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Abstract

Great effort is being focused on making the next generation of naval combatant ships
more resistant to the effects of close-aboard explosions. The examination of the
deformation modes in blast-loaded metal plating suggests that a physical model can be
developed to simulate the force vs. displacement history produced by an impinging shock
wave during the holing phase. Similar approaches have been successfully used to
approximate damage due to grounding and ballistic penetrators.

In this case, the deformation of the clamped plate is modeled in two stages: (1) dishing,
which leads to disking and (2) radial crack propagation, which results in petalling. In the first
stage, a thin geometrically-scaled (0.90 mm, 1.15 mm, and 1.40 mm thick by 300 mm square)
mild steel sheets are dished inward using spherical indenters of radii 20 mm, 50mm, and 75
mm. The sheets have an average tensile strength of 317 MPa and a Rockwell Superficial
Hardness Number of 72 (HN15T72).

This portion of the test approximates the initial material stretching done by a spherical
wave at various standoff distances. The spherical indenter produces a circular hole, which
simulates the disk of material normally ejected as a blast front penetrates a plate section. As
the material reaches a critical necking thickness at the edges of the hole, radial cracks form
creating petals. During the second stage, an oblique conical punch is used to simulate the
expanding wave front, which drives open the petals, causing the cracks to propagate towards
the plate's clamped boundaries. By measuring the resultant forces and minimizing the
effects of friction, the total bending and membrane work can be reasonably estimated.
Ultimately, the approximate blast damage for a given ship's hull may be related to a given
charge size and standoff distance.

Thesis Supervisor: Tomasz Wierzbicki
Title: Professor of Applied Mechanics

Thesis Reader: Frank A. McClintock
Title: Professor of Mechanical Engineering
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Introduction

In response to the growing number of threat nations and the increased proliferation of

anti-ship weaponry, the Office of Naval Research (ONK) has prompted new research in the

areas of weapons effects and ship vulnerability. Mindful of budgetary pressures, the United

States Navy is exploring the most cost-effective methods of increasing the damage resistance

and improving the overall battle effectiveness of its warships. (Refer to Appendix A for

more detailed prefatory material.)

To date, the plastic deformation resulting from a close-proximity explosion (either above

or below the waterline) has not been the focus of any large-scale, publicly-accessible research

project. Many organizations have intensely researched topics which apply similar mechanics,

such as ballistic penetration, collision and grounding damage, and axial tube splitting. There

has been preliminary work by both Wierzbicki (1996)/(1999) and Nurick (1996), which

examined plate tearing and petalling done by on contact explosives. (A detailed review of

past work in this area and the associated literature can be found in Appendix B)

In keeping with the goals of the U.S. Navy and ONR, this research focuses on the

deformation and fracture of hull plating, which is subjected to either an underwater

(UNDEX) or air explosion. Ultimately, the objective of the study is to provide a simplified

method of gathering benchmark data to quantify a material's sensitivity to explosive damage.

An inexpensive two-stage quasi-static indentation test is used to model the force vs.

displacement history of a thin clamped steel sheet. These experimental results are then

compared to both approximate analytical solutions and results obtained through Numerical

simulations created in ABAQUS (Static Load with Pressure Boundary Conditions) and LS-

DYNA (Quasi-static Load with Displacement Boundary Conditions).
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Nomenclature

R Plate Width

r Hole Radius

Rb Spherical Punch Radius

R, Clamped Plate Width

FF Frictional Force

P Indenter Force

V Indenter Velocity

Frictional Coefficient

9y Material Yield Strength

og Material Ultimate Strength

GO Material Flow Stress

8 Plate Central Displacement

0 Cone Punch Angle

Indenter Wrapping Angle

t Plate Thickness

E Indenter Work

1 Petal Length
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Statement of Problem

To improve blast damage resistance in future classes of combatant ships, the U. S. Navy

and ONR are entertaining new concepts in both design and materials. Although, the

characteristics of traditional mild and high strength steels have been studied extensively in

naval applications, no simple, reliable method exists to predict hull panel blast damage due to

a close proximity blast load. Blast holing prediction is a key factor in assessing ship

survivability, including the number of flooded compartments, the ships residual section

modulus, and probability of recovery. Blast damage computer codes are plentiful, but the

accuracy of their results often remains in question. Consequently, nearly all trusted damage

prediction is done through scaled live fire testing, which is both expensive and time

consuming.

DISHED SECTION

CLAMPED
BOUNDARY

STANDOFF-
DISTANCE

SPHERICAL
CHARGE

Figure 1: Simplified Blast Loaded Plate Geometry
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The long-term challenge of this research is to combine theories from tearing fracture,

plate cutting, petalling, and blast loading so as to provide a preliminary estimate of the

damage caused by a given charge at some small distance from a clamped metal plate.

The simplified physical model in Figure 1, presents the geometry of the problem. Figure 2

shows clear deformation and fracture similarities between dynamic (Rajendran (2000)) and

quasi-static test specimens.

