drag forces depend upon the instantaneous flow velocity, UR, and instantaneous

angle of attack, aR. The quantities shown in Figure 3-2 are determined from the relations

shown in equations 3.27 through 3.29.

UT2= -2 + (v + Xr) 2  (3.27)

6 =+ (3.28)

4 = arctan V+Xr) (3.29)

The lift coefficient, CL(O!R), and drag coefficient, CD(aR), can be approximated with any

appropriate model. A typical value for the drag coefficient of a foil is 0.0085 [31]. The lift

coefficient can be modeled as a constant for small angles of attack [49]. Use of the modular

rudder model allows the use of this approximation even in maneuvers where it appears to

be invalid (i.e. a 20' rudder turn). This is because the actual angle of attack decreases

rapidly with respect to the nominal as sway speed and yaw rate increase. Reference [3] used

a 20' rudder turn to validate nonlinear coefficients identified in more violent maneuvers.

This can be taken to mean that in that work, this type of maneuver was considered to be

at least mildly nonlinear. The sequel will show, however, that this approximation works

quite well for maneuvers of this type. For foils with aspect ratio (AR) greater than 1, [49]

3 Figure 3-2 shows an apparent increase in the angle of attack for illustration purposes only. V) always
opposes 6 to allow the forces to balance in steady state.
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provides the following expression for the linear lift coefficient, CL:

0 CL 1 1 1 (.0
CL =-+ -+ -(3-30)

DaeR 0.187r rAR 27r(AR)2)

Thus, taking CD = 0.0085 and computing CL from equation 3.30, the lift and drag forces

may be computed from equations 3.25 through 3.29. Once the lift and drag forces are

known, the rudder forces are computed with equations 3.31 through 3.33 where the factor

of two accounts for the fact that the ship has two rudders.

XR = 2(L sin@ - D cos 0) (3.31)

YR = -2(L cos4' + D sin ) (3.32)

NR = XrYR (3.33)

3.2.2.5 Hull/Fluid Interaction Forces and Moments

The forces and moments generated by the interaction between the fluid and the hull are

functions of several variables. Thus, Xf, Yf, and Nf may be described by the following

equations:

Xf = fi(u, v, r) (3.34)

Yf = f2(u, v, r) (3.35)

Nf = f3 (u, v, r) (3.36)

The open literature provides many expressions for fi, f2, and f3 along with detailed deriva-

tions and underlying assumptions4 . The derivations and assumptions will not be repeated

here with the understanding that all equations presented in the sequel conform to all as-

sumptions described in the references from which they were taken.

The major differences between the proposed models lie in their treatment of the non-

linearities. Abkowitz proposed the most well-known form of the equations outlined in [37].

This model proposes a third-order Taylor series expansion of the fluid forces and moments

about some steady-state forward equilibrium speed. Hwang [24] further refined this model

based upon full-scale maneuvering trials conducted on a series of large tanker ships [3].

4See [2], [3], [7], [13], [26], [52], and [54].
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Blanke [5] proposes a simpler form of the equations intended to capture the most important

nonlinearities in terms of speed and propulsion loss. The form of the simulation equations

chosen for this study is a hybrid of the models proposed in [5] and [24]. It should be noted

that each of the models mentioned here are based upon the holistic method described in

3.2.2. Because this work employs the modular method, the hydrodynamic derivatives asso-

ciated with the rudder forces in these models 5 are captured by the rudder model described

in 3.2.2.4. Thus, fi, f2, and f3 are expressed as follows 6 :

Xf =f(u,v,r ) = XiL + XP + Xh (3-37)

Yf =f2 (U, v, r) = Yi,'b + Y + Y (3.38)

Nf = f3 (u, v, r) = Nj, + Nfi + Nh (3.39)

Added mass and added inertia terms associated with accelerations (i.e. ii, ', etc.)

can be calculated to within sufficient accuracy for purposes of control systems through

hydrodynamic strip theory. The terms Xh, Yh, and Nh in equations 3.37 through 3.39,

however, represent some combination of unknown damping and nonlinear terms whose

values no existing hydrodynamic theory can predict with any level of accuracy. These

terms are currently determined through extensive model testing. Thus, the linear damping

and pertinent nonlinear terms must be estimated to provide at least some knowledge to be

beneficial in the design of a control system.

3.3 Nonlinear Simulation Equations of Motion

Completing the steps that follow results in the final form for the nonlinear simulation

equations of motion.

1. Apply the simplifications and assumptions discussed in 3.2.2.1 through 3.2.2.3.

2. Introduce the resulting expressions for X, Y, and N to equations 3.9, 3.10, and 3.11.

3. Solve the resulting system of equations for the state derivatives and obtain a system

in the state-space form of equation 2.10.

5X 6 j, Y, N, etc.
6Equations 3.37 through 3.39 employ standard SNAME notation for hydrodynamic derivatives. Thus,

the coefficients in the Taylor series expansion 1, y, etc. are absorbed by the hydrodynamic coefficients.
See [37] for details.
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The final model which results from completing each of the steps listed above appears in

Table 3.2. Coefficients of added mass and added inertia terms in Table 3.2 are determined

from valid hydrodynamic theory and knowledge of the ship geometry. Coefficients of the

linear damping terms and any nonlinear terms (i.e. components of Xh, Y, and Nh) are to

be treated as the unknown parameters to be estimated using the SAEKF.

Table 3.2: Nonlinear Simulation Equations

fi
m - Xo
(Iz - N f 2 - (mxg Y)f 3

f4
(m - Y)f 3 - (mxg- N))f 2

f4

h =lrA?7gQE - QP
27rIp

f, = 7in2 + 2nu + r3u2 + Xh + XR

f2 =Yh YR

f3 = Nh + NR

h = (Iz - N )(m - Y) - (mxg - Y)(mxg - Nb)

,q = pD4 Ko

'q2 = (1 - w)pD3 K1

r73 = (1 - W) 2pD2K2

Coefficients of inertial terms such as Yi, and Ni to be determined from hydrodynamic theory.
Pertinent terms in Xh, Yh and Nh to be estimated with SAEKF.
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Chapter 4

DDG-51 System Identification

Effective control system design relies upon simplified models that adequately describe the

dominant dynamics of the plant to be controlled. These simplified models must contain the

minimum number of parameters required to sufficiently describe the forces and moments

acting on the plant. The equations developed in Chapter 3 are intended to describe the

complete nonlinear plant dynamics. The dominant forces and moments are often captured

by linear terms over a surprisingly wide range, however. Modern control system theory

provides the capability to design controllers that are robust in the face of modeling errors.

Thus, the first step in design is to design a controller based upon a linear model and test

its performance on the nonlinear plant.

The linear ship dynamics are governed by added mass and added inertia terms, as

well as linear damping terms [37]. Hydrodynamic theory provides sufficiently accurate

methods for calculating the former. Plant stability, however, is governed by the latter, for

which no theory provides sufficiently accurate results. These terms must be determined

experimentally. Several experimental methods for determining these terms are outlined in

[37]. The drawback to these experimental methods is that they require expensive equipment

and labor in addition to a scale model to collect the necessary data. A method of determining

these terms using only the scale model is one of the focal points of this study.

