
Enhancing the Software Improvement Processes through

Object-Process Methodology

By BARKER

Christine Miyachi T TS TUTE

BS, Electrical Engineering FEB 08 0
University of Rochester, 1984 2O0i

SM, Technology and Policy/Electrical Engineering,
MIT, 1986 LIBRARIES

MS, Electrical Engineering
UMASS Lowell, 1999

Submitted to the Sloan School of Management
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management

At the

Massachusetts Institute of Technology

-January 2001

02001 Massachusetts Institute of Technology. All rights reserved.

Signature of Author
MIT Sloan School of Management

January, 200ICertified by
Prof. Dov Dori
MIT School of Engineering
Thesis Supervisor

Accepted by_ _ _
Stephen C.Graves
LFM/SDM Co-Director
Abraham Siegel Professor of Manageme~ri

Accepted by
Paul A. Lagace
LFM/SDM Co-Director
Professor of Aeronautics & Astronautics and Engineering Systems

MITLbaries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http://Iibraries.mit.eduldocs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

The images contained in this document are of
the best quality available.

2

This thesis is dedicated to my husband Hiroshi and three
children, Mari, Ken, and Tomi, whose love and support made it

possible for me to complete.

This thesis is also dedicated to Dr. Dov Dori whose guidance and
brilliance in creating OPM was an inspiration for this work.

3

Enhancing the Software Improvement Processes through Object-

Process Methodology

By

Christine Miyachi

Submitted to the Sloan School of Management
in Partial Fulfillment of the Requirements for the Degree of Master of Science in

Management

Abstract

Object Process Methodology is a systems engineering methodology that provides a way to express
and communicate architecture of complex systems among stakeholders. Unlike other methodologies,
it provides both a visual part through Object Process Diagrams (OPDs) and a natural language
specification in the Object Process Language (OPL). The OPD and OPL have exact correspondence
to each other.

The objective of the research was to model and examine two software development approaches using
OPM. The research first developed an OPM tool over Microsoft Vision. Then, it applied that tool to
two software process improvement methodologies: the Capability Maturity Model (CMM) and the
Unified Software Development Process (USDP), which is based upon the Unified Modeling
Language (UML).

Using OPM as the analysis tool, improvements and misconceptions about these two methodologies
were shown. In CMM, it was clear that many people were needed to carry out the process and that
this excluded smaller companies with fewer resources from implementing it. In USDP, some goals
of the process architecture were not met as shown in the analysis. Automating both methodologies,
with an OPM tool provides would speed up the process and makes it more reliable.

Thesis Supervisor: Dov Doti
Visiting Associate Professor, Engineering Systems Division

Page 4 of 95

Enhancing the Software Improvement Processes through Object-
Process Methodology

By

Christine Miyachi

Submitted to the System Design and Management Program
January 2001 in Partial Fulfillment of the

Requirements for the Degree of Master of Science in
Engineering and Management

Executive Summary

Problem Statement

Many enterprises have adopted the Capability Maturity Model (CMM) and
the Unified Software Development Process (USDP) to increase their level of
software development productivity. This commitment to these processes is
expensive as it is managed largely without software support. This thesis
employs Object Process Methodology (OPM) to model and monitor the
software improvement process in order to make its adoption easier through
automation and decrease the expenses associated with its implementation.
OPM is used to model CMM and USDP. Methods for using OPM to
automate these processes have been created.

B. Originality Requirement

The application of OPM to model and monitor the software improvement
process is original. OPM is a systems engineering design paradigm for
modeling systems in general, not just software systems. Therefore, we
were able to model systems that involve organizations, hardware, and
software, which are at the heart of the software improvement process. To be
able to generate Object-Process Diagrams (OPDs) and translate them to
Object-Process Language (OPL) and vice versa, we developed a software
tool called OP-tool.

C. Content and Conclusions

We examined and modeled the architecture of both software improvement
processes and found that the CMM process architecture does indeed meet
its goals, but there is one coupling in the architecture that the designers do
not seem to be aware of. USDP goals are stated with implementation
embedded in them. We found that some goals were not capable of being
met through this process. Our OPM model shows that CMM requires a high

5

those goals. For each of the process architecture we determined the goals,
as well as the combination of structure and behavior to meet these goals.
All the modeling activities were done with OPM. To implement the design of
the proof-of-concept prototype, an algorithm and code were developed for
moving back and forth between Object Process Diagrams (OPD) and Object
Process Language (OPL) using the PERL scripting language. Finally, a
proof-of-concept prototype of a tool that generates one type of OPL
structure sentence from OPD was developed using Visual Basic for
Applications (VBA) and Visio@, a standard diagramming tool.

The work contained in the thesis is the author's and original.

Author: Christine M. Miyachi
System Design and Management Program

Thesis Supervisor: Dr. Dov Dori
Visiting Associate Professor, Engineering Systems
Division

LFM/SDM Co-Director: Dr. Stephen C. Graves
Abraham Siegel Professor of Management

LFM/SDM Co-Director: Dr. Paul A. Lagace
Professor of Aeronautics & Astronautics and
Engineering Systems

6

7

Table of Contents

Executive Sum m ar y... 5

Table of Contents.. 8

List of Figures... 10

Chapter 1: Introduction... 11

Chapter 2: Usinz OPM to analyze CMM and Unified Softivare Development
Process ... 13

Introduction... 13

A rchitectural F ram ework.. 13

Capability M aturity M odel .. 15

G oals of the CM M Architecture.. 15

O verview of the C M M .. 17

N ext Level of D ecom position.. 20

The A rchitecture of the Evolution... 30

Does CMM Meet the Goals of the Architecture? ... 32

Unified Sofivare Development Process .. 34

Does USDP Meet the Goals of the Architecture?.. 40

Com parison of CM M and USPD ... 41

R ecom m endations.. 42

Conclusion.. 45

R eferences... 46

Chapter 3: Requirements and Desian of an OPM Tool 48

Introduction... 48

M odel D riven A rchitecture.. 48

R equirem ents .. 49

Page 8 of 95

High Level Requirements ... 49
User Interface ... 51
OPL ... 51
OPD ... 52
Navigation .. 53

Data Storage ... 54
Patterns .. 55
Queries ... 55
Portability / Translation ... 55

Design ... 56

Design of a Parser ... 61

Design Chapter Summary .. 61

Bibliography .. 62

Chapter 3: Tool Implementation .. 63

Introduction .. 63

Graphical Details of OPD .. 65

VISIO@ Proof-of-Concept .. 67

Collaborative Development .. 74

The Learner .. 76

Summary ... 76

Bibliography .. 78

Chapter 5: Summary and Conclusions .. 79

References ... 82

Appendix A: PERL Code ... 83

Appendix B: Visual Basic For Applications Code .. 90

Page 9 of 95

List of Figures

Figure 1 A framework for defining architecture ... 14
Figure 2: High-Level architecture of the CMM ... 18
Figure 3: CMM Level 2 Organization ... 21
Figure 4: CMM Level 3 Organization .. 24
Figure 5: CMM Level 4 Organization ... 27
Figure 6: CMM Level 5 Organization .. 29
Figure 7: Architecture of CMM Evolution...31
Figure 8: The Unified Software Development Process Inside..36
Figure 9: The Process Template..37
Figure 10: T he M odel Set.. 38
Figure 11: Life Cycle of the Project .. 39
Figure 12: CMM Effectiveness vs. Company Size .. 43
Figure 13: Process Effectiveness..45
Figure 14- The Top Level Diagram for an OPM tool .. 59
Figure 15 - The agent link on the left is correctly attached to the process while the

instrument link on the right is incorrect; it should be touch the edge of the
process ellipse with the edge of its' circle...65

Figure 16 - A VISIO@ Shape Sheet associated with a process..67
Figure 17 - When the user wants to create a new diagram, OPM is a new diagram

type they can select.. 68
Figure 18 - OPM new drawing. Notice the area where the OPL will be generated..... 69
Figure 19 - Dialog box querying the user for the name of the process........................... 70
Figure 20 - Two objects are added. The dialog box for naming the object is not

sho w n .. 7 1
Figure 21 - OPL sentences that are not connected are generated internally as shown in

the "Immediate" window ... 72
Figure 22 - Adding a structural relation link or connector as it is called in VISIO@. 73
Figure 23 - Several structural relations with their corresponding OPL 74

Page 10 of 95

Chapter 1

INTRODUCTION

Chapter 1: Introduction

Many enterprises have adopted the Capability Maturity Model (CMM) and the

Unified Software Development Process (USDP) to increase their level of software

development productivity. Commitment to these processes is expensive as they are

managed largely without software support. This thesis employs Object Process

Methodology (OPM) to model and analyze the software improvement process in order

to make its adoption easier through automation and decrease the expenses associated

with its implementation. OPM is used to analyze the software process improvement

methodology and then it will be shown how OPM can enhance and improve the

methodologies. The methodologies chosen to analyze are the Capability Maturity

Model (CMM) and the Unified Software Development Process (USDP), a process that

uses the Unified Modeling Language as one of its core tools. These two processes are

radically different and OPM shows their differences and ways for improvement. The

OPM tool developed can be used to improve the software processes. This is

demonstrated through a prototype developed with Visio@.

All code developed is shown in the Appendices.

Page 11 of 95

The goal
among al

one of the
for eng

hardware,
and co

of
I pa
on I

inee
and

m m U

)PM
rties
y sys
ring
thus

nicai
invo

is to allow for communications
in product development. It is

tems engineering methodologies
systems, not just software or
can be used to analyze, design,

e complex systems among all
Ived stakeholders.

Page 12 of 95

Chapter 2

USING OPM TO ANALYZE CMM AND UNIFIED SOFTWARE
DEVELOPMENT PROCESS

Chapter 2: Using OPM to analyze CMM and Unified Software Development

Process

Introduction

This chapter will now focus on the application of OPM to an architecture problem.

This chapter will analyze the architecture of software development process.

Unlike other methodologies that just traditionally work with software or mechanical

systems, OPM can be used to analyze many aspects of systems architecture and

engineering. Using OPM as the tool for analyzing processes, this chapter examines

the architecture of two software processes and compares their strengths and

weaknesses. The two software processes we focus on are the Capability Maturity

Model (CMM) process and the Unified Software Development Process will be

compared.

Architectural Framework

To evaluate the architecture of these two processes, we need a framework for defining

architecture. The framework [3] used is described in the Object-Process Diagram

(OPD) in below.

Page 13 of 95

Product

Meincs

Upstream
Influencing Goal Measuring

Funcion Architecting ebma

C coept
onsra

Form

Figure 1 A framework for defining architecture

Upstream Influencing yields Goal.
Product exhibits Goal.
Function is a Goal.
Measuring requires Goal, Metrics and Form.
Measuring yields Performance.
Architecting requires Function and Goal.
Architecting yields Concept.
Form is a Concept.

The upstream influences considered in our analysis are corporate strategy, market data

and competition, market strategy, technology, and operations strategy. These

influences are translated into needs and then to goals. Goals lead to more refined

functions of the architecture. The goals and functions are required in the architecting

process, which yields a concept and then a more refined form. The form, goals, and a

Page 14 of 95

set of metrics are used to evaluate the architecture and produce a performance

measure.

We use this framework, described in OPM, to analyze and evaluate the architecture of

the two software processes. We define good architecture by the extent to which the

architecture meets its goals. The goals, function and form of the architectures of the

two processes will be defined and evaluated by measuring the goals with a set of

metrics.

Capability Maturity Model

Watts Humphrey and the Software Engineering Institute (SEI) at Carnegie-Mellon

University invented capability Maturity Model (CMM). It was originally used for

military avionics applications to evaluate software vendors, but has now spread and is

being used by major organizations in virtually every segment of the economy in the

US and globally [4].

Goals of the CMM Architecture

Most products contain software today, whether ubiquitous, like in a washing machine

or Internet applications, or mission-critical, like a space shuttle. However, software is

perceived to be the weak link in developing high quality products. CMM was created

not as a silver bullet to solve this problem, but as common-sense engineering process

for software. The goal of the CMM architecture is to apply Total Quality Management

(TQM) principles to software. The highest-level goal of TQM is to meet the needs

and expectations of the customer, now and in the future. Any software improvement

effort should operate inside the larger context of a business [9]. Although the CMM

does not state explicitly that the customer should be satisfied, it does state that the

software supplier should work with the customer to understand the customer's

requirements and should build software products that satisfy the customer's needs as

Page 15 of 95

documented in the requirements allocated to the software component of the total

system or product being supplied.

Meeting the needs of the customer can be decomposed into three goals: be on time,
be on budget, and meet the requirements. For software, being on time and on budget

means preventing the amount a rework that comes about by misunderstanding the

requirements.

To measure how those goals are met, we will study the function and form of the

process using OPM. We will then evaluate studies that measure the performance of

the architecture.

Critics of the CMM state that it encourages too much bureaucracy. Back [1] argues in

favor of "software heroism." Back claims that heroic software people find a way to

solve problems and software projects are just a sequence of problems encountered and

solved. The CMM authors specifically state that software heroes are too hard to find

and burn out quickly.

A summary of CMM goals is listed in the table below.

Page 16 of 95

Process should allow software to meet needs Measure % of customer needs met
of customers
Allow for easy adoption of the process Measure time and cost of adoption

To reduce the amount of rework in a Measure amount of rework
software project
Table 1- Goals and Metrics for CMM Architecture

Overview of the CMM

The figure below is the OPD and OPL of the high-level architecture of CMM.

Page 17 of 95

Organization

CMM Maturity Level
- - ---- 1...-

Intial repeatable defined) managed optirm zed
A-" --- ATA - Key Process

Area

Level 2 Level 3 Level 4 Level 5
Evolvin Evolving Evolvin Evolving are org 3nized by

1..m

r

'ie

Common Activity or
Goal Feature Set Infrastructure

CCMM Level MMIve CMM Level 3 CMM Level 4 CMM Level 5
OraianOrganization Organization Organization Organization 6

Implementation or Key PracticeA
Institutionalization Set

Activities
Measuring erfomin

Ability Commitment

Figure 2: High-Level architecture of the CMM

Organization exhibits CMM Maturity Level.
CMM Level 1 Organization is an Organization, the CMM Maturity Level of which is initial.
CMM Level 2 Organization is an Organization, the CMM Maturity Level of which is
repeatable.
CMM Level 3 Organization is an Organization, the CMM Maturity Level of which is defined.
CMM Level 4 Organization is an Organization, the CMM Maturity Level of which is managed.
CMM Level 5 Organization is an Organization, the CMM Maturity Level of which is optimized.

Page 18 of 95

Key Process Areas are organized by Common Features and achieve Goals.

Common Features consist of Key Practices.
Key Practices features Activities or Infrastructure.
Common Features address Implementation or Institutionalization.
Level 2 Evolving changes CMM Maturity Levels from initial to repeatable.
Level 3 Evolving changes CMM Maturity Levels from repeatable to defined.

Level 4 Evolving changes CMM Maturity Levels from defined to managed.
Level 5 Evolving changes CMM Maturity Levels from managed to optimized.

The specification of the CMM is generated via OPD and it OPL script equivalent. To

allow companies to meet the demands of customers, the CMM designers created a

process that is phased and allows companies to evolve. They did this in response to

the observation (which is a customer need) that organizations cannot change

overnight. Table 5 describes the levels of organization evolution according to CMM.

CAM Level Foc Key PocesArea
1 Initial Competent people and

heroics
2 Repeatable Project management

processes

3 Defined Engineering processes and
organization support

4 Managed Product and process quality

5 Optimizing Continuous process
improvement

None

Requirements management
Software project planning
Software project tracking and oversight
Software subcontract management
Software quality assurances
Software configuration management
Organization process focus
Organization process definition
Training program
Integrated software management
Intergroup coordination
Peer reviews
Quantitative process management
Software quality management
Defect prevention
Technology change management
Process change management

Table 2: CMM Maturity Levels, and Focus

Page 19 of 95

Each CMM level has a number of major characteristics. At the initial level, Level 1,
the software process is characterized as ad hoc, and occasionally even chaotic. Few

processes are defined, and success depends on individual effort and heroics. At Level

2, basic project management processes are established to track cost, schedule, and

functionality. The necessary process discipline is in place to repeat earlier successes

and projects with similar applications. At Level 3, the software process for both

management and engineering activities is documented, standardized, and integrated

into a standard software process for the organization. Projects use an approved

tailored version of the organization's standard software process(es) for developing and

maintaining software. At Level 4, detailed measures of the software process and

product quality are collected. Both the software process and products are

quantitatively understood and controlled. At Level 5, continuous process improvement

is facilitated by quantitative feedback from the process and from piloting innovative

ideas and technologies.

OPM provides a framework to distinguish between processes and objects, which is

sometimes muddled in architecture design. Consequently, the language used in the

OPL is slightly different than the language used above, which is the language in the

CMM. The language of the OPL originated in the CMM, but was adapted to follow

OPM rules.

Next Level of Decomposition

The next level of decomposition is shown in the figure below. Each organization,

which achieves CMM certification at a specific level, will have the shown processes

and objects in place. In the figure below, Level 2 is shown.

Page 20 of 95

equirements
Managing

Customer
Developer

o are
Project Requirement

Plannin Specification fwrPrj
Tracking &
Overseeing

Software Plan should fmeet

Develoing

Metrics

oftware Software

Subcontract
nagin o0twre

Qua*it
Assuin

Manager

oftware duality
Configuration Measure

[Subcontradtor
anagin

Figure 3-3: CMM Level 2 Organization

Figure 3: CMM Level 2 Organization

Software Developing yields Software.
Software Project Planning yields Plan.
Software Project Tracking & Overseeing yields Metrics.
Software Quality Assuring yields Quality Measure.
Software Configuration Managing affects Software.

Page 21 of 95

Software should meet Requirement Specification.
Requirements Managing yields Requirement Specification.
Developer and Subcontractor handle Software Developing.
Developer and Manager handle Software Project Planning.
Developer, Manager, and Customer handle Requirements Managing.
Manager handles Software Quality Assuring.
Software Project Tracking & Overseeing requires Plan.
Manager and Subcontractor handle Software Subcontract Managing.

As stated earlier, the key process areas at Level 2, which are represented as the five

processes in the OPD, focus on the software project's concerns related to establishing

basic project management controls. Interestingly, the specification does not list

explicitly the objects that the processes affect. Due to the fact that OPM requires that

objects be involved in the occurrence of processes, we were able to derive these

objects, and they are displayed via the OPD in the figure below. From the CMM

specification [9], the purpose of each key process area is described.

Requirements Management: Establish a common understanding between the customer

and the software project of the customer's requirements to be addressed by the

software project. This agreement with the customer is the basis for planning and

managing the software project.

Software Project Planning (SPP): Establish reasonable plans for performing the

software engineering and for managing the software project.

Software Project Tracking and Oversight (SPTO): Establish adequate visibility into

actual progress so that management can take effective actions when the software

project's performance deviates significantly from the software plans.

Software Subcontract Management: Select qualified software subcontractors and

manage them effectively.

Page 22 of 95

Software Quality Assurance: to provide management with appropriate visibility into

the process being used by the software project and of the products being built.

Software Configuration Management: Establish and maintain the integrity of the

products of the software project throughout the project's software life cycle.

Level 2 is often the most difficult level to obtain. Almost 100% of the companies that

do not attain Level 2 certification fail to get it because they cannot implement SPTO

and SPP [5]. According to one study of 28 organizations, it took an average of 26.5
months to evolve from Level 1 to Level 2 [5].

The Level 3 organization is described in the figure below and the following OPL.

Page 23 of 95

Organization
rocess Focusin

Training
Organization rgrammin
rocess Definin Manager Developer

oftware Product
Integrated .Engineering

oftware Managin Sfwr

Peer
Intergroup Reviewing
oordinatin

Figure 4: CMM Level 3 Organization

Manager handles Organization Process Focusing, Organization Process Defining, Integrated
Software Managing, and Intergroup Coordinating.
Intergroup Coordinating affects Developer.
Training Programming affects Developer.
Integrated Software Managing, Software Product Engineering, and Peer Reviewing yield
Software.
Developer handles Software Product Engineering and Peer Reviewing.
Organization Process Focusing yields Organization Process Defining.
Organization Process Defining yields Integrated Software Managing.

Page 24 of 95

The key process areas for Level 3 are focused on project and organizational areas. Its

processes concentrate on creating an organization that can establish the infrastructure

for institutionalizing effective software engineering and management processes across

all projects. As done above, the purpose of each key process area is described below.

Organization Process Focus: Establish the organizational responsibility for software

process activities that improves the organization's overall software process capability.

Organization Process Definition: Develop and maintain a usable set of software

process assets that improves process performance across the projects and provides a

basis for defining meaningful data for quantitative process management. These assets

provide a stable foundation that can be institutionalized via mechanisms such as

training.

Training Program: Develop the skills and knowledge of individuals so they can

perform their roles effectively and efficiently.

Integrated Software Management: Integrate the software engineering and management

activities into a coherent, defined software process that is tailored from the

organization's standard software process and related process assets. This tailoring is

based on the business environment and technical needs of the project.

Software Product Engineering: Perform consistently a well-defined engineering

process that integrates all the software engineering activities to produce correct,
consistent software products effectively and efficiently.

Intergroup Coordination: Establish a means for the software engineering group to

participate actively with the other engineering groups so the project is better able to

satisfy customer needs effectively and efficiently.

Page 25 of 95

Peer Reviews: Remove defects from the software work products early and efficiently.

According the same study [5], it took 23 organizations an average of 24 months to

evolve from Level 2 to Level 3.

Level 4 concentrates on establishing a quantitative understanding of both the software

process and the software products being built. The processes in these areas largely

parallel Six Sigma because they include statistical approaches to software

development [2]. The figure below shows a Level 4 organization.

Page 26 of 95

Performance Metrics]

Software

Software Quality
Managing

Figure 3-5: CMM Level 4 Organization

Figure 5: CMM Level 4 Organization

Quantitative Process Managing yields Performance Metrics.
Software Quality Managing yields Quality Metrics.
Quantitative Process Managing requires Quality Metrics.
Software Quality Managing requires Software.

Notice that this organization has a coupling between the processes. We are not sure if

this was intentional but we can easily see the coupling using OPM.

Page 27 of 95

tQuantitative ProcessManaging Quality Metrics

What about Quality as an attribute of Software here too, with various values (levels)

with Software Quality managing affecting it?

Level 4 concentrates on establishing a quantitative understanding of both the software

process and the software products being built. The purposes of the key process areas

are discussed below.

Quantitative Process Management: Control the process performance of the software

projects quantitatively.

Software Quality Management: Develop a quantitative understanding of the quality of

the project's software products and achieve specific quality goals.

A Level 5 organization is shown in below.

Page 28 of 95

(Deectin PeveningSoftware

Technology Change
Managing

Process Change
Managing

New Technology

Figure 6: CMM Level 5 Organization

Technology Change Managing invokes Process Change Managing
Technology Change Managing requires New Technology.
Technology Change Managing yields.
Defect Preventing affects Software.

Level 5 concentrates on the issues that both the organization and the projects must

address to implement continuous and measurable software process improvement. The

purposes of the key process areas are listed below.

Page 29 of 95

Defect Prevention: Identify the causes of defects and prevent them from recurring.

Technology Change Management: Identify beneficial new technologies (i.e. tools,
methods, and processes) and transfer them into the organization in an orderly manner.

Process Change Management: Continually improve the software process used in the

organization with the intent of improving software quality, increasing productivity,

and decreasing the cycle time for product development.

The Architecture of the Evolution

The figure below describes the evolutionary nature of the architecture of the CMM

process. Each maturity level builds on the previous one. Each Key Process Area

(KPA) at level i must exist at level i+1 and higher. Some KPAs can also evolve, as

shown below.

Page 30 of 95

CMM Level 1
Organization

Level 2 Evolving

are Projec ware Projec tequiremen
lanning Tracking Managing

.MM Level 2 Organization

Level 3 Evolving

ntegrate oftware
Software Product

Managin n ineerin

CMM Level 3 Organization

Level 4 Evolving

J

ua tv oftware Qualiy

rocess Chang Defect
Managing CMM Level 5 Organizatio Preventing

Figure 7: Architecture of CMM Evolution

Integrated Software Managing specializes Software Project Planning and Software Project
Tracking.
Software Product Engineering specializes Requirements Managing.
Quantitative Process Managing specializes Integrated Software Managing.
Process Change Managing specializes Quantitative Process Managing.

Page 31 of 95

Software Quality Managing specializes Software Product Engineering.
Defect Preventing specializes Software Quality Managing.
Integrated Software Managing specializes Software Project Planning and Software Project

Tracking.
Software Product Engineering specializes Requirements Managing.
Quantitative Process Managing specializes Integrated Software Managing.

Process Change Managing specializes Quantitative Process Managing.
Software Quality Managing specializes Software Product Engineering.
Defect Preventing specializes Software Quality Managing.
Integrated Software Managing is Software Project Planning and Software Project Tracking.

Software Product Engineering is Requirements Managing.
Quantitative Process Managing is Integrated Software Managing.
Process Change Managing is Quantitative Process Managing.
Software Quality Managing is Software Product Engineering.
Defect Preventing is Software Quality Managing.

As you can see from the OPM, SPTO and SPP evolve into continues process

improvement in Level 5. Requirements management evolves into defect preventing in

Level 5. Many software defects are caused by not understanding requirements.

Does CMM Meet the Goals of the Architecture?

Now that we have studied the architecture, we can evaluate whether it meets the needs

of the customer. The needs of a customer using CMM are categorized by the

following. Does implementing the CMM make us more productive, have a quicker

Time To Market (TTM), reduce our post-release defects, and is cost effective to

implement? According to a study done by the SEI [4], the answer is yes. The table

below summarizes the results.

Productivity gain/year 9%-67% 35% 4

Time to Market (reduction/year) 15%-23% - 2

Post-release defects (reduction/year) 10%-94% 39% 5
Business value ration 4.0-8.8:1 5.0:1 5

Table 3: Customer Goals - Survey of Results

Page 32 of 95

Another study also measured how expensive it was to implement CMM [5]. It cost on

average $1,375 per engineer. One organization where the author works spends 20%

of their departmental budget on CMM implementation.

The criticism of CMM has focused on the fact that an organization may become

concerned only about the process and not about the product. In the same study [5],
96% of respondents disagreed that CMM was counterproductive, 90% disagreed that

they neglected non-CMiM issues, and 85% disagreed that they became more rigid and

bureaucratic. Another criticism is that CMM organizations become risk-averse.

According to the same respondents, only 42% of Level 1 organizations said they were

risk-takes, versus 74% in Level 2, and 79% in Level 3 organizations. Thus, the more

use of CMM, the higher the risk taking the company is.

For the second goal - making it easy to adapt to the CMM - the architects created the

evolutionary levels where each level could build upon the previous one. This satisfies

the goals but for most medium to small companies, the cost of $1,375 per engineer per

year and the time to move to Level 2, which is 25.6 months on average, is too much of

an investment for most small companies under 200 people. In fact, the smaller the

company, the less relevant they found the CMM course material [5].

For the third goal - to reduce the amount of rework in software projects - we can

measure how well budgets, schedules, and customer requirements are met. The

percentage of respondents [5] found an over 20% increase in product quality,

productivity, ability to meet schedules, ability to meet budgets, and staff morale.

Customer satisfaction increased overall but went down when a company went from

Level 1 to Level 2.

By using OPM, we observe many agent links in the CMM organizations. This is

supported by the cost and time numbers reflected in the survey.

Page 33 of 95

In summary, the CMM architecture does meet the goals. However, the architecture is

too heavy for small companies to adopt. Perhaps CMM should only be meant for

larger companies that need to control quality in a more sophisticated manner.

Unified Software Development Process

Another popular development process is based on the Unified Modeling Language

and is called the Unified Software Development Process (USDP) [7]. The

architectural goals of the process are as follows:

* To provide guidance to the order of a team's activities.

* To direct tasks of individual developers and the team as a whole.

* To specify what artifacts should be developed.

* To offer criteria for monitoring and measuring a projects' products and

activities.

The top-level architecture of the process is shown in the figure below. This OPD

could be generalized to all software development activities, whether using the Unified

Process or not.

Page 34 of 95

Figure 3-8: USDP Top Level Architecture

Requirement Un _eepre[> Software System
-Specification

DeveIop n

User Requirement Specification is required for Unified Software Developing
Unified Software Developing produces Software System.

Requirements come in and the software system is produced. The figure below shows

the process at the next level of decomposition.

Page 35 of 95

Figure 8: The Unified Software Development Process
Inside

Processing

Model

User-- - - - ---
Requirement Tools pOlftware Syste
Specification PeopleSotaeysm

ied Software Devel

Tools are required for Project Managing.
People handle Processing.
Processing yields Model.
Project Managing specializes Processing.

The important piece to note about this diagram is that the process is a template for the

project. Each project will specialize the process for it's own purpose. Below shows

the details of this template.

Page 36 of 95

I' Use Case - - - -

Use Case MUdsen Enger

Component
Engineer has tram dependencis

Test Modeling
Analysis Modeling Analysis Model

Test Engineer
has krace dopendendies

D pom nLDeployment
Model

Design Modeling Design Model

Implementation Deployment Modeling

n has tram dependencesM

Implementation Architect
Modeling

Processing

Figure 9: The Process Template

Test Engineer handles Test Modeling.
Component Engineer handles Analysis Modeling and Design Modeling.
Architect handles Deployment Modeling and Implementation Modeling.
Use Case Engineer handles Use Case Modeling.
Use Case Modeling yields Use Case Model.
Analysis Modeling yields Analysis Model.
Design Modeling yields Design Model.
Implementation Modeling yields Implementation Model.
Deployment Modeling yields Deployment Model.
Test Modeling yields Test Model.

Page 37 of 95

Note that the process template is based on six different models. Each of these models

makes use of specific Unified Modeling Language (UML) diagrams, which is why

this process is tied to the UML. The output of the process template is a model. Below

shows the various models that make up this model.

Model

Use Case Model

sp d a Analysis Model

realizes Design Model

ditutes
Deployment

Model

Implementation
Model

Test Model

Figure 10: The Model Set

Model consists of Use Case Model, Analysis
Implementation Model, and Test Model.
Analysis Model specifies Use Case Model.
Design Model realizes Use Case Model.
Deployment Model distributes Use Case Moi
Implementation Model implements Use Casi
Test Model verifies Use Case Model.

Model, Design Model, Deployment Model,

Page 38 of 95

All the models relate back to the Use Case Model, which defines the requirements of

the system. The figure below describes the project management part of the process.

This is a specialization of the process and also describes the life cycle of the process.

Each phase produces iterations of the work products.

Dterttion

-E> Analysis
.. n Iteration

InceptingIn
Design Iteration

Elaborating ___ n Implementaiton

test teratn

1..

Project Managing

Figure 11: Life Cycle of the Project

Incepting yields 1 to n Requirement Iteration and 1 to n Test Iteration.
Elaborating yields 1 to n Requirement Iteration, 1 to n Analysis Iteration, 1 to n Design
Iteration, I to n Implementation Iteration and I to n Test Iteration.

Page 39 of 95

Constructing yields I to n Requirement Iteration, I to n Analysis Iteration, I to n Design

Iteration, 1 to n Implementation Iteration and I to n Test Iteration.

Transitioning yields 1 to n Implementation Iteration and I to n Test Iteration.

The USDP is an iterative process, which produces various sets of work products

throughout the life of the product.

Does USDP Meet the Goals of the Architecture?

The table below reiterates the goals of the architecture.

To provide guidance to the order of a team s Order of activities - was it done that way on

activities a real project and was it effective?

To direct tasks of individual developers and On real project - measure the tasks specified

the team as a whole - were any tasks left out - % of tasks
specified.

To specify what artifacts should be List and completeness of artifacts specified.

developed
To offer criteria for monitoring and Measure criteria against a real project

measuring a projects products and activities - and if it contributed to the success
of project

Table 4: Goals of the USDP Architecture

Although there is no research on the effectiveness of this particular process, the first

goal is common to many software processes, such as the one described in [6]. The

successes of an iterative phased approach to development are described in [10]. For

the second goal, although we have not measured this on a real project, the OPM

describes the work processes and products of the key engineers, so it does meet the

second goal in theory. Similarly, for the third goal, the process clearly specifies what

work products to be produced. The one goal that the process fails to meet is the fourth

one. Specific criteria are never mentioned in the book.

Therefore, the architecture of the USDP meets three out of the four goals.

Page 40 of 95

Comparison of CMM and USPD

To compare the processes, we first compare the goals of the two processes, which are

distinctly different.

To provide guidance to the order of a team s Process should allow software to meet needs

activities of customers

To direct tasks of individual developers and Allow for easy adoption of the process

the team as a whole
To specify what artifacts should be To reduce the amount of rework in a

developed software project

To offer criteria for monitoring and
measuring a projects products and activities

Table 5: Architectures Comparison

The goals of USPD, as stated in the specification [7], are not as high level as they

should be. For example, why would you want to provide guidance and direct tasks?

CMM better states these goals as any software process has the goal of better meeting

customer needs. The CMM goals are stated at a much higher level without any

implementation. The USPD goals have some implementation mixed in with the

mention of artifacts and tasks.

Another method of comparison is to measure the complexity of a process. OPM

provides a way to measure this. Let each process or object or "thing" have 2 points

and each link have 1 point. The higher the number of the diagram, the higher the

complexity is displayed. If we measure this for a Level 2 organization, we get a

complexity measure of 50. If we measure the template of the USPD, we get a

complexity measure of 46. Overall, the USPD diagrams are less complex, and use

fewer agents then the CMM diagrams.

Page 41 of 95

Another key difference is the CMM does not specify how to implement the CMM. It

gives a description for each process area, but leaves it up the organization to design an

implementation. The USPD describes the process in more decomposition shown here,

and brings in the UML at later levels.

Recommendations

" CMM has mostly agents (humans) involved. This process is very costly and

may benefit by having more automation or instrument links in the architecture.

* The CMM process specification did not describe clearly the output of the

processes. We were able to surmise them by the description but OPM forces

the issue, giving a framework for clearly specifying the architecture. The

CMM could benefit from clearly specifying the input and output of the

processes.

* Smaller companies might better use CMM if it were less expensive to

implement. The biggest hurdle seems to be in Level 2. The level of

complexity of this diagram is relatively high. Moreover, according to [5], the

effectiveness of CMM as surveyed is shown below.

Page 42 of 95

a
0

E

E

0

C:

Company Size - Small -> Large

Figure 12: CMM Effectiveness vs. Company Size

* The USDP, although specified more completely, also has a relatively high

level of complexity. Nevertheless, the iterative nature of the process is more

in tune with modem successful software practices [10].

* Although we don't have the data, we believe small companies would be

unlikely to implement all the models specified in the USPD. We recommend

reducing the number of models in some implementations.

An important factor with any process is how it is implemented. The merits of a

process are many [7]:

0 Everyone on the development team can understand what he or she has to do to

develop the product.

Page 43 of 95

0 Developers can better understand what other developers are doing.

0 Supervisors and managers can understand what developers are doing.

* Developers, supervisors, and managers can transfer between projects without

having to relearn a new process.

0 Training can be standardized.

0 The course of the software development is repeatable and thus can have

predictable schedules and costs.

The problem with any process when implemented is that if it is too rigid, it becomes

ineffective as shown below.

Page 44 of 95

ULLL --

Process
7

WPWW~W~7t.
S

II
vs

47 7~

WAY

t~Y

WtYY Y4
7

--WY

SWAY>

XAt2ThYW2~ C

S.

SRIgta ,
'Process

rocess teciveness

Figure 13: Process Effectiveness

Conclusion

OPM has successfully been used to analyze the architecture of two processes.

Because of the precise nature of OPM, the architecture could be examined in ways

even the architects could not. The combination of OPD and OPL provides a exact

way to produce a specification. It is easy to use natural language imprecisely, but

OPL, although natural in language, is precise in its' use. Thus, specifications are

clear, exact, and naturally stated

Page 45 of 95

References

1. Back, J., Software Herosism. IEEE Software, 1995.

2. Card, D., Sorting out Six Sigma and the CMM. IEEE Software,

May/June 2000.

3. Crawley, E., Form and Function, Systems Architecture Class,

ESD.34, MIT,. 2000.

4. Herbsleb, J., et.al, Benefits of CMM-based software process

improvement: Initial Results. SEI, CMU, 1994.

5. Herbsleb, J., et.al., Software Quality and the Capability Maturity

Model. Communications of the ACM, June 1997. 40(6): p. 30-40.

6. Highsmith, J., Adaptive Software Development. 2000: Dorset House

Publishing.

7. Jacobson, B., Rumbaugh, The Unified Software Development

Process. 1999: Addison Wesley.

8. Krishnan, M.S.a.K., Marc, Measuring Process Consistency:

Implications for Reducing Software Defects. IEEE Transactions on

Software Engineering, November/December 1999. 25(6): p. 800-

815.

Page 46 of 95

9. Paulk, M., et.al., The Capability Maturity Model: Guidelines for

Improving the Software Process. 1994: Addison Welsey.

10. Preston G. Smith, e.a., Developing Products in Half the Time. 1998:

John Wiley & Sons.

Page 47 of 95

Chapter 3

REQUIREMENTS AND DESIGN OF AN OPM TOOL

Chapter 3: Requirements and Design of an OPM Tool

Introduction

The OPM tool has requirements and a design to satisfy those requirements. This

chapter first will detail requirements.

Two specific aspects of the design will be further broken down. First, the user

interface will be discussed in detail. Second, the algorithm, which handles the

translation between OPD and OPL, will be shown along with a prototype.

Model Driven Architecture

Model-Driven Architecture (MDA) is a comprehensive standard framework

for understanding, development and life cycle support of systems that comprise

software, hardware, humans, and business practices.

MDA specifies standard approaches to describing, developing and maintaining these

systems and provides standardized methods that serve as building blocks

to support the various system-life cycle phases.

OPM is a MDA methodology. The OPD diagrams and natural English OPL can

understand by interdisciplinary teams.

Page 48 of 95

Requirements

Over the past six months of work on this thesis, we have gathered the following top-

level requirements for an OPM tool.

High Level Requirements

1. OPD - a graphics program is required to represent a complete set of OPD

elements. A list of all the graphical sentences (collections of one or more OPD

symbols linked in a particular arrangement) will be created along with their

corresponding OPL sentences. This is called "the OPD-OPL tool".

2. The OPD and OPL need to persist after creation. A database will be needed for

storing OPD elements and language.

3. There must be bi-directional translation between OPD and OPL.

4. The OPD-OPL tool needs work with distributed groups. The database must be

able to handle multiple accesses from different locations so various people can

work on different sub-systems of the same system simultaneously by agreement

on predefined interfaces

5. The OPD-OPL tool should have knowledge management system to be able to

manage the database. Search tools, report generation, simulation, and real-time

constraint specification for process duration, state duration and state-transition

duration. Constraint modeling would be part of this system.

6. The OPD-OPL tool must be extendable by users in terms of domain-specific

symbols and links and the corresponding OPL sentences. This would require a

user interface for users to extend OPD / OPL.

Page 49 of 95

7. The OPD-OPL tool must be extendable by programmers. This would allow

them to build translators to other languages such as C++, JAVA, XML or OCL.

- The OPD-OPL tool must be able to translate from OPL to UML (using OCL?)

- The OPD-OPL tool must be able to translate from OPL to C++, JAVA, and

XML

8. The OPD-OPL tool must be portable, i.e. OS independent.

9. A development environment must be established for the work done on the tool

by a group of software engineers.

10. The OPD-OPL tool must have the ability to simulate the design. The simulation

needs to be graphic as well as textual in accordance with the OPM philosophy.

11. The OPD-OPL tool must be able to export diagrams and sentences into Word

and Excel documents for automatic document generation. It also must have

the ability to export text only sentences.

User Interface

* If there is any ambiguity on which sentence to generate or graphical item to

choose, the user will be asked to choice between the possibilities using a drop-

down dialog box listing the choices.

Page 50 of 95

" The recognizer consists of three basic steps: input, check, and translate.

" Each thing in the OPD and OPL should have the option to be linked to any

multimedia item: image, video, spreadsheet table, text file, engineering

drawing; a right click will open a drop down menu shown what exist for that

thing so the user can open it and get a clear idea what the thing is, how it

looks, behaves, what it does, how defined, etc.

OPL

* The OPL string will have the following rules:

o Objects, processes and states will be bold.

o Objects and process will begin with capital letters, states will not.

o Processes will always end in a word that ends in "ing".

o Relation text will be in bold.

o All OPL keywords will not be in bold

OPD

* Structural relations should be more easy to denote: click on a triangle symbol

then get a dialog box telling you to highlight the root (whole or general or

characterized or class) thing then telling you to highlight the set of one or more

descendants (parts or specializations or features or instances) by shift-click or

Page 51 of 95

mouse drag over area that includes these things, then automatically place the

triangle and all the (ortho-normal) links to the father and sons.

" The tool must be able to do square lines for all the relationships (maybe switch

between square and straight or curved).

* Ability to query graphically - generate new OPD around a set of one or more

specified things, denoting as a parameter the Hamiltonian distance ("radius")

from each thing should be included in the query

" Text should along links as in OPCAT (the original OPM prototype) but should

not disappear if space is too small.

" The participation constraints should be attached as small boxes to the edges of

the lines in the fundamental links that touch the things. They can be not only to

the structural links but also to procedural as in "Mixing requires 3 Mixers" or

"Packing yields between 6 to 10 Packages."

" Physical and environmental objects are represented by 3-D and dotted lines

and can be mixed together and with the solid line and non-3-D internal and

informatical objects. An algorithm is needed to align things and links in an

OPD. Manual help optional to realign/rearrange/move/resize- will be needed

always. Various link routing modes (curves, splines, many knees, manually

changing knee locations to avoid crossing things). Automatic line crossing

disambiguating, ability to switch line modes. Stay with ortho-normal modes to

structural and all the rest for procedural (gives the feeling of flowing)

" Faithful graphical zooming in/out with care for fonts is needed. Easy change

of fonts, size color style superscript etc. (word proc. options).

Page 52 of 95

* Simulation graphics - flashing, flowing in lines, time control, etc will be

required for future development.

Navigation

" Filtering of the language and the diagrams would be useful. This is form of

encapsulation that would allow a user to easily filter specific items or types of

items both in OPD and OPL for particular audiences.

* Ability to abstract, not just detail - by pointing at a set of things and require a

new OPD that has a new thing which is their father but without the sons. (Both

zooming out and folding for both objects and processes, and state suppressing

for states). There should be an option to do this but remain in the same OPD if

there is already at lease one OPD that has the more detailed picture (that is,

that we warn before deleting captured details)

* Automatically detect and denote partial aggregation, and the rest of the

fundamental structural relations, when there are subsets of the sets of

fundamental descendants (parts, specs, features or instances).

" Ability to query and see a complete list of fundamental descendants (parts

specs, features or instances) or any combination thereof, both graphically and

textually.

1. Continuous updating of the SysteMap with links from the source thing to the

destination thing - always in the direction of detailing (even if we do abstracting as

mentioned above). Ability to move SysteMap nodes manually to enhance clarity.

Algorithm to make it clear.

Page 53 of 95

2. One of the items on this menu will be a list of all the children - parts, specs,

features and instances of it.

Data Storage

" OPD is non-linear and OPL is linear and we will in some instances combine

OPL sentences to reflect more concise graphic patterns in OPD. To start with,
we will just output the simple sentences but we should keep in the back of our

mind this requirement

" Continuous Consistency checking with respect to the evolving system

OPDBMS database. The Object Process database management system

(OPDBMS) is a database created specifically for the type of data we need to

store.

Patterns

* An error-handling pattern (both for standard return codes and exception

handling) would be useful for the pattern library.

Queries

* Query all the info related to a certain thing in various crosses or sorting.

Portability / Translation

" The tool must be integrated with MS Word for a complete documentation set

which will consist of OPL and any commentary added by user.

* Filter and/or convert to generate the various UML diagrams as well as other

types of diagrams.

Page 54 of 95

9 Code generation - Java + XML first, then C++.

Page 55 of 95

Design

We have used OPM to design the OPM tool. This design is called the "Meta-

Language" of the OPM. We need to start with a "kernel" of OPM to do this and we

chose objects, processes, and relations.

OPM was a natural way to discuss the design between all parties - not much

background was needed. Requirements often came to us at different levels of the

hierarchy. OPM was able to capture this.

The OPD in the OPM figure below and the associated OPL is a description of the

OPM tool, cited from a patent pending by D. Dori.

The core of the Learner is the OPM kernel. The OPM kernel is the basics needed for

OPM. Using the Learner, a user can extend the OPM kernel to create symbols

specific to their architecture. For example, a chemical processing architecture added a

new link to specify a manufacturing transformation between objects.

The OPM Kernel consists of Objects, Processes, States, the transforming connections,
the enabling connections, and the structural relations. This is shown in following

three tables, reproduced from [1].

Page 56 of 95

Things

Object Process State

A thing that exists at A thing that changes Where the object is at
some state object state a point in time

Table 6 OPM Entities

Type Name Symbol Source Destination

Consumption

Result

Input

Output

Effect

Agent -o

Instrument 0

Table 7 - Procedural Links

Page 57 of 95

Type Name Symbol

Unidirectional forward name

81-directional 1forward name
B backward name

Aggregation-Participation

Exhibition-Characterization

- ~ Generalization-Specialization A
Classification-Instantiation

Table 8 - Structural Relations

The top-level model is described in the following figure. The corresponding OPL is

listed after the model.

Page 58 of 95

SysteMaker

Mode

learning

recognizing

Learner Recognizer

OPM Teaching- Designing-
Expert Learning Recognizing
Team

OPM System
Metamodel Architect

Domain-Enhanced System
OPM Metamodel OPM Model

stores

PDBMS

Figure 14- The Top Level Diagram for an OPM tool

Page 59 of 95

SysteMaker exhibits Mode. (Exhibition sentence)
Mode can be learning or recognizing. (State enumeration sentence)
Learner is SysteMaker, the Mode of which is learning. (Exhibition

sentence)
Recognizer is SysteMaker, the Mode of which is recognizing.

(Exhibition sentence)
OPM Expert Team handles Switching and Teaching-Learning.

(Compound agent sentence)
Teaching-Learning requires Learner. (Instrument sentence)
Teaching-Learning affects OPM Metamodel. (Effect sentence)
Domain Enhanced OPM Metamodel is an OPM Metamodel.

(Specialization sentence)
System Architecting Team handles Designing-Recognizing.

(Agent sentence)
Designing-Recognizing requires Recognizer. (Instrument sentence)

Designing-Recognizing yields System OPM Model. (Result
sentence)

Domain Enhanced OPM Metamodel is an OPM Metamodel.
(Specialization sentence)

OPDBMS stores OPM Metamodel and OPM System Model.
(Compound structure sentence)

Graphics Learner is a Graphics Window. (Specialization sentence)
Text Learner is a Text Editing Window. (Specialization sentence)
Graphic Sentence Defining is a process. (Simple Process sentence)
Formal English Sentence Defining is a process. (Simple Process

sentence)

Notice that the specification of the tool is created in the OPL, which exactly matches

the OPD. The method allows designers too look at designs via natural language

specification and diagrammatically.

Page 60 of 95

Page 61 of 95

The meta-model in the OPD and OPL describes OPM. No extra text was needed to

describe the system. The OPL and OPD described the design completely using

consistent, unambiguous language.

Design of a Parser

The OPM tool allows for users to either start using OPD or OPL. A tool was created

in PERL for parsing OPDs and generating OPLs and for taking OPLs and producing

OPDs. The code and output from this work are in Appendix A.

Design Chapter Summary

In this chapter, we have laid out high level and second level requirements. From

there, we designed an OPM tool using an OPM Meta-Model. The design was fully

specified using OPL and no extra text was needed. This OPM (the set of OPD and

OPL) can be used to communicate the design to a whole array of people - managers,
engineers, testers - that will be needed to develop the tool.

Page 62 of 95

References

1. Dori, D., Object Process Methodology: A Holistic Systems Development

Paradigm. 2001: Sringer Verlag.

Page 63 of 95

Chapter 4

TOOL IMPLEMENTATION

Chapter 3: Tool Implementation

Introduction

After completing requirements analysis for the OPM tool, we went on to determine a

design for the tool. There are three main aspects we felt were important in the design:

1. Dori [3] has details for each graphical element that need to be followed. For

example, the agent and instrument link should be just touching the object or

process. The correct figure is shown below on the left, while the incorrect is

shown on the right. The OPD specification has hundreds of details for the

graphics that are important to serve the vision of the look and feel of the tool.

Page 64 of 95

Software
Engineer

Testing

Test

Testing

Figure 15 - The agent link on the left is correctly attached

to the process while the instrument link on the right is

incorrect; it should be touch the edge of the process ellipse

with the edge of its' circle.

2. The tool must allow for collaborative development. The vision of OPM is that

it will be used between the different groups in an organization. To do this, it

must be able to allow multiple people work the diagrams simultaneously. This

is a similar requirement for a distributed database.

3. The learner is a key design piece to allow organizations to extend the

architectural language and diagrams for their specific needs. This also allows

the OPM kernel to be extended easily.

This chapter will address these three main design issues and detail a proof-of-concept

that was developed for the OPM tool. Issue 3 was mostly detailed in the previous

chapter but will be outlined here on how it could be done given our chosen solution.

The emphasis will be on issues 1 and 2.

Page 65 of 95

Graphical Details of OPD

The graphical details are an extremely important feature for the look and feel of the

OPM tool. Rather than program them ourselves, we decided to build upon an existing

graphics tool. The tool we chose was Microsoft VISIO@ 2000. Visio@ 2000 is

entirely programmable. We used Visual Basic for Applications (VBA) to program

our tool. VISIO@ allows for shape geometry and behavior to be finely controlled by a

designer.

VISIO@ has 2-D shapes and l-D shapes. l-D shapes are typically connectors. In

OPM, there are only three 2-D shapes: Objects, Processes, and States. States are only

allowed to be grouped inside Objects. The links and structural relates are all

connectors in VISIO@ [1].

Moreover, the OPL can be automatically generated using VBA. VBA allows

programmers to write code that will examine connectors and shapes. From this, logic

can be added that will determine what connectors connect to which shapes.

We originally thought that we needed a database to associate the OPL text with the

OPD. But the structure is more like a table. In VISIO®, we are able to associate data

with shapes and connectors. This turned out to be enough.

Page 66 of 95

Figure 16 - A VISIG® Shape Sheet associated with a
process

The figure above shows part of a shape sheet associated with the processes selected in

the diagram. The User-Defined Cells show two types that were added by us to define

a process. The first is the OPL associated with the process. The second is the OPD

type. These cells are required for all OPD shapes - both 2-D and 1 -D "things" and

"links". "Things" are called "shapes" in VISO and "links" and "relations" are called

connectors.

Page 67 of 95

VISIO@ Proof-of-Concept

This section will outline the proof-of-concept using the VISIO@ tool. VBA code was

written to produce this tool.

The figure below shows the OPM template. The figure below shows the new type of

diagram called an OPM.

Figure 17 - When the user wants to create a new diagram,

OPM is a new diagram type they can select.

Once this type is chosen, an empty screen comes up.

Page 68 of 95

Figure 18 - OPM new drawing. Notice the area where the

OPL will be generated.

The green area on the left shows the OPD stencils. This area is not complete.

As a demonstration, we will add a process. When we do this a dialog box appears.

Page 69 of 95

I

Figure 19 - Dialog box querying the user for the name of

the process.

Each process must begin with a capital letter and end with "ing" although there can be

more than one word.

Two objects are also added.

Page 70 of 95

Fratio

Figure 20 - Two objects are added. The dialog box for

naming the object is not shown.

Objects must begin

words.

with a capital letter and be nouns. But they also can be multiple

In the Visual Basic window, internally, the OPL for the things are generated internally

the moment the thing is dropped onto the page.

Page 71 of 95

Figure 21 - OPL sentences that are not connected are

generated internally as shown in the "Immediate" window.

A unidirectional relation tag is added between objects. This text must be a verb

phrase that relates two nouns. The VBA code can have logic that checks for this

constraint.

Page 72 of 95

Figure 22 - Adding a structural relation link or connector

as it is called in VISIO@.

The next figure shows several structural relations with the corresponding OPL that

was generated by pushing the generate OPL button. The vision for the final product is

to have the OPL produced as the links are made. VISIO@ and VBA are capable of

this since all mouse clicks can be captured as events. Once a click is made, the shape

it is related to can be examined to see if OPL can be generated.

Another interesting note in this figure is the routing of the links or connectors.

VISIO@ automatically creates right-angle connectors but these connectors can be

made into arcs or straight-diagonal lines, depending on how they are programmed.

Page 73 of 95

Note also how the routing of the "works at" structural relation shows jumps where is

crosses over the other connectors. This behavior again can be programmed in

VISIO@.

Figure 23 - Several structural relations with their

corresponding OPL

There are rules for the OPL to be highlighted. All keywords should not be in bold and

everything else should be in bold. Although this is not shown, VISIO® is capable of

doing this. The OPL section of the diagram is an EXCEL spreadsheet. The text in the

spreadsheet can be selected and stylized programmatically.

Page 74 of 95

Compafdies

Fmcio

I FOO B-

Another thing that was programmed into this tool was that the relation connector was

not allowed to connect anything other then objects. For example, the relation

connector could not connect a process to an object.

The VBA code is shown in Appendix B.

Collaborative Development

Using VISIO@ on a client computer is great for an individual architect but the

diagrams must be able to be shared and modified by larges groups of people for

product design and development.

Microsoft provides this solution with BizTalk Server. BizTalk Server 2000 will make

it fundamentally easier to orchestrate the next generation of Internet-based business

solutions. BizTalk Server 2000 will unite, in a single product, enterprise application

integration (EAI), business-to-business integration and the much-anticipated BizTalk

Orchestration technology to allow developers, IT professionals and business analysts

to easily build dynamic business processes that span applications, platforms and

businesses over the Internet. [2]

"The technology challenge of the next five years is to realize the value of

the Internet to connect and orchestrate companies and applications that today are lone

islands," said Chris Atkinson, vice president of the .NET Solutions Group at

Microsoft. The OPM tool we describe here is not a lone island and will not be from

the design.

BizTalk Server 2000 offers a broad set of tools and an infrastructure to simplify and

speed the orchestration of applications and businesses together into next-generation

solutions [2]:

Page 75 of 95

* Rapid development of the OPM tool. BizTalk Orchestration technology builds on

the Visio@ diagramming platform to provide a familiar graphical environment for

quickly building dynamic, distributed business processes, and an advanced

orchestration engine for executing and managing those processes.

* Easy application and business integration. BizTalk Server 2000 provides tools to

easily integrate applications and businesses using industry standard XML.

* Interoperability with industry standards. BizTalk Server 2000 supports other

transports and protocols in addition to XNL, including EDI (X12 and UN

EDIFACT), HTTP, HTTPS, Microsoft Message Queue Server (MSMQ), SMTP

(e-mail), and flat file transfer.

" Reliable document delivery over the Internet. Support for the BizTalk Framework

ensures reliable, "guaranteed once only" delivery of business documents, such as

purchase orders or insurance claims, over the Internet.

" Secure document exchange. BizTalk Server 2000 supports industry-standard

security technologies such as public key encryption and digital signatures to

ensure secure document exchange with trading partners. This is important for

OPM users who want to secure company secrets and only allow for certain people

to modify the architecture.

" XLANG support. XLANG is an XML-based language for describing business

processes. XML is the industry standard for web development and the OPM tool

wants to build upon standards for leverage and to be accepted.

Page 76 of 95

The Learner

The design of the learner was detailed in the previous chapter. However, VISIO@ can

easily build learner applications. The data can be saved and shapes can be created into

templates and stencils for users.

Moreover, OPL can be parsed and diagrams can be created. VISIO has powerful

automatic layout tools, and preferences can be set for specific applications. Again,

this could take years of programming but we can build upon the solution VISIO@

already has.

The OPL can be parsed using standard compiler technology. The sentences, although

natural English language, have rules that could be used for a compiler. This is similar

to what we did with the PERL script in the previous chapter.

Summary

This chapter detailed the prototype for an OPM tool built on top of VISIO® . VISIO®

was shown to be a flexible tool that we can gain a tremendous advantage using - we

can build upon years of work programming in flexible and programmable details,

which we can customize for our own use.

Moreover, Microsoft is committed to VISIO@ as part of their overall Internet

development strategy, which will allow our tool to work over the network.

Page 77 of 95

Bibliography

1. Office Developer Documentation - VISIO, , MSDN Library.

2. Microsoft Announces the Availability of BizTalk Serer 2000, . 2000, MSDN.

3. Dori, D., Object Process Methodology: A Holistic Systems Development

Paradigm. 2001: Sringer Verlag.

Page 78 of 95

Chapter 5

SUMMARY AND CONCLUSIONS

Chapter 5: Summary and Conclusions

This work has applied OPM to analyze two software development processes. The

software development processes examined, in particular CMM, was shown to be

expensive and resource heavy, especially for managers. The data presented in Chapter

1 confirmed what the OPM modeling exposed.

The OPM modeling also confirmed the difference in complexity among the CMM

Maturity levels. This is confirmed in Fayad et. al. [2]. The levels are uneven in terms

of cost to achieve and value.

According to Fayad [1], the data supports the claim that software development

processes are necessary, but there are a number of problems in implementation.

Processes are often viewed as bureaucracy that decreases the productivity of the

development effort and this is often true. But why is this so, when the data for large

organizations especially shows that the opposite is true?

One of the problems lies in the cost and value of assessment and certification [2].

Most small and medium size organizations cannot justify the cost. We believe a way

to improve this situation is to automate both the implementation and assessment part

Page 79 of 95

of a software development process. We also believe that OPM can be used to

automate both the implementation and assessment.

According to Wang et. al. [3], problems in software engineering processes can be

traced to three root causes:

1. Lack of a formal description: there are many other software engineering processes

other than the two we described in chapter 1. The way these processes are

described varies considerably and causes confusion among practitioners and

process designers.

2. Chaotic interrelationships: the differences between the various processes show the

immaturity of the process discipline. The difference in orientation between USDP

and CMM show this. USDP shows the process at a lower level of implementation

while leaving the higher level more open, and CMM shows the higher level

process while leaving the lower level implementation open.

3. Deficiency in validation: validation varies between processes. Some focus on

capability (CMIM), others lifecycle (USDP) and others on different topic areas.

Perhaps all three - organization, development and management subsystems should

be looked at in the highest level. On the flip side, benchmarks are needed for the

lower levels of the process. These are currently lacking in most if not all software

engineering processes [3]

We believe OPM would substantially improve the software engineering process and

make it practical for small and medium sized organizations. In the case of lack of a

formal description, OPM is the tool to use to describe a variety of systems needed for

the architecture of a software engineering process - organization, development, and

management systems. OPM could also solve the second problem, because it can be

Page 80 of 95

used to describe all processes and the differences can become clearer using the same

system tool. This is what we did in Chapter 1.

Finally the validation processes could be described and automated in our future vision

of OPM. OPM will not just be a graphical tool, but a complete development and

simulation environment that can run and store benchmarks for a system. With this

type of automation, the validation cost should be substantially reduced.

Page 81 of 95

References

1. Fayad, M.E., Software Development Process: A Necessary Evil. Communications

of the ACM, 1997. 40(9): p. 101-103.

2. Fayad, M.E., M.L., Process Assessment Considered Wasteful. Communications of

the ACM, 1997. 40(11): p. 125-128.

3. Yingxu Wang, G.K., Software Engineering Processes. 2000: CRC Press.

Page 82 of 95

Appendix A

PERL CODE

Appendix A: PERL Code

Perl program to develop OPM

Author
Chris Miyachi

Date
8/6/00

Comment
Created

process options
#
if ((scalar @ARGV) != 2) {

$opd-file = "opd.txt";

Soplfile = "opl.txt";
}
else f

}

$opd file = $ARGV[01;
$oplfile = $ARGV[1;

#print "Opening $opdfile $oplfile\n";

###################
Learner
#####################
#
create hash table which links OPL to OPD

%opm = ReadOPDFile($opd_file);

foreach $opditem (keys %opm)
#print "$opd-item\n";
foreach Skeyword ($opm{$opditem}->{keyword}) I

#print Skeyword, "\n";

#####################
Recognizer
#####################

Page 83 of 95

4
#
4

#4
#4

read in the user's OPL

@opl = ReadOPLFile($oplfile);

process opl file
#
@opd = ProcessOPLFile(@opl);

print results

.................
Subroutine ReadOPDFile
.....................

read an OPD defintion file and
put results into a hash table.

sub ProcessOPLFile
my @lop1 =

my @lopd;

go through the OPL paragraph
foreach $oplsentence (@lopl) {

print "$oplsentence\n";
$oplsentence =- s/\.//g;
remove white space
@words = split /\s/,$opl sentence;

look for objects and processes

@processed = ;
@keyworditems =);
foreach $item (@words) I

look for capital letters
if ($item =~ /^[A-Z]/) I

if ($item =- /ing$/)
$opdresult = FindKeyWord('()');
#print "(: $item $opd result.\n";
push(@processed,$item);

else
$opdresult = FindKeyWord('[]');
#print "[H: $item $opd result.\n";
push(@processed,$item);

if
) # if
we've got possible keywords
else {

push(@keyworditems, $item);

foreach
make the keywords a phrase

Page 84 of 95

$keywordphrase = join(("",@keyword-items);

search the opm for the keywords

$originalphrase = $keywordphrase;

$opd-result = FindKeyWordOPD($keyword phrase);

print OPD

if ($opd_result eq
print "$processed[O] $keywordphrase $processed[l]\n";

}
else

print "$processed[O] $opd result $processedfl]\n";
$keyword-phrase =

foreach

otherwise item may be a keyword

return @lopd;

Subroutine FindKeyWord

returns the keyword for a particular OPD from the OPM

sub FindKeyWord

my $opdsearch $_[0];
foreach $opd_item (keys %opm)

find a match with the opd
if ($opditem eq $opd-search)

return the keyword
foreach $keyword ($opm{$opditem)->{keyword))

return $keyword;

Subroutine FindKeyWordOPD

returns the OPD for a particular keyword/keyphrase

Page 85 of 95

*

sub FindKeyWordOPD {

my $key_search = $_[0];
#print "+++++ $key-search\n";
foreach $opditem (keys %opm)

find a match with the opd

#print "+ $opm{$opd_item}->{keywordl\n";
if ($opm{$opd-item)->{keyword} eq $key_search)

return $opditem;

return
I
++++++++++++++++++++++++++
Subroutine ReadOPDFile

read an OPD defintion file and
put results into a hash table.

sub ReadOPDFile

%opmhoh =
simple obect sentence
[I'=>

right => undef,
keyword => 'is an object',
left => undef,
associated => 'simple',

},
simple process sentence
'() t=>

right => undef,
keyword => 'is a process',
left => undef,
associated => 'simple',

},
value sentence - must be inside an object
'{} '=>

right => '[',
keyword => 'can be ',

left => undef,
associated => 'LI'.

},
structure sentence

right => '
keyword =>',
left => [' ', }' ') ,

Page 86 of 95

associated => undef,

condition sentence

right => '()',
keyword => 'occurs if',
left => '{}',
associated => undef,

resolution sentence

right => '()',
keyword => 'determines if',
left => 'W',
associated => undef,

},
object generation sentence

right => '()',
keyword => 'yields',
left => '[',
associated => undef,

agent sentence
' o'=>

right => '[',
keyword => 'handles',
left => '()',

associated => undef,
},
Featuring sentence

right => '0',
keyword => 'exhibits',
left => '[] ',
associated => undef,

featuring sentence

right => '0',
keyword => 'exhibits',
left => '[]',
associated => undef,

},
specialization sentence

right => '()',
keyword => 'is a',

Page 87 of 95

left => '[1',
associated => undef,

return %opm_hoh;

}
Subroutine ReadOPLFile

#.
read an OPL defintion file and
put results into a hash table.

sub ReadOPLFile

@opllist =
"Chris is an object.",
"Hiroshi is an object.",
"Chris is married to Hiroshi.",
"Childbearing is a process.",
"Chris can be pregnant.",
"Chris is a Woman.",
"Hiroshi is a Man.",
"Marrying yields Children.",
);

return @opl_list;

Page 88 of 95

Page 89 of 95

Appendix B

VISUAL BASIC FOR APPLICATIONS CODE

Appendix B: Visual Basic For Applications Code
Private Sub CommandButton Click()

Call ClearExcelEmbeddedObject
End Sub

Private Sub GenerateOPL Click()
Call SendOPLDataToExcel

End Sub
Private Sub ClearOPLClick()

Call ClearExcelEmbeddedObject
End Sub

Private Sub DocumentShapeAdded(ByVal Shape As IVShape)
Dim shapName As String 'name user gives to shape
Dim mastObj As Master 'master object
Dim celObj As Visio.Cell 'cell object
Dim OPLString As String ' OPL associated with shape
Dim shapTypeString As String 'Name of OPD thing

Dim consObj As Visio.Connects 'a group of connect objects
Dim conObj As Connect ' a single connect object
Dim curConnIndx As Integer ' index for connects object
Dim shpObj As Shape ' Visio Shape

curConnlndx = 1
' get the type of OPD object this is being place
If Shape.CellExists ("User.OPDType", 0) Then

Set celObj = Shape.Cells ("User.OPDType")
shapTypeString = celObj.ResultStr ("")

End If
'Determine if it is a shape or a connector
If ((shapTypeString = "process") Or (shapTypeString = "object") Or

(shapTypeString = "value")) Then
shapName = InputBox ("Enter Shape Name")
Shape.Text = shapName
If Shape. CellExists ("User. OPL", 0) Then

Set celObj = Shape.Cells ("User.OPL")
OPLString = celObj.ResultStr("")
Debug.Print shapName & OPLString

End If
the relation connector

Page 90 of 95

ElseIf (shapTypeString = "relation") Then
shapName = InputBox("Enter Relation Tag")
Shape.Text = shapName
Set consObj = Shape.Connects
' check to see the the connector only connects objects
For Each conObj In consObj

' get the current connect object from the collection
Set conObj = consObj(curConnIndx)
shpObj = conObj.ToSheet
If shpObj.CellExists("User.OPDType", 0) Then

Set celObj = shpObj.Cells("User.OPDType")
shapTypeString = celObj.ResultStr("")
If Not (shapTypeString = "object") Then

MsgBox "Can only connect to objects!", vbOKOnly, "Invalid
Connection"

Exit For
End If

End If
curConnIndx = curConnIndx + 1

Next
End If

End Sub

Sub Document_Shape()
Dim pagObj As Visio.Page 'Visio Page Object
Dim shpsObj As Visio.Shapes 'Visio Shapes collection
Dim shpObj As Visio.Shape 'Visio Shape object
Dim celObj As Visio.Cell 'Visio Cell object
Dim ShapeName As String 'Array to hold Names
Dim OPLString As String
Dim iShapeCount As Integer 'Counter
Dim i As Integer 'Counter

Dim mastObj As Master 'Master of shape

Set pagObj = ActivePage
Set shpsObj = pagObj.Shapes
iShapeCount = shpsObj.Count

For i = 1 To iShapeCount
Set shpObj = shpsObj(i)
Set mastObj shpObj.Master
ShapeName = shpObj.Text
'Debug.Print ShapeName
Debug.Print "Master " & mastObj.Name
If shpObj.CellExists("Prop.OPL", visExistsLocally) Then

Set celObj = shpObj.Cells("Prop.OPL")
OPLString = celObj.ResultStr("")
'Debug.Print ShapeName & " " & OPLString & "."

End If
Next

End Sub

Sub Relation OPL()
Dim shapName As String 'name user gives to shape

Page 91 of 95

Dim celObj As Visio.Cell 'cell object
Dim OPLString As String ' OPL associated with shape
Dim shapTypeString As String 'Name of OPD thing
Dim consObj As Visio.Connects 'a group of connect o
Dim conObj As Connect ' a single connect obje
Dim curConnIndx As Integer ' index for connects ob
Dim shpObj As Shape
Dim shpObjFrom As Shape ' Visio ShapeSet co
Dim pagObj As Visio.Page 'Visio Page Object
Dim shpsObj As Visio.Shapes 'Visio Shapes collectio
Dim ShapeName As String 'Array to hold Names
Dim iShapeCount As Integer 'Counter
Dim i As Integer 'Counter

Set pagObj = ActivePage
Set shpsObj = pagObj.Shapes
iShapeCount = shpsObj.Count

j ects
ct
j ect

nsObj

n

= Shape.Connects

Dim IsRelation As Boolean
' go through all the shapes on the page
For i = 1 To iShapeCount

Set shpObj = shpsObj(i)
Set consObj = shpObj.Connects
' get the type of OPD object this is being place
If shpObj.CellExists("User.OPDType", 0) Then

Set celObj = shpObj.Cells("User.OPDType")
shapTypeString = celObj.ResultStr("")

End If
If shapTypeString = "relation" Then

Dim RelString As String
RelString = shpObj.Text
Dim shpFromName As String
Dim shpToName As String
curConnIndx = 1
' check to see the the connector only connects objects
For Each conObj In consObj

' get the current connect object from the collection
Set conObj = consObj(curConnIndx)
Set shpObj = conObj.ToSheet
' if relation is not connected to the rigth objects...
GetShapeType shpObj, IsRelation, shapTypeString
If IsRelation = False Then

Exit For
End If
' each connection only has a to
If (curConnIndx = 1) Then

shpFromName = shpObj.Text
Else

shpToName = shpObj.Text
End If
curConnIndx = curConnIndx + 1

Next ' For each...
' print out the OPL sentence
If (IsRelation = True) Then

and a from

Page 92 of 95

Debug.Print shpFromName & " " & RelString & " " & shpToName &

End If
End If

Next ' For i =

End Sub

' Determine the Type and if it can be connected to a relation.
Private Sub GetShapeType(shpObj As Visio.Shape, IsRelation As Boolean, shapTypeString
As String)

IsRelation = True
If shpObj.CellExists("User.OPDType", 0) Then

Set celObj = shpObj.Cells("User.OPDType")
shapTypeString = celObj.ResultStr("")
If Not (shapTypeString = "object") Then

MsgBox "Can only connect to objects!", vbOKOnly, "Invalid Connection"
IsRelation = False

End If
End If

End Sub

Sub ClearExcelEmbeddedObject()

'This sub clears the embedded Excel spreadsheet.
Dim xlSheet As Excel.Worksheet

Set xlSheet = ActivePage.Shapes("OPLSheet") .Object.Worksheets (1)

'Select a very large range, and clear the contents:
xlSheet.Range ("A2:E500") .ClearContents

'Let's do some formatting as well:

'Whole sheet, left-aligned
xlSheet.Range("Al:D500") .HorizontalAlignment = xlLeft

'Last column's data, right-aligned:
xlSheet.Range ("Dl:D500") .HorizontalAlignment = xlRight

'Clear all Bold:
xlSheet.Range("A2:D500").Font.Bold = False

End Sub

Sub SendOPLDataToExcel()
'This sub exports drawing data to the embedded Excel spreadsheet.

Dim xlSheet As Excel.Worksheet
Dim iXLRowNum As Integer, i As Integer
Dim shp As Visio.Shape

'First, clear out the existing spreadsheet, in case there's more
'stuff there than we'll end up with:
Call ClearExcelEmbeddedObject

Set xlSheet = ActivePage.Shapes ("OPLSheet") .Object.Worksheets (1)

Page 93 of 95

iXLRowNum = 2

Dim shapName As String 'name user gives to shape
Dim celObj As Visio.Cell 'cell object
Dim OPLString As String ' OPL associated with shape

Dim shapTypeString As String 'Name of OPD thing
Dim consObj As Visio.Connects 'a group of connect objects
Dim conObj As Connect ' a single connect object
Dim curConnIndx As Integer ' index for connects object
Dim shpObj As Shape
Dim shpObjFrom As Shape ' Visio ShapeSet consObj = Shape.Connects
Dim pagObj As Visio.Page 'Visio Page Object
Dim shpsObj As Visio.Shapes 'Visio Shapes collection
Dim ShapeName As String 'Array to hold Names
Dim iShapeCount As Integer 'Counter

Set pagObj = ActivePage
Set shpsObj = pagObj.Shapes
iShapeCount = shpsObj.Count

Dim IsRelation As Boolean
' go through all the shapes on the page
For i = 1 To iShapeCount

Set shpObj = shpsObj(i)
Set consObj = shpObj.Connects
' get the type of OPD object this is being place
If shpObj.CellExists("User.OPDType", 0) Then

Set celObj = shpObj.Cells("User.OPDType")
shapTypeString = celObj.ResultStr("")

End If
If shapTypeString "relation" Then

Dim RelString As String
RelString = shpObj.Text
Dim shpFromName As String
Dim shpToName As String
curConnIndx = 1
' check to see the the connector only connects objects
For Each conObj In consObj

' get the current connect object from the collection
Set conObj = consObj(curConnIndx)
Set shpObj = conobj.ToSheet
' if relation is not connected to the rigth objects...
GetShapeType shpObj, IsRelation, shapTypeString
If IsRelation = False Then

Exit For
End If
' each connection only has a to and a from
If (curConnIndx = 1) Then

shpFromName = shpObj.Text
Else

shpToName = shpObj.Text
End If
curConnIndx = curConnIndx + 1

Next ' For each...

Page 94 of 95

' print out the OPL sentence
If (IsRelation = True) Then

Debug.Print shpFromName & " " & RelString & " " & shpToName &
'Add data to spreadsheet.
xlSheet.Range("A" & LTrim(Str(iXLRowNum))).Formula = shpFromName &

" & RelString & " " & shpToName & "."
'Increment Excel row-tracking variable:
iXLRowNum = iXLRowNum + 1

End If
End If

Next ' For i =

End Sub

Determine the Type and if it can be connected to a relation.
Private Sub GetShapeType(shpObj As Visio.Shape, IsRelation As Boolean, shapTypeString
As String)

IsRelation = True
If shpObj.CellExists("User.OPDType", 0) Then

Set celObj = shpObj.Cells("User.OPDType")
shapTypeString = celObj.ResultStr ("")
If Not (shapTypeString = "object") Then

MsgBox "Can only connect to objects!", vbOKOnly, "Invalid Connection"
IsRelation = False

End If
End If

End Sub

Page 95 of 95