On Contact Blast Test (20 g PEK-1 explosive) Quasi-statically Indented Plate

Figure 2: Dynamically and Quasi-statically Fractured Specimens

The quasi-static tests have two immediate purposes. First, if the time-pressure history

of an explosive can be related to the force displacement history of the proposed quasi-static

tests, it becomes possible to relate the energy of the incident blast wave to the bending,

stretching, and tearing work done in the material. Secondly, by examining crack initiation

and propagation and measuring incremental strains during these quasi-static tests, one can

develop a rudimentary crack-propagation criterion. Such a criterion could then be used to

improve existing finite element codes and coupled hydro-codes. It is believed that these

tools will lead to improve damage estimates (e.g. resultant hole size for a given charge). If
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such estimates can be made quickly and inexpensively, research facilities could rapidly

examine the suitability of a wide range of materials and structural arrangements with minimal

resources.
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Formulation of Problem

Experimental Approach

A series of penetrator tests is used to model the deformation which occurs in mild steel

panels due to close proximity explosions. The modeling occurs in two stages. During the

first stage, forces, displacements, and local strains are measured as a hemispherical punch is

used to dish the center of a clamped thin mild steel sheet. As the material stretches and

thins, a critical necking thickness will be reached near the center of the sheet. A

circumferential crack then forms at the necked location. Radial cracks will subsequently form

at the newly formed hole's edge. The initiation of radial cracks will mark the conclusion of

the first stage.

In the second stage, an oblique conical punch is used to examine the behavior of the

material while petalling. The cone is used to propagate either pre-cut or naturally formed

radial cracks, causing several distinct outward-opening petals to form. With Teflon-based

dry film lubricants baked onto both the test specimens and indenter contact surfaces,

friction is kept to a minimum during the test. Fine grid markings (2.5 mm squares) are

made on the plate in order to compute final local strains at periodic locations along the

plate's radius. These strains can than be used to measure material stretching, petal

displacement/curvature, bending work for the final deformed geometry. This total work can

than be loosely related to the energy released during the first several milliseconds of an

explosion.

Additionally, a series of successive photographs captures the formation and propagation

of radial cracks through the mesh. In doing so, one can estimate the incremental strain on a

given mesh element and estimate Crack Tip Opening Angle (CTOA) throughout the
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propagation phase. When joined with a known force-displacement history, one can begin to

draw conclusions about the material's ability to resist blast damage.

Numerical Approach

In order to gain insight into the fracture and displacements produced expected the quasi-

static dishing experiment, a numerical model was created in ABAQUS. An axi-symmetnic

plate model was statically loaded with full-plate and half-radius pressures of varying

magnitude. This analysis showed the (i) mode and location of fracture, (ii) whether fracture

occurs buy thinning or necking, and (iii) an approximate deformed plate shape at fracture.

t P

R

Figure 3: ABAQUS Numerical Model Representation

Additionally, a more comprehensive (and considerably more accurate) model was

developed in LS-DYNA using displacement boundary conditions for a spherical punch.

Approximate Analytical Solutions

Approximate analytical methods have been previously developed for each of the quasi-

static phases. Simonsen (2000) offers an approximate closed-form solution (under several

assumptions) for plate displacement under hemispherical punch loading. With that solution,

strains and dishing work can be computed with reasonable accuracy. These results are then

compared with those obtain experimentally and numerically.
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Axi-symmetric Fracture

Square

Circumferential
Cracking

LM

0
LL

Petalling

Dishing

Displacement (mm)
Figure 4: Generalized Force vs. Displacement History

With a closed-form solution derived originally for plate cutting, Wierzbicki (1993)/(1999)

developed expressions for bending and membrane work done during the circumferential

cracking/petalling phase. Combined, the various methods provide a reasonable estimate of

the total work done in deforming the plate during a close-proximity explosion.

Still, knowing the work of macro-scale deformation is less important than identifying the

overall force-displacement history. The deformed plate is the most obvious physical clue m

surmising the wave front-plate interaction from the time of impact through to the petalling

phase. It is this load-deformation relationship, combined with a suitable crack propagation

criterion, which can most closely link the quasi-static conditions of a punch test to the

dynamic conditions present in an explosive blast.

18



Approximate Analysis

Hemispherical Dishing and Circumferential Cracking Phase

As mentioned earlier, the dishing analysis is based on work done by Simonsen. The

theory assumes an axi-symmetric plate is dished by a hemispherical punch of radius Rb. A

Cartesian (w, r) coordinate system is used with yp being the angle from the center of the

punch to the outermost contact point C. The total punch displacement is 8 and the punch

force is P. Figure 5 illustrates the geometry of the problem.

AW

lp .. ..