4.1 Linear Ship Dynamic Equations

Ships operating at sea most often conduct maneuvers that lie within the linear regime. For

example, ships in normal operating conditions do not usually use very large rudder angles
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in turns. The most common rudder angles are often between 10-15'. This type of maneuver

lies well within the linear regime. During such maneuvers, forward speed loss and propeller

rotational speed loss are small. They do exist, but for the purposes of control system design,

they are sufficiently small such that they do not significantly effect the performance of the

controller. This implies that the surge equation, ii, and the propeller speed equation, h,

in Table 3.2 are uncoupled from the sway equation, ', and the yaw equation, -. Thus, the

identification process reduces to the determination of f2 and f3.

Table 3.2 shows that f2 and f3 each contain two terms which describe the hull damping

forces and the rudder forces. The rudder force model developed in 3.2.2.4 is based solely

upon wing theory and the kinematics of the problem. Thus, this force is assumed to be

accurately modeled and requires no identification. Therefore, the identification problem

reduces to determining the hull damping forces, Y and Nh. Abkowitz [37] suggests that

in the nonlinear case, these terms are adequately modeled with a third order Taylor se-

ries expansion. This expansion, however, contains a very large number of terms which is

intractable from a control system perspective. For linear maneuvers, however, the expan-

sion may be truncated after the first order terms. This truncation leads to the following

expressions for f2 and f3:

f2 = -Yvv - (m - Y,)r (4.1)

f3 = -Nv - (mxg - Nr)r (4.2)

Thus, for the case of linear maneuvers, the identification problem is reduced to the deter-

mination of the parameters -Y,, (m - Yr), -Nv, and (mxg - Nr). The negative sign on Y

and Nv was introduced to maintain the convention outlined in [49] that -Y should have a

large positive value.

4.2 Initial Identification

The 100/100 zig-zag maneuver proposed in [3] was used to determine the linear coefficients.

This type of maneuver lies well within the linear regime and also provides "persistence

of excitation". Reference [34] states that "An open-loop experiment is informative if the

input is persistently exciting." This effectively states that the system dynamics must be
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continually excited in order to get any information about the parameters. A steady turn,

for instance, would quickly reach a steady state and provide no more dynamic information

to update the filter. Thus, persistent excitation is crucial to successful identification.

Recall that the model generating the measurement data was taken from [43]. This model

was adapted from a form proposed by Inoue in [26]. The model is parametrically based on

full-scale data obtained from experiments performed over a range of operating conditions.

The model suffers, however, during a simulated zig-zag maneuver. The implementation of

the model in [43] suffers from a drift effect due to the rudder model. Figure 4-1 illustrates

this effect.

100/10 Zig-Zag Maneuver Simulation Using the Original Model
20

-- Actual

0

-20-

-40-

-60-

-80-

-100-

-120
0 500 1000 1500 2000 2500

X (yds)

Figure 4-1: 100/100 Zig-Zag Maneuver Using the Rudder Model in [43]

Initial attempts at identifying the coefficients using this model produced biased results.

Because no a priori information was available for the value of the unknown parameters, the

only way to determine success or failure of identification was through simulation. Figures

4-2 and 4-3 show the values obtained through identification and the resulting simulation.

4.2.1 Bias and Divergence in the Extended Kalman Filter

Divergence and bias in the Kalman Filter is well-documented in the open literature. Diver-

gence and bias, however, do not imply filter instability. The EKF possesses some guaranteed
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Figure 4-2: Parameter Estimates Using the Rudder Model from [43]
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Figure 4-3: Trajectory Simulation Using the Rudder Model from [43]
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stability properties under a few mild conditions [20]. Thus, the filter can exhibit "appar-

ent divergence" [12] and give incorrect (biased) parameter estimates. References [12] and

[44] propose that bias is caused primarily by errors in the filter model. This suggestion is

well-supported by [14] and [30]. Reference [22] provides numerical examples of the effects

erroneous models can have on the performance of the filter. Each of these suggest that

the model of the plant used in the filter must be sufficiently close to the actual plant to

guarantee reliable results.

The process noise covariance matrix, Q, used in the filter model is meant to account for

modeling errors. Thus, the choice of Q represents a critical filter design parameter. If the

process noise is chosen too small, the filter "learns" the wrong state values too well. This

means that the error covariance decays too rapidly and the filter ignores any additional

information contained in the measurements. Thus, the process noise may be said to "drive"

the filter and ensure that it does not place undue weighting on its own estimates. Increasing

the process noise, however, has a strong effect on the convergence of the filter. Thus, it can

not be chosen too high or the filter will not converge. In an effort to account for the bias,

identifications were attempted using a wide range of process noise values ranging from 0

and covering two orders of magnitude. Similar results were obtained in all cases.

Much work has gone into developing an analytical method for determining the process

noise covariance. Reference [46] proposed a method for handling noise covariances through

post-processing of data. References [18], [39], and [40] all propose methods for estimation

of the covariances in real-time. Friedland proposes another method for estimating the bias

terms in real-time in [14].

4.2.2 Treatment of the Biased Estimates

Favorable application results were demonstrated in each of the works cited above. Ap-

plication of these techniques to the ship maneuvering problem, however, has not been

demonstrated to the author's knowledge. The most favorable application of the SAEKF

technique to the ship maneuvering problem is summarized in [3], which is the culmination

of 10 years of research conducted at the Massachusetts Institute of Technology (MIT). The

details are outlined in the combined works of [6], [21], [24], [35], and [47]. It is evident in [24]

that bias was a problem as well, although it is not explicitly described. In that work, the

assumed form of the simulation model was significantly altered from the Taylor expansion
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form proposed in [2] and [37] to obtain favorable results.

This rationale has been adopted in this work as well. The drift illustrated in Figure 4-3

most likely results from numerical problems in the model from [43] due to its parametric

nature. The linear dynamics of ship maneuvering are well-documented and the assumed

form shown in equations 4.1 and 4.2 are not likely to be overly erroneous. For these reasons,

the rudder model used in [43] was replaced with the rudder model derived in 3.2.2.4. Any

further references to this model assume this modification has been made.

4.3 Identification of the Linear Damping Coefficients

4.3.1 Noise Parameters

The magnitude of the process noise covariance matrix, Q, and the sensor noise covariance

matrix, R, determine the weighting the filter applies to its own estimates and the measure-

ments, respectively. During the course of the study, the trade-off between the two became

evident. Given the sophistication of current digital modern measurement devices, the non-

dimensional measurement noise was chosen in all cases as R = 0.0111. When the process

noise is too small, the filter"trusts" its own estimates too much and, thus, gives a very low

weighting to the measurements (i.e. low gains). This introduces the bias discussed in 4.2.1.

Figures 4-4 and 4-5 illustrate this phenomenon.

The identification uses the nonlinear model from [43] to generate the data and the filter

employs the linear model described in 4.1. Figure 4-4 shows that the states are apparently

tracked quite closely. Note, however, that the filter never updates the surge speed, u. This

is caused by the fact that the absence of process noise implies perfect modeling of the plant

dynamics. Therefore, the filter has no reason to update its own propagated estimates (i.e.

low gains). The close tracking of the sway speed, v, and the yaw rate, r, indicate that the

nonlinear terms in these equations contribute very little during a linear maneuver. This

indicates that the dynamics are modeled with sufficient accuracy. Thus, the filter is justified

in trusting its own propagated estimates.

