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Abstract

The physics of free-surface turbulence (FST) is essential to many applications such as air-sea
interactions, ship hydrodynamics, and industrial processes involving multi-phase flows. In
order to obtain a comprehensive understanding of free-surface turbulent flows and to estab-
lish the physical basis for the turbulence modeling, we perform a simulation-based study for
a turbulent shear flow beneath a free surface at low Froude numbers. The Navier-Stokes
equations subject to viscous free-surface boundary conditions are solved numerically using a
finite-difference scheme. From an ensemble of such simulations, we obtain substantial under-
standing of low Froude number FST in terms of surface-layer structure, coherent turbulent
vortices, near-surface transport processes, and subgrid-scale modeling.

To elucidate the fundamental dynamics of FST, we identify conceptually and numerically
a multi-layer structure adjacent to the surface. The surface inner layer is caused by the
tangential free-surface dynamic boundary conditions, and the surface outer layer is due to the
kinematic boundary condition. Examination of the effects of these layers on the turbulence
statistics of length scales, Reynolds-stress balance, and enstrophy dynamics shows clearly
the different turbulence mechanisms operating in the respective near-surface scales.

In order to quantify the surface layers and to establish the physical foundation for FST
parameterization, we develop a similarity theory for the momentum diffusion process. The
theoretical predictions on the shape and time-scaling behavior of the mean flow, as well as
the scaling relations for the thickness of surface layers, are confirmed by numerical results.
The similarity theory is then extended for the case of passive scalar and also compares well
with our direct simulations of scalar mixing.

In order to illustrate the underlying mechanism for the persistent surface signatures and
to identify key transport processes in FST, we study FST coherent vortical structures in
detail. The mechanisms for the connection of hairpin vortices to the free surface and the
evolution of surface-connected vortices are shown. We also characterize and quantify the
contributions of coherent vortical structures to the scalar transport process. It is found that
hairpin vortices play a significant role in convecting passive scalars from the bulk flow to the



free surface, while surface-connected vortices transport scalars away from the surface.

Finally we apply the physical insights gained from direct numerical simulations (DNS) to
the improved subgrid-scale (SGS) modeling for large-eddy simulation (LES) of free-surface
turbulent flows. Based on the unique surface-layer structure and the energy backscattering
associated with coherent vortical structures, we develop two novel SGS models for FST, a
dynamic free-surface function model (DFFM), and a dynamic anisotropic selective model
(DASM). We also model for the first time the surface SGS flux and the dynamic SGS
pressure. Our physics-based SGS models are shown to substantially improve the predictions
of free-surface turbulent flows over existing models.

Thesis Supervisor: Dick K. P. Yue

Title: Professor of Hydrodynamics and Ocean Engineering
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Chapter 1

Introduction

1.1 Motivation

The study of turbulent flows in the vicinity of a free surface is a great scientific challenge.

Turbulence itself is the one of the most difficult problems in physical science. Sir Horace

Lamb once said (cf. Goldstein 1969):

When I die and go to heaven there are two matters on which I hope for enlight-

enment. One is quantum electrodynamics, and the other is the turbulent motion

of fluids. And about the former I am rather optimistic.

In excess of the usual complexity of turbulence, the presence of a free surface adds addi-

tional difficulties to the study of free-surface turbulence (FST) including, to name a few,

the respective anisotropic kinematic and anisotropic dynamic constraints of the surface on

the velocity and vorticity fields, respectively, the complex geometry of the deformable free

surface, the nonlinear interaction between turbulence and surface waves, the generation and

consequence of secondary surface vorticity, as well as surfactant dynamics.

In addition to its profound implication for basic scientific research, the study of free-

surface turbulence is also essential to the following important applications:
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(1) Air-sea interaction and global climate change

The FST research is critical to our understanding of the ocean's role in the global climate

change. The oceans have an enormous capacity to absorb heat and gases. The rate at which

heat and mass are transferred across the ocean surface greatly affects the weather as well

as the long term status of the environment. The accurate estimation of this transfer rate

relies on our better understanding of the mechanisms of the turbulent flows near the ocean

surface. The development of climatological models requires a thorough study of the various

parameters and phenomena which mediate the heat and mass transport across the air-water

interface. Therefore, the study of the mechanism and dynamics of free-surface turbulent

flows will facilitate and expedite our understanding of the processes affecting the climate.

(2) Marine environment and pollution control

Pollutants enter the oceans worldwide from runoff in rivers and streams as well as from

oil spills. Oil spills occur both accidentally (for example, from crashed tankers) or routinely

(for example, in the NY-NJ harbor). These hazardous materials directly affect the marine

environment and its resources for human on earth in terms of commerce, health, and security,

and the evolution of these pollutants is largely determined by the turbulent motions at the

upper ocean.

(3) Remote sensing of ship wakes

Recently, the turbulent wakes behind ships have attracted special interest, largely due

to the need to interpret the radar observations of ship wakes (cf. Munk, Scully-Power &

Zachariasen 1987, and Sarpkaya 1996). Synthetic Aperture Radar images reveal the exis-

tence of a narrow V-like wake with a half angle typically between 2' and 30, which is the most

prominent feature in remote sensing and is found to extend some 20km behind a surface ship.

This observation does not belong to the Kelvin wake pattern and is believed to be related

to short-wave-damping phenomena involving free-surface turbulent flows, surface-active ma-

terials, and the redistribution of surface impurities by currents and bubbles. Our ability to

interpret the observed narrow V-shaped ship wakes highly depends on the understanding of

the relevant fluid mechanics of the turbulent flow in the wake and its interactions with the
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free surface.

(4) Ship hydrodynamics and other industrial processes

The study of free-surface turbulence is also of practical importance to many engineering

problems. For example, understanding the interaction between the ocean surface currents

and ship hulls leads to more efficient maneuverability of maritime vehicles. In industry,

the design of contacting equipment such as condensers, evaporators, pipelines, and chemical

reactors relies on knowledge of the dynamics of free-surface turbulent flows. Furthermore,

the mechanism of free-surface turbulence is essential to the safety analysis of water cooled

nuclear reactors during accidents.

1.2 Background

In general, turbulent flows are affected by a free surface by means of two mechanisms,

which differ fundamentally from their counterpart, turbulence near a rigid wall. First, in

the absence of wind, the tangential stresses at the free surface should be zero, while near

a rigid wall, velocity gradient is large, which makes turbulence production and dissipation

significant there. Second, the free surface restricts motion in the normal direction only, while

a no-slip condition at a rigid wall makes velocity components in all directions vanish.

Much of the work on turbulence in the past has been directed towards wall turbulence.

Hunt & Graham (1978) analyzed an interesting variation of the problem of turbulence inter-

action with a rigid wall, which somewhat resembles a stress-free boundary. They introduced

a semi-infinite rigid wall which moves with the same speed as the mean velocity of grid

turbulence. Near the wall, they identified two distinct boundary layers: an inner viscous

layer and an outer source layer. Their theoretical predictions on the spectra variances and

cross-correlations were found to compare well with measurements of turbulence near moving

walls by Uzkan & Reynolds (1967) and Thomas & Hancock (1977), and were later further

confirmed by the Brumley & Jirka's (1987) measurements of near-surface turbulence in a

grid-stirred tank to a large extent.

Although the problem of Hunt & Graham (1978) is strictly not FST, it identifies some
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of the features characteristic of free-surface turbulence, and has inspired a number of other

investigations in this area. Most of these investigations use the 'rigid lid' or 'free slip'

approximation for the free surface, i.e. a flat surface with zero stresses but also zero normal

velocity. This corresponds to the problem of free-surface turbulence in the limit of zero

Froude number.

Perot & Moin (1995) used a novel idea to study the influence of a rigid wall on turbulence

by considering separately two fictitious problems with 'simpler' boundary conditions. The

first is a boundary which enforces no-slip but is otherwise permeable. This isolates and

elucidates the viscous effects of a rigid wall. The second one they considered is in fact a flat

free-slip boundary. This they used to isolate and investigate the kinematic effects that occur

near the boundary. They found that it is the imbalance between splats and antisplats that

leads to inter-component energy transfer near the surface. This imbalance is controlled by

viscous processes and is found to be small for grid FST where there is no mean shear in the

bulk flow underneath.

While Perot & Moin (1995) focused on the immediate effect of the presence of a free-

slip boundary, Walker, Leighton & Garza-Rios (1996) studied a similar grid FST case but

considered the late time development after the imposition of the boundary. They identified

two boundary layers where velocity and vorticity respectively are anisotropic and the thick-

nesses of these two layers are respectively the turbulence length scale and one-tenth of the

turbulence length scale. Their analysis of the Reynolds-stress balance and enstrophy budget

shows that the flow is fully three-dimensional up to the free surface.

Besides grid FST, another type studied in the past is that of open-channel flow. Exper-

imental measurements were obtained by Komori et al. (1982), Komori, Murakami & Ueda

(1989a, 1989b), Nakagawa & Nezu (1981), Rashidi & Banerjee (1988, 1990a, 1990b), Rashidi

(1997), Ueda et al. (1977), among many others. In these experiments, the relation between

bursting events at the channel bottom and the surface-renewal eddies at the free surface

have been investigated exclusively. Early numerical work on open-channel turbulent flows

can be traced back to Handler et al. (1991), Lam & Banerjee (1988, 1992) Leighton et al.

(1991), and Swean et al. (1991), who all studied the turbulent flow between a no-slip wall
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and a free-slip plate. Leighton et al. (1991) investigated the interaction of vorticity with

the free surface and proposed two models - the 'spin' model and the 'splat' model, which

follow a description by Bradshaw & Koh (1981). Handler et al. (1993) studied the Reynolds-

stress balance and reported that the dissipation rate exhibits a sharp drop near the surface.

Handler et al. (1993) also examined the variation of length scales and proposed a 'pancake'

model to explain the increase of horizontal length scales and the decrease of vertical scales.

Vortex structures in open-channel flow have been studied numerically by Pan & Banerjee

(1995) and experimentally by Kumar, Gupta & Banerjee (1998). They both identified large-

scale persistent structures at the free surface, which include 'upwelling', 'downdrafts', and

'attached vortices'. It is found that the attached vortices are particularly long-lived and

tend to interact with each other unless destroyed by other upwellings. Both Pan & Banerjee

(1995) and Kumar et al. (1998) concluded that turbulence structures near the free surface

are quasi-two-dimensional.

Based on the understanding of the fluid motions in free-surface turbulence, the transfer

of heat and gases across the air-water interface has been investigated by a number of re-

searchers. Among others, Brown, Khoo & Sonin (1990), Khoo & Sonin (1992), Komori et

al. (1982), Rashidi, Hetsroni & Banerjee (1991), Sonin, Shimko & Chun (1986), and Ueda

et al. (1977) performed experimental measurements and obtained empirical expressions for

the scalar transfer coefficient. Recently, based on the detailed three-dimensional datasets

obtained from direct numerical simulations, Nagaosa (1999) and Nagaosa & Saito (1997)

showed that the surface renewal events are often associated with streamwise vortex dipoles,

while Handler et al. (1999) proposed a model based on the hypothesis that hairpin vortex

structures dominate the surface renewal processes.

We note that the approximation of the free surface by a flat slip-free plate (zero Froude

number limit) facilitates the numerical simulation and has been used extensively in the past

(Handler et al. 1991, 1993 and 1999, Lam & Banerjee 1988 and 1992, Leighton et al. 1991,

Pan & Banerjee 1995, Perot & Moin 1995, Swean et al. 1991, and Walker et al. 1996, among

others). A systematic justification of this approximation, as well as an accurate quantification

of the effect of finite Froude numbers on the evolution of free-surface surface, however, have
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never been provided in the literature. Komori et al. (1993) used a non-zero Froude number

which is however so small that there are no non-trivial differences from the zero Froude

number case. Borue, Orszag & Staroselsky (1995) studied the interaction of surface waves

with turbulence in an open channel and found that the effect of non-zero Froude number on

the turbulence statistics they examined is weak.

As a general feature of the different types of FST flows studied in the literature above, it is

now understood that the evolution of FST is governed by two key effects of the free surface,

namely the kinematic restriction of not allowirng complete freedom for motions along the

vertical direction, and the dynamics requirement that the tangential stresses vanish at the

free surface. Near the free surface, turbulence intensity in the horizontal plane is increased at

the expense of that in the vertical direction. Furthermore, very near the free surface, vortex

filaments attach to the free surface almost perpendicularly, with considerable dissipation

of enstrophy. The first effect is attributed primarily to the kinematic boundary condition

at the free surface which reduces the vertical velocity fluctuations. The second effect is

attributed to the dynamic zero-stress condition. Both properties can be characterized as

'generic' of FST in the sense that they have been observed in all different types of FST

flows. One can therefore loosely talk of a 'free-surface boundary layer' as a region of the

flow with properties dominated by the effect of the free surface. The elucidation and precise

quantification of this surface boundary layer, the characterization of the statistical, structural

and dynamical features of the flow field in the boundary layer, as well as the modeling of

the key transport processes across the boundary layer, are thus the key to the understanding

and parameterization of free-surface turbulent flows, and are the foci of this study.

1.3 Thesis overview

In the present study we investigate the structures, mechanisms and statistical characteristics

of free-surface turbulence at low Froude numbers. The main objectives of this research are

to:

develop numerical capabilities of direct numerical simulation (DNS) and large-eddy
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simulation (LES) for turbulent flows in the vicinity of a free surface at low Froude

numbers;

" improve our understanding of the structure, mechanism and dynamics of free-surface

turbulent flows;

" identify and characterize the key transport processes within the free-surface boundary

layer;

" establish the physical basis for modeling free-surface turbulent flows; develop, calibrate

and validate specific turbulence subgrid-scale models for FST; and finally pave the path

for the parameterizations of air-water interaction.

To achieve the above goals, we investigate the interaction between a turbulent flow and

a free surface at low Froude numbers in the absence of surface tension effects and winds.

As a conical problem, we consider the development of a three-dimensional flow with a two-

dimensional mean shear under a free surface. The instability of this flow has been studied by

Triantafyllou & Dimas (1989), Longuet-Higgins (1998) and Engevik (2000), and a detailed

study on the nonlinear evolution of the instability was reported by Dimas & Triantafyllou

(1994). In this free-surface shear flow, turbulence is generated and maintained by the mean

shear in the bulk flow and interacts with the free surface.

Our basic research tools are direct numerical simulation (DNS) and large-eddy simulation

(LES). With the rapid growth in both the size and speed of modern computers, numerical

simulation has become an indispensable tool in turbulence research (cf. the reviews by Moin

& Mahesh 1998 and Moin & Kim 97). Once robust numerical capability is established,

substantial information on the statistical, structural and dynamical properties of the flow

field can be obtained, based on which the key turbulence processes can be characterized,

quantified and modeled.

Next we provide an overview of the thesis.

In Chapter 2 we present the numerical tools used in this study, direct numerical simulation

(DNS) and large-eddy simulation (LES). For DNS, we first introduce the governing Navier-

Stokes equations subject to the free-surface kinematic and dynamics boundary conditions.
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The governing equations are then solved numerically using a finite-difference scheme. The

numerical method is validated in different aspects. Next we introduce the LES approach

for free surface turbulent flows, in which only the large-scale motions are computed directly

while the contributions from small scales (subgrid scales, SGS) are modeled. Of special note,

we demonstrate the SGS contributions to the free-surface flux and free-surface dynamics

pressure, which are unique to the free-surface problem and must be modeled.

Chapter 3 investigates the surface layers in free-surface turbulent flows. We identify

conceptually and numerically a multi-layer structure of the free-surface boundary layer. The

surface inner layer is a thin region adjacent to the free surface characterized by fast variations

of the horizontal vorticity components. This inner layer is caused by the dynamic zero-stress

boundary conditions at the free surface and lies inside a much thicker outer layer, which

is due to the kinematic boundary condition at the free surface. The importance of the

outer layer is manifested mainly in the redistribution of the turbulence intensity, i.e. in

the increase of the horizontal velocity fluctuations at the expense of the vertical velocity

fluctuation. A prominent feature of FST is vortex connections to the free surface which

occur inside the inner layer. It is found that as hairpin-shaped vortex structures approach

the free surface, their 'head' part is dissipated quickly in the inner layer, while the two 'legs'

connect almost perpendicularly to the free surface. Analysis of the evolution of surface-

normal vorticity based on vortex surface-inclination angle shows that both dissipation and

stretching decrease dramatically after connection. As a result, vortex structures connected

to the free surface are persistent and decay slowly relative to non-connected vorticities. The

effects of inner and outer layers on the turbulence statistics of length scales, Reynolds-stress

balance, and enstrophy dynamics are examined, which show clearly the different turbulence

mechanisms operating in the respective near-surface scales. Finally we investigate the effect

of non-zero Froude number on the turbulence statistics. We show that the most significant

effect of the presence of the free surface is a considerable reduction of the pressure-strain

correlation at this surface, compared to that at a free-slip flat plate. This reduction is finite

even for very low values of the Froude number.
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Chapter 4 studies numerically and analytically the turbulent diffusion characteristics

near a free surface. From an ensemble of such direct numerical simulations, we find that a

boundary layer develops at the free surface characterized by a fast reduction in the value

of the eddy viscosity. As the free surface is approached, the magnitude of the mean shear

initially increases over the boundary (outer) layer, reaches a maximum and then drops to

zero inside a much thinner inner layer. To understand and model this behavior, we derive an

analytical similarity solution for the mean flow. This solution predicts well the shape and the

time-scaling behavior of the mean flow obtained in the direct simulations. The theoretical

solution is then used to derive scaling relations for the thickness of the inner and outer layers.

In Chapter 5 we study numerically and analytically the mixing of a passive scalar in

turbulent flows with a free surface where the scalar flux vanishes. The Navier-Stokes equa-

tions and scalar mixing equation are solved by direct numerical simulations. Initially the

scalar concentration profile is prescribed by a smooth function without fluctuation. We find

that a boundary layer develops at the free surface characterized by a fast reduction in the

value of the turbulent diffusivity of the scalar. As the free surface is approached, for large

Schmidt numbers, the magnitude of the mean concentration gradient initially increases over

the boundary outer layer, reaches a maximum and then drops to zero inside a much thinner

inner layer; for small Schmidt numbers, the mean concentration gradient does not have a

local maximum and its value drops to zero directly. To understand and quantify this multi-

layer mixing structure and its dependence on the Schmidt number, we derive an analytical

solution of a self-similar form for the scalar mean concentration. The thickness of the outer

layer is directly proportional to the thickness of the corresponding momentum boundary

layer; while the thickness of the inner layer present in high Schmidt number cases is found

to be inversely proportional to the square root of the Schmidt number. The maximum value

of the concentration gradient is located at the end of the inner layer and is proportional to

the square root of the Schmidt number.

In addition to the passive scalar of which the flux rate vanishes at the free surface, Chapter

6 further investigates the transport of passive scalars with two other free-surface boundary

conditions. The first is a fixed scalar surface-value case, which models the gas transfer
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across the air-water interface; while the second is a fixed scalar surface-flux case, which

models the heat transport problem. The effects of surface layers on scalar transport process

are elucidated through turbulence statistics. We then investigate the dependence of scalar

structure on coherent turbulent motions. With a novel conditional-averaging technique, we

are able to identify and quantify the contributions of difference types of coherent turbulent

structures to the scalar transport process. It is found that splats convects scalars to the

surface from the bulk flow below, while antisplats, to a lesser degree, carry scalars away

from the surface. Hairpin vortices play a significant role in the transport of scalars towards

the surface, while surface-connected vortices draw scalars down to the bulk flow below.

In Chapter 7 we study the inter-scale energy transfer in free-surface turbulence, in order

to obtain the physical understanding necessary for the effective subgrid-scale modeling of

free-surface turbulence. The flow field is solved by direct numerical simulation of the Navier-

Stokes equations at fine grid. The grid-scale motions are defined by Gaussian filters in the

horizontal directions and a discrete filter in the vertical direction. It is found that the amount

of energy transferred from the grid scales to the subgrid scales reduces significantly as the

free surface is approached. This is a result of energy backscatter associated with the fluid

vertical motions. Conditional averaging reveals that the energy backscatter occurs at the

splat regions of coherent hairpin vortex structures as they connect to the free surface. The

free-surface region is highly anisotropic at all length scales while the energy backscatter

is carried out by the horizontal components of the SGS stress only. The physical insights

obtained here are essential to the Pffirpcirms SGS mordpling Cf LES for frPe-suiirfaep turbulence.

Based on the physical insights obtained from preceeding chapters, we study in Chapter 8

the large-eddy simulation for free-surface turbulence. The SGS contribution to the Dirichlet

pressure free-surface boundary condition is modeled with a dynamic form of the Yoshizawa

(1986) expression; while the SGS flux that appears in the kinematic boundary condition

is modeled by a dynamic scale-similarity model. For the SGS stress, we first examine the

existing dynamic Smagorinsky model (DSM), which is found to capture the free-surface

turbulence structure only roughly. Based on the special physics of free-surface turbulence,

we propose two new SGS models - a dynamic free-surface function model (DFFM) and a
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dynamic anisotropic selective model (DASM). The DFFM correctly represents the reduc-

tion of the Smagorinsky coefficient near the surface and is found to capture the free-surface

boundary layer more accurately. The DASM takes into account both the anisotropic nature

of free-surface turbulence and the dependence of energy backscatter on specific coherent

vorticity mechanisms, and is found to produce substantially better surface signature statis-

tics. Finally, we show that the combination of the new DFFM and DASM with a dynamic

scale-similarity model further improves the results.

Finally, Chapter 9 presents a summary of the main results and contributions of this study.

We also discuss future studies there.
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Chapter 2

Numerical Simulation of Free-Surface

Turbulence

With the advent of the modern computer, numerical simulation has become an indispensable

tool in turbulence research. Once robust numerical capability is established, substantial

information on the statistical, structural and dynamical properties of the flow field can be

obtained, based on which key turbulence processes can be characterized, quantified and

modeled. In this chapter we introduce two basic numerical approaches used in the present

study, direct numerical simulation (DNS) and large-eddy simulation (LES). DNS applies to

low to moderate Reynolds numbers (Re ~O(103-4)). In DNS, all the turbulence scales

are resolved through the Navier-Stokes equations. DNS has the advantage that no ad hoc

turbulence model is used, and thus provides a description of the flow field with great fidelity.

In LES, one only computes the spatial and temporal scales relevant to specific and detail

boundary conditions of the problem, while the more universal subgrid-scale (SGS) quantities

such as those in the inertial range are modeled. The LES approach can be used at high

Reynolds number range (Re ~O(104-)).

This chapter is organized as follows. In 2.1 we introduce the DNS approach. We first

formulate the governing equations as well as the boundary conditions for the problem of the

interaction between a turbulent flow with a free surface at low Froude numbers. We then

describe the numerical scheme and computational details. After providing an overview of
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Figure 2-1: Schematic of a turbulent shear flow under a free surface

the flow field, we present validations for the current DNS approach. In 2.2 we present the

LES method. We introduce the governing equations for the resolved motions. Of significant

importance, we discuss the free-surface boundary conditions in LES, which contain SGS

contributions which need to be modeled. Finally we provide numerical details of LES.

2.1 Direct numerical simulation

2.1.1 Mathematical formulation

We consider a turbulent flow with a free surface at low Froude numbers. Referring to Figure

2-1, the frame of reference has axes x, y, z (also denoted as x1 , x 2 , X 3 when tensor notation

is used), where x and y are horizontal, z is vertical, positive upward, with the z = 0 plane

coinciding with the undisturbed free surface.

The governing equations for the velocity components ui (also denoted as u, v, or w) are
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the Navier-Stokes equations

D'us D(usus) _at+ =
at Oxy

Op 1 D2uO
+

5xi Re0 D8x Dx1 '

and the continuity equation
O = 0. 

(2.2)
Dxi

Here and hereafter, unless otherwise specified, all variables are normalized by the char-

acteristic (macro) length scale Lo and the characteristic velocity scale Uo of the flow. The

dynamic pressure p is normalized by pU2, with p the fluid density. ReO - UoLo/v is the

Reynolds number, with v the kinematic viscosity.

We assume that the Froude number Fo _ Uo/(gLo)1/2 is small but not zero. Therefore,

we use linearized free-surface boundary conditions at the position of undisturbed free surface

z = 0.

(a) At the free surface, z = 0, the tangential stresses vanish:

1 (Du +Ow 0
I + =0

ReO Oz Ox

1 (v Ow
ReO Dz y

on z = 0

on z 0.

(2.3)

(2.4)

(b) At the free surface, the normal stress vanishes which gives (neglecting surface tension)

h 2 Ow
p + RD
F,20 ReO OZ

on z = 0 , (2.5)

where h(x, y, t) is the free-surface elevation.

(c) Finally, the fact that the free surface moves as a material surface gives:

Oh
at

Dh
SW - x A

Ox
Oh

VyV on z = h. (2.6)

By linearization we obtain the kinematic boundary condition at the undisturbed free
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surface as
= w - (uh) - (vh) on z = 0 (2.7)

at Ox Oy

At the bottom z = -D, we impose free-slip conditions:

&u _ v Op- - W -O 0 on z = -D. (2.8)
Oz 0z Oz

Thus there is no turbulence production at the bottom and turbulence energy is extracted

solely from the mean shear in the bulk flow. Finally we impose periodic boundary conditions

in both horizontal directions.

For later reference, we define the statistical average over the horizontal plane, where the

turbulent flow is statistically homogeneous. For any variable f (x, y, z, t), (f)(z, t) stands

for the average over the horizontal plane; f'(x, y, z, t) - f - (f) denotes the instantaneous

fluctuation; and frms(z, t) = (f2)1/ 2 its root-mean-square value. As will be defined in 2.2, in

LES, f(x, y, z, t) denotes the resolved grid-scale portion of f (x, y, z, t), while f"(x, y, z, t)

f - f is the subgrid-scale portion.

2.1.2 Numerical scheme

The primitive-variable form of Navier-Stokes equations (2.1) and continuity equation (2.2)

are solved numerically as an initial-boundary-value problem. The numerical method we use

traces back to the marker and cell (MAC) method developed by Harlow & Welch (1965).

We first use a projection method, which couples the continuity equation with the Navier-

Stokes equations, to obtain a Poisson equation with a divergence correction for the pressure.

The Poisson equation for the pressure is solved at each time-step. The simulation is then

advanced explicitly to the next step. More specifically, knowing u, i = 1, 2, 3, at the current

timestep, the time-discrete form of (2.1) is

n+1 n I~\ 0n 1 2Un
u - u" u(itg)" up" ____2_S+ = + .+(2.9)
Zt Oxj Dxi ReO Oxj (x.
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Taking the divergence of (2.9) on both sides and invoking the continuity equation at the

next step:
= 0 

(2.10)
axi

we obtain the following Poisson equation for the pressure pn:

02 n I OUn O (UUj)" 1 92Un1 a + a+auu) 1Ou (2.11)
xiaxi At Oxi + xi 0xj ReO x!Oxj

This Poisson equation is solved subject to Dirichlet condition (2.5) at the free surface, Neu-

mann condition (2.8) at the bottom, and periodic conditions in the horizontal directions.

After the pressure pf is obtained, velocity components are advanced explicitly in time using

(2.9). In this study we use a second-order Runge-Kutta scheme for the time integration.

For space discretization, we use sixth-order finite-differences in the horizontal directions

and second-order finite-difference in the vertical direction. To ensure mass conservation to

machine accuracy, a staggered-grid system is employed in the vertical direction wherein u,

v, and p are assigned at regular grid positions while w is assigned at the positions with a

vertical shift of half a grid spacing. In addition, mass conservation also requires that the

horizontal operator 02p/&X 2 (similar for a2lp/y 2 ) be approximated by

x2 3600Ax 2 (-6 - 18i-5 + 1 7 1pi-4 - 8 1 0Pi-3 + 19 3 5pi-2 + 8 2 8pi-I - 4214pi

+ 8 2 8pi+i + 19 3 5pi+2 - 8 1OPi+3 + 171Pi+4 - 18pi+5 + Pi+6) + O(Ax 6 ) , (2.12)

instead of the conventional form

X2  180Ax 2 (2pi-3 - 2 7 Pi-2 + 2 7 0pi-i - 490pi + 2 7 0pi+1 - 2 7 Pi+2 + 2pi+3)

+O(Ax 6). (2.13)

The argument is similar to Kwak et al. 's (1975) fourth-order case and will not be repeated

here.

It should also be pointed out that the horizontal convection terms in the Navier-Stokes
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equations need a special energy-conservative scheme to avoid nonlinear instability (e.g. Kwak

et al. 1975). Take the term (uv)/&x, for example:

8 3(Ui+lvi+1 - ui-1 vi- 1 + ui(vi+1 - vi_1) + vi(ui+i - i-1))
OX 8Ax

3

4 0 A (ui+2vi+2 - ui- 2 vi- 2 + ui(vi+2 - vi-2) + vi(ui+2 - Ui-2))

1
12OAx (ui+3vi+3 - u- 3 vi- 3 + ui(v+ 3 - vi- 3 ) + vi(ui+3 - i-3)

+O(Ax 6) . (2.14)

It can be shown that in the absence of viscous terms and time-differencing errors, this scheme

conserves energy to machine accuracy. A similar proof to this can again be found in Kwak

et al. (1975).

Among the free-surface boundary conditions (2.3)-(2.7), the tangential dynamic condi-

tions (2.3) and (2.4) are used in computing z-derivatives in (2.1); the normal free-surface

dynamic condition (2.5) is used in the boundary condition for (2.11); and the kinematic

free-surface condition (2.7) is used to update the free-surface elevation h in time.

2.1.3 Computational parameters

In this study, we consider as a canonical problem a three-dimensional incompressible turbu-

lent flow in the presence of a free surface. As shown in Figure 2-1, the turbulent flow has a

mean velocity (u) (z, t) in the x-direction with the initial profile

(u)(z't 0) = 1 - 0.9988 sech2(0.88137-) , (2.15)
UO Lo

which is half of the mean velocity profile measured in the wake of a NACA 0003 hydrofoil in

unbounded fluid (Mattingly & Criminale 1972). Here and hereafter, the initial mean shear

flow depth LO and velocity deficit UO are used to normalize all the variables. Note that (2.15)

is Galilean transformed with UO as in the simulations.