3WW

-wc

~(c) Rb
C

rc r R

Figure 5: Spherical Dishing Geometry

Several assumptions are made in order to reach a closed-form solution. Plate bending is

neglected, plate elements are considered to be displaced vertically, and the material is

assumed to be rigid-plastic. Under the assumption of plane strain, the generalized radial

membrane force is given by

No - 2o70 t(
V-3"(1
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The punch force (P) at point C can be expressed as:

P = 2zzNO Rb sin 2 V(r) (2)

where y(r) is the wrapping angle function

Given the relation that:

sinV/ dw (3)
Id2 + dr2

The following differential equation can be surmised:

dw frsin 2 / (4)
dr 2

2 44

sin R V(
R,

By applying the boundary condition w(r) = 0 at r = R, a solution for w(r) can be reached

by separation of variables:

P R +f 2 - 4in
w(r) = In r r2_ i / forr, < r <R (5)

2;TNO R + V R2 - sin' 4 V

Consequently, using the previously stated assumptions, one can determine the vertical

displacement for all points on the plate and the force required to deform the plate. Of

course, at some point the plate the plate will reach its material limits. Strain hardening

characteristics must be introduced and the true stress strain curve is assumed to obey a

power law:

0-= COE" (6)
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To predict necking localization and fracture, the maximum on the load-displacement

dP
curve is identified by setting = 0. One can then solve for an approximate solution for

dyi,

y, at necking failure. The final expression given by Simonsen is:

Y/c j .957 +.399n (7)

Using this relation, additional expressions were derived to determine total displacement (8 fa)

and total work (E) up to the point of necking failure:

35fal = 1.41n"R48 Rb.5 2 (8)

E =CO RR .31
.6O7-.387 +1.2 R, 2

8( Rb)
+.067(n -. 2) (9)
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Conical Dishing

In some cases, a cone was used to dish a flat plate with a pre-cut starter hole in order to

gain insight as when and to how the radial cracks form and propagate.

Figure 6: Conical Dishing Experiment

The problem's geometry is defined in Figure 7.

W0
W1

r

W

Figure 7: Conical Dishing Geometry
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Again, the material is assumed to obey a true stress power law.

7-= C " (10)

Using the theory of moderately large deflections in thin plates and following Simonsen's

assumption:

s, (11)
2 ar

Consequently,

C 0(V' )2n
2-= (12)
2"

The generalized membrane stress then becomes:

CO 40'2n

2" =(13)

The governing equation is then:

rCO 40'2n.+]
(Nrw')' K 2 J 0 (14)

Subject to the boundary conditions, this equation has the general solution:

2n

w=cr 2n+ + c2  (15)

aw
The constants c1 and c 2 can be found be applying the boundary condition -= - tan 0 at

ar
r=r. The expression for w then becomes:

2n1 2n 2n

W = ri 2n+I1 tan 0 2n1 - r 2t7+1 (16)
2n

where is the radius of the expanding plastically deformed zone.
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The kinematic boundary condition (KB.C.) is then applied at both r = and r = rl.

dw d g
-+ w = 0

dT dT
at r=rl (note w' = - tan 0 = constant)

where T is time and r1 can be considered a time-like parameter.

Using this kinematic condition, can now be expressed in terms of r1 :

2n+I

( ,1+ 2n 2

+l)

As a result, (16) becomes

tan0 4n l
2n+l

2rn

r )2n.1

r, 2
The vertical punch force, P, is given as the following:

P = 27r, N tan 0= - t(tan 0) 21
2t

The punch displacement is:

5 = w0 + r, tan 0 = 2r, tan 0

Substituting (20) into (21), the force-displacement relation is developed.

P nCot(tan0)32,,
2"

As an example, consider the following values:

CO =460 MPa

P=48.5 kN

0 =300 n = .22 t =.045"

24

K.B.C. : (17)

2n+1

2n

(18)

(19)

(20)

(21)

(22)



The analysis provides the force-displacement approximation show below in Figure 8.

Approximate Load vs. Displacement Curve

for Varying Thickness Flat Plates using 120 0 Cone

Analytical Approximation
(No Pre-cracks)

t = .055"t

t= .045'

"7

Increasing Plate Thic

nc t(tan dtd
2"

Z1------------,..---

10 20 30 40

Displacement (mm)

Figure 8: Analytical Approximation for Conical Dishing with Starter Hole
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Radial Cracking and Petalling

The theory used in this section is derived in detail by Wierzbicki [1999]. He proposes that

the total petalling work is due to crack propagation, petal bending, and membrane

deformation. Further, these quantities are shown to be interdependent.

Figure 9: Theoretical Petalling Geometry

Due to physical limitations of the testing apparatus, fully dished plates could not be

petalled during the series of experiments. Consequently, a flat plate was used to approximate

the deformation and fracture conditions seen during petalling. Figure 6 shows an example

of a six-petal geometry (n =6). From the figure, the central angle, 0, is given as:

0O= ; (23)
pelals

and the instantaneous crack length, a, is related to the petal length, 1, by

a = (24)
cos 0

26



The material is assumed to be rigid-plastic with an average flow stress, a. The fully

plastic bending moment per unit length, M., is calculated as:

M = " (25)
4

Ultimately, the rate of bending work in a single petal can be computed as

Wb = 4M l tan O (26)
p

where,

M = r7Mo (27)

M is the amplified bending Moment, which accounts for the increased bending resistance of

a curved plate. In the flat plate approximation, = 1. The per petal membrane work is then

shown to be a function of crack tip opening displacement, 8,:

w 3.84M0 ,1 3 p21 l(sin 0) (28)
tcosO

where p is the instantaneous bending radius of the flaps.