Figure 4-5 shows the parameter estimates during the identification. Note how each of

the parameters converges nicely to a constant value. This indicates that the error covariance

'This value is of the same order of magnitude as the non-dimensional forces, which is believed to be
conservative.
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Figure 4-4: State Estimates During a 10'/10' Zig-Zag Maneuver with Q=0
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has decayed to zero and the filter stops updating the estimates. Recall the expression for

the gains, Kk, from Table 2.1. This equation implies the following:

Kk -÷ 0 as Pk(-) -+ 0 i )= I k(-) (4.3)

The results in Figure 4-5 are misleading, however, since they exhibit apparent divergence

[12]. Figure 4-6 illustrates the results of the simulation after identification. The steady turn

is chosen as the simulation maneuver to illustrate the performance of the filter estimates in

a maneuver other than that used to identify the coefficients. Figure 4-6 shows that, while

Simulation After Identification with Q=0
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700 - -

600 - -
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Figure 4-6: Simulation of a 100 Rudder Steady Turn with Q=0

the filter does converge, the estimates produce an unstable plant.

If perfect modeling of the system dynamics were possible, and the estimates still proved

to be biased, the designer may introduce some "fake" noise into the system. This "fake"

noise would continue to drive the parameters once the state estimates have converged and

cause the filter to weight the measurements more heavily. This technique is outlined in [18]

and suggests that a value of 0.1% of the nominal parameter value is suitable for this purpose.

This approach fails, however, for two reasons. First, using a "nominal" parameter value

implies some a priori knowledge of the plant. In this case, as in most cases in the physical

world, this does not exist. Second, because the non-dimensional parameter values are small,
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once the state estimates have converged the weighting on the measurements will be very

small as well. Thus, the small weighting on the measurements tends to drive the filter very

slowly. Thus, it will not converge in any reasonable period of time. Figure 4-7 illustrates

the effect of the "fake" noise. Note how the parameters appear to be slowly decaying with

time. The slope is so gradual, however, that the filter will require an unacceptable amount

of time to converge (if it does at all).

Parameter Estimates with 0=0 and "Fake" Noise
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Figure 4-7: Parameter Estimates

Given the previous considerations, the appropriate noise parameters must consist of

some combination of process noise and "fake" noise such that the filter continues to utilize

the information contained in the measurements. The appropriate combination of these noise

parameters was chosen through an iterative process of identification and simulation. Large

process noise was required to effectively track the states. This large process noise, however,

caused rapid convergence to the true state values. Thus, "fake" noise was also required to

continue to drive the parameters to their true values. The combination of the two noise

parameters allowed the filter to update its dynamical model, as well as obtain information

from the measurements until a balance was achieved. The measurement noise was chosen

as described in 4.3.1. The final values of the noise parameters are listed in Table 4.1.
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Table 4.1: Identfication Noise Parameters

Process Noise Driving the State Estimates, Q 0.05
Fake Noise Driving the Parameter Estimates, FQ 0.01

Measurement Noise, R 0.01

4.3.2 Physical State Estimation

The identification process was again conducted using the 10'/10' zig-zag maneuver. The

filter model was linear with it = h = 0 and the measurement data was generated with the

full nonlinear model from [43]. The noise parameters were those listed in Table 4.1. The

results of the identification of the physical states are illustrated in Figure 4-8.

DDG-51 State Estimation During a 10 /10 Zig-Zag Maneuver
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Figure 4-8: State Estimates During a 100/100 Zig-Zag Maneuver

Figure 4-8 illustrates the filter's ability to track the physical states despite the inadequate

modeling of the dynamics of surge speed, u, and propeller revolutions, n. This is because

the process noise is large enough to account for the errors in the dynamic model. The

process noise in the system causes the filter to weight the measurements more heavily than

the estimates (i.e. large gains) due to the uncertainty in the dynamic model of the plant.

Because the measurement noise is considerably smaller than the process noise, and the

surge speed and propeller revolutions are measured quantities, the filter tracks them quite

48



well. The filter also does an excellent job of tracking the sway speed, v, and yaw rate, r.

This, again, is due to the fact that sway and yaw are measured quantities and the process

noise is high. Further, because the nonlinear effects are small in this type of maneuver, the

dynamic model for these two terms is quite accurate.

4.3.3 Parameter Identification

The four additional states in the filter represent the unknown parameters to be estimated.

Previous sections demonstrated the filter's ability to track the physical states closely, while

giving inaccurate (biased) parameter estimates due to modeling errors and erroneous as-

sumptions in the noise statistics. The iterative process of identification and simulation

produced the parameter estimates illustrated in Figure 4-9.

DDG-51 Estimated Hydrodynamic Coefficients During a 100/100 Zig-Zag Maneuver0.2 T I I
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Figure 4-9: Parameter Estimates During a 100/100 Zig-Zag Maneuver

With the exception of Y,, the parameter estimates exhibit variations about some value.

This could prove to be problematic if the goal of the identification were to establish exact

coefficient values. The goal of control system design is to develop controllers that perform

well with only an approximate knowledge of the coefficients. In fact, parameters that model

the state values within 40% of the actual values often leads to acceptable control system

performance. Fortunately, this goal is often achieved. Thus, to determine the coefficient

value to be used in the simulation, the mean value of the last 67% of the parameter estimates
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was taken to be the parameter value.

4.3.4 DDG-51 Simulation After Identification

The ultimate goal of an automatic maneuvering control system on a ship is to provide a

reliable method of maintaining a desired trajectory. Linear control system theory has been

proven to be quite reliable in designing control systems for plants in which nonlinearities are

weak. Control of an inverted pendulum represents an excellent example of this assertion 2

Because ship maneuvers normally lie within the linear regime, where nonlinear effects are

small, a control system design based upon a linear ship model could very likely perform quite

well. Figures 4-10 and 4-11 illustrate the simulation results using the identified parameter

values.
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Figure 4-10: Simulated States During a 100 Rudder Steady Turn

Figure 4-10 shows that the identified model tracks the actual nonlinear model quite

closely in sway and yaw. It does not, however, track surge and propeller revolutions at all.

This is because the simulation model ignores forward speed loss and propeller speed loss

(i.e. it = h = 0). This is a good assumption because the actual speed loss in the simulation

is about 20% and propeller speed loss is approximately 10%. These represent ideal errors

for the application of linear theory to a nonlinear physical system. The lack of speed loss
2 See example 2.1-1 in [33].
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Figure 4-11: Simulated Trajectory During a 100 Rudder Steady Turn

accounts for the higher values of sway and yaw. Higher speed in a turn implies a tighter

turn, and thus, higher values of sway and yaw.

Figure 4-11 shows the trajectory produced by the identified model. The error in the

turning diameter between the identified and actual models is approximately 15%. This

situation is ideal for the application of linear control theory to develop automatic controllers

for the ship. Note that the identified model has a tighter turning diameter than the actual

model. This was expected due to the higher values of sway and yaw shown in Figure 4-10.

The identified model maintains higher speed throughout the turn. Thus, it has a smaller

turning diameter.
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Chapter 5

Controller Design

The previous chapters focused on the identification of the linear damping terms in the

DDG-51 equations of motion. The identification process resulted in determination of the

hydrodynamic coefficients that produce the dominant forces and moments during linear

ship maneuvers. Thus, these terms may be employed to develop simple models which may

form the basis for simple course-keeping controllers.

The sequel describes the design of two controllers based upon simplified ship models.