The Orr-Sommerfeld stability analysis of the velocity profile (2.15) has been performed by

Triantafyllou & Dimas (1989), Longuet-Higgins (1998) and Engevik (2000), and a detailed

40



study on the nonlinear evolution of the instability is reported by Dimas & Triantafyllou

(1994). Unlike open-channel flow, the turbulence in this sheared FST is generated solely

from the mean shear in the bulk flow and is especially relevant to applications in naval

hydrodynamics, such as ship wakes, and geophysical flows.

In this study, the Reynolds number ReO = UoLo/v is 700, 1000, 1400. The ReO = 1000

case is used as the basic case to elucidate the free-surface boundary layer in Chapter 3. In

Chapter 4, where the effects of molecular viscosity are investigated, all the three Reynolds

numbers are considered. In Chapters 5-8, where the asymptotic behavior of the turbulent

shear flow in large t and the inter-scale energy cascade are of interest, the largest Reynolds

number ReO = 1400 is used.

The present study focuses on low Froude numbers. In most cases, we use the Froude

number Fo = Uo/(gLo)1/2 - 0.7 as the basic case. In Chapter 3, where the Froude number

effects are examined, additional Froude number values of 0.35 and 0 are considered.

In Chapter 3, where the free-surface boundary layer is illustrated, we use a 'shallow'

computational domain of the size L,=10.472 x LY=10.472 x L,=4 with a 1283 grid. In

Chapters 4-8, where the late-stage evolution of the turbulent shear flow is investigated, we

use a 'deep' domain of L,=10.472 x LY=10.472 x L,=6 with a 1282 x 192 grid. We note

that the difference in the near-surface flow characteristics between these two domain sizes is

negligible. The reason we employ the deep domain in Chapters 4-8 is that the evolution of

the bulk shear flow is of interest there, and thus it is necessary to eliminate the effects of the

bottom boundary on the bulk flow at large t. Note that the horizontal domain size 10.472

corresponds to the minimum wavenumber 0.6, which is close to the most unstable mode for

the mean shear profile (2.15) (Triantafyllou & Dimas 1989). The simulation is carried out

from t = 0 to 90, with timestep At = 0.005.

The initial turbulence field in our simulation is implemented by the superposition of

divergence-free random velocity noise upon the mean flow (2.15). Initially this random

velocity noise is made to vanish at the free surface and the surface elevation is zero. As

time goes on, energy is extracted from the mean shear flow to turbulence as the turbulent

flow develops. From this point of view, the initial perturbations serve only as 'seeds' for
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the turbulence. This is in contrast with the cases of purely decaying turbulence, where the

initial turbulence field needs to be constructed carefully, usually to match the experimental

measurements.

To obtain convergent results for statistics, we perform repeated simulations using different

seeds for the initial random field. Our experience shows that the variances become sufficiently

small beyond about 20 simulations. Unless otherwise stated, all the results we present are

ensemble averaged over (at least) 20 DNS realizations.

2.1.4 Overview of the flow field

In this subsection, we give an overview of the time evolution of the shear flow.. We use the

case of Reo = 1000 and Fo = 0.7 as an example. As pointed out earlier, turbulence is

initially absent at the free surface and the surface is calm at t = 0. Supplied by the shear

flow underneath, turbulence develops at the free surface as time evolves.

Figure 2-2 plots the time evolution of free-surface turbulence kinetic energy (7 - ((u'2 ) +

(v' 2 )+(w' 2 ))IZ=o, the fluctuation of free-surface elevation h'rms, and their standard deviations.

Initially, both the free-surface elevation and the turbulence intensity at the surface are zero.

As free-surface turbulence develops, the flow reaches a quasi-steady state after about t = 40.

At this quasi-steady state, the velocity fluctuation at the free surface qo is 0(0.1), which

makes the Reynolds number based on turbulence intensity Req - qoLo/v ~ 100 and the

Froude number Fq q go/(gLo) 1/ 2 ~_ 0.07. The fluctuation of the surface elevation h' mS

is about 0.005. Figure 2-2 shows that the free-surface elevation h' m S normalized by F,2 is

comparable to the free-surface turbulence kinetic energy qg/2. This is indicative of the fact

that some of the kinetic energy is transformed to potential energy in the surface fluctuations.

Figure 2-2 also shows that at later time (t > 75), dissipation exceeds the supply from below

and the free-surface turbulence decays.

We plot in Figure 2-3 the evolution of the mean shear flow profile (u) (z, t) and turbulence

intensity profile q2 (z, t) (u'2 ) + (v' 2 ) + (w' 2 ). Owing to diffusion, the mean shear flattens as

time increases. As expected, the diffusion due to turbulence transport is much larger than

would be expected due to laminar diffusion. For a laminar shear flow with the same initial
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Figure 2-3: Evolution of (a) mean shear flow profile (u)(z, t); and (b) turbulence intensity
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flow at t = 60. The laminar flow has the same initial profile (2.15) but Reynolds number
ReL = UoLO/v=100.
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profile (2.15), we find that an equivalent Reynolds number to obtain a similar evolution of

the mean velocity deficit is given by ReL = UoLo/v ~ 100. This is shown in Figure 2-3(a)

which plots the comparison between the mean flow profiles for turbulent flow (Reo = 1000)

and laminar flow (ReL - 100) at t = 60.

In this study we focus on the quasi-steady state when the turbulence production from the

mean shear is balanced by the turbulence dissipation at the near-surface region. Hereafter,

only the results from t = 40 to 75 are presented.

2.1.5 Validation of numerical method

A rough estimate based on the theory of isotropic homogeneous turbulence (Tennekes &

Lumley 1972) gives the (dimensionless) Kolmogorov scale:

Tj ~ e- 6 Re- 0.04. (2.16)

Here c is the (dimensionless) dissipation rate for turbulence kinetic energy and is found to

be 0(0.0005) in our numerical results (Figures 3-15 to 3-17). The grid size in the horizontal

directions is
10.472

A = 1A Y = 28 0.08; (2.17)

and the grid size in the vertical direction is:

4 6
__ - - - ~ 0.03 . (2.18)
128 196

Thus the grid size is of the same order as the Kolmogorov scale.

To ensure that the dynamically significant scales are resolved, we also carry out a high-

resolution simulation using a 2563 grid, with a time step At = 0.00125, as well as a low

resolution simulation using a 643 grid. Figure 2-4 compares the profiles of the mean flow

velocity and the turbulence intensity for different resolutions. The convergence of the tur-

bulence statistics, as the grid resolution increases, is clearly shown. The small difference

between the 1283 and 2563 cases indicates that the 1283 grid is sufficient for solving the
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problem.

As a further validation, we consider the problem of the interaction between a small-

amplitude two-dimensional progressive wave and the mean shear flow (2.15) under a free sur-

face. We compare the direct simulation evolution to that obtained from an Orr-Sommerfeld

stability analysis of this problem (see Zhang 1996, which is a viscous extension of Triantafyl-

lou & Dimas 1989). Figure 2-5(a) plots the growth rate of the surface wave amplitude as a

function of wavenumber. Figure 2-5(b) compares the time-evolution of this amplitude pre-

dicted from DNS to the Orr-Sommerfeld analysis for wavenumber 0.6 (which corresponds

to the minimum wavenumber for the present DNS horizontal domain size of 10.472). The

agreement is quite satisfactory.

Finally, we report that in all our simulations, the total kinetic energy is conserved to less

than O(1)% error and the maximum mass divergence at any grid point is O(10-4).
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Figure 2-5: (a) Growth rate wi (the wave amplitude grows at the rate exp(wjt)) as a function
of wavenumber k, obtained from Orr-Sommerfeld analysis of the mean flow (2.15) for ReO

= 1000 and Fo 0.7. (b) Growth in amplitude of a two-dimensional surface progressive
wave at wavenumber k=0.6: , Orr-Sommerfeld analysis; - - - - , direct simulation
result.

2.2 Large-eddy Simulation

While DNS resolves the essential turbulence scales and thus has the virtue that no ad hoc

model is needed, it is limited to low Reynolds numbers and simple flow configurations.

For most problems of importance to applications, the Reynolds numbers are high, DNS is

incapable of covering the full (integral to dissipative) scale range, and turbulence modeling

is essential. A promising approach in this case is the method of large-eddy simulation (LES),

in which only the large (grid-scale, GS) motions are resolved explicitly, while contributions

from subgrid-scale (SGS) motions are modeled. Since the introduction of LES in meteorology

(Smagorinsky 1963), LES has been applied with some success to a variety of turbulence

problems (cf. reviews on the development and application of LES by Rogallo & Moin 1984,

Lesieur & M6tais 1996 and Meneveau & Katz 2000). In this subsection we introduce the

formulation and numerical scheme for LES of free-surface turbulent flows. The SGS modeling

based on the physics of the FST as well as the performance are discussed in Chapter 8.
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2.2.1 Governing equations

We consider the resolved grid-scale motions in free-surface turbulence. In this study, for any

variable f(Y), its grid-scale portion f(X) is obtained by using a low-pass filter G(') (cf. e.g.

Leonard 1974):

(2.19)

and the subgrid-scale (SGS) portion f"(z) is defined as

X() f ) - f . (2.20)

After applying the filter to (2.1) and (2.2), we obtain the governing equations for the

grid-scale velocities:

auDiii87i3 ap 1 02;U,

at Oxj Oxi ReO OxjOxj

aTij

axi
S 1= 2, 3 (2.21)

and

x0.
Oxi

(2.22)

Here Tij is the SGS stress defined as

rzj = UiUj - Us , i,j = 1, 2,3 , (2.23)

which represents the contributions from the subgrid scales and must be modeled in terms

of resolved quantities. In flows where only kinematic boundary conditions are imposed, it is

conventional to model only the trace-free portion, Mij, of Tij:

1
Mij = Tij - 3 6 ijTkk . (2.24)

The modeling of Mi is discussed in Chapter 8.

Because of (2.24), the isotropic part of the SGS stress is absorbed into the (dynamic)
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pressure. Thus the momentum equation (2.21) becomes

+ = 5
at Ox axi

+
1 a 2 U

ReO axi x

aMi3
axJ

i = 1, 2,3, (2.25)

with the modified pressure

P p+ -Tkk. (2.26)

In the presence of a free surface, dynamic conditions on the total stress are imposed and

the decomposition (2.24) and (2.26) results in an additional SGS scalar, PSGS = Tkk/3, which

must be modeled separately. This is discussed in 2.2.2 and the performance of this modeling

is evaluated in Chapter 8.

2.2.2 Boundary conditions

After passing the filter (2.19), the bottom boundary conditions for the grid-scale motions

(2.8) are obtained as

au au
az az

aPW O 0), on z = -Lz. (2.27)

The boundary conditions for the deformable free surface are much more complicated.

Upon filtering, the dynamic free-surface boundary conditions for the grid-scale motions (2.3)--

(2.5) are obtained as follows:

-1 4i + T)-
ReO Oz ax

1 (au O )
(-+ )=O,

ReO Oz ay

T 2 O

Frlo ReO 09z

on z=0 ;

on z=0;

(2.28)

(2.29)

on z 0. (2.30)

Because of the modification (2.26), the normal dynamic free-surface boundary condition
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becomes
-- h 2 OU
P = + +PSGS on z = 0, (2.31)

Fro R,0 Oz

where the subgrid-scale contribution PSGS = Tkk/3 is unknown and needs to be separately

modeled.

After filtering, the kinematic free-surface boundary condition (2.7) becomes

h ] -+(8 - Orkbc gTkbc
= T - (Uh) -- - on z = 0 . (2.32)

at Ox 19y 9X By'

Here

Tkb 6 7j j U and Tkbc vh- (2.33)

which are additional unknown subgrid-scale quantities and must again be separately mod-

eled.

The SGS modeling for the free-surface dynamic and kinematic boundary conditions as

well as the performance in LES will be discussed together with the SGS stress modeling in

Chapter 8.

2.2.3 Numerical scheme and computational parameters

The numerical scheme for the LES is essentially the same as that for DNS. The additional

SGS stress terms are assigned at the vertically-staggered grid system, with T1 , T1 2 (T2 1 ),

T2 2 and 73 3 at regular grids, and 71 3 (T3 1 ), 72 3 (73 2 ) at staggered grids. To calculate the

derivatives of the SGS stress, we use a sixth-order finite difference scheme in the horizontal

directions and a second-order finite difference scheme in the vertical direction.

In this study, the grid filter ?(x) in (2.19) is defined as Gaussian filters (cf. Kwak,

Reynolds & Ferziger 1975) in the horizontal directions and a discrete filter in the vertical

direction:

G( ) = G1(x)02(y)G3 (z);

G, (x) = (6/7r)1 exp[-6x2/zX2]
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G 2 (y) = (6/7) 1/2 exp[- 6y2/22

G 3 (z) [D D D z + + )]/4 (2-34)

Here 6D is the Dirac delta function; and A2/Ax= KY/AY=8 and Kz/Az=2 are the horizontal

and vertical filter widths, respectively. The overall filter width a is set to be:

,A (AXAYA) 1 / 3 = 0.2992 . (2.35)

The test filter G is similar to C and uses Gaussian filters in the (periodic) horizontal

directions but no filtering in the vertical direction is now applied. The filter width for G is

chosen to satisfy 2K,2= x and AY-2AY. The overall filter width at the coarse level, C, is

defined as

S (AXAYA) 1 /3  0.4749 . (2.36)

For LES simulations, the computational domain size is Lx x Ly=10.4722 (horizontally) by

L,=6 (vertically). The Reynolds number is ReO = 1400 and the Froude number is FO 0.7.

To perform direct quantitative comparison with the DNS results which are obtained on a

fine grid, LES uses a coarse 322 (horizontal) x 96 (vertical) grid with a larger time step 0.02.
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Chapter 3

Surface Layers for Free-Surface

Turbulent Flows

In this chapter, we introduce free-surface boundary layer, the key concept in FST study.

Through direct numerical simulations, we are able to: (i) identify an inner layer and an

outer layer and quantify the dynamics within these layers; (ii) understand the dynamics of

surface vortex connections in FST and the underlying mechanisms for the persistence of such

connected structures; and (iii) obtain the dominant effects of (even small) Froude numbers

on the statistical characteristic of FST as compared to, say, turbulence under a free-slip

wall. The elucidation of the inner and outer layers and their dynamics provides a coherent

framework for understanding FST which clearly distinguishes it from turbulent flow near a

no-slip wall, and, in a not insignificant way, from that near a free-slip wall.

This chapter is organized as follows. In 3.1, the concept of the free-surface inner and

outer layers is introduced. In 3.2, we identify the multi-layer structure in our numerical

simulations. The spatial and temporal development of the surface layer during vortex surface

connection events is studied in 3.3. In 3.4, we present the effects of the surface layers on the

turbulence statistics with special emphasis on the turbulence length scales, Reynolds-stress

balance and enstrophy dynamics. In 3.5, we investigate the effect of Froude numbers on the

FST statistics. For small (non-zero) Froude numbers, we find that the effects are comparably

small with the exception of the pressure-strain correlations which show qualitative differences
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as a result of the free surface. We conclude in 3.6 with a discussion and a summary.

3.1 The concept of free-surface boundary layer

In this section, we discuss the concept of the boundary layer that develops at a clean free

surface. The free-surface dynamic boundary conditions are given in (2.3)-(2.5). For ReO > 1,

the first term on the right-hand side of (2.5) is much larger than the second term, so that

the requirement of vanishing normal stress is effectively an inviscid boundary condition. The

effect of viscosity is thus manifest primarily through the vanishing of the tangential stresses

(2.3) and (2.4). This can be seen most clearly in the horizontal components of the vorticity

wi at the free surface. Using (2.3) and (2.4), we obtain

aw av _ v eom
WX -- -2- - 2 on z = 0 (3.1)

ay Oz OZ OY

au Ow Ou OwaY - - ax 2 = 2 on z = 0 . (3.2)
a z 09x OZ OX

For small Froude numbers, h and w at the free surface are small, and it follows that wx and

WY are small at z = 0. Finally, using the fact that vorticity is divergence free, we obtain from

(3.1) and (3.2) the boundary condition for wz on the free surface:

=W -0 on z = 0 . (3.3)
az

This simple analysis shows that, for flows with significant vorticity, there exists a region

inside which the values of wX, wy, and Ow2/az (but not wz itself) change from their 'outer'

values to the much smaller values specified by (3.1), (3.2) and (3.3).

We note that this surface layer is thin for high Reynolds numbers. For laminar flow, a

typical argument of balance between viscous and convection terms in the evolution equations

for wx or wy shows that the thickness of the layer is proportional to the square root of the

Reynolds number.

The surface inner layer, which is due to the viscous dynamic boundary conditions, is
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distinct from the so-called 'blockage' or 'source' outer layer, which is due to the kinematic

boundary condition. The importance of the outer layer is manifested mainly in the redistri-

bution of the turbulence intensity, i.e. in the reduction of the vertical velocity fluctuations

and the increase of the horizontal velocity fluctuations. From the continuity equation, the

outer layer has a thickness of order macroscale L.

The surface inner layer is unique to free-surface viscous flow, while the outer layer obtains

in principle for any flows with a boundary constraining the normal motion, for example, rigid

wall flows and free-surface potential flows.

3.2 Identification of the surface layers

The existence of surface inner and outer layers is manifest in our DNS results of shear-flow

FST. Figure 3-1 shows these two layers clearly. Figure 3-1(a) plots the vertical variation of

/rms )1rms , grms, and (OWz/OZ)ms, which give a clear indication of the inner layer which

has a thickness of 0(0.1). Figure 3-1(b) plots the vertical profiles of the fluctuation velocity

components U/rm, which show distinctly the outer layer of thickness 0(0.5) (the macroscale

is 0(1)).

As mentioned earlier, a free surface affects the underlying turbulent flow by means of two

mechanisms: first, the dynamic boundary conditions require that the tangential stresses at

the surface vanish; second, the kinematic boundary condition constrains the motion normal

to the surface. The inner layer is where the dynamic boundary conditions are felt and the

outer layer is where the kinematic boundary condition is felt. Since the inner layer and

the outer layer are caused by different mechanisms at the free surface, the roles of these two

layers in the FST are distinct from each other. In 3.4, we investigate the effects of each layer

on the turbulence statistics in some detail, with the focus on the inner layer since it is unique

to FST. Here we demonstrate the variation of the first derivatives of velocity components

Duj/&xj and the variation of the strain components si =- (Ouj/Dxj + &uj/&xj)/2 over these

two layers.
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Figure 3-1: Existence of surface inner and outer layers. (a) Inner layer:
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v'rms. rms. Results at t = 60 are plotted.
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The vanishing of the tangential stresses at the free surface (2.3) and (2.4) gives

s1 23 =0 on z = 0, (3.4)

and
Du Dv
au 9 < 1 on z = 0 . (3.5)

Therefore, S13, 823, Du/Dz, and Dv/Dz decrease abruptly over the inner layer. This is shown

in Figure 3-2.

The term s33 = Dw/Dz, on the other hand, reflects the blockage effects of the surface and

varies over the outer layer. It follows from continuity that s81 = Du/Dx and 822 = DV/Dy

also change over the outer layer. In Figure 3-2, the outer layer depth indicated by the above

variables appears to be smaller than that in Figure 3-1(b) and that indicated by Ow/Ox and

Ow/Dy in Figure 3-2(b). The reason is that the flow field is inhomogeneous in the vertical

direction.

The presence of the surface inner and outer layers can be seen in the results of previous

studies. For example, Borue et al. (1995), Leighton et al. (1991), Pan & Banerjee (1995),

and Walker et al. (1996) plotted the profile of vorticity components, from which the inner

layer can be observed; Borue et al. (1995), Handler et al. (1993), Perot & Moin (1995), and

Walker et al. (1996) plotted the velocity component profiles, from which the outer layer can

be identified.

3.3 Effects of surface layers on vortex dynamics

In this section, we discuss the vorticity dynamics near the free surface, with emphasis on the

role of the surface layers in the reattachment of the vorticity to the free surface.
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3.3.1 Free-surface observables and the underlying vortex struc-

tures

It is known that the most prominent surface signature of FST is that due to connected

normal vorticity (see e.g. Sarpkaya 1996). Figure 3-3 shows the contours of w, at the free

surface at six successive time instants t = 58, 61, 64, 67, 70 and 73 from a specific DNS

realization. Note that the (periodic) domains plotted in Figure 3-3 are translated with the

mean longitudinal velocity (cf. Figure 2-3a). Coherent vortex structures are found scattered

on the free surface. If we look at those vortices continuously at smaller time intervals, we

can observe that a positive vortex (w2 > 0) always appears together with a negative vortex

(w2 < 0) and vice versa. Figure 3-3 also shows that the normal vortices at the free surface

are persistent with slow overall decay rates.

The presence of the aforementioned vortex structures is due to connection of vortex

structures at the free surface. Using the vortex at (-1.4, 0) in Figure 3-3(f) as an example,

we show how surface-connected vortices are generated. Figure 3-4 shows the near-surface

vortex structures in a small domain of size 2 x 2 x 0.75 at the four earlier time instants

t = 58, 61, 64, and 67. The positions of these sub-domains are indicated in Figures 3-3(a)

to (d). The vortex structures are represented by tracing a bundle of vortex lines defined as

d = - -, (3.6)

where f is the arc length of the vortex line. A fourth-order Runge-Kutta integration scheme

is used to integrate (3.6).

Figure 3-4 also plots the contours of w, at the free surface above the underlying vortex

structures to show their correlations.

Figure 3-4(a) (t = 58) shows the presence of a large underlying hairpin-shaped vortex

structure (marked 'C' in the figure), which is found to be prevalent in shear-flow FST.

The hairpin has the 'head' near the free surface consisting mainly of near-surface horizontal

vorticity and the two 'legs' in the bulk flow below. This is opposite to that in rigid-wall-

turbulence case, where the legs of the hairpin are close to the boundary and the head is in
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Figure 3-4: Vortex structures in shear-flow FST. Vortex lines and free surface contours of
w, are plotted. The colors on the vortex lines represent the magnitude of w. The surface
contours are plotted above, which correlate with the vortex structures underneath. The
domain size is 2 x 2 x 0.75. The position of each domain is shown in Figure 3-3.
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the bulk flow (e.g. Moin & Kim 1985). Near the hairpin structure, in this case, there are

two other vortices (marked 'A' and 'B' in the figure) which are already connected to the free

surface.

As the hairpin vortex structure is swept towards the free surface by the uprising fluid

('splat' event), the head is dissipated quickly in the surface inner layer where the dissipation

rate for horizontal vorticities is significantly higher. (The effects of the inner layer on vorticity

dissipation are discussed in detail in 3.4.3.) The hairpin vortex begins to break and the two

legs connect to the free surface at the 'shoulder.' The mechanism for the connection of a

hairpin vortex structure to the free surface is very much the same as the connection of, say,

a vortex ring to the surface. The detailed mechanisms have been studied extensively (see

e.g. Zhang et al. 1999) and will not be repeated here.

Figure 3-4(b) (t = 61) shows such a connection occurring: part of the hairpin vortex

structure has broken and the two legs (marked 'Cl' and 'C2') connect to the free surface.

The remaining vortex lines of the hairpin soon also break and connect to the free surface.

The connection is complete at t = 64 (Figure 3-4c). The two legs are completely attached

to the free surface forming a pair of counter-rotating vortices with opposite signs for the w,

component. Figure 3-4(c) also shows the merging of connected vortices (in this case 'Cl'

with a same-signed vortex 'A' which had previously been connected to the surface). At a

later time, t = 67 in Figure 3-4(d), the opposite-signed leg 'C2' also merges with another

surface-connected vortex 'B' of that sign. This coherent vortex ('B+C2') is what we see at

(-1.4, 0) later at t = 73 (Figure 3-3e). The merger of surface-connected vortices is also

frequently observed in FST (e.g. Gharib et al. 1994 for grid FST; Pan & Banerjee 1995 for

open-channel FST).

After the connection, vortices remain attached to the free surface and decay slowly, as

shown in Figure 3-3. In low-Froude-numbers cases, the magnitude of the horizontal vorticity

components is much smaller than that of the vertical vorticity, so that the vortices are nearly

perpendicular to the free surface. In the bulk flow below, the vortices are inclined in the

direction of the mean shear flow.

A statistical measure of the structures and mechanisms illustrated above can be obtained
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Figure 3-5: Coordinate system and sign convention for vortex inclination angles 0"2, OY2, and

a. 0_,, is the angle from the positive-z axis to wi + wzk in the (X, z)-plane; OY2 is the angle

/t y

from the positive-z axis to WyJ + +w in the (y, z)-plane; a is the angle between the z-axis
and wxi+ Wy j+ wzk.

by investigating the spatial distribution of two-dimensional vortex inclination angles in a way

similar to Moin & Kim (1985). If the vorticity vector is projected onto the (x, z)- and (y, z)-

planes, the two-dimensional vortex inclination angles are defined as Oxz = tan-1 (wx/w,) and

Oyz = tan 1(wy/wz), respectively, with the sign convention for the angles and coordinate

system shown in Figure 3-5. To emphasize the stronger vortices, the inclination angles are

weighted by the magnitudes of the respective projections of the vorticity vector (Moin &

Kim 1985).

Figures 3-6(a) and 3-6(b) show the histograms of vortex inclination angles Oxz and Oy2 at

different depths. Near the free surface, Oxz is highly concentrated around 1800 and 00/360;

while Oyz is concentrated around 1800, 00/3600, and 2700. The concentration of Oxz and Oyz

around 180' and 00 (or 3600) indicates the dominance of vertical vorticity, which corresponds

to vortices connected to the free surface, while the concentration of Oy2 around 2700 indicates

the dominance of spanwise vorticities pointing in the negative-y direction, which corresponds

to the head portion of the hairpin structures. In the bulk flow (z = -1), the peaks of Ox2

shift towards 1200 and 3000, which indicates that the vortices there are inclined with the

mean shear flow. The concentration of O,2 at 270' in the bulk reflects the spanwise vorticity

of the two-dimensional mean shear flow.

Following Moin & Kim (1985), O22 and O,2 in Figures 3-6(a) and 3-6(b) are based on
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instantaneous vorticity which includes the mean vorticity of the shear flow. The two-

dimensional vortex inclination angles ',, based on instantaneous vorticity fluctuations are

plotted in Figure 3-6(c) which shows that, in the bulk flow below (z = -1), the concen-

tration of Oyz around 2700 is absent for O'Z, while near the free surface, yz and O' are

similar. Therefore, coherent horizontal vortex structures (head portion of coherent hairpin

structures) do exist near the free surface.

We note that hairpin vortex structures and their connection to the free surface have been

reported in open-channel FST (cf. Rashidi 1997), which makes the physics of shear-flow

FST and open-channel FST closer to each other than to grid FST. However, the origins of

the vortical events in the open-channel FST and the shear-flow FST are different. In open-

channel FST, hairpin vortex structures are generated at the boundary layer at the solid

bottom and are swept to the surface after ejection from the bottom. In the present flow,

vorticity is generated entirely by the shear flow dynamics.

3.3.2 Spatial and temporal development of the surface layers

As we show in 3.1, the surface inner layer is a region of rapid variations for the horizontal

vorticity components and the vertical derivative of the vertical vorticity component. The

inner layer is, however, not always present: for instance, a uniform flow with a free surface

will have no need for a surface inner layer; uniform-strength vortex filaments attached per-

pendicularly to the free surface also satisfy the boundary conditions (3.1), (3.2), and (3.3)

automatically, and the inner layer is not present. In general free-surface vortical flows, the

surface inner layer is present whenever and wherever horizontal vortex filaments approach

the free surface.

Figure 3-7 shows the development of the surface inner layer during the connection of

hairpin vortex structures to the free surface. Using the hairpin vortex in 3.3.1 as an example,

Figure 3-7(a) shows the vertical section of the hairpin structure as it approaches the free

surface. The head portion of the hairpin is a region of high horizontal vorticity (mainly wy)

and there exist high gradients between the hairpin head and the free surface where horizontal

vorticities given by (3.1) and (3.2) are small. The presence of the surface inner layer at, say,
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Figure 3-7: Development of the surface inner layer during a vortex connection process. (a)
Contours of (w2 + W2)1/2 on the vertical x,z section at y=-0.49, t=58, when the hairpin
structure in 3.3.1 approaches the surface. The inner layer is evident in this case. (b), (c)
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intervals are 0.2 for all three figures.
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Figure 3-8: Spatial distribution of the surface inner layer. (i) Contours of [(&w2/az) 2 +
(Ow./Oz)2]1/ 2 at z = 0. (ii) Contours of (w2 + W2)1/2 at z = -0.1. The inner layer exists at
the dark regions where the vertical derivatives of horizontal vorticity is large.

x E ~-' (1.1, 2.1), is quite evident. Outside such a region, the vertical gradients are not large

and the surface inner layer is absent.

After a vortex is connected to the free surface, the vertical gradients are smoothed out

and the surface inner layer is, strictly speaking, not present. This is shown in Figure 3-7

where the above vortex has connected to the free surface (see Figure 3-7b). Figure 3-7(c)

plotting the (w2 + W 2)1/2 contours confirms that horizontal vorticity components are small

underneath and that, in general, a surface inner layer is absent for a vortex after it has

connected to the surface.

Figure 3-8 shows a global picture of the spatial distribution of the surface inner layer.

Figure 3-8(i) plots the contours of [(awx/&z) 2 + (Owy/&z) 2 11/ 2 at the surface z = 0, while

Figure 3-8(ii) plots the contours of (W2 + w2) 1/ 2 at z = -0.1. In both figures, the presence of

the surface inner layer is indicated by dark regions where the vertical derivatives of horizontal

vorticity are large. The light regions are locations where significant near-surface horizontal
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vorticity is absent (vorticity itself is either small or has connected to the surface there), and

the inner layer is not established there.

In conclusion, a surface inner layer only exists when/where vortex filaments (which should

contain horizontal components) approach the free surface. In the present shear-flow FST,

connection of vortices to the free surface occurs frequently and the surface inner layer is

present over a considerable portion of the free surface (see Figure 3-8) at all times.

The occurrence of hairpin vortex structures in grid FST, on the other hand, is rarer than

that in shear-flow FST, and the effect of the surface inner layer is less significant for grid

FST than shear-flow FST. This is discussed in 3.4.

Pan & Banerjee (1995) performed an interesting test in their DNS with two different

boundary conditions at the bottom: (a) they first applied the usual no-slip condition at the

bottom; (b) after the flow with no-slip bottom was fully developed, they then switched the

no-slip bottom to a free-slip bottom. In case (a), the ejection from the wall towards the

surface is found to be pronounced. In this case, we can regard the occurrence of the surface

inner layer to be significant, since the upwelling motions sweep considerable horizontal vortex

filaments (which are generated near the wall) to the surface. In case (b), Pan & Banerjee's

(1995) results show that the mean shear flow becomes flattened out immediately and the

upwellings are found to disappear. Their mean shear is much weaker than that in the present

study and their flow field (b) is more like grid FST than the shear-flow FST here. In that

case, few horizontal vortices are swept to the surface and we expect that the surface inner

layer is less significant in case (b).

3.3.3 Evolution of normal vorticity at the free surface

As pointed out earlier, the surface inner layer has little effect on the vertical vorticity com-

ponent and the surface-connected vortices are found to be extremely persistent. We analyze

here the vorticity equation to reveal the underlying mechanisms for the evolution of surface-

connected vortices.
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The evolution equation of w, can be written as

az +- z wat
1Vw + V 2w,

Reo

where the first term on the right represents vortex turning and stretching, and the second

term, vortex diffusion due to viscosity.

Defining V' = (a/ax, a/ay, 0) and invoking continuity, we obtain

aw,
at + V' - (wzi - wW) = 12eO .

ReOVw
(3.8)

At the free surface, tangential stresses vanish as in (2.3) and (2.4):

au aw av
Oz Ox Oz

It follows that
aV'-(w0)=

aw2

ay

+ w=0OWy

a aw 2

- ( )= 0
Oy ax

on z = 0. (3.9)

on z = 0, (3.10)

and (3.8) reduces to

z + V'- (wz-) =at
12
ReV2W

ReO
on z = 0 . (3.11)

If we consider an arbitrary region F on the free surface, it follows from (3.11)

d fjwdxdy = fJ V 2wdxdy on z = 0 . (3.12)

If F is taken to be the entire (periodic) domain, (3.12) becomes trivial since both integrals

involving wz over F vanish.

We now consider the more general form of (3.8) under the condition (3.9). Multiplying

(3. 11) by no-1, n = 1, 2, ... , we obtain

azw + nW"- 1 V'. (wz)=
at n W z-IV

2wU
ReOz
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on z = 0 . (3.13)



After some manipulation we obtain

V' - (w+/ f) - 1)w" + n7'-V 2WZ on z = 0. (3.14)
t zz Re0

In the region F we have

d Wfnldxdy = (n -1) Ww ddy + fly w V 2 wzdxdy on z = 0 . (3.15)

Therefore, for n > 1, ff, wndxdy over the entire free surface, is, in general, no longer

conserved. Of special interest is the case n = 2 which governs the enstrophy:

d- Jj dxdy

W d-dy + z V2Jfzddy

2__21 1W 1 a2wj2
-) fdxdy - V . Vwzdxdy + V'2 dxdy + dx2 ddy.iy af7 Re0  _________4 Re0 O

stretching dissipation horizontal diffusion vertical diffusion

(3.16)

In (3.16), the first term is a vortex stretching term, which produces enstrophy. The

second is a dissipation term while the third is the horizontal diffusion out of the region F.

If F is the entire (periodic) free surface, this horizontal diffusion is exactly zero. The fourth

term is the vertical diffusion of the enstrophy. Therefore, over the entire free surface the

enstrophy is, in general, not conserved except for a quasi-steady state in which the stretching

term approximately cancels those due to dissipation and diffusion.

To investigate the evolution of surface-connected vorticity, we first examine the time

evolution of the surface-inclination angle of these vortices. The three-dimensional vortex

surface-inclination angle a is defined as

a = tan-l(( 2 + w2)/2 /jwz), a E (00, 90), z = 0, (3.17)

i.e. a is the angle between the z-axis and the vorticity vector wo + wyj + wzk, as shown in
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Figure 3-5.

As expected, a is found to generally decrease as a surface-connected vortex evolves: as

a vortex connects to the free surface, the horizontal components of vorticity (in the head

portion of the hairpin) are not small compared to the vertical component and the inclina-

tion angle is large. After connection, the horizontal vorticity is dissipated away because of

the surface inner layer. The vertical vorticity dominates and the surface-inclination angle

becomes small. This is shown in Figure 3-9 for typical surface-connected vortices (cf. Figure

3-3). The vortex surface-inclination angle thus provides a useful measure of the 'age' of

a vortex in the connecting/connected process: large a corresponds to early stages of the

evolution and small a later stages.

To examine the roles of the different terms in (3.16) in the evolution of surface-connected

vortices, we perform conditional averaging over the free surface, first for W,, > Cw""m, where

C = 2, say, to select the stronger surface vortices, and then for specific values of a so that

the contributions at different stages of the evolution are separated: i.e. ( 1 z > 2w"'; a)

where * is a term in (3.16).

Figure 3-10 plots the conditional-averaged terms in (3.16) as a function of vortex surface-

inclination angle a. Note that negative stretching, i.e. - ffW Ow/Ozdxdy is plotted in

Figure 3-10. It is shown that both vortex stretching and dissipation are strongly dependent

on a, and their magnitudes drop dramatically as a decreases. This is reasonable since the

flow field is more three-dimensional during the early phase of connection (large a). Also at

the early phase, stretching is dominant. The supplementing of enstrophy by vortex stretching

exceeds the reduction due to dissipation and diffusion and therefore the enstrophy increases.

At the late stage of evolution (small a), both stretching and dissipation decrease and the

role of horizontal diffusion becomes more and more important. (Note that due to conditional

averaging, there always exists horizontal diffusion into the area where vorticity is weaker.)

The vertical diffusion is always negligible.

The disparate behaviors of vortex stretching at different stages of connection is manifested

in Figure 3-11 which plots the surface contours of wz, Ow/Oz, and wl&w/zz, as well as the

underlying vortex lines for the vortex examined in 3.4.1 at respectively t = 64 (early stage
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of evolution) and t = 73 (late stage). Note that the strain rate Ow/Oz, which governs vortex

stretching, is always positive for the whole surface-connected vortex during the early stage

of evolution but becomes small when integrated over the vortex at a later stage. The latter

is controlled by the underlying vortex structure which generally does not remain (nearly)

perpendicular to the free surface in the shear flow below. The induced strain rate over

the surface connection region is thus, in general, approximately antisymmetric with a small

net integral. This is illustrated in Figure 3-11(ii). The overall consequence is that vortex

stretching ff, wjw/ozdxdy is strong/weak during the early/late stage of the connection.

The decrease of both vortex stretching and viscous dissipation in the later phase makes

horizontal viscous diffusion relatively important.

It is instructive to compare the evolution of a surface-connected vortex to that predicted

by a two-dimensional Lamb laminar vortex which has an analytical solution for the vorticity

given by

w (r, td) =FReO -r 2ReO/4td (3.18)
47rtd

where r is the distance from the vortex center, F the total circulation, and td the decay time.

The vorticity at the center WCrO is given by

FRe0core (td) = . (3.19)
47td

To effect comparison, we define an initial time t' for the connected vortex using the

criterion a < 20', obtain F by the integration of w, over the region w, > 0.05w2,re at that

time, and obtain the time scale T = td by solving (3.19) using these values and the observed

wcore at this (initial) time. The diffusion time is then given by td = t - t' + T.

Figure 3-12 compares the decay rates of surface-connected vortices to that of a Lamb

vortex (solid line) assuming either the actual Reynolds number Reo = 1000 (Figure 3-12a),

or one based on eddy viscosity (Figure 2-3a) with Reynolds number ReT ~ 100 (Figure

3-12b). The figures show that the decay rate of surface-connected vortices is substantially

slower than that predicted by eddy viscosity and is in fact more comparable to that due

to laminar diffusion (at Reo = 1000). This reflects the fact that for a vortex which has

74



(a) 1
1.0 0

0 A~ Ao0 0A
0 A

0
A

0.
0 1 2

ONd

3 0.60

10 0

0 ~ ~ a . e 10

0.0.0Z

3 0.4

- * 0A10
SA 

A

3N~ 0.

A* A A

0.2 0O
0.0

1 112 05

t IA

td

1.0 00

7A A

4 A A

00
U N 0.8 A A

AA 0 Q

AA
00

0N .0

_Re AS0000

0.0

5 10 15

tdT

Figure 3-12: Comparison of the decay rate between surface- connected vortices and a two-
dimensional Lamb laminar vortex which is at (a) the same Reynolds number Reo 1000; and
(b) ReT 100 based on eddy viscosity. The symbols represent different surface- connected
vortices in Figure 3-3 whose positions are given in Figure 3-9.

75



connected to the surface, dissipation is small as shown in Figure 3-10 (the dissipation for

strong coherent vortices, say conditioned by w, > 2w', is even smaller than the average

value for all vortices.) The conclusion is that, relative to surface-parallel vorticity which

dissipates rapidly in the surface inner layer, connected surface-normal vortices decay slowly

and thus remain persistent on the surface. This persistence of connected vortices has been

reported in experiments (see e.g. Sarpkaya, 1996).

We point out that vortex stretching remains a dominant process during most of vortex

connection and the net effect diminishes only as the connection is established (the net effects

that remain help maintain the strength of the connected vorticity). The three-dimensional

effects associated with vortex stretching are thus an important aspect of FST, and quasi-

two-dimensional hypotheses (e.g. Gharib et al. 1994, Pan & Banerjee 1995) do not in general

obtain. The three-dimensionality of FST has also been argued by Walker et al. (1996) who

based their conclusion solely on turbulence statistics, which we discuss in the next section.

3.4 Effects of surface layers on turbulence statistics

In this section we discuss the roles of the surface inner and outer layers in the statistics of

turbulence scales, Reynolds-stress balance, and enstrophy dynamics.

3.4.1 Turbulence scales

The velocity two-point correlation function is defined as

(ui(zp)ul(' + e'mr))
mr, z) = , = 1=1, 2, 3, m= 1,12 , (3.20)

(1 )

where em is the unit vector in the m-direction and r the distance between the two points.

Summation notation is not implied for 1 = 1, 2, 3.

The Taylor microscale is

A i mn ( z ) =
2 2  1 1 / 2

m (02Rm(r, z) /Or2 I_
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Figure 3-13 plots the vertical variations of Taylor microscales Am. The streamwise scale

associated with the spanwise velocity A2 1 and the spanwise scale associated with the stream-

wise velocity A12 increase as the free surface is approached. This phenomenon is consistent

with what Handler et al. (1993) have found (although the rate of increase in shear-flow FST

here is smaller than that in open-channel FST). To explain it, Handler et al. (1993) proposed

a 'pancake' model which states that eddy structures get flattened as they impinge the free

surface. To show this picture more clearly, we look at the Taylor microscale A' which is de-
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fined in terms of vorticity instead of velocity in (3.21). As shown in Figure 3-14, the scales of

horizontal vorticity increase within the outer layer. The decrease of vertical vorticity scales

is believed to be caused by the stretching of surface-normal vorticity.

Thus, the vertical variations of Taylor microscales (of velocity, and especially of vorticity)

support the 'pancake' model proposed by Handler et al. (1993). Apparently, the 'pancake'

(vortex structure) gets flattened because of the blockage effect of the surface when it is swept

to the surface by upwelling motions. Therefore, the 'pancake' model is a result of the outer

layer.
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3.4.2 Reynolds-stress balance

For FST with a two-dimensional mean shear, the equations for the primary components of

the Reynolds stresses (u'2 ), (v' 2 ) and (W' 2 ) are (see e.g. Hinze 1975, p. 323)

__ U au_ 1 02(u'22) 2 au' On' a , , 9(u)
= 2(p ) + ( ) -- (u'2 w') -2(u'w) (3.22)at DX ReO &Z 2  ReO 'Xk cXk GZ OZ

I II III IV V

(V2)v' 1 2(v' 2) 2 Dv' v'
-t= 2(p' 9  ) +  ( Re ) Ov k - 0- (v'2w') (3.23)

I II III Iv

O(w'2) 09W w 1 92( W2) 2 aw'Ow' _ a (3.24)
-= 2(p'-) + (--('3 - 2-(p'w') (3.24)at Oz ReO Z2 ReO OXk XkD Z - z

I II III IV

Here I are the pressure-strain correlation terms, II the viscous diffusion terms, III the dissi-

pation terms, IV the transport terms, and V the shear flow production terms.

Figures 3-15 to 3-17 show the vertical profiles of the above terms. Most are similar to

those in open-channel FST (Handler et al. 1993). Compared with grid FST, however, many

are qualitatively different.

Turbulence production

A fundamental difference between shear-flow FST (or open-channel FST) and grid FST

is that the former has turbulence production from the mean shear, while the latter purely

decays. For the two-dimensional mean shear (u)(z) studied in this paper, (3.22)-(3.24)

show that only the u' equation has the production term -2(u'w')D(u)/z, which means that

only the streamwise velocity component obtains energy directly from the mean shear flow.

Therefore, u' is larger than v' and w', which is shown in Figure 3-1(b).

Figure 3-15 shows that turbulence production decreases as the free surface is approached.

This decrease is a result of two effects: (i) the reduction of the vertical velocity w', as a

result of the blockage effect, as the free surface is approached; and (ii) more importantly,

the reduction of the mean velocity shear D(u)/Dz inside the surface inner layer. In fact,
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Figure 3-15: Terms in the Reynolds-stress equation for (u' 2 ): , pressure-strain

correlation term 2(p'au'/&x); - - - - , viscous diffusion term (1/Reo)&2 (U1 2)/0z 2; - - -
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and * to Fr00. Froude number effects are discussed in 3.5.
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at the free surface, the mean shear becomes zero in accordance with the zero mean stress

requirement at z = 0.

Dissipation

For the dissipation term, there is a significant reduction within the surface inner layer

for both the horizontal components u' and v' (Figures 3-15 and 3-16). The decrease in the

dissipation is a direct result of the zero stress condition at the free surface. More specifically,

if we write explicitly the expression for the dissipation, say for the u' component

2 &U'&U') 2((Ou') 2 an' 2 ((a)'
( ) =' (( 2 ')2) 2 2) _ 19 )2) -(3.25)

ReO OXk DXk ReO Ox ReO y ReO Dz

we see from 3.2 that the value of au'/&x increases over the outer layer and the variation of

au'/ay is small. It is the last term au'/&z that must decrease abruptly inside the surface

layer to reach the value dictated by the boundary condition (3.5), which is shown in Figure

3-2(b). The reduction in the overall dissipation is thus due to the decrease of this term near

the free surface.

Unlike in Figures 3-15 and 3-16, the surface inner layer has no visible effect on the

dissipation of w' (Figure 3-17). The dissipation for the w' component is

2 aw'Ow' 2 aw'2  2 Ow' 2 '2 )w =9, (( a ) 2) _ (( aw'2 _ ( aw )2) . (3.26)
Reo OXk O1xk ReO Ox ReO ay ReO az

Figure 3-2(b) shows that over the outer layer, aw'/ax and aw'/ay decrease while aw'/az

increases. Thus the surface inner layer has little effect on the dissipation of w'.

If we now sum the dissipation of u', v', and w', we obtain the conclusion that the total

turbulent kinetic energy dissipation

1 Ou' an' av' av' 9w' aw'
I= (( au 09 + + )) (3.27)

Reo aXkaXk aXk Xk aXk aXk(7

decreases within the inner layer. Therefore most of the kinetic energy dissipation occurs

outside the inner layer. This result is in contrast with the boundary layer next to a wall

where the opposite is true.
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The decreased dissipation at the free surface was first observed by Handler et al. (1993)

and further discussed by Perot & Moin (1995) and Walker et al. (1996). Perot & Moin (1995)

conjectured that the two-componentality of the turbulence near the surface and therefore

the lack of the usual energy cascade leads to the reduction of dissipation. Walker et al.

(1996) explained the reduction by the decrease of horizontal vorticity, which is in the same

spirit as the present explanation (3.25) and (3.26), although their explanation is slightly

more complicated. Walker et al. (1996) wrote the kinetic energy dissipation as

1 1
f= Re (si sji + Wiwi) , (3.28)

Re0  2

and showed that the decrease in dissipation results from the reduction in the enstrophy

wiwi. We would like to point out that the reduction in two of the components of siys3 i:

813831 and s23832, in the surface inner layer (Figure 3-2a), also contributes to the decrease of

dissipation. From our DNS data, it is found that the variation in enstrophy is responsible for

about 70% of the reduction in dissipation, while the variation in 813 and 823 is responsible

for the remaining 30%.

Pressure-strain correlation

Since energy is extracted from the mean shear flow to u', u' is larger than v' and w'.

In order to return to isotropy, energy is further transfered from u' to v' and w' through

pressure-strain correlation terms. Figures 3-15 to 3-17 show that 2(p'Ou'/&x) is in general

negative, while 2(p'&v'/&y) and 2(p'9w'/az) are in general positive (except near the free

surface where 2(p'Ow'/&z) becomes negative). Thus u' in general loses energy to v' and w'.

Figure 3-17 shows that 2(p'Ow'/Oz) becomes negative near the free surface, which means

that w' loses energy to the two horizontal velocity components. As pointed out by Perot &

Moin (1995), near the surface, the inter-component energy transfer is controlled by both splat

and antisplat events: splats transfer energy from w' to u' and v' but antisplats transform

the energy back immediately. It is the imbalance between the splats and antisplats that

results in the inter-component energy transfer; and this imbalance is controlled by viscous

processes such as dissipation and diffusion. Perot & Moin (1995) found that for grid FST,

84



the viscous effects and therefore the inter-component energy transfer is small. The results

obtained by Walker et al. (1996) have also confirmed the relatively small inter-component

energy transfer in grid FST.

The situation in shear-flow FST is, however, substantially different. If we assume that

the viscous effects in shear-flow FST are small, as in the case of grid FST, the energy w'

loses to u' and v' should be small. If we further take into account the extra energy transfered

from u' to v' and w' because of the mean flow production, the energy that w' loses should be

even smaller (or w' may in fact gain energy). However, Figure 3-17 shows that 2(p'Dw'/Dz)

is not negligible at the surface. As a matter of fact, the inter-component energy transfer is

significant for shear-flow FST. Therefore, the imbalance between splats and antisplats near

the free surface is not insignificant for shear-flow FST.

The inter-component energy transfer is also important for open-channel FST (e.g. Handler

et al. 1993). The main difference in inter-component energy between shear-flow FST/open-

channel FST and grid FST can be understood as follows. Both shear-flow FST and open-

channel FST are characterized by strong splat motions (which sweep horizontal vorticity

filaments to the surface and make the surface inner layer clear) and antisplat motions, al-

though the causes in these two types of flow are different. The former emerges from the

sheared bulk flow while the latter is due to ejections from the rigid wall. Our experience in

grid FST shows that splats and antisplats are quite rare compared to shear-flow FST and

open-channel FST. A good example is the 'switch-bottom test' by Pan & Banerjee (1995),

which we discussed in 3.3.2. Therefore, the inter-component energy transfer in shear-flow

FST and open-channel FST is much more important than that in grid FST.

Viscous diffusion and transport

The viscous diffusion terms in shear-flow FST are similar to those in open-channel and grid

FST. Diffusion is directly related to the turbulence fluctuation profile, which is shown in

Figure 3-1(b). Diffusion is small in the bulk flow below and becomes comparable to other

dominant terms only near the surface. For u' and v', the fluctuation increases not only

because of the blockage effect of the surface, but also because of the reduction of dissipation
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in the surface inner layer. Viscous diffusion is most significant in the inner layer. Figures

3-15 and 3-16 show that diffusion transports energy from the near-surface-region to the deep

region for u' and v'. For w', since its profile is mainly affected by the blockage effect of the

surface, diffusion is appreciable inside the outer layer instead of the inner layer. Figure 3-17

shows that w' diffusion moves energy from the deep region to the surface.

The transport terms represent the vertical energy transfer due to turbulence velocity

fluctuations (and pressure fluctuation in the case of w'). Since the transport terms reflect

the subtle variations in the fluctuation profile, we believe they are highly dependent on the

specific problem being studied.

Finally, we remark that the summation of all the right-hand-side terms in (3.22)-(3.24),

which gives the time-rate-of-change of the Reynolds stresses, is small since the near-surface

region is quasi-steady. This is as expected and is in contrast with grid FST which is purely

decaying.

3.4.3 Enstrophy dynamics

We have seen that the surface inner layer is manifest primarily in the horizontal vorticity

components rather than in the vertical vorticity component. It is thus natural to expect that

the inner layer will have disparate effects on the dynamics of the horizontal versus vertical

enstrophy components.

The equation for the balance of the enstrophy components is given by (e.g. Tennekes &

Lumley 1972 p. 87; Balint et al. 1988)

(9_W_ _ _______ au , 1, a u'
= - +2((W0 + IWI + wW4 )) (3.29)at az ax X y X 1Z

II III

+2(w~w,) +2 (w' ) + Rg0) (k ,~
Oz , z xoy) ReO& (z e 8 x ) x

IVV VI VII
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_(__) 2 2W') Ov' _O' Ov'
=~~2 -2u) +2((c'.' + i2 + ' )) (3.30)

Dt ) Dz 2  Dz YDx Y Dy z3.0
I II III

D(u) ,o' 1 D 2  2 Dw' Dw'
2 (U D) R 2 p/2) ~ K --- Y)Oz + Oy ReOz2Y ReO Dxk DXk

V VI VII

= - +((Wxb' + ,wz + Wi2  )) (3.31)
Dt z x Oy Zz

II III

D(u) Dw' 1 D2  2 ' DOW'
Dz+ P Z)+ z WDy Reo OZ2 Reo Dxk Dxk

V VI VII

Here the terms are: I, gradient production; II, transport by velocity fluctuations; III,

production due to the gradients of velocity fluctuation; IV, production due to mean shear;

V, mixed production; VI, viscous diffusion; and VII, dissipation.

The vertical variation of the above terms is plotted in Figures 3-18 to 3-20. The results are

largely consistent with the open-channel FST figures of Leighton et al. (1991). Comparing

with the grid FST results (Walker et al. 1996), the terms related to hairpin vortex structures

are different.

The most significant effects of the presence of the free surface in all these cases are the

large vertical variations of the viscous diffusion term (VI) and dissipation term (VII) for

the horizontal vorticity within the surface inner layer where vertical gradients of horizontal

vorticities are high. Hence, both diffusion and dissipation increase sharply in the inner layer.

In the limit of zero Froude number, it can be shown that diffusion and dissipation must be in

balance at the surface (this is also true for (w' 2 )). For small Froude numbers, such a balance

must still approximately obtain.

Unlike the horizontal enstrophy components, the viscous diffusion and dissipation terms

for (U2) are not affected by the surface layer (Figure 3-20). This is consistent with our
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Figure 3-18: Terms in the enstrophy evolution equation for (W2): (a) - - - - - , transport by
velocity fluctuations -O(Wow')/Dz; , production due to the gradients of velocity
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Figure 3-19: Terms in the enstrophy evolution equation for (22): (a) - - - - -,transport by
velocity fluctuations -O(ww')/0z; production due to the gradients of velocity
fluctuation 2((w' W, (&v'/&x) + 22 (Ov'/Oy) + w'w' (O'/Oz) )); ....... , gradient production
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diffusion (1/Reo)0 2 (wf)/&z 2; -- -- , dissipation -(2/Reo)((aw' 1/Xk)(&W/Xk)). (b)
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2- - - , 2(Wo(Ov'/&y)); - --- --- , 2(w'w'(Ov'/&z)). The symbol o
corresponds to Fro=0.7 ; and . to Fo=0. Froude number effects are discussed in 3.5.
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Figure 3-20: Terms in the enstrophy evolution equation for (w): (a) - - - - - , transport by
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effects are discussed in 3.5.
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earlier observations that the variation of w, is small over the surface inner layer since it is

not w, but aOz/z that is controlled by the inner layer.

The different behaviors of viscous diffusion/dissipation for horizontal vorticity and ver-

tical vorticity explain the rapid vanishing of the head portion of hairpin vortices within the

surface inner layer in contrast to the persistence of surface-connected vortices as discussed

in 3.3.

For the same reason, the transport term (II), which reflects the vertical variation of

the intensity of vorticity fluctuation, also has disparate behavior for horizontal and vertical

vorticity components. The transport for ( w) and (w") becomes significant in the surface

inner layer where w' and w' attenuate rapidly, and w' and w' enstrophy is transported from

below to the surface inner layer. The transport term for (w"), on the other hand, becomes

important in the outer layer instead of the inner layer, since the fluctuation of W' varies over

the outer layer.

Both the inner layer effects and the outer layer effects are manifest in the production due

to the gradients of velocity fluctuation term (III). To show the mechanisms more clearly,

Figures 3-18(b), 3-19(b), and 3-20(b) plot each component of III. As shown, the production

due to stretching (2(W12(Ou'/ax)), 2(w(v'/&y)), and 2(w1 2(Ow'/az))) is dominant near the

surface. Their significant increase in the outer layer is due to the increase in stretching

(Oa'/&x, &v'/Oy, and &w'/&z) there. (Leighton et al. 1991 and Walker et al. 1996 explained

this by using the 'splat' concept. Walker et al. 1996 further argued that FST is fully three-

dimensional up to the surface based on the vertical stretching &w'/Oz.)

The inner layer makes 2(w2(Ou'/Ox)) and 2(W1(Ov'/Oy)) different from 2(W1(Qw'/z)).

For horizontal components, the stretching of horizontal vorticity decreases sharply over the

inner layer since wx and wy diminish at the free surface. The stretching of vertical vorticity,

on the other hand, continues to increase up to the free surface, since wz does not need to

decrease in the inner layer.

An important observation is the significance of the wy stretching (Figure 3-19b). It

increases inside the outer layer and reaches its peak just outside the inner layer. This peak

is more prominent than that of wx (Figure 3-18b); it is also much larger than the horizontal
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stretching in grid FST (Walker et al. 1996). The significance of the wY stretching in shear-

flow FST is due to the hairpin vortex structures investigated in 3.3. The head portion of

hairpin vortices corresponds to the enhanced spanwise vorticity wy, which is shown in Figure

3-1(b). As the hairpin head enters the outer layer, it is stretched by the diverging flow due

to the blockage effect of the surface ('pancake' model or 'splat' model). Therefore, the above

difference in w, and wy stretching is consistent with the hairpin vortex structures discussed

in 3.3.

The remaining terms are characteristic of shear-flow FST and not present in grid FST.

The gradient production term (I) exchanges enstrophy between mean vorticity and the vor-

ticity fluctuation and only the wy equation has this term. The production due to mean

shear (IV) is similar to the production term in the Reynolds-stress equation and only W,,

has this term. The mixed production (V) is present for all the three components of vortic-

ity. An interesting observation from Figures 3-18 to 3-20 is that the summation of all the

mixed production for each vorticity component is close to zero, which means that the mixed

production somehow redistributes the enstrophy among the vorticity components.

3.5 The effects of the Froude number

3.5.1 Overview

In the study of FST of small Froude numbers, it is often suggested that the free surface can

be approximated as a flat free-slip plate, in which case free-slip boundary conditions apply

at z = 0:
OU - v 0 (3.32)
Oz &z'

w = 0, (3.33)

a= 0. (3.34)
az

These are obtained also from (2.3), (2.4), (2.5), and (2.7) (and (2.1)) in the limit Fro -+ 0.

Since the free-slip-plate approximation does not involve motions of the free surface, the
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z = 0 z = -0.125 z =-1
Fro = 0.7 Fro = 0 F 0 = 0.7 Fro = 0 Fo = 0.7 Fro = 0

(u) 0.3771E0 0.3763E0 0.3924E0 0.3921E0 0.5206E0 0.5221E0
u'rms 0.8171E-1 0.8196E-1 0.8154E-1 0.8170E-1 0.1031E0 0.1041E0
v'rms 0.7825E-1 0.7946E-1 0.7301E-1 0.7397E-1 0.8793E-1 0.8811E-1
w'rms 0.3003E-2 0 0.2732E-1 0.2666E-1 0.7396E-1 0.7359E-1

q 0.1132E0 0.1139E0 0.1132E0 0.1135E0 0.1546E0 0.1549E0
WrMS 0.3961E-1 0 0.3624E0 0.3510E0 0.5180E0 0.5073E0
W'rMS 0.3664E-1 0 0.3903E0 0.3913E0 0.4147E0 0.4382E0
_ 'rms 0.2710E0 0.2656E0 0.4572E0 0.4527E0

Wq 0.2789E0 0.2663E0 0.6122E0 0.6039E0 0.8065E0 0.8102E0
(p) - (1)bottom -0.9018E-5 0 -0.7464E-3 -0.7108E-3 -0.5470E-2 -0.5415E-2

pirm s 0.8434E-2 0.8448E-2 0.8519E-2 0.8526E-2 0.1143E-1 0.1145E-1
h' s 0.4251E-2 0

Table 3.1: Comparison between free-surface turbulence (Fo 0.7) and free-slip-plate tur-
bulence (FO = 0) at t = 60.

question remains whether free-surface effects on the turbulent flow are indeed negligible for

relatively small Froude numbers. To study this, we compare our DNS results for the free-

surface case (Fr,=0.7 ) with another set of (twenty) simulations under identical conditions

but using free-slip-plate (Fo=0) boundary conditions (3.32)-(3.34).

Table 3.1 shows the comparison of relevant turbulence statistics between the two cases.

In Table 3.1, Wq- ((W'ms) 2 + (,mS) 2 + (irms) 2 )l/ 2 is the fluctuation intensity of enstrophy;

and (p) is the horizontal average of pressure which satisfies

(P) - (P) bottom -(W 2 ) + (Wbottom) (3.35)

Equation (3.35) is obtained by averaging the z-component of the Navier-Stokes equations

(2.1) over the (x, y)-plane and integrating with respect to z.

We remark that Fro=0.7 is based on the initial mean velocity deficit U. A more appropri-

ate scale here is the turbulence velocity fluctuation at the surface qO ~ 0.1U, which yields the

Froude number Fq ~_ 0.07. Thus, the difference between the free-slip-plate turbulence and

the free-surface turbulence is expected to be quite small, in particular for all the quantities

considered in Table 3.1.
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The exception to the above observation turns out to be quite subtle. Figure 3-18 shows

that inside the surface inner layer, the variations of dissipation and diffusion for horizontal

vorticity in the F 0 =0.7 case is slightly larger than those in the FO=O case. This implies

that the vertical gradients of horizontal vorticities increase for the F00.7 case. The outer

layer effects, on the other hand, are weakened by the free surface. This can be seen most

clearly in Figure 3-17: the pressure-strain correlation term and the transport term in the

free-surface case are considerably smaller than those in the FO=O case, even for such small

Froude numbers.

In the following subsections, we discuss the effects of (small) Froude numbers on the

surface inner and outer layers, respectively.

3.5.2 Effects of Froude number on the inner layer

The horizontal vorticity w, and wy at the surface is given by (3.1) and (3.2). At a free-slip

plate, w, and wy are both zero. At a free surface, however, the surface vorticity components

w and wy are non-zero, although the magnitude is small for low Froude numbers.

Figure 3-21 shows the free-surface elevation and surface vorticity induced by an under-

lying vortical structure (we use, as an example, the vortex structure in Figure 3-7a). The

coherent vortex structure in the Figure (dashed lines) is the cross-section of a hairpin head,

whose wy component is negative. As the hairpin approaches the free surface, secondary sur-

face vorticity is induced. This can be seen most clearly at the position (x = 1.2, z = 0).

The free surface is depressed and the induced surface vorticity has a positive Wo component,

which is opposite in sign to the main vortex underneath. These observations are consistent

with those for laminar vortex interaction with a free surface (see Marcus & Berger 1989,

Lugt & Ohring 1994, and Zhang et al. 1999).

The opposite signs of the surface vorticity and the one underneath which generates it

are confirmed by statistics. The correlation between the vorticity at the surface and the one

underneath is defined as:

Pi(0)Wi) ))
Cor(wi(0), wi(z)) = ms()wms(z) , , 3 , (3.36)
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Figure 3-21: (a) Free-surface elevation h and (b) surface vorticity wY, induced by an under-
lying vortex approaching the free surface. The position and time is the same as in Figure
3-7(a). In (b), solid lines represent positive contour values while dashed lines represent
negative values. The contour increment is 0.1.

where no summation notation is implied, and wi(0) = wi|,=o and Wi(z) - Wilz=z etc.

Figure 3-22 plots the correlation function (3.36) for w,, wo, and w,. Cor(w2(0),wz(z))

decreases slowly over the outer layer, which means that the surface-normal vorticity is well

correlated with the vortex structures underneath. The correlation functions for w, and wY,

on the other hand, decrease sharply over the surface layer which shows that the structure of

horizontal vorticity changes dramatically near the free surface. This result is of fundamental

importance when information from surface sensing (such as the imaging of a ship wake) is

used to deduce structures of the underlying flow.

Figure 3-22 shows that the correlation functions for w, and wy are negative for small z.

The surface inner layer is the region where horizontal vorticity changes from 'outer' values

to the small values at the surface inner layer. Comparing this with the FrO=O case where

surface vorticity is zero, the free surface produces surface vorticity which has signs opposite

to those underneath. Therefore, the vertical gradients in the free-surface case are larger than

those in the free-slip-plate case. This explains why the surface inner layer effects are slightly
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Figure 3-22: Correlation between
, Cor(w,(0), w,(z)); - - -

the vorticity at the surface and vorticity underneath.
- , Cor(w (0), wy(z)); - - - - - , Cor(wz(0), w2(z)).

larger for FST in Figures 3-18(a) and 3-19(a).

It should be pointed out that surface vorticities at low Froude numbers are small com-

pared to the vorticities of underlying vortex structures. Therefore, the effects of small Froude

numbers on the inner layer is not pronounced. The Froude number effects on the outer layer

is, however, much more prominent, which we investigate next.

3.5.3 Effects of Froude number on the outer layer

As we pointed out, quantities associated with the pressure distribution have considerable

difference between the free-slip-plate turbulence and free-surface turbulence, even for small

Froude numbers.

Figure 3-17 of 3.4.2 plots the vertical variation of the terms in the Reynolds-stress

equation for (w' 2 ), for both the free-surface (Fro=0.7 ) case and the free-slip plate (Fro=0)

case. To provide a further check, we plot here also the results for FO=0. 3 5 . As shown

in Figure 3-17, the effects of Froude numbers on dissipation and diffusion are negligible.
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However, the differences in the pressure-strain correlation term and transport term are

significant.

The transport term can be written as

(' - 2 (p'w') = -(3w2 - 2(w'-) - 2(p' (3.37)

The first two terms on the right are negligible for small Froude numbers while the third term

cancels the pressure-strain correlation term. As a result, at the free-surface, the transport

term approximately balances the pressure-strain correlation term for small Froude numbers.

(The balance is exact for zero Froude number.) We thus focus our attention on the pressure-

strain correlation and perform a detailed analysis of the blockage effects of the free surface

relative to a free-slip surface.

As fluid particles approach the free surface, they are forced to diverge and move in the

horizontal directions. This is called the splat event. Based on the conservation of mass, the

motion approaching the free surface must be balanced by the motion leaving the surface.

The latter is called antisplat event. Splat and antisplat events are discussed by Perot &

Moin (1995) for the zero Froude number case. Here we investigate the effects of the Froude

number on these events.

The splat and antisplat events are manifested in the DNS results. Figure 3-23 shows a

typical example. In a splat event (left side of Figure 3-23), fluid moving towards the free

surface turns near the surface and diverges horizontally. In an antisplat event (right side of

Figure 3-23), fluid particles moving towards each other at the surface meet and leave the

surface. The centers of the splats and antisplats in Figure 3-23(a) appear as respectively

outward and inward nodal points of the velocity field in the (x, y)-plane and are therefore

points of high pressure. In regions between splats and antisplats, horizontal velocities are

high and the pressure is generally low (Figure 3-23a).

It should be pointed out that there exists another form of antisplat, which is the stretching

of surface-connected vortices shown in 3.3.3 (as well as another form of splat for the half-

compression of surface-connected vortices at late evolution stages). Unlike that in Figure

3-23, the antisplat occurring at a surface-connected vortex is characterized by high horizontal
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Figure 3-23: Splat and antisplat processes in FST. (a) Horizontal velocity vector (u', v') at
the free surface. The background shows contours of the pressure fluctuation. (b) Velocity
vector (v', W') in a vertical (y, z) section (at x = -4.7).
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velocity and low pressure.

The splat event in Figure 3-23 corresponds to the 'upwellings' described by Pan & Baner-

jee (1995) or the 'splat' model Leighton et al. (1991) used. The antisplat event in Figure

3-23 corresponds to the 'downdrafts' of Pan & Banerjee (1995). The aforementioned surface-

connected vortices are the same as the 'spin' model of Leighton et al. (1991). To understand

the effects of Froude number on pressure-strain correlation, we focus on the first two since

they are responsible for most of the differences due to Froude number in the inter-component

energy transfer.

To investigate the statistics of splat and antisplat events over the free surface, we perform

conditional averaging based on different stages of the splat and antisplat processes. The

condition for such averaging is specified at each grid point on the free surface by the value of

-(&u'/&x + &v'/y)*/q*. Here the superscript * indicates that the quantity is normalized by

its r.m.s. value. Positive/negative &u'/Ox + &v'/8y (negative/positive &w'/&z) corresponds

to splat/antisplat respectively. This value, further divided by velocity fluctuation q - (U'2 +

V'2 + W' 2 )1/ 2 , quantifies the splat and antisplat processes. Large values indicate that the

fluid particle is close to the core of a splat/antisplat (large horizontal velocity divergence but

small velocity at the stagnant points) while small values correspond to the neutral region

between a splat and an antisplat (small divergence but large velocity when traveling along

the surface).

Figure 3-24 shows the area histogram according to the above criterion. It is shown that

most grid points at the free surface are located in the neutral region between splats and

antisplats. It is also seen that the area of the antisplat region is larger than that of the splat

region. (The ratio is about 55% to 45%.)

Figure 3-25 shows the conditional average of turbulence kinetic energy and pressure

fluctuation at each stage of splat/antisplat processes. At the free surface, following a fluid

particle from splat to antisplat (from left to right in Figure 3-23), the pressure is high at the

splat while the kinetic energy is low there; in the middle between the splat and antisplat,

the kinetic energy is high but the pressure is low; at the antisplat, the kinetic energy returns

to a low value and the pressure increases again. This is consistent with Figure 3-23.
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Figure 3-24: Area histogram based on the conditional average of splat and antisplat pro-
cesses.
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Figure 3-25: Conditional average of pressure fluctuation p', turbulence kinetic energy q2 /2

(u'2 + V' 2 + W' 2)/2, and Dw'/az during splat and antisplat processes: , p'; - -
q2/2; --.... , Dw'/&z. The symbol o refers to Fr0 -0.7, < to Fr0 -0.35, and * to F0 O0.
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Figure 3-26: Conditional average of free-surface elevation h'/F 2 and viscous stress
(2/Reo)Ow'/Oz during splat and antisplat processes: , h'/F O; -,
(2/ReO)Ow'/Oz. The symbol o refers to Fro=0.7, < to F 0 =0.35; and 'e' to Fo=0. Here
h'/Fjo is undefined for Fro=0 where we plot the value p' - (2/Ro)Ow'/Oz instead.
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It is important to point out that the curve of pressure fluctuation in Figure 3-25 as well

as the area histogram in Figure 3-24 are not left-right symmetric; and the curve of aw'/&z

in Figure 3-25 is not left-right anti-symmetric. Otherwise the overall integration of the

pressure-strain correlation (p'&w'/&z) will be zero. It should also be mentioned that the

region of surface-connected vortices is located near the central part in Figure 3-25 since q is

large for surface-connected vortices.

Figure 3-27 plots the histogram of pressure-strain correlation, which is the product of

pressure fluctuation and aw'/az (Figure 3-25) weighted by the area under Figure 3-24. The

histogram is not left-right anti-symmetric about the splat and antisplat. The integration

gives the overall negative pressure-strain correlation at the free surface (Figure 3-17), which

indicates that the net energy transfer is from the vertical velocity component to horizontal

components.

An important observation from Figure 3-25 is that, although features like (U' 2 +v' 2 +w' 2)/2

and &w'/Dz do not depend very much on the Froude number, the pressure distribution

during the splat and antisplat process is sensitive to the Froude number. It is shown that

the pressure at splats and antisplats in the free-surface case is considerably lower than that

in the free-slip-plate case. The reduction of the pressure in the free-surface case shows that

the deformable free surface relieves such impinging. Figure 3-25 also shows that due to the

motions of the free surface, the pressure distribution at the free surface is smoother than

that at the free-slip plate.

It should be noted that the reduction and smoothing of the pressure during splat/antisplat

at a deformable surface does not cause an obvious reduction in the global statistics of pressure

fluctuation p'rms (Table 3.1). This issue is subtle: the deformable free surface only changes

the local distribution of pressure in the splats/antisplats process. Therefore, only when we

use the conditional averaging technique to highlight the distribution in the splat/antisplat

process, does the difference caused by different Froude numbers appear as shown in Figure

3-25.

The difference in the pressure distribution is caused by the distribution of free-surface

elevation. The free-surface dynamic boundary condition (2.5) states that the pressure fluc-
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Figure 3-27: Histogram of pressure-strain correlation (p'Ow'/Oz) based on the conditional
average of splat and antisplat processes: (a) Fo=0.7; (b) Fo=0.35; and (c) FrO=0.
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tuation p' at z = 0 is given by two parts: the hydrostatic pressure h'/F and the viscous

stress (2/Reo)9w'/&z. Figure 3-26 plots the distribution of h'/F% and (2/Reo)aw'/az dur-

ing the splat and antisplat process. During a splat (aw'/&z < 0), p' is smaller than h'/F%,

while during an antisplat (&w'/Oz > 0), p' is larger than h'/F%. As Figure 3-26 shows,

the dependence of (2/Reo)&w'/&z on the Froude number is negligible. It is the hydrostatic

pressure h'/F% that is sensitive to the Froude number. Note that, similar to the pressure

distribution, the r.m.s. value of h'/Fj% for the whole (x, y)-plane does not differ much as the

Froude number changes, i.e. h'"m s is scaled by F0 . It is the local distribution of h'/F,% that

is sensitive to the Froude number which is only shown using the conditional averaging in

Figure 3-26.

Since the pressure distribution over the splat/antisplat process depends on the Froude

number, the pressure-strain correlation is directly affected. Figures 3-27(a to c) compare

the histogram of (p'Dw'/&z) among the Fr0 O.7, 0.35, and 0 cases. It is shown that the free

surface transfers considerably less energy from the vertical velocity component to horizontal

components than the free-slip-plate. As shown in Figure 3-17, the effect of Froude number

on the pressure-strain correlation is felt throughout the outer layer.

In conclusion, it is shown that the local distribution of pressure (free-surface eleva-

tion) during the splat/antisplat process is sensitive to the Froude number. Accordingly,

the pressure-strain correlation in free-surface turbulence is considerably less than that in

free-slip-plate turbulence, even at low Froude numbers. Although the difference in pressure-

strain correlation is partially balanced by the corresponding variations in the remaining

terms in the Reynolds-stress equations (Figures 3-15 to 3-17) and the eventual influence on

Reynolds-stresses is small, as shown in Table 3.1, the sensitivity of the pressure-strain corre-

lation to the Froude number indicates the essentially different physics in the inter-component

energy transfer for FST. This is important for the modeling of FST. Moreover, the Froude

number effects on the pressure field are of fundamental importance for the generation of

surface waves. The effects revealed here are of leading order and should still obtain (and be

stronger) for higher Froude numbers where other mechanisms such as those associated with

nonlinear free-surface effects are present.
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3.6 Conclusions

In this chapter we identify a three-layer structure which is essential to understanding free-

surface turbulence: the deeply submerged part of the flow, an outer layer (thin compared

to the vertical extent of the shear in the flow), and a much thinner inner layer immediately

under the free surface. The outer layer results from the kinematic boundary condition at

the free surface, and the inner layer is caused by the dynamic zero-stress conditions.

The outer layer is manifested in the vertical velocity fluctuations, which decrease to the

values imposed by the kinematic boundary condition at the surface. This reduction of the

vertical velocity fluctuation occurs without any appreciable increase of kinetic energy dissi-

pation, and is primarily compensated by an increase of the horizontal velocity fluctuations.

This effect has been observed in different flows with a free surface (e.g. Handler et al. 1993,

Pan & Banerjee 1995, Walker et al. 1996), and can therefore be considered as a generic

feature of free-surface turbulence.

The inner layer is indicated by the sharp transition of the two horizontal vorticity com-

ponents and the vertical derivative of the vertical vorticity component, which are reduced

from their bulk (isotropic) values to those imposed by the zero-stress conditions at the free

surface. As a result, the inner layer is a region of decreased kinetic energy dissipation and

increased enstrophy dissipation. The latter increase is highly localized around vortex con-

nection events. In fact, once an attachment event is completed, the enstrophy dissipation

is locally reduced, resulting in significantly slower decay of the attached vortex. Since at-

tachment events occur on a continuous basis, the enstrophy dissipation averaged over the

horizontal plane shows an increase inside the inner layer as a permanent and prominent

feature.

The surface inner layer makes it possible for vorticity features at the free surface to differ

substantially not only from those in the bulk but also from those inside the outer layer. This

result is important for practical applications when information from surface sensing is used

to deduce characteristics of the underlying flow.

Finally, we identify the importance of non-zero Froude number on free-surface turbulence.

We show that, even for very low Froude numbers, there is a finite reduction of the pressure-
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strain correlation at the free surface relative to that obtained using a free-slip flat plate as a

model for the free surface. This is due to the free-surface elevation which can cause pressure

variations comparable to turbulent pressure fluctuations. This should be taken into account

in the modeling of free-surface turbulence when the details of the near-surface hydrodynamics

are of interest (for example, in the spreading of surfactants).
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Chapter 4

Turbulent Diffusion near a Free

Surface

In Chapter 3, the features of a free-surface turbulent shear flow in the near-surface region

were examined in detail including the distinction and elucidation of an outer layer and an

inner layer at the free surface. Chapter 3, however, did not provide quantitative definitions

of these free-surface layers, which are important to the modeling of the FST.

The main goal of this chapter is to quantitatively study the free-surface boundary layer

in order to obtain insights necessary for turbulent modeling of free-surface flows. To do this,

we investigate here the mechanism of turbulent diffusion near a free surface. The turbulent

diffusion near a free surface has been studied in the past by Hunt (1954), Ellison (1960),

Levich (1962), Jobson & Sayre (1970), Davis (1972), Lee & Gill (1977), and Ueda et al.

(1977). More recently there has been renewed interest in the problem of free-surface turbu-

lence (FST) spurred by the availability of high-resolution numerical simulations and state-

of-the-art experimental techniques. Numerical simulations of FST have been performed, for

example, by Lam & Banerjee (1988), Handler et al. (1991, 1993), Leighton et al. (1991),

Swean et al. (1991), Borue et al. (1995), Dimas & Triantafyllou (1995), Pan & Banerjee

(1995), Perot & Moin (1995), and Walker et al. (1996); while experimental measurements

were obtained by Komori et al. (1982, 1989), Nakagawa & Nezu (1981), Rashidi & Banerjee

(1988, 1990), Gharib et al. (1994), and Rashidi (1997), among many others.
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In this study, we use a combination of numerical simulation and theoretical analysis.

Direct numerical simulation (DNS) is used to expound and quantify the FST boundary

layer and also to confirm and calibrate the analytical solution. We adopt an eddy viscosity

model and obtain an analytical similarity solution of the horizontally-averaged equation.

The theoretical solution predicts well the surface layer behaviors obtained from DNS and is

then used to predict the scaling properties of the free-surface boundary layer.

This chapter is organized as follows. In 4.1 we provide the mathematical formulation

for diffusion of the mean flow near a free surface. Based on the characteristics of momentum

diffusion, we obtain a quantitative definition of the free-surface boundary layer in 4.2. In

4.3, we derive a similarity solution of the horizontally-averaged equation, confirm it against

the DNS results, and use it to obtain scaling properties of the free-surface inner and outer

layers. Finally in 4.4, we present the conclusions.

4.1 Mathematical formulation

Our present interest is the effects of the free-surface boundary layer on the near-surface

turbulent diffusion. To quantify these effects, the mean shear, rather than the mean velocity,

is the main quantity of interest since the zero-stress boundary condition at the free surface

requires it to vanish there.

For the mean (horizontally averaged) velocity, lateral symmetry of the problem yields

that (v) = 0. Moreover, upon averaging (2.2), we obtain

(w) 0. 
(4.1)

Far below the free surface, (w) -+ 0. Thus, (w) = 0 everywhere.

Upon averaging the y-momentum equation, (2.1) for i=2, we obtain

9(v) + ((v) - (w)) 9(v'w') 92(v)a+ & + =z vz .(4.2)St Z z q2

Since (v) = (w) = 0 everywhere, we conclude that 0(v'w)/az =0, and consequently that
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(v'w') is constant. Far below the free surface (v'w') -+ 0, therefore (v'w') = 0 everywhere.

Thus the turbulent diffusion in the vertical direction is completely specified by the Reynolds

stress (-U'w').

Averaging the x-momentum equation, (2.1) for i=1, yields

&(U) +(u'w')
+ az

02(U)

- z 
2 (4.3)

We define the eddy viscosity ve as usual:

(-u'w')
(4.4)

We can now re-write (4.3) as follows:

0(u) _

at 0z
a(u)

Ve) z (4.5)

Note that since the mean shear vanishes at the free surface (upon horizontal averaging of

(2.3)):
a(u) = 0,
az

on z = 0; (4.6)

equation (4.4) requires (for finite ve) that (-u'w') also vanishes at z=0. Applying l'Hopital's

rule to (4.4), we obtain the limiting value of the eddy viscosity:

VzO (-U'W')/zj=
= 2 (u)/az 2 jf= -

The eddy viscosity is an even function of z, hence

ave

azz=O
= 0 .

(4.7)

(4.8)

Equation (4.7) gives, in general, a non-zero value of the eddy viscosity at the free surface,

proportional to the flux of the momentum tensor at the free surface. In the special case of a

two-dimensional flow in the (x, z)-plane, where v' = 0, the right-hand side of (4.7) vanishes.
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In summary then, for a two-dimensional flow, we have

Ve z=- =0. (4.9)
=0

4.2 Quantitative definition of the free-surface bound-

ary layer

The thin inner layer of fast variation of the vorticity shown in Figure 3-1 is not the only

region that is influenced by the free surface (but it is the most obvious to see). There is a

wider region which is also influenced by the surface. A good indicator of this is the variation

of the eddy viscosity - far from the surface, the eddy viscosity reaches an almost constant

value, whereas, close to the free surface, the eddy viscosity is reduced abruptly to its surface

value. This free-surface outer layer can be seen in Figures 4-1 and 4-2. Figure 4-1 shows the

variation of the eddy viscosity with depth at various times and indicates the spatial extent

of the outer layer. Figure 4-2 shows the variation of the eddy viscosity with time at various

depths, and thus indicates the time required in our simulation for the surface layer to obtain

the quasi-steady form (t > 60 for Re0 = 1000; this is also the case for Re0 = 700 and 1400;

these results are not plotted here.)

The reduction of the eddy viscosity in a region near the free surface has also been seen in

the measured data of Ueda et al. (1977) for open-channel flow. In that study, the value of the

eddy viscosity at the free surface is assumed to be zero. This turns out to be not completely

valid since the mixing length does not vanish at the free surface. The surface value of ve is,

in fact, small and comparable to that of molecular viscosity v. This is indicated from scaling

arguments (see 4.3.3) and is verified by our direct simulations. The value of Ve at the free

surface is exactly zero only in the limit of a strictly two-dimensional flow (v=v'=0).

For later reference, we denote the thickness of the outer layer by fa, and the value of

the eddy viscosity outside La in the bulk of the flow by Vea. From dimensional analysis, a
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Figure 4-1: Profiles of eddy viscosity ve at different times. Re0 = 1000 and F 0 = 0.7.

quantitative estimate for a can be obtained and is given by

t2 ea . (4.10)
a O2 Ve/Zz

Another important observation here is the vertical variation of the mean shear over

the free-surface boundary layer (see Figure 4-3a). As the free surface is approached, the

magnitude of the mean shear initially increases, and then drops rapidly to zero at the free

surface. The magnitude of the mean shear thus exhibits two extrema near the free surface:

a local minimum, and, much closer to the free surface, a local maximum.

The above features can be understood if we connect the depth variation of the mean shear

to that of the eddy viscosity: inside the outer layer, the eddy viscosity decreases (Figure 4-1)

at a rate faster than that of the Reynolds stress (Figure 4-3b). As a result, the magnitude of

the mean shear is increased. Inside a much thinner inner layer, the mean shear then drops

abruptly to zero in order to satisfy the zero-stress condition (4.6) at the free surface.
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(b) Reynolds stress profile (-u'w') at

Based on this understanding, the thickness of the inner layer at the free surface can

be defined as the distance from the free surface to the local maximum of the mean shear.

Correspondingly, for the outer layer, the thickness can be defined as the distance of the

local minimum of the mean shear from the free surface, which is physically more direct than

the estimate (4.10) in terms of the curvature of ve at the free surface. Thus, with these

definitions, the thicknesses of the surface layers can be obtained directly, for example, from

an experimental determination of the mean velocity profile alone.

4.3 Analytical similarity solution

4.3.1 Similarity solution

From Figure 4-1, one can observe that, at large times, the flow generally approaches a self-

similar state: the temporal variation of the eddy viscosity in the bulk of the flow below is

small, while the length scale of the spatial variation of the eddy viscosity increases with time.
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This suggests that one may look for a self-similar solution, say, of the form

U = -f()U, (4.11)
Ud

where Uc- (U) z-oo, Ud=U,, - (u) JO is the velocity deficit, and rI is the similarity variable

I = z/b , (4.12)

with b measuring the extent of the mean shear in the flow. Note that both Ud and b are

generally functions of time. This is done in order for the similarity solution to be comparable

with the results of the simulation which refers to a temporally evolving flow. Extension of

the similarity solution methodology to spatially evolving flows, which may better correspond

to certain experimentally measured conditions, is straightforward and will not be done here.

The mean velocity (u) satisfies (4.5) subject to the boundary condition (4.6) on the free

surface. For the eddy viscosity, it is important to take into account its variation with depth,

in other words, the dependence of ve on Ud, b, the distance from the free surface z, and the

molecular viscosity v. Dimensional analysis then yields

Udb= ( IUdb) , (4.13)
Udb )V

where V) is some function of the similarity variable assumed known. We denote by V)" the

value of V) well below the free surface, i.e. outside the outer layer; and by 0o the value of 4 at

the free surface. One important point here is that near the free surface, i.e. inside the outer

layer, V) should also depend on the Reynolds number, whereas far below the free surface, V'

should be independent of the Reynolds number.

Following the usual procedure (see e.g. Lesieur 1997), we find that Ud and b are related

by

Udb = Co, (4.14)

where Co is some constant. For the function f(TI), we find that it satisfies the ordinary
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differential equation

If' + f - - (b
db'\
dt

d [(v + UdbV)f'] (4.15)

subject to the boundary conditions

f (0) = 1, and f'(-oo) =0. (4.16)

It remains to specify the value of f"(0). The appropriate choice can be made by writing

(4.15) at 77=0:
db

(v + Udbbo)f"(0) = -b d-
dt

(4.17)

The length b is the extent of the shear flow, which should be much greater than that of the

outer layer. Consequently b should diffuse at a rate proportional to the value of the eddy

viscosity in the bulk of the flow. This dictates the following choice:

and (4.17) becomes

(4.18)f"(0) v + Udba
v + Udbbo

db
b- = v + Udba.
dt

(4.19)

Upon integration of (4.19), we obtain that b evolves in time as follows:

b = V2(v -+Udba)t + Q , (4.20)

where Q is a constant of integration. The velocity deficit Ud is given by

Co
Ud= 2(v +Ubba t + Q (4.21)

Moreover by integrating (4.15) twice (subject to (4.16) and (4.18)) with respect to q we
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obtain the following expression:

f (n) = exp (- f + Uoba))ds . (4.22)
( o v + UdbV)( s)

Thus, we find that the length scale increases like the square root of t and the velocity deficit

decreases at the inverse of this rate, as one may expect from a similarity solution. We note

however that the choice (4.18) (which is based on physical reasoning) implies that f"(0) is a

large number since vea = Udb/a is much greater than veO - velz=o and v. Consequently f'(,q)
has a region of fast variation in the vicinity of n = 0 which corresponds to the free-surface

inner layer.

The similarity solution (4.22) provides us with a clear picture of the mean flow, and

contains the basic physical features of interest. It remains to see how well it can fit the

results of direct numerical simulation.

4.3.2 Comparison between theoretical similarity solution and di-

rect simulations

In order to compare (4.22) with the results of direct numerical simulations, we propose

a simple Gaussian fit to the eddy viscosity (the validity of this particular choice will be

subsequently supported by numerical results):

b Ve - (4'a - bo) exp(-r_2/a2) , (4.23) Udb a

where a is proportional to the non-dimensional thickness of the outer layer (i.e. a - fa/b).

Using (4.23) we obtain from (4.22)

f (77) = exp (-,q2 /2) Ile+0 1 )a22(4.24)
( Il/) +1/Re + Va - ( o) exp(- 2/a2)

where Re is the Reynolds number based on Ud and b (note the difference from Reo):

Re= Udb (4.25)
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Reo=1000

t Ud b CO Ud b Co Ud b CO
60 0.680 1.529 1.040 0.612 1.669 1.021 0.602 1.684 1.014
65 0.644 1.617 1.041 0.587 1.744 1.024 0.575 1.753 1.008
70 0.621 1.683 1.045 0.566 1.815 1.027 0.557 1.816 1.012
75 0.591 1.768 1.045 0.544 1.874 1.019 0.536 1.880 1.008
80 0.566 1.853 1.049 0.527 1.939 1.022 0.518 1.939 1.004

Table 4.1: Variation with time of the mean velocity deficit Ud, the mean shear extent b, and
the product Co = Udb, for different ReO.

Note that, because of (4.14), R, is independent of time for large times.

The eddy viscosity profile (4.23), the mean velocity profile (4.24) and its first derivative

(i.e. the mean shear profile) are compared with results from direct numerical simulations after

quasi-steady states are reached. The comparisons are performed as follows. The velocity

deficit Ud is obtained directly from numerical results. The value of 00 is obtained based on

the eddy viscosity at the free surface; 0,, is obtained based on the averaged eddy viscosity

in the bulk of the flow; while b is determined by matching f(q) in (4.24) with the numerical

value at the depth q = -1, and the value of a is obtained by a least-square best fit of (4.23).

The values of Ud and b thus obtained at various times are listed in Table 4.1. In agreement

with (4.14), the product Co = Udb approaches a constant value at large times (the fluctuation

in CO is less than 1% for > 60). Figure 4-4 shows the comparisons of the time evolution

of Ud and b between the theoretical behaviors given by (4.20), (4.21) and those obtained

from direct simulations (the values of Co, 0,, and Q used are listed in Table 4.2). For the

range of Reynolds numbers considered, the analytical solutions fit the computed behaviors

of decreasing Ud and increasing b with time with remarkable accuracy.

Figure 4-5 compares the eddy viscosity given by (4.23) with DNS results at t=60, 70,

80. There are small differences in the deep region, which can be attributed to the use of

118

Reo=-700 R,0=1400



0.70 - 2.0
Re0 =700

Ud 1.9

0.65 -
-1.8

Ud b
1.7

0.601
1.6

0.55 1.5

Ud

E 0 65 70 75 80
t

0.65 2.0
Reo = 1000

1.9
U

0.60 d
1.8

-1.7
0.55 '

1.6

0.50 . . . .1.5
60 65 70 75 80

t

b

0.65 2.0
Reo =1400

-1.9

0.60 Ud

Ud b b
1.7

0.55

1.6

0.50 1.5
60 65 70 75 80

t

Figure 4-4: Time evolution of Ud and b for ReO = 700, 1000, and 1400 for: DNS results (o

for Ud, l for b; and similarity solution ( for Ud, - - - - for b).
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Reo Co Re Oa 00 veo/v Q a a(v/Ve)-1/2

700 1.04 728 0.0228 0.0014 1.05 -0.65 0.305 1.24
1000 1.02 1020 0.0229 0.00098 1.00 -0.14 0.251 1.21
1400 1.01 1414 0.0224 0.00078 1.10 -0.03 0.215 1.22

Table 4.2: Values of C0 , Re, Oa), VPo, Ve0/, Q, a and a(V/vea)1/2, for different ReO.

a constant eddy viscosity in the similarity solution there. Our main interest is the region

near the free surface where Figure 4-5 shows that the Gaussian profile (4.23) fits the DNS Ve

well in the near-surface region. As will be seen, (4.23) is sufficient to describe the detailed

characteristics of the turbulent diffusion near the free surface.

Figure 4-6 shows similar comparisons for the mean velocity and Figure 4-7 the mean

shear rate. The agreement is quite good in both cases. (Note that small differences in the

deeper region are due to the fact that the DNS turbulent flow underneath is not perfectly

statistically homogeneous. Our main interest is in the near-surface region.) These two figures

also confirm the similarity assumption that the mean flow approaches a universal shape at

large times, although the physical values of the mean flow itself change with time (Figures

2-3a and 4-3a).

4.3.3 Scaling properties of the free-surface boundary layer

As pointed out in 4.3.1, one anticipates that the parameters a and 00 should depend on

the Reynolds number (since they describe properties of the outer layer), while ?Oa should be

independent of the Reynolds number, as it describes the value of the eddy viscosity outside

the outer layer. These are confirmed in Table 4.2.

On the right-hand side of (4.24), the first (Gaussian) factor is what one would obtain in

a constant eddy viscosity model, while the second factor is associated with the variation of

eddy viscosity near the surface and, in particular, contains the essential information about
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the inner layer. Using a small-y (T < a) expansion of (4.24) we obtain

f W ~ e 1/Re + ?Lo _/a2 (1 - p2 /2) . (4.26)
1/1Re + bo + (V@a - V)0)72/a2I

Let E be the non-dimensional thickness of the inner layer. Upon substitution of q = < (with

( being of order one) into (4.26), and using a dominant balance argument for the expression

in the denominator of the right-hand side of (4.26), we obtain

1/e+ VoE~ a (11Re )0 ) 1 /2  (4.27)

or equivalently,
I'V+VeO 1/2E ~a ( ) (4.28)
Vea - Veo

Equation (4.28) shows that the thickness of the inner layer, C, is scaled by the thickness

of the outer layer, a. It also shows that the value of the eddy viscosity at the free surface, veO,

enters into the estimate of the inner layer, and is therefore an important physical parameter

of the problem.

We now turn to the dependence of veO on the parameters of the problem. Based on (4.7),

we can assume that the value of veO depends on the following parameters: (i) the horizontal

turbulence intensity at the free surface, qo; (ii) the characteristic lateral size of the vortical

structures attached on the free surface, Ao; and (iii) the molecular viscosity, v. It follows

from dimensional analysis that

Veo= F ReA - qo). (4.29)

For a given free-surface shear-flow turbulence characterized by ReA, (4.29) indicates that the

value of the eddy viscosity at the free surface scales like the value of the molecular kinematic

viscosity. This fact is confirmed by our DNS data where the factor of proportionality between

veO and v is found to be close to unity for a range of ReO (see Table 4.2).

Interestingly, the similarity theory provides us also with a scaling relationship for the
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thickness of the outer layer. The estimate comes out in an indirect manner, through the

requirement that the mean shear in the flow remains bounded at all Reynolds numbers.

Consistently with our discussion so far, and supported by DNS results, we assume that

ba >> 1/Re, whereas 4'o is comparable to 1/Re. Based on this and using the small-argument

approximation, we find that the location of the maximum shear near the free surface is

1/Re + 1o71m -a [(1 + 11/2 (4.30)
(I + a2 ) a - 00

Therefore the maximum mean shear Sm f'|max is

m a (Rea 1/2 (1 + a 2 
- V/a) 1/ 2 (1 + (Re0)-1 )

m rZ_' ba) (2 + a2 - 2,0 / Oa) (I + Re00) 1/2

Given that Vb 0 has the same order of magnitude as 1/Re, we conclude that sm remains

bounded for Re --+ o only if a(Rea)1/ 2 is at most order one, i.e. a is at most

a ~ (Re )- 1/2  =- . (4.32)
kea,) /

The decrease of the outer layer thickness as the Reynolds number increases is evident in

Figures 4-5 and 4-7 for the DNS results. A more quantitative DNS confirmation is provided

in Table 4.2 which shows that the product a(v/vea)- 1/ 2 is approximately constant.

It should be noted that the scaling relations (4.27) and (4.32) are not particular to the

eddy viscosity fitting (4.23). In fact they can be obtained directly from (4.22) by expanding

0(71) for small argument. Writing O(ri) = $O + V"(0)ri2/2 + .. ., and noting that in general

the non-dimensional thickness of the outer layer a is proportional to /)a/O"(0) (because of

(4.10)), the derivation follows along the same lines as those we presented above.

Finally, we note that our DNS verification of the theoretical scaling results is limited

to small Reynolds numbers. It would be very desirable to seek more complete/systematic

numerical confirmation of these results. This is difficult primarily because of the fundamental

limitations of DNS for high Reynolds numbers. Further examination using other approaches

and especially experimental measurements would be helpful.
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4.4 Conclusions

In this chapter we investigate the process of turbulent diffusion in a shear flow under a free

surface. We obtain an ensemble of simulation results using DNS. Using these data, we identify

the free-surface boundary layer structures: an outer layer characterized by the reduction of

the eddy viscosity and an accompanying increase of the mean shear rate; and an inner layer

characterized by the rapid decrease of the mean shear rate to reach its vanishing value at

the free surface. We find that quantitative definitions of the outer and inner thicknesses can

be obtained directly from the mean shear profile corresponding respectively to first its local

minimum and then its local maximum as the free surface is approached.

Guided by DNS results, we derive a similarity theory for the vertical turbulent diffusivity

problem. An important feature of the similarity solution is the specification of a universal

shape for the mean velocity profile. This and other predictions of the similarity theory are

confirmed by direct comparisons to DNS. Significantly, the similarity solution provides the

scaling for the thickness of the inner and outer surface layers as a function of the Reynolds

number: the inner layer thickness is proportional to the outer layer thickness; the outer

layer thickness is proportional to the mean shear depth; and the factors of proportionality

in both cases scale as the square root of the ratio of the molecular viscosity to the bulk eddy

viscosity. Thus, the free-surface boundary layers define the region of the flow which remains

Reynolds-number-dependent at high Reynolds numbers.

The above results provide a fundamental basis for the modeling of turbulence at a free

surface. As will be shown in Chapter 8, we propose a free-surface function model (FFM) for

large-eddy simulation of FST. This new model incorporates the expected near free-surface

behavior of the turbulence diffusivity and is an improvement over classical models using

constant coefficients.
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Chapter 5

Mixing of a Passive Scalar near a Free

Surface

The mixing of a passive scalar in turbulent flows with a free surface is of interest to geo-

physical and environmental applications. Examples of applications include the spreading of

pollutants and the transfer of gases along an air-water interface. In the past, considerable

effort has been made towards the quantification and prediction of the turbulent mixing pro-

cess near the free surface, for example, the theoretical work by Danckwerts (1951), Hunt

(1954), Ellison (1960), Levich (1962), Fortescue & Person (1967), Davis (1972) and Theo-

fanous (1984), the experimental measurements by Jobson & Sayre (1970), Ueda et al. (1977),

Komori et al. (1982), Brown, Khoo & Sonin (1990) and Rashidi, Hetsroni & Banerjee (1991),

and the recent numerical simulations by Khoo, Patera & Sonin (1989), Komori et al. (1993),

van Haarlem, Boersma & Nieuwstadt (1998), Nagaosa (1999) and Handler et al. (1999).

The mixing of scalars near the free surface is due to the combined effects of turbulent

and molecular diffusion. Turbulent flows are affected by a free surface by two mechanisms:

(i) the surface constrains flow motions in the normal direction while motions in the surface-

tangential direction are allowed; (ii) the shear stress vanishes at the surface in order to satisfy

the stress balance across the free surface. These two mechanisms result in a multi-level free-

surface boundary layer which is characterized by unique features such as the splat and

antisplat motions, the vanishing of surface-parallel vorticity and the connecting of surface-
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normal vorticity to the free surface (cf. Shen et al. 1999). Understanding the structure of

the underlying turbulent flows is of fundamental importance to the modeling of free-surface

scalar mixing process.

As the surface is approached, turbulent mixing in the vertical direction decreases and

the effect of molecular diffusion becomes important. As expected, there exists a thin layer

adjacent to the surface which is controlled by molecular diffusion. For gas transfer between

the ocean and atmosphere, due to the small value of molecular diffusivity (high Schmidt

number), this layer is only 20 to 200 pum in thickness (Jahne & Hauecker 1998), which

makes measurements extremely difficult. Hence there is a critical need to accurately quantify

the scalar mixing process near the free surface.

In this chapter we study numerically and analytically the mixing of a passive scalar in

free-surface turbulence. This study is an extension of our work on the free-surface boundary

layer for momentum diffusion in Chapter 4. In Chapter 4, we quantified the multi-layer

structure of the turbulent momentum diffusion with an analytical similarity solution. The

theoretical predictions on the shape and time-scaling behavior of the mean flow have been

found to agree with results of direct numerical simulation (DNS) with remarkable accuracy.

In the present study, we perform DNS for the mixing of passive scalars at Schmidt numbers

ranging from 0.25 to 4. An analytical solution of a self-similar form is derived for the scalar

surface layer. The main goal of this study is to characterize and to quantify the free-surface

scalar boundary layer, to elucidate its relation with the free-surface momentum boundary

layer, and to obtain its scaling properties.

This chapter is organized as follows: in 5.1 we provide the mathematical formulation

for the problem of scalar mixing near a free surface; in 5.2 we outline the numerical scheme

for the DNS of scalar mixing and present the DNS results; a similarity theory for the scalar

mixing is developed in 5.3 and its predictions are compared to the DNS results; in 5.5 we

discuss the scaling properties of the free-surface boundary layer for scalar mixing; and finally

in 5.5, we present our conclusions.
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Figure 5-1: Schematic of the mixing of a passive scalar by a turbulent shear flow under a
free surface.

5.1 Mathematical formulation

5.1.1 Governing equations and boundary conditions

We consider the mixing of a passive scalar by a turbulent shear flow underneath a free surface

at zero Froude number. As shown in Figure 5-1, the frame of reference has axes x, y, and z,

where x-axis points in the mean flow direction, y-axis in the spanwise direction, and z-axis is

positive upward. The origin is located at the free surface. The mean shear is two dimensional

and is in the (x, z)-plane. In this flow, turbulence is generated and maintained by the mean

shear, and the passive scalar is transported by the turbulent motion.

The fluid motions are governed by the Navier-Stokes and continuity equations:

Oui + (uju2 ) 1 Op + 2 Ui

at Oxj p axi Oxj x'

=u 0 .
+xi

(5.1)

(5.2)

Here ui is the velocity components in xi-direction; p is the dynamic pressure, p the density,

and v the kinematic viscosity.
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For the zero Froude number, we use the free-slip boundary conditions on z=0:

-u av ap (-9 - =W - 0. (5.3)
az Oz 0z

The space-time evolution for the concentration c of the passive scalar is governed by the

following advection-diffusion equation:

Dc D(u c) __2

0 + = DOC (5.4)
at Oxj axj axj

where D is the molecular diffusivity of the scalar. We define the Schmidt number Sc as the

ratio of v over D:

SC = - .(5.5)D

In this study, we consider the case of zero scalar-flux at the free surface:

c - 0. (5.6)
z=O

We remark that this boundary condition applies to situations where the flux rate of the

scalar across the free surface is negligible compared to the value in the bulk flow below, for

example, the spreading of pollutants in the ocean. For other cases where the surface flux is

significant, a boundary condition with a specified scalar concentration value or a specified

scalar gradient is more appropriate. The zero-flux condition (5.6) greatly facilitates the

derivation of an analytical similarity solution.

For both the flow and the scalar, we use periodic boundary conditions in horizontal

directions. At the bottom, we use free-slip conditions for the flow motions and a Dirichlet

condition for the scalar:

Clz=_L = CO . (5.7)
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5.1.2 Plane-averaged properties

In view of the statistical homogeneity in horizontal directions, in this study we use the spatial

averaging over the (x,y)-plane to define a mean value. For later reference, for any variable

f(x, y, z, t), its mean value is denoted as (f)(z, t); f'(x, y, z, t) - f - (f) is its fluctuation

and frm"(z, t) - (f 2)1/ 2 is the root-mean-square variation.

By taking average of (5.1) and (5.4) and invoking the horizontal periodicity, we obtain

the governing equations for the mean flow and the scalar mean concentration:

a(u) _ 9 (v + () , (5.8)
at az ( z

= (D + 7) . (5.9)
at az ( z

Here ve and ty are eddy viscosity and turbulent diffusivity, respectively, which are respectively

defined as

Ve = (-u'w') (-c'w')ve a (u)/az ' a(c)/az .(.0

Note that from (5.3) and (5.4), the gradients for both the mean velocity and mean scalar

concentration vanish at the free surface:

a(u) 0 a(c) = 0 . (5.11)
9z z=O z=O

Hence the definitions (5.10) have special forms at z=O, by using the l'Hopital's rule:

9(-u'w')/1zzj=o 7 - 9(-c'w')/9z z=O (5.12)a2U)/az2z=0 ,Io a 2(c)/9z 2 Zo..

In Chapter 4 we studied the spatial variation of the fluid properties Ve and (u). In this

chapter we investigate the variation of the scalar property -y and the consequent effect on (c)

distribution. The dependence of -y and (c) variations on the flow field as well as the Schmidt

number effects will be quantified via an analytical similarity solution.
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5.2 Direct numerical simulations

5.2.1 Numerical method

For the fluid motions, the governing equations (5.1) and (5.2) subject to the free-surface

boundary condition (5.3) are solved numerically as an initial-boundary-value problem. The

numerical method as well as its validation are provided in detail in Chapter 2 and will not

be taken up here.

For the advection and diffusion of the passive scalar, the governing equation (5.4) is

discretized by finite difference. In horizontal directions, a sixth-order finite-difference scheme

is used, while a second-order finite-difference scheme is used in the vertical direction. The

free-surface boundary condition (5.6) is employed to obtain the values of c at the imaginary

points one grid above the free surface, which are used in the calculation of vertical derivatives

in (5.4) at z=0. As for time integration, a second-order Runge-Kutta scheme is used. At

each sub-timestep, the value of the velocity in (5.4) is provided by the DNS of the fluid

motions.

As in Chapter 4, DNS for the fluid motions is performed from t=0 to 90. In this study,

we simulate the mixing of the scalar from t=30 to 70. At t=30, the initial profile of the

scalar concentration is given by a prescribed function

c(zt = 30) I - sech 2 0.88137 , (5.13)
CO Lo

where LO is a measure of the vertical extent of scalar concentration variation, which has the

same value as the one used in the initial mean velocity (cf. Chapter 2). Initially the scalar

concentration is uniform in horizontal directions. As the simulation carries on, the scalar is

subsequently mixed by turbulence. It found that a fully mixed scalar field develops between

t=60 and 70, on which period the present study focuses.

It should be noted that the choice of the initial profile of c is not critical. We are interested

in the asymptotic behavior (in a self-similar form) of the scalar distribution at large t. We

choose (5.13) simply because it satisfies the boundary conditions at z=0 and z=-Lz, and
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because this profile yields a well-developed turbulent scalar field faster than other initial

profiles we have tested, a fact which needs to be taken into account to reduce computational

cost.

All the results presented in this chapter are normalized by LO, Co, and the initial shear-

flow velocity deficit UO. The Reynolds number Re = UoLo/v is 1400. To investigate Schmidt

number effects, in this study we have considered five Schmidt numbers S,=0.25, 0.5, 1, 2,

and 4. In order to obtain converged statistics, for each Schmidt number we perform 25

realizations of DNS with different turbulent flow fields, the latter produced by different sets

of random seeds for the turbulence generation. All the statistics presented in this chapter

are the ensemble average of the plane-averaged values obtained in the 25 realizations.

As in Chapter 4, the computational domain size is L,=LY=10.472, L2=6. A 1282 x 196

grid is used. The timestep is 0.005.

5.2.2 Numerical results

Figures 5-2 to 5-6 plot the statistic of the scalar field obtained from DNS. To illustrate the

Schmidt number effects, we show here the Sc=1, 4, and 0.25 cases in Figures (b), (c), and (d),

respectively. For reference, the corresponding equivalences in velocity statistics are plotted

in Figures (a).

Figures 5-2(b) to (d) show the time evolution of scalar fluctuation profiles. As pointed

out earlier, initially (t=30) c is a function of depth only and there is no scalar fluctuation

at each horizontal plane. Under the action of turbulent fluid motions, the scalar is mixed

up quickly. It is found that (c' 2) reaches its maximum around t=39 (not shown here). After

that, (c'2) decays due to dissipation. Smaller Schmidt numbers cause faster decay, as shown

in Figures 5-2(b) to (d).

We plot the turbulent scalar flux (-c'w') in Figures 5-3(b) to (d). Similar to the Reynolds

stress (-u'w') (Figure 5-3a), (-c'w') decreases as the free surface is approached. This is

expected because the vertical velocity w diminishes towards the surface due to blockage

effects.

The turbulent diffusivity -y, defined by (5.10) and (5.12), is plotted in Figures 5-4(b)
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to (d). In the bulk flow below, -y does not vary with depth. The difference between the

magnitude of -y for different Schmidt numbers is negligible. The value of Y is comparable

to the eddy viscosity ve (Figure 5-4a) because the diffusion mechanisms for the velocity and

scalar are similar in the bulk shear flow (Tennekes and Lumley 1972).

The free-surface boundary layer for the scalar mixing is manifest in Figures 5-4(b) to

(d). As the free surface is approached, y decreases rapidly, in a manner similar to ve (Figure

5-4a). The decrease of -y and ve can be attributed to the constraint on vertical motions

by the free surface. From Figure 5-4 we obtain two important observations: (i) Schmidt

number does not affect the location from which -y begins to decrease, which is same as the

one in the ve case. This implies that the thickness of the free-surface (outer) boundary

layer for scalar mixing does not depend on the molecular diffusivity of the scalar, and it

scales as the free-surface outer layer for momentum diffusion. (ii) As -y decreases towards

the free surface, it approaches a surface value yo which is, however, highly dependent on the

Schmidt number. We find that the surface value of turbulent diffusivity is proportional to

the molecular diffusivity (as will be shown in 5.4, the factor of proportionality is around 2).

In Figure 5-5 we compare the profiles of the mean velocity (u) and the mean scalar

concentration (c) for various Schmidt numbers. As time evolves, both (u) and (c) profiles

flatten out through turbulent diffusion. The difference in the profiles for different Schmidt

numbers is noticeable: near the free surface, (c) has a hump for high S, (Figure 5-5c); while

for low S, (Figure 5-5d), (c) is rather smooth.

The effect of the Schmidt number on the gradient of the mean concentration is shown

in Figure 5-6. Figure 5-6(b) shows the Sc=1 case. It is found that as the free surface

is approached, O(c)/&z initially increases, reaching a local maximum and then decreases

rapidly over a much thinner inner layer to obtain the zero-gradient value at the free surface.

This variation is very similar to the mean shear case (Figure 5-6a). The latter clearly

shows the multi-layer structure in turbulent momentum diffusion near a free surface and

was investigated extensively in Chapter 4. For the scalar mixing, we find that the Schmidt

number substantially affects the near-surface profiles of (c)/Oz. Higher S, greatly increases

the maximum value of a(c)/z and makes the near-surface variation more dramatic (Figure
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5-6c); while at lower Sc, the variation is suppressed and the local maximum even disappears

for S,=0.25 (Figure 5-6d).

5.3 Theoretical interpretation

5.3.1 Analytical similarity solution for scalar mixing

We observe that, mathematically, the governing equations for the problems of momentum

diffusion (5.8) and scalar mixing (5.9) are of the same form and they satisfy the same free-

surface boundary conditions (5.11). The problem for the evolution of the mean concentration

is therefore analogous to that for the evolution of the mean velocity. Following Chapter 4,

then, we seek a self-similar solution to the scalar mixing problem. Specifically, we look for

solutions of the form:
Co - (c)514

Cd

where Co = (c) k2o, Cd=C - (c) ,=o is the maximum concentration difference, and is

the similarity variable:

(5.15)

with bc the lateral extent of the concentration gradient in the flow. From the conservation

of the total scalar we obtain

Cdbc = Kc = const. (5.16)

As shown in 5.2.2, the surface value of the turbulent diffusivity -yo is of the same order of

magnitude as the molecular diffusivity D. Far from the free surface, on the other hand, the

value of -y approaches a constant Ni which is determined by the turbulent mixing mechanism

in the bulk flow and is independent of D. From dimensional analysis we expect that -Ya should

be proportional to the product Udb. Hence we obtain

_( Udb
U =b ( ) . (5.17)

Udb 1D
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Based on the observation from Figure 5-4, we fit V$c with the following curve:

c = ca - (Oca - V#co) exp (-(2/a2) (5.18)

where the parameter ac is the non-dimensional scale of variation of the turbulent diffusivity;

/)ca and 4'cO are values of the non-dimensional turbulent diffusivity in the bulk flow and at

the free surface, respectively.

For the self-similar expression (5.14), the partial differential equation (5.9) is transformed

into an ordinary differential equation as

dbc\ d
[(D + Udbc)f'] (5.19)

Based on the same physical reasoning as in the momentum case (Chapter 4), we argue

that b, diffuses at a rate proportional to 7,. Hence we obtain

b = 2(D+UbV)ca)t + Qc , (5.20)

Cd = (5.21)
V2(D + Udbpca)t + Qc ,

with Q, a constant; and by integrating (5.19) we obtain the self-similar solution as

f s(D + UbIca)d)

0 D +Udboc (s)
(5.22)

For the Gaussian profile (5.18), the above solution can be explicitly expressed as

exp (_2 /2) [ R + 1/(ReSc) + co -(_ 2 2 a,, /2

1/(Re Sc) + ca - (Oca- Oco) exp( /a2
(5.23)

5.3.2 Comparison between similarity solution and DNS result

We next compare the analytical solution with the results of the simulation. The comparison is

performed as follows: in the similarity solution, Cd is obtained directly from the DNS values;

V'co and )ca are determined based on the surface and bulk values of turbulent diffusivity; b,
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is obtained by matching fc( ) to the numerical value at ( = -1; and ac is determined by a

least-square fit of (5.23).

Figures 5-7 to 5-11 summarize the results for all Schmidt numbers considered. The profiles

of non-dimensional turbulent diffusivity 0c, mean concentration fe, and mean concentration

gradient Ofc/&( are compared in Figures (a), (b), and (c), respectively. It is shown that

the Gaussian profile (5.18) describes well the variation of turbulent diffusivity near the

free surface. The agreement between the analytical curve (5.23) and numerical results of

the mean concentration is satisfying. The aforementioned difference between high and low

Schmidt numbers close to the free surface is captured accurately. This is shown more clearly

in the comparison of &fc/&0 (Figures 5-7 to 5-11c). As revealed in 5.2.2, at high Sc, the

scalar gradient initially increases towards the free surface and then decreases, resulting in a

local maximum; while as Sc decreases, the hump in the scalar gradient becomes less obvious

and finally disappears. These phenomena are represented well by the similarity solution.

For high Sc, both the location and the magnitude of the maximum gradient is captured

by the theoretical prediction with remarkable accuracy. Figures 5-7 to 5-11 show that by

proper scaling with (5.14), all the physically-different profiles of the scalar mean quantities at

different times (cf. Figures 5-5 and 5-6) collapse to a single curve. This holds for all Schmidt

numbers considered in this study.

Next we examine the time scaling behavior of the scalar mixing. Figure 5-12 plots the

time evolution of the product of Cd and b, obtained from DNS. In agreement with (5.16),

Cdbc==Kc remains almost constant in time with a variation of less than 3.5%. Figures 5-

13(a) to (e) compare numerical values of Cd and b, with the theoretical predictions (5.20)

and (5.21). In the latter, Kc is set to the time-averaged value of Cdbc shown in Figure 5-12;

Qc is determined by a least-square fit and is found to be -1.94, -1.94, -1.96, -1.98, and

-2.03 for Sc=0.25, 0.5, 1, 2, and 4, respectively.

As Figure 5-13 shows, (5.20) and (5.21) predict well the variation of Cd and b, in time.

From (5.20) and (5.21), we conclude that at large t, the mean scalar concentration difference

Cd decays proportionally to t- 1/ 2 , while the vertical extent of mean scalar concentration

variation be increases proportionally to t1 / 2 . For reference, we also plot in Figure 5-13(j) the
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Figure 5-11: Comparison of profiles of (a) turbulent diffusivity, (b) mean concentration, and
(c) mean concentration gradient, between the similarity solution ( ) and the DNS
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time evolution of the momentum properties, Ud and bc, which is also predicted well by (4.20)

and (4.21). This is further discussed in 5.4.

5.4 Scaling properties of free-surface scalar layer

From the proceeding sections it is shown that the problem of free-surface scalar mixing is

characterized by the following three length scales: (i) the lateral extent of the concentration

gradient in the flow bc, (ii) the thickness of the free-surface scalar outer boundary layer

fc=acbc, over which the turbulent diffusivity decreases, and (iii) the thickness of the free-

surface scalar inner sublayer 6c=ecbc. Note that fc and 6c are the 'physical' measurement.

(Although they are normalized by Lo in the results presented in this chapter, Lo is chosen

in the initial condition and is the same for all the cases. Thus ic and 6c differ from the

physical value by a constant only.) On the other hand, ac and cc are the non-dimensional

value normalized by bc, which is different for each cases and varies in time.
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We next discuss the scaling properties of the above characteristic length scales in fully

mixed flows (large t). By comparing (4.20) and (5.20) we have the following scaling for b,:

(5.24)

We conclude in other words that the extent of scalar concentration gradient is proportional

to the extent of shear in the flow, which is shown in Figure 5-13. Note that the difference

between b and b, are mainly caused by the difference in the integration constants Q and Q,

in (4.20) and (5.20) (Q ~ 0.12 while Q, ~ -2.0). The difference in the integration constants

represent initial effects: for example, the flow begins at t=0 while the scalar mixing begins

at t=30; the fluctuation development mechanism for velocity is different from that for the

scalar. As t becomes large, the contribution of integration constants decreases and the

influence of the bulk eddy viscosity ve=UdbV/i and the bulk turbulent diffusivity 'Ya=Udb*ca

dominates. The values of vea and -y, are close to each other (cf. Figure 5-4) because the

turbulent diffusion mechanisms are the same in the bulk shear flow. Hence the factor of
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proportionality in (5.24) is close to 1.

Likewise, since the mixing of the scalar is caused by turbulence, we assume that the

characteristic length scale of variation of the turbulent diffusivity f, depends only on the

characteristic scale of variation of the eddy viscosity f. Dimensional analysis then gives:

4e ~ f . (5.25)

For the length scales fzab and b which characterize the turbulent diffusion of momentum

we have the following scaling relation (Chapter 4):

S= a (Udb)_1/ 2 - R; . (5.26)
b V

We combine (5.24)-(5.26) and obtain the following relation:

f = c ~1 R 1/2 , (5.27)

For inner layer thickness, on the other hand, we use the small expansion of equation

(5.23) and obtain the following estimate:

aC (1/(ReSc) + 'cO )1/2 -( )D + 701/2 (5.28)
fc ac Oca - OcO 'a-YO

Here the surface value of turbulent diffusivity yo enters into the problem. The results of the

numerical simulation consistently show that the value of the turbulent mixing coefficient at

the free surface is proportional to the molecular diffusion coefficient. As shown in Table 5.1,

the ratio between -yo and D is found to be abound 2 for all the Schmidt numbers investigated

in the present study throughout the time range considered here.

Since yo scales with D and since -y, Udb > yo, from (5.28) we obtain

( - D _1/2 R-1/2S-1/2 . (5.29)
c ac Udb e C

Next we investigate the maximum concentration gradient near the free surface for large
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SC=0.25 S,=0.5 SC=1 S,=2 Sc=4
t=60 1.93 2.17 2.24 2.30 2.45
t=62.5 2.00 2.26 2.35 2.43 2.59
t=65 2.03 2.29 2.40 2.50 2.68
t=67.5 2.08 2.30 2.42 2.56 2.80
t=70 2.18 2.31 2.48 2.56 2.82

Table 5.1: Ratio of surface value of turbulent diffusivity over molecular diffusivity -yo/D.

S, cases. Differentiating (5.23) with respect to and using small-argument approximation,

we find that the maximum gradient occurs at

[1/(ReSc) + V)co 1/2
(1 + a2 ) ca - 4'cO

and the maximum concentration gradient fc'max is:

1/2 (1 +a a2 _ ~oVc)1/2 (1 + (ReScoca)-l) i2
f1 rImax ~ ac (Re Scca) ( 2 1/ /4cc i/2  (5.31)(2 + ac - 20co/ /ca)(1 + ReSccO)1 /2

The scaling relations (5.27), (5.29) and (5.31) agree excellently with our numerical results,

the latter listed in Table 5.2. In large Schmidt number cases, the inner layer thickness is

defined as the distance from the free surface to the location where f'max occurs. As shown

in Table 5.2, the outer layer thickness is not affected by the Schmidt number. The inner

layer thickness, on the other hand, depends on Sc and is found to scale like S-1/2. The

maximum concentration gradient f'imax is also dependent on Sc and Sc 1/2 f'Imax is found

to be constant.

Note that in Table 5.2, the inner layer thickness is defined as the distance from the

free surface to the location where f'max occurs. As pointed out earlier, as the Schmidt

number decreases the mean concentration gradient curve becomes smooth and the near-

surface maximum disappears. From the similarity solution (5.23) we obtain a critical Schmidt

number Sc=0.40 below which f'lmax is not present, while in numerical results fjmax has
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scalar velocity
S,=0.25 Sc=0.5 S,=1 S,=2 Sc=4

ac (a) 0.25 0.25 0.24 0.24 0.25 0.22
cc/ac N/A N/A 0.32 0.22 0.15 N/A

SC/2 Ec/ac N/A N/A 0.32 0.31 0.31 N/A

f'Imax N/A N/A 0.42 0.58 0.81 N/A
Sc-1/2 fcrImax N/A N/A 0.42 0.41 0.40 N/A

Table 5.2: Characteristic scales of free-surface boundary layer.

already become ambiguous at Sc=0.5 (Figure 5-8c). For Sc > 1, however, fc'imax is quite

distinct (Figures 5-9c to 5-11c) and provides a clear definition for the scalar mixing boundary

layer.

Finally, we remark that although the similarity expressions for the free-surface momentum

boundary layer (4.24) and the scalar boundary layer (5.23) look similar, the underlying

physics are different. In the case of momentum surface layer, both the outer layer thickness

and the inner layer thickness are dependent on the Reynolds number. It is found that both

f/b = a and c/a = 6/ scale as Re-1/ 2 and the maximum mean shear remains approximately

a constant as Re increases (cf. Chapter 4). For scalar mixing, the outer layer is controlled by

the turbulent motion and its thickness ac scales with the momentum outer layer thickness a

(Table 5.2). The value of molecular diffusivity (in other words, the Schmidt number) does

not affect ac. The scalar inner layer, on the other hand, is the region where the molecular

diffusivity is felt. It is found that the scalar inner layer thickness scales as Sc-1/2. The

maximum concentration gradient, which occurs at the lower limit of the inner layer, scales

as Sc/2. Hence, unlike the maximum shear which is bounded as Re increases, the maximum

concentration gradient increases as S, increases.
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5.5 Conclusions

In this chapter we investigate the mixing process of a passive scalar in a turbulent shear

flow under a free surface. We perform direct numerical simulations for the Navier-Stokes

equations and the scalar convection-diffusion equation. From an ensemble of simulation

results, we identify a multi-layer structure for the scalar mixing near the free surface: an

inner layer characterized by the decrease of the mean concentration gradient to obtain its

vanishing value at the free surface; and an outer layer characterized by the reduction of the

turbulent diffusivity.

Guided by numerical results, we derive a similarity theory for this problem. In particular,

the similarity solution specifies a universal shape for the mean concentration profile. This

and other predictions of the similarity theory are well confirmed by direct comparisons to

DNS. Significantly, the similarity solution provides the scaling for the thickness of the inner

and outer surface layers as a function of the Reynolds number and the Schmidt number. We

find that very close to the free surface (at a distance equal to the thickness of the inner layer)
there is a local maximum of the concentration gradient which is proportional to the square

root of the Schmidt number. Therefore, we have the interesting conclusion that for high

Schmidt numbers high concentration gradients exist very close to the free surface despite the

zero flux condition. We find that the near-surface maximum in the concentration gradient

is present for Schmidt numbers larger than 0.4, which is the case for most substances (for

example, the Schmidt numbers for most gases of environmental interest is 0(102-3); the

Prandtl number for heat transfer is 0(101-2); cf. Lide 2000).

The analytical similarity solution provides a fundamental basis for the quantification of

the free-surface scalar-mixing boundary layer. The analytical solution matches the results

of the simulation remarkably well. We remark that the range of the Schmidt numbers

(from 0.25 to 4) tested in our numerical simulations is constrained by the fundamental

limitation of the DNS approach. To obtain more complete/systematic confirmation of the

theoretical predictions, it would be very desirable to seek experimental measurements and

other simulation approaches such as large-eddy simulation or the scalar-particle Lagrangian-

tracking approach (see e.g. Papavassiliou & Hanratty 1997).
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Chapter 6

Transfer of a Passive Scalar at a Free

Surface

The problem of passive scalar transfer near a free surface is of great importance to many

applications. An accurate estimate of the transfer rate of greenhouse gases across the air-sea

interface helps our understanding of environmental issues such as the global warming. Many

industrial processes, including the gas absorption and evaporation equipments, also require

knowledge of free-surface scalar-transfer mechanism.

The problem of turbulent scalar transfer near a free surface has been studied experi-

mentally by Jobson & Sayre (1970), Ueda et al. (1977), Komori et al. (1982), Brown, Khoo

& Sonin (1990) and Rashidi, Hetsroni & Banerjee (1991). Recently, Nagaosa (1999) and

Handler et al. (1999) performed numerical simulations of turbulent open-channel flows with

passive scalars convected by the flow. Nagaosa (1999) showed the relation between surface-

renewal events and the quasi-streamwise vortex tubes emanating from the solid bottom.

Handler et al. (1999) proposed a two-timescale model for surface renewal, which assumes a

fast hydrodynamic scale and a slow diffusional scale. It was proposed that coherent hairpin

eddies are the dominant kinematic structure responsible for surface renewal. Handler et

al. (1999), however, were unable to quantify the overall contribution of hairpin eddies to

the transport process to support their conjecture, nor did they investigate other turbulence

structures.
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In this chapter we investigate the statistical characteristics and structures of passive

scalars in free-surface turbulence. In Chapter 5 we use DNS to study the problem of scalar

mixing near a free surface where the scalar flux vanishes. In this chapter we further consider

two others cases, namely a fixed scalar surface-concentration case and a fixed (non-zero)

scalar surface-flux case. In both these two cases, the transfer rate of the scalar across the

free surface is of interest. The main objectives of this chapter is to elucidate the structure of

the FST passive scalar field and to understand the relation between the mechanism of scalar

transfer and the dynamics of FST .

This chapter is organized as follows: we first define the problem in 6.1; in 6.2 we

investigate the statistical characteristics of the scalar field; we discuss in 6.3 the structures

of the scalar field and their dependence on the FST coherent vortices; in 6.4, we identify

and quantify the scalar transport processes in free-surface turbulent flows; finally in 6.5, we

present the conclusions.

6.1 Problem definition

Similar to Chapter 5, we consider the transport of passive scalars in a turbulent shear flow

underneath a free surface (cf. Figure 5-1). The governing equations for the fluid motions as

well as the scalar transport are given in 5.1. In Chapter 5, we investigate the case where

the scalar concentration c has zero gradient at the free surface:

Oc
=9 0, on Z = 0 ,(6.1)

which corresponds to situations where there is no scalar flux across the surface, e.g. the

transport of most pollutants for which the surface adsorption and desorption rates are low.

In addition to the zero-flux case, we further consider here two other free-surface boundary

conditions:

c = 0, on z = 0 , (6.2)
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and
Oc

= -1, on z = 0 .(63)

The fixed-concentration condition (6.2) models the gas transfer between the air and water, in

which case the gas transport process is mainly controlled by the water motions and the gas

concentration at the air side can be regarded as a constant. The fixed-flux condition (6.3)

models the heat transfer problem, where the heat flux rates, controlled by factors such as

wind and evaporation, can be reasonably approximated as a constant while the temperature

distribution at the water side needs to be investigated.

At the bottom, we apply a fixed-concentration boundary condition:

c!z=-L = 1. (6.4)

In the horizontal directions, period boundary condition is used.

In this chapter we investigate the transport processes of the scalars subject to the free-

surface boundary conditions (6.1), (6.2), and (6.3), respectively. The numerical scheme is

essentially the same as in Chapter 5 and will not be taken up here. For each cases, we

consider five different Schmidt numbers S, = 0.25, 0.5, 1, 2, and 4, in order to investigate

the effect of molecular diffusivity.

6.2 Statistics of passive scalar transfer

In view of the horizontal homogeneity, in this chapter we use plane-averaging unless otherwise

pointed out. Figures 6-1 to 6-7 plot the statistical properties of the scalar fields, with Figures

(a), (b), (c) corresponding to the zero surface-flux, fixed surface-value, and fixed surface-flux

cases, respectively. For reference, we also plot in (a) the equivalence in velocity quantities.

Figure 6-1 plots the mean scalar concentration profiles. For the zero surface-flux case

(Figure a), the difference between each Schmidt number is negligible in the bulk flow below.

Near the free surface, however, the molecular diffusivity affects the (c) profile (cf. Chapter

5). For both the fixed surface-value case (Figure b) and the fixed surface-flux case (Figure c),
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the effects of molecular diffusivity are much more obvious. For the former, higher Schmidt

number produces steeper concentration gradient and a thinner scalar boundary layer, while

for the latter, higher Schmidt number results in a higher scalar surface-concentration value.

The effects of the Schmidt number on the scalar concentration distribution can be seen

more clearly in the concentration gradient profile (Figure 6-2). The zero surface-flux case

(Figure a) has been studied extensively in Chapter 5 and will not be taken up here. For

the fixed surface-value case (Figure b), higher Schmidt number (smaller molecular diffusivity

value) is accompanied with higher gradient, in order to maintain the molecular flux value

which dominates near the surface in a way similar to the wall boundary layer. For the fixed

surface-flux case (Figure c), the scalar gradient variation penetrates much deeper into bulk

flow for larger molecular diffusivity values (smaller Schmidt numbers).

The scalar fluctuation magnitude is plotted in Figure 6-3. For both the zero surface-flux

case and the fixed surface-value case, (c' 2) increases over the surface layer because of the

reduction in dissipation there, in a way very similar to the velocity case (cf. Chapter 3).

The boundary condition of a fixed surface-value requires the scalar fluctuation to vanish at

the surface. However, just underneath the surface, the fluctuation magnitude reaches its

peak value because of the large production (large concentration gradient), in analogy to the

velocity equivalence near a solid wall.

Figures 6-4 and 6-5 plot the profiles of scalar turbulent flux and molecular flux, respec-

tively. Due to the constraint of the surface on the vertical motion, the turbulent flux (c'w')

diminishes as the free surface is approached. Near the free surface, the contribution of

molecular flux increases for both the fixed surface-value case and the fixed surface-flux case.

The contributions from the turbulent flux and molecular flux can be seen more clearly from

Figure 6-6, where each contribution as well as the summation is plotted. As shown, for the

fixed surface-value case, the reduction in the turbulent flux is much compensated by the

increase of molecular flux.

Finally in Figure 6-7 we plot the turbulent diffusivity profiles. For the zero surface-flux

case, the turbulent diffusivity at the free-surface is nonzero and its value is comparable to

the molecular diffusivity (cf. Chapter 5). For the other two cases, however, the turbulent
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diffusivity vanishes at the free surface. The reason is that while the turbulent flux (c'w')

vanishes, the mean scalar gradient a(c)/&z is zero for the zero surface-flux case but nonzero

for the other two cases. Besides the difference at the free surface, the deviation in the

turbulent diffusivity in the bulk flow below is negligible. Of special importance is the fact

that the scalar surface outer layer is not affected by either the Schmidt number or the scalar

boundary conditions. As pointed out by Chapter 5, it is purely controlled by the momentum

outer layer.

6.3 Structures of passive scalar transport

In this section we investigate the relation between the scalar transport and the fluid motions

in free-surface turbulence. As shown in Chapter 3, free-surface turbulent flows are charac-

terized by events such as splats (upwellings), anti-splats (downdroughts), surface-connected

coherent vortices, and coherent hairpin vortices. From first principle, splats convect scalar

from the bulk flow to the free surface while anti-splats carry scalar away from the surface.

One main objective of this chapter is to identify and quantify the contributions of different

flow motions to the scalar transport process.

In order to obtain reliable quantification, we employ the conditional averaging technique

of variable-interval space-averaging (VISA), which was developed by Kim (1983) following

the variable-interval time-averaging (VITA) method of Blackwelder & Kaplan (1976). In

order to capture a strong event which is characterized by a significant value in the quantity

we first define its variable-interval space averaging f as

1 x+W y+W
f (x, y, z, t, W) = 4W2 I f (, , z, t)d~d( , (6.5)

where W is the half width of the averaging window, which should be comparable to the

macro length-scale of f. To identify strong f events, a localized variance is introduced:

fva(x, Y, Z, t, W) f 2 (x, y, z, t) - f 2 (x, y, z, t, W) , (6.6)
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and the strong event is detected using the following criterion:

D(xy, z,t) 1, if f var> K(frms) 2 , (6.7)
0, otherwise.

Here the detection function D(x, y, z, t)=1 if the event exists; fr,, is the root-mean-square

variation of f at the horizontal plane; and K is the threshold level.

In this study, we use the large-magnitude positive and negative plane divergence, u/Ox+

Ov/Oy = -Dw/&z at z = 0, to detect splats and anti-splats, respectively. Large wz at z = 0

is used to detect surface-connected vortices, while large negative wy at z = -0.125 is used

to detect hairpin vortices.

The conditionally-averaged field for the flow and scalar are plotted in Figures 6-8 to

6-18. We first consider the splat events. Figure 6-8 plots the vertical (x, z)- and (y, z)-

section of the splat, which is located at the center of the domain. As the fluids are convected

towards the free surface, the surface does not allow complete freedom on the vertical motions

and the fluids are turned into horizontal directions, which is clearly shown in Figure 6-8.

Subsequently, the scalars are convected towards the free surface by the upwelling motions,

resulting in a high scalar concentration for the zero or fixed surface-flux cases, and high

scalar gradient for the fixed surface-value case.

Figure 6-9 plots the surface features around the splats. Since the fluids coming towards

the surface are turned into horizontal directions, the plane divergence Ou/Ox + Ov/Oy =

-Ow/Oz is positive, which is clearly shown in Figure 6-9(a). Also shown clearly are the

enhanced scalar concentration (Figures b and d) and enhanced scalar gradient (Figure c).

Anti-splats are plotted in Figures 6-10 and 6-11. As the counterpart of splats, anti-splats

are expected to transport scalar away from the surface to the bulk flow below. In free-

surface turbulence, however, the roles of splats and anti-splats should not be equal as the

upward and downward motions in an unbounded shear flow: splats can come from a certain

distant underneath while the origins of anti-splats are limited by the free-surface location.

As a result, the effect of anti-splats is much less significant compared to splats. We also

observe from the (x, z)-sections in Figure 6-10 that strong spanwise vortical motions are
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also present in the conditionally-averaged field. Inducted by the spanwise vortex, the fluids

convect the scalar towards the surface at the downstream region. All these factors make the

contributions from anti-splats less significant than the splats.

We next investigate the roles of coherent vortical structures, namely the hairpin vortices

and the surface-connected vortices, in the scalar transport process. The color contours of

spanwise vorticity wy are plotted in Figure 6-12, which clearly shows the strong vortex (head

portion of hairpin eddy) pointing in the negative y-direction. Induced by this vortex, fluids

on the right are convected to the surface, while the fluids on the left are transported away

from the surface. Also due to the induction by the two hairpin legs, which are inclined to

the positive x-direction (cf. Chapter 3), the upward convection on the right is stronger than

the downward convection on the left, as shown in Figure 6-13(a). Because of the upward

convection, scalars are transport to the free surface (Figures 6-12), resulting in higher scalar

concentration for the cases of zero or fixed surface-flux and enhanced scalar gradients for the

fixed surface-value case (Figures 6-13 b to d).

We next consider the surface-connected vortices, which are plotted in Figures 6-14 and

6-17 for positive vortices and in Figures 6-15 and 6-18 for negative vortices. Because of sym-

metry, the contributions from positive and negative surface-connected vortices are equal. An

important observation from Figures 6-14 (and 6-15) (a) to (c) is that surface-connected vor-

tices draw fluid from the surface down to the bulk flow below, like a up-side-down hurricane

(Figure 6-16). As a result, scalars are transported away from the surface through the vortex

core. Figures 6-17 and 6-18 show that the downdroughts inducted by the surface-connected

vortices are significant for all the three cases investigated in this study.

6.4 Quantification of scalar transport process in free-

surface turbulent flows

A critical need in the study of free-surface turbulence is to quantify the dependence of trans-

port process on the flow hydrodynamics. As shown in 6.3, splats enhance the convection

of scalar towards the free surface, while anti-splats carry the scalar away from the surface.
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Figure 6-15: Free-surface features of the conditionally-averaged field around negative surface-
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In terms of coherent vortical structures, hairpin vortices convect scalars to the free surface,

while surface-connected vortices draw scalars away from surface to the bulk flow below. In

this section we quantify the contributions from each type of events.

We first consider the one-point correlation between the scalar and flow properties, which

is plotted in Figures 6-19 to 6-21. Note that for quantities vanishing at the surface, surface

values of correlation coefficients are not defined and extrapolations are used.

In Figures 6-19 to 6-21, plot (a) shows the correlation with vertical velocity and plot (c)

shows the correlation with plane divergency, both represent vertical motions; plot (d) shows

the correlation with horizontal vorticity (wj 2 +W 2)1/2, which corresponds to hairpin vortices.

As expected, they all show positive correlations. Plot (b) shows the negative correlation with

surface-normal vorticity, also in agreement with the results in 6.3. We also observe that

among the three cases, the fixed surface-value case correlates with the flow field better than

the other two cases. Nevertheless, we notice that the correlations are low.

The one-point correlation coefficient only provides a quantitative relation between the

scalar and velocity field. In addition, it is unable to represent the cases where the scalar

and velocity fields have an spatial shift, such as the hairpin vortex case shown in 6.3. To

better quantify the contributions of each type of events to the scalar transport process, we

develop a conditional statistical method based on the aforementioned VISA technique, which

is described below.

In the VISA technique, for a certain type of coherent structures, we identify at most

one event in each averaging window. Defining N as the number of the events detected and

g as the quantity of interest, such as the scalar surface-concentration for the zero or fixed

surface-flux cases or the scalar surface-gradient for the fixed surface-value case, the overall

contribution of the detected events is expressed as

N J(g)conddxdy. (6.8)

Here ( )cond represents the conditionally-averaged quantities, while the integration is per-

formed in the averaging window.

For the expression (6.8) to accurately represent the contributions from all the events of
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the same type, an essential task is the determination of the averaging window size W. Small

values of W tend to exclude some of the contributions out of the window; while large W will

lose some of the events of the same type and include the effects of other types of events. A

natural choice for the window size W is the integral scale of the detection function f. For

the splats/anti-splats, hairpin vortices, and surface-connected vortices, the integral scales for

the corresponding detection functions f = &u/&x + &v/&y, wy and w, are about 0.8, 0.65

and 0.5, respectively.

The quantified contributions from the events of splats, anti-splats, hairpin vortices, and

surface-connected vortices are plotted in Figures 6-22 to 6-24 for the three cases, as functions

of the threshold K. As shown, as K increases, the magnitude of the contribution quantities

increases first and then decreases. The latter is easier to understand since less events are

captured at higher threshold levels. The low contribution for small K, on the other hand,

can be attributed to the fact that if the threshold level is too low, weak events are captured

accompanied by other types of events. Nevertheless, Figures 6-22 to 6-24 show that the

quantification of the contributions from the coherent events is insensitive to the threshold

level K for a wide range.

The results in Figures 6-22 to 6-24 greatly agree with the observations from 6.3. The

splats play an essential role in the enhancing of scalar transfer towards the free surface, of

which the hairpin vortices contribute significantly. The quantification based on anti-splats,

on the other hand, plays a much less significant role, also in agreement with the observation

from 6.3. Of special note is that surface-connected vortices contribute considerably to the

transport of scalar away from the surface, which is shown in the reduction of the surface

concentration for the zero surface-flux case (Figure 6-22) and fixed surface-flux case (Figure

6-24), as well as the decreasing of surface gradient for the fixed surface-value case (Figure

6-23).
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6.5 Conclusions

In this chapter we perform direct numerical simulation for the transport of passive scalars

with three different free-surface boundary conditions of a zero surface-flux-rate, a fixed

surface-value, and a fixed surface-flux-rate, respectively. The three cases correspond re-

spectively to the problems of pollutant spreading, gas transport and heat transfer. From the

statistics of the scalar field, the structure of free-surface boundary layers is clearly shown,

which is characterized by the dramatic change in the mean concentrations, the enhanced

viscous flux rates, and the rapid reduction in the turbulent diffusivity.

The dependence of scalar transport process on the turbulent structures are elucidated.

It is found that splats play a much significant role in the transport of scalars towards the

free surface than the anti-splats do in convecting the scalars away from the surface. The

coherent hairpin vortices and surface-connected vortices contribute considerably to the trans-

port towards and away the surface, respectively. These processes are quantified by a novel

conditional statistical technique based on the variable-interval space-averaging method.
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Chapter 7

Inter-Scale Energy Transfer in

Free-Surface Turbulence

In large-eddy simulation (LES) only the large scales (grid scales, GS) are computed explicitly

while the effects of small scales (subgrid scales, SGS) are modeled. Obviously, the key to the

success of LES lies in the accuracy of the SGS modeling. The most important role of SGS

modeling is to represent the energy transfer between the grid scales and subgrid scales. In

this chapter we study the inter-scale energy transfer in free-surface turbulence (FST). Our

objective is to obtain the physical understanding necessary for the effective SGS modeling

for the LES of FST.

The development of SGS modeling for FST LES has been limited until recently. Dom-

mermuth & Novikov (1993) used DNS and LES to study the interaction between turbulence

and a free surface with and without surface waves. They employed a number of local and

global SGS models and their combinations, but with limited success in that, as resolution

is decreased, the closure models they considered work as poorly as grid filters with no SGS

models. They concluded that it would be important to obtain a better understanding of the

structure of turbulence in question. Salvetti & Banerjee (1995) and Salvetti et al. (1997)

developed a dynamic two-parameter model (DTM), which is a combination of the Smagorin-

sky model and the scale-similarity model (Bardina, Ferziger & Reynolds 1983) with both

coefficients determined dynamically through the Germano identity (Germano et al. 1991).
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Their tests with a decaying turbulence beneath a flat free-slip wall show that DTM obtains

significant improvements over existing SGS models. Recently, Hodges & Street (1999) per-

formed LES for a turbulent open-channel flow with a finite-amplitude surface wave. They

employed DTM as the SGS model and obtained results for the turbulence wave interactions.

One of the major objectives of the present study is to further develop large-eddy simu-

lation capabilities for free-surface turbulent flows. As a canonical problem, we consider the

interaction of a turbulent shear flow with a free surface at low Froude numbers. From the

DNS studies in proceeding chapters, it is known that free-surface turbulent shear flow pos-

sesses a number of unique features: (1) The flow field near the surface is highly anisotropic.

The vanishing of the tangential stresses at the surface creates a thin surface layer where the

velocity derivatives (e.g. vorticity and strain rate components) are highly anisotropic. On

the other hand, the blockage effects of the surface cause anisotropy of the velocity compo-

nents themselves over a much thicker region. (2) This multi-layer structure is manifest in the

turbulent diffusion, which can be interpreted analytically through a similarity solution for

the mean flow. (3) The free-surface turbulent flow is characterized by connection of coher-

ent hairpin vortex structures at the free surface. Depending on the stage of the connection

process, different vortex dynamics can be identified, which ultimately result in persistent

surface-connecting vortices on the surface.

From the above, it is clear that the effectiveness of LES of free-surface turbulence would be

enhanced if the characteristic features of the flow are taken into account and are captured by

the SGS model(s) employed. In addition to the descriptions of the statistical and structural

properties, of special importance in the context of LES is an understanding of the interaction

and energy transfer mechanisms between resolved grid scales and the modeled subgrid scales

of the flow. In this chapter we investigate these inter-scale turbulent mechanisms near the

free surface. In Chapter 8, this understanding is used to develop specific SGS models which

capture these underlying structures and mechanisms.

This chapter is organized as follows. In 7.1 we provide an overview of the FST flow

field in terms of the characteristics of different turbulent length scales. We investigate in

7.2 the energy cascade in the free-surface turbulence. In 7.3 we then use a conditional
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averaging technique to study the role of coherent vortex structures in the inter-scale energy

transfer. In 7.4 we examine the anisotropy of the flow field and the consequent effects on

SGS modeling. Finally in 7.5, we present our conclusions.

7.1 Overview of the flow field

In this study, the DNS results on the interaction between a turbulent shear flow and a free

surface at low Froude numbers, obtained in the proceeding chapters, are used to investigate

the inter-scale energy transfer mechanism in FST. Here we first present an overview of the

flow field in term of different turbulence length scales.

Figure 7-1 plots the horizontal energy spectrum Euiu (k,), which is defined as

E, ,(kn; z) 1 k; z) k, i =1,2,3. (7.1)
kn-Ak/2<k<kn-+Ak/2
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Here kr=nAk, n=1,2,3... with Ak-27r/L,=27r/Ly. In (7.1), ii, is the (horizontal) Fourier

mode (Eii is the complex conjugate) of the velocity component ui:

'ui(x, y, z, t) ii ( k z, tkixxiY 1 (7.2)

where

k, = nAk, k =- n Ak, and k k2 +k2, (7.3)

nx = -Nx/2, ... , Nx/2 - 1, ny = -Ny/2, ... , Ny /2 - 1 , (7.4)

with Nx (Ny) the grids number in the x- (y-) direction.

Because of the low Reynolds number limited by the DNS, only a relatively small portion

of the energy spectrum Esu in Figure 7-1 is close to the k-I3/ high-wavenumber asymptote.

Figure 7-1, however, shows clearly the overlap among the grid-scale portion of the kinetic

energy, Egf=u EiiiJ/(2Ak); the subgrid scale portion of the energy, Eu;s;Z 'u'iu'i /(2Ak);

and the remaining cross portion, Eu11 _E(iu'- + u'i )/(2A, ). Such overlaps are a char-

acteristic of the (horizontal) Gaussian filters (2.34). The use of the Gaussian filter and the

resulting energy overlap are the basis of the scale-similarity SGS models. The importance of

including such SGS models in the LES is demonstrated in simulations in 4.4.

Similar to the energy spectrum, the turbulence kinetic energy q 2/2 itself can be separated

into its scale components:

2 1 1 12
-U (zti))2) - (U (~U)) 2) + ((Ui (Ul)(u _ (Ul))) + -K~2

2 2 %2 -- lN0 i i2

grid-scale componentcontribution subgrid-scale component

(7.5)

Likewise, the Reynolds stress (-uw) can be separated as:

(-uw) = (-- U) + (-Uw' - u'Ti) + (-u'w') . (7.6)

grid-scale component cross contribution subgrid-scale component

Figure 7-2 plots the vertical profiles of these components for the turbulence energy and the
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q 2/2, and (b)
- , cross con-

Re'19(u)/(9z

Reynolds stress (-uw). It is clear that the grid-scale portion, which contains most of the

energy, is responsible for the main part of the turbulence transport.

7.2 Inter-scale energy transfer

Turbulence is characterized by the energy cascade throughout different length scales. The

most important role of the SGS model is to account for the energy transfer between the

resolved and subgrid scales. Figure 7-3(a) plots the horizontal plane-averaged energy trans-

fer (c) from the grid scales to the subgrid scales, where e T rijSi and 9ij - (0i7U/Ox +

0-uj/Oxj)/2. Positive/negative sign of f corresponds to energy transfer to/from the grid

scales from/to the subgrid scales. From the figure, it is seen that the average energy transfer

is from grid to subgrid scales at all depths. The amount of the energy transferred into the

subgrid scales is however much reduced near the free surface. For example, in the Smagorin-
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Figure 7-3: (a) Vertical variation of the energy transferred from the grid scales to the subgrid
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forward (grid to subgrid) transfer ( ) and backward (subgrid to grid) transfer (
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sky model of the SGS stress,

3 ZJ2Tk - C |Tj -3 i k 1 (7.7)

the coefficient Cs will, as a result, decrease towards the free surface. This behavior of Cs is

confirmed and shown in Figure 7-3(a). In Figure 7-3(a), Cs is obtained by assuming it to be

constant in the horizontal plane and then calculated by best matching the two sides of (7.7)

(cf. a priori tests by Clark, Ferziger & Reynolds 1979, and McMillan, Ferziger & Rogallo

1980).

Figure 7-3(b) plots the grid percentages at each horizontal plane where forward transfer

(negative c) or backward transfer (positive c) occurs. In the bulk flow below, about 70% of the

grids transfer energy forward while the remaining 30% experience energy backscatter. The
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relatively high percentage of backscatter is consistent with previous studies. Piomelli et al.

(1991) found that for turbulent channel flow, backscatter occurs at nearly 50% of the points

in the flow when a Fourier cutoff filter is used; if a Gaussian filter is used, the backscatter

fraction is reduced to 30%. Of significant importance to the study of free-surface turbulence

is the near surface behavior in Figure 7-3(b) showing that the percentage of backscatter area

increases from 30% to more than 40% as the free surface is approached.

The above results suggest that the inter-scale energy transfer near the free surface is

significantly different from that in the bulk flow below and that energy backscatter must

play a more important role near the surface. To further investigate these mechanisms, we

study the energy cascade in the spectral space.

We denote the nonlinear advective terms as

i =- i=z 1, 2, 3, (7.8)
axJ

and the corresponding Fourier modes XA. From (2.1) and (7.1), the effect of the nonlinear

terms on &E(ka)/&t can be written as

T(kR) = { k )i(kxky)}/Ak , (7.9)
kn-Ak/2< kx+ky2<kn+Ak/2

where R denotes the real part.

The wave vector of the quadratic nonlinear terms, (kr, ky), and those of the two velocity

components in the nonlinear terms, (kg, kr) and (k', k'), must satisfy the following triangular

relation:

(kx, ky) = (kg, k;) + (k", ks) . (7.10)

In other words, it is the interaction between the two wavenumbers, kr= (k;)2 + (kr)2 and

ks= (kx) 2 + (ky) 2 , that results in the change at the third wavenumber k= (kx) 2 + (kv) 2 .

For later reference, we use Tkrks(k) to denote the contribution to T(k) due to the quadratic

interactions of the flow at two different wavenumbers k' and ks. To understand the con-

tributions from the different scales, it is convenient to partition the k, ks domain into dif-
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ferent wavenumber regimes: k', ks C M, 1, II, III, A. These correspond to the regimes:

M={k : k = 0} (mean flow); I={k : 0.6 < k < 5.4} (large scales); II={k : 5.4 < k < 10.2}

(small resolved scales and large subgrid scales); III=J{k : 10.2 < k < 15} (small scales); and

A={k : k > 0} (all turbulent fluctuation wavenumbers). For each of these energy transfer

terms, we further define their directional components, 7'', , y, z, which correspond to

the contributions to Trk due to the j-th component of the advection term, -- u0Uiz/&xj

(no summation for j).

We first consider the interaction between the mean flow and the total turbulent fluc-

tuations, TM'A. This is plotted in Figure 7-4 for the free-surface region (averaged over

-0.25 z 0) and the deep region (averaged over -1.625<z< -1.375). Here and here-

after, T is normalized by the local turbulent kinetic energy q2 (z, t)/2. Figure 7-4 shows

clearly the energy extraction from the mean flow to turbulent fluctuations and that it is

the low wavenumbers (largest eddies) that receive most of the energy directly. Figure 7-4

also shows that the turbulent production near the free surface is much less than that in

the deep region. This is consistent with Shen et al. (1999) who considered the total pro-

duction <-uw> &<u>/9z in the physical space. This reduction was explained by Shen

et al. (1999) through two mechanisms: (i) the annihilation of w due to the constraint on

the vertical motion at the free surface; and (ii) the vanishing of a<u>/z caused by the

shear-free free-surface boundary condition.

Next we investigate the interactions among the total turbulent fluctuations, TAA, which

is plotted in Figure 7-5(a) (the directional components in Figures b to d will be discussed

later). The forward energy transfer (for the low wavenumbers) is manifest in the bulk region,

as expected. This energy transfer is, however, very different near the free surface where it

is predominately one of back-scattering (although at a smaller magnitude). This reverse

energy transfer mechanism near the free surface is consistent with the finding in Figure 7-3

and was also observed in free-surface jet flows (e.g. Mangiavacchi, Gundlapalli & Akhavan

1994).

The overall picture is clarified if we consider the contributions to TAA from the different

wavenumber scales, specifically: TI^, TII,A TIIIA. These are plotted in Figures 7-6(a),
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7-7(a), and 7-8(a), respectively. From these figures, we observe that, in the bulk region, the

role of each band is to remove the energy from the larger scales to the smaller scales. This

is in agreement with the previous studies on other types of flows (see e.g. Domaradzki &

Rogallo 1990 for isotropic homogeneous turbulence, and Domaradzki et al. 1994 for wall-

bounded turbulence). Near the free surface, band I (large scales) feeds energy into the

low wavenumbers, similar to the backscatter shown in Figure 7-5(a), while the intermediate

and small scales, bands II and III, continue to transfer energy forward. Nevertheless, the

magnitudes of the forward energy transfer by bands II and III near the free surface are much

less than the corresponding values in the bulk.

More insight into the inter-scale energy transfer can be obtained by considering the

directional components of T. Figures 7-5 to 7-8 (b), (c), (d) plot jA, I TI,A , I'A,

for j=x,y,z, respectively. For j=x and y, the difference between T in the bulk and at the

free surface is insignificant: in both cases, energy is transferred from larger to smaller scales.

It is the vertical component T that fundamental differences obtain between the bulk and

free surface: the forward energy transfer in the bulk becomes negative and is comparable
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in magnitude at the free surface. Clearly this reversal is related to the vertical convective

velocity term:

- = W O - 2 , OZ =1,2,3. (7.11)

The vertical velocity w is small near the free surface and hence the second term -ui&w/&z

dominates. Since Ow/Oz=-(u/&x + Ov/8y) measures the divergence at the horizontal

plane, we conjecture that the energy backscatter in free-surface turbulence is likely related

to the splat and anti-splat motions near the surface. This is confirmed in 3.3.

In summary, it is found that the mechanism of inter-scale energy transfer near a free

surface is substantially different from that in the bulk flow. The typical energy cascade

from large to small scales does not obtain near the free surface. This energy backscatter,

which is found to be caused by vertical convection, plays a prominent role in the structure

of free-surface turbulence.

7.3 Coherent vortical structures at the free surface

The reverse inter-scale energy transfer in free-surface turbulence is related to the presence of

coherent vortex structures at the surface. The correlation between the turbulent structures

and the forward/backward inter-scale energy transfer has received some attention in recent

years. Hartel et al. (1994) showed that the backscatter near a solid wall is strongly enhanced

by coherent motions such as bursting events. Piomelli, Yu & Adrian (1996) investigated the

dependence of the inter-scale energy transfer on the large-scale turbulent structures in wall-

bounded flows. These studies of wall-bounded flows provide important physical insights for

the development of SGS models. For free-surface turbulence in an open-channel flow, Pan

& Banerjee (1995) found strong backscatter in the upwellings, while strong forward energy

transfers are at the outskirts of the surface-connecting vortices where the shear is high. The

energy transfers at the vortex core regions are found to be weak. These features are also

obtained in our present simulations (results not shown here).

From earlier studies (cf. Shen et al. 1999) it is shown that free-surface shear turbulence

is characterized by the presence of hairpin vortices which are inclined with the mean flow
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with head portions near the free surface and the two legs extending into the bulk region.

As a hairpin vortex approaches the surface, the head portion is dissipated quickly within a

surface layer and the two legs connect to the surface, resulting in a pair of persistent counter-

rotating surface-connected vortices. (These processes are studied in some detail by Shen et

al. 1999.) In our SGS modeling, we find that it is essential to capture the inter-dependence

of near-surface vortex dynamics and inter-scale energy transfer in order to obtain adequate

prediction of the surface signature.

To analyze the coherent turbulent structures, we employ the method of conditional av-

eraging (cf. Antonia 1981 for a review of this method for turbulence studies). Specifically,

we use a variable-interval space-averaging (VISA) technique (Kim 1983; Hartel et al. 1994;

Piomelli et al. 1996), which is based on the variable-interval time-averaging (VITA) method

developed by Blackwelder & Kaplan (1976). We summarize the VISA procedure used in

the present study as follows. The event we want to capture is the head portion of the

hairpin vortex near the free surface, i.e. large negative spanwise vorticity wy. For wy, its

variable-interval space averaging is defined as

wY(x, y, z, t, W) 4W 2 j W ((,, z, t)dd( , (7.12)

where W is the half width of the averaging window, which has a value about 1 (macroscale)

in this study. To identify strong wy events, a localized variance is introduced:

W"ar(X, y, z, t, W) W (x, y, z, t) - w (x, y, z, t, W) . (7.13)

Strong hairpin head events are detected using the following criterion:

1) if Wvar > CP rms)2,
D (x, y, z, t) = ' Y (7.14)

0, otherwise.

Here the detection function D(x, y, z, t)=1 if the hairpin head exists; w"ms is the root-mean-

square variation of w at the horizontal plane; and c is the threshold level, which has the

value 15 in the present study. In this study, we detect hairpin head events at three horizontal
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Figure 7-9: Coherent hairpin vortex structure in the conditionally-averaged VISA flow field

(zd=-0.25): (a) region where vorticity magnitude JLW 0.2; and (b) region where SGS
dissipation TijgSij 0 (energy backscatter). The mean flow is in the positive x-direction.

planes at Z-Zd=-0.2 5, -0.125, -0.0625. Increasing zd corresponds to later phases of the

vortex connection process (cf. Shen et al. 1999). The three-dimensional flow field associated

with each event is then ensemble averaged to yield the VISA field. (Before the averaging,

the coordinates are transformed horizontally so that all the events are centered at (0, 0, zd).)

In this study, we use the data from t=40 to 90 from 25 DNS realizations averaging over

0(1000) events.

Figure 7-9 shows an example of the resulting VISA flow field. The hairpin heads are

detected at Zd=-0. 2 5 and thus the averaged hairpin head is centered at (0, 0, -0.25) in the

plots. Figure 7-9(a) shows the isosurface of the vorticity magnitude Jw1. The head portion

and the two legs of the hairpin are manifest with the legs inclined with the mean shear flow

(cf. Figure 2-1).

One of the major findings in this study is shown in Figure 7-9(b), where the region with

energy backscatter is plotted. Comparing Figures 7-9(a) and (b), it is seen that there is

a distinct region of backwards energy transfer (positive rigmij) downstream of the hairpin

structure. The remaining of this sub-section is devoted to elucidating this feature.
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Figure 7-10 plots vertical (x,z) sections at the center (y=O) of the VISA hairpin vortex

detected at different values of Zd. Due to the induction of the hairpin head (which has

negative wy component) and the two hairpin legs, the fluid downstream is advected to the free

surface ('splats'); while the fluid upstream moves away the free surface ('anti-splats'). The

contours of the SGS dissipation in Figure 7-10 show clearly the energy backscatter (positive

rigsij) region located downstream of the hairpin vortex. As the vortex approaches the free

surface (Figures a to c), the backscatter region extends further downstream. Vertically

however, the backscatter is always constrained to a thin region at the free surface. The

thickness of this region is about 0.1 and is comparable to the thickness of the surface layer

identified in Shen et al. (1999, 2000).

The surface characteristics of the VISA field are of immediate interest. Features of

these are plotted in Figures 7-11 to 7-13 for hairpin heads detected at Zd=-0. 2 5, -0.125,

-0.0625, respectively. The surface contours of the spanwise vorticity, wY, (Figures a), which

is induced by the primary vortex beneath, show that the surface vorticity is positive in the

center region (the hairpin head has negative wy) and negative at the two sides. From the

surface-normal vorticity w, (Figures b), it is seen that as the hairpin vortex approaches the

surface, positive/negative w, appears upstream on either sides of the symmetry plane (y=O).

These eventually evolve into a pair of counter-rotating surface-connected vortices (Figure

7-13b).

Surface contours of SGS dissipation -rijsi are plotted in Figure (c). The energy backscat-

ter in the downstream region is clearly seen. As the hairpin vortex approaches the surface

(increasing Zd), the region of energy backscatter elongates in the streamwise direction and

contracts somewhat in the spanwise direction. Figure (d) plots contours of the Smagorinsky

coefficient Cs obtained by matching the model (7.7) point by point with the DNS-resolved

SGS stresses. As expected, Cs < 0 in the region of energy backscatter.

According to Shen et al. (1999), the inclination angle of the vorticity at the surface,

a--tan ( + is a good indicator of the temporal phase or 'age' of a surface-

connecting hairpin vortex. During the connection, a is large (> 250), as shown in Figures

7-11 to 7-13 (e). After connection, w, becomes dominant while wx and wy are dissipated and
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a becomes small (< 5' in the present case). The detailed results for this latter condition

are not shown here but were discussed extensively in Shen et al. (1999). It was found

that surface-connected voticity is persistent and decays at a slow rate (more comparable to

laminar condition). This is in agreement with Pan & Banerjee (1995) who observed that the

energy cascade magnitude is small at the cores of surface-connected vortices.

Finally, Figure () plots the horizontal divergence Du/Ox + av/Oy = -&w/az together

with the horizontal velocity fluctuation vectors (u - (u), v - (v)). These show clearly the

regions of splats and antisplats. The downstream splat region, when compared with Figures

(c) and (d), is shown to correlate directly with the region of energy backscatter.

In summary, conditional averaging shows that energy backscatter at the free surface

occurs at the downstream splat region of coherent hairpin structures approaching the surface.

This region is also characterized by large vortex inclination angles (relative to the vertical)

and positive horizontal velocity divergence Ou/ax + Ov/&y. The physics revealed herein is

used directly in our later development of SGS stress models for free-surface turbulence in 4.

7.4 Anisotropy in the surface layer

In some sense, a necessary difference between isotropic turbulence and free-surface turbu-

lence is anisotropy of the latter due to the imposition of kinematic and dynamic boundary

conditions at the free surface (cf. e.g. Shen et al. 1999). Figure 7-14 plots the vertical pro-

files of the velocity and vorticity components in the four wavenumber bands I, II, III and

A. The anisotropy in the velocity is a direct consequence of the kinematic free-surface con-

dition which renders w much smaller than u and v near the free surface. The anisotropy

in the velocity gradients is caused by the vanishing tangential-stress free-surface boundary

conditions which results in horizontal vorticity components wo and wy much smaller than

the vertical component w,. Comparing the results for the different wavenumber bands, it is

significant that the free-surface anisotropy obtains qualitatively undiminished for different

eddy wavenumbers. Thus, anisotropy is an essential feature that must be accounted for by

free-surface turbulence SGS models.
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Figure 7-14 also reveals the vertical extents of the free-surface anisotropy regions as eddy

wavenumber increases. To examine this further, we compare the normalized (by values in

the bulk) vertical profiles for different wavenumber bands. Figure 7-15 plots typical results

for w and w. As a measure of the respective surface layer thickness, the point at which

maximum (negative) curvature occurs on each profile is also indicated. For the velocity, the

thickness generally decreases with increasing k as expected from physical reasoning. For

wX (a similar result obtains for wy), there is little variation of the anistropy thickness with

wavenumber, and the overall thickness is smaller than those for the velocity components as

consistent with the respective inner versus outer (blockage) layer effects they manifest.

The double-layer structure near the free surface is elucidated by considering the vertical

variation of the (horizontally averaged) turbulence diffusivity. This is in Shen et al. (2000)

where it is found that the surface layer is characterized by a rapid reduction of the turbulence

diffusivity. This behavior is well fitted by a Guassian profile and can be modeled by an

analytical similarity solution for the mean flow. Of special relevance here is the fact that the

outer and inner layer structure of the free-surface boundary layer can be quantified in terms

of the mean flow profile. In particular, the outer and inner thicknesses are given by the local

minimum and then the local maximum of the shear profile as the surface is approached (cf.

Figure 4-3).

We now examine the extent of anisotropy in the SGS stress. Figure 7-16 plots the depth

variation of the rms values of the (trace-free) SGS stress and the (grid-scale) strain rate

components. As expected, there is significant anisotropy near the free surface: for both the

SGS stress and strain rate, the 'horizontal' components ij=11, 12, 22, 33 increase towards

the free surface, while the 'vertical' components ij=13, 23 decrease. Note that ij=33 is also

a 'horizontal' component because w and thus T33  WW - U1 T is small near the free surface,

so that T33 - Tkk/3 contains mainly contribution from TF 1 and T2 2 . We notice, however, that

the extents over which the anisotropic variations occur are quite different for the stress versus

the strain rate. The reason is that the anisotropy in the SGS stress is a direct result of the

kinematic constraint on the vertical motion, while that in the strain is due to the dynamic

condition of vanishing tangential stresses. Consequently, the SGS stress varies within a
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'blockage' layer which is much thicker than the 'inner' layer over which the strain rate varies

(cf. Shen et al. 1999).

A useful measure of the correlation between the SGS stress and strain rate is to consider

a priori tests of a standard eddy-viscosity SGS (Smagorinsky) model (7.7). If we assume the

Smagorinsky coefficient Cs to be constant horizontally but a function of depth, Cs can be

determined a priori as in Figure 7-3. The goodness of fit of this model is measured by the

correlation coefficient between the trace-free SGS stress and the SGS model:

Cor~, 0- -< (Tij - 6ij Tk k3- < Tij - 6ij Tk k13 >) (Mij - < Mjg >) > (-5
-(Tij - 6 ijTkk/3- <Tij - 6ij Tkk/3 >)rms(Mj_ < M23 >)rms

This is plotted in Figure 7-17 (the model is labeled as 'DSM'). In the bulk flow, the correlation

coefficient is about 0.2. This is in agreement with previous studies on other types of turbulent

flows (see e.g. Clark et al. 1979, McMillan et al. 1980; Liu, Meneveau & Katz 1994). The

reason for the low correlation between the actual SGS stress and the Smagorinsky model is
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that their principle axes are not aligned. Near a free surface, the correlation drops even lower.

Clearly, a dynamic Smagorinsky model is not an effective model for free-surface turbulence.

7.5 Conclusions

In this paper we study the inter-scale energy cascade in a turbulent shear flow with a free

surface. A detailed analysis of the DNS data reveals that:

* As the free surface is approached, the energy transfered from the large scales to small

scales decreases significantly. This reduction in the energy cascade is caused by the

increasing of the energy backscatter associated with the fluid vertical motions near the

free surface.

" The inverse energy transfer is stongly correlated with the coherent pairpin vortex struc-

tures, which are characteristic of free-surface shear flows. Conditional sampling shows
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that the backscatter occurs at the splat region as a pairpin vortex connects to the free

surface.

e The flow field near the free surface is highly anisotropic. This anisotropy prevails

throughout all the lengh scales and results in different behaviors in each component of

SGS stress.

It is important for the large-eddy simulation of free-surface turbulence to utilize and cap-

ture the above physics. The reduction in the SGS disspiation near the free surface requires

the corresponding decreasing in the coefficient of eddy-viscosity type of SGS models. The

backscatter associated with the coherent vortex structures also indicates the sign change in

the model coefficient. Furthermore, the anisotropy near the free surface suggests different

treatments for the different components of SGS stress. These insights lead us to the devel-

opment of new SGS models for the LES of free-surface turbulence, which are proven to be

superior to existing SGS models, as shown in Chapter 8.
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Chapter 8

Subgrid-Scale Modeling and

Large-Eddy Simulation for

Free-Surface Turbulence

Large-eddy simulation (LES) only computes the large scales (grid scales, GS) motions while

the contributions from small scales (subgrid scales, SGS) are modeled. Since the small scales

tend to be more isotropic and more universal, it is expected that the SGS modeling is simpler

and thus more promising than other approaches like the Reynolds-averaging modeling.

Obviously, the key to the success of LES lies in the accuracy of the SGS modeling. Despite

the fundamental importance of the SGS modeling and the efforts devoted to its development

over the past several decades, people have not found yet a universal SGS model which can

be applied to all the different types of flows without any empirical adjustment. The most

widely used model is the Smagorinsky model (Smagorinsky 1963). Although the principle

axes of the model tensor are not aligned with those of the real SGS stress and thus the

correlation between the model and the SGS stress is rather poor, the Smagorinsky model

predicts the overall dissipation rate accurately and has been used successfully.

One disadvantage of the Smagorinsky model is the inability to set a universal model

coefficient for all the flows. For example, it has been found that the Smagorinsky model

always over dissipates near solid walls or in transitional regimes. This drawback was largely
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fixed by the dynamic procedure developed by Germano et al. (1991). The idea is to allow

for spatial and temporal variability of the model coefficient, through the extrapolation at

two filter levels by using an algebraic identity. Because strong fluctuations in the model

coefficient have been found in the model implementation, averaging over direction of flow

homogeneity is often used. This dynamic Smagorinsky model, hereafter designated as DSM,

has been shown to yield results remarkably better than the constant-coefficient Smagorinsky

model. Ghosal et al. (1995) further corrected a mathematical inconsistence in the DSM and

proposed a dynamic localization model.

The low correlation between the Smagorinsky model and the SGS stress can be remedied

by the combination with a scalar-similarity model, which was first developed by Bardina,

Ferziger & Reynolds (1983) based on the idea that the grid/subgrid interactions involve

mainly the smallest resolved scales and the largest subgrid scales. Zang, Street & Koseff

(1993) used a dynamic mixed model (DMM), which is a linear combination of the scale-

similarity model and the Smagorinsky model with the coefficient of the former fixed and

the coefficient of the latter dynamically determined. They applied DMM to a lid-driven

recirculating flow and found that not only the correlation between the model and the SGS

stress is largely improved, the magnitude of the Smagorinsky coefficient is also reduced

significantly, a desirable feature to avoid numerical instability. Salvetti & Banerjee (1995)

and Salvetti et al. (1997) further developed a dynamic two-parameter model (DTM) in which

both of the two model coefficients are determined dynamically. They tested the DTM with

a decaying turbulent flow beneath a flat free surface and obtained satisfying results.

In this chapter we study the SGS modeling for the LES of free-surface turbulence at

finite Froude numbers. From the preceding Chapter 7, it is shown that the SGS models

for free-surface turbulence should recognize the reduction of energy cascade near the free

surface, which is associated with the energy backscatter caused by the fluid vertical motion.

More specifically, the inverse energy transfer is due to the splat motion associated with the

connection of coherent hairpin vortex structures to the free surface. In this chapter, we

apply this knowledge to the successful SGS modeling for the LES of free-surface turbulence.

We first model the subgrid-scale contributions appearing in the free-surface kinematic and
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dynamic boundary conditions in 8.1. The models for the SGS stress are then developed

and evaluated in 8.2. Based on the physics of FST, we propose two new models for the SGS

stress, a dynamic free-surface function model (DFFM) and a dynamic anisotropic selective

model (DASM). These new models are evaluated in detail and are shown to be superior

to existing models. Finally, we combine the new DFFM and DASM with a dynamic scale-

similarity model to further improve the performance. In 8.3 we present our conclusions.

8.1 Modeling of SGS contributions in the free-surface

boundary conditions

Large-eddy simulation models the subgrid-scale stress resulting from the nonlinear convec-

tive term Tij=uiuj - -i -u. As shown in Chapter 2, for flows with a free surface however,

additional modeling for the subgrid-scale contributions to the free-surface boundary condi-

tions is required. In this section we discuss the formulation for the modeling of the SGS

energy in the Dirichlet dynamic condition for the pressure ( 8.1.1) and the SGS flux in the

kinematic boundary condition ( 8.1.2), as well as the performance of the models ( 8.1.3).

After the numerical capability for the free-surface modeling is established, we investigate the

modeling for the SGS stress Tij in 8.2.

8.1.1 SGS Modeling for the dynamic free-surface pressure

As shown in 2.2, usually it is the trace-free portion of the SGS stress Tij - JiTkk/3 that is

modeled. The isotropic part is absorbed into the dynamic pressure P and, what appears in

the governing equations is a modified pressure P = P + Tkk/3. For certain problems (e.g.

incompressible flows with Neumann's boundary conditions for the pressure), P can be solved

as a whole. However, in the free-surface problem where a Dirichlet condition is prescribed

for the dynamic pressure )5 at the surface, the value of the SGS contribution Tkk/3 at z=O

must be known before the modified pressure P can be solved.
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In this study, we model PSGS by the Yoshizawa (1986)'s expression:

=kk 2CPA 2 H2 . (8.1)
3

Here 1-f1 (2ThjThZ) 1/2 and -9jJ (Oui /9Oy +aUj/a/)/2. In a dynamic scheme, the coefficient

CP can be determined through the procedure developed by Moin et al. (1991) based on the

Germano identity (Germano et al. 1991). To do this, we introduce a test filter G in addition

to the grid filter C and, let G CC. Applying C to the Navier-Stokes equations, we obtain

the subgrid-scale stress at the coarse filter level:

Tj = UU- i, = 1, 2, 3. (8.2)

The Germano identity gives the algebraic relation

j =- - U3 - UU39 = Tzj - K ,(8.3)

where Li is a function of Ui and is computable from the resolved variables.

Assuming that the same Yoshizawa expression can be applied to Tkk/ 3 with the same

coefficient C :
2CA (8.4)

we obtain
1-2

kk _g1
2  _ 2C 2  2 . (8.5)

3

Simplification can be obtained if the coefficient C, in (8.5) can be extracted from the filter

operation in the last term. In general, this cannot be done directly (cf. Ghosal et al. 1995).

For simplicity, we assume that C, is constant on the horizontal plane and let the test filter

G operate in the horizontal directions only. Equation (8.5) then becomes:

Lkk -2 _ 
(22 '

3 P -p2AS 2 2gJ2) .(8.6) 3

The coefficient CP can be obtained by least-square to best match the two sides of (8.6) on
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the free surface:

where m, =
2 [ - - 2  

a
26 |s2 2 ( and ()denotes the horizontal plane averaging.

8.1.2 Modeling of the free-surface SGS flux

The subgrid-scale flux appearing in the kinematic free-surface boundary condition (equations

2.32 and 2.33) is modeled by a scale-similarity model:

kb -C=ckc(C h

(8-8)rkbc C ~kbc__ -h

The coefficient, Ckbc, above can again be determined dynamically as follows.

At the coarse filter level G, the SGS flux is written as

Tkbc - =CkC h -

v vh -h = Ckbc('ih - th (8.9)

An algebraic identity similar to (8.3) gives:

'Ckbc Uh h kbcTkbc Cb&f

_ T- h = Tkbc_ -khc .V V V Ckbc ( ~-h) (8.10)

Here Ckbe is assumed to be constant on the free surface and is solved by least-square matching

of (8.10) to give:

where mu =

(L( kbcm + L kbcmv)
~kbc (m2 + m2)

on z = 0 , (8.11)

and mv = 7
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8.1.3 Evaluation of SGS models for free-surface flux and dynamic

pressure

In this study, the benchmark data is obtained from DNS of the free-surface shear flow on

a fine 1282 (horizontally) x 192 (vertically) grid with timestep 0.005. To obtain smooth

statistics, a set of 25 DNS datasets (with different initial seeds) are obtained. For LES we

use a coarse 322 x 96 grid with timestep 0.02. We start the LES with the filtered DNS

field at t=60, and run the simulation for 10 time units, which is sufficient for the free-surface

turbulence features (e.g. the surface-connecting vortices) to evolve significantly. A total of 25

LES runs corresponding to the DNS are also performed. The LES results are then compared

with the filtered DNS data at t=70.

Figure 8-1 shows the a priori performances of the scale-similar SGS model (8.8) for the

free-surface flux, and the Yoshizawa SGS model (8.1) for the free-surface dynamic pressure

PSGS in (2.31). The overall performance in terms of the correlation:

< (T- < T >)(M- < M >) >
(T- < T >)rms(M- < M >)rms

is excellent (-0.9) for the SGS flux, and acceptable (~0.7) for the free-surface dynamic

pressure. (Note that the mean value is subtracted from (8.12). If the mean value is not

subtracted, the correlation coefficient for the PSGS is close to 0.8.)

The efficacy of the modeling of the SGS free-surface terms Tkbc, 7 kbc and pSGS is demon-

strated in a posteriori tests. Figure 8-2 compares the free-surface elevation and horizontal

surface vorticity w, = (w + W )1/ 2 |1=o between the LES and DNS results. For LES without

SGS, the results depart from the DNS values and grow in time in a non-physical manner.

Comparing the LES results (with DSM for the SGS stress) with and without SGS models

for Tukbe and PSGS, the improvement with the latter is quite appreciable. Of the two, our

results (not shown in Figure 8-2) show that the modeling of PSGS accounts for about 70% of

the total observed improvement.

Figure 8-3 plots the dynamic model coefficient values for Ckbc in (8.8) and Cp in (8.1)

obtained in the DSM results of Figure 8-2. The coefficient Ckbc for the scale-similarity model
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Figure 8-1: Correlation coefficients from a priori tests of
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Figure 8-2: Time evolutions of (a) the free-surface elevation ms /Fr2 , and (b) the horizontal
surface-vorticity magnitude -- T-ms/Fr2 obtained using: o, DNS; ....... , LES with no SGS
model; - - -- , DSM without SGS models for free-surface flux and dynamic pressure; and

with SGS models for free-surface flux and dynamic pressure: , DSM; - -

DFFM; and , DASM.
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has the value around 1.17 which is close to the coefficient value of the scale-similarity model

for the SGS stress (see Figure 8-17). The coefficient C, in the Yoshizawa expression varies

from 0.0056 to 0.0047, which is larger than the Smagorinsky coefficient near the free surface

(cf. Figure 8-6).

For non-vanishing Froude numbers, it is clear that the modeling of the free-surface SGS

terms PSGs and Tkbc is essential. In all subsequent LES results, the SGS models for these

terms (8.1) and (8.8) are always used. We note that the need for SGS modeling in the

kinematic boundary condition was also pointed out (but not implemented) by Hodges &

Street (1999). The modeling of the SGS contribution to the dynamic pressure at the free

surface appears to be new in the present context.

8.2 Development of LES for free-surface turbulence

We study here the modeling of the subgrid-scale stress for the large-eddy simulation of free-

surface turbulence. From the analysis of DNS data in Chapter 7, we have obtained the
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important physical insights to the SGS modeling for free-surface turbulence, which can be

summarized as follows: (i) The energy cascade from the grid scales to the subgrid scales

decreases significantly as the free surface is approached. As a result, the coefficient of the

Smagorinsky model should also decrease towards the surface. (ii) The inter-scale energy

transfer is strongly correlated with the coherent hairpin vortex structures. Energy backscat-

ter occurs at the splat region during the connection of a hairpin vortex to the free surface.

(iii) The SGS stress components are highly anisotropic. At the splat region, only the horizon-

tal components of the SGS stress react to the backscattering. (iv) The correlation between

the eddy-viscosity type SGS models and the real SGS stress is rather low near the surface.

Armed with these physical observations, we now proceed to the development of effective SGS

modeling and LES of free-surface turbulence.

In the following, a number of new SGS stress models for free-surface turbulence are

introduced and compared with more standard approaches. The relative merits of these

models tested against DNS dataset are then presented and discussed.

8.2.1 SGS stress models for free-surface turbulence

In general, the SGS stress (2.24) can be modeled with or without splitting it into separate

components, for example, the Leonard stress, cross stress and 'true' SGS stress; or the

modified definitions suggested by Germano (1986). In this work, we adopt the approach

where the SGS stress is treated as a whole (cf. Lesieur & M6tais 1996). All the models we

present satisfy Galilean invariance (cf. Speziale 1985).

The base model we use here is the plane-averaged dynamic Smagorinsky model (DSM),

which we use to compare against two new SGS models - a dynamic anisotropic selective

model (DASM), which captures the dependence of energy backscatter on the coherent vortex

structure and the anisotropy nature of free-surface turbulence; and a dynamic free-surface

function model (DFFM), which directly accounts for the variation of the eddy viscosity in

the surface layer.

Dynamic Smagorinsky model (DSM)
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We consider the dynamic formulation of the Smagorinsky model (7.7) following the procedure

of Germano et al. (1991) with the modification of Lilly (1992). At the coarse filter C level,

the Smagorinsky model is written as:

Ti T - -2Csf2 191292 . (8.13)
3

The Germano identity states that

3i~k 6i ( - T'k) + -
L i -1 gTj -2CsA |-|99 + (2CsA 1g2-g6 ) . (.

3Zj - ' 3 (.4

Assuming that Cs is constant over the horizontal plane and applying the test filter G in the

horizontal directions only, (8.14) reduces to:

Lij - = Cs(22 - 2A 3 3ij) (8.15)

The coefficient Cs is chosen to best match the above equation on the horizontal plane using

a least-square approach (Lilly 1992):

Cs(z, t) = (8.16)
(m )

22 2
Here mij = 2A 2 3 - 2A 9 29i and the fact that sakk =skk= 0 is used, which is based

on continuity.

Dynamic anisotropic selective model (DASM)

The poor correlation between the Smagorinsky model and the SGS stress near the free

surface in Figure 7-17 can be attributed to the use of a single coefficient Cs(z, t) for all

the stress components in each entire horizontal plane. As pointed out earlier, the tangential

components exhibit behaviors different from the other components because of the free-surface

anisotropy, which may cause the principle axes of the model tensor to be far off from those

of the actual SGS stress. In addition, the increase in backscatter near the free surface is also
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not accounted for by (7.7): when a single positive model coefficient is used, the correlation

in the backscatter region is necessarily negative, which reduces the overall correlation.

For this highly anisotropic flow, it is useful to consider different model coefficients in (7.7)

for the different SGS stress components:

Tij - 6 ijTkk23 -2C , no summation for ij . (8.17)

Since the flow is also highly-varying in space (see e.g. the horizontal variations in Figures

7-11 to 7-13), the (horizontal) spatial variation of Cij is of interest.

Guided by the results of Chapter 7 (cf. e.g. Figure 7-16), we propose to model Cij in two

separate groups: the vertical coefficients ij=13, (31), 23, (32); and horizontal coefficients

ij=11, 12, (21), 22, 33. The expectation (this is confirmed by extensive direct a priori tests)

is that the horizontal coefficients will be positive in regions of forward energy cascade and

negative in regions with energy backscatter; while the vertical coefficients will not be much af-

fected by the energy forward/backward transfer. It is then natural to propose an anisotropic

SGS model which has different coefficients for the horizontal and vertical components:

C;n C 12 Cn31
6 ijTkk -2 c c

Ti2 3 2A H|C 21 C 22 C S23  (8.18)

C-31 C 332 C-933

As in DSM, the model coefficients are functions of depth and time, C (z, t), Cn(z, t), but

the subscripts 'H' and 'V' correspond to 'horizontal' and 'vertical', respectively. In addition

to the anisotropy, we also allow the model coefficients to obtain different values in different

regions of each horizontal plane using a selection based on the (resolved) coherent vortical

structure. This is indicated by the superscript 'n' for regions within which different physi-

cal processes occur. Equation (8.18) represents a new model which we denote as dynamic

anisotropic selective model (DASM). The different spatial regions n in each horizontal plane

is selected as follows:

1. n = a, energy backscatter region. As shown in 7.3, energy backscatter occurs at the
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splat region of hairpin vortex connection, where vortex surface-inclination angle a is

large and horizontal divergence is positive. For our DASM implementation, we define

region 'a' as all points which satisfy a > 250 and OU/ax + U/9y=-6-/0z >0. Based

on earlier discussions, we expect C' to be negative near the free surface.

2. n = b, small inter-scale energy transfer region. As discussed in 3.3, in the region

where coherent vorticity is connected to the free surface, the inter-scale energy transfer

to expected be weak and SGS dissipation is small or can be neglected. In our DASM,

this region is defined by a < 5' and W2- > 2-'rms; wherein we set Cb=Cb=0.

3. n = c, remaining region (without strong coherent vortical interactions). This is the

'typical' region and is expected to be dominated by forward energy transfer.

We point out that the 'selective' idea for the SGS modeling is not new. David (1993)

developed a selective structure-function model based on the angle between the vorticity at a

grid point and the vorticity averaged over the neighboring points. When the angle is less than

20 , which means that the flow is not sufficiently three dimensional, the SGS model is turned

off to allow molecular dissipation only. The model is turn on only when the angle exceeds

200. This selective structure-function model has been applied successfully to stratified flow

over a backward-facing step (cf. Lesieur & M6tais 1996).

An indication of the efficacy of DASM over DSM is in a priori tests of the model against

DNS data. Figure 7-17 plots also the correlation coefficient (3.20) between DASM and the

SGS stress from DNS. Compared to DSM, DASM obtains better correlation especially near

the free surface. This is suggestive of the fact that the anisotropic and selective nature of

DASM is more able to capture the processes near the free surface. This is confirmed in

Figure 8-4 which plots the vertical variations of the DASM model coefficients obtained from

a priori test. In region 'a', it is seen that CH <0 as the free surface is approached indicating

energy backscatter. On the other hand, the difference between C and C is insignificant

and both remain positive throughout the depth (but diminish towards the free surface).

Finally, we discuss the dynamic procedure for obtaining the DASM coefficients, Cn (z, t),
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Figure 8-4: Vertical variations of DASM model coefficients: C'
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Cn(z, t), n=a, c, in LES. At the coarse filter level, the SGS model is written as:

6i3Tkk
C911 C'912 C 913

R2ZI CsI s21 CHS 2 2 Cn 2 3 )
C 331 Cn932 C933

The Germano identity then gives

Li - 6ijk
zJ 3

Cnmn Cnm12 Cm 13

Cm 2 1 Cim 22 Cem 2 3

CVm 3 1 CVm32 Cm 33 J
where mij is as defined before. Finally, the DASM coefficients are solved by minimizing

-1.

-2.

S (ij -6ijf-kl3 - CnmTi) 2 +
n=a,c ij=11,12,21,22,33

YS E
n=a,c ij=13,23,31,32
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on each horizontal plane. Note that the above procedure in effect neglects the variations of

the model coefficients across boundaries between different regions but the net effect is found

to be insignificant.

Dynamic free-surface function model (DFFM)

The results in 7.2 (cf. e.g. Figure 7-3) show that, as a result of (reverse) energy cascade,

the eddy viscosity exhibits a characteristic decrease in the free-surface boundary layer. It

is, therefore, desirable if this variation and the structure of the free-surface boundary layer

can be represented explictly in a SGS model. As discussed in 7.4, the free-surface layer

structure can be quantitatively defined in terms of the mean flow profile. We propose here

a dynamic free-surface function model (DFFM). In this model, we assume that Cs has the

similar behavior as the turbulence diffusivity (cf. Chapter 4):

Cs(z, t) = Csa - (CSa - Cso) exp[-z 2 /(ra) 2] . (8.21)

Here CSa is the value of the Smagorinsky coefficient in the bulk flow, Cso its value at the free

surface; a is the thickness of the outer free-surface boundary layer defined to be the depth

of the minimum of the mean flow profile; and r is a length-scale ratio.

The model coefficients CSa, Cso and a are determined dynamically from the resolved

flow. The coefficient r is not directly available from the resolved flow and may, in general,

depend on the LES filter width A. Figure 8-5 plots the variation of r as a function of K.

The variation of r with A is relatively small and justifies the use of a constant value of r in

(8.21) which we set to be r=0.6 in our DFFM.

The dynamic scheme for the DFFM coefficients Csa and Cso is derived from the model

SGS equations under two filter levels G and G:

Tikk Z2 \}-'a -C5021L\/J IIZ
rig - 3 2{Csa - (Cs. - Cso) exp-z/(ra)2 2sij (8.22)

and
6ijk 2/T]1 2 112

Ti - = T 2{Csa - (CSa - Cso) exp[-z2/(ra)2 '29 . (8.23)
3
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Figure 8-5: Dependence of the DFFM model coefficient r on the LES filter width A.

Using the Germano identity, we obtain:

Lij = {Csa - (Csa - Cso) exp[-z 2 /(ra) 2]}mg,3
(8.24)

where mij is defined as before. Instead of averaging over each horizontal plane, the coefficients

Csa and Cso are determined by best matching (8.24) over the entire fluid volume. Least-

square minimization then gives:

SW(z)((L 
6 jLkk - Csa{1 - exp[-z2 /(ra) 2]}mg - Cso exp[-z 2 /(ra) 2]mij) 2 )dz

J-D 3

In the above, W(z) is a weighting function which we choose to be W(z) = exp[-z 2 /(2ra) 2]

to place more weight on the near free surface region.

Finally, the outer layer thickness a(t) is determined from the resolved mean shear profile

by the location where (local) minimum (first) occurs in the near surface region.

226

1



Cs
.> 0.01 0.02 0.03

0S0.

0
00

0 0 0

j0

z-1.0 i 9

0
I0

-2.0

Figure 8-6: Profile of the model coefficient Cs from: o, DNS; , DSM; and -. -- -
,DFFM. The profiles are averaged from t=z6O to t=7O.

8.2.2 Evaluation of SGS stress models for free-surface turbulence

The SGS stress models introduced in 58.2.1, DSM, DFFM and DASM, are tested in (a

posteriori) LBS simulations against DNS results. We examine in order: the variation of the

model coefficients, predictions of turbulence intensity, mean flow and free-surface vortical

statistics.

Model coefficients

In Chapter 7, we observe that the magnitude of the energy cascade from the resolved scales

to the subgrid scales decreases significantly as the free surface is approached. Consequently,

the Smagorinsky coefficient Cs should also decrease towards the surface (Figure 7-3). Figure

8-6 compares the model coefficients of DSM and DFFM against DNS-fitted values. Both

models capture the decreasing trend of Cs towards the surface, but when a more physically-

based form of the profile is used in DFFM, the comparison is appreciably improved and in

both the vertical extent and quantitative value.
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Turning to DASM, the dynamic scheme provides, at each time, separate profiles for CH,

Cn for each region n = a, c (we set C',y 0). The results are plotted in Figure 8-7.

Comparing these to DNS-fitted curves in Figure 8-4, it is seen that the dynamic and DNS

(a priori) values compare almost perfectly. The depths over which CH and Cv vary are

different; Cn are very close for n = a, c; while Ca and C' differ qualitatively near the free

surface.

Turbulence intensity

Figure 8-8 compares the DNS and LES predictions of the turbulent kinetic energy of grid-

scale motions, 72/2 - ((U, - (U,)) 2 )/2. In the absence of any SGS model, q2 is over predicted

at all depths as expected. In addition to DSM, DASM and DFFM, we plot for comparison

the results using a constant Smagorinsky model (CSM) where a single constant value of Cs,

set equal to the time-averaged bulk value obtained in DSM, is used for the LES. CSM, which

does not capture the decrease in eddy viscosity at the surface, results in a q2 which is over

dissipated there. Indeed the error in CSM at the surface is comparable in magnitude (but
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Figure 8-8: Grid-scale turbulent kinetic energy q2/2 obtained from: o, DNS; and LES using:
....... , no SGS model; - - - - ,CSM; ,DSM; --- ,DFFM; ---- ,DASM.

t=70.

with opposite sign) to that when no SGS model is used.

When vertical variation in the model coefficient is allowed, DSM obtains a reasonable

kinetic energy profile, although since DSM slightly under predicts Cs at the surface (Figure

8-6), the corresponding prediction of 42 there is somewhat high. The new SGS models,

DFFM and DASM, capture the variation of the model coefficients over the surface layer

more precisely and obtain more accurate 42 predictions near the free surface. Of the two,

DFFM, which captures more physically the near-surface turbulence diffusion mechanism

(Shen et al. 2000), delivers a slightly better overall 42 prediction.

Figure 8-9 presents similar results for the components of 42 which reveals the anisotropy

of the flow. Without SGS model, all components are substantially over predicted. CSM

under predicts all the components but especially the horizontal ones relative to the other

dynamic models. DSM is able to capture the anisotropy although the horizontal fluctuations

are higher than the benchmark data because of the underestimation of Cs. With DFFM

and DASM, improvements over DSM can be seen.
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Figure 8-10: The mean velocity profile < U > at t=70: o, DNS; -.... , no SGS model; -
- -- , CSM; , DSM; - - -, DFFM; -- , DASM; *, the initial LES profile
from DNS at t=60.

Mean flow

We compare the LES predicted mean velocity profiles in Figure 8-10. Although there is

improvement over the no SGS model case, CSM, DSM, DFFM and DASM are all not

satisfactory relative to their predictions of the kinetic energy. The reason is that, while

eddy-viscosity models obtain the correct overall SGS dissipation, the correlation between

the predicted and actual SGS stress itself is poor (cf. Figure 7-17). As will be shown in

4.4, a combination of such models with a scale-similarity (Bardina-type) model improves

the mean velocity predictions significantly.

The most significant gain in using a surface-function type model like DFFM is in the

prediction of the mean shear profile < -U, > (z) (Figure 8-11). The mean shear profile

quantitatively defines the surface layer structure in that, as the free surface is approached,

its magnitude initially increases over the outer boundary layer, reaches a maximum and then

drops to zero inside a much thinner inner layer (cf. Shen et al. 2000). Figure 8-11 shows

that CSM has a large error comparable to the no model case, and in particlar predicts a
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Figure 8-11: Mean shear profile 1 < U > /&z obtained from: o, DNS; ........ , no SGS
model; - - - - , CSM; , DSM; - - - , DFFM; ,DASM. t=70.

much thicker surface layer. DSM and DASM, which obtain the decreasing trend in the eddy

viscosity, capture the surface layer reasonably well. Since the physical functional behavior of

the surface layer is represented in DFFM, it predicts < U, > (z) with remarkable accuracy.

Free-surface vortical statistics

LES predictions of the free-surface roughness hrms and horizontal surface vorticity Drms are

shown in Figure 8-2. As pointed out there, proper SGS modeling of free-surface flux and

dynamic pressure is essential. With these models, DSM, DASM and DFFM all perform

adequately for such averaged statistics.

The observable turbulence features on the surface are of immediate importance to appli-

cations. These features are dominated by near-surface vortical mechanisms such as surface

connection which result in persistent and prominent surface signatures. Because of the

uncertainty in the subgrid-scale motions (cf. Lesieur & M6tais 1996), it is inappropriate

to compare the evolution of a specific vortical structure in the LES. We resort instead to

statistical measures of the structure of the coherent surface vorticity.
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Figure 8-12: Time evolution of the area percentage of coherent surface-connected vortices
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Figure 8-12 plots the time evolution of the area percentage of coherent surface-connected

vortices, Ab, which we define as the percent of surface area satisfying lI-l > 2W7," U a < 50.

Note that this is the same as region n = b of DASM. Because of the persistence of such

vorticity, Ab generally increases with time, as shown by the DNS data. DSM, which does

not account for either energy backscatter during the vortex connection or reduced dissipation

of surface-connected vortices, tends to over dissipate the surface vortices and hence under

predicts Ab. Since DFFM also uses a single model coefficient in the horizontal plane, the

improvement of DFFM over DSM is small. On the other hand, since DASM uses a selective

procedure based on the resolved vorticity structure information, it obtains a significantly

better prediction for Ab.

As discussed in 7.3, the surface-inclination angle ce is an important measure of the

evolution of surface-connecting vortices. To further elucidate the efficacy of the LES schemes

for predicting surface signatures, we examine the distribution of percentage surface area A

and surface enstrophy -wz2 as a function of the grid-scale inclination angle a. These are
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plotted in Figure 8-13. The dominance of surface-connected vorticity (low oz) is evident.

Compared to DNS data, DSM and DFFM both tend to under predict the low-os values as

a result of over dissipation of connection events (with a single CS in the horizontal plane).

DASM continues to perform well here although the peaks in A(a) and EDP(a) are under

predicted since the number of selection regions n used is still relatively small.

The superiority of DASM for surface signatures is further seen in the conditionally-

averaged flow field around LES-resolved coherent hairpin vortices. Figure 8-14 plots the

VISA SGS dissipation rate around connecting hairpin vortices. Because of the negative

values of C (Figure 8-7), DASM captures energy backscatter at the splat region of the

hairpin vortex. This is in agreement with the a priori results in 7.3. In comparison, DSM,

which uses a single model coefficient in the plane, does not capture the inverse energy transfer.

Thus, although the plane-averaged value is correct in DSM, the local SGS dissipation rate

around this event is off in both sign and magnitude.

Discussion

For free-surface turbulence, the above SGS stress model results show that it is important for

eddy-viscosity models to capture the spatial variations of model coefficients both vertically

and horizontally. Vertically because of the decrease in eddy viscosity over the surface layer

due to energy backscatter; and horizontally because of its disparate behaviors associated

with large-scale vortical events.

Dynamic procedures in the vertical direction in DSM and DASM have substantial ad-

vantage over CSM in obtaining the vertical variations, but a model that incorporated known

physical structure(s) such as DFFM captures the surface layer with remarkable accuracy.

When model coefficients in the horizontal plane are allowed to take on different values in a

selective scheme, as in DASM (based on coherent vorticity dynamics and reflected differently

in different directional components), the prediction of the statistics of coherent events are

greatly improved. One may suggest that a point-by-point dynamic scheme would do even

better. However, such procedures, without some ad hoc averaging, are prone to instability

(when the model coefficient varies excessively) (cf. Germano et al. 1991). Advanced localiza-

tion formulations (e.g. Ghosal et al. 1995) either constrain the occurrence of negative eddy
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viscosity, which does not allow energy backscatter, or introduce additional transport equa-

tions, which substantially increase the degree of complexity. Additional research in these

areas is needed.

While eddy-viscosity models do an excellent job in modeling the total dissipation, they

can be inadequate in select aspects, for example, in predicting the mean profile here. In

this case, the correlation between the modeled and actual SGS stress is poor, because their

principle axes are not generally aligned. As the free surface is approached, the correlation

becomes even worse. To overcome this drawback, a powerful idea is to combine the eddy-

viscosity model with a scale-similarity model (cf. Bardina et al. 1983; and e.g. Zang et al.

1993, Salvetti et al. 1997). This is pursued in the next section.

8.2.3 Combination of eddy-viscosity and scale-similarity models

Each of the SGS models in 8.2.1 can be used in combination with a dynamic scale-similarity

model. In this case, the DSM, DFFM and DASM approaches become respectively:

ij k = 2Cs +2 CB(Lm - (8.25)
______23 kk

rid - j_= -2{Csa - (Csa - Cso) exp[-z2/(ra)2]2}22g + CB(Lm - ) , (8.26)3 Z3 3

and

CIn Cns1 Cn-~Hr1 -c12  V 13
i - 2K21_ |C( C 2 C +CB (Lm - . (8.27)

C 931 Cr-3 2 CIS33

These we denote by DSM+B, DFFM+B and DASM+B respectively. In the above, Lmj-

uiuj - uiij, and CB is the coefficient of the scale-similarity model to be determined dy-

namically. Note that the combined model DSM+B (8.25) is identical to the dynamic two-

parameter model (DTM) in Salvetti & Banerjee (1995) and Salvetti et al. (1997).

To determine the model coefficients, a similar dynamic procedure as before is applied.

By using filters at two different levels and employing the Germano identity, we obtain re-
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spectively:

Li, - 6ij kk Csmi + CBHij , (8.28)3

L S = {Csa (CS - Cso) exp[-z 2 /(ra) 2]}mij + CBHij (8.29)
3

and

in11  CMi12 CTm13

Lz = C6m21 CM2 m 22 Cnm23 +CBHij. (8.30)32H3

iM 3 1 C(n32 CHm 33

Here Lij and mij have the same definitions as before; while Hij - ujuj - Utu3 . Finally, the

coefficients are solved by least-square matching of (8.28), (8.29) and (8.30) respectively.

The correlation coefficients between the actual SGS stress and those predicted by DSM+B

and DASM+B have been plotted in Figure 7-17. As expected based on previous studies, the

correlation is improved significantly at all depths when the scale-similarity model is added.

In particular, the predictions of the combined models show no degradation in the surface

layer in contrast to the Smagorinsky model alone.

The three combined models, DSM+B, DFFM+B and DASM+B, have been implemented

and studied extensively in a posteriori LES tests. Overall, we obtain noticeable but not

substantial improvements in the results for turbulent kinetic energy and free-surface statistics

in 8.1.3 and 8.2.2. The most marked improvement of the combined models is in the

prediction of the mean flow profile which we focus on. Figure 8-15 compares the performance

of the three SGS schemes with and without the scale-similarity model. Relative to the

results without SGS models, the improvement of the combined models over the eddy-viscosity

models alone is quite substantial.

Finally, we plot the dynamic model coefficients for DSM+B, DFFM+B and DASM+B.

Figure 8-16 shows that the coefficients of the eddy-viscosity portion of the models preserve

the same qualitative trends as those in 8.2.2. The magnitudes of the coefficients of the

combined models are, however, reduced significantly. This can be explained by the fact that

less burden is put on the eddy-viscosity portion of the models to capture the SGS stress, a

feature in favor of numerical stability (Zang et al. 1993; Salvetti et al. 1997). Figure 8-17
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plots the profiles of CB for DSM+B and DASM+B. The variations of COB within the surface

layer is small and may justify the use of a single value of CB for all the depths. This affords a

simplification for DFFM+B where all the model coefficients are determined by least-square

minimization over the whole volume.

8.3 Conclusions

In this study we develop the computational capability for the large-eddy simulation of free-

surface turbulent flows. The canonical problem we study is the turbulent shear flow beneath

a free surface at finite Froude numbers. The benchmark data is obtained from the direct

numerical simulation on fine grid. Based on the physics of free-surface turbulence, subgrid-

scale models have been developed. These include SGS models for free-surface fluxes which

come from the kinematic free-surface boundary condition, and for a dynamic SGS pressure

which results from the imposition of a boundary condition on the total pressure at the free
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surface. These are obtained in the present context for the first time. For the SGS stress,

we employ an existing dynamic Smagorinsky model (DSM), and develop two new models: a

dynamic free-surface function model (DFFM) which captures the expected depth variation

in the eddy viscosity (based on the similarity solution of Shen et al. 2000); and a dynamic

anisotropic selective model (DASM), which recognizes the anisotropy of the flow field and the

different energy cascade mechanisms which are coupled with the coherent surface vorticity

dynamics.

Our numerical tests show that modeling of the free-surface SGS fluxes and dynamic

pressure is important for the LES, especially in predicting the surface roughness. Compared

with DSM, DFFM captures much better the structure of the free-surface boundary layer.

On the other hand, DASM is superior in obtaining the statistics associated with free-surface

signatures. The only shortcoming of these eddy-viscosity models is found in the prediction

of the mean flow profile. This is overcome by the addition of a scale-similarity SGS model.
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Chapter 9

Concluding Remarks

9.1 Summary of contributions of this thesis

In this study we combine theoretical and numerical efforts to study the interaction of tur-

bulence with a free surface at low Froude numbers. Based on the simulations of free-surface

turbulent flows, we obtain substantial understanding of the structures, mechanisms and

statistical characteristics of low Froude number FST. Through this study, we are able to

identify and quantify the key turbulent processes in the turbulent flows with a free sur-

face. We also obtain important physical insights into the turbulence modeling and develop

efficacious subgrid-scale (SGS) models for free-surface turbulent flows.

The major contributions of this work include:

" Development of numerical capabilities of direct numerical simulation (DNS)

for turbulent flows with a free surface. The DNS enables the detailed analysis

of the physics of FST. It also provides a framework for the development of large-eddy

simulation capability.

" Revelation of the surface-layer structure in FST. We identify the multi-layer

structure in the turbulent flows near a free surface and quantify the dynamics within

these layers. The concept of free-surface inner and outer layers greatly facilitates the

elucidation of the fundamental structures and physical mechanisms for turbulent flows
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in the vicinity of a free surface.

" Illustration of vortex dynamics in FST. We identify the key coherent vortical

structures in free-surface turbulence, namely hairpin eddies and surface-connected vor-

tices. The vortex connection mechanisms at a free surface are investigated. We also

study the vortex dynamics for the surface-connecting vortices during different evolu-

tionary stages and reveal the underlying mechanisms for the persistence of surface-

connected vortices.

* Characterization and quantification of the near-surface diffusion mecha-

nisms. We derive an analytical-similarity solution for the mean flow to quantify the

momentum diffusion mechanism. The theoretical results agree with numerical sim-

ulation with remarkable accuracy. The similarity theory also provides an accurate

definition for the surface layers and suggests scaling properties for the thickness of

these layers.

* Demonstration and quantification of the processes of scalar mixing/transport

at the air-water interface. The similarity theory is extended to the problem of pas-

sive scalar mixing near a free surface at which the scalar flux rate vanishes. For the

more general scalar transfer processes, we discover the dependence of transport pro-

cesses on the structures of turbulent flows. The contributions of different types of

coherent FST structures to the scalar transport processes are quantified.

" Elucidation of the inter-scale energy cascade mechanism in free-surface tur-

bulence. We find that the amount of energy transferred from the grid scales to the

subgrid scales (SGS) decreases significantly as the free surface is approached. This is

a result of energy backscatter associated with the fluid vertical motions. Conditional

averaging reveals that the energy backscatter occurs at the splat regions of coherent

hairpin vortex structures as they connect to the free surface. The mechanism of inter-

scale energy transfer is essential to the subgrid-scale modeling for free-surface turbulent

flows.
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* Development of subgrid-scale models and establishment of LES capabilities

for free-surface turbulent flows. Based on the special physics of FST, we develop

two new SGS models - a dynamic free-surface function model (DFFM) and a dynamic

anisotropic selective model (DASM). The DFFM correctly represents the reduction

of the Smagorinsky coefficient near the surface, while the DASM takes into account

both the anisotropy nature of free-surface turbulence and the dependence of energy

backscatter on specific coherent vorticity mechanisms. We also model for the first

time the surface SGS flux and the dynamic SGS pressure, which are unique to the

free-surface problems. Our LES with new SGS models obtains results substantially

superior to the conventional approaches using existing models.

9.2 Future studies

This work is intended as a first step towards the understanding of the fundamental physics

of free-surface turbulence. In this study, we simplify the problem by neglecting the surface

tension effects, the wind stress, and the nonlinear wave effects. Through this research, we

have obtained substantial understanding of this idealized flow in terms of the statistical,

structural, and dynamical characteristics, which provides a framework for our next-step

studies of more complicated cases. Some of the future research directions are discussed as

follows.

9.2.1 Air-water coupled dynamics

The current study neglects the wind stress at the free surface, which may play a significant

role in the real air-sea interactions, especially at moderate to high wind-speed cases. The

understanding and prediction of the coupled air-ocean dynamics are of vital importance to

applications such as global warming and pollutant transport, as well as many Navy opera-

tions.

Considerable work has been done to understand aspects of this problem in terms of

simplified theory and modeling. Nevertheless, the representation of the true coupled air-
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sea-wave interactions is far from satisfying. The majority of the body of numerical work

involves idealized assumptions that capture only very limited aspects of the feedback coupling

dynamics. For the ocean flow, numerical simulations generally treat the air-sea interface as

a rigid lid, which does not include surface wave motions, or at most apply Craik-Leibovich

type equations, which take into account Stokes drift as the sole wave effect. For the air

flow, the most sophisticated simulations to date still treat the ocean surface as a stationary

one or one prescribed by linear gravity wave solution. For the mass, momentum and energy

fluxes across the air-sea interface, empirical constants or simple cycle models are often used

instead of realistic values resulting from the coupling mechanisms. There does not exist

realistic simulation that accounts for the truly coupled air-sea-wave interactions.

Based on the understanding of the fundamental physics of free-surface turbulence in

terms of surface layers, the physics-based SGS models developed for FST, and the robust

numerical capabilities established in this study, we are now in a position to perform a numer-

ical simulation of both the air and ocean turbulent flows with coupled free-surface boundary

conditions. The essential and immediate tasks of this research are: (1) development of

DNS/LES capabilities for the coupled air-ocean flow field including the turbulent flows in

both air and water; (2) elucidation of the structures and dynamics for turbulent flows in

the vicinity of the air-sea interface; (3) assessment of the physical mechanisms of the key

air-sea transport processes; and (4) obtain parameterizations of the momentum, mass and

heat transfer for coupled air-ocean boundary modeling.

9.2.2 Turbulence-wave interaction

The interaction of turbulence with surface waves is a challenging problem involving numerous

complicated processes such as, to name a few, the energy transfer among the turbulence,

wave and current, the generation of surface vorticity, the enhanced turbulence dissipation

introduced by the wave breaking, turbulent dissipation, scattering and production of waves,

and turbulent roughening of the free surface. Our knowledge of the above processes are far

from sufficient and numerical simulation may become a powerful tool for this research.

An immediate extension of the current work is the direct numerical simulation and large-
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eddy simulation of free-surface turbulent flows at moderate to large Froude numbers. For

small- to moderate-magnitude waves, we are going to use a boundary interface tracking

method (BITM) which uses a boundary-fitted meshes; while for steep/breaking waves, other

approaches based on levelset methodology, volume-of-fluid method, or smoothed particle

hydrodynamics will be used.

For the study of turbulence-wave interaction, the major scientific and techniques issues

are: (1) development of DNS/LES numerical capabilities in complex geometry; (2) devel-

opment, calibration and validation of physics-based breaking dissipation models for LES

of strong turbulence-wave interactions; (3) elucidation of the surface-layer structure near a

wavy surface; (4) quantification of the turbulent dissipation, scattering and production of

waves; and (5) assessment of the physical mechanisms of steep/breaking effects for ocean-

wave boundary modeling.

9.2.3 Free-surface surfactant dynamics

The interaction between free-surface turbulence and surfactant (surface-active material, e.g.

oil slicks) is of significant importance to many environmental concerns such as air-sea gas

exchange and pollutant transport. From the viewpoint of basic scientific research, the

turbulence-surfactant interaction is a profound problem which involves turbulence hydro-

dynamics, scalar diffusion/transport, and surface-tension phenomenon.

The contamination of surfactant on a free surface interacts with the underlying flow

through the Marangoni effect. In general, the presence of surfactant lowers the local sur-

face tension. Hydrodynamic disturbances result in a non-uniform distribution of surfactant

concentration on the free surface, and consequently local interfacial tension gradients are

created. The resulting shear stresses on the free surface, in return, interact and change the

structure of the flow beneath. Thus the flow/surfactant interaction is a complicated closed-

loop process (cf. Ananthakrishnan & Yeung 1994, Tsai & Yue 1995, and Willert & Gharib

1997).

Based on the current study of the fundamental physics of free-surface turbulence and the

scalar transport processes in the vicinity of the free surface, we are now in a position where
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a combined theoretical and computational effort will lead to an enormous step towards the

description, understanding and prediction of free-surface turbulence/surfactant interaction.

In the numerical simulation, fluid motions are described by the Navier-Stokes equations;

the variation of surfactant concentration is solved as a scalar transport/diffusion problem;

the effect of surfactant on fluid hydrodynamics is applied through the surface tension in the

free-surface boundary conditions for fluid motions; and the dependence of surface tension

variation on local surfactant concentration is quantified by equation of state.

For the free-surface surfactant dynamics, the main issues to resolve include: (1) develop-

ment of computational capabilities for turbulent flows involving free surface and surfactant;

(2) elucidation of physical mechanisms and structures for free-surface turbulence under the

influence of surfactant; (3) revelation of basic physics for the transport of contaminants in

free-surface turbulent flows; (4) establishment of physical basis for the quantification and pre-

diction of contaminant spreading on the free surface; and (5) direct quantitative comparison

and validation among theoretical analysis, computational prediction, and field/laboratory

measurement.
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