Adding (26) and (28) to get total work:

W =Wb +Wn, (29)

then,

dW = dl [4Mltan0 + 3.84M6,"1 3p 2/3 (sin 0)'3 (30)
dT dT p tcoso

The total work is then obtained by integrating the above expression with respect to 1:

4M2 tanO + 3.84MO13,' 3 p 213 (sin O)-' (31)
p tcosO
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Load vs. Displacement for .035" Flat Plate

60 - -

50

40

S30

200
LL 2

2010

0

0 10 20 30 40 50 60

Displacement (mm)

Figure 10: Approximate Theoretical Load Displacement Curve for Petalled Plate

Punch displacements, the measured radius of curvature, the experimental crack tip

opening distance were all used in estimating punch force. Although a closed form expression

for P vs. 1 was not developed for the load condition, forces were estimated using changes in

total work over small increments of displacement.

dF~ 2 4M2 tanO 3.84MO1 11 3p 21 3 (sin0)4 /3 1(32)
d35 p tcosO

(Detailed computations can be reviewed in Appendix G.) In this case a piece-wise force-

displacement curve for each petalled plate was generated using Wierzbicki's expressions and

experimentally measured inputs. An example of a generated curve is shown in Figure 10.
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Strain Field Development

In order to access the crack's behavior and growth characteristics, it is necessary to

development a surrounding incremental strain field around. Given such strain field, one

could then attempt to predict the crack's progress. In this case, the incremental strain is

measured over a short interval, such that the crack progresses forward by one element. A

stationary grid is used to map the movement of material points, as shown in Figure 11

below.

Frame 1: Time 30 sec Frame Two: Time 45 sec

Figure 11: Incremental Strain Field Mapping

Assuming plane stress, the components of the strain tensor are:

ell = aux
ax

au
ay

C12 = -, *
2 (Oy ax)

Where ux and u, are components of the displacement vector.

?9

(33)

(34)

(35)



1/

:lTr]T 1 v t11117
x

Figure 12: Incremental Strain Field Rotation

As shown in Figure 12 above, the strain field can then be rotated into alignment with the

direction of crack growth by multiplying by the appropriate direction cosine. Although

principal stresses are not know, the stress ratios (specifically, which governs necking)
022

can be determined from el and 62 using the Von Mises yield condition and the associated

flow rule.

d I- -- -22 (36)
dc- a- 2 a

de22

dc- P

_I al U22

2 - (37)

Divide (36) by (37) and solve for

de +

0-U _

0-22

" in terms of dc " to obtain:
-22 de22

1

de22  2
I de

1+ 
2 de22

30

Y

Crack

(38)
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Numerical Modeling
Preliminary Dishing Model in ABAQUS

ABAQUS was used to model the preliminary plate's loading condition. For convenience,

a pressure loading condition (vice a displacement boundary condition) was selected as a first

approximation. In this model, a uniform pressure was first distributed over the entire plate.

This loading geometry resulted in dishing without reverse curvature and a necking fracture at

the plate's clamped boundary. The uniform pressure, full radius loading analysis was not

pursued further, since the load condition result in a realistic deformation mode.

Radius (mm)

0 20 40 60 80 100
10

0

-10 194 MPa

-20-

E-30-
E

-40

E -60 194 MPa

60

i5 -70

-80 240 MPa

R/R-90

-100
270 MPa

-110 --

Figure 13: Displacement vs. Radius for Half-Radius Pressure Loading
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Figures 14 and 15 show the displacements for the half radius pressure distribution. It

was found that using a pressure distribution over half the plate's radius more closely

modeled the conditions of hemispherical punch dishing.

Fracture without Necking

Figure 14: Sectional View of Deformed Plate at 240 MPa Pressure Amplitude

Figure 15: View of Deformed Plate at 240 MPa Pressure Amplitude
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LS-DYNA Model

Towards the end of testing, a Finite Element model was created in LS-DYNA using the

displacement boundary conditions of a rigid sphere, shown in Figure 16. Though the

revised model moved further from the conditions of gas pressure loading (as in the

preliminary simulation), it more accurately represented the quasi-static experiment. Three

conditions were modeled: (1) the 75 mm radius sphere/ .055" plate, (2) 50 mm radius

sphere/.045" plate, and (3) the 20 mm radius sphere/ .035" plate. Computational results

were then compared with both the approximate analytical predictions (from Simonsen) and

the experimental values. Data from this analysis can be found in the "Results and

Discussion" section of this report. A sample LS-DYNA input file for theR=75mm/.055"

plate test case can be found in Appendix H.

FI

Figure 16: LS-DYNA Simulation with Rigid Body Sphere Boundary Condition
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Design and Testing
Apparatus Design

A specialized fixture was fabricated for indentation testing of thin square sheets.

Designed to work using a 200 KN load cell in a Universal Testing Machine, the fixture

(shown below in Figure 17) can safely accept a central point load (P) up to the 200 KN

machine limit. Edge fixity is achieved through the use of serrated bolting ring mating

surfaces. Detailed size and material specifications for the fixture are shown in Figure 18.

Further design explanations can be found in Appendix D.

Figure 17: Notional Test Fixture and Completed Design

To create the dishing effect, three hemispherical indenters were used with radii of 20 mm,

50 mm, and 75 mm. Indenter speed (V) was set at a baseline of 10 mm/min. Indentation

was continued through circumferential cracking until the instance at which radial fracture

began. At that point, the dishing portion of the test was stopped. A 1200 conical indenter

was then used to simulate petalling from the flat plate condition for the same thickness.
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Figure 18: Detailed Fixture Specifications
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Specimen Design

300 mm

300 mm

Figure 19: Test Plate

Figure 19 shows a representative test plate. Three plate thickness were tested (.035",

.045", and .055"). The plate material has an average uniaxial tensile yield strength (a) of

29,000 psi (200MPa), an average ultimate tensile strength (au) of 46,000 psi (317 MPa), and a

Rockwell Superficial Hardness of 72. Detailed material characteristics can be reviewed in

Appendix E. The uncoated side of the plate is scribed with a 2.5 mm strain mesh (slightly

larger than 2 plate thicknesses). During deformation, the horizontal and vertical local

incremental strains are directly recorded using digital photography.
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Testing

Table 1: Testing Matrix

Tesa Mr1r Sphencal Indeier RIaus onuc Identer "ngie Precracks Pre-ut HWe ionmnts
20mm 5nm 75nm2

2 -. "xnone

3 .O' X none

4 .owl X none 22ma

~X 5 4" 4CracK 5nm 45 rn Ia6 .04" X 4 QK 5nm 55 nrmua iFs-sh

7 .OV5 X X none 10 nm 1a Hole Pbst-Dsh
- .&5 X 4 cas, 3Nf 9.5 n n ia

9 .45"X 4 0ades, Rn 5 nim Da
1 . X 4acK 3m 9.UiiR5 in Ta
11 ."X 8 Qac6K, 3nm 9.5 rmnDa
12 .X 6 Oacksn m 9.5 nmla
13 .036" X 8 Cks, 10nir 9.5nim~ia
14 me 9.5 rnmTla
15 .05 __ X nm 445 fm Da

Table 1 shows the test matrix of the series of experiments performed with the Universal

Testing Machine. Clearly, there were many testing variables to consider. With a finite

number of test specimens, however, it was a goal of the study to develop a testing

methodology and identify the most significant factors.

Tests 1 through 3 were spherical indentation tests, which were used to verify Simonsen's

predictions. Tests 4 through 7 were used to determine the best approach given the

limitations on time and equipment. In Test 4, a conical punch was used to indent a plate

with a preformed hole. Later, Tests 14 and15 were used to observe to effect of hole size in

this same loading condition. Test 5 was the first experiment in which the starter hole was

pre-cracked in order to promote the petalling behavior. Tests 8, 9, and 10 also used pre-

cracked holes to examine the effect of plate thickness. Tests 11 and 12 investigated the

effect of increasing the number of pre-cracks, while Test 13 was used to observe the effect

of increasing pre-crack length. Tests 4, 14 and 15 confirmed the effect of starter hole size.
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Results and Discussion

Spherical Indentation

Figure 19 shows the experimental and approximate analytical results for spherical

indentation testing. (Note, the analytical approximation is valid only up to Simonsen's failure

prediction. Points beyond the maximum load are artifacts of the computation.)

Spherical Indentation Results

180 ..-.---.-..-..-- - - - - -

160 EpR=75 mm Sphere /.055" Plate
160 E xperimental

140
Analytical Approximation

120 Eq.(5)

100

2 80
0

60

R=50 mm Sphere / .045" Plate
40

20 . -
0,.- R=20 mm Sphere /.035" Plate

0

0 10 20 30 40 50 60 70 80

Cross Head Displacement (mm)

Figure 20: Approximate and Experimental Results for Spherical Indentation

Figures 21 through 23 on the following page, show results of the LS-DYNA numerical

simulations for the same three load cases.
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Figure 21: LS-DYNA Results for R=20 mm punch /.035" Plate
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Figure 22: LS-DYNA Results for R=50 mm punch /.045" Plate

Spherical Identation Results for R=75 mm Sphere / .055" Plate
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Figure 23: LS-DYNA Results for R=75 mm punch /.055" Plate
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As in Simonsen's experiment, the experiments correlated to the analytical approximation

within 5%. The preliminary LS-DYNA model (pictured in Figure 24) also resulted in good

agreement, although the model requires further refinement for follow-on tests. This

portion of testing validated the testing method and clearly proved that the new specimen test

fixture functioned as designed.

During spherical indentation testing, it became clear that the specimen material was too

ductile to carry out all tests as planned. Plastic deformations were quite large during

dishing, and the shallow conical punches did not provide sufficient depth of stroke to

continue petalling. Furthermore, the dishing failure always resulted in incomplete

circumferential cracking (as in Figure 24 below). As a result of these two obstacles, the

dishing and petalling phases were modeled in two entirely separate experiments.

150 mm Diameter/.055" Plate

40 mm Diameter/.035" Plate

Figure 24: Experimental and LS-DYNA Spherical Dishing Deformations
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Conical Indentation without Pre-cracks

Figure 25 shows the force-displacement relation observed during conical dishing. During

this experiment, a constant plate thickness was tested while the starter hole was varied in

size. The dashed line represents the analytical approximation derived earlier. The analytical

approximation suggests that the force-displacement curve should be independent of hole

size. This behavior was observed up to a displacement of about 20 mm. After that point,

the 3 experiments diverge. Certainly the smaller hole size induced much earlier radial

cracking due to much higher hoop stresses.

It is difficult to draw immediate conclusions, since each case's geometry, and

consequently the material's load history, cannot be directly correlated. The analytical

approximation, however, serves as a broad estimate of the material's general force-

displacement behavior, but falls short in accounting for the problem's changing geometry.

.035" Plate Dished with 1200 Cone
(10, 22, and 45 mm Hole, No Precracks)

60

45 mm Starter Hole
50 222 mm Starter Hole

10 mm Starter Hole

40

30 Analytical Approximation
Eq.(22)

20 -

10

0
0 10 20 30 40 50 60

Cross Head Displacement (mm)

Figure 25: Conical Indentation Force-Displacement Curves (with Starter Hole)
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Conical Indentation With Pre-cracks (Petalling)

Load vs. Displacement for Varying Thickness Flat Plate

60 12 Cone, Four 3-mm Pre-cracks, 9.5 mm Hole

Initial Condition: 9.5 mm Hole with 4 Pre-cracks

5 0

aoA
40 4

.055"

;30 Experimental
(Four 3 mm Pre-cracks)

20 -

.035"

10 -

Wierzbicki Approximation

Eq.(32)

0 -

0 10 20 30 40 50 60
Displacement (mm)

Figure 26: Conical Indentation Force-Displacement Curves (with Pre-cracks)

Figure 26 shows the results of the plate petalling experiment, which was conducted with a

9.5 mm starter hole and four, 3 mm pre-cracks. Figure 27 shows how the petalling test

progressed.

10 mm 25 mm 55 mm (completed test)

Figure 27: Petalling Test Punch Displacement Progression
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The petalling test showed that the effect of plate thickness was approximately linear. In

each experiment during the first 10 mm of displacement, the cone settled into the starter

hole and propagated the pre-cracks. After that point, the petals began to form. From the

pictures, one can see that very little curvature developed. Again, this was due to the shallow

angle of the conical punches. Only 55 mm of punch displacement could be observed before

the punch began to interfere with the fixture's boundary conditions, at which point the test

had to be stopped.

Although, there appears to be disagreement between the analytical approximation and the

observed force-displacement curves, the general trend and level of force correlate reasonably

well. It is apparent that the artificiality of pre-cracking has some impact on the experiment.

In the two experiments where natural radial cracks formed and petalling could be observed

(Figure 28), the force-displacement curve closely resembled the behavior derived out of

Wierzbicki's expressions Eq.(32).

Petalling Petalling

ierzbick

U -U Werzbicki
0 A0u

UIL

Displacement (mm) Displacement (mm)

Pre-Dished and Cut Specimen Conical Dishing with Starter Hole

Figure 28: Force-Displacement Observations During Petalling
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It is important to keep in mind that the dishing force is five to six times higher than the

less critical petalling force. With the perspective that this approach is simply another

available tool, this petalling approximation could certainly provide useful first-order

estimates to a designer or post-explosion investigator.

Effect of Pre-crack Length

Figure 29 shows the effect of pre-crack length. Variation in the length of the starter

crack produced little effect, other than lengthening the amount of time required for the cone

to settle into full contact with the plate. The result was a small shift in the force -

displacement curve. As displacement increased the effect was diminished. This behavior

was expected, but required verification. The length of pre-crack, however, did affect the

number of petals formed. The 3-mm pre-crack yielded four petals, while the 10-mm pre-

crack yielded only four. This behavior agrees with Wierzbicki's prediction than some energy

absorption minimum exists, tending to promote the formation of three to five petals.

Effect of Pre-Crack Length
Eight Pre-cracks, .035" Plate, 9.5 mm Hole

25 -.-- - --- - ---------------- ---

20

1~5

3mm Pre-Cracks

0-10

5 10 mm Pre-cracks

0
0 10 20 30 40 50 60

Cross Head Displacement (mm)

Figure 29: Effect of Pre-Crack Length on Force-Displacement Curve
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Effect of Number of Pre-cracks

As shown in Figure 30, the number of pre-cracks had no significant effect of the overall

force-displacement curve. Only four petals developed in each case, however. In both tests,

all pre-cracks tended to start, but only four continued to grow. As in the previous

examination of pre-crack length, this result also suggests that a petalling energy minimum

exists, which is independent of the number of initial radial necks or cracks.

Effect of Number of Precracks
3 mm Pre-cracks, .035" Plate, 9.5 mm Starter Hole

25 - - - -

20

15
Six Pre-cracks

UVEight Pre-cracks
010

Four Pre-cracks

5

0
0 10 20 30 40 50 60

Cross Head Displacement (mm)

Figure 30: Effect of Number of Pre-Cracks on Force-Displacement Curve
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Crack Displacement and Strain Field Examination

Figure 31 shows the increment of crack growth used while mapping the strain field

around the crack tip. The crack was allowed to grow approximately 2.5 mm between frames.

The white arrow gives a fixed point from which to visually reference the crack's advance.

The mapping grid was laid out according to the method discussed in an earlier section.