The first controller is a heading autopilot. The second controller regulates the lateral

deviation (cross-track error) from the desired reference trajectory. The desired frequency

responses are developed using a loopshaping technique. The desired control laws are then

determined from the design loopshape. Simulations are then performed on the nonlinear

ship model using the linear controllers to evaluate their performance.

5.1 Controller Design via Loopshaping

Controller design via loopshaping is well-documented in many texts on feedback and optimal

control system design. More detailed versions of the following presentation are described in

[11], [33], and [53].

The overall goal of controller design via loopshaping is illustrated in Figure 5-1. The

Loop Gain should be designed such that the closed-loop plant exhibits robust performance

[11]. This means that the entire system (plant and controller) exhibit good performance

and tracking at low frequencies within the system bandwidth. The system must also be

robust to high-frequency disturbances such as sensor noise and unmodeled dynamics. The
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Figure 5-1: The Goal of Loopshaping

sequel describes how this process is accomplished by the control system engineer.

5.1.1 Feedback Control

Figure 5-2 represents a typical feedback control system with the plant disturbance input,

d, reflected to the plant output as in [33]. Reference [11] considers the feedback loop with

the disturbance reflected at the plant input. The derivation of [33], however, makes the

effect of the disturbance and desired properties of the loopshape a bit more clear. Thus, it

is primarily that derivation that will be presented here.

d

r v U y

C 10C) 
-- n

Figure 5-2: Typical Feedback Loop

The goal of a feedback control system is for the plant output, y, to asymptotically track

a desired reference output, r. The plant, P, however, is acted upon by disturbances, d,

which represent external disturbances and modeling errors. Further, the measurements of

the output are influenced by sensor noise, n. The goal of the controller, C, is to compute
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the control input, u, that regulates the output and maintains the desired reference value

despite the disturbances and measurement noise. Defining the tracking error, e, as follows,

e =- r - y (5.1)

examination of Figure 5-2 gives rise to the following expressions:

v= r - y - n

y PCv +d

(5.2)

(5.3)

5.1.2 System Sensitivity, Cosensitivity, and Loop Gain

To illustrate the ideas behind loopshaping theory, one requires expressions for the closed-

loop transfer function relations of the desired outputs, y and e, to the deterministic and

stochastic inputs, r, d, and n respectively. Substituting equation 5.2 into equation 5.3

results in the following expression for y

y = PC(r - y - n) + d

(I + PC)y = PC(r - n) +d

y =(I + PC)1 PC(r - n) + (I + PC)-d

y = PC(I + PC)--1 (r - n) + (I + PC)-d

(5.4)

(5.5)

(5.6)

(5.7)

where the final operation is justified because PC is square and invertible [33]. The expression

for the error, e, may be derived in a similar manner.

e = r - PCv - d

e = r - PC(r - y - n) - d

e = r - d - PC(e - n)

(I + PC)e = r - d + PCn

e = (I+ PC) (r - d)

e = (I + PC)~1(r - d)

+ (I + PC)1 PCn

+ PC(I + PC)-ln

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

Equations 5.14, 5.15, and 5.16 define the system sensitivity, S, cosensitivity, T, and loop
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gain, L, respectively.

S = (I + PC)- 1  (5.14)

T = PC(I + PC)- 1  (5.15)

L=PC (5.16)

Notice that S+T = I. Thus, S and T may not both be made arbitrarily large. Substituting

equations 5.14 and 5.15 into equations 5.7 and 5.13 results in the following expressions for

the output, y, and the tracking error, e:

y = T(r - n) + Sd (5.17)

e = S(r - d) + Tn (5.18)

System disturbances are low-frequency phenomena such as wind and wave forces exerted

on the ship hull. Examples of high-frequency phenomena are sensor noise and structural

vibrational modes. The goal of the controller is to respond to low-frequency disturbances

within the bandwidth of the system and attenuate disturbances outside the system band-

width where its behavior is not as well-known. For example, the controller should respond to

wave disturbances to maintain the desired output, but should not respond to high-frequency

structural vibrational modes whose dynamics were neglected in the system model.

At low frequencies, equations 5.17 and 5.18 may be expressed as follows:

y Tr + Sd (5.19)

e S(r - d) (5.20)

At high frequencies the same equations may be represented as follows:

y ~-Tn (5.21)

e Tn (5.22)

because the reference signal is typically a constant or at least slowly-varying. Thus, the

system sensitivity, S, should be small at low frequencies where the disturbances, d, are sig-

nificant to ensure small tracking errors. Additionally, if S is small, T ~~ 1 at low frequencies
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(because S + T = 1) such that y ~ r. Conversely, the system cosensitivity, T, should be

small at high frequencies where sensor noise and other high-frequency phenomena are sig-

nificant. If these conditions are satisfied, the controller will exhibit robust performance [11].

This implies that the controller provides good tracking of reference inputs (performance)

while simultaneously rejecting high-frequency signals where the plant model is not so well

understood (robustness).

5.1.3 Performance Specifications

Frequency-dependent weighting functions are required to establish the low and high fre-

quency performance bounds shown in Figure 5-1. These functions establish the minimum

and maximum open-loop system gains over all frequencies. Thus, one weighting function

should be large (i.e. large positive gains) at low frequencies to ensure good performance.

The other weighting function should be small (i.e. negative gains) at high frequencies to

ensure robustness.

Determination of these weighting functions, coupled with design of the loop gain, L,

then allows development of frequency-domain performance specifications. The idea behind

performance specifications may be illustrated on a Nyquist plot [11] as in Figure 5-3. For

-1
S (1+L)

T = L(1+L)

WV1 Real Axis

-1 L

W2

Figure 5-3: Nyquist Plot of Performance Specifications
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good tracking, the loci of L must lie outside the disk of radius W1 over all frequencies. To

ensure robustness in the face of multiplicative plant uncertainties, the disk of radius W2

must not pass through the point -1 + Oj over all frequencies.

The goal of the controller is robust performance which implies good tracking and distur-

bance rejection at low frequencies and attenuation of high-frequency signals such as sensor

noise and modeling errors. Recall that the system sensitivity function, S, should be small

at low frequencies to provide good performance and the system cosensitivity function, T,

should be small at high frequencies to provide robustness. Considering Figure 5-3 and the

definitions of the quantities derived previously, it can be shown [11] that the frequency-

domain performance specification that ensures robust performance is given by the following

expression:

IWISi + W2TJ < 1 V w (5.23)
00

5.1.4 Design Criteria

The length between perpendiculars (LBP) for the DDG-51 class ships is 466 feet. The main

low-frequency phenomena in the open sea that influence the ship motions consist of waves

and current. Currents are most often constant or at least very slowly varying. Thus, waves

represent the phenomena that regularly contain a frequency component.

The frequency of open-ocean gravity waves is related to their characteristic wavelength.

The motion of the ship is also related to this wavelength. According to [49], the closed-

loop system should respond to wavelengths of the same order as the ship LBP. Thus, the

closed-loop system should respond to all wave disturbances of length 400 feet or greater.

This corresponds to a characteristic circular frequency of 0.7 radians/second (Period ~ 9

seconds). To allow for some flexibility in the loopshaping, the design crossover frequency,

wc, should lie in the range between 0.5 - 1.5 radians/sec.

Currents tend to "blow" the ship off course in the same way that wind blows an airplane

off its intended course. If this disturbance is not accounted for, the ship would move far from

its intended track. Thus, the ship must adjust its heading angle such that it accounts for the

drift effect due to the current. Because currents are very low frequency disturbances, the

closed-loop system must track them very accurately. Thus, the closed-loop system should

track disturbances with an error, #, less than 1% at frequencies below 0.01 radians/sec.
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This corresponds to open-loop system gains of at least 40 dB below 0.01 radians/sec. Thus,

the open-loop system gains should lie above the low-frequency performance bounds and

below the high-frequency performance bounds illustrated in Figure 5-1 while achieving a

reasonable closed-loop step response. The ultimate test of any controller design is how it

operates on the actual rather than the nominal plant. The reasons for not specifying time

domain performance criteria will be addressed in the sequel.

5.2 Autopilot Design

The goal of a ship autopilot is to maintain the ship's actual heading around some slowly-

varying reference heading. The autopilot must perform this function in the presence of

disturbances, sensor noise, and modeling errors described in 5.1. The design speed for all

simulations is 22 knots. This corresponds to the maximum ship speed in a plant config-

uration with two of the four main engines on-line, one driving each shaft (split plant).

Non-dimensionalization of the equations, however, allows this speed to be adjusted without

affecting the results. The split plant configuration is required, however, to validate the

assumption in Chapter 3 that the steady-state forces and moments due to the propeller

cancel.

5.2.1 Dynamic Model

Low frequency ship motions may be described by a first-order model attributed to Nomoto

[13]. This model may be represented as follows:

T- + = K6 (5.24)

where 4 represents the ship heading angle and 6 represents the rudder angle. Note that

the sway dynamics have been removed from the equation of motion. T and K represent

the ship time constant and gain, respectively. These terms may be determined from the

hydrodynamic coefficients identified in Chapter 4 using the procedures outlined in section

58



5.3.2 of [13]. This leads to the following values for T and K:

T = 1.9287 (5.25)

K = 2.04 (5.26)

Thus, the plant transfer function, P,1 from input, 6, to output, 0, appears in equation 5.27

and represents the change in heading angle to a change in the rudder angle.

PO V - K (5.27)
= s(Ts + 1)

The ship's rudder contains its own dynamics. For instance, the rudder does not in-

stantaneously change its angle when commanded by the helmsman. According to [24], the

rudder dynamics do not play a major role in the identification process because they are

much faster than the ship dynamics. For control purposes, however, the rudder dynam-

ics do play a role. Classification restrictions prevent the disclosure of the actual DDG-51

rudder swing rate. Thus, it was assumed in this work that the rudder dynamics could be

modeled by the following transfer function, Psg, that maps the commanded rudder angle to

the actual rudder angle:

P J 6
Psg - s+6 (5.28)

Thus, the new plant, P, may be represented as follows:

P = PoiPsg (5.29)

This new plant, P, corresponds to the plant block in Figure 5-2. To guard against unrea-

sonably large rudder angle commands during maneuvers, a rudder command angle limiter

was added to the model as well. This limits the maximum allowable commanded rudder

angle during maneuvers to 300. This guards against the actual rudder angle approaching

the physical stops on the actual ship. The goal now is to design the controller, C, using

loopshaping to achieve robust performance.
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5.2.2 Loopshaping Controller Design

In some instances, it is possible to shape the loop gain, L, to obtain the desired frequency

response. The controller may then be determined as follows:

C = (5.30)
P

In other cases, the controller must be designed directly to obtain the desired response. The

autopilot design followed the former procedure. The open-loop plant, P, is straight-line

stable [37] as are many ships. Thus, the controller is not required to stabilize the plant.

To give this a physical representation, imagine the ship without any control encounters

a current. The current will cause an initial yaw rate, but the large wetted surface area in

the stern will develop forces and moments that counteract the initial rate of yaw. Thus, the

yaw rate will decay back to zero after a finite period. Because the heading angle is simply

integral of the yaw rate, or

4 = r (5.31)

the ship will turn to a heading that faces the current and stay on that heading when r = 0.

Thus, the goal of the autopilot must be to ensure that the ship continues on its desired

heading despite the current.

Thus, the loop gain for the autopilot design may be modeled simply as a second-order

system with an integrator whose transfer function may be represented as follows:

L=PC= (5.32)
s(s 2 + 2(wn + n2)

Wn = 0/-0 (5.33)

(= 2 (5.34)

Figure 5-4 illustrates the results of the loopshaping design. The loopshape has gains of

at least 40 dB at frequencies below 0.01 radians/sec. It lies above the low-frequency per-

formance bound indicated by W1. This indicates good tracking and disturbance rejection

at low frequencies. The loop gains roll off at high frequencies indicating good attenua-

tion of high-frequency signals and unmodeled fast dynamics. They further lie below the
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Loopshape for Autopilot Design
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Figure 5-4: Loopshape for Autopilot Design

high-frequency performance bound indicated by W2. The design also satisfies the robust

performance requirement given by equation 5.23.

An indication of overall plant stability may be obtained from the Bode plot. Figure 5-5

indicates a gain margin of approximately 30 dB and a phase margin of approximately 64'.

Reference [49] indicates that a good rule of thumb for gain and phase margins are 3 dB and

300, respectively. Thus, the autopilot design falls well within the acceptable range.

Gain and Phase Margins for Autopilot Loopshape

Gm=29.823 dB (at 7.746 rad/sec), Pm=64.406 dog. (at 0.91463 rad/sec)
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The frequency response of a controller is not its only measure of suitability to the task.

The designer must also check the time domain response to ensure adequate closed-loop

performance. Reference [36] indicates that acceptable performance for an autopilot is met

by the following conditions:

1. No more than 5% overshoot to a step input.

2. 2% settling time less than 5 ship lengths at design speed.

Figure 5-6 indicates that the autopilot design meets these criteria. Additionally, the tracking

error at steady-state is less than 1% as dictated by the frequency response.

Closed-Loop Step Response for Autopilot
From: U(1)

1.4 11

12 -Overshoot = 5%

1 Tracking Error < 1%

() 0.8-0 2% Settling Time = 4

E )
0.6 -

0.4

0.2 -

0

5 510 15 20

Ship Lengths at Design Speed

Figure 5-6: Closed-Loop Autopilot Step Response

5.2.3 Closed-Loop Simulations of the Autopilot Design

The true test of a linear controller is how well it performs in conjunction with the nonlinear

plant from which it was derived. Incorrect assumptions on the level of uncertainty in the

model may lead to poor performance if the unmodeled dynamics have a strong effect on the

plant. In this case, this would arise if the nonlinearities in the equations of motion have a

strong impact on the dynamics. These nonlinearities are believed to be weak in the ship

maneuvering problem, however, as described in Chapter 4. This proved to be true in this

study as well.
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To validate the controller performance, two different simulations were developed. The

first is a simulation of the controller's ability to reject a constant current disturbance equal

to 5 knots. For the second simulation, a maneuver was generated by computing the required

instantaneous heading angle required for the ship to begin on a steady course and speed

and execute a 900 left turn and steady up on the new heading. After a period of steady

operation, the ship then executes a 90' right turn and steadies up on its new heading.

5.2.3.1 Current Rejection Simulation

Figure 5-7 illustrates the ship's actual trajectory in relation to the dead-reckoned trajectory

in the absence of any disturbance. The current in this case must be simulated as an initial

condition on the ship's sway velocity, v, due to the fact that the dynamics of position, y,

were neglected. The figure shows that the ship gets "blown" approximately 1/3 of a ship

Autopilot Simulation with Nonlinear Plant Model
150

- Actual Trajectory
- Commanded Trajectory

100-

Current = 5 knots

50-

0 - -- - --- - --- ----------- - - - -- -- -.- --- -- -- -- --.- - --- -

Error Approx 0.3 Ship Lengths

-50 --

-100-

-150'
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Figure 5-7: Nonlinear Plant Trajectory During Current Rejection

length off its initial track as a result of the current disturbance. It does, however, return

to its commanded heading angle 1. Thus, the controller takes the required action to return

the ship to its intended heading.

'It should be noted that the standard compass rose has been rotated 900 in each of the simulations to
follow. Thus, a heading of 000 in the figures corresponds to a heading of 090 on a standard compass rose.
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Figure 5-8 illustrates the change in ship heading. The ship is initially turned to the

right due to the side forces and moments generated by the current interaction with the ship

hull. The controller detects the difference between the actual and commanded headings via

noisy measurements and generates commands to the rudder to turn the ship to the left and

return it to its intended heading. The heading angle in the figure appears to be zero. This

is not actually the case, however. The ship actually develops a constant sway velocity that

results in a side-slip angle. Thus, while the figure shows the ship's actual heading equal to

zero, the ship is actually turned at a small angle into the oncoming current to account for

it. Simulations that show the actual heading angle appear in the following section where

the dynamics of y are included in the simulation.

Autopilot Simulation with Nonlinear Plant Model
2 1 1

Current = 5 knots Actual Heading
Commanded Heading

77 -1

CO
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-4-

I I I I I

0 50 100 150 200 250 300 350 400
time (sec)

Figure 5-8: Nonlinear Plant Heading Change During Current Rejection
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Figure 5-9 demonstrates the commanded and actual rudder angles during the current

rejection simulation. The commanded rudder angles may seem excessive at first glance.

The figure shows, however, that during the maneuver, inclusion of the rudder dynamics in

the equations of motion rejects these high-frequency oscillations. Thus, the actual rudder

motion is smooth during the correction. After reaching steady-state, the rudder does exhibit

some high-frequency oscillatory motion. The amplitude of these oscillations, however, is less

than 0.10 over periods of several seconds. This is not deemed to be a severe condition that

would tend to cause excessive wear on the mechanical components.

4

2

0

Autopilot Simulation with Nonlinear Plant Model

- Actual Rudder Angle
Commanded Rudder Angle

J 
II

Oscillations <0.1* over
periods of seconds

k I 1

0 50 100 150 200
time (sec)

250 300 350 400

Figure 5-9: Actual and Commanded Rudder Angle During Current Rejection

The reason for these high-frequency oscillations in the commanded rudder angle is illus-

trated in Figure 5-10. Recall that the goal of loopshaping controller design is to ensure that

the closed-loop combination of the plant and controller attenuate high-frequency signals.

Because the plant has very small gains at high frequencies, the controller is free to have

rather large gains at these frequencies. Thus, because the input to the controller is the

noisy, high-frequency measurement of the heading angle, the controller responds in kind.

The controller gain at the measurement frequency is approximately 8 dB. Thus, the con-

troller actually amplifies the measurement noise. The plant gain, however, at the same

frequency is approximately -33 dB. Thus, the effect of the noise on the entire closed-loop
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Singular Values of the Controller and Plant
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Figure 5-10: Plant and Controller Open-Loop Gains

system is attenuated.

5.2.3.2 Track-Changing Maneuver

Figure 5-11 shows the dead-reckoned and actual trajectories of the ship during a track-

changing maneuver. The actual nonlinear plant includes the effect of forward speed loss

due to maneuvers. Thus, because the ship loses speed during the turn and experiences

sway motion, it is not capable of completing the tight turn based solely upon kinematic

relations. Further, the goal of the autopilot is only to maintain the desired heading rather

than to regulate the cross-track error. A regulator of this type is described in the following

section. The track error is approximately three ship lengths following the initial turn. This

is reduced, however, during the second leg of the maneuver due to the sway velocity. The

sway velocity in the second leg is opposite that of the initial leg. Thus, the ship actually

moves back toward its dead-reckoned track on the second leg of the maneuver.

Figure 5-12 shows the actual and commanded heading angle during the track-changing

maneuver. The errors in tracking the ramp input account for the cross-track errors in the

trajectory. The tracking error in steady-state, however, is again less than 1%.
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Figure 5-11: Nonlinear Plant Track-Changing Maneuver with Autopilot
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Figure 5-13 shows the commanded and actual rudder angles during the track-changing

maneuver. Again, the rudder motion is quite smooth during the major portions of the

maneuver and is not affected by the high-frequency controller commands. Further, notice

that the rudder sweep during the maneuver is approximately 200 over a period of about

three minutes. Thus, the controller produces a slow, smooth rudder motion for the duration

of the maneuver. The steady-state oscillations are again small and not deemed to cause

excessive mechanical wear.

Autopilot Simulation with Nonlinear Plant

0 200 400 600 800 1000 1200 1400
time (sec)

Figure 5-13: Actual and Commanded Rudder Angle During Track-Changing Maneuver
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5.3 Cross-Track Error Controller Design

The goal of the cross-track error controller is to regulate the ship's lateral deviation from

its intended track. The previous section demonstrated that an autopilot is not sufficient for

this purpose. The controller must meet all criteria previously stated.

5.3.1 Dynamic Model

To begin the design of the cross-track error controller, the coordinate system was shifted.

In the new coordinate system, the x-coordinate represents the distance traveled along the

reference trajectory and the y-coordinate represents the lateral deviation from the intended

track. The heading angle now represents the deviation from the desired heading angle along

the intended track. The new coordinate system is illustrated in Figure 5-14. The kinematic

x

Y

Figure 5-14: New Coordinate System for Track Controller

relations governing ship motions in this new coordinate system is given by the following

equations:

= ucosV) - vsin5 (5.35)

= usinV) + vcosV) (5.36)
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Linearizing and non-dimensionalizing these equations leads to equation 5.37.

y = V) (5.37)

where the dynamics of sway have again been removed as in 5.2.1. The dynamics of x have

also been removed since it is not a control variable. Thus, differentiating equation 5.37

and inserting the result in equation 5.31 leads to the following expression for the control

variable, y:

S= r (5.38)

Thus, using SISO loopshaping control design theory, the track controller may be designed by

simply adding an integrator to the plant transfer function given by equation 5.29. Thus, the

new plant transfer function that maps the control input, 6, to the lateral track deviation,

y, becomes:

PY = - (5.39)
S

5.3.2 Loopshaping Controller Design

Plants with double integrators can be problematic for the control systems engineer due to

the phase shift introduced by the two poles at the origin. The two poles introduce a 180'

phase shift in the plant at DC. Thus, because the dynamics of yaw rate, r, behave as a

second-order system, the phase decreases as frequency increases because the plant has slow

poles.

The slope of the loopshape curve as it passes through the crossover frequency (where

the magnitude is one) must satisfy the condition given by equation 5.40.

dL 1
<- around w = w, (5.40)
-w w2

The phase associated with this condition is -180'. System stability requires that the phase

be greater than this when the magnitude is one. Thus, the closed-loop system will be

unstable if this condition is not met. Thus, the simple loopshaping design described in 5.2.2

may not be employed. In this instance, the controller must have some zeros to add the
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required phase around the crossover frequency. Thus, the controller design must proceed

by direct design of the controller, C 2, computation of S and T, and verification of the

desired frequency response of the loop gain, L = PyC. Thus, the general controller transfer

function to start the design may be defined as follows:

0 -k(s + zi)(s + z2) .. .(SZ) (5.41)
(s + PI) (S + P2) ... (S + Pn)

where n may be as many poles and zeros as required to achieve a desirable loopshape,

subject to the requirement that the transfer function remain proper (degree of numerator <

degree of denominator) [11]. The final controller design may be described by the following

transfer function:

20(s + 0.5) 2 (s + 6)(s + 1000)
(s + 11)(s + 15)(s + 30) 2

Figure 5-15 illustrates the loopshape for the cross-track error controller design. The

design proceeded iteratively by adding zeros and poles in the controller to achieve the

desired frequency response properties. Figure 5-16 additionally shows the gain and phase

Loopshape for Track Controller Design
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Figure 5-15: Loopshape for Cross-Track Error Controller Design

2 Zeros and poles may be easily added and modified using the zpk function available in MATLAB.
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margins associated with the design. Again, the margins fall well within the range of accepted

practice. Notice in the phase plot of the Bode diagram how the controller adds phase to

the system at frequencies below the crossover frequency, thus stabilizing the plant.

Bode Diagrams

Gm=21.574 dB (at 7.2766 rad/sec), Pm=50.99 deg. (at 0.95135 rad/sec)
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Figure 5-16: Gain and Phase Margins for Cross-Track Error Controller Design
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Figure 5-17 illustrates the system closed-loop step response. The overshoot and settling

time in this case may seem excessive when compared to conventional design practice. Com-

pare, however, Figures 5-17 and 5-6, and consider equation 5.37. It would be extremely

difficult, if not impossible, to command the dynamics of y to be faster than the dynamics

of / because y depends solely upon V). Thus, its dynamics must be inherently slower. This

physical fact is confirmed by the step response plot. Closed-loop simulation will subse-

quently show, however, that this controller performs extremely well on the nonlinear plant

with smooth maneuvering trajectory commands.

Closed-Loop Step Response for Cross-Track Error Controller

Overshoot = 25%
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Tracking Error < 1%
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Figure 5-17: Cross-Track Error Controller Closed-Loop Step Response
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5.3.3 Closed-Loop Simulation of the Cross-Track Error Controller

By shifting the coordinate system to the one shown in Figure 5-14, the two simulations

performed in 5.2.3 may be combined into one simulation. The simulation speed is again 22

knots as in the previous simulations. The simulation steps are as follows:

1. The ship begins on a steady course and speed with no current.

2. After a short time, the ship experiences a current gust of 5 knots directly on its port

beam.

3. Shortly thereafter, the ship makes a left turn, moves two ship lengths to port and

steadies up.

4. After a period of steady travel, the ship executes a right turn and returns to its original

track.

5.3.3.1 Maneuvering Simulation in Calm Seas with Current

Figure 5-18 shows the desired and actual trajectories as well as the heading angle during the

maneuver. At the beginning of the maneuver, the controller takes strong action to reject

ca

Tracker Simulation with Nonlinear Plant Model
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Figure 5-18: Trajectory and Heading during Nonlinear Plant Simulation

the current disturbance. It overshoots the desired track slightly upon its return and begins
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to compensate. The left turn then executes and the ship follows the desired track with very

small error until it steadies up. Notice that during the steady parts of the maneuver, the

ship maintains a constant heading offset to counteract the current.

Figure 5-19 shows the commanded and actual rudder angle during the maneuver. The

controller is again seen to respond significantly to the sensor noise for the same reason listed

in 5.2.3.1. The most noteworthy item in this figure, however, is the way the controller senses

Tracker Simulation with Nonlinear Plant Model
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Figure 5-19: Actual and Commanded Rudder Angle During Nonlinear Plant Simulation

the current and uses it to execute the right turn to return to its original track. Note how

the ship's heading decreases slightly below its offset, but does not pass through zero. Thus,

the controller uses the current to allow the ship to be "blown" back onto its desired track.

Some may note that the ship requires a great deal of time (approximately 8 minutes) to

complete the turning maneuvers. This may or may not be desirable. Smooth trajectories are

required, however, to prevent the controller from over-compensating during the overshoot

phase. This application could be extremely valuable, however, in maneuvers to avoid other

vessels. For example, modern radar is capable of identifying contacts well before (longer

than 8 minutes) their closest point of approach (CPA) time. Maneuvers to avoid other

vessels are currently calculated by watchstanders using vector diagrams. Thus, a digital

computer could calculate the CPA, compute a suitable track to avoid the contact by some

75



threshold distance, and then compute a smooth trajectory to maneuver to the new track,

observe CPA, and maneuver back to the intended track.

5.3.3.2 Maneuver in Sea State 4 with 5-Knot Current

The simulation would not be complete without verifying the controller's performance in a

sea state. The sea state is modeled as a random disturbance and filtered to preserve only the

low-frequency components. Table 6 of [38] indicates that a state four sea has a significant

wave height of 1.25-2.5 meters (4 - 8 feet). Additionally, Table 3 of [38] indicates that waves

of this height represent sea conditions with the highest probability of occurrence worldwide.

Thus, sea state four was chosen for simulation. Figure 5-20 shows the wave spectrum and

Figure 5-21 shows the time history of the wave heights.
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Figure 5-20: Power Spectrum of Wave Model
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The same maneuver described in 5.3.3 is performed with the current and sea state

introduced as disturbances. Figure 5-22 shows the actual and commanded trajectories as

well as the heading angle during the maneuver. Notice that, similar to the maneuver in

calm seas, the controller maintains a constant heading offset to counteract the effects of the

current. The low-frequency wave disturbances, however, cause the ship to deviate from its

commanded track. Thus, the ship oscillates a small amount about its commanded track.

The amplitude of the oscillations, however, is less than 20 yards (about 15% of the ship

length).
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Figure 5-22: Trajectory and Heading During Track Change
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Figure 5-23 shows the commanded and actual rudder angles during the maneuver. Care-

ful examination of Figure 5-23 indicates a low-frequency signal among the high-frequency

measurements driving the controller. It is this low-frequency command signal that allows

the ship to remain on track despite the disturbances.
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This low-frequency component may be seen more clearly in Figure 5-24. This figure

shows the time history during the steady portion of the maneuver between the two turns.

Notice how the rudder corrective actions exhibit a period similar to that of the ship devia-

tions about its intended track. In particular, the figure shows the rudder's large corrective

action applied at the point about 1400 seconds into the simulation. This is the point where

the ship exhibits its largest track deviation due to overshoot at the end of the turn. The

controller senses this, however, and takes the appropriate action.
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Chapter 6

Conclusion

6.1 Summary

This work gives rise to a systematic method for adding automatic maneuvering control

system design to the macroscopic ship design process. The procedure may be summarized

as follows:

1. Build a scale model of the ship.

2. Outfit the model with sensors.

3. Conduct a series of controlled maneuvers with the model to gather data.

4. Design a SAEKF and use the data collected from the model to identify the ship

hydrodynamic coefficients.

5. Use the identified coefficients to develop controllers.

6. Test the controller designs on the scale model.

This work accomplishes a piece of this process by identifying the linear damping derivatives

and developing control laws based upon them. Specifically, this work accomplished the

following objectives:

" Selection of an assumed form of the equations of ship motion in the horizontal plane.

" Design of a SAEKF to identify the linear damping hydrodynamic coefficients within these

equations.

9 Successful identification of these coefficients which are the most critical to overall ship
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maneuvering stability in the horizontal plane.

e Design of two simple controllers that may be tested on scale ship models to determine

their performance.

The current method of identifying these terms involves large towing tanks and rotating

arm basins. It also requires extensive labor to operate the equipment. These requirements

are in addition to the need for a scale model of the ship. Thus, development of the ideas

introduced in [3] and [43] and continued here may not only lead to an efficient, effective

process for adding maneuvering automation to the ship design process, it may also reduce

the infrastructure required to support it.

6.2 Conclusions

The following list summarizes the items deemed most noteworthy by the author over the

course of this study.

1. The EKF method shows definite feasibility as a method to determine linear ship

hydrodynamic coefficients. These parameters may then form the basis for simple

controller designs that can be tested on scale models.

2. The parameter estimates provided by the SAEKF need not be very accurate to pro-

vide values suitable for controller design. The parameters determined in this study

reproduced simulation trajectories with approximately 15% error in steady turning

diameter. Errors as large as 40%, however, may very likely yield acceptable controller

designs for slow maneuvers.

3. The dynamics of sway need not be considered to develop effective linear controllers

for the types of maneuvers considered in this study. Thus, controller designs for these

types of maneuvers may be based on only two parameters.

4. The EKF performs extremely well as a state estimator (due to the physical state

measurements) despite significant inaccuracies in the filter dynamic model. Specifi-

cally, the SAEKF model used in this study was completely linear, but still produced

very accurate estimates of the physical states (U, v, r, and n) of the nonlinear plant

model used to generate the measurement data. The dynamics of u and n, in fact,

were completely ignored in propagating the filter state estimates.
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5. The performance of the SAEKF as a parameter estimator, however, will degrade if the

filter model is not sufficiently accurate in describing the actual plant. The modeling

errors will cause significant bias in the parameter estimates.

6. The instantaneous rudder angle of attack decreases rapidly with respect to the nominal

angle of attack as sway speed and yaw rate increase. Thus, the linear lift coefficient

assumption proved to be valid in the maneuvers conducted in this study despite the

use of rudder angles traditionally believed to lie outside the linear regime.

6.3 Recommendations for Further Study

As in any other design study, this work leaves several areas that require further thought and

development. Among these, the most important in the author's mind may be summarized

as follows:

1. This work considers performing the identification in calm water. Environmental dis-

turbances such as wind and waves could have a significant effect on the identification

process. The magnitude of these effects should be investigated.

2. Rolling motions have an effect on maneuvering in the horizontal plane. Thus, the

inclusion of rolling motions in the nonlinear model could have an effect on the linear

controller performance. The magnitude of these effects should be investigated.

3. Despite the identification of four terms in this study, these four terms were reduced to

two to develop the controllers. Identification of only these two terms using an SAEKF

may be possible. This could make the implementation of the SAEKF much simpler.

4. The EKF provided very accurate estimates of the surge speed and propeller rotational

speed despite the fact that its model completely ignored their dynamics. These quan-

tities are easily measured by the speed log and a shaft tachometer. Thus, perhaps the

EKF could be used to provide state estimates for a MIMO controller to control the

ship's x-coordinate as well as its y-coordinate.

5. The proper noise covariance terms are an important design parameter in any Kalman

filter implementation. This study determined the correct noise covariances through an

iterative procedure of identification and simulation. Inclusion of the noise covariances
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as filter parameters to be estimated may reduce the iterative nature of this process

and lead to a more efficient design process.

6. Implement the method outlined herein on the DDG-51 scale model developed at the

MIT Towing Tank.

7. Investigate the range over which the assumption of linearized lift on rudders is valid

by accounting for the ship dynamics in computing the instantaneous angle of attack.
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Appendix A

State Augmentation of the

Extended Kalman Filter

The derivations presented in section 2.2 hold for estimation of the state vector describ-

ing a nonlinear system. Augmentation of the state vector for use in estimating unknown

parameters is the subject of the sequel.

Recall equations 2.10 and 2.19 in 2.2.2 and 2.2.3, respectively. The variable i represents

the estimate of the states describing the physical system. Therefore, the estimated state

vector can be augmented with the unknown parameters in the system to allow them to be

estimated along with the system states. In the case of DDG-51, the unkown parameters are

constant hydrodynamic maneuvering coefficients. Maneuvering coefficients may change with

changes in submerged geometry, speed, etc. Nondimensionalization of the equations removes

speed considerations and submerged geometry certainly changes slowly with time. DDG-

51's compensated fuel system, however, ensures that the ship maintains nearly constant

draft over its entire range of operation. Therefore, the state vector is augmented with

the unknown system parameters whose derivatives are zero. For example, to estimate an

unknown parameter, b, in a system fully described by states x, and X2, the state vector and
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associated F matrix would be augmented as follows:

[2] = f2(Xi, X2, 0 t) (A.1)

L> 0

af fO f a1
sri 0X2 '93

F = af2 f2 f2 (A.2)

0 0 0

Using this methodology, an initial estimate is made for the unknown parameters in the

augmented state vector and the associated error in the estimate. The parameters are then

estimated in exactly the same manner as the state vector. Once the state vector has been

augmented with the unknown parameters, and the F matrix modified appropriately, the

EKF becomes the SAEKF. The following section presents an example application of the

SAEKF.
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A.1 Application of the State Augmented Extended Kalman

Filter to a Nonlinear Tracking Problem

The Extended Kalman Filter has proven to be extremely effective for tracking applica-

tions (such as tracking an object with a radar). The radar provides position information

for the object, but no velocity information. Effective tracking, however, requires velocity

information to fully describe the state of the system.

Assume for simplicity that an object falls through space directly toward a tracking radar

as illustrated in Figure A-I (i.e. a one-dimensional tracking problem)1 . Assume further that

the system has an unknown parameter (the ballistic coefficient, b) which affects the drag

force on the object as it falls through space. The goal is to estimate the velocity of the

object, v, and the unknown parameter, b, with only noisy measurements of its position, x,

available as actual data. The nonlinearity arises through the dependence of drag on the

square of the object's velocity and the ballistic coefficient (d(b) oc v 2 ).

id

Falling Body

X

g

X1 = X

x2 = x =v
x3=b

Radar

Figure A-1: A One-Dimensional Nonlinear Tracking Problem

'This example is taken from example 6.1-2 in [19].
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Figure A-2 illustrates the results. The upper plot shows the filter's ability to very

accurately estimate the object's velocity as it falls through the atmosphere. The lower plot

illustrates the filter's ability to converge on the true value of the ballistic coefficient using the

measurements and computed gains. The filter does not change much initially because the

object experiences very little drag high in the atmosphere. As the object enters the dense

atmosphere the filter converges to the true value and remains there. Thus, one concludes

that the filter has difficulty identifying the parameter value if it does not significantly affect

the dynamics.
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Figure A-2: EKF Application
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