
What Intelligent Agent is Smarter? A Comparison
By

Luis C. Rabelo Mendizabal
Ph.D., Engineering Management (1990)

University of Missouri

M.S., Engineering Management (1988)
University of Missouri

M.S., Electrical Engineering (1987)
Florida Institute of Technology

BARKER

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

FEB 0 8 2001

LIBRARIES

B.S., Electrical and Mechanical Engineering (1983)
Technological University of Panama

Submitted to the System Design and Management Program in Partial Fulfillment
of Requirements for the Degree of Masters of Science in Engineering and

Management

AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY, FEBRUARY 2001.

@ 2001 Luis C. Rabelo Mendizabal, All Rights Reserved

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part.

Signature of Author:
Luis C. Rabelo Mendizabal

Syste.g Design and Management Program

Certified by:
Thesis Supervisor: Dr. Dan Ariely

Sloan School Career Development Assistant Professor of Management

Accepted by:

Accepted by:

L4M/SDM Co-Director: Dr. Stephen Graves
Abraham Siegyl Professor of Management

1

LFM/SDM Co-hkector: Dr. Paul A. Lagace
Professor of Aeronautics & Astronautics and Engineering Systems

What Intelligent Agent is Smarter? A Comparison
by

Luis C. Rabelo Mendizabal

Submitted to the System Design and Management Program January 2001 in
Partial Fulfillment of Requirements for the Degree of Masters of Science in

Engineering and Management

1 Abstract (less than 350 words)

Agent systems of the feature-based filtering type act as recommenders using a

database about past user's behaviors and preferences to predict additional

products or subjects the user might like. The effectiveness of the agent (how

intelligent is it) is depending on the learning scheme utilized and the

representation of this knowledge environment.

In this thesis, we describe several algorithms, which can be appropriate to be the

center of such scheme, including supervised learning neural networks and

support vector machines. The predictive accuracy of these methods is compared

in a representative problem. Several sets of experiments were run with different

sizes of training datasets and initial conditions. The results of the experiments

show that support vector machines have a better performance when the training

data set is very limited in size. However, supervised neural networks based on

minimizing errors (i.e., Backpropagation) are able to provide good answers when

the training data sets are of relative large size. In addition, supervised neural

networks based on forecasting by analogy (i.e., Fuzzy ARTMAP) are also able to

exhibit good performance when ensemble schemes are utilized.

Advisor: Dr. Dan Ariely
Title: Sloan School Career Development Assistant Professor of Management

2

2 Acknowledgements

There are no words to express my total gratitude to the BFGoodrich Corporation,

Honeywell International, and my supervisors Mark Shmorhun (BFGoodrich) and

John Christoffel (Honeywell Labs).

I would also like to express my most sincere gratitude to my Advisor Dan Ariely.

Our conversations about agents and electronic commerce have helped me to

forge my ideas about what technology is and to understand its business

relationships. I would like to mention the MIT "Latin Mafia" (Luis Blando, Martin

Busse, Edwin Elberg, and Rocco Paduano). We created an environment of

learning and fun at MIT-SDM.

I would like to express my most sincere appreciation to my parents, my sister, and

Otilia for their support. I would like to thank especially my mother who always

motivated me to come to MIT. Her friendship and generosity created the

necessary environment and gave me the needed inspiration to carry out my tasks.

This thesis and my work at MIT are mainly dedicated to honor her.

Finally, rmy deep appreciation and love to my wife Gudlaug and my beloved son

Luis Gisli.

3

3 Tables of Contents, Figures, and Tables

Table of Contents

1 Abstract (less than 350 words)... 2

2 Acknowledgements ... 3

3 Tables of Contents, Figures, and Tables.. 4

4 Introduction.. 9

4.1 The Problem and Answer ... 9

4.2 W hat is an Agent?... 10

4.3 Current Approaches .. 13

4.4 O rganization ... 16

5 Literature Survey .. 17

5.1 Collaborative Filtering.. 17

5.2 Feature-Based Filtering ... 21

5.3 Collaborative Filtering and Feature-Based Filtering 22

5.4 Sum m ary and Justification .. 23

6 Neural Networks and Support Vector Machines... 25

6.1 Neural Networks... 25

6.2 Backpropagation ... 27

6.3 Fuzzy ARTMAP... 37

6.4 Support Vector Machines ... 46

6.5 Software Im plementations... 53

7 Case Study and Results.. 70

7.1 Description .. 70

7.2 Selection of Algorithms and Crossvalidation .. 74

7.3 Results ... 86

8 Conclusion.. 97

8.1 Thesis Sum m ary and Conclusions ... 97

4

8.2 Recom mendations for Further Research..102

9 Bibliography..110

10 Term inology..119

11 Appendix A: Results for 125 Subjects .. 111

5

Table of Figures

5.1 Example of a Bayesian network ... 18

6.1 A single neuron of a typical neural network ... 26

6.2 Three layer neural network with 3 inputs, four hidden units, and 3 outputs....26

6.3 A m ultilayer neural network ... 28

6.4 Fuzzy ARTMAP architecture using second complement coding 41

6.5 Geometric representation of a weight vector .. 43

6.6 The rectangles increase during learning ... 44

6.7 The maximum margin hyperplane is orthogonal..48

6.8 SVMs map the training data nonlinearly into a higher-dimensional space 51

6.9 Architecture of a Support Vector Machine for classification........................53

6.10 Example of an annealing schedule of the momentum factor 55

6.11 The implementation of Backpropagation ... 57

6.12 Simple search routine to find an appropriate architecture 60

6.13 Selection of an appropriate architecture using crossvalidation.................61

6.14 The predictive performance of a Fuzzy ARTMAP network 62

6.15 Process to find an appropriate pa for Fuzzy ARTMAP...............................63

6.16 The predictive performance of an SVM .. 65

6.17 The chromosome has 15 genes ... 66

6.18 Representation of an SVM with kernel = RBF and y = 100.04 66

6.19 Selection of an SVM using a genetic algorithm with crossvalidation 68

7.1 Images with features 1111113 and 1111223 respectively..........................72

7.2 Images with features 1211323 and 1231311 respectively..........................73

7.3 Images with features 2223321 and 3121212 respectively..........................73

7.4 Learning process using Backpropagation and selected algorithms 78

7.5 Performance of crossvalidation vs. a fixed architecture..............................79

7.6 Crossvalidation/simulated annealing vs. a fixed vigilance factor 83

7.7 Crossvalidation/genetic algorithms vs. fixed kernels 87

7.8 Success rates of the different techniques using training datasets of 10

examples and testing datasets of the 125 subjects 88

6

7.9 Success rates of the different techniques using training datasets of 25

examples and testing datasets of the 125 subjects 89

7.10 Success rates of the different techniques using training datasets of 50

examples and testing datasets of the 125 subjects 91

7.11 Success rates of the different techniques using training datasets of 100

examples and testing datasets of the 125 subjects 92

7.12 Success rates of the different techniques using training datasets of 324

examples and testing datasets of the 125 subjects 93

7.13 Predictive performance (average) ... 96

7.14 Predictive performance of the selected predictive paradigms 96

8.1 Exploring an unknown environment using Backpropagation 105

8.2 Assigning probability estimates using a voting strategy 106

8.3 Q-learning for intelligent recommendation systems......................................109

7

Table 4$ Tables

6.1 Rules for the output vector X .. 45

6.2 Development of training and testing files for crossvalidation......................58

6.3 Base and local architectures .. 59

7.1 Features and their respective levels... 71

7.2 Features used to generate the 624 images ... 72

7.3 Success rate of different architectures and the crossvalidation process 80

7.4 95% confidence intervals for the success rate of the different architectures ..80

7.5 Success rate of different neural networks trained with differents pas..............82

7.6 95% confidence intervals for the success rate of the neural networks trained

w ith different pas ... 82

7.7 Success rate of different Fuzzy ARTMAP ensembles 84

7.8 95% confidence intervals for the success rate of the different ensembles 84

7.9 Success rate of different SVMs trained with different kernels and the

crossvalidation process for the first 10 subjects 86

7.10 95% confidence intervals for the success rate of the different SVMs and the

crossvalidation/genetic algorithms process for the first 10 subjects..........87

7.11 Predictive performance using a learning process with a training dataset of 10

examples for the entire dataset of 125 subjects 88

7.12 Predictive performance using a learning process with a training dataset of 25

examples for the entire dataset of 125 subjects 89

7.13 Predictive performance using a learning process with a training dataset of 50

examples for the entire testing dataset of 125 subjects............................90

7.14 Predictive performance using a learning process with a training dataset of

100 examples for the entire testing dataset of 125 subjects 92

7.15 Predictive performance using a learning process with a training dataset of

324 examples for the entire testing dataset of 125 subjects......................93

7.16 Predictive performance of the different machine learning paradigms selected

for the entire testing dataset of 125 subjects .. 94

8.1 Relative performance of the various learning schemes 101

8

4 Introduction,

This section introduces the problem, describes the approach to the problem,

provides the most important definitions, and presents the organization of this

thesis.

4.1 The Problem and Answer

People have been doing business for thousands of years, and the only smart

agent whom people have had is another human being. And this "human" agent is

still the smartest agent. An analysis of current research in Artificial Intelligence

would indicate that this human agent will continue to be the smartest one for quite

some time. Unfortunately, a human agent is not always available; a human agent

is usually very expensive, sometimes very emotional, not adequate for repetitive

tasks, time restricted (e.g., not able to analyze and deliver results in

nanoseconds), and limited in managing complexity (e.g., discovering useful

patterns and relationships in large amounts of data, information bottleneck).

According to Murch and Johnson [64], the features of a human agent are the

following:

Is focused on a task.

Is a specialist with skills that I do not have.

Has access to information relevant to a task.

Has the contacts to provide the service.

Can provide the service at a fraction of the cost of doing it myself.

Provides a service I can not get any other way.

On the other hand, the growth of the Internet is currently occurring at phenomenal

rates: there are more than 14 million Internet sites, 250 million online users, and

the traffic in the Internet and the time spent on line are increasing in a nonlinear

fashion. Web content is growing at accelerated rates too [53]. The Web consists

of approximately 2.5 billion documents with a rate of growth of 7.3 million pages

per day (estimates of the average page size vary from 10 Kbytes per page to 20

Kbytes per page - a total of approximately 25 to 50 terabytes of information). The

specialized Web-accessible databases and dynamic websites account for another

9

impressive 550 billion Web-connected documents (approximately 7,500 terabytes

of information). In this new environment, agents are needed to support our

activities, ranging from simple Web surfing to sales and shopping. For instance,

effective agents will change the nature of sales on the Internet from the current

basic sales scheme to a full customer management approach. Agents can change

the nature of interactions on the Internet from simple access to large databases,

to dynamic and personalized information and advice sources. To implement this

approach information systems will have to (1) learn their users' criteria and (2)

learn how to aggregate information from different mediums and help to reinforce

this information using these mediums. In order to perform both these tasks, these

agents must be intelligent and implemented in software. This thesis addresses the

question: how does one provide intelligence to software agents?

This thesis presents empirical data regarding the relative predictive performance

of Backpropagation neural networks, Fuzzy ARTMAP neural networks, and

Support Vector Machines in implementing intelligent recommendation systems

based on individual models for electronic commerce. Although some results are

presented addressing the computational issue, the main focus is the accuracy of

the predictive techniques.

4.2 What is an Agent?

The dynamic, uncertain, massive, and distributed nature of information on the

Internet has made it very difficult for humans to process this information. As

expressed by Ariely [2], "while this electronic marketplace gives consumers many

more choices, alternatives, and freedom in their information gathering and

decision making processes, the vast amounts of information and options also

make their task vastly more complex." A possible solution to this problem is to

develop software that not only responds to requests for information but also

predicts, adapts, and aggressively develops and provides the means to help users

increase their productivity and satisfaction. This next generation of software,

currently being researched and developed, aims to automatically get the required

10

information (i.e., information gathering and filtering), accept abstract tasking, solve

simple problems and help the user solve difficult problems, and take action on the

user's behalf [31]. This type of software has been denominated a software agent.

From the consulted literature and current research, it is possible to perceive three

sides in software agents [5,7,29,50,57,58,65,101]:

1. Researchers from the field of human-computer interaction. These

researchers are concerned about the aspects of interaction between

humans and software agents.

2. Researchers in the fields of distributed artificial intelligence and

robotics. These researchers are concerned about the development of

techniques for negotiation and planning, situated action, protocols,

concurrency, and component-based frameworks.

3. Researchers in the field of electronic commerce. These researchers

emphasize agents that are Web-based but different in nature, and

commercial rather than research. These researchers use technologies

developed by the previous two groups.

The metaphor of a software agent emphasized in this thesis focuses on learning

and intelligent assistance to users on the Internet. It belongs to the third side

mentioned above. In addition, our work does not include the agent paradigm that

provides coordination, interoperability, and control between loosely-coupled

components of distributed systems such as air traffic control and complex military

systems [31]. Our interest is in the software agent that is a computer system

situated on the Internet, and that is intelligent and capable of autonomous action

in order to provide intelligent assistance and make highly specific customer

recommendations for products and services (e.g., books, cars, clothing, furniture,

music, movies, wines, professional development courses, vacation plans).

11

These two concepts of autonomous and intelligent are still very controversial [67].

Autonomy means that this software agent is able to act without the direct

intervention of humans or other agents. Therefore, this software agent has control

over its own actions and internal state [101]. Autonomy is very different from

machine intelligence. Autonomy is complementary to machine intelligence.

Machine intelligence is related to the concept of "plasticity." Plasticity means the

flexibility to respond, change, learn, and adapt in order to meet design objectives

in an effective and efficient manner. An agent is intelligent when this agent is

capable of being flexible. By flexible, the system must be [101]:

1. Responsive. Agents should understand their environment and respond

in a timely fashion to changes that occur in it. The environment, in this

thesis, is formed by the Internet, a user, a collection of agents, sellers,

competitors, and regulators.

2. Proactive. An intelligent agent should be able to anticipate and predict

situations with a high level of effectiveness. In addition, as stated by

Wooldridge and Jennings [101], an intelligent agent should "exhibit

opportunistic and goal-directed behavior." For instance, these

recommendation agents should learn by observing the behavior of the

consumers in order to anticipate recommendations estimated to be best

for the consumers.

3. Communications. Communications and interactions are essential

features of an intelligent agent. The agent must interact with other

agents and humans in order to fulfill its own decision-making activities

and to assist others with their decisions.

The dimensions of responsive and proactive can be mapped to the dimensions of

learning, adaptation, and anticipation. There are several levels of accomplishment

12

for these dimensions. For instance, to be able to say that a system is intelligent,

the system has to be capable of learning. Then to measure learning, tests have to

be designed to ask how well it learns what it learns. Therefore, we have to test

and then label the respective level of accomplishment.

This intelligent capability has to be provided to a software agent. There are

several schemes being studied to do this (and the final word is still far off!). The

work in this thesis investigates three machine learning schemes that are

candidates to provide machine intelligence to an agent. These three learning

schemes have been the dominant paradigms of machine learning for the last 10

years. First, neural networks based on the minimization of errors (as represented

by Backpropagation neural networks [73,99]) were re-introduced in the late 1980's

and achieved technological maturity by the end of the 1990's. Second, neural

networks based on analogies (as represented by Fuzzy ARTMAP [21,22]) have

been researched extensively and further developed in the 1990's. Third, the new

paradigm of Support Vector Machines, introduced "formally" by Vapnik in 1995

[90], is still in the phases of research and development and has become the

intersection of three important fields: neural networks, statistics, and optimization.

These three machine learning paradigms have not been previously compared for

the task of providing intelligence to agents that implement intelligent

recommendation systems on the Internet.

4.3 Current Approaches

We stated above that software agents can change the nature of interactions on

the Internet: from simple access to large databases, to dynamic and personalized

information and advice source. This approach becomes more important when

product features and attributes are complex and qualitative as well as when the

opportunities for differentiation, customization, and tailoring to individual

preferences increase. In order to implement a software agent approach as an

intelligent recommendation system, these agents have to be intelligent enough to

learn their users' criteria and learn how to aggregate information from different

13

mediums and how to help reinforce this information using these mediums. There

are two approaches to the implementation of software agents that act as

intelligent recommendation systems: the collaborative filtering approach (also

called the community-based approach), and the feature-based filtering approach

(also called the individual-based approach).

4.3.1 Collaborative Filtering

The collaborative filtering approach is based on the past behaviors of many

individuals (i.e., a community) [2,37,52]. The information and relationships from

this large group are collected into a knowledge base, which is then used in two

steps: clustering and recommendation.

1. Clustering. The knowledge base is used to classify the target user into a

cluster made up of other individuals who are similar to the target user

based on the overlap in past behavior (i.e., individuals with similar tastes).

2. Recommendation. The smart agent recommends a product that has the

highest possibility of being well matched for the target user based on the

preferences of the cluster. The smart agent examines the products with

the highest purchase rate in the cluster, and uses them as a predictor of

what the target user will want.

A good example of collaborative filtering is the Firefly system [43]. The Firefly

system starts by asking the target user to rank and compare a number of

alternative products. The system searches through its database and tries to find

other users with similar views. If matches are made, the system tries to find highly

ranked choices of these matched users. These highly ranked choices become

recommendations for the target user. The main advantage of this type of smart

agent is that it is relatively cost effective in terms of the effort needed by the user.

Collaborative filtering does not necessarily need to have enough information

about a target user to be categorized into a cluster to form a prediction of what

14

other types of products he/she will prefer. On the other hand, the assumption of fit

with the cluster has additional implications, some of them potentially negative

(e.g., when tastes vary widely, when matches are also domain specific,

narcissism) [2,3].

4.3.2. Feature-Based Filtering

The feature-based filtering approach is very different from the cpllaborative

filtering approach. This approach does not use information that is based on other

individuals. Feature-based filtering attempts to capture the underlying utility

structure of the target user. Therefore, the knowledge base consists of the past

behavior of the target user. Recommendations are made based on the fit between

the preference structure of the target user and the features and attributes of the

different products. Smart agents using the feature-based filtering approach work

in two steps: utility estimation and recommendation.

1. Utility Estimation. The smart agent estimates the strength of the

relationship between the target user's tastes and the underlying product

attributes. The knowledge base that contains the past behavior (e.g.,

past purchasings) of the target user is utilized to build this relationship.

2. Recommendation. Once the strength of the relationship between these

features is established, the smart agent examines the products (from

the database of products and their features), and for each product

calculates the preference value. As expressed by Ariely [2] "The

product with the highest expected value is then chosen as the one with

the highest likelihood to be preferred by the target decision-maker."

There are several advantages to this type of smart agent. The recommendations

can be optimized due to the ability to learn and adapt according to a specific

target user. The system is more flexible and can change over time to reflect the

changes in the target user by updating frequently the knowledge base and/or

15

weighing past experiences. Smart agents based on feature-based filtering can

also be more flexible, and react better to changes in the marketplace because

they are based on relationships between the target user and the product's

features. One of the main difficulties of implementing this smart agent is the size

of the knowledge base. The size of the knowledge base is important in order to

learn with a higher performance about each individual's preferences.

This thesis studies the performance of three different machine learning techniques

in order to build smart agents of the feature-based filtering type. The next section

will provide more details about the opportunities that smart agents of the feature-

based filtering type provide.

4.4 Organization

The goal of this thesis is the performance analysis of three machine learning

algorithms as recommender agents of the feature-based filtering type. Section 5

of this work mentions different techniques used to build intelligent recommending

agents of both the collaborative filtering and feature-based filtering approaches.

The machine learning methods selected in this thesis to enhance the performance

of the feature-based filtering agents are discussed in Section 6. Backpropagation

neural networks, Fuzzy ARTMAP neural networks, and Support Vector Machines

are presented in some level of detail. Techniques and concepts to address each

one of the implementations are presented. Section 7 presents the different

experiments and an analysis of the results of the different algorithms. Empirical

data is presented regarding the relative performance of the selected algorithms.

Section 8 concludes by summarizing the different results, presenting feedback

received, and lessons learned during the different experiments and

implementations. In addition, Section 8 discusses directions for further research

on the role of machine learning as the enabling mechanism to make intelligent

agents smarter.

16

5 Literature SurVey

This section reviews some of the techniques used to implement the collaborative

filtering and feature-based filtering approaches. In addition, this section ends by

providing justifications for this research.

5.1 Collaborative Filtering

As stated before, the collaborative filtering approach is based on the past

behaviors of many individuals. The information and relationships from this large

group are collected into a knowledge base, which is then used in two steps:

clustering and recommendation. Two of the principal algorithms used to

implement collaborative filtering agents are the well known K-means clustering

and the Nearest Neighbor. K-means clustering uses purchase history to cluster an

individual with a group of similar individuals. The level of fitness of the target user

to any group is determined by the products that the target user has bought. The

recommendations are based on the products that were most frequently purchased

by the other individuals of the group [26]. This approach is very simple to

implement; however, it does not guarantee that the comparison customers are

correctly classified into groups with other customers from their true clusters [3].

On the other hand, Nearest Neighbor is based on correlations to detect similarities

between the target user and those of every other individual in the database [3].

The most correlated individuals in the database are used to recommend products

to the target user. Nearest Neighbor is one of the most utilized methods for

collaborative filtering [60], but there are other techniques being introduced, among

them Bayesian networks, vector similarity techniques, and hybrids of Nearest

Neighbor and traditional data mining (other recent techniques recently introduced

are Latent Semantic Indexing [76], and clustering techniques based on measures

of entropy [92] and unsupervised neural networks [76] that capture the

mechanisms of Nearest Neighbor and transform high dimensional spaces to low

dimensional spaces).

17

5.1.1. Bayesian Networks

A method of reasoning using probabilities, called Bayesian Networks [30,68], has

become popular in the artificial intelligence community. Bayesian networks are

directed acyclic graphs (DAGs) (see Figure 5.1), where the nodes are random

variables. The random variables can have two values (True and False), or

several values (discrete or continuous). The arcs specify the independent

assumptions that must hold between the random variables. These independent

assumptions determine what probability information is required to specify the

probability distribution among the random variables in the network.

P(P) =0.15 P(A) = .01

Group likes Laino Literature Group has traveling to

(P)
(A)

P(PrIP A) = 0.99

Mary and Peter recenty P(PrP-A) = 0.90
Bought boois in Spanish Group wants to learn Spanish P(PrI-P P) = 0.97

) (Pr) P(Prl-P-A= 0.3

P(TIP) = 0.6
P(TI-P) = 0.05

Notalion:
P(A) = 0.2 probability of A Is 0.2
P(Al-P T) = 0.3 probability of A given Not P

and T is0.3 an and John are tadng Spanish
asas cnd language at Harvard

(PO)

P(PolPr) = 0.7
P(Pol-Pr) = 0.01

Figure 5.1. Example of a Bayesian network

Figure 5.1 shows an example (inspired by [68]) about a possible Bayesian

network to implement a recommender system. This Bayesian network depicts

18

several relationships of a group of students at Harvard University and its activities.

This graph could be used to predict what will happen (if the group is traveling to

Mexico) or to infer causes from observed effects (if Dan and John are learning

Spanish, then the Group probably wants to learn Spanish). Therefore, the smart

agent can tailor services to this group (e.g., trips to other Latin American

destinations, books about Latin America, books in Spanish, Spanish as a second

language services).

To specify the probability distribution of a Bayesian network, one must give the

prior probabilities of all root nodes (nodes with no predecessors) and the

conditional probabilities of all non-root nodes given all possible combinations of

their direct predecessors. The nodes with no predecessors in Figure 5.1 are P

and A and the non-root nodes are T, Pr, and Po. It is possible to appreciate that

the concept of joint distributions plays a very important role in Bayesian networks.

Bayesian networks allow one to calculate the conditional probabilities of the nodes

in the network given that the values of some of the nodes have been observed. In

addition, the probabilities can come from experts, Delphi cycles, or provided by

other agents using different techniques (e.g., Nearest Neighbor, the output of a

neural network). For example, if the agent observes that Mary and Peter recently

bought books in Spanish (T = True), but Dan and John are not learning Spanish

(Pr = false), it is possible to calculate the conditional probability that the group

likes Latino Literature given these pieces of evidence (P(PIT -,Pr)?).

The basic computation in belief networks is the computation of every node's belief

(its conditional probability) given the evidence that has been accumulated;

however, this computation is NP-hard! "Depending on the particular

characteristics of the network, the optimization scheme used, and the care taken

in the implementation, Bayesian networks as small as tens of nodes can take too

long, or Bayesian networks in the thousands of nodes can be done in acceptable

time." Nevertheless, single connected networks (i.e., "a polytree, one in which the

19

underlying undirected graph has no more than one path between any two nodes")

can be solved in linear times.

Bayesian networks have been studied by Microsoft Research to implement

collaborative filtering agents [6]. Bayesian networks have proven superior to other

methodologies such as Bayesian clustering and vector similarity methods for

collaborative filtering. We have not found commercial sites that state that they use

this methodology to implement the collaborative filtering approach. Nevertheless,

Bayesian networks are one of the most recommended methodologies in the future

in user modeling.

5.1.2 Vector Similarity

Microsoft Research has also been studying Vector Similarity Techniques to

improve the performance of collaborative filtering agents. Vector Similarity

(similar to Latent Semantic Indexing) is a technique adapted from the field of

information retrieval. The similarity between two documents is often measured by

treating each document as a vector of word frequencies and computing the cosine

of the angle formed by the two frequency vectors [6]. This formalism is adopted to

collaborative filtering, "where users take the role of documents, titles take the role

of words, and votes take the role of word frequencies." Votes indicate a positive

reference (the target user bought the recommended product). This method was

found to have good prediction capabilities; however, Bayesian networks

outperform vector similarity in success rate and computation characteristics.

5.1.3. Hybrids of the Nearest Neighbor and Data Mining Techniques

There are also hybrid schemes where techniques such as Nearest Neighbor deal

with the clustering decisions; however, a different algorithm handles the

recommendation step. Sarwar et al. [77] describe a very interesting system that

follows these principles. The data mining technique is used to find associations

rules between a set of co-purchased products. Essentially these techniques are

concerned with discovering associations between two sets of products such that

the presence of some products in a particular transaction implies that products

20

from the other set are also present in the same transaction. These association

rules are then used to develop "top-N" recommended products. These techniques

do not use the entire population of users to generate the rules but only consider

the I neighbors while generating the rules. Therefore, Nearest Neighbor can

generate the groups and the recommendation step is performed by the data

mining technique.

5.2. Feature-Based Filtering

The feature-based filtering approach does not use information that is based on

other individuals. Feature-based filtering attempts to capture the underlying utility

structure of the target user. Therefore, the knowledge base consists of the past

behavior of the target user. Feature-based filtering approaches are less common

on the Web. Companies such as Frictionlesscommerce.com, PersonaLogic.com,

and activebuyersguide.com use feature-based filtering that is "constraint based,"

using elimination aspects and fixed rule-based systems [27,87] to "narrow the

selection of products that meet all of the individuals' specified criteria in a

noncompensatory way." [3] These implementations are not intelligent (see Section

4 for the definitions of machine intelligence). The implementations at the research

level are also non-impressive. Several schemes using influence networks [46],

simple reinforcement algorithms [82], and regression [3,36] have been reported in

the literature.

21

5.3. Collaborative Filtering and Feature-Based Filtering

There are several comparisons between collaborative filtering and feature-based

filtering. Of those, the recent work of Ariely et al. [3] is the most comprehensive.

Ariely et al. [3] examine the performance of collaborative filtering and feature-

based filtering using a series of simulations of a marketplace. Two types of

collaborative filters are used: one that relies on k-means clustering and the other

one in the Nearest Neighbor algorithm. The feature-based filtering agent was

implemented using logistic regression. The results of this experiment are very

interesting [3]:

1. Feature-based filtering agents learn more slowly initially, but are better

in the long run than collaborative filtering when the environment is

stable.

2. Feature-based filtering agents are less negatively affected by

permanent change in the individual's utility function.

3. Feature-based filtering agents are able to recognize new products

(tailored to the target user) faster when these products appear in the

marketplace (even before others have purchased these products).

Their results show that feature-based filtering agents outperform in general the

collaborative filtering agents and provide much better recommendations.

However, the slow learning initially of feature-based filtering agents calls for a

parallel approach of both collaborative filtering and feature-based filtering.

Research performed by Good et al. [36] agrees with the results from Ariely et al.

[3]. Good et al. [36] emphasize the integration of feature-based filtering agents

with collaborative filtering agents. Their rationale to do this is that according to

their research collaborative filtering will soon achieve its maximum level of

22

performance. In addition, the hybrid model of feature-based filtering and

collaborative filtering outperformed the feature-based filtering agents (" a small,
but statistically significant improvement in accuracy"). They also found that

feature-based filtering agents have better performance than collaborative filtering;

however, these results are subject to the performance of the algorithm utilized to

implement the feature-based filtering agent.

5.4 Summary and Justification

It can be concluded from this literature survey that there is no a unified and

"standard" scheme for intelligent recommendation systems. The current schemes

to implement collaborative filtering and in particular feature-based filtering are still

under research and development. The conclusions from our literature survey

indicate the following:

1. The implementations of collaborative filtering are efficient; however,

these implementations show a low level of machine intelligence

(learning, responsiveness, and adaptation). There is not yet a final

answer about the best framework for collaborative filtering; researchers

are still looking for new ways and more powerful algorithms to adapt to

collaborative filtering and obtain major improvements.

2. Results indicate that collaborative filtering will soon reach its maximum

level of performance; therefore, it is opportune to search for new ways

to achieve the next levels of performance required by electronic

commerce.

3. Recent research has indicated that feature-based filtering (using simple

algorithms) in general outperform collaborative filtering. Therefore, the

next research frontier to improve is feature-based filtering.

23

4. Research on collaborative filtering thinks that a possible way to

enhance the current collaborative filtering agents is by introducing some

elements from feature-based filtering. Therefore, this supports the idea

that research in feature-based filtering also contributes to enhance

collaborative filtering.

5. The commercial implementations of feature-based filtering are very

primitive. These implementations do not show any signs of machine

intelligence and they exhibit low performance (and shift the effort to the

target user!). Therefore, it is important to conduct research in algorithms

to provide machine intelligence to feature-based filtering agents.

6. Research in feature-based filtering still lags behind that of collaborative

filtering.

This current climate is conducive to research directed at providing higher levels of
machine intelligence to feature-based filtering agents. There are recent

approaches such as Support Vector Machines, recent modifications to "standard"

neural networks (e.g., Backpropagation) using more powerful algorithms, and the
notion of ensembles of neural networks (e.g., Fuzzy ARTMAP ensembles) that

mitigate some of the architectural and learning problems. In the following

sections, these machine learning algorithms are applied to feature-based filtering

and tested in a representative case study.

24

6 Neural Networks and Support Vector Machines

The most common learning system is the supervised learning system. Supervised

learning systems can be used to classify patterns, by letting the inputs be the

patterns to be classified and the desired outputs be the correct classifications.

This thesis will involve the use of supervised learning systems as represented by
neural networks and support vector machines.

6.1 Neural Networks

Neural networks are information processing systems motivated by the goals of

reproduieng the cognitive processes and organizational models of neurobiological

systems. By virtue of their computational structure, neural networks feature
attractive characteristics such as graceful degradation, robust recall with
fragmented and noisy data, parallel distributed processing, generalization to

patterns outside of the training set, nonlinear modeling capabilities, and learning.

The specific characteristics of a neural network depend on the paradigm utilized.
The paradigm is determined by the architecture and the neurodynamics

employed. The architecture defines the arrangement of the neurons and their

interconnections (see Figures 6.1 and 6.2). The neurodynamics specifies how the
inputs to the neurons are going to be combined together (i.e., short term memory),

what type of function or relationship is going to be used to develop the output, and
how the adaptive coefficients, also called weights (i.e., long term memory), are

going to be modified.

The learning mechanism which handles modifications to the weights can be

classified under supervised, unsupervised, and reinforcement learning.

Supervised learning takes place when the network is trained using pairs of inputs
and desired outputs. In unsupervised learning, the network is able to self-
organize the categories. Reinforcement learning adds feedback to unsupervised

learning to evaluate the pattern classification process.

25

Bias

0
U

N T
P P
U U
T T
S

Figure 6.1. A single neuron of a typical neural network

0

N U
T

U P

T U

S T
S

Figure 6.2. Three layer neural network with 3 inputs, four hidden units, and 3 outputs

In supervised learning, we try to adapt a neural network so that its actual outputs

come close to the target outputs for some training set. The goal is to adapt the

parameters of the network so that it performs well for samples from outside of the

training set. Paul Werbos [99] has stated that there are two forms of the

supervised learning task: real-time and non-real time. In non-real-time supervised

learning, the order of the patterns is not assumed to be meaningful. "One simply

cycles through the training set as often as one likes, adjusting the weights through

26

finer and finer tuning, until the estimates of the weights converge." In real time

learning, "one can cycle through the data one observation at a time, and one has

to take the data as they come, adapting the weights in real time operation."

There are two types of supervised neural networks, which are useful in practice

[99]:

1. Supervised neural networks based on minimizing errors (e.g.,

Backpropagation);

2. Supervised neural networks based on forecasting by analogy. Designs in

class 2 are called "heteroassociative" memories. In addition, there are

many designs available for preprocessing the input vector, most of

which involve: (1) fixed preprocessing, such as Fourier transforms or

breaking the data up into regions (as in "CMAC," Radial Basis

Functions (RBF)); (2) unsupervised clustering or feature extraction

methods, such as Adaptive Resonance Theory (ART), topological

maps, and mean-field projections.

We have selected two neural network paradigms, which have had numerous

successful applications, for this thesis: Backpropagation (type: minimizing errors)

[73,99] and Fuzzy ARTMAP (type: forecasting by analogy) [21,22].

6.2 Backpropagation

The Backpropagation paradigm [73,99] learns adequate internal representations

using deterministic neurons to provide a mapping from input to output (See Figure

6.3). This procedure involves the calculation of a set of output vectors 0 using the

current weights matrix W (a set composed of all matrixes Wm, m = 2... I, where W2

would be the matrix of weights between the input and the first hidden layer and W,

the matrix of weights between the last hidden layer and the output layer) and the

input vectors 1. The error is estimated by comparing 0 with the target vector T and

27

using an error function. This error function is defined for a specific lI and T as

follows:

Ek = 1/2 X i(t, -OIl)2

where k is an input vector-target output relationship that conforms the input vector

set I and target output vector set T. i represents the output nodes of the output layer

in the network, and I is the total number of layers (i.e., layer I is the output layer, and

layer number 1 is the input layer). tj is the targeted output for the ith output node

and oi, is the response obtained from the ith output node using the corresponding Ik.

weight wil

N 21 -2 2,1-11,11,

U
T

U 2,1 21p

T U
S 3,1- T

S
3,1

layer 1 4M layer I

layer 1-2 layer I-1

Figure 6.3. A multilayer neural network (I layers) with 3 input neurons, several hidden layers

(from 2 to I-1), and 3 output neurons

Thus the total error will be determined as:

E =4k Ek

The learning procedure minimizes Ek by performing steepest descent and therefore

obtaining appropriate W and 0.

The net input to a neuron is expressed as

netim = Ij wim Om-1

28

where wijm is the weight between the jth unit of layer m-1 and the ith unit of layer

m. In addition, the traditional activation function utilized is the logistic function

given by

Oim = 1/(1 + e -netim)

To minimize Ek and achieve a convenient W, it is necessary to make adjustments to

previous W obtained until the error tolerance imposed by the final desired mapping

accuracy is accomplished. Therefore, it is possible to establish

AWijm ot - Ek/owlj.

Then aneti/awim is

dnetimawim =a(Z Wijm Oj- +m)/awm

aneltidawijm = Ojm-1

Then JOim/aneti is expressed by

aor/anetim = (1i/(1+ e -net"))/anetim

oa/anetim = e -net'" /(1 + e -netim) 2

ao/anetim = 0im (1 - Oim)

The partial derivative of Ek with respect to the weights and biases could be defined

by:

aEk /aWijm= (Ek /anet-m) (anetim /awim)

and the partial derivative of the error to the net input could be stated as:

aEk/anetim = -Am.

The following terms are derived by replacing the previous relationships:

aEk /aWlim = -im OJm-1.

29

The variable 8 defined above could be calculated by back propagating the error

through the network starting with the output layer where the partial derivative of the

error to the output is defined as:

aEtaoii= 8(1/2 Ii (ti -o0) 2) /IoI

aEk/a0i= -(ti -oil)

and 8il (output layer) is

8,1=- (dEkwao 1) (aolitanetil)

81,,= -(t, - Oil) O,, (1 -Oil)

and the adjustments are

AWijm = fl 6 ii Oi1

where T1 is the step size (also called the learning rate).

The lower layers can be concluded as follows:

8M=- (aEk/aOim) (aojianetim)

81m=- (a EkIaOim) 0 (1 - Qim)

81M=- 11 (aEkt/anetm.1) (anetm.1/iim) Qim (1 - Oim)

,IMij (6 jm+1 Wim +) Qim (1 - 0im).

Consequently the adjustments for AW are equal to

AWgjm = r1 im Ojm.1

Training of a Backpropagation neural network is achieved through a sequence of

iterations, or epochs. An epoch is a pass through the entire training set.

In spite of the capabilities of this proven algorithm, the rate convergence might be

very slow. One of the most commonly utilized heuristics is a momentum factor (lt)

30

that weights the contribution of past AW. The "updating" equations will be modified

as follows [73]:

Wijm(t) = Wijm(t-1) + AWijm(t) + p AWijm(t - 1)

The training process using standard Backpropagation is a very difficult problem.

One needs to find an appropriate architecture (e.g., the number of hidden units,

the number of hidden layers), adequate size of training data, a satisfactory input

scheme, satisfactory initialization (e.g., initial weights: it is recommended to try

several different initial sets of weights in order to ensure that a global minimum

has been obtained!), and learning parameters. In this research several alternative

approaches were tested and utilized, in order to select an appropriate architecture

and to achieve fast convergence.

6.2.1 Architecture Selection

It is important to select the right architecture (i.e., the number of hidden neurons)
of a Backpropagation neural network. It is known from theoretical developments

[61,84] and from empirical results [49,69] that the generalization ability (GA) of a

neural network depends on a balance between the information in the training

examples and its complexity (i.e., weights and hidden neurons). On the other

hand, it is also clear that neural networks with too few weights will not have the

capacity to represent the information accurately. Several schemes were tested in

this thesis to decide the best architecture.

6.2.1.1 The Traditional Method

Traditionally in supervised neural networks GA is defined as the expected

performance on future data and can be approximated by the expected

performance on a finite test set (i.e., new observations that were not used in

getting W). Therefore, several architectures (different hidden units and hidden

layers) are "trained" and the one with the best GA is selected. This method is

effective especially when there are enough data samples (i.e., a very large

number). Unfortunately, in the problem faced by us, there are not enough

31

observations to calculate GA. Therefore we decided not to use the traditional

method.

6.2.1.2. Cost Functions with Two or more Terms

One methodology to get an adequate architecture is to minimize a cost function

composed of two or more terms: the ordinary training error, plus some measure of

network complexity. Two different schemes were tested initially in this thesis:

1. Penalizing Small Weights. Elimination of weights was performed as

described by Weigend et al. [96,97]. This technique has the following

objective function

Xk Ek + A X1 ((w/w0)2 1(1 + (w./w) 2)

where the first term is the sum of the squared error for the training set and

the second term is a cost for each weight i. The parameter . represents

the relative importance of the cost term with respect to the error term

(usually X << 1.0), w. is the scale parameter that allows us to express a

preference for fewer large weights (Wo is relatively small). Again,

gradient-descent is utilized. This technique has been used successfully to

achieve networks with a high degree of generalization when the problem

is very non-linear and the training data has a high level of noise. However,

slow convergence is a potential problem and makes it difficult to find the

right schedule of values for X.

2. Penalizing Large Weights. This methodology limits the growth of the

weights. It is realized by adding a term to the cost function that penalizes

large weights,

Ik Ek + (1/2) X 1, W1
2

where the first term is the sum of the squared error for the training set and

the second term (the regularization parameter) is the cost for each weight

i. The regularization parameter A represents how strongly large weights

32

are penalized. If gradient-descent is used, a new term is added to the

weight update of the traditional Backpropagation algorithm:

Awijm O (- DEkaWijm - k Wijm).

Krogh and Hertz [48] have analyzed the effect of this term both

theoretically and experimentally. They have concluded that this term of

weight decay can improve generalization (with the assumption "that the

neural network could be expanded around an optimal weight vector, and

therefore it is strictly only valid in a little neighborhood around that

vector"). Slow convergence is a potential problem. In addition, there are

no references to problems with small data sets and about how to

determine an optimal regularization parameter.

6.2.1.3 Dividing the Data into Three Parts

The method of dividing the data into three parts (i.e., a training set for obtaining

the weights, a validation set for deciding when to stop training, and a testing set to

compare performance) can also build neural networks with good performance

[63]. The validation set (the error on the validation set is monitored during the

training process) indicates when training should be terminated (i.e., the error on

the validation set will begin to rise) before reaching a minimum training set error in

order to prevent overfitting. Then, the GA is estimated by using the testing set.

Again, this method is useful when the dataset is very large. We were not able to

use this technique.

6.2.1.4 Prediction Risk

A very realistic assumption is that there are not enough historical data to learn the

behavior and preferences of a user. The case study used by us (and explained in

Section 7) does not have enough observations. Therefore, we have to estimate

GA from the available data. There are three methodologies available to calculate

GA for this situation (and then proceed to compare different architectures based

on that result):

1. Crossvalidation (CV). CV is a sample re-use method that can be used

to estimate GA [62]. CV makes minimal assumptions on the statistics

33

of the data. Each instance of the database in turn is left out, and the

supervised neural network is trained on all the remaining examples (N

- 1). The results of all n judgments, one for each member of the

dataset, are averaged, and that average represents the final error

estimate (i.e., GA). This approximation of GA is very expensive to

calculate using Backpropagation neural networks (i.e., it involves

constructing N neural networks, each trained with N - 1 samples).

Geiser [34] has introduced a variation of the method, denominated v-

fold cross validation. Instead of leaving out only one observation, larger

subsets of the training data are deleted. The training data are divided

into v randomly selected disjoint subsets of roughly equal size. Then

CV for subset j is defined as the calculation of the Average Squared

Error (ASE) for the subset j with the neural network trained with the

remaining subsets. The same is performed for each of the individual

subsets. GA is then approximated by the average of the CVs. Typical

choices for v are 5 and 10. This has become the standard test in

practical terms for machine learning techniques [47,62,100].

2. Generalized cross-validation (GCV). GCV combines ASE and a

measure of complexity of the network trained with the entire dataset

[93]. GCV is used to select architectures in linear models. Moody and

Utans [62] have demonstrated its modifications used with success in

some neural network problems. The equation to calculate GA for a

particular neural network using a dataset of N examples is:

GA = ASE * (1/(1 - (# of Weights/N))2

It is very clear that we cannot use GCV when N is a number even lower

than the number of weights. That could be possible in our problem.

Therefore, we cannot use GCV.

3. Final prediction error (FPE). Akaike's FPE [1,4] combines the

average training squared error (ASE) with a measure of the neural

34

network complexity (the number of weights) trained with the entire

dataset. FPE is also utilized to select architectures in linear models.

There are some successes in its extensions to select architectures for

Backpropagation neural networks [61,62]. The equation to calculate

GA for a particular Backpropagation neural network using a dataset of

N examples is:

GA = ASE * ((1 + # of Weights/N))/(1 - (# of Weights/N))

FPE has the same problem when N is a number smaller than the

number of weights. Therefore, we cannot use FPE.

6.2.1.5 Bayesian Neural Networks

MacKay's Bayesian evidence framework [54,55,56] can be used to control

overfitting in neural networks. This framework is able to determine the optimal

regularization parameters in an automated fashion. This is achieved by

interpreting the Backpropagation learning process as probabilistic. For instance,

the error function is interpreted as defining the probability distribution of a noise

model:

P(Data Seti W, B,) = (1/ZD) e(-sk Ek)

"Thus, the use of the sum-squared error corresponds to an assumption of

Gaussian noise on the target variables, and the parameter B defines a noise level

a2=1/ B." [56] The regularization parameter is represented in terms of a log prior

probability distribution over the parameters:

P(W I A, F) = (1I/ZD) e((2) w)

R is a probabilistic model that defines the form of the Backpropagation neural

network, and the objective function M(W) is the inference of W given the training

data (following Bayes' theorem):

P(WIData Set,X,BF) = P(Data Set|W,a,R) P(WlX ,R)/ P(Data Set L,k, R).

P(W IData Set, k , B, R) = (1/Zm) e(M))

W is found by minimizing M(W). This W vector is then interpreted as the most

probable. There are several algorithms to optimize M(W), such as the traditional

35

approach to Backpropagation learning, optimization schemes with Gaussian

approximation, and Monte Carlo simulation.

The Bayesian framework offers several potential advantages such as:

1. All the available data can be used to both model training and model

comparison.

2. The regularization parameters are optimized online.

6.2.2 Faster Convergence

The basic Backpropagation algorithm using gradient-descent and its modification

using momentum may be slow for some problems. We considered the use of

other algorithms that can converge faster. These algorithms are more

sophisticated from an optimization viewpoint.

6.2.2.1 Levenberg-Marquardt

This algorithm is designed to approach second-order training speed. It approximates

the Hessian matrix H by using the Jacobian matrix J (which contains the first

derivatives of the network errors with respect to the weights) as follows [32,42]:

H = JTJ,

And the gradient can be computed as

JTe
where e is a vector of the neural network errors. Therefore, the update is modified

to be:

W(t+1) = W(t) - [JTJ + p I]-1 JTe

where $ is a constant that is decreased or increased depending on the

performance function. Levenberg-Marquardt is considered one of the fastest

algorithms for training Backpropagation neural networks. However, problems with

a large data set are difficult to avoid due to computer memory requirements.

36

6.2.2.2 Conjugate-Gradient

Conjugate-gradient is a family of algorithms that adjusts the search direction to

produce the fastest convergence. Initially, the direction of the search is on the

steepest descent path. After the first iteration, a line search is performed to

determine the optimal distance (p) to move along the current search direction as

stated as follows:

W(t+1) = W(t) + fl p(t)

The next search direction is determined so that it is conjugate to previous search

directions. Conjugate directions produce generally faster convergence than

gradient-descent directions. The procedure is given by:

P(t) = - aE/aw (t) + P(t) p(t-1)

where P(t) is calculated in different forms. For example, in Fletcher-Reeves [32,33]

(used in this thesis), the procedure to calculate P(t) is the ratio of the norm squared

of the current gradient (g) to the norm squared of the previous gradient:

p(t) = gT(t) g(t)/ (gT(t-1) g(t-1)).

The family of conjugate-gradient algorithms is considered one of the best

methodologies to train Backpropagation neural networks. These algorithms have

a high rate of convergence in difficult problems. However, the Levenberg-

Marquardt algorithm is considered faster for problems of moderate size [32].

6.3 Fuzzy A R TMAP

Adaptive resonance theory (ART) represents a family of neural networks which

self-organize categories in response to arbitrary sequences of input patterns in

real time for pattern recognition. A class of these networks called ART 1, which is

unsupervised, can be used only for binary patterns [10,13,16]. ART 2, which is

also an unsupervised class, responds to both binary and analog patterns

[11,14,15]. The class ART 3 features an advanced reinforcement feedback

mechanism that can alter the classification sensitivity or directly engage the

37

search mechanism [17]. The class Fuzzy ART [19] is similar in architecture to

ART 1; however, fuzzy operators [102] are added in order to handle analog

patterns without losing the advantages of ART 1 architecture. The class ARTMAP

("predictive" ART) is built upon the basic ART designs, while incorporating

supervision in the learning process [18]. ART 2-A ("algorithmic" ART) [20] is a

special case of ART 2 which emphasizes the intermediate and fast learning rates,

hence accelerating the learning process by three orders of magnitude. Fuzzy

ARTMAP is built upon Fuzzy ART and is very similar in architecture to ARTMAP;

however, its utilization of Fuzzy ART allows it to handle analog patterns [21,22].

Recent introductions to the ART family are Distributed ART (dART) [12] and

Distributed ARTMAP (dARTMAP) [25]. dART and dARTMAP are able to learn

distributed code representations.

Fuzzy ARTMAP is considered a very powerful neural network for pattern

classification [23,24,51,59]. Fuzzy ARTMAP includes a pair of Fuzzy ART

modules. Therefore, we will explain first the Fuzzy ART paradigm. After that,

Fuzzy ARTMAP will be introduced. Finally, the Fuzzy ARTMAP voting strategy will

be presented.

6.3.1 Fuzzy ART

Fuzzy ART [21,22] incorporates the basic architecture and neurodynamics of ART

systems. The notation here will largely follow that of [21]. Each ART system

includes:

1. a field Fo of neurons that represents an input vector;

2. a field F, that receives bottom-up input from Fo; and top-down input

from

3. a field F2 that represents the active category (see Figure 6.4). A

vector Wj (w1 ,...,wjM) of weights is associated with each F2 neuron

(i.e., category). Each category is initially uncommitted (and the initial

38

values of the weights are set to 1). After a category is selected for

learning it becomes committed.

The FO input vector is denoted i (I1,...,'M, with each component Ii in the interval

[0,1], i = 1, ... , M). The F, activity vector is denoted X (X1,...,XM) and the F2

activity vector is denoted Y (Y1,.. .,YN). The number of neurons in each field is

arbitrary for explanation purposes.

Fuzzy ART is designed as a generalization of ART 1 (ART 1 only handles binary

inputs). However, the set theory intersection operator (n) of ART 1 is replaced by

the fuzzy set theory conjunction (A). The operator (fuzzy AND) as defined by

Zadeh [102] for two vectors X (x,,...,x.) and Y (y,,...,YN) S

X A Y = min(xi, yi).
This fuzzy operator makes Fuzzy ART capable of handling both analog and binary

data. Some basic mechanisms of Fuzzy ART neurodynamics are explained as

follows:

a) Category Choice. For each Input Vector I and category j, the choice

function Tj is defined by

Tj(I) = I A wjI /IwjI

where I I is the L1 norm (i.e., |I A wjI = , 1min (I,wn,) |). The maximum

Tj (j = J) is defined as the winner category (also called category choice)

when at most one F2 neuron can become active at a given time (in the

implementation for this thesis, the first category chosen will always be the

category whose weight vector Wj is the largest fuzzy subset of the input vector I).

If more than one Tj is maximal, the category j with the smallest index is chosen.

In particular, neurons become committed in the order j = 1, 2, 3, . When the jth

category is chosen, Yj = 1; and Yj = 0 for j *J. In a choice system, the F1 activity

vector X is equal to i if F2 is inactive and equal to I A wj if the jth F2 neuron is

chosen.

39

Learning of a category occurs if the match function I i Wj / I I of the

chosen category meets the vigilance criterion (p):

1I ^ wjI/|I| >= P.
That means that learning occurs depending on the degree to which I is a fuzzy

subset of wj. On the other hand, a mismatch reset occurs if

I ^ wj/|I| < p.
Then the value of the choice function Tj is set to 0 for the duration of the input

presentation to prevent the persistent selection of the same category during

search. A new index J is then chosen. The search process continues until the

chosen J satisfies p.

40

map field Fab

M Xab

_____ __ _
Fuzzy ARTa

U-
matcl

trackir g

F b v

I reset

F, Xb

Feb B = (b,b c)

b

Figure 6.4. Fuzzy ARTMAP architecture using second complement coding. Fuzzy ARTMAP
is formed by two Fuzzy ART modules: Fuzzy ARTa and Fuzzy ARTb.

Once the search ends, Wj is updated according to the equation

W(NeW) = g (I A w(old)) + (1 - S) W (old)
T

IT

Fast learning (i.e., approximation to one-shot learning) corresponds to setting B

equal to 1. This is a "far" reflection of the membrane equations [44] as described

in earlier papers of Grossberg [38,39,40,41] and used in the other ART neural

networks such as ART1 and ART2.

41

F 2

a I
reset

F, Xa

Foal A = (a,a c) W

a

F

Fuzzy ART b

b) Complement Coding. A very important issue is that, in Fuzzy ART, the

inputs have to be normalized in order to avoid the proliferation of categories.

Complement coding has been found to be the best normalization rule to preserve

amplitude information. As stated by Carpenter et al. [21] "complement coding

represents both the on-response and the off response to an input vector a. To

define this operation in its simplest form, let a itself represent the on-response.

The complement of a, denoted by ac, represents the off-response, where al' = I -

ai." Therefore, the complemented coded input I to Fuzzy ART is the 2M-

dimensional vector

I = (a,a0) = (a 1,...,aM, a1c, .. .,aMc).

c) Geometric Interpretation of Fuzzy ART Learning. We will adopt a

simple vector a (following [21]) of 2 dimensions normalized using complement

coding. The original vector a is

a = a1, a 2

and the normalized input will be:

I = (a, a)= (a1, a2,1 1 -a,1 - a 2).

For example if a = 0.6, 0.3, then ac = 0.4, 0.7. Each category j (as represented by

the respective neuron in F2) has a geometric interpretation as a rectangle

Rectanglej. The weight vector Wj (from F1a to the respective neuron in F2'and

vice versa) can be written in complement coding form:

W! = (Ui, v;)
Following the explanations of [21], uj and v are 2-dimensional vectors. uj labels

one corner of a rectangle Rectanglej and v1 identifies another corner (see Figure

6.5). In the implementation of Fuzzy ART for this thesis, Wj (n) will be equal to

the input (a,a*) when J is an uncommitted node (i.e., it has not been selected

previously). The corners of Rectangle"(new) are then given by vector a (i.e.,

Rectangle"(new) is point a). The learning process increases the size of each

rectangle. Actually, during learning, the size of Rectangle grows as the size

(magnitude) of wj reduces (as a result of successive operations using the fuzzy

42

AND operator of the learning equation), and the maximum size of Rectangle; is

determined by p. During each learning trial, Rectangle increases to include other

vectors (if the configuration of F2 and p allow it - see Figure 6.6). The corners of

the new Rectangle are given by a Auj and a v v, where A is the fuzzy AND

operator and v is the fuzzy OR operator [102]. However, reset leads to another

category choice if Rectangle, has already reached the maximum size permitted.

"In summary, each Rectangle equals the smallest rectangle that encloses all

vectors a that have chosen category j." [21]

V.

U.

0 1
Figure 6.5. Geometric representation of a weight vector for a 2-dimensional system in Fuzzy

ART using second complement normalization. The learning process increases the size of
each rectangle.

43

11

a V Vi
FRectanglej

-- -------- ---- ~ v

a A U, a

i

0I1

Figure 6.6. The rectangles increase during learning to include the different vectors that
meet the criteria set by p (in this case, vector a is added to a previously "committed"

neuron in F2and represented by Rectangle;). The corners of the new Rectangle; are formed
by the following fuzzy operations: Fuzzy OR (8, v;) and Fuzzy AND (a, u;).

6.3.2 The Fuzzy ARTMAP Paradigm

Fuzzy ARTMAP has two Fuzzy ART modules Fuzzy ARTa and Fuzzy ARTb (see

Figure 6.4).These two modules are linked together via an inter-ART module F ab

called a "map field." Fuzzy ARTMAP uses the hyper- rectangles of Fuzzy ART to

represent category weights in a supervised learning fashion. The neurodynamics

allows the weights to be updated when an input correctly predicts the output. In

addition, a mechanism called match tracking is used to reorganize category

structure to eliminate predictive errors during learning. The major features of

Fuzzy ARTMAP are:

a) Second Complement Normalization. In the implementation of Fuzzy

ARTMAP for this thesis, second complement normalization is used (see Figure

6.4). The input vector for Fuzzy ARTa A is composed of a and ac and the input

vector for Fuzzy ARTb (or supervised target/output) B is composed of b and bc.

44

b) Map Field Activation. The map field Fab is activated whenever one of

categories of Fuzzy ARTa or Fuzzy ARTb is active. If node J of F2' is chosen,

then its weights Wiab activate Fab. "If neuron K in F2b is active, then the node K in

Fab is activated by 1-to-1 pathways between F2b and Fab." If both Fuzzy ARTa and

Fuzzy ARTb are active, then Fab becomes active only if Fuzzy ARTa predicts the

same category as Fuzzy ARTb using the weights Wiab. The Fab output vector Xab

follows these rules:

Yb A Wjab If the Jth F2' neuron is active and F2D is active

Wjab If the Jth F 2a neuron is active and F2D is inactive

Xab = Yb If F2 is inactive and F2D is active

0 If F 2a is inactive and F 2D is inactive

Table 6.1. Rules for the output vector Xab

For instance, Xab will be 0 if the prediction Wlab is disconfirmed by yb. Such a

mismatch event triggers a Fuzzy ARTa search for a better category using the

match tracking mechanism.

c) The Match Tracking Mechanism. At the start of each input

presentation the Fuzzy ARTa vigilance parameter Pa equals a baseline vigilance

pbara. The map field vigilance parameter is p&, (generally set to 1.0). If the

activation of Fuzzy ARTa and the activation of Fuzzy ARTb do not activate Fab

because of a mismatch in category, then Pa is increased until if is slightly larger

than IA AWjalIAl-1, where A is the input to Fa, in second complement coding form.

When this occurs, the Fuzzy ARTa search leads either to activation of another F2 a

neuron J; or, if not such neuron exists, to the incremental addition of a neuron to

F2a to learn this "novelty" input.

45

d) Learning in the Map Field. As soon as J from F2' (Fuzzy ARTa) learns

to predict the Fuzzy ARTb supervised target K, then WJKab is Set to 1 in a

permanent fashion.

6.3.3 Voting Schemes for Fuzzy ARTMAP

Carpenter et al. [21,22] have described the advantages of using several Fuzzy

ARTMAP neural networks trained on data sets using different orderings. The final

prediction for a given test set is the one made by the largest number of neural

networks. This "ensemble" strategy is based on the fact that the sequence of

examples typically leads to different structures of categories. The "ensemble"

strategy cancels some of the errors.

6.4 Support Vector Machines

Support Vector Machines (SVMs) are a new generation of algorithms in machine

learning. SVMs are based on recent advances in statistical learning theory. There

are two interesting features of SVMs:

1. Complex Sructures. SVMs are able to generate structures that are

complex enough to deal with practical applications. These structures

contain classes of radial basis functions, neural networks, polynomials

and splines-based functions as particular implementations.

2. Mathematical Analysis. SVMs are able to generate complex structures

but they are simple enough to be examined mathematically. SVMs can

be conceptualized as a linear method in a high-dimensional feature

space nonlinearly associated to input space.

We will introduce several important concepts required to understand SVMs.

6.4.1 The Concept of the Maximum Margin Hyperplane

Advances in statistical learning theory (i.e., VC (Vapnik-Chervonenkis) theory)

[89,90], explain that it is critical to constrain the class of functions that the learning

46

machine can generate to one with a capacity that is appropriate for the available

training data. Burges [8] states "There is a remarkable family of bounds governing

the relation between the capacity of a learning machine and its performance. The

theory grew out of considerations of under what circumstances, and how quickly,

the mean of some empirical quantity converges uniformly, as the number of data

points increases, to the true mean (that which would be calculated from an infinite

amount of data)." Therefore, to design efficient learning algorithms, a class of

functions whose capacity can be computed is essential. SVMs are based on the

class of hyperplanes

(W. X) + b = 0

where W are the free parameters (e.g., called weights in neural networks - W E

RN (R is the set of real numbers)), X is an N-dimensional input vector, and b is a

numeric parameter (b E R). This class of hyperplanes corresponds to decision

functions of the type(in pattern recognition)

f(x) = sign ((W.X) + b).

Therefore f is a function of f:RN -> { 1}. The maximum margin hyperplane,

defined as the one with the maximal margin of separation between the two

classes (i.e., +1 and -1), has the lowest capacity. To illustrate a maximum margin

hyperplane, Figure 6.7 depicts a two-class dataset whose classes are linearly

separable (i.e., their convex hulls cannot overlap). The maximum margin

hyperplane is the one that gives the greatest separation from both convex hulls. In

addition, this optimal hyperplane is orthogonal to the shortest line connecting the

hulls.

47

Maximum Margin
Hyperplane

/0g

Ko /

Support Vectors

Figure 6.7. The maximum margin hyperplane is orthogonal to the shortest line connecting
the convex hulls, intersecting it halfway.

The instances that are closest to the maximum margin hyperplane are called

support vectors (SVs). Points that are not SVs have no influence [28,80,81,].

Therefore, this optimal hyperplane can be uniquely constructed by solving a

constrained quadratic optimization problem whose solution W is represented by

W = XIesvs Yi a X1

where X, is a support vector (selected from the training patterns), yj is the

respective classification X, (i.e., t 1), and al is a numeric parameter that has to be

determined from the optimization. Then the final decision function

f(x, a, b) = XIesvs yj a, (X.XI) + b

depends only on the dot products between patterns.

48

If the training set consists of P examples, then there are P free parameters in a

SVM trained with P examples. These numeric parameters were called above a,.

Then, it is possible to pose the quadratic programming problem as [70,71]:

Minimize (1/2) liep,j=1 al Qij aj - X-ep ai;

Subject to 0 <= ai <= C and Xiep ay, = 0

where Q is a PXP matrix that depends on the training inputs Xi (for i E P), the

class yi, and the functional form of the SVM. C is an upper bound to a,. The

objective function to be minimized depends on a, quadratically, while a, only

appears linearly in the constraints. The quadratic problem in SVMs is to find a

minimum of a convex objective function. The search for the minimum is

constrained to lie within a hypercube and on a hyperplane. For most typical SVM

functional forms, the matrix Q has special properties, so that the "objective is

either positive definite or positive semidefinite." [70] Thus, there is either a unique

minimum or a connected set of equivalent minima. The quadratic problem in

SVMs has an optimality condition that describes these minima. These optimality

conditions are described by the Karush-Kuhn-Tucker (KKT) conditions. These

KKT conditions describe the set of a, that are constrained minima.

There is one ai for each training example. Each a, determines how much each

training example influences the SVM function. Therefore an a, > 0 identifies a

training sample that is an SV. The constrained quadratic optimization problem can

be solved using several approaches. It is possible to use the KKT conditions as a

guide to obtain a solution. This fact results in several methodologies for finding the

solution, such as interior point methods, combinations of gradient and conjugate-

gradient ascent, and schemes based on Newtonian methods.

A very interesting fact to mention is that the matrix Q can be very large. It has a

dimension that depends on the number of training examples. For instance, a

training set of 20,000 examples will yield a 0 matrix with 400 million elements! For

these problems, researchers have been developing two different sets of

methodologies [70]:

49

1. Sophisticated data structures. These methods perform samplings of

the different rows and columns using heuristics based on the numeric

value of al. These methods carry out dot products between rows or

columns of Q and a vector, rather than performing computational

expensive matrix-vector calculations. These methods use heuristics

based on the value of a,. For instance, they do not need to access the
rows or columns of Q that correspond to al equals to 0 or the constrain

C.

2. Decomposition of the Quadratic Problem. These methods are based

on a decomposition of the quadratic problem into a series of smaller

quadratic problems. Vapnik [88] recommends a method called
"chunking." This "chunking" algorithm has been implemented in several

SVM simulators available as freeware (e.g., RHUL release 1.0 for

SVMs). The "chunking" algorithm exploits the fact that the value of the
objective function is the same if the rows and columns of the matrix 0
that correspond to zero a are removed. Therefore, the large problem

can be broken down into a series of smaller quadratic problems, whose

ultimate goal is to identify all of the nonzero a,. At every step, this

methodology solves a quadratic problem that consists of the following:

Every nonzero ai from the last step, and the a that correspond to the

worst violations of the KKT conditions. [8,70]

Nevertheless, the size of the quadratic problem tends to grow with time

(with the accumulations of "unsolved" a,). In the last step, the chunking

approach has solved the overall quadratic problem by identifying the

entire set of nonzero al.

50

6.4.2 Kernels

The basic idea of SVMs is to map the data into some other dot product space

(called the feature space) F via a nonlinear map (see Figure 6.8):
M:RN-4 F.

Input Space Feature Space

0
LZIZ~

0
0

Ah
0

Figure 6.8. SVMs map the training data nonlinearly into a higher-dimensional feature space
via 0. Then a maximum margin hyperplane is constructed in this higher-dimensional

feature space.

This only requires the evaluation of dot products:

k(X,XI) = (0(X) . 0 (Xi)).

This k(X,XI) is called a kernel. For instance, the polynomial kernel

k(X,XI) = (X.X)d

and defining d = 2 and 0(x) for a 2-dimensional vector as (x1
2, 20" x1x2, X22

then, the execution for vectors X = [x1 x 2]t and X1 = [xi1 xi2]t is [81]:

k(XX)2 () xii
xi2

2X 2

(2x) i 22 -)

A good way to select the degree of a polynomial kernel is to start with 1 and

increment it until the estimated error ceases to improve. Other kernel functions

51

0 0

can be used instead to implement different nonlinear mappings. Three that are

often suggested are called the radial basis function kernel, the sigmoid kernel,
and the splines kernel. The radial basis function kernel is represented by the

following format

k(XXi) = exp(-IIX - Xi112 /(2C9)).

The sigmoid kernels (with gain K and offset 0) have the following format

k(XXi) = tanh(K (X - Xi) +0).

The splines kernel, also utilized in this thesis, has the following equation [91]
k(X,Xi) = I + XXI + XXi min(X,XI) - ((X+X)/2)(min(X,X)) 2 +((min(X,X))3)/3.

6.4.3 Architecture

SVMs (in pattern recognition) are nonlinear classifiers. A very important decision

is the selection of the kernel. Which one produces the best results depends on the

application. The user has to develop tests to decide among them. In addition,

some of the kernels have parameters. This is another important decision that will

affect performance. When the decision of the kernel is finalized (and O(x) can be

substituted for each training example), the nonlinear decision function of the form

f(x, a, b) = sign (1.jesvs y al (X.Xi) + b)

can be implemented. The parameters a are computed as the solution of the

constrained quadratic programming problem. Figure 6.9 provides a good picture

of the execution of an SVM for classification. The "trained" SVM has already the

support vectors (X1, X2, ... , Xn). These vectors and the test vector (i.e., vector to

be classified by the SVM) are substituted by the respective O(x). After that, the

corresponding dot product can be performed. Then, weighting the dot product by
the respective yi ai provides a nonlinear decision. This execution is very fast.

Specialized hardware implementations using digital signal processors can be

implemented for problems that require real-time performance.

52

Sign (: + b) sign(Eesvs yjai (X.Xi) + b)

YJ alWeights
Y1a1 2 13 3 anh

Kernel k(X,X)
100.0()

(0 1) 0(X2) 0(x3Q O (Xn) 40) Mapped Vectors
-00

XI X 2 Xa 3 Xn X

Support Vectors X ,... X , Test Vector

Figure 6.9. Architecture of a Support Vector Machine for classification

6.5 Software Implementations

Several software systems were developed to implement some of the algorithms

and for the scaling and formatting of the training and testing datasets. These

systems utilized a combination of Unix Scripts, Matlab Scripts, and C and C++

programs.

6.5.1 Backpropagation

There were several implementations for the different forms of the

Backpropagation algorithm. Backpropagation with gradient-descent and other

53

variations (momentum, penalizing weights) were implemented in a C program.

Bayesian neural networks, Levenberg-Marquardt, and the conjugate-gradient

algorithms were implemented using Matlab scripts. Several other C programs

were built in order to support the data formatting, file handling, and

crossvalidation.

6.5.1.1 Backpropagation With Gradient-Descent

The computer program developed in the C programming language has several

features:

1. Momentum Factor. A momentum factor to accelerate training is

implemented.

2. Annealing schedules. The annealing schedules of learning rates ('j)

and momentum factors (ri) were implemented. The user can define an

annealing schedule to change learning rates and momentum factors

during training as a function of the epochs or heuristics based on the

changes in the mean squared error (MSE). Figure 6.10 shows an

annealing schedule specified for a momentum factor as a function of

the number of epochs (training iterations).

3. Implementation Using Sockets. The program uses sockets to

implement a client. Then, the server program is able to handle several

training sessions with different datasets at the same time. The server is

able to stop the training session and make corrections to training

parameters such as learning rates and momentum factors.

54

Momentum Factor(g)

0.9
0 0.8
S0.7

.0 6
E0

0
S0.2

0.1
0

0 2000 4000 6000 8000 10000 12000

Epochs

Figure 6.10. Example of an annealing schedule of the momentum factor for a learning

session

4. Testing of Files. The user is able to test datasets at any point of the

learning process.

5. Network Architecture. A file called "network.net" has the network

architecture and the value of the current weights.

6. Historical File. A file contains the history of training (the learning rates,

momentum factors, learning error, epoch number) and the major

learning modifications. This file is important for gathering information in

order to improve future sessions.

7. Random Generators. Random generators were adapted to the

program. These random generators are very important to initialize the

network and repeat experiments.

55

8. Penalizing Weights (Regularization Factors). The user can select

penalizing equations for the learning session. Two equations are

currently implemented:

a) Ik Ek + X1 1 ((wIwO)2 / (1 + (wiwO)2)

b)XkEk + (1/2)A. 1 w12

The regularization parameter X is decided by the user. An annealing

schedule can be designed for ?.

9. Importance Factor. An importance factor is used to denote the

importance of a pattern.

10. Simple User Interface. A simple user interface is used. Text and files

are used to communicate with the program. The program displays the

Root Mean Squared (RMS) error and the current Epoch. For example,

the training data is entered in ASCII format and uses the following

format:

of input neurons

of hidden neurons

of output neurons

of training samples

Momentum Characteristics

Regularization Characteristics

Stopping Decision: Minimum Error Desired Or Total Number of Epochs

Training patterns each separated by one or more spaces, first for the

input and then for the output, and then the importance factor

Other programs were constructed in C to scale and format the datasets and

automate the process for the user as depicted in Figure 6.11.

56

Process to scale and
formatTraining dataset and/or

Testing dataset, and input
specifications (architecture and

neurodynamics details)

Process: Learning (Execution of
the Neurodynamics (Using

Selected Algorithms such as
Gradient Descent, Levenberg-

Marquardt, Conjugate-Gradient,
Bayesian Neural Networks))

7
Process: Testing with Unseen

Data and Report Results

Figure 6.11. The implementation of Backpropagation

6.5.1.2 Bayesian Neural Networks

This thesis implements the Bayesian Neural Networks paradigm using Matlab

scripts. Matlab and its Neural Network toolbox have the function "trainbr" [32] to

build neural networks with automated regularization capabilities. A complete

Matlab script was developed that executes the processes in Figure 6.11; however,

the process of learning uses "trainbr."

6.5.1.3 Levenberg-Marquardt

Matlab and its Neural Network toolbox has the function "trainim" [32] to build

Backpropagation neural networks using the Levenberg-Marquardt algorithm. The

57

process of learning in Figure 6.11 is constructed using "trainlm." The Neural

Network Toolbox has a very efficient implementation of this algorithm.

6.5.1.4 Conjugate-Gradient

Conjugate-Gradient is implemented in the function "traincgf" [32] in Matlab and its

Neural Network toolbox to build Backpropagation neural networks. Similar to the

Bayesian Neural Networks and Levenberg-Marquardt implementations, a Matlab

script is built and the process of learning is composed using "traincgf."

6.5.1.5 Crossvalidation

A computer program written in C was developed to read the training file and

create "randomly" 10 disjoint sets (i.e., using tenfold crossvalidation). Then,

several combinations are created as training-testing pairs:

No. Training File (Disjoint Sets) Testing File (Disjoint Set)

1 1,2,3,4,5,6,7,8,9 10

2 10,1,2,3,4,5,6,7,8 9

3 9,10,1,2,3,4,5,6,7 8

4 8,9,10,1,2,3,4,5,6 7

5 7,8,9,10,1,2,3,4,5 6

6 6,7,8,9,10,1,2,3,4 5

7 5,6,7,8,9,10,1,2,3 4

8 4,5,6,7,8,9,10,1,2 3

9 3,4,5,6,7,8,9,10,1 2

10 2,3,4,5,6,7,8,9,10 1
Table 6.2. Development of training and testing files for crossvalidation

In addition, a Matlab script was utilized to implement a simple search routine to

find an appropriate architecture using the estimation of GA from crossvalidation

(see Figures 6.12 and 6.13). The search routine starts using several base

architectures with specific number of hidden units. There are 8 base architectures

with the following hidden units:

58

Base Architecture No. Number of Hidden Units

(Hidden Units of Respective Local

Architectures)

1 0

2 4

(2, 3, 4)

3 8

(5, 6, 7, 8)

4 12

(9,10, 11, 12)

5 16

(13, 14, 15, 16)

6 20

(17,18,19, 20)

7 24

(21, 22, 23, 24)

8 32

(25, 26, 27, 28, 29, 30, 31, 32)
Table 6.3. Base and local architectures

A base architecture is selected based on its respective estimated GA by using

crossvalidation. The base architecture is tied to several local architectures. For

instance, a base architecture of 4 hidden units has three local architectures: 2, 3,

and itself. The base architecture with 8 hidden units has four local architectures:

5, 6, 7, and itself. The final architecture is selected based on its respective

estimated GA by using crossvalidation. Then, this architecture is trained using the

entire training dataset. The final test is performed using the testing dataset. The

59

respective algorithm has to be selected previously (e.g., gradient-descent,

conjugate-gradient, Levenberg-Marquardt).

Base Architectures

Selected Base
Architecture

Local II not
SArchitectures

(Based on the
f 1, Selected Base

Architecture)

Ii \i I\

Selected Architecture

Figure 6.12. Simple search routine to find an appropriate architecture.

60

Base Architectures to initiate
search:

0, 4, 8,12, 16, 20, 24, 32

Read Training File
Perform Scaling and Formatting

Built Training-Testing
Crossvalidation Sets

Base Architecture #1 Base Architecture #2 Base Architecture #n

Learning Process Learning Process Learning Process
Using Selected Using Selected Using Selected

Algorithm and the Algorithm and the Algorithm and the
Respective Training Respective Training Respective Training

Set From Set From Set From
Crossvalidation Crossvalidation Crossvalidation

Testing Process Testing Process Testing Process
Using the Respective Using the Respective Using the Respective

Testing Set From Testing Set From Testing Set From
Crossvalidation Crossvalidation Crossvalidation

Estimate GA of Base Estimate GA of Base Estimate GA of Base
Architecture #1 Architecture #2 Architecture #n

Selection of Base Architecture

Local Architecture #1 Local Architecture #2 Local Architecture #m

Learning Process Learning Process Learning Process
Using Selected Using Selected Using Selected

Algorithm and the Algorithm and the 1 Algorithm and the
Respective Training Respective Training * * Respective Training

Set From Set From Set From
Crossvalidatlon Crossvalldation Crossvalldation

Testing Process Testing Process Testing Process
Using the Respective Using the Respective Using the Respective

Testing Set From Testing Set From *f fl Testing Set From
Crossvalidation Crossvalidation Crossvalidation

Estimate GA of Local Estimate GA of Local Estimate GA of Local
Architecture #1 Architecture #2 Architecture #m

Selection of the Architecture
Learning Process with the Selected
Architecture with the entire Training

Dataset

Figure 6.13. Selection of an appropriate architecture using crossvalidation

61

6.5.2 Fuzzy ARTMAP

A software system was developed in the C Programming language to implement

Fuzzy ARTMAP. Several other C programs were developed to format and scale

the training and testing datasets. In addition, an innovative mechanism was

developed in this thesis to decide Pa. The initial value of Pa decides the maximum

size of the hyper-rectangles. This affects the final predictive performance of Fuzzy

ARTMAP (See Figure 6.14).

Example of Predictive Performance vs Vigilance Factor

'84.0%- 7

S82.0%

80.0%

76.0%

S74.0%

72.0%

C)70.0%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Vigilance Factor for ARTa

Figure 6.14. The predictive performance of a Fuzzy ARTMAP network is dependent on the
initial Pa. This picture shows the success rate of Fuzzy ARTMAP trained with different p. for

a particular problem.

The innovative mechanism developed uses crossvalidation (using the training

dataset). The estimated GA using crossvalidation allows the space to be searched

for possible values of Pa (Pa E [0,1]). A simple simulated-annealing engine [29,72]

was developed as the search mechanism. Simulated-annealing was selected due

to its stochastic nature, efficiency, and ability to work with multi-modal problems.

In addition, the range of values for Pa facilitated its implementation.

62

Read Training Set
Scale and Format Training Set

Build training-testing datasets from training
dataset for crossvalidation

Pick a random solution (from range of
values) pa

Perform Crossvalidation Process using
Fuzzy ARTMAP with p,

to obtain Estimated GA(p)

p,' = Perturbation (p8)

Perform Crosevalidation Process using
Fuzzy ARTMAP with p

to obtain Estimated GA(

IF Estimated GA(pa')
Then >

Estimated GA(pa)

P. P.

Else

Pick Random Number p from [0,1]

IF ((Est. GA(p,')- EstGA(p))M I> P ThnO

Else

p =p,'

Figure 6.15. Process to find an appropriate Pa for Fuzzy ARTMAP using crossvalidation and

simulated annealing.

Figure 6.15 shows the process to find an Pa. This process was implemented using

several C programs. The perturbation of Pa in order to obtain Pa is performed by a

normal distribution and a routine that checks the value of Pa' (if the value of Pa 1s

63

not between the specified bounds, then, the perturbation will be repeated). A
UNIX script was utilized to assemble the different processes.

6.5.3 Support Vector Machines

The RHUL release 1.0 for SVMs was utilized [78,79]. This software was

developed by well recognized researchers in SVMs from the University of London,

AT&T, and GMDH First [79]. RHUL release 1.0 uses for pattern recognition an

interior-programming algorithm. The permission given by the authors of this

software allows the usage of the programs but no modifications. Therefore,
several C programs were developed to parser the outputs and write the inputs in

the right formats. A UNIX script was able to assemble and automate the learning
and testing process.

The kernels utilized in this thesis were:

1. Radial Basis Function: exp(-IIX - Xill2y).

2. Linear Splines: I + XXI + XXI min(X,X) - ((X+X)/2)(min(X,Xi)) 2

+((min(X,X,))3)/3.

In addition, an innovative mechanism was developed in this thesis to decide:

1. Kernel. The kernel to be used from the two choices selected: radial basis

function (RBF) or the Linear Splines.

2. y for RBFs. y is related to the radius of the RBF and ranges from 1000.0

to 0.001. The predictive performance of a SVM with a RBF kernel depends
on the value of y (see Figure 6.16). The innovative mechanism developed

uses crossvalidation. The estimated GA (i.e., fitness) using crossvalidation

allows the space to be searched to decide a kernel and if the kernel

selected is RBF, then, the value for y is provided.

64

A simple genetic algorithm engine was developed as the search mechanism.

Genetic algorithms were selected due to their stochastic nature, efficiency,

ability to work with multi-modal problems, and the fact that problem could be

encoded in a binary form [35,45].

Selection of Kernels and Parameters Values

90.0%

85.0%

80.0%

75.0%

70.0%

65.0%

60.0%
0.01 0.1 1 10 100 Splines

RBF-Parameter and Linear Splines

Figure 6.16. The predictive performance of an SVM is dependent on the kernel selected.
This picture shows the success rate of an SVM trained with different kernels (Linear

Splines and RBFs) and parameters y (RBFs) for a particular problem.

y is not uniform (i.e., a value of 1000.05 is very different from a value of 0.05). The

chromosome to represent the problem is shown below in Figure 16.17.

65

0 - Sp ines
1 - RBF

F I

Integer

Decimals

Figure 6.17. The chromosome has 15 genes. The first gene represents the kernel. The next
7 binary genes represent the integer part of y . The final 7 binary genes represent the

decimals of y.

For instance, if the

following individual

selected kernel is RBF and a y of 100.04 is

111000100011001 (See Figure 16.18).

represented by the

1 1 0 1 0 1 0 1 0 1 1 1 0 1 0

0 -Sp ines
1 - RBF

Integer
11000102 = 10010

Decimals
00110012 = 2510 1/25 =0.04

RBFwith y =100.04

Figure 16.18. Representation of an SVM with kernel = RBF and y = 100.04

The implementation of the genetic algorithm is very simple (see Figure 16.19).

The genetic algorithm uses a population of SVM solutions and lets them

reproduce according to a process of selection and recombination. Crossvalidation

provides the fitness value for each solution. The solutions (i.e., SVMs) with the

highest fitness are selected (i.e., elite). This sub-population p from the entire

population n is the base from which to generate the new solutions of the

66

F I

F I F

population (all the old members that are not part of the elite die) via sexual

reproduction between pairs of individuals from the elite (sometimes the other

members can contribute with a very low probability to the new population), using

the Crossover function. Mutation (i.e., perturbation) of these new SVMs is also

applied at a low background rate. The new population is formed by the SVMs that

are members of the elite and the new SVMs formed by the evolutionary process.

The process continues until the stopping objective is achieved. This thesis

implemented three stopping objectives: (1) the number of iterations (i.e.,

generations), (2) the fitness achieved, and (3) the calls to the SVM software to

obtain with crossvalidation the fitness for a solution.

67

Read Training Set
Scale and Format Training Set

Build training-testing datasets from training
dataset for crossvalidation

Pick n (6 for this thesis) random solutions to
form initial population of solutions

(individual , Individual ,, ... , Individual ,)

Perform Crossvalidation Process using SVM
Software to obtain Estimated GA (Fitness)

for each Individual in the Population

Select p individuals with the Highest Fitness
(p = 3)

Perform Crossover (recombination) of the
individuals with the Highest Fitness to

Produce n - p individuals

Mutation (Perturbation with Very Low
Probability) to the New n - p Individuals

Form New Population Size n Formed by the
p Individuals (Selected Previously) with the

Highest Fitness and the New n - p
Individuals

Perform Crossvaidation Process using SVM
Software to obtain Estimated GA (Fitness)

for New Individuals in the Population

Else AySopnPonRecd? Then sing the Individual (i.e., SVM) with the
An Numbpen PofInteaion? Highest Fitness perform the learning

2. Number of Cais to SVM Software? process using the entire training data set
3. Fitness Goai Achieved? and get SVM ready to test the testing

dataset

Figure 16.19 Selection of a SVM using a genetic algorithm with crossvalidation

6.5.4 Random Machines

Two random machines were developed. The first random machine ("PRAN" for

pure random generator) decides the answer to a specific input pattern randomly.

68

A simple C program was built for this. On the other hand, the second random

machine reads the training dataset to determine the frequencies of each category

and based on this frequency creates a random generator. This random machine

("FRAN" for frequency random generator) was written in C.

69

7 Case Study and Results

This section deals with the development and testing of the different machine

learning paradigms selected. A case study provides the testing environment. The

rationale for choosing certain algorithms and refinements to the software

implementations is presented. This discussion also includes an analysis of the

results.

7.1 Description

The case study involved a data set that consisted of information on 125 subjects

from a study conducted by Ryan [74]. A web site was used for this experiment.

648 images were shown sequentially to each subject (all of the images were

saved using a JPG quality of 5). The response required from the individuals was

their preference for each image (1: Yes, 0: No).

The images varied on seven attributes (features) with some specific levels

(Please see Table 7.1):

* Density - Describes the number of circles in an image (three levels).

* Color Family - Describes the hue of the circles (three levels).

* Pointalization - Describes the size of the points that make the individual

circles (three levels).

* Saturation - Describes the strength of the color within the circles (three

levels).

* Brightness - Describes the amount of light in the circles themselves (four

levels).

* Blur - Describes the crispness of the circles (two levels).

* Background - Describes the background color of the image (three levels).

However, the 624 images were generated using the levels depicted in Table 7.2.

An illustration of these attributes can be seen in the images of Figures 7.1, 7.2,

and 7.3.

70

There were 125 data sets (one from each subject). Each data set consisted of 648

image-response pairs. These 648 image-response pairs were divided randomly

into two sets: each one with 324 pairs. One of these sets was going to be used to

generate 5 training sets. The other set was going to be the testing set.

Ioral Images: 3 x 3 x 3 x 3 x 4x2 x 3 =194

Table 7.1. Features and their respective levels

71

Attribute Level 1 Level 2 Level 3 Level

4

1 Density X3 X2 Xi --

2 Cold vs. Cold: blue, purples Warm: red, --

Warm green orange

3 Pointalized 5 15 50 --

4 Saturation 50 0 -50 --

5 Light/Dark 50 25 0 -25

6 Motion blur 0 10 -- --

7 BKG Black Gray White --

Attribute Level 1 Level 2 Level 3 Level

4

1 Density X3 X2 Xl --

2 Cold vs. Cold: blue, purples Warm: red, --

Warm green orange

3 Pointalized 5 15 50 --

4 Saturation 50 0 -- --

5 Light/Dark 50 -- -- -25

6 Motion blur 0 10 -- --

7 BKG Black Gray White --

Total]Images: 3x3x3x2x2x2x3=648

Table 7.2. Features used to generate the 624 images

Density: Level 1 Cold vs Warm: Level 1 Density: Level 1 Cold vs Warm: Level 1
Pointalized: Level 1 Saturation: Level 1 Pointalized: Level 1 Saturation: Level 1
Light/Dark: Level 1 Motion blur: Level 1 Light/Dark: Level 2 Motion blur: Level 2
BKG: Level 3 BKG: Level 3

Figure 7.1. Images with features 1111113 and 1111223 respectively.

72

Density: Lovel 1 Cold vs Warm: Level 2
Pointalized: Level 1 Saturation: Level 1
Light/Dark- Level 3 Motion blur: Level 2
BKG: Level ?

Figure 7.2. Images with features

Density: Level 1 Cold vs Warm: Level 2
Pointalized: Level 3 Saturation: Level 1
Light/Dark: Level 3 Motion blur: Level 1
BKG: Level 1

1211323 and 1231311 respectively.

Density: Level 2 Cold vs Warm: Level 2 Density: Level 3 Cold vs Warm: Level 1
Pointalized: Level 2 Saturation: Level 3 Pointalized: Level 2 Saturation: Level 1
Light/Dark: Level 3 Motion blur: Level 2 Light/Dark: Level 2 Motion blur: Level 1BKG: Level 1 BKG: Level 2

Figure 7.3. Images with features 2223321 and 3121212 respectively.

The five training sets are selected randomly from the 324 image-response pairs.
The first training set has 10 pairs. The second training set has 25 pairs. The third
training set has 50 pairs. 100 pairs formed the fourth training set. And the last
training set has 324 pairs. These different partitions provided a way to test the

73

effects of the size of the training set on the GA of the learning machines

developed.

7.2Selection of Algorithms and Crossvalidation

This subsection reports on the initial performance and the adjustments required to

the different implementations. It was decided to use the first 10 subjects to make

these decisions.

7.2.1 Backpropagation Algorithms

The different Backpropagation algorithms were trained and compared to search

for a suitable algorithm for the problem. The input scheme applied to the

experiment data was to scale the inputs between -1 and 1. The output was

represented as 1 for Yes, and 0 for No. The different algorithms had differences in

the learning times. However, the execution of a trained network was on the order

of microseconds.

7.2.1.1 Backpropagation with Gradient-Descent

Backpropagation with gradient-descent was tested with the first 10 subjects. It has

a good computational efficiency with datasets formed by 10, 25, and 50 examples.

However, it was obvious that the performance was dependent on the annealing

schedules for the momentum factors and the learning rates. The algorithm has to

be run several times (with different annealing schedules and initial random

weights) in order to guarantee that at least one learning session was able to

converge to a minimum error. There are architectures that cannot converge with

specific datasets due to the lack of an appropriate number of free parameters (i.e.,

weights); however, Backpropagation with gradient-descent repeatedly failed to

converge with architectures and datasets that algorithms such as Levenberg-

Marquardt were able to do.

The training datasets of 324 examples created problems for gradient-descent.

The learning time was excessive and each session approximately took, for each

74

training dataset of crossvalidation (288 examples), more than 25 minutes.

Therefore, the entire crossvalidation session (including all training datasets) for a

single architecture took on average 250 minutes of computer time (Compaq

Presario, Pentium Ill @ 600 MHz). These 250 minutes do not take into

consideration the convergence problem. The percentage of convergence was

very low for these datasets of 324 examples (even though other algorithms

converged with the same architecture!). This percentage was approximately 20%

(the percentage of convergence was higher with the datasets of 10 examples

(approximately 90%), datasets of 25 examples (approximately 90%), datasets of

50 examples (approximately 80%), and the dataset of 100 examples (only a 50%

rate of convergence)). Therefore, it was decided to abandon the efforts for

Backpropagation with gradient-descent.

7.2.1.2 Backpropagation with Penalizing Weights

The first cost function described by

Ik Ek + X Z, ((w/wO) 2 / (1 + (w1/wO) 2)

was investigated. We selected w0 to be 1.0 because the activations are of order

unity (as provided by Weigend et al. [96,97]). It was very difficult to select the value

of X for each subject. Several annealing schedules and values were studied. For

instance, one of the investigated alternatives was to assign X values according to

the following schedule:

1. Initially, X = 0.

2. X is incremented by a small quantity (A << 1.0, e.g., 8X = 0.000005) if

E. (where E, is equal to (/N) Xk Ek at epoch n) is less than the final

desired error (D) and/or En is less than En..1.

3. X is decreased by 8X if En is greater than or equal to D and En is

greater than or equal to En. 1 and En is less than An (the exponentially

weighted error at epoch n). An is calculated by using the following

expression:

75

A,,= y A. 1 + (1 - y) E,

4. where y is relatively close to 1.

5. X is reduced by a small factor (e.g., A = 0.9 A) if En is greater than or

equal to D and En is greater than or equal to En. 1 and En is greater than

or equal to An.

Besides the problem of finding good values for X and an appropriate schedule,

convergence was even more difficult. The problem was that convergence to an

appropriate error was usually not achieved (not only with the relatively large

training databases of more than 100 examples but also with the training

databases of 25 and 50 examples). Therefore, it was decided not to use this

algorithm.

The second cost function investigated was

Ik Ek + (1/2) A 11 w,2.

Different Xs and annealing schedules were studied. Xw2 increased the performance

of the Backpropagation neural networks. However, it was difficult to select

appropriate Xs for each subject. It usually took several trials. In addition, there were

problems with convergence and learning times (especially with the relatively large

training datasets). Another basic problem was to obtain an appropriate X in an

automated way tailored to a specific problem.

7.2.1.3 Bayesian Neural Networks

Bayesian neural networks were tested. These networks had good performance.

However, their convergence rate for the relative large training datasets was less

than desirable (less than 10%). Therefore, it was decided to investigate other

alternatives.

7.2.1.4 Levenberg-Marquardt and Conjugate-Gradient

Backpropagation using Levenberg-Marquardt was investigated. Levenberg

Marquardt provided a reliable and fast option. The algorithm was able to obtain a

minimum error for the relatively large training datasets in approximately 25

76

seconds (in comparison with 25 minutes for gradient-descent). In addition,

Levenberg-Marquardt was very reliable with an 80% convergence rate for the

relatively large training datasets. The convergence rate was approximately greater

than 90% for the other datasets.

Conjugate-gradient was also investigated. Conjugate-gradient obtained minimum

errors for the relatively large training datasets in approximately 2 minutes. It was

reliable with a 70% convergence rate for these datasets and 90% for the other

training datasets that contained a smaller number of examples.

7.2.1.5 Selection and Modifications

It was clear that crossvalidation was the method of choice. The selected algorithm

was Levenberg-Marquardt. However, the studies had to analyze 125 subjects and

5 different training datasets. The emphasis was on the automation of the process

for training and testing. The automation of the learning process had to guarantee

with a high reliability the delivery of a neural network that achieves a minimum

error (convergence). There are architectures that cannot provide a minimum error

because of the lack of enough free parameters (i.e., weights). However, the

learning process has to re-initiate automatically the learning parameters and

initialization of weights, and utilize other algorithms in order to assure that

convergence, if possible, will be achieved. Therefore, the procedure depicted in

Figure 7.4 was developed for the learning process. The algorithm used initially is

Levenberg-Marquardt. If convergence is not achieved the initial weights are re-

initialized up to a maximum of N1 times (N1 = 5 for this thesis). If these changes

do not produce convergence, then changes to the learning parameters will be

provided up to a maximum of N2 times (N2 = 3 for this thesis). The learning

parameters such as number of epochs, minimum MSE error required, and

gradient are modified. These changes to the learning parameters are combined

with weight re-initializations. Finally, if convergence is not achieved, the current

algorithm is changed to Conjugate-gradient, and the process described before is

initiated again. If the network architecture cannot converge, and the neural

network was for the crossvalidation process, the neural network with the minimum

77

error is delivered to the process and the user is notified about this. However, if the

neural network is for the final training process, the network architecture is labeled

as "NC" (Non-convergence) and the user is notified of this.

Learning Process Using Current Algorithm, initial Weights,
and Learning Parameters

Save Neural Network Architecture with Respective Weights
and Errors

Traie Neural ThnIF Convergence?
Network

Else
Else

F Counter of N1 = N1 ?

Then
Reset Counter of N1 (Counter of NI = 0)

F Counter of N2 = N2? Else

Then

Reset Counter of N2 (Counter of N2 = 0)

Increment Counter of NI (Counter of N1=
Counter of N1 + 1)

Re-Initialize Weights (Randomized)

Increment Counter of N2 (Counter of N2=
Counter of N2 + 1)

Provide New Learning Parameters Based on
Current Algorithm and Current Learning

Parameters

Increment Counter of N3 (Counter of N3 =
Counter of N3 + 1)

Else ;
F Counter of N3 = N3? -0 Current Algorithm = Conjugate-Gradient

Then

Crosvaldatin o Crossvalidation Select Neural Network (f rom the saved
Cn rninglPdrocens' ones) with the lowest error. Deliver this

inalLearingProcssNeural Network and Report to User

Final
Learning

Label Architecture as
"NC" (Non-Convergence)

and Report to User

Figure 7.4. Learning process using Backpropagation and selected algorithms

78

Initial Process:
Initial Weights (Randomized)
Initial Learning Parameters (e.g, # of Epochs, Gradient)
Current Algorithm: Levenberg-Marquardt
NI = 5 (Changes to initial Weights), Counter of Ni = 1
N2 = 3 (Changes to Learning Parameters), Counter of N2 = 1
N3 = 2 (Number of Algorithms to be Used), Counter of N3 = 1

1,

I I

7.2.2. Backpropagation and Crossvalidation

V-fold (V = 5, 10) Crossvalidation has been recognized recently as the standard

way of measuring the error rate of a learning scheme on a particular dataset

[47,100]. There are several studies related to the utilization of V-fold

crossvalidation to select appropriate neural network architectures for

Backpropagation [62]. However, it was decided to run and compare the
crossvalidation scheme against the strategy of using a fixed architecture. Figure
7.5 and Tables 7.3 and 7.4 show the predictive performance (testing datasets) of
several Elackpropagation neural networks using different numbers of hidden
neurons (0, 4, 8, 12, 20, 24, 28, and 49) and the selection of the crossvalidation

process and its number of hidden neurons. The results indicate that
crossvalidation is a valid process with which to select architectures. Nevertheless,

it is not a silver bullet!

Ave. (Predictive Performance) - Fixed Architecture Vs.
Crossvalidation/Search

,.82.0%/ 7 -

~:7 810
'~80.0%/

S79.0%/ 0

78 .0%

b d77.0%

76.0%/

Number of Hidden Neurons and Crossvalidation

Figure 7.5. Performance of crossvalidation vs. a fixed architecture

79

Performance (Succes Rate%)
Subject Size of Hidden Layer Size (neurons) Crosevelidation

Training File 0 4 8 12 16 20 24 28 49 size

N. .. .ei.. e 5 .9. e 5 .
10 985% 0 8 941% .4% 87.3% 95.7% 98.8% 97.2% 2.8
25 988 968% 98.8% 97. /' .%9.% 9.% 98% 8% 98% 88 2

so 92% 9 97 97%9. 2% % 7.% 20% 96.6% 99.1% 98.8% 25

N Y 5 94.1 5. 1% 794. 5 5 5
10 NC 93.2% 94 91 44% 9.0. 96.3% 96.3% 9% 96% 23

3 N 9 0 4 % 9 5 1% 94.4% 96.3% 97.20 969% 978% 17.
2410 546 76.2 7. 7% 7 2 -4 781% 715% 78.1%

8 . d. I. 5a5.

25 *38% 77.8% .76.2% 76.5% 76.2%75 62 1
50 NC 7 .4% 72.5% 76.4% 74.% 74.2% 72.8% 72.5% 76.5% 19

100 N 7 7% . s44 74.1% .775% 796% 79.9% 7
324 N N N 78.7% 827%80.2 81.% 7.8%818 840% 8
310 - 90.7% 90.7% 90.7% 90.7%. 90.7% . 0% 97% 90.7% 190.7% 907% 0
26 907% 907% 907% 907% 90%/90 97% 90.7% 90.7% 90.7% 0

50 85.5% i84.0% 870 % 91.4% 840% 89 9% 85 7% 84
8 8 6 86% 86% 91% 880/6 86

324 880% 852% 873%. 82 892% 881% 92.0% 6
10 6. 53 72.5% 63.0% 9 75 6 2

20 NC 7. 647% 2 73% 71% 74.6% 2

324 NC NC NC N6% 65 75% 70

20 NC 72.8% 78% 7.% 80.% 806% 80.9% 72.% 70.% 89.7% 19
3 NC NC 6C 7% 7 825.1 %. 0 7 9

52 NC N 728 . . 2 70/ 4 9 6 . 7. 79.9% 787% 25
100 N 7 7 8 . M. . 70% 79 8 1 7.%

324 . NC.- _ 07

71 70.77 63.0%.6% 5.. 85.5 889% 2

7 1 68% :96 69% ,65_ 8.0% 2% 59% 812% 59% 67.% s

2iNC 6 7% 6 56 808% 62.7 . 73.5% 59.8. 14

50 NC 6.% 7168% 7225% 73.1% 657 70% 72.5% 71.9% 73.1% 1

100 C NC .81 7 7% 1 64 3% 69
N 67.3%5 67 . 1'. 54.9

25 N_ 77.5 765 5 5 e T s.% i a.3 70..

7 10 60% 96% 672% 688% 67.0% 864% 6% 6279% 71.6% 67. 16% 2
81.7% 8 8. 80 895%

00 NC 89.8% 88.3% 8.% 8.% 7/ 9% 8.% 9.% 83 ' 1

32 6888% 6.8% 7 8.7% 59% 14
10 76C % 80% 88 8.5% 8.2% 5.2 7.7% 87.5% .98 3 Y4% i 10

25086 907% 89.5 741 % 0.7% 67.4% 94% 94% 74.1% 6
50 NC7 91C 89C8 92.3 679.3% 9417% 9447% 98% 67 9% 75.7% 16

100s N9.4% 858% s6b.6i/ Cso."s 90.1% . 24

3.25 NC.0/ NC.5 90.1% 81.4%5 3% 4 9 8 88 9% 9M-" 30% 89 23

NC- 843 12 4. 2. 664 N 2 8 67/ 4 4W. 1

d 10 76.2% 7.6% 81.1% 86.7% 7.0% 9.% 679.% 8.7% 8.% 7.4 0
d25 NC44% 11.5% 1.3% 67.3% 9.9% 70.4% 70.7% 0.4% 10.4% 74.51 1

5so _ NC 7.3 7 . 64.8% 8.% 64. 2%. 6 794.8 73.5%16
S..y i 100 NC 28% 67~% 741 T .0% 67. 68.2% 7 2.8% T2 7 g% ~7.6%8..24 -

10 7- 3246 NC. 1% NC89.20/ 97% 88.2% 70.7% 8. 74 O,7.2%- 24;

Table 7.3. S5 ofdneitevl o h uccess rate ofth different architectures andthcrsaidiopoesfrte
neuron vldaio roes for thos rhtcueeee byrs c1osvabidtion

.............

32.De.4 149% 110% 1% -18%__ .92% 13% 10.2% 10.% .4%' 10.0% A 1
10Cohdc 1ppe 800% 67,% 0,2 663~1.%B.4% j_ 810%% 82% 82% 82

25Cohdeo LoerC7 73% 71.4% 788% 8% 70.4% 78.7% 79.2% 79.% 7.5% is6

05%Cof~dnc Uper16.% 0.9 2.8% 29% 2 4 33% 9,5 3.2 71.% 728 4
NCofdneLoe .% ~ % NC % -N-'- 7.0%Ao 470i% 8:% 1.7% 2.2.12

Table 7.4. 9S ofdneitevl o h uccess rate ofth different architectures andth rsvldiopocsfrte
thnceuvrdaiooroes for thoeacietrseltedfrs 10 cosbjecto

80frac uce ae,*

7.2.3 Fuzzy ARTMAP Implementation

The implementation of Fuzzy ARTMAP was tested and it worked very well for all

problems. There are several advantages to this neural network paradigm such as

self-organization and convergence. This paradigm decides its own architecture

(hidden units) and always converges. The computational speed of Fuzzy

ARTMAP for the learning process for the relatively large training database is

approximately 3 seconds. The execution of a trained network is on the order of

microseconds. The second complement normalization and the scaling of the

inputs from 0 to 1 were accomplished. For instance, the input for the first diagram

of Figure 7.1 and features 1111113 is 0000001 and including the second

complement normalization the entire input is 00000011111110 (therefore, 14 input

neurons were needed to represent it). The output for yes was represented by 10

and the output for no was represented by 01. Therefore, including the

corresponding second complement normalization, the output for yes is 1001 and

for no is 0110 (therefore, 4 output neurons are required to represent it).

7.2.4 Fuzzy ARTMAP and Crossvalidation

This thesis developed a mechanism to provide Pa. This mechanism uses

simulated annealing and crossvalidation. It was decided to test this mechanism

against the utilization of a fixed Pa (a common method used by researchers of

Fuzzy ARTMAP). Figure 7.6 andTables 7.5 and 7.6 show the predictive

performance (testing datasets) of several Fuzzy ARTMAP neural networks using

different pas and the selection of the crossvalidation process and its respective

pas. The results indicate that the developed mechanism using crossvalidation and

simulated annealing is a valid process with which to select Pa for Fuzzy ARTMAP.

81

Performance (Success Rate %)
suet Size of Vigilance Factor (pa_ Comea idetion

Training File 00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 pa
10 98.8% 9.8% 98.8% 97.5% 89.5% 90.4% 89.2% 85.2%: 3% 82.4% 98.8% 0.00

25 98. 8 96.8% 98.8%, 94,4%i 93% 941% 6.3% 9. 91% 89.2% 98.8% 0 00
80 98 % 9 S8% 98.8%

9
7.5%1 97.8% 96.0% 96.0% 95.1% 92.% *93.2% 98.8% 0.00

100 98.5%1 96.5% 98.5% 96.9% 97.5% 96.9%; 95.1% 96.9% 948% 94% 98.5% 0.0093.2%; 93.2%; 0304.W-'i24 32% 90%, 44' ~ 95.%944% 95.7%"' 92% .4%; 94.41/ 0.30
2 10 685% 68. 85% 68.5%! 68.5%' 68.5% 68.5% 66.0% 651% 651% 778% 0.5

25 731% 73.1% 71.6% 735% 72.5%, 719 716% 75.9%T 0.75
5071 3%6704L2- 72% 698% 7..0 ..5 . 72% .2% 0.85

1006 70% 8707.0.0%1 67i.0%l 71.3% 7M2%; MA1% 60.4%i 69.1%, 69.8%, 72.2% 0.60
324 713%, 71~3% 71.3% 68.2% 71.9% 71.9% 7 % 66.7% 73 % 81.2% 25
10

90
.
7

%1 90.7% 90.7%1_ .90.7%' 90.4%, 90.7%-' 907%' 90. 70/6 90.7% 90.7%.". 907% -0.00
907%

9
.7'_ 90.7%W 90.7%i 90.7% 90.7%i 90.7% f07 90.7% 0 00

s09.1o901 90.1% 85.s%!" 91.0'%- 87.7% 87.7% 88 88 884% 87.7% 90.1 % 0.00
100 8016 80.6%T 866% 769% 85.5% 5. 55%6* 86.7 858% 85% 86.7% 070
324 84.9%) 84.9% 84.9%; 80.2% 84.6% 8.7%i 89.Y 861W 65.5%' 82.1% 87. 0% 0.5
10 685% 685%1 685 685% 68.5% 68.5% 68.5% 66.0% 65.1% 65.1% 66.0% 0.85
25 3 731% 3 73.1% 71.6% 69.8% 73.5% 72.5% 71 v71.0% 72.2% 0.75

50 7113% 71.3% 71.3%' 67.0% 72.5% 722% 69.8% 71.0% 72.5% 72.2% 72.5% 0.80
00 670% 670% 670% 670% 71.3% 72 691% 6.4%' 691% 69.8% 69.4% 0.65

324 71 13% 71.30' 8.2%' 71.9%1 1.9% 716% 667.% 673% 01. 0. 501.....70.7%17 70 7%7% % 7.% 70.7%; 70.7%% 70.7%/6 707% 707%7.7 00

71%6%4 716%1 718% 7 1% 75.3%Y 747T 72 8% 4 75.3%; 74.7% 0.55
o 67.6% 676 67.6% 679 80.9% .1 % 781% 76.2% 76.9%: 78.1% 0.50

100.....31 73% 71%; 660/i 78.7%; 81.5%! 77.5%z 710% 74.4/, 75.3%' 74.4% 0. 80
79% 769%; 76.9%i 75.0% 75.3% 75.3% 75% 787% 772% 759% 73.8 0.45

10 81.5%; 81.5%f 81.5% 815 78% 8.7%' 77.5% 73.1% 731% 0.
25 ,7i5% 76%t 76 6.5%' 728%i -75.0%' 75.3%' 765%' 75%, 7 ''s 59%QX. 756 . 6/ 0.00
50 79.% 796% 7 9.9% 728%: 78.4% 7.%; 77.5% 76.% 72.% 74.4% 754% 0.45

00 818%: 81. 81.8%o; 73.8% 77.8% 78.7%' 75.% 80.6% 77.8% 77.2% 8184 0.00
374 *./ 738 2 15Y % % 8 731/% 78/ 7%0% 0.0

iil% 9'l 9. 0. 0

694/6 69. 4% 6. 65.4%, 63.0%.60.5% 596% 670% 830 630%' 694.% 0.00
26 4 66 4% 66.4% ' W.% 67.6% 7.7% 68.8% 67.9% 688% 67.3% 68.% 707.% 0.40

0 65% 87 8,7: 6.9%. 68.81/ 70.4%W 70.4%; 73.1/. 735/% 74.7/: 7470/ 0.90
10 60%.7% 66.7% 66.0% 68.5% 70.% 70.4% 72.5% 725% 0.9

24 59.6% 59.6% ' 64.2% 65.7% 69.o8 64.673% # 67. 679 65.4%' 70.4% 0.45
10914% 91.4% 91.4%6, 90. 1%! 83. 3.6% .. 88.7% 96 756% 9 14/6 0.00

259. 14; 91.4%i 87.3%' 84.3%!' 89.2W 84 3% 87 0% 83/6 812:36 0.00
50 7 895% 8 8 88.6% 97.7% 87. 0% 7% 86.1 6917% 0.00

Tb0..-u90s4%s 90.4% 904 df /r 91u9l.% 0 91newok 89r5nd 910% 0.30
324 83.0%! 83.0%. 83.0% 84. 852 7% 85.8%' 86.1%V 840%. 83.0%/ 0.00
1081 2%' 81.2%.* 81.2% 81.2%i 83.6%! 84.0%c 84.3%; 83.3%. 85.2%. 85.2%' 83.3% 0.85
25 91% 14; 4' 91.4%' 91.7% 2% 91.7%: 92.0%' 94.1% 95.1% 91.4% J 0. 00

7%97 9.5 952% 9.7% .9%. 96.6% 1.% 9.4% 6.44% 954% 96.0% 0
-00 85%.9% 9% 89.5% 84.0% 7.0% 87.7% 83% 85.2% 87.3%. 852% 0.80

24 . 88% 89.8%! 869.8% 873.96,9.% 89.2W 88.9%' 86.1%: 85.5%i'89.8%..25
id.Dv58. 58. 0%1 _..0% 58.0% 88.0% 58.3%' 58.3% 59.3%: 0% 60.5% 0 2%

Co~605 Lc r 8 %7

25 664% 66.4%; 66.4%;6% 74%7.0%; 64.2% 648%t 651%; 65.4%7 .5.4% 0.75
C n64%' 44% 664% 66.4%i 65.4% 7. 68.8%1.. 676 63.6 5.4%' 85.4% 1 .0.90

%00 Cn69d,n r8%4% 6 69.1% % 69.8% 67.% 70.4% 70.7% 654% 65.1%, 70.7% 0.70
664% 664%'.....

24 -. 4%! 66.4%/: 70.1%, 72.5%. 70.4%": 67.0% 68; 8% 57 72.5-% 04

Table 7. 5 Success rate of different neural networks trained with different PaS and the
crossvalidation process for the first 10 subjects. pa under crossvalidation indicates the pa

for those architectures selected by crossvalidation and simulated annealing.

~.... Performnance (Success Rate %
- ~ ~ -Vgiance Factor'(pa Cowjdfo

0.00 0.10.0 0.3 0.050 0.60 10.70 0.80 0.90.
AvO:(PiidlctlVePerformanoe) 79%:79.0% 1790%' 77.6% 7&9% '

79
. 87 78.5% 77.7% 77.3% 80.3%-.;

iStd.Dv 1.1.6% 11.6% 11.6% ,11.2% ' 10.3%. 10.3% 1.0.4%.: 10.3% '10.1% :%12
;96%ConWidence~ Upper 80.3% 6683% 80.3% 70% ,80.2% 6 0.6%, 80.1 % 79.9% 79.1 78.7 I 16

9%nleneLwr 77.5% -77.5%.77.5% 76.1% :77.4% '780% '77.2% ' 771% 7a7613%. , 789.8

!;Frequen of betaniert is 15 1is 5 ' 11 . 12 7 . 8 5 : 826
__qu qost eraNver% 30.0% _30.0% :30.0% ;10.0% ;22.0% 724.0% :14.0% 12%'1.%'16.0% 7

!95%Confldenc U4p3.8% 438 & 38% i 21.4%_ 35.2% 37.4% 28.2% 23.8% 21.4% 28.5% ' 5.2%
d9%o ne Lower11 11 19.1% 4.3% ,12.% 4% 7-% A. 5.% 4.3% 38.

Table 7.6. 95% confidence intervals for the success rate of the neural networks trained with
different pas and the crossvalidation process for the first 10 subjects

82

Ave. (Predictive Performance) - Fixed Vigilance Factor Vs.
Crossvalidation/Simulated Annealing

81.0%
80.5%
80.0%,.

79.5%
.~79.0%

78.5%

77.50,1
77.0%
76.5%
76.0%
75.5%

Vigilance Factors and Crossvalidation

Figure 7.6. Crossvalidation/simulated annealing vs. a fixed vigilance factor

7.2.5 Fuzzy ARTMAP using a Voting Strategy

The implementation, which builds an ensemble of Fuzzy ARTMAP modules, was

tested. The problem was to select the required number of Fuzzy ARTMAP

modules to be utilized. Therefore, it was decided to test different numbers of

modules: 5, 11, 25, 49, and 99. Tables 7.7 and 7.8 show the results for the

different ensembles implemented. The ensembles of 25, 49, and 99 modules

produce very similar performances. The ensemble of 49 modules was selected

due to its performance and computational time.

83

Size of Performance (SuccessRate%)
Subject Training File Number of Fuzzy ARTMAP Modules

5 11 25 49 99
1 1 975% 7.5 988% 8.8% 98. 8%
25 98.8% 98.8% 98.8% 98.8% 98.8%
50 98.8% 98.8% 98.8%a 98.8%! 98.8%:0
100 98.5% 98.5% 98 5% 98.5% 98.5%
324 95.7% 972% 975% 97.5% 98.1%

2 10 75.6% 76.9% 78.4% 78.4% 76 9%
25 75.0%t 74.4%i 75A.0 75.0%/ 74.7/c
50 753% 744% 75.9%. 74.1% 753%
100 78.4% 78.7% 75.9% 79.6% 78.7%

-- 324 836% 84.3%i 852%,*83.3% 858%
3 10 90.7% 90.7%1 90.7%! 90.7% 90.7%c

25 907%; 907%1 90.7 90.7% 9%7% 0
90.1% 90.1%i 901%. 90/1% 0/

100 88.9% 90.1% 89.2%, 90.4% 895/
324 91.7%; 92.0%i 91.7% i 90.7%/ 90.7/c

4 10 65.7% 67.3% 68.5% 67.9% 68.5%
25 70.1%1_ 71.0%! 71.3%;i 71.9%, 72.20/
50 735% 75.0%: 76.5% 75.6% 75.6%
10D 69.1%; 71.3%' 71.6%/;! 71.3% 71.3%c

34 66.4%! 68.5%I 0.% 72.5%. 71.9%/6
10 70.7%' 707% 7 70.7% % 707/c
25 71.9% 71.9%: 73, 5% 75.0% 75 0%
50 81.2% 81.5% 81.2% 82.1% 82.1%

10 ~V 7.% 81.5%! 82.1% 83.6%: 83.3%;
324 80.9% 83.0% 81.8% 83.3% 83.0/

6 10 704%; 75.6% 77.5% 70.1% 71.9%
25- JIM738% 76.2%. 76.2%, 79% 69
50 74.1% 77.5% 79.3% 79.6% 79.9/
100 82.1% 84.6%! 85.5% 85.8% 84.9%
324 818%' 84,6%, 84V 80 88.9%

7 10 67.3%/ 633%; 66.7%; 66.4%. 67.3/c
25 71.6% 71.6% 72.5% 72.5% 71.6%

0 71.0% 74.7% 72.2%/ _7.27 71./
-- 10 71.9% 73.5%i_ 7215%' 73.1%* 7 %

324 72.2% 72.8%i 74.4% 73.5% 70.4/
8 10 90.7/ 91.4% 91.4% 91.4% 914/

25 82.4% 82.1% 84.0% 83.6% 836/
so 5 89.8% 91.7%1 9 1,70/c; 91.7%/o 917%M
100 889% 90.7% 90.1%' 90.4% 90.4/

24 877% 901 88 ; 88.9% 88.
----910 85.5% 2 82.7% 81% 82.4%! 824%;

25 941% 94.8%' 94.1%1 93.5% 94.1%
50 94.8% 95.4% 954% 95.1% 95.4%
100 86.4% 85.8% 84.6%: 84.9% 84.0/
324 95.7% 93,8% 93.8% 94.4% 929%

10 10 61.7% 59.6% 58.0/o! 59.9% 596/
25 66.7%i 67.0%' 66.70/c_ 67.6%: 66.4%

....0.. 66.0%; 66.7%: 646/c 5.% 4
100 69.8% 68.5% 70.1% 71.9% 72.2%
324 69.1%1 71.9% 73.1% 73.5%-71.3%

Table 7.7. Success rate of different Fuzzy ARTMAP ensembles

Performance (Success Rate %)
Number of Fuzzy ARTMAP Modules
5 1 11 25 ' 49 99

Ave (Predictive Prfornianee) 805% 812% 81.5% 816%1 81.5%
Sid Dev. K107% 10.7% 10.5% 10.4% 10.5%
96%Confidence Upper 81.8% 825 % 829% 82.8%

;95%Conflde'nce Lower 79.1% _798% 81% 80%k 81

Frequency of bed an er 13 1 21 24 22
requency of be ans&er% 26% 34% 42% 48% 44%

95% Confidence Upper 39.6% 47.8% 55.8% 61.5% 57.7%
9%C nfiee Lwr 15.9% 22.4% 29.4% 34.8% 31.2%

Table 7.8. 95% confidence intervals for the success rate of the different ensembles

84

7.1.5 Implementations of Support Vector Machines

The implementations of SVMs have as a backbone the RHUL release 1.0

Software. The computational times were relatively fast. Using the kernel of Linear

Splines the answer was approximately 3 seconds. The computational speed of

the kernel of RBFs was dependent on y and the size of the training dataset. It was

very fast for the training datasets of 10, 25, 50, and 100 examples (approximately

3 seconds). However, the computational speed for the training dataset of 324

examples and a y of 0.005 was approximately 7 minutes. The execution of a

trained SVM is on the order of milliseconds. The scaling of the inputs (features)

was performed from -1 to +1. The output for yes was represented by +1 and the

output for no was represented by -1.

7.1.6 Support Vector Machines and Crossvalidation

This thesis developed a mechanism to provide the kernel and y for RBFs. This

mechanism uses genetic algorithms and crossvalidation. It was decided to test

this mechanism against the utilization of a fixed kernel and y. Figure 7.7 and

Tables 7.9 and 7.10 show the predictive performance (testing datasets) of several

SVMs using Linear Splines and RBFs with different ys. The results indicate that a

developed mechanism using crossvalidation and genetic algorithms is a valid

process with which to select kernels and parameters for SVMs.

85

Performance (Success Rate %

Subject Size of RBFs and _ Splines Crossvaidation

Training File 100 10 1 0 1 .01 "Krnel y
10 494% 49-4% 52.2% 97.8% 98.8% 89.5% 988% RBF 0.05

94% 94 74 .% 98.8% 98.8% 94.4% RBF 0.5
94.1% 97.8% 97.8% 96.0% 98.1% BF 0.5

100 494% 49.% 96.9%93.8% 93.8%1 94.1% 97.2% RBF 2

10 76.2 76.9 7.4 5.9% 76.2% RBF 1000
25 76.2% 76.2% 76.2% 76.2% 76.5% 75.9% 76.2% RBF 0.3

S% 77.2 77.2% Sp ines
---- 76.2% 7620 77.2% 75.6% 71.3% RBF 0.65

324 76.2% 76.2 82.% 778. 79.6 9% 809% RBF 0.
0 90.7% 90.7% BF 000

10 90.7 9.7 907 90.7% 907% 907% BF 000
892 85% _880 89.2% RBF 0.15 907. 9.7 90.70/% 07 07Y 0.1.9.% Rr 10

100 90.7% -~90.7%/ 90.4% 864% . 86 88.4% 92% RBF 109006 9040/ 86.40 1%/6.% 0 RBF 1000

324 - 90.7% 90-70 91.4% 877% , 85.8% 86.4% 91.7% RBF 11
S 10 68.8% 38.6 74.1% 68.2% 70.7% 70.4% 71.0% RBF 0.15

25 682 68.2% 75.90 759 75.0% 74.1% i 75.6% RBF 0.09
50 68.2% 68.206 75.0. 71.0% 69.4% 70.1% 75.9% RBF 0.5

- 324 62 682 73.719% % 68.8% 272.2% -RBF 1.75707

5 10 707 707 70.Tids 07% 707%1 - % ~RBF ~ 000
265.0 6 0/6 70.7% 71..6. 6.6% 76.9% 703.% RBF 10007. 70 73.80/ 719% 78.7% 76.2% 74.7% RBF 1

10 70.7% 70.7%0 78.4% 7.% 77.5% 75.3% 79.9% RBF 065
324 707% 70.7%/ 80.4% 8125% 78.1% 7/. 827% RBF 1

6 10 ~ 65% '62.3 er 6% 79.3% 67.9% 83.0%/ 30% _ sphnes
25 78.8% 48 63.6 753Y 78.0/ 75.0% 771/o RBF 01

50 &8,48%4.1% 682% 63%:7.2% 741%RBFffi.3
100 51.7% 51.7% 785.8%/ 79 72.8% 79.0% 85.5% RBF 1.25
324 - % 5.2% 82.4% 82% 782.4% T2.1% 85.8% RBF 25

6 10 - 7.% 7.% 69 68% T6s 66.7% 73.1%/ RBF 0.4
y 254 65 -0 69.8% 74.4% RBF 0.1

50 _ 67 . 670 71.6% 70.7%/ 66.7% 75.0% 7.% RF 0

6s/ 4./ 7% RBF 0.
100 510-6 51.71 6%. 65.4% 72.2% 74.7% RBF 0.7

3240 67.6% 67.6%0 7% 65.8% 165% 65.7% 7.1% RBF 0.45
254 6.%% RBF067.6% 43.6/ 71.0% 7 66.4% 71.1 9.4 RBF 005

1 0.... . - -- - - ---

50 _ 56a .8% 5688i58.3 8.4% 9.2% '87.7%, RBF 045
100 68.% 6.% 7.80% 896% 60% 9012% 9.1% RBF 0.7
324 68.6% 6 7. 8.7%6 67% 865.57 % 9.2% RBF 1.5

9 10 948 948 948% 80% 82.4% 90.7% 94.8% RBF 1000

- 25 -T 948 948% 948 ~% 92% 90-% 957% RBF 106

C,5 4% 98% 98~98 904 907~57RBF 060

324 948% 948%793 7% 91 80.60/j88.6;44 B 2
1051 5.%d5.8069 695 % 7Y 69% 3% 88.3%RB Spis

25 549% 54.W. i 59.0% 71. 72.8% 63.6% 72.% RBF 0.01
- 5.9 1.7% 8.7Y 1 679% i3.% 70.7% RBF 0075

-10 451% 45/ 70% 870/% 82_4% 66% 70.4% RBF 0.1
324 9498% 948% 73.2% i N 67% 75% RBF 1.21

Table 79. Success rate of different SVMs trained with different kernels and the
crossvalidation process for the first 10 subjects. Kernel and y under crossvalidation

indicates the kernel and y for those SVMs selected by crossvalidation and genetic
algorithms.

86

Performance (Success Rate %)
RBFs and y Splines Crossvalidation

100 10 1 0.1 0.01
Ave. (Predictive Performance) 68.1% 67.2% 78.3% 80.4% 78.8% 79.3% 82.6%
Std. Dev. 15.8% 16.3% 12.5% 10.0% 11.0% 9.90/ 9.7%
95%Confidence Upper 69.7% 68.8% 79.6% 81.7% 80.2% 80.7% 83.9%
95%Confidence Lower 66.5% 65.60% 76.8% 79.0 77.4% 77.9% 81.30/

Frequency of best answer# 8 8 16 8 12 9 31
Frequency of best answer% 16.0%' 16.0% 32.0% 16.0%/ 24.0% 18.0% 62.0%
96%Confidence Upper 28.5% 28.5% 458% 28.5% 37.4% 30.8% 74.1%
95%ConfIdence Lower 8.3% 8.3% 208% 8.3% 14.3% 9.8% 48.20/

Table 7.10. 95% confidence intervals for the success rate of the different SVMs and the
crossvalidation/genetic algorithms process for the first 10 subjects

Ave. (Predictive Performance) - Fixed Kernel Vs.
Crossvalidation/Genetic Algorithms

85.0%
83.00/%'
81.0%

79.0%

77.0%
75.0%

73.0%/

71.0*/

69.0%0/6

N

Cot0

RBFs with parameters (100 to 0.01), Linear splines, and
Crossvalidation/Genetic Algorithms

Figure 7.7. Crossvalidation/genetic algorithms vs. fixed kernels

7.3Results

It is well known that the error from the training dataset is not expected to be a

good indicator of future performance. To predict the performance of a learning

mechanism, it is required to assess its error rate for a dataset that did not take

part in the formation of the learning mechanism. This independent dataset is

called the test dataset. It is essential that the test dataset was not used to

generate the Backpropagation neural networks, Fuzzy ARTMAP, and SVMs. This

thesis uses the testing datasets from the 125 subjects. The following tables show

87

the summary of the predictive performance of the different machine learning

paradigms selected (Appendix A shows the predictive performance for each

subject and training dataset).

Ave.

Training
File _

10 examples
(Predictive Performance)

Vi . uv
95% Confidence

95 Confidence
Upper
Lower

Frequency of best answer#
Frequency of best answer%
95%Confidence Upper
95%Confidence Lower

Performance (Success Rate_%)
SYM FAM Voting BP Pra n

77.1% 73.3% 74.2% 70.7% 50. 1%
13.3% 12.5% 12.5% 12.7% 2.8%
77.5% 73.7% 74.6% 71.1% 50.6%
7 6.7%0/ 72.8% 73.8% 70.20/ 49.7%

84 30 33 27 0
67.20/ 24.0% 26.4% 21.6% 0.0%
74.8% 32.2% 34.7% 29.6% 3.0%
58.6% 17.4% ' 19.5% 15.3% 0.0%

Table 7.11. Predictive performance using a learning process with a training dataset of 10
examples for the entire testing dataset of 125 subjects. SVM is for Support Vector Machine,
FAM is for Fuzzy ARTMAP, "Voting" is for an ensemble of Fuzzy ARTMAP modules, BP is

for Backpropagation, Pran is for Pure Random Generator, and Fran is for Frequency
Random Generator.

Ave. (Predictive Performance) - Using training datasets of 10
examples

SVM FAM Voting BP Pran Fran

Learning Schemes

Figure 7.8. Success rates of the different techniques using training datasets of
and testing datasets of the 125 subjects

10 examples

SVMs provide a good solution when a reduced number of training examples are

available (See Figure 7.8 and Table 7.11). The ensemble of Fuzzy ARTMAP

88

Fran

61.6%
12.7%
62.0%
61.1%

9
7.2%

13.1%
3.8%

80 .0%

75.0%

70.0%

65.0%

60.0%

55.0%

50.0%

'U

rj~

modules outperformed in success rate a single Fuzzy ARTMAP module by 1.23%.

The performance of Backpropagation neural networks under conditions of

reduced training datasets is very limited. SVMs outperformed Backpropagation by

9.05%. In addition, Fuzzy ARTMAP neural networks outperformed

Backpropagation by 3.7%.

Training
File

25 examples
Ave. (Predictive Performance)
Std. Dev.
95%Confidence Upper
95%Confidence Lower

Frequency of best answer#
Frequency of best answer%
95%Confidence Upper
95%Confidence Lower

SVM

77.8%
12.0%
78.2%
77.4%

67
53.6%
62.1%
44.9%

Performance (Success Rate
FAM Voting BP Pran

74.7%
12.1%
75.1%
74.3%

16
12.8%
19.8%
8.0%

76.6%
12.6%
77.0%
76.2%

40
32.0%
40.6%
24.5%

74.2%
12.9%
74.6%
73.7%

25
20.0%
27.9%
13.9%

50.2%
3.2%
50.7%
49.7%

0.8%
4.4%
0.1%

Table 7.12. Predictive performance using a learning process with a training dataset of 25
examples for the entire testing dataset of 125 subjects.

Ave. (Predictive Performance) - Using training datasets of 25 examples

80.0/7

75.0%

70.0%

65.0%

60.050

55.0%

50.0%

45.0%o
SVM FAM Voting BP Pran Fran

Learning Schemes

Figure 7.9. Success rates of the different techniques using training datasets of 25 examples
and testing datasets of the 125 subjects

The increment of training examples from 10 to 25 increased the performance of

SVMs, Fuzzy ARTMAP, the ensemble of Fuzzy ARTMAP modules (49 modules),

89

Fran

63.1%
13.5%
63.5%
62.6%

3
2.4%
6.8%
0.8%

and Backpropagation. The increase in performance of Backpropagation was very

substantial from 70.7% to 74.2% (5%). Again, the ensemble of Fuzzy ARTMAP

modules outperformed in success rate a single Fuzzy ARTMAP module, this time

by 2.54%. SVMs increased their predictive performance but at a lesser rate.

However, SVMs still have the best performance followed by the ensemble of

Fuzzy ARTMAP modules. Fuzzy ARTMAP has a better performance than

Backpropagation; however, this lead has been reduced from 3.7% to only 0.7%.

Training Performance (Success Rate %)
File SVM FAM Voting BP Pran Fran

50 examples
Ave. (Predictive Performance) 79.0% 76.5% 78.4% 76.2% 49.9% 63.6%
Std.Dev. 11.5% 12.5% 12.4% 11.8% 2.7% 13.4%
95% Confidence Upper 79.4% 76.9% 78.8% 76.6% 50.4% 64.0%
95% Confidence Lower 78.6% 76.1% 78.0% 75.8% 49.5% 63.1%

Frequency of best answer# 58 23 50 17 1 1
Frequency of best answer% 46.4% 18.4% 40.0% 13.6% 0.8% 0.8%
95% Confidence Upper 55.1% 26.1% 48.8% 20.7% 4.4% 4.4%
,95% Confidence Lower 37.9% 12.6% 31.8% 8.7% 0.1% 0.1%

Table 7.13. Predictive performance using a learning process with a training dataset of 50
examples for the entire testing dataset of 125 subjects.

Figure 7.10. Success rates of the different techniques using training datasets of 50
examples and testing datasets of the 125 subjects

90

Ave. (Predictive Performance) - Using training datasets of 50
examples

85.0%/D- -

80.&/. 0

75.0%

70.0%

65.0/

60.0/%

/ 55.0%

45.0%

SVM FAM Voting BP Pran Fran

Learning Schemes

The increment of training examples from 25 to 50 increased the performance of

SVMs, Fuzzy ARTMAP, the ensemble of Fuzzy ARTMAP modules (49 modules),

and Backpropagation (see Figure 7.10 and Table 7.13). The increase in

performance of Backpropagation (2.7%), the ensemble of Fuzzy ARTMAP

modules (2.35%), and Fuzzy ARTMAP (2.4%) was more pronounced than the

increase in performance for SVMs (1.5%). The ensemble of Fuzzy ARTMAP

modules outperformed in success rate a single Fuzzy ARTMAP module by 2.5%.

The difference in performance between SVMs and BP shrunk from 9.05% with a

training dataset of 10 examples to 3.7% with a training dataset of 50 examples.

SVMs still have the best performance followed by the ensemble of Fuzzy

ARTMAP modules.

Training Performance (Success Rate
File SVM FAM Voting BP Pran Fran

100 examples
A-e(P'redictive Performance) 79.2% 76.3% 79.4% 78.4% 49.8% 62.6%
st. Dev. 11.3% 12.0% 11.9% 11.4% 2.9% 12.9%
95%confidence upper 79.6% 76.7% 79.8% 78.8% 50.3% 63.1%
95%confldence Lower 788% 75.9% 79.0 78.0% 49 22%

Frequency of best anower# 42 8 56 24 0 1
Frequency of bet answer% 33.6% 6.4% 44.8% 19.2% 0.0% 0.8%
95%Confldence Upper 42.3% 12.1% 53.5% 27.0% 3.0% 4.4%
95%onfldence Lower 25 % 3.3% 3/6% 133% 0.0% 01%

Table 7.14. Predictive performance using a learning process with a training dataset of 100
examples for the entire testing dataset of 125 subjects.

91

Ave. (Predictive Performance) - Using training datasets of 100
examples

85.0%

80.0%

S75.0%,6

70.0%0,6

65.0%

60.0%

> 55.0%

50.0%/6

45.0%/
SVM FAM Voting BP Pran Fran

Learning Schemes

Figure 7.11. Success rates of the different techniques using training datasets of 100
examples and testing datasets of the 125 subjects

The increment of training examples from 50 to 100 increased the performance of

SVMs, the ensemble of Fuzzy ARTMAP modules (49 modules), and

Backpropagation (see Table 7.14 and Figure 7.11). Fuzzy ARTMAP suffered a

decrease in performance (-0.25%, not statistically significant). The increase in

performance of Backpropagation (2.9%), and the ensemble of Fuzzy ARTMAP

modules (1.28%), was stronger than the increase in performance for SVMs

(0.25%). The ensemble of Fuzzy ARTMAP modules outperformed in success rate

a single Fuzzy ARTMAP module by 4.07%. The difference in performance

between SVMs and BP shrunk from 9.05% with a training dataset of 10 examples

to 1.02% with a training dataset of 100 examples. The ensemble of Fuzzy

ARTMAP modules has the best performance followed very closed by SVMs (see

95% confidence intervals for both predictive performance and frequency of best

answer). In addition, Backpropagation, for the first time, outperformed Fuzzy

ARTMAP by 2.75%.

92

Training
Fie
34

Ave. (Predictive Performance)
Std. Dev.
95% Confidence Upper
95%Confidence Lower

requency of et answer#
Frequency of best answer%
5%donfience Upper
5%donldence Lower

Performance (Success Rate %)
SVM FAM Voting BP Pran

80.90/ 76.2%
11.0% 12.3%

80.6% 75.8%

62 7
49.6% 5.6%
58.2% 11.1%
41.0% 2.7%

80.0%
12.2%
80.4%
79.6%

78.60/
11.6%
79.00/
78.2*/

50.2%
2.5%
50.7%
49.8%

44 26 0
35.2% 20.8% 0.0%
43.9% 28.7% 3.0%
27.4% 14.6% 0.0%

Fran

63.0%
12.9%
63.5%
62.5%

0.8%
4.4%
0.1%

Table 7.15. Predictive performance using a learning process with a training dataset of 324
examples for the entire testing dataset of 125 subjects.

Figure 7.12. Success rates of the different techniques using training
examples and testing datasets of the 125 subjects

datasets of 324

The increment of training examples from 100 to 324 increased the performance of

SVMs, the ensemble of Fuzzy ARTMAP modules (49 modules), and

Backpropagation (see Table 7.15 and Figure 7.12). Fuzzy ARTMAP suffered

another decrease in performance (-0.13%, not statistically significant). The

increase in performance of SVMs (2.15%) was stronger than the increase in

93

Ave. (Predictive Performance) - Using training datasets of 324
examples

85.0%

80.0%

5/75.0%

70.0%-

65.0%

60.00/

o 55.0%

50.00/0

45.0%/
SVM FAM Voting BP Pran

Learning Schemes

Fran

performance for the ensemble of Fuzzy ARTMAP modules (0.8%) and

Backpropagation (0.26%). The ensemble of Fuzzy ARTMAP modules

outperformed in success rate a single Fuzzy ARTMAP module by 5%. SVMs have

the best performance followed by the ensemble of Fuzzy ARTMAP modules. In

addition, Backpropagation outperformed Fuzzy ARTMAP again, this time by

3.14%.

Performance (Success Rate %
~SVM FAM Voting BP Pran Fran

Ave. (Predictive Performance) 878.8% 75.4% 77.7% 75.6% 50.1% 62.8%
Std. Dev. 11.9% 123% 12.5% 12.4% 2.8% 13.1%
95% confidenice Upper 79.2%1 75.8% ~ 78 76.0% .6% .2
95% Confidence Lower 78.4% 75.0% 77.3% 75.2% 49.6% 62.3%

Trequencyof bestanswer# 313 84 223 119 2 15

Frequency of best ansier%/ ~ 50.1% 13.4% 35.7% 19.0% 0.3% 24
955con4idenc0 Upper/56.O16.3% i39.5% 122.3% 1.2% 3.9%

95%Confidence Lower 46.2% 11.0% 32.0% 16.2% 0.1% 1.5%

Table 7.16. Predictive performance of the different machine learning paradigms selected for
the entire testing dataset of 125 subjects.

In general, it can be said that SVMs have the best success rate (see Table 7.16

and Figure 7.13). The ensemble of Fuzzy ARTMAP modules is able to perform

close to SVMs. The ensemble is able to mitigate the problem of the generation of

different weights and recognition categories for different orderings of a given

training set. The ensemble of Fuzzy ARTMAP modules outperforms a single

Fuzzy ARTMAP neural network by 3.05%. This result agrees with the results

published by Carpenter et al. [21]. SVMs outperform Backpropagation by

approximately 4.23%. This also agrees with the results published by other

researchers [9,66]. The performance of Backpropagation is very close to the

performance of Fuzzy ARTMAP. However, it is very clear that Backpropagation

performance is superior when trained with relatively large datasets (see Figure

7.14).

We would like to mention that, regarding memory requirements, the

Backpropagation neural networks (approximately 21 Kbytes) and Fuzzy ARTMAP

neural networks (approximately 23 Kbytes), and SVMs (approximately 28Kbytes),

94

had small memory requirements. The ensembles of Fuzzy ARTMAP modules

(approximately 250 Mbytes) have medium size memory requirements. In term of

runtime performance, Backpropagation neural networks and Fuzzy ARTMAP

neural networks were able to generate recommendations in microseconds. The

Fuzzy AFITMAP ensembles and SVMs were able to generate recommendations in

milliseconds. The learning time was faster for Fuzzy ARTMAP and slower for

Backpropagation neural networks and SVMs. Learning times for the different

individual models used in these experiments ranged from 3 seconds for Fuzzy

ARTMAP neural networks, to minutes for SVMs and Backpropagation neural

networks, However, taking into consideration the crossvalidation/search

mechanisms and relatively large training datasets, learning ranged from 10

minutes for Fuzzy ARTMAP neural networks, up to 2 hours for Backpropagation

neural networks, and up to 4 hours for SVMs.

95

Predictive Performance

Figure 7.13. Predictive performance (average) of the selected predictive
entire experiment

paradigms for the

Training Dataset Sizes and Success Rate

85.0%
80.0%

75.0%

70.0%
5 100 Examples65.0%

60.0% U 0 Exampe

~ 55Q%0324 Examples
55.0%

50.0%

45.0%

40.0%
SVM FAM Voting BP Pran Fran

Learning Schemes

Figure 7.14. Predictive performance of the selected predictive paradigms using different
sizes of training datasets.

96

90.0%
85.0%
80.0%
75.0%
70.0%
65.0%
60.0%
55.0%
50.0%
45.0%
40.0%

SVM FAM Voting BP Pran Fran

Learning Schemes

8 Conclusion

The implementation of intelligent recommendation systems will require the

application of sophisticated Internet and machine learning technologies in order to

improve the systems' performance. The application of these new technologies will

enhance the decision-making capabilities to respond to ever changing

environments.

The major focus of this research was the application and comparison of three

machine learning techniques - Backpropagation neural networks, Fuzzy ARTMAP

neural networks, and Support Vector Machines - to recommendation systems in a

representative problem. The different techniques offer several advantages, such

as learning and self-improvement.

In this section, the conclusions of this research effort are presented. The section

also des6ribes the contributions and recommendations of this research. It closes

by discussing future research directions.

8.1 Thesis Summary and Conclusions

This thesis draws from both engineering and management. Domain expertise and

solution technologies from systems engineering, software engineering, and

electrical engineering are used to provide mechanisms to increase the

effectiveness of recommender systems. These intelligent recommendation

systems are designed to develop the use of customer-centered management

approaches in electronic commerce. The economics of the development and

commercialization of these systems are based on the promises of higher levels of

customer satisfaction and customer loyalty. The work reported in this research

describes the predictive performance of Backpropagation neural networks, Fuzzy

ARTMAP neural networks, and Support Vector Machines in a representative

problem of feature-based filtering.

97

Backpropagation neural networks offer execution speed, strong nonlinear learning

capabilities, and convenient ways to represent product and user knowledge.

Backpropagation neural networks provide a good performance level (even close

to that of Support Vector Machines when enough data is available). On the other

hand, the learning times are longer than desired for real-time problems. It is very

difficult to implement on-line learning schemes with them (therefore, they are

reduced to a batch mode). In addition, the learning process is still more "craft"

than science. There are a variety of algorithms, from simple gradient-descent to

more complex implementations using Bayesian neural network approaches.

There are decisions to make such as learning parameters and architectures. In

addition, it is very difficult to know which strategy will be the fastest for a given

problem. It will depend on many factors such as the complexity of the problem,

the number of data points, the number of weights, and the learning goal. And

again, the problem of getting trapped in local minima is a possible one! Therefore,

to automate its process knowledge-based systems have to be implemented.

Tenfold crossvalidation and other statistical schemes can help to complement

these knowledge-based systems. Nevertheless, specialized hardware will have to

be developed to support the developments of smart agents using

Backpropagation. In summary, Backpropagation neural networks are good

candidates to implement smart agents. They are not limited to classifier problems

but can deal also with regression type problems. The solutions addressed by this

approach should be directed to problems where there is enough data, and when

changes in the environment are not so frequent, allowing learning to occur in a

batch mode.

Fuzzy ARTMAP neural networks offer execution speed and learning capabilities.

Product features and user knowledge are able to be represented in its neural

network structure (somewhat limited due to the fact that its architecture accepts

inputs and outputs scaled between 0 and 1). Fuzzy ARTMAP neural networks

provide a competitive performance level; however, they are less accurate than

Backpropagation neural networks and Support Vector Machines. On the other

98

hand, the learning times are very fast, meeting the requirements of real-time

problems. It is not difficult to implement on-line learning schemes with them.

Fuzzy ARTMAP does not have architectural problems. The decision about the

vigilance factor is the only problem. This thesis made a contribution to solving this

problem by devising an innovative approach that uses crossvalidation and

simulated annealing to automate this process. Fuzzy ARTMAP always converge.

The problems of lower performance and accuracy can be mitigated by using

ensembles of different Fuzzy ARTMAP modules. These Fuzzy ARTMAP modules

are trained using the same training dataset but using a different ordering of the

examples. These ensembles are able to outperform a single Fuzzy ARTMAP

neural network by a 2.5% to 5% margin in success rate. In addition, these Fuzzy

ARTMAP ensembles are able to match Backpropagation neural networks and get

closer to Support Vector Machines' performance. Another advantage of these

ensembles and their voting mechanism is that the user can assign probability

estimates to competing predictions given small, noisy or incomplete training sets.

This can be a good scheme with which to implement serendipity procedures and

conflict resolution strategies. The basic problem is that Fuzzy ARTMAP neural

networks are good as classifiers but are not good at implementing regression type

solutions. Therefore, their performance using continuous values is questionable.

In summary, ensembles of Fuzzy ARTMAP neural networks are good candidates

for implementing smart agents. The solutions addressed by this approach should

be directed to problems where there are middle levels of historical data on the

user's behavior, to where the problems are a classification ones, and to where

changes in the environment are frequent (learning can occur on-line).

Support Vector Machines offer execution speed, strong nonlinear learning

capabilities, and convenient ways to represent product and user knowledge (We

have some reservations here ... We still do not know of any effective approach

that can "inject" symbolic rules into the structure of a Support Vector Machine in

spite of the virtual support vectors approach [9]). Support Vector Machines

provide the best performance level (success rate). This level of increased

99

performance depends on the problem. With smaller training data sets, Support

Vector Machines outperformed Backpropagation by almost 10%. With larger

training sets, the increase in performance over other machine learning paradigms

ranged from 3% to 5%. On the other hand, the learning times are longer than

desired for real-time problems. It is very difficult to implement on-line learning

schemes with them. In addition, the learning process still is, at some level, more a

"craft" (not as bad as Backpropagation neural networks, though) than science

despite the claims of researchers. The kernel and the different parameters of the

kernel have to be decided in order to achieve high levels of performance. This

thesis contributed an innovative methodology using genetic algorithms and tenfold

crossvalidation to decide these parameters, using only the training data as

guidance. Support Vector Machines converge for the classifier problem and

assure the global minima. Support Vector Machines work well with classification

and regression type problems. In addition, specialized hardware will have to be

developed to support the developments of smart agents using Support Vector

Machines. In summary, Support Vector Machines are excellent candidates with

which to implement smart agents. One of the advantages is that the solution is

based on the support vectors. These support vectors are a subset of the training

dataset. Therefore, schemes to implement serendipity and/or increase

performance by studying the positions of the hyperplanes and convex hulls (e.g.,
using orthogonality, studying the densities and distributions of the support vectors

in hyperspace) are possible. The solutions addressed by this approach should be

directed to problems where there are middle levels of information; however, even

with smaller datasets the performance is very good, and changes in the

environment are not so frequent, allowing learning to occur in a batch mode.

Table 8.1 shows a summary of the performance of the different machine learning

schemes utilized in this thesis. As was stated before, "it is well known that the

error on the training dataset is not expected to be a good indicator of future

performance." However, the reality is that it sometimes is difficult to have enough

information to split the data into training and testing datasets. Tenfold

100

crossvalidation is a good procedure to make these decisions based on a training

dataset. Tenfold crossvalidation can even lead to the development of more

sophisticated methodologies to decide architectures and learning parameters for

the different machine learning techniques (as developed in this thesis by

combining crossvalidation with simulated annealing and genetic algorithms). Two

important cautions, learned from this work, to take into consideration are (1)

getting a good measure of performance is a computation-intensive undertaking

[100], and (2) tenfold crossvalidation is not a silver bullet (it might not be enough

to get a reliable error estimate).

BP* FAM* Voting SVM*

Predictive Performance
(Depending on Training Dataset Size)

10 Examples 70.7% 73.3% 74.2% 77.1%

25 Examples 74.2% 74.7% 76.6% 77.8%

50 Examples 76.2% 76.5% 78.4% 79.0%

100 Examples 78.4% 76.3% 79.4% 79.2%

324 Examples 78.6% 76.2% 80.0% 80.9%

Predictive Performance 75.6% 75.4% 77.7% 78.8%
(Overall)

Learning Speed*+

(Training dataset of 10 Examples) 2 Minutes 20 Seconds 40 Seconds 2 Minutes
*without specialized hardware

Learning Speed*

(Training dataset of 324 Examples) 2 Hours 10 Minutes 12 Minutes 4 Hours
*without specialized hardware

Execution Speed*

(to provide a recommendation) Microseconds Microseconds Milliseconds Milliseconds
*without specialized hardware

Memory Requirements Medium Low Low Medium
(Learning)

Memory Requirements Low Low Medium Medium-Low
(Execution)

Table 8.1. Relative performance of the various learning schemes to develop
recommendation systems

101

8.2 Recommendations for Further Research

The remarkable advances in technological systems such as the Internet will

require remarkable changes to existing approaches and methodologies for their

design and management. Complexity is the expression that describes the different

concepts, forms, functions, interdependencies, and challenges of systems such

as recommender software agents. This thesis is only a small step toward a more

holistic approach. This work has created the infrastructure and the willingness to

start pursuing a more ambitious research agenda to make intelligent agents

smarter.

This research has presented a comparison in predictive performance of several

machine learning techniques to develop smart agents. The experience gained

from this research also suggests some areas of allied research. Follow-up studies

are needed to perform an in-depth comparative analysis using a variety of

operational conditions. First, the literature survey indicated that feature-based

filtering agents learn more slowly initially. This opens the hypothesis that the ideal

learning session should be able to provide initial knowledge based on

collaborative filtering to these feature-base filtering approaches. Second, the

approach presented in this thesis attempts to optimize the short-term

performance. Therefore, there are compelling benefits to try to optimize long-term

performance (and compensate for the loss of serendipity). Finally, the willingness

of the target user to provide an answer immediately after the recommendation

was made is an assumption utilized in this research; however, the interactions

between smart agents and target users can involve temporal issues and delay

effects too. Therefore, there is also value in studying the temporal and delay

effects on the learning. These areas of allied research are explained in the next

subsections.

102

8.2.1. Study of the Performance of Backpropagation, Fuzzy ARTMAP, and

Support Vector Machines

The experiments conducted in this research form just a single branch of analysis.

An in-depth study of the performance of the different algorithms under different

conditions should be initiated. These scenarios should include different scenarios,

continuous values to assign user preferences, operational conditions, statistical

sensitivity analysis to know what product attributes are important to a target user

(before the machine learning scheme is even trained), the effect of adding initial

knowledge based on collaborative filtering, the synergistic effect of intrinsic

symbolic techniques (e.g., expert systems), and stochastic factors. In addition, to

improve these schemes, a more comprehensive study that includes not only the
past behavior of the user but other information such as [83]

* Current shopping needs

e E-commerce preferences (buying methods, merchants, products)

e Travel information (airline, car rental, hotel, restaurant, itinerary)

e Grocery/consumable purchases

* Other purchases (books, software, music, clothing, electronics, 'luxury

items)

" Wish list

* Interests, preferences, favorite activities

" Browsing habits (history, cookies, clickstream data)

* Chat/ICQ/Zephyr logs

e Credit card records

* Financial records

* Yearly salary

* Address

* Email address

* Demographic info

* Date of birth

103

should be addressed. This will allow the system to build a better profile of the

target user. The approach must be flexible to fuse the information that is available

in order to get higher predictive performance. This will bring in other issues, such

as privacy and consumer protection, to be investigated and added to the smart

agent's framework. Privacy laws to protect the privacy and rights of the

consumers on the Internet must be respected.

8.2.2. Exploring an Unknown Environment (Compensating for the Loss of

Serendipity)

Whenever a smart agent learns, two opposing principles have to be combined:

exploration (long-term optimization) and exploitation (short-term optimization).

This thesis during the testing phase has only used the side of exploitation in order

to get higher performance levels (this might lead to the loss of serendipity). The

idea that could be researched in future work is to make an agent explore unknown

regions in a more directed manner. In addition, this research can compensate for

the loss of serendipity and increase the ability to discover new products and

unexpected joys!

8.2.2.1. Backpropagation Neural Networks.

Thrun and Moller [86] developed the concept of a competence map which is used

for guiding exploration. Based on their ideas, a bistable system enables the

smooth switching of attention between the two behaviors - exploration and

exploitation - depending on knowledge gain.

104

Actio Target User Behavior, ("Worldn)

Target User B
(using a Backp

network trained
gained (Interacti

us

Compete
(another Backpr

network that esti
accuracy of the Ta

mo

ehavior Model
opagation neural
by the experience
ig with the target
or))

Model :Error

nce Map
opagation neural Target User
mates the error or
rget User behavior Behavior
del) Model Error

Error Gradients

Figure 8.1. Exploring an unknown environment using Backpropagation

Therefore, the competence map estimates the accuracy of the Target User

Behavior Model neural network based on Backpropagation. This estimation is

used for exploring the world by selecting actions (i.e., product selections) which

minimize the expected competence of the Target User behavior model, and thus

maximize the resulting learning effect (and create nice surprises for the target

user!).

8.2.2.2. Fuzzy ARTMAP Neural Networks

It is possible to implement a similar mechanism by using the ensemble of Fuzzy

ARTMAP modules. We have explained that the reason for these ensembles is to

train several Fuzzy ARTMAP neural networks to mitigate the problem of the

formation of different weights structures due to the sequence of examples of the

training dataset. The final prediction for a given test set item is the one made by

the largest number of simulations. Since the set of items making erroneous

predictions varies from one simulation to the next, voting cancels many of the

105

Current
State

Action

errors. The user can assign probability estimates to competing predictions given

small, noisy or incomplete training sets. This can be a good scheme with which to

implement serendipity procedures and conflict resolution strategies. For example,

Figure 8.2 details the results of voting for 324 testing examples using an

ensemble of 25 Fuzzy ARTMAP modules. 25 means (Y Axis) that all 25 Fuzzy

ARTMAP modules voted for the "yes" category and 0 means that all 25 Fuzzy

ARTMAP modules voted for the "no" category. A number of 12 means 12 Fuzzy

ARTMAP modules voted for the "yes" category and 13 voted for the "no" category.

This voting scheme can tell us where the system needs to explore more in order

to solve conflicts of knowledge (i.e., the system is not sure of the answer!).

Assigning Probability Estimates using a Voting
Strategy

25-

20 EEHRMNENMRER

r 15
010

0 10

.0E 5
Z 0

C)-00) Co NCo LOAM~ 9!-T 0-0) -CD LO)
C~JC'~ON0) -~LO N-D) (D Co 0 C

- I - T- CJ C% ~ % ~ ~
Testing Examples

Figure 8.2. Assigning probability estimates using a voting strategy and an ensemble of 25
Fuzzy ARTMAP modules (For instance, the testing example #20 has 0 "yes" votes;

therefore, it has a probability of 0 of being category "yes." On the other hand, testing
example #305 has 18 "yes" votes; therefore, it has a probability of 0.72 of being category

"yes")

8.2.2.3. Support Vector Machines

SVMs select support vectors to implement their classification strategy. These

support vectors are a subset of the training dataset. Therefore, schemes to

implement serendipity and/or increase performance by studying the positions of

the hyperplanes and convex hulls (e.g., using orthogonality, studying the

densities and distributions of the support vectors in the hyperspace) are possible.

106

For instance, the densities and distributions of the support vectors in the

hyperspace can be studied. Those regions with low densities should be studied

and see how new support vectors can expand a convex hull and/or redefine

boundaries. Orthogonality is a good concept to start looking for candidate

recommendations to the user and thus expands the knowledge base of the

system and improving the accuracy of prediction.

8.2.3 Reinforcement Learning and Temporal Reasoning Using Neural Networks

Reinforcement learning is different from supervised learning. Supervised learning

is learning from examples provided by some knowledgeable external supervisor.

Supervised learning is not adequate for learning when temporal delays from the

external supervisor are present. As expressed by Sutton and Barto [85], "In

interactive problems it is often impractical to obtain examples of desired behavior

that are both correct and representative of all the situations in which the agent has

to act. In uncharted territory---where one would expect learning to be most

beneficial---an agent must be able to learn from its own experience." This type of

learning could be useful in situations such as intelligent recommendation systems

that must forget past user experiences that are too old. In addition, the target user

might make a decision sometime after the product was recommended (e.g.,

Amazon.com recommends to the target user a book, and the user buys this book

sometime (e.g., 1 month) after the recommendation has been made).

In the reinforcement learning scheme, an agent continually senses the

environment, selects actions (e.g., specific product recommendations) to affect

the environment and, after each action, receives from the environment a

reinforcement signal (the user bought the recommended product (positive

reinforcement) or the user did not buy the product (negative reinforcement)). This

reinforcement signal can be positive (a reward), negative (a punishment), or

simply "nothing." The objective of learning is to construct an optimal action

selection policy that maximizes the agent's performance. As expressed by Sutton

107

and Barto [85], the discounted cumulative reinforcement learning is explained as

follows:

Rt = rt.1+ y rt+2 + y rt+3 + ... = rtk1

Where Rt is the discounted cumulative reinforcement starting from time t

throughout the future, and y is a parameter called the discount rate. The discount

rate (also called the forgetting factor) determines the present value of future

rewards: "a reward received k time steps in the future is worth only y-' times

what it would be worth if it were received immediately."

These techniques have been extended to neural networks. Backpropagation

neural networks can be trained by using two different algorithms: Q-Learning from

Watkins [94] and Heuristic Dynamic Programming (HDP) from Paul Werbos [98].

For instance, Q-Learning (see Figure 8.3) offers a procedure for a smart agent to

learn to select desirable products given the characteristics (profile) of a consumer.

Q-learning attempts to estimate value functions for selecting the best product for a

particular consumer profile. The values reflect the immediate and (discounted)

long term expected reward for making a given selection. These "Q" values are

conceptually, and often in practice, stored in a table that enumerates the possible

state/action pairs [75,95]. Again, Q-Learning may be seen as online stochastic

dynamic programming. Lacking a world model to allow offline search, the Q
learner uses the world as its own model. However, versions that develop internal

models of the world are available. These versions of Q-Learning with internal

models are considered superior to the original Q-Learning formulation.

108

Target User

R inforcement Signal Reinforcem nt Signal
Stochastic Action Selector

select(U, T)
"Recommend Product or Or Do nt

Recommend Product"?

Target User Target User

Wants the Product Does Not Want the
Product

Networ -c A NetworkB

Product Features + Contextual Information

Figure 8.3. Q-learning for intelligent recommendation systems

109

9 Bibliography

[1] A. Akaike. "Statistical predictor identification," Annals of the Institute of
Statistics and Mathematics, vol. 22, pp. 203-217, 1970.

[2] D. Ariely. Career Proposal, MIT Sloan School of Management, 2000.

[3] D. Ariely, J. Lynch and M. Aparicio. "Which Intelligent Agents Are Smarter?
An Analysis of Relative Performance of Collaborative and Individual Based
Recommendation Agents," MIT Sloan School of Management, 2000.

[4] A. Barron. "Predicted Squared Error: A Criterion for Automatic Model
Selection," Self-Organizing Methods in Modeling, Marcel Dekker, Inc., 87-
102,1984.

[5] J. Bradshaw (Editor), Software Agents, MIT press, 1997.

[6] J. Breese, D. Heckerman and C. Kadie. "Empirical Analysis of Predictive
Algorithms for Collaborative Filtering," Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence, 1998.

[7] E. Brynjolfsson and M. Smith. The Great Equalizer? Consumer Choice
Behavior at Internet Shopbots, MIT Sloan White Paper, 2000.

[8] C. Burges. "A Tutorial on Support Vector Machines for Pattern Recognition,"
Data Mining and Knowledge Discovery, vol. 2, No. 2, pp. 121-167, 1998.

[9] C. Burges and B. Scholkopf. "Improving the Accuracy and Speed of
Support Vector Machines," Advances in Neural Information Processing
Systems 9, Edited by M. Mozer, M. Jordan and T. Petsche, Morgan
Kaufmann Publishers, pp.375-381, 1998.

[10] G. Carpenter. "Neural Network Models for Pattern Recognition and
Associative Memory," Neural Networks, 1989, vol. 2, pp. 243-257.

[11] G. Carpenter. "Analysis of ART 2," Neural Networks: From Foundations to
Applications, 1991, vol. 1, Lecture 15, pp. 361-386.

[12] G. Carpenter. "Distributed Learning, Recognition, and Prediction by ART
and ARTMAP Neural Networks," Neural Networks, vol. 10, No. 8, pp. 1473-
1494,1997.

110

[13] G. Carpenter and S. Grossberg. "A Massively Parallel Architecture for a
Self-Organizing Neural Pattern Recognition Machine," Computer Vision,
Graphics, and Image Processing, 1987, vol. 37, pp. 54-115.

[14] G. Carpenter and S. Grossberg. "ART 2: Self-Organization of Stable
Category Recognition Codes for Analog Input Patterns," Applied Optics,
1987, vol. 26, pp. 4919-4930.

[15] G. Carpenter and S. Grossberg. "ART 2:Self-Organization of Stable
Category Recognition Codes for Analog Input Patterns," Proceedings of
the IEEE First International Conference on Neural Networks, Edited by M.
Caudill and C. Butler, 1987, vol. 2, pp. 727-736.

[16] G. Carpenter and S. Grossberg. "The ART of Adaptive Pattern Recognition
by a Self-Organizing Neural Network," Computer, March 1988, pp. 77-88.

[17] G. Carpenter and S. Grossberg. "ART 3: Hierarchical Search Using
Chemical Transmitters in Self-Organizing Pattern Recognition
Architectures," Neural Networks, 1990, vol. 3, pp. 129-152.

[18] G. Carpenter, S. Grossberg, and J. Reynolds. "ARTMAP: Supervised Real-
Time Learning and Classification of Nonstationary Data by a Self-
Organizing Neural Network," Pattern Recognition By Self-Organizing
Neural Networks, Edited by G. Carpenter and S. Grossberg, MIT Press,
1991, pp. 503-544.

[19] G. Carpenter, S. Grossberg and D. Rosen. "Fuzzy ART," Poster paper
presented at the Neural Networks for Vision and Image Processing
Conference, Wang Institute of Boston University, May 10-12, 1991.

[20] G. Carpenter, S. Grossberg and D. Rosen. "ART2-A: An Adaptive
Resonance Algorithm for Rapid Category Learning and Recognition,"
Neural Networks, vol. 4, pp. 493-504, 1991.

[21] G. Carpenter, S. Grossberg, N. Markuzon, J. Reynolds and D. Rosen.
"Fuzzy ARTMAP: A Neural Network Architecture for Incremental
Supervised Learning of Analog Multidimensional Maps," Technical Report
CAS/CNS-TR-91-016, 1991.

[22] G. Carpenter, S. Grossberg, N. Markuzon, J. Reynolds and D. Rosen.
"Fuzzy ARTMAP: A Neural Network Architecture for Incremental
Supervised Learning of Analog Multidimensional Maps," IEEE Transactions
on Neural Networks, vol. 3, No. 5, pp. 698-713, 1992.

[23] G. Carpenter, S. Grossberg and J. Reynolds. "A Fuzzy ARTMAP
Nonparametric Probability Estimator for Nonstationary Pattern Recognition

111

Problems," IEEE Transactions on Neural Networks, vol. 6, No. 6, pp. 1330-
1336, 1995.

[24] G. Carpenter and N. Markuzon. "ARTMAP-IC and medical diagnosis:
Instance counting and inconsistent cases," Neural Networks, vol. 11, No. 2,
pp. 323-336, 1998.

[25] G. Carpenter, B. Milenova and B. Noeske. "Distributed ARTMAP: a neural
network for fast distributed supervised learning," Neural Networks, vol. 11,
No. 5, pp. 793-813, 1998.

[26] J-C. Charlet and E. Brynjolfsson, "Firefly Network," Case S-OIT-22,
Graduate School of Business, Stanford University, 1998.

[27] J-C. Charlet and E. Brynjolfsson, "Rule-Based Systems," Graduate School
of Business, Stanford University, 1998.

[28] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector
Machines, Cambridge University Press, 2000.

[29] V. Darley, Towards a Theory of Autonomous, Optimising Agents. Ph. D.
Dissertation, Harvard University, 1999.

[30] S. Davies, A. Marshall and R. Martin. "Fusing Multiple Sources with
Bayesian Networks to Achieve Accurate Object Descriptions," SPIE, Vol.
2589, pp. 79-90, 1995.

[31] Defense Advanced Research Projects Agency, Information Systems Office,
Control of Agents-Based Systems (CoABS) Program,
http://dtsn.darpa.mil/iso/index2.asp?mode=9.

[32] H. Demuth and M. Beale, Neural Network Toolbox (MATLAB), The MATH
WORKS Inc., 1998.

[33] R. Fletcher and C. Reeves, "Function minimization by conjugate gradients,"
Computer Journal, vol. 7, pp. 149-154, 1964.

[34] S. Geisser. "The predictive sample reuse method with applications,"
Journal of the American Statistical Association, vol. 70, No. 350, 1975.

[35] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley Publishing Co., 1989.

[36] N. Good, J. Schafer, J. Konstan, A. Borchers, B. Sarwar, J. Herlocker and
J. Riedl. "Combining Collaborative Filtering with Personal Agents for Better

112

Recommendations," Proceedings of the 1999 Conference of the American
Association of Artificial Intelligence, 1999.

[37] D. Greening. "Building Consumer Trust with Accurate Product
Recommendations," A White Paper on LikeMinds Personalization Server,
2000.

[38] S. Grossberg. "Some Nonlinear Networks Capable of Learning a Spatial
Pattern of Arbitrary Complexity," Proceedings of the National Academy of
Sciences USA, 1968, vol. 59, pp. 368-372.

[39] S. Grossberg. "Adaptive Pattern Classification and Universal Recoding, 1:
Parallel Development and Coding of Neural Feature Detectors," Biological
Cybernetics, 1976, vol. 23, pp. 121-134.

[40] S. Grossberg. "Competitive Learning: From Interactive Activation to
Adaptive Resonance," Connectionist Models and Their Implications:
Readings From Cognitive Science, Edited by D. Waltz and J. Feldman,
Ablex Publishing Corporation, 1988, pp. 243-283.

[41] S. Grossberg. "Nonlinear Neural Networks: Principles, Mechanisms, and
Architectures," Neural Networks, 1988, vol. 1, pp. 17-61.

[42] M. Hagan, H. Demuth, and M. Beale, Neural Network Design, PWS
Publishing Company, 1995.

[43] W. Hanson. Principles of Internet Marketing, South-Western College
Publishing, 2000.

[44] A. Hodgkin and A. Huxley, "A Quantitative Description of Membrane
Current and Its Applications to Conduction and Excitation in Nerve," The
Journal of Physiology, vol. 117, 1952, pp. 500-544.

[45] J. Holland. Adaptation in Natural and Artificial Systems, MIT Press, 2
edition, 1975,1992.

[46] E. Horvitz, J. Breese, D. Heckerman, D. Hovel and K. Rommelse. "The
Lumiere Project: Bayesian User Modeling for Inferring the Goals and
Needs of Software Users," Microsoft Research, 1999.

[47] R. Kohavi. "A study of crossvalidation and bootstrap for accuracy
estimation and model selection," Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence, Morgan Kaufman
Publishers, Inc., pp. 1137-1143, 1995.

113

[48] A. Krogh and J. Hertz. "A Simple Weight Decay Can Improve
Generalization," Advances in Neural Information Processing System 4,
Edited by J. Moody, S. Hanson, and R. Lippmann, Morgan Kaufman
Publishers, Inc., pp. 950-957, 1994.

[49] Y. Le Cun, J. Denker and S. Solla. "Optimal Brain Damage," Neural
Information Processing Systems, Edited by D. Touretzky, vol. 2, 1990.

[50] H. Lieberman. "Letizia: An Agent that Assists Web Browsing," Proceeding
of /JCAI 95, AAAI Press, 1995.

[51] C. Lim and R. Harrison. "Modified Fuzzy ARTMAP approaches Bayes
optimal classification rates: an empirical demonstration," Neural Networks,
vol. 10, No. 4, pp. 755-774, 1997.

[52] C. Lueg and C. Landolt. "A Java-Based Approach to Active Collaborative
Filtering," CHI 1998 Workshop Proceedings, 1998.

[53] P. Lyman and H. Varian. Project Report: How Much Information? University
of California - Berkeley's School of Information Management and Systems,
2000.

[54] D. Mackay. Bayesian Methods for Adaptive Models, Ph.D. Dissertation,
California Institute of Technology, 1992.

[55] D. Mackay. "Bayesian Model Comparison and Backprop Nets,"Advances
in Neural Information Processing System 4, Edited by J. Moody, S.
Hanson, and R. Lippmann, Morgan Kaufman Publishers, Inc., 839-846,
1994.

[56] D. Mackay. "Probable networks and plausible predictions - a review of
practical Bayesian methods for supervised neural networks,"Network:
Computation in Neural Systems, Vol. 6, 469-505, 1995.

[57] P. Maes. "Agents that Reduce Work and Information Overload,"
Communications of the ACM, vol. 37, No. 7, pp. 31-40. 1994.

[58] P. Maes. "Artificial Intelligent meets Entertainment: Lifelike Autonomous
Agents," Communications of the ACM, vol. 38, No. 11, pp. 108-114. 1995.

[59] S. Marriot and R. Harrison. " A modified Fuzzy ARTMAP architecture for
the approximation of Noisy Mappings," Neural Networks, vol. 8, No. 4, pp.
619-641, 1995.

114

[60] B. Miller, J. Riedl and J. Konstan. "Experiences with GroupLens: Making
Usenet Useful Again," Proceedings of the 1997 Usenix Winter Technical
Conference, 1997.

[61] J. Moody."The Effective Number of Parameters: An Analysis of
Generalization and Regularization in Nonlinear Learning Systems,"
Advances in Neural Information Processing System 4, Edited by J. Moody,
S. Hanson, and R. Lippmann, Morgan Kaufman Publishers, Inc., 683-690,
1994.

[62] J. Moody and J. Utans."Principled Architecture Selection for Neural
Networks: Application to Corporate Bond rating Prediction,"Advances in
Neural Information Processing System 4, Edited by J. Moody, S. Hanson,
and R. Lippmann, Morgan Kaufman Publishers, Inc., 683-690, 1994.

[63] N. Morgan and H. Bourlard. Generalization and Parameter Estimation in
Feedforward Nets: Some Experiments, International Computer Science
Institute, Technical Report, TR-89-017, 1989.

[64] R. Murch and J. Johnson. Intelligent Software Agents, Prentice Hall, 1998.

[65] H. Nwana. "Software Agents: An Overview," Knowledge Engineering
Review, vol. 11, No. 3, pp. 205-244, 1996.

[66] E. Osuna, R. Freund and F. Girosi. "An Improved Training Algorithm for
Support Vector Machines," Proceedings of the IEEE Workshop on Neural
Networks and Signal Processing, 1997.

[67] C. Petrie. "Agent-based Engineering, the Web, and Intelligence," IEEE
Expert, 1996.

[68] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kaufmann, 1988.

[69] T. Plate, P. Band, J. Bert and J. Grace. "A comparison between neural
networks and other statistical techniques for modeling the relationship
between tobacco and alcohol and cancer," Advances in Neural Information
Processing System 9, Edited by M. Mozer, M. Jordan, and t. Petsche, The
MIT Press, 967-973, 1997.

[70] J. Platt. "How to implement SVMs," IEEE Intelligent Systems, July/August
1998.

[71] J. Platt. "Fast training of support vector machines using sequential minimal
optimization," Advances in Kernel Methods - Support Vector Learning,

115

Edited by B. Scholkopf, C Gurges, and A. Smola, The MIT Press, pp. 185-
208, 1999.

[72] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes
in C, Cambridge University Press, 1993.

[73] D. Rumelhart, J. McClelland and the PDP Research Group. Parallel
Distributed Processing: explorations in the microstructure of cognition, Vol. 1:
Foundations, Cambridge, MIT Press/Bradford Books.

[74] K. Ryan. Success Measures of Accelerated Learning Agents for e-
Commerce, MS Thesis, MIT, September 1999.

[75] T. Samad, S. Harp, B. Wollenberg, B. Morton, L. Pires, S. Brignonne.
Simulation of complex systems for the power industry with adaptive agents.
EPRI Technical Report TR 112816, 1999.

[76] B. Sarwar, G. Karypis, J. Konstan and J. Riedl. "Application of
Dimensionality Reduction in Recommender System - A Case Study," ACM
E-Commerce 2000 Conference, 2000.

[77] B. Sarwar, G. Karypis, J. Konstan and J. Riedl. "Analysis of Recommender
Algorithms for E-Commerce," ACM WebKDD 2000 Web Mining for E-
Commerce Workshop, 2000.

[78] C. Saunders. Support Vector Machines User Manual, March 23, 1998.

[79] C. Saunders, M. Stitson, and J. Weston. Support Vector Machines
Reference Manual, July 10, 1998.

[80] B. Scholkopf. Supervised Vector Learning, R. Oldenbourg Verlag, 1997.

[81] B. Scholkopf. "SVMs - A pratical consequence of learning theory," IEEE
Intelligent Systems, July/August 1998.

[82] Y. Seo and B. Zhang. "Learning User's Preferences by Analyzing Web-
Browsing Behaviors," Proceedings of the Agents 2000, 2000.

[83] S. Shearing and P. Maes. "Representation and Ownership of Electronic
Profiles," CHI 2000 Workshop Proceedings Designing Interactive Systems
for 1-to-1 E-commerce, 2000.

[84] S. Solla, D. Schwartz, N. Tishby and E. Levin. "Supervised Learning: a
Theoretical Framework," Neural Information Processing Systems, Edited
by D. Touretzky, vol. 2, 1990.

116

[85] R. Sutton and A. Barto. Reinforcement Learning: An Introduction,
Cambridge, MA: MIT Press, 1998.

[86] S. Thrun and K. Moller. "Active Exploration in Dynamic Environments,"
Advances in Neural Information Processing System 4, Edited by J. Moody,
S. Hanson, and R. Lippmann, Morgan Kaufman Publishers, Inc., 531-538,
1994

[87] G. Urban, F. Sultan and W. Qualls. "Trust Based Marketing on the
Internet," MIT Sloan W.P. 4035-98, 1998.

[88] V. Vapnik. Estimation of Dependencies Based on Empirical Data, Springer-
Verlag, 1982.

[89] V. Vapnik. "Principles of Risk Minimization for Learning Theory,"Advances
in Neural Information Processing System 4, Edited by J. Moody, S.
Hanson, and R. Lippmann, Morgan Kaufman Publishers, Inc., 831-838,
1994.

[90] V. Vapnik. The Nature of Statistical Learning Theory, Springer Verlag,
1995.

[91] V. Vapnik, S. Golowich, and A. Smola. Support Vector Method for
Function Approximation, Regression Estimation, and Signal Processing,
1997.

[92] A. Wasfi. "Collecting User Access Patterns for Building User Profiles and
Collaborative Filtering," Proceedings of the 1U1 99, Redondo Beach, CA,
1999.

[93] G. Wahba. "Spline Models for Observational Data," Volume 59 of Regional
Conference Series in Applied Mathematics, SIAM Press, 1990.

[94] C. Watkins, Learning from Delayed Rewards, Ph.D. Thesis, Cambridge
University, 1989.

[95] C. Watkins and P. Dayan. "Q-Iearning," Machine Learning, vol. 8, 279-292,
1992.

[96] A. Weigend, D. Rumelhart and B. Huberman. "Back-Propagation, Weight
Elimination, and Time Series Prediction," Proceedings of the Connectionist
Models Summer School, Morgan Kaufmann Publishers, Inc., 105-116, 1991.

[97] A. Weigend, D. Rumelhart and B. Huberman. "Generalization by Weight-
Elimination with Application to Forecasting,"Advances in Neural

117

Information Processing System 3, Edited by R. Lippmann, J. Moody, and
D. Touretzky, Morgan Kaufman Publishers, Inc., 875-882, 1993.

[98] P. Werbos. "Approximate Dynamic Programming for Real-Time Control
and Neural Modeling," Handbook of Intelligent Control, Edited by D. White
and D. Sofge, Van Nostrand Reinhold, 1992.

[99] P. Werbos. The Roots of Backpropagation, John Wiley & Sons, 1994.

[100] I. Witten and E. Frank. Data Mining, Morgan Kaufman Publishers, Inc.,
2000.

[101] M. Wooldridge and N. Jennings. "Intelligent Agents: Theory and Practice,"
The Knowledge Engineering Review, vol. 10, No. 2, pp. 115-152, 1995.

[102] L. Zadeh. "Fuzzy Sets," Information and Control, vol. 8, pp. 338-353, 1965.

118

10 Terminology

This thesis assumes a basic understanding of computer engineering, machine

learning, marketing, and electronic commerce and uses standard terminology

without including definitions except where deemed necessary. The reader is

referred to standard computer engineering, machine learning, optimization,

marketing, and electronic commerce texts for those terms with which he/she is not

familiar:

N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector

Machines. Cambridge University Press, 2000.

D. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley Publishing Co., 1989.

M. Hagan, H. Demuth, and M. Beale, Neural Network Design. PWS Publishing

Company, 1995.

W. Hanson, Principles of Internet Marketing. South-Western College

Publishing, 2000.

J. Holland, Hidden Order, Perseus Pr., 1996.

P. Kotler, Marketing Management. Prentice Hall, 1999.

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C.

Cambridge University Press, 1993.

119

11 Appendix A: Results for 125 Subjects

Appendix A contains the predictive performance (success rate) of the algorithms

selected (Backpropagation neural networks, Fuzzy ARTMAP Neural Networks,

Ensembles of Fuzzy ARTMAP Neural Networks, and Support Vector Machines)

for the 125 subjects and the different training datasets. SVM is for Support Vector

Machine, FAM is for Fuzzy ARTMAP, "Voting" is for an ensemble of 49 Fuzzy

ARTMAP modules, BP is for Backpropagation, Pran is for Pure Random

Generator, and Fran is for Frequency Random Generator.

120

Subject Size of Performance (Success Rate %)
Training File SVM FAM Voting BP Pran Fran

10 98.8% 98.8% 98.8% 98.8% 49.7% 49.7%
25 94.4% 98.8% 98.8% 98.8% 50.6% 50.6%

50 98.1% 98.8% 98.8% 98.8% 49.4% 45.1%

100 97.2% 98.5% 98.5% 96.9% 50.9% 48.8%
324 98.5% 94.4% 97.5% 97.8% 49.1% 42.9%

2 10 76.2% 77.8% 78.4% 78.1% 49.1% 72.8%
25 76.2% 75.9% 75.0% 76.2% 53.1% 71.6%

50 77.2% 76.2% 74.1% 76.5% 46.6% 63.9%
100 76.2% 72.2% 79.6% 75.3% 52.2% 60.5%
324 80.9% 81.2% 83.3% 84.0% 49.4% 62.0%

3 10 90.7% 90.7% 90.7% 90.7% 53.1% 90.7%
25 90.7% 90.7% 90.7% 90.7% 50.0% 90.7%

50 89.2% 90.1% 90.1% 86.4% 51.5% 85.2%
100 90.7% 86.7% 90.4% 89.2% 47.2% 83.3%

324 91.7% 87.0% 90.7% 92.0% 49.4% 81.2%
4 10 71.0% 66.0% 67.9% 67.6% 49.7% 49.7%

25 75.6% 72.2% 71.9% 71.6% 47.5% 55.9%
50 75.9% 72.5% 75.6% 74.7% 49.1% 58.6%

100 73.5% 69.4% 71.3% 73.1% 53.1% 52.2%
324 72.2% 71.9% 72.5% 70.7% 46.9% 57.4%

5 10 70.7% 70.7% 70.7% 70.7% 49.1% 70.7%
25 70.7*/o 74.7% 75.0% 75.3% 48.8% 68.5%
50 4.7% 78.1% 82.1% 80.6% 46.3% 62.0%

100 79.9% 74.4% 83.6% 80.9% 44.8% 59.9%
324 82.7% 73.8% 83.3% 82.1% 44.4% 55. 6%

6 10 83.0% 73.1% 70.1% 64.8% 48.5% 53.4%

25 77.2% 76.5% 76.9% 83.3% 47.5% 49.4%
50 74.1% 75.9% 79.6% 78.7% 47.5% 49.4%

100 85.5% 81.8% 85.8% 88.0% 48.5% 51.9%
324 85.8% 79.0% 88.0% 88.9% 48.1% 54.6%

7 10 73.1% 69.4% 66.4% 67.0% 49.7% 57.4%

25 74.4% 70.7% 72.5% 59.3% 52.5% 57.7%

50 71.6% 74.7% 72.2% 73.1% 54.3% 58.3%

100 74.7% 72.5% 73.1% 73.1% 43.5% 59.0%

324 74.1% 70.4% 73.5% 75.9% 50.0% 56.8%
8 10 91.4% 91.4% 91.4% 91.4% 51.2% 48.5%

25 88.3% 83.6% 83.6% 89.5% 47.2% 52.2%

50 87.7% 91.7% 91.7% 89.2% 51.5% 48.8%
100 90.1% 91.0% 90.4% 88.3% 50.3% 51.9%
324 89.2% 83.0% 88.9% 84.9% 54.3% 51.5%

9 10 94.8% 83.3% 82.4% 82.4% 47.2% 86.1%
25 957%/ 91.4% 93.5% 94.1% 58.6% 90.4%
50 95.7% 96.0% 95.1% 95.7% 53.1% 91.0%
100 94.1% 85.2% 84.9% 90.1% 46.3% 88.3%

324 94.4% 89.8% 94.4% 92.3% 50.9% 88.6%
10 10 67.3% 60.5% 59.9% 67.6% 47.2% 49.4%

25 72.8% 65.4% 67.6% 74.5% 49.7% 55.2%
50 70.7% 65.4% 65.4% 73.5% 54.3% 48.1%

100 70.4% 70.7% 71.9% 72.8% 51.9% 48.8%
324 73.5% 72.5% 73.5% 72.2% 51.2% 51.9%

121

Subject Size of Performance (Success Rate %)
Training File SVM FAM Voting BP Pran Fran

11 10 90.7% 85.2% 83.6% 68.8% 50.3% 80.2%
25 90.7% 90.7% 90.7% 81.5% 49.7% 87.7%
50 90.7% 87.0% 88.6% 85.8% 49.4% 83.3%
100 90.7% 86.1% 92.0% 88.0% 49.1% 79.6%
324 90.7% 85.8% 89.8% 83.0% 48.1% 81.8%

12 10 88.3% 66.7% 66.7% 63.3% 50.3% 66.0%
25 88.3% 78.1% 81.5% 75.9% 50.0% 73.1%
50 88.3% 79.9% 84.3% 81.2% 51.9% 81.2%
100 88.3% 84.0% 86.7% 87. 0% 48.8% 77.8%
324 88.3% 81.8% 84.6% 83.0% 53.4% 76.5%

13 10 90.4% 84.3% 87.0% 86.7% 50.3% 81.8%
25 90.4% 81.8% 80.6% 82.4% 47.8% 81.8%
50 90.4% 83.3% 83.0% 83.0% 50.3% 84.3%
100 88.3% 87 0% 86.4% 87.7% 48.8% 81.5%
324 90.4% 84.3% 86.7% 84.0% 50.6% 84.3%

14 10 76.5% 56.2% 63.3% 52.8% 46.9% 59.0%
25 77.5% 75.3% 77.8% 67.6% 48.5% 57.4%
50 79.9% 73.8% 78.7% 75.00 48.5* 60.8%
100 80.6% 76.2% 79.3% 77.2% 50.0% 61.1%
324 81.2% 77.2% 81.2% 78.7% 51.5% 61.1%

15 10 89.8% 83.3% 84.9% 82.7% 50.6% 67.3%
25 85.5% 85.2% 86.7% 75.6% 50.9% 72.5%
50 90.7% 86.7% 90.1% 74.4% 51.2% 72.5%
100 87.7% 82.7% 88.9% 87.7% 50.3% 73.1%
324 84.6% 81.2% 85.8% 82.4% 48.5% 73.8%

16 10 74.7% 67.3% 66.0% 57.4% 46.0% 63.6%
25 74.7% 68.8% 68.5% 68.5% 53.1% 67.6%
50 74.7% 70.4% 72.8% 66.0% 54.3% 64.5%
100 74.7% 63.6% 70.7% 74.7% 49.1% 66.0%
324 74.7% 62.3% 69.1% 66.70% 51.2% 63.3%

17 10 42.9% 53.1% 53.7% 49.4% 46.0% 51.2%
25 53.7% 51.9% 53.7% 48.5% 48.5% 54.9%
50 60.5% 58.0% 53.1% 58.3% 49.7% 47.2%
100 63.0% 56.8% 58.3% 54.0% 50.6% 48.1%
324 61.1% 52.8% 58.6% 56.8% 48.5% 52.8%

18 10 95.7% 95.7% 95.7% 95.7% 47.8% 95.7%
25 95.7% 92. % 93.8% 91.00% 53.7% 92.9%
50 95.7% 95.7% 95.7% 95.1% 48.1% 92.3%

100 95.7% 92.6% 95.1% 91.7% 50.0% 92.9%
324 95.7 957% 95.4% 90.7% 46.9% 93.5%

19 10 76.5% 63.9% 65.4% 64.5% 53.1% 66.0%
25 73.1% 60.8% 71.0% 69.1% 47.8% 66.4%
50 76.5% 67.3% 71.6% 68.8% 51.2% 67.6%
100 75.0% 66.4% 70.4% 71.6% 51.9% 63.9%
324 76.5% 63.9% 65.1% 70.1% 47.8% 63.3%

20 10 77.8% 64.8% 69.4% 73.1% 49.7% 50.3%
25 75.9% 72.2% 72.2% 69.1% 55.9% 67.3%
50 77.8% 70.7% 70.7% 63.9% 53.4% 62.0%
100 71.0% 63.9% 67.3% 67.6% 49.1% 60.8%
324 75.9% 71.6% 72.2% 73.1% 52.2% 68.8%

122

Subject Size of Performance (Success Rate %)
Training File SVM FAM Voting BP Pran Fran

21 10 50.3% 45.1% 46.0% 47.8% 46.9% 51.9%
25 44.1% 46.0% 42.9% 44.4% 52.2% 47.8%
50 494% 46.3% 48.1% 49.7% 44.4% 50.0%
100 49.4% 53.4% 50.6% 50.0% 50.9% 48.8%
324 50.3% 50.3% 51.9% 46.0% 48.8% 52.8%

22 10 59.6% 49.7% 55.9% 54.3% 49.7% 48.5%
25 59.6% 57.4% 58.6% 55.9% 49.1% 51.9%
50 59.6% 57.7% 59.0% 56.5% 50.6% 51.9%
100 59.6% 52.8% 60.2% 57.1% 53.4% 57.1%
324 56.8% 51.2% 51.2% 50.6% 51.2% 47.5%

23 10 51.2% 53.7% 50.9% 53.7% 48.8% 48.5%
25 50.9% 49.1% 52.2% 50.0% 45.7% 51.9%
50 53.4% 50.3% 51.9% 51. 9% 51.2% 50.9%
100 48.1% 46.9% 52.3% 50.9% 51.9% 51.9%
324 43.2% 43.8% 46.0% 50.0*% 48.1% 46.6%

24 10 54.3% 54.0% 54.0% 54.0% 53.1% 55.9%
25 57.4% 51.5% 54.6% 52.2% 49.4% 50.6%
50 57.4% 52.2% 51.9% 55.6% 48.1% 50.3%
100 53.1% 52.5% 53.1% 58.0% 49.4% 47.2%
324 57.4% 50.94 52.2% 55.2% 48.1% 50.6%

25 10 51.2% 54.3% 55.2% 50.0% 53.7% 49.7%
25 51.2% 59.0% 56.8% 51.5% 50.9% 48.8%
50 56.8% 54.3% 55.9% 48.1% 49.7% 51.5%
100 148.5% 54.3% 52.8% 51.5% 51.9% 46.0%
324 50.9% 53.4% 52.8% 54.3% 48.5% 48.5%

26 10 75.9% 72.5% 76.2% 73.5% 51.2% 68.5%
25 75.9% 61 .4% 68.5% 66.7% 55.9% 69.4%
50 70.4% 64.8% 64.8% 66.4% 49.4% 66.0%
100 75.9% 53.7% 68.5% 74.7% 46.0% 60.5%
324 75.9% 55.2% 65.7% 71.0% 46.9% 67.0%

27 10 86.1% 76.9% 82.7% 80.2% 46.0% 78.4%
25 86.1% 81.8% 86.1% 85.2% 46.6% 84.0%
50 86.1% 84.9% 84.9% 84.9% 49.4% 84.0%
100 86.1% 87.0% 87.7% 89.8% 51.9% 81.8%
324 92.0% 91.0% 94.1% 91.0% 47.8% 77.5%

28 10 58.6% 58.0% 59.9% 60.8% 55.9% 55.2%
25 58.6% 65.1% 66.0% 71.0% 49.4% 55.6%
50 72.5% 65.1% 73.5% 76.5% 52.5% 54.9%
100 70.7% 73.5% 77.8% 78.1% 50.0% 50.3%
324 79.0% 74.1% 77.5% 75.0% 51.9% 55.2%

29 10 52.5% 63.6% 64.2% 51.2% 47.8% 51.2%
25 62.0% 64.2% 63.3% 69.1% 54.9% 46.3%
50 63.3% 62.7% 63.6% 58.0% 51.5% 49.7%
100 68.8% 68.5% 70.7% 69.8% 48.8% 52.5%
324 74.1% 66.0% 72.5% 73.1% 47.2% 49.7%

30 10 87.3% 81.2% 80.9% 60.8% 51.5% 50.3%
25 82.4% 85.5% 88.3% 75.3% 57.4% 58.3%
50 91.0% 92.3% 93.5% 88.3% 53.1% 57.1%
100 90.4% 92.6% 92.9% 87.7% 56.2% 53.4%
324 91.7% 86.4% 91.7% 88.0% 50.3% 57.1%

123

Subject Size of Performance (Success Rate %)
Training File SVM FAM Voting BP Pran Fran

31 10 79.0% 75.9% 76.9% 68.5% 49.4% 61.4%
25 82.1% 78.7% 80.9% 76.5% 48.1% 62.7%
50 82.1% 80.2% 82.1% 79.0% 42.9% 71.9%
100 84.3% 83.6% 88.3% 76.9% 52.2% 70.1%
324 81.5% 79.0% 81.5% 85.2% 51.9%o 72.5%

32 10 84.9% 67.6% 72.2% 73.5% 54.6% 66.0%
25 84.9% 71.3% 75.6% 75.3% 50.3% 68.8%
50 84.9% 72.2% 79.6% 67.9% 45.1% 75.0%
100 80.6% 74.4% 83.3% 74.1% 45.1% 69.8%
324 85.5% 77.5% 83.0% 84.6% 49.7o 72.5%

33 10 77.5% 73.8% 73.8% 75.9% 51.5% 63.3%
25 71.6% 78.1% 77.2% 75.3% 47.8% 54.9%
50 80.6% 77.2% 81.2% 74.7% 50.3% 54.6%
100 84.0% 82.-1% 87.0% 75.3% 51.2% 58.3%
324 85.5% 85.8% 85.8% 79.3% 47.2% 58.3%

34 10 49.7% 63.9% 63.9% 62.7% 55.6% 50.9%
25 67.9% 71.3% 72.2% 68.5% 47.2% 47.8%
50 63.3% 60.2% 63.6% 62.7% 50.6% 48.5%
100 642% 63.6% 67.6% 71.9% 50.6% 48.8%
324 65.7% 59.3% 68.2% 68.8% 53.1% 47.8%

35 10 60.2% 60.2% 61.4% 51.2% 52.5% 46.3%
25 65.7% 70.7% 68.8% 71.9% 49.4% 49.7%
50 80.6% 67.9% 83.3% 81.5% 47.5% 54.3%
100 79.9% 74,4% 88.3% 8 .5% 50.3% 50.0%
324 80.2% 80.6% 87.7% 84.9% 47.5% 53.7%

36 10 88.9% 82.7% 83.0% 78.7% 48.8% 73.5%
25 86.4% 81.2% 83.0% 83.3% 50.9% 76.2%
50 86.1% 82.1% 85.8% 84.3% 51.2% 81.5%
100 88.9% 84.0% 87.0% 85.2% 51.2% 79.9%
324 88.6% 81.8% 85.5% 861.2% 48.5% 78.1%

37 10 75.0% 73.8% 72.2% 76.9% 51.9% 54.6%
25 79.3% 73.5% 78.1% 78.7% 51.9% 51.5%
50 73.1% 75.6% 75.3% 72.8% 55.2% 50.3%
100 78.4% 73.1% 75.9% 77.8% 48.5% 52.8%
324 79.6% 81.8% 85.2% 76.9% 50.0% 519%

38 10 96.0% 96.0% 96.0% 96.0% 50.6% 48.1%
25 92.3% 96.0% 96.0% 96.0% 56.8% 52.5%
50 96.0% 96.0% 96.0% 96.0% 51.2% 52.8%
100 92.3% 92.3% 93.5% 87.3% 48% 46.0%
324 95.1% 92.6% 94.4% 94.1 % 54.0% 53.7%

39 10 94.1 % 94.1% 94.1% i 92.3% 49.1% 43.8%
25 77.2% 80.6% 84.0% 69.8% 50.0% 49.7%
50 88.6% 92.0% 91.7% 83.0% 49.1% 51.9%
100 88.9% 88.3% 89.5% 87.3% 52.2% 50.6%
324 92.9% 92.6% 92.6% 92.0% 46.0% 53.1%

40 10 72.5% 65.7% 68.5% 66.7% 50.9% 49.7%
25 65.1% 70.7% 70.7% 72.2% 49.7% 57.4%
50 61.4% 73.1% 73.8% 76.9% 44.4% 55.2%
0080.2% 75.% 46.9% 51.9%

324 81.5% 77.2% 76.5% 83.3% 46.3% 57.1%

124

Subject Size of Performance (Success Rate %)
Training File SVM FAM Voting BP Pran Fran

51 10 75.3% 71.9% 75.9% 65.1% 50.9% 65.4%
25 76.2% 71.6% 77.5% 77.2% 54.9% 66.0%
50 74.4% 74.1% 75.6% 73.5% 55.6% 63.6%
100 79.9% 77.2% 80.9% 78.4% 48.8% 58.3%
324 83.0% 79.6% 84.9% 85.5% 54.6% 65.4%

52 10 88.9% 82.1% 85.2% 85.5% 54.9% 80.6%
25 88.9% 87.3% 90.4% 84.3% 48.8% 82.7%
50 91.4% 90.4% 87.7% 90.4% 43.5% 84.9%
100 88.0% 86.1% 88.6% 88.0% 54.9% 81.5%
324 88.6% 88.6% 88.3% 89.2% 52.8% 82.4%

53 10 76.9% 74.1% 72.2% 75.6% 50.9% 50.6%
25 77.2% 73.5% 74.1% 78.1% 52.5% 55.2%
50 76.9% 70.7% 79.6% 74.7% 47.5% 50.3%
100 70.7% 72.2% 76.5% 74.7% 45.1% 51.5%
324 75.9% 66.0% 77.8% 75.0% 51.5% 54.0%

54 10 91.3% 82.7% 87.7% 83.3% 48.8% 73.8%
25 90.4% 89.5% 89.8% 83.0% 45.1% 83.6%
50 90.4% 90.1% 90.4% 86.4% 48.8% 84.3%
100 88.9% 88.0% 88.6% 87.3% 42.9% 80.9%
324 90.4% 88.6% 90.7% 88.6% 50.0% 83.3%

55 10 81.2% 69.1% 69.4% 61.4% 48.8% 54.9%
25 81.2% 73.5% 72.2% 70.7% 51.5% 66.0%
50 81.2% 73.8% 74.4% 78.4% 54.6% 73.1%
100 81 .8% 80.6o 78.7% 83.3% 50.3% 70.7%
324 82.1% 78.7% 80.9% 78.4% 52.8% 68.2%

56 10 70.7% 70.7% 70.7% 70.7% 53.7% 63.9%
25 74.4% 74.4% 72.8% 67.3% 44.4% 52.2%
50 75.6% 82.7% 82.4% 75.6% 51.5% 57.1%
100 81.8% 76.9% 84.0% 78.7% 46.9% 61.4%
324 84.6% 83.0% 86.1% 83.0% 49.4% 59.0%

57 10 63.3% 59.9% 63.6% 63.3% 45.4% 50.0%
25 67.3% 67.6% 65.7% 69.1% 54.9% 52.2%
50 69.1*o 70.4% 67.9% 73.8% 48.8% 45.4%
100 67.9% 67.3% 69.4% 76.9% 51.5% 51.2%
324 71.0% 69.1% 73.8% 70.1% 46.0% 50.0%

58 10 71.3% 75.0% 72.5% 67.0% 52.5% 63.9%
25 71.3% 73.8% 73.8% 74.7% 52.2% 66.7%
s0 71.3% 73.1% 74.1% 71.3% 45.4% 64.8%
100 73.1% 76.5% 77.2% 71.6% 50.6% 59.6%
324 75.9% 77.8% 76.5% 76.9% 50.0% 61.1%

59 10 82.7% 79.3% 84.0% 77.5% 47.8% 60.2%
25 89.2% 87.0% 89.8% 89.5% 49.4% 61.1%
50 80.6% 77.5% 84.3% 75.0% 49.7% 59.3%
100 76.9% 86.1% 86.7% 86.4% 50.3% 60.5%
324 86.7% 82.4% 86.4% 84.6% 52.8% 62.0%

60 10 83.3% 84.6% 84.6% 72.8% 50.6% 51.9%
25 84.0% 77.8% 78.1% 77.5% 56.5% 50.0%
50 87.3% 84.3% 88.9% 85.5% 46.6% 57.1%
100 83.6% 84.9% 88.3% 84.0% 51.2% 61.1%
324 84.9% 85.2% 88.0% 85.5% 53.7% 56.2%

125

Subject Size of Performance (Success Rate %)
Training File SVM FAM Voting BP Pran Fran

61 10 88.9% 86.1% 85.8% 88.0% 50.3% 71.0%
25 90.1% 88.6% 89.5% 88.3% 50.6% 78.7%
50 88.0% 88.3% 89.5% 86.4% 47.5% 77.8%
100 88.9% 88.3% 89.5% 87.7% 46.9% 75.0%
324 88.6% 88.6% 88.3% 85.2% 46.3% 80.2%

62 10 96.0% 78.7% 90.1% 65.4% 51.5% 85.8%
25 96.0% 83.3% 95.1% 91.4% 50.0% 88.3%
50 96.0% 92.9% 94.1% 90.4% 50.6% 91.0%
100 96.0% 91.0% 93.5% 92.3% 45.4% 91.4%
324 96.0% 94.4% 96.0% 90.4% 52.2% 93.5%

63 10 70.4% 66.7% 67.3% 68.5% 50.0% 53.1%
25 77.2% 75.6% 79.0% 77.2% 46.3% 51.2%
50 81.2% 74.1% 84.0% 75.3% 51.5% 57.7%
100 75.6% 80.6% 81.8% 79.9% 45.7% 56.2%
324 79.6% 81.5% 83.6% 79.3% 49.4% 58.6%

64 10 60.8% 63.9% 63.3% 65.4% 43.2% 48.8%
25 71.6% 63.3% 67.3% 72.8% 47.8% 52.8%
50 74.4% 69.8% 75.3% 74.1% 52.2% 51.9%
100 75.6% 66.7% 79.9% 75.3% 50.9% 49.7%
324 76.2% 67.6*% 76.5% 71.3% 48.1% 52.2%

65 10 81.2% 75.3% 80.2% 75.9% 54.0% 58.0%
25 93. 2% 82.7% 92.9% 93.2% 49 7% 56.8%
50 92.9% 92.0% 93.2% 93.2% 47.8% 51.9%
100 90.4% 84.3% 92.0% 92.0% 50.6% 59.3%
324 87.3% 85.8% 92.0% 87.7% 47.2% 51.5%

66 10 80.9% 72.8% 73.8% 66.0% 50.6% 65.7%
25 80.9% 79.3% 81.8% 71.9% 47.2% 71.6%
50 82.7% 83.6% 83.0% 84.6% 54.3% 70.1%
100 83.6% 86.4% 87.0% 85.5% 50.9% 68.8%
324 91.7% 85.2% 92.0% 88.0% 54.6% 67.0%

67 10 92.6% 96.6% 93.8% 80.6% 45.1% 50.0%
25 90.7% 82.4% 94.8% 86.1% 46.3% 50.6%
50 96.0% 96.9% 96.9% 95.4% 48.5% 51.9%
100 94.4% 92.3% 96.6% 95.4% 49.1% 48.5%
324 96.0% 93.5% 95.4% 92.6% 50.9% 53.1%

68 10 71.6% 66.0% 64.8% 62.3% 47.8% 60.5%
25 71.6% 60.2% 60.5% 66.7% 49.4% 59.9%
50 71.6% 61.4% 61.1% 67.3% 50.0% 57.1%
100 70.1% 58.3% 60.5% 57.4% 46.6% 55.6%
324 69.8% 59.9% 68.8% 66.4% 50.6% 56.2%

69 10 84.9% 77.5% 77.5% 81.2% 50.3% 67.0%
25 82.1% 84.3% 85.8% 81.8% 52.2% 77.2%
50 85.8% 81.2% 87.3% 84.9% 48.5% 78.4%
100 86.7% 87.3% 87.3% 92.9% 49.7% 72.8%
324 90.1% 87.7% 87.7% 87.0% 50.9% 72.8%

70 10 79.9% 79.9% 84.9% 76.2% 53.7% 69.4%
25 79.9% 79.0% 79.9% 78.7% 46.9% 68.8%
50 79.9% 76.5% 79.3% 79.6% 49.1% 66.4%
100 79.9% 79.6% 80.9% 79.6% 46.6% 69.1%
324 81.8% 76.2% 81.8% 79.3% 47.8% 67.6%

126

Subject Size of Performance (Success Rate %)
Training File SVM FAM Voting BP Pran Fran

71 10 73.8% 71.9% 75.6% 71.9% 50.6% 65.7%
25 76.2% 71.6% 76.9% 73.5% 49.4% 65.4%
50 74.4% 74.1% 76.2% 70.4% 44.1% 59.9%
100 79.9% 77.2% 81.8% 79.3% 52.2% 59.9%
324 83.0% 79.6% 85.5% 83.0% 494% 60.8%

72 10 88.9% 82.1% 86.4% 77.2% 48.8% 79.6%
25 88.9% 87.3% 88.6% 87.70% 50.3% 84.0%
50 91.4% 90.4% 87.7% 87.7% 44.4% 86.4%
100 88.0% 86.1% 88.6% 85.8% 55.9% 78.7%
324 88.6% 88.6% 88.3% 88.9% 48.1% 79.9%

73 10 76.9% 74. 73.1% 74.4% 50.0% 47.5%
25 77.21% 73.5% 75.0% 67.9% 47.2% 45.4%
50 76.9% 70.7% 78.7% 75.9% 51.5% 48.1%
100 70.7% 72.2% 75.6% 74.7% 48.5% 42. 3%
324 75.9% 66.0% 77.5% 77.5% 50.9% 51.2%

74 10 90.4% 82.7% 84.6% 80.2% 46.9% 74.7%
25 90.4% 89.5% 89.5% 86.7% 54.9% 84.6%
50 90.4% 90.1 % 90.4% 90.7% 49.7% 85.5%
100 88 9% 88.0% 88.3% 84.3% 48.5% 82.4%
324 904% 88.6% 89.8% 88.3% 51.5% 83.0%

75 10 81.2% 69.1% 69.4% 51.2% 50.0% 59.3%
25 812o 73.5% 73.8% 74.1% 51.9% 67.3%
50 81.2% 73.8% 73.5% 78.4% 46.6% 65.7%
100 81.8% 80.6% 78.4% 83.3% 54.0% 63.6%
324 82.1% 78.7% 80.6% 78.7% 51.5% 68.5%

76 10 70.7% 70.7% 70.7% 70.7% 58.6% 63.9%
25 74.4% 74.4% 73.5% 67.6% 48.8% 50.0%
50 75.6% 82.7% 83.0% 75.6% 52.5% 53.7%
100 81.8% 76.9% 84.3% 79.6% 49.7% 62.0%
324 84.6% 83.0% 86.4% 78.7% 50.3% 58.6%

77 10 63.3% 59.9% 64.5% 67.9% 52.2% 47.8%
25 67.3% 67.6% 65.7% 70.1% 46.3% 49.1%
50 69.1% 70.4% 67.0% 70.1% 49.7% 48.5%
100 67.9% 67.3% 69.4% 67.6% 48.5% 51.9%
324 74.1% 69.1% 75.9% 69.1% 50.3% 49.1%

78 10 71.3% 75.0% 72.5% 78.4% 49.4% 63.0%
25 71.3% 73.8* 74.7% 75.0% 56.2% 60.8%
50 71.3% 73.1% 75.3% 72.5% 52.5% 64.2%
100 73.1% 76.5% 75.9% 74.1% 53.1% 64.2%
324 75.9% 77.8% 76.9% 77.5% 50.6% 58.0%

79 10 87.9% 79.3% 85.2% 81.2% 46.9% 60.5%
25 89.2% 87.0% 89.5% 85.8% 46.0% 61.1%
50 81.8% 77.5% 82.4% 79.3% 49.4% 60.8%
100 83.3% 86.1% 88.0% 86.4% 47.2% 58.0%
324 86.7% 82.4% 89.2% 85.5% 54.6% 63.9%

80 10 83.3% 84.6% 83.6% 64.2% 49.1% 47.2%
25 84.0% 77.8% 78.7% 71.9% 50.6% 56.5%
50 87.3% 84.3% 89.2% 84.9% 47.8% 56.8%
100 83.6% 84.9% 88.0% 87.7% 48.8% 58.0%
324 84.9% 85.2% 88.6% 85.5% 51.5% 56.8%

127

Subject Size of
Training File;

81 10
25
50
100
324

82 10
25
50
100
324

83 10
25
50
100
324

84 10
25
50
100
324

85 10
25
50
100
324

86 10
25
50
100
324

87 10
25
50
100
324

88 10
25
50
100
324

89 10
25
50
100
324

90 10
25
50
100
324

Performance (Success

128

SVM FAM Voting
88.9% 86.1% 86.1%
90.1% 88.6% 89.2%
88.0% 88.3% 90.1%
88.9% 88.3% 88.6%
88.6% 88.6% 88.9%
96.0% 78.7% 86.7%
96.0% 83.3% 94.4%
96.0% 92.9% 94.4%
96.0% 91.0% 93.8%
96.0% 94.4% 96.0%
70.4% 66.7% 68.5%
77.2% 75.6% 80.2%
81.2% 74.1% 81.8%
75.6% 80.6% 81.5%
79.6% 81.5% 81.8%
60.8% 63.9% 63.3%
71.6% 63.3 % 67.0%
74.4% 69.8% 75.0%
75.6% 66.7% 79.9%
76.2% 67.6% 75.6%
81.2% 75.3% 80.2%
93.2% 82.7% 88.9%
92.9% 92.0% 93.2%
90.4% 84.3% 92.0%
87.3% 85.8% 92.0%
80.9% 72.8% 70.7%
80.9% 79.3% 82.7%
82.7% 83.6% 83.3%
83.6% 86.4% 87.7%
91.7% 85.2% 92.6%
70.3% 73.1% 72.2%
77.2% 66.4% 68.2%
74.1% 69.1% 78.1%
72.8% 72.2% 73.8%
73.8% 68.8% 78.1%
78.4% 75.3% 76.5%
78.4% 75.9% 76.5%
78.4% 76.5% 77.8%
78.4% 71.6% 74.1%
78.4% 71.6% 73,5%
77.5% 77.5% 77.5%
63.6% 62.0% 64.2%
70.4% 67.9% 67.6%
69.4% 67.9% 70.7%
73.8% 69.4% 75.9%
82.1% 82.1% 81.8%
71.6% 76.2% 74.7%
74.1% 71.9% 74.1%
76.2% 75.6% 78.7%
75.6% 70.4% 75.3%

BP
72.8%
83.3%
83.0*6
88.6%

90.1%
92.0%
92.0%
90.4%
95.1%
69.4%
75.6%
76.9%
79.9%
77.2%
63.6%
68.2%
73.5%
68.8%
73.8%
76.9%
93.2%
93.2%
91.0%
92.9%
77.8%
69.8%
70.7%
85.5%
92.0%
72.2%
72.8%
74.1%
75.3%
73.5%
74.7%
76.2%
75.0%
77.5%
74.4%
74.1%
62.3%
68.2%
76.5%
73.8%
81.5%
78.4%
73.5%
76.5%
72.5%

Rate %)
Pran

52.5%
51.5%
50.9%
44.4%'
46.0%
50.6%
50.6%
49.7%
49.4%
52.8%
48.8%
49.4%
51.9%
52.8%
50.9%
49.7%
48.8%
50.9%
51.9%
51.9%
46.3%
54.9%
48. 1%
53.1%
51.9%
52.5%
52.2%
52.2%
57.4%
47.5%
48.1%
52.5%
55.2%
50.6%
49.1%
49.1%
45.4%
52.5%
47.5%
53.4%
49.7%
56.8%
50.9%
49.1%
54.6%
48.8%
52.5%
47.2%
50.3%
48.1%

Fran
75.0%
74.1%
80.2%
77.5%
82.4%
83.6%
88.3%
90.4%
90.7%
93.8%
52.5%
54.9%
60.5%
64.5%
59.3%
46.0%
46.0%
53.7%
47.2%
52.2%
54.3%
54.9%
51.2%
58.6%
54.6%
65.7%
68.5%
74.1%
71.6%
69.8%
53.4%
46.3%
53.7%
48.1%
49.4%
73.5%

8 .1%
70.4%
64.2%
66.7%
55.6%
55.9%
55.2%
53.4%
54.9%
54.3%
49.7%
50.3%
48.8%
50.6%

Subject Size of Performance (Success Rate %)
Training File SVM FAM Voting BP Pran Fran

91 10 72.5% 67.6% 70.4% 64.2% 50.3% 43.8%
25 75.9% 71.9% 72.8% 71.3% 52.8% 61.7%
50 77.5% 78.4% 79.3% 76.9% 50.6% 61.4%
100 80.2% 79.9% 83.3% 81.8% 51.5% 62.0%
324 83.0% 79.6% 85.2% 78.4% 51.9% 60.2%

92 10 89.5% 83.3% 85.2% 79.3% 46.9% 82.1%
25 89.5% 83.6% 85.2% 76.2% 49.1% 82.%
50 89.5% 83.0% 84.3% 79.9% 50.0% 83.6%
100 85.2% 84.3% 84.3% 82.4% 53.7% 79.9%
324 84.01% 86.4% 84.9% 86.1% 50.9% 79.3%

93 10 58.6% 51.9% 47.8% 47.5% 46.6% 50.3%
25 58.6% 58.3% 60.2% 53.7% 42.6% 48.8%
50 65.4% 66.7% 69.8% 70.4% 46.9% 50.6%
100 70.4% 68.2% 76.2% 58.0% 46.0% 56.5%
324 71.9% 63.6% 68.8% 74.7% 50.0% 50.9%

94 10 99.1% 99. 1% 99.1% 99.1% 50.9% 494%
25 94.1% 99.199 .9.1% 97.2% 45.7% 51.2%
50 99.1% 99.1% 99.1% 99.1% 51.9% 47.8%
100 98.8% 99.1% 99.1% 99.1% 50.3% 52.8%
324 97.8% 96.9% 98.8% 98.8% 45.4% 52.5%

95 10 82 4% 82.4% 82.4% 80.2% 46.0% 58.0%
25 75.3% 78.7% 74.7% 81.8% 49.1% 55.2%
50 73.5% 82.4% 82.1% 76.9% 49.4% 52.2%
100 73.8% 76.5% 75.9% 73.8% 50.0% 53.4%
324 75.3% 75.3% 78.1% 82.4% 49.7% 48.8%

96 10 80.6% 82.4% 83.3% 77.2% 50.6% 63.3%
25 85.5% 85.8% 89.5% 86.1% 48.1% 62.3%
50 87.7% 88.0% 88.0% 85.2% 46.0% 64.5%
100 85.8% 85.8% 88.3% 85.2% 56.2% 67.6%
324 85.8% 80.9% 85.2% 84.9% 49.7% 60.8%

97 10 82.1% 77.8% 78.4% 50.0% 52.2% 50.6%
25 84.3% 68.5% 81.8% 78.7% 51.9% 55.6%
50 82.4% 86.4% 83.0% 81.8% 47.8% 55.9%
100 81.5% 82.1% 81.8% 82.1% 47.8% 54.3%
324 86.1% 83.0% 85.5% 80.6% 53.1% 51.5%

98 10 92.6% 92.6% 92.6% 92.6% 52.8% 50.6%
25 92.3% 92.0% 92.0% 91.0% 49.1% 51.5%
50 89.2% 92.0% 92. 0% 86.4% 50.6% 58.3%
100 85.2% 83.3% 89.2% 86.7% 44.8% 48.8%
324 90.7% 84.6% 90.4% 90.7% 49.7% 50.9%

99 10 67.9% 71.3% 69.8% 60.8% 50.6% 54.0%
25 65.1% 66.7% 66.4% 60.5% 50.6% 50.9%
50 69.8% 65.7% 71.9% 67.6% 52.8% 56.8%
100 65.1% 66.7% 69.4% 74.1% 49.1% 54.3%
324 74.1% 69.4% 74.4% 71.3% 54.0% 55.6%

100 10 62.0% 67.6% 67.3% 66.4% 50.0% 59.6%
25 62.0% 67.0% 65.1% 54.3% 48.5% 56.2%
50 62.0% 66.0% 65.4% 67.9% 51.5% 53.4%
100 67.0% 66.4% 69.8% 73.5% 48.1% 49.1%
324 73.8% 69.4% 74.1% 75.9% 45.4% 51.2%

129

Subject Size of Performance (Success Rate %)
Training File SVM FAM Voting BP Pran Fran

101 10 94.8% 94.8% 94.8% 94.8% 50.0% 94.8%
25 94.8% 90.7% 92.9% 93.2% 53.7% 88.3%
50 94.8% 88.0% 91.4% 81.2% 58.0% 83.0%
100 94.8% 89.8% 88.3% 85.8% 46.0% 88.3%
324 93.8% 88.6% 92.0% 86.7% 53.7% 88.9%

102 10 92.6% 92.6% 92.6% 85.2% 45.1% 92.6%
25 92.6% 80.6% 84.3% 83.0% 48.8% 81.8%
50 92.6% 85.8% 88.3% 85.5% 50.0% 84.3%
100 92.6% 90.1% 90.7% 86.1% 48.5% 86.1%
324 92.6% 79.0% 87.7% 85.8% 53.7% 85.5%

103 10 60.2% 60.8% 60.5% 61.4% 47.8% 53.7%
25 54.9% 52.2% 57.1% 63.9% 53.7% 52.8%
50 54.9% 59.3% 59.3% 60.8% 48.1% 47.2%
100 55.2% 57.1% 57.1% 60.8% 47.8% 52.5%
324 63.3% 60.5% 63.9% 62.3% 51.5% 59.3%

104 10 53.7% 53.1% 53.4% 50.9% 48.8% 56.2%
25 50.3% 52.5% 48.8% 49.1% 48.8% 47.2%
50 50.9% 47.5% 47.5% 47.2% 51.9% 48.5%
100 51.2% 48.8% 49.4% 49.7% 48.8% 43.8%
324 53.7% 54.3% 56.2% 51.5% 49.1% 46.9%

105 10 85.5% 76.2% 75.3% 75.9% 47.5% 67.3%
25 85.5% 74.4% 75.6% 65.7% 51.2% 70.7%
50 85.5% 71.3% 80.6% 85.5% 49.1% 71.9%
100 85.5% 71.9% 79.3% 82.4% 49.1% 74.1%
324 85.2% 76.2% 81.8% 75.0% 53.7% 76.9%

106 10 66.4% 60.2% 62.7% 64.5% 54.6% 61.4%
25 66.4% 56.2% 56.2% 58.3% 48.5% 54.9%
50 64.5% 59.9% 62.7% 54.3% 52.2% 57.7%
100 66.4% 54.9% 54.6% 56.2% 50.9% 53.1%
324 63.0% 55.9% 56.5% 51.9% 50.6% 54.3%

107 10 63.6% 58.3% 59.9% 58.3% 50.0% 59.6%
25 62.0% 54.9% 55.2% 50.0% 54.0% 52.5%
50 63.6% 54.6% 54.6% 55.2% 49.4% 60.5%
100 63.6% 55.6% 58.0% 63.3% 49.4% 58.0%
324 63.6% 56.2% 54.0% 63.6% 55.9% 58.6%

108 10 58.0% 57.1% 56.2% 58.0% 51.9% 51.9%
25 56.5% 51.5% 54.9% 44.1% 51.2% 49.7%
50 57.1% 48.1% 53.1% 49.1% 54.3% 52.5%
100 50.9% 47.8% 50.3% 53.1% 48.8% 54.6%
324 57.1% 50.9% 49.1% 42.3% 48.1% 47.2%

109 10 72.2% 53.1% 53.4% 51.2% 55.2% 51.9%
25 72.2% 53.1% 54.0% 45.7% 50.9% 55.9%
50 72.2% 57.7% 56.2% 51.5% 48.5% 61.4%
100 72.2% 56.2% 60.8% 56.8% 50.6% 58.3%
324 72.2% 55.6% 58.6% 54.3% 50.6 % 59.3%

110 10 55.0% 46.3% 43.2% 46.9% 54.6% 42.3%
25 71.9% 56.2% 55.6% 51.9% 47.2% 56.2%
50 71.9% 63.3% 64.5% 64.2% 48.5% 60.2%
100 71.9% 63.6% 64.5% 72.5% 54.9% 61.7%
324 71.9% 55.6% 59.0% 59.3% 50.3% 55.9%

130

Subject Size of

111

112

113

'114

115

116

117

118

119

120

Training File
10
25
50
100
324
10
25
50
100
324
10
25
50
100
324
10
25
50
100
324
10
25.
50
100
324
10,
25
50
100
324
10
25
50
100
324
10
25
50
100
324
10
25
50
100
324
10
25
50
100
324

131

92.3% 93.8% 93.8% 88.0% 52.2% 87.7%
93.8% 85.8% 89.8% 88.6% 48.5% 88.3%
94.1% 94.1% 91.0% 86.1% 46.9% 87.0%
61.7% 71.3% 73.8% 55.6% 51.9% 54.6%
75.3% 75.3% 81.2% 74.1% 50.0% 63.3%
80.6% 78.7% 85.2% 76.5% 49.7% 63.0%
80.6% 80.6% 86.4% 81.5% 45.7% 59.0%
86.7% 83.0% 90.1% 83.3% 51.9% 60.8%
94.8% 76.5% 83.0% 73.1% 51.9% 75.6%
94.8% 89.5% 96.0% 88.6% 49.4% 88.6%
94.8% 90.4% 95.1% 93.5% 47.8% 87.7%
94.8% 93.5% 93.8% 93.8% 48.1% 88.3%
94.8% 91.7% 92.9% 95.1% 54.3% 90.4%
61.1% 65.4% 66.0% 69.4% 49.4% 46.6%
66.7% 63.6% 71.6% 70.1% 53.1% 51.2%
74.4% 66.0% 78.7% 77.5% 47.2% 47.5%
79.0% 71.9% 80.6% 80.2% 56.2% 53.7%
78.7% 70.4% 76.5% 79.0% 49.7% 51.9%
94.1% 94.1% 94.1% 94.1% 52.2% 94.1%
94.1% 94.1% 941% 94.1% 46.0% 94.1%
94.1% 94.1% 94.1% 90.4% 49.4% 91.7%
94.1% 93.8% 93.8% 92.3% 50.3% 91.4%
94.8% 89.8% 94.4% 93.5% 49.4% 88.9%
73.8% 86.1% 76.9% 71.9% 51.2% 67.0%
80.2% 87.0% 83.3% 77.5% 47.8% 69.4%
78.4% 81.5% 83.3% 81.5% 49.7% 67.0%
79.9% 79.9% 83.6% 82.7% 43.8% 63.3%
87.7% 83.3% 89.8% 85.8% 48.8% 62.7%
44.1% 49.4% 52.5% 58.6% 49.4% 46.0%
60.2% 56.8% 59.0% 56.8% 47.5% 50.9%
62.7% 60.8% 61.7% 56.8% 50.6% 54.6%
5.4% 66.7% 72.2% 64.5% 48.8% 49.7%
67.0% 63.6% 70.1% 76 .2% 51.2% 50.3%
58.3% 51.5% 53.7% 48.1% 50.6% 48.8%
50.0% 52.8% 55.9% 44.1% 47.2% 50.3%
57.4% 66.4% 55.9% 60.2% 52.5% 53.7%
64.8% 63.0% 62.7% 75.3% 47.2% 51.5%
68.2% 57.7% 58.3% 74.4% 53.4% 47.2%

Performance (Success Rate %)
SVM FAM Voting BP Pran Fran

66.4% 56.8% 55.9% 59.3% 52.5% 56.8%
66.4% 55.9% 53.1% 55.2% 47.8% 53.4%
66.4% 50.6% 57.4% 54.6% 52.5% 54.9%
65.7% 53.1% 55.2% 50.0% 46.6% 56.2%
66.4% 56.8% 58.3% 55.6% 48.8% 56.2%
83.3% 74.4% 77.2% 76.5% 43.2% 59.3%
83.3% 74.7% 78.4% 75.3% 50.6% 72.5%
83.3% 77.5% 81.5% 71.3% 51.9% 74.7%
83.3% 76.5% 81.5% 77.2% 55.6% 70.1%
83.3% 78.4% 78.1% 75.9% 50.9% 68.8%
93.8% 88.3% 88.0% 83.3% 52.8% 88.6%
93.8% 93.8% 93.8% 91.4% 54.3% 88.9%

Subject Size of Performance (Success Rate %)
Training File SVM FAM Voting BP Pran Fran

121 10 88.9% 82.1% 79.9% 61.7% 44.8% 82.4%
25 88.9% 87.0% 87.7% 88.3% 57.4% 84.9%
50 88.9% 89.2% 88.6% 86.1% 55.6% 83.00%
100 88.9% 81.2% 85.8% 85.2% 47.8% 79.0%
324 89.2% 81.5% 87.0% 83.3% 47.8% 79.0%

122 10 90.4% 90.4% 90.4% 90.4% 48.1% 50.6%
25 81.5% 89.2% 85.2% 81.2% 48.8% 46.3%
50 87.3% 86.7% 86. % 83.3% 49.1% 52.5%
100 84.3% 80.9% 87.3% 79.3% 56.2% 48.8%
324 87.7% 84.0% 89.5% 84.9% 56.8% 55.2%

123 10 80.6% 76.5% 79.90/o 78.4% 49.4% 76.2%
25 80.6% 78.4% 80.6% 74.7% 48.8% 73.5%
50 82.4% 79.6% 81.5% 77.5% 46.3% 67.0%
100 78.7% 78.1% 83.0% 78.4% 50.9% 61.7%
324 81.8% 79.6% 80.6% 83.3% 53.1% 66.0%

124 10 85.2% 82.4% 82.1% 75.3% 53.4% 79.6%
25 90.1% 82.1% 84.6% 72.2% 50.% 78.1%
50 90.1% 82.4% 86.1% 84.0% 46.9% 84.6%
100 90.1% 88.3% 87.7% 88.6% 48.8% 82.4%
324 90.1% 79.0% 85.5% 86.1% 50.3% 78.4%

125 10 81.5% 70.7% 71.3% 65.7% 53.4% 63.0%
25 81.8% 77.2% 81.8% 67.9% 50.9% 68.5%
50 79.9% 78.4% 79.6% 72.2% 51.5% 67.0%
100 81.5% 74.4% 76.9% 75.6% 50.9% 65.4%
324 82.1% 70.1% 75.6% 68.5% 50.9% 70.1%

132