Frame 1 Frame 2

Figure 31: Crack Advance Increment

The displacement filed vectors are plotted relative to the crack tip. Examination of the

displacement field shows that, at this instant in time, the membrane is rapidly stretching and

thinning in the region in front of the crack.

Biaxial incremental strain values were computed for a small rectangular patch around the

crack tip. Similarly, the principal stress ratio, -, was computed from Eq.(38) for each of
U22

the grid points, helping to identify regions where necking becomes critical. Figure 32 shows

the measured displacement field in the postage stamp size area surrounding the crack tip.

Figure 33 shows the measured incremental strain fields and Figure 34 shows the computed
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a" field. A visual inspection of the displacement and strain fields suggests that necking

occurs primarily directly ahead of the crack. This behavior was both expected and observed

during the experiment.
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Conclusions and Recommendations

Conclusions

This study has investigated using simple, inexpensive quasi-static tearing tests to gain

insight into the complex dynamic problem of explosions. It has been shown that these tests

can successfully reproduce plate deformations similar in nature to those found after large-

scale explosions. It was also shown that the forces, displacements, and energy dissipation in

the plate-dishing phase can be accurately approximated by Simonsen's approach (within 5%).

Although this series of experiments was not able to generate spiraled petals, Wierzbicki's

calculation of petalling work appeared to provide reasonably good (within 20%) estimates of

energy dissipation during the second phase of deformation. The conical punch test,

however, requires a revised mechanical design in order to better model the flat plate petalling

and post-dish petalling cases.

An approach to developing fracture criterion was also presented by measuring

incremental strains around the crack tip. Subsequently, the local stress ratios governing

material necking were computed. With that information in hand, crack growth can be

predicted in the next increment. This approach could result in a revised crack growth

criterion, which might then be used to improve existing hydrodynamically coupled finite

element simulations.
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Recommendations

* The punch tests should explore a wider range of penetrator geometries. Punch variation

may introduce more curvature into the resulting petals, helping to capture more of the

dynamic effects. Pyramid or volute shapes might be considered. Certainly, narrower

cone angles should be tried in order to increase the punch displacement and extend

observation time.

* Future analytical work should attempt to more closely link the quasi-static test results

with characteristics of the dynamic problem. To do so may require dynamic testing,

which could be accomplished at government blast testing facilities.

* Future numerical simulations should apply new punch geometries and include new plate

structures (sandwiches, foam, etc...) which might potentially be considered for ship hull

reinforcement. Future numerical simulations should also attempt to more completely

capture the dynamic aspects of an explosion.

* The potential improvement in crack growth criterion could result in a tremendous

advance in the understanding of crack propagation due to intense blast pressures. This

avenue should be explored more fully in order to update current prediction codes.

* Other areas of application for this research should be investigated. Certainly pipeline

explosions (as in the natural gas industry), internal aircraft explosions, and pressure

vessel explosions are just of few items for consideration
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Appendix A: Introductory Material

Since the inception of the warship, designers have sought means to make combatant

vessels more damage resistant. Only since World War II, however, has there been significant

effort to compile and analyze detailed reports of vessel battle damage. In the subsequent

post war years, much analysis was conducted in the areas of hull armor, resistance to mine

attack, and torpedo side-protection. As might be expected, the systems that were ultimately

developed to enhance survivability, incurred substantial weight, space, and performance

penalties. As the years have passed, the damage database has deteriorated. Since the late

1940's, the U.S Navy has relied largely on full-scale tests or "SINKEX's" to demonstrate

battle damage effects. There have been only a handful of wartime incidents demonstrating

the realistic damage absorbing and recovery capabilities of modem warships. In that time,

threat weapons (mines, missiles, and torpedoes) have been improved markedly. In contrast

to their World War II predecessors, state of the art weapons are extremely likely carry out a

successful attack and inflict extraordinary damage with a high degree of accuracy.

As seen more recently in the case of the U.S.S. Cole, tremendous hull damage can be

suffered during unconventional close aboard explosions. Figure Al shows the 20-ft by 40-ft

amidships hole torn in the ship's port side by a waterline explosion.

Inspection of the picture shows that the explosion created a spherical bulge, or dishing, in

the ship' hull, prior to tearing into numerous petals. Though officially unconfirmed, it has

been suggested that the attack was carried out using between 400 and 700 lbs. of C-4 military

explosive. Unofficial standoff distance estimates range from on-contact to 10 feet.
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Figure Al: USS Cole Port Side Damage

In this instance, a majority of the damage occurred below the waterline. Figure 2 clearly

shows the above-waterline tearing. From Figure A2, the characteristic petal formations can

be identified, as well as the upper deck hard point at which crack propagation is arrested.

Hull panels at this location on a typical naval combatant ship are usually constructed of

either mild steel (MTS-45) or HY-80, and they can vary between .375" and .5" in thickness.

Figure A2: Close Up View of Above Waterline Damage
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Appendix B: Additional Background

Holing prediction for metal plate has been a topic of study since the early 1900's. The

research is rooted in a 1912 study done by Bertram Hopkinson, which examined the

resistance of naval plating against artillery shell penetration. In that case, the deformed

Coronet
Shape

Figure BI: Hopkinson's 1912 Armor Plate

plating, shown in Figure B1, developed a coronet-shaped pattern with radial cracks and

necking at the petal edges. Since that time there have been countless experiments

investigating armor effectiveness. Until the past two decades, the vast majority of plate

holing and deformation studies have focused on the impact and associated damage of

ballistic particles. The most notable and comprehensive exception is the 1940's work of Sir

G.I Taylor (1948) who examined the nature of submerged blast waves and their effects on

thin plates. Taylor's work in the area of submerged explosions was continued by Robert

Cole (1948) in the text, Underwater Explosions. Together, these two researchers provide

much of the technical underpinning for current blast damage prediction methods.
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Explosive deformation and holing studies in naval vessels, largely classified, have been

empirical derivations based on years of accrued data. An undisclosed solution developed by

ONR, predicts a minimum and maximum expected hole radius in naval panels for a given

set of panel parameters. This engineering tool was the result of hundreds of live fire tests,

and is one of the most commonly used methods used by U.S. Navy designers in estimating

expected battle damage due to close proximity explosions. This solution suggests the

following general relationship:

Stiffened Panel

Resultant Hole R

RMa
- -

Figure B2: Current Panel Damage Formulation

Rui,, :! Rh, : R,, = f (G, T, M )

R = Resultant Hole Size

R.= Minimum Predicted Hole Size

Pax= Maximum Predicted Hole Size

G = Panel Geometry

T = Plate Thickness

M = Material Properties
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Other problems, however, lend themselves to the study of panels under explosive loading.

Wierzbicki and Thomas (1993), by examining plate cutting behavior, were able to related the

geometry of the deformed plating geometry to the mechanical and frictional work done in a

vessel grounding, thereby predicting damage. Later, Wierzbicki (1996) and Nurick (1996),

investigated the response of clamped thin sheets when subjected to on-contact charges.

Wierzbicki (1999) subsequently proposed that the kinematics of the cutting process, shown

in Figure B3, were very similar to both those of the explosive petalling and ballistic

penetrator problem.

Figure B3: Cutting and Petalling Geometric Similarities

Along similar lines, Atkins (1998) observed the necking and radial crack formation in

ductile materials when perforated by both spherical and conical penetrators. Using a

hydraulic bulger, he later analyzed thin sheet necking around biaxially loaded holes (1999).

Simonsen (2000), built upon this work, using spherical indenters to analyze force-

displacement relationship in clamped mild steel plates. Again, these studies were targeted at

making damage prediction for vessel collisions and ballistic penetrators. Nevertheless, these



experiments closely model thin sheet behavior during the dishing, disking, and pre-petalling

phases of an explosion.

To date, there has been little effort to correlate the results of quasi-static indenter

experiments to the damage observed both in live fire explosive tests and in combat. With

that goal in mind, this research is deemed both relevant and unique.
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Appendix C: Problem Statement Details

Currently, U.S. Navy surface ships are built using a damaged length design standard

equivalent to 15% Length Between Perpendiculars (LBP). This rule for damaged length is

based on both past operating experience and on the damage expected from a given threat

weapon. As illustrated in Figure C1, accurately determining the opening size is crucial in

determining compartment layout, equipment placement, and bulkhead spacing. In a poorly

designed 500-ft ship, for instance, a 15% damage length (75ft) could result in total loss of

propulsion. By the same token, over designing a ship using excessive damage length results

in increased structural weight, higher cost, and decreased performance.

15% LBP
A . 8

1.0 .9 .8 .7 .6

I

A

F P

.5 .4 .3 .2 .1 0 (LBP/10)

I

Figure Cl: Surface Ship 15% LBP Damage Length

Damage prediction methods can be extraordinarily complex. The most modem

techniques use machine codes, which couple explosive mechanics with the concurrent

hydrodynamic effects. These codes, however, are both expensive and time consuming.

Furthermore, the accuracy of their output is not yet fully validated. Other than scaled live
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fire tests, no reliable prediction tool exists which can quickly and accurately estimate damage.

An analytical method which uses inputs such as charge size, standoff distance, material could

prove useful both to ship and weapon designers.
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Appendix D: Fixture Design Supplemental

A significant amount of design work was required to ensure that the mechanism (1) did

not fail under the expected test loads and (2) was adaptable for use in the Universal Testing

Machine (UTM) belonging to the MIT Impact and Crashworthiness Laboratory.

As shown in the drawings, the fixture horizontally holds a 300 mm x 300 mm square thin

sheet while an indenter or punch is lowered. The clamped dimensions, shown in Figure D1,

are 220 mm x 220 mm. The specimens maximum dimensions were selected based on

several criteria. First, the specimen needed to be large enough to easily observe the resultant

deformations, yet small enough to fit within the UTM. Further, it was desirable to have a

portable, light-weight test fixture (in this case 75 lbs. was designated as an upper weight

limit). Lastly, steel sheet stock is normally manufactured in 4 ft x 8 ft sheets. A 300 mm

square sample allows 32 specimens to be taken from a single sheet with minimal waste.

220 mm Clamped Width

10 mm

1.5mm Fillet Radius 25 mm

300 mm Specimen Width
(1.15 mm Specimen Thickness)

Figure D1: Clamped Specimen Cross Section
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Since the test specimen represents a single clamped panel, the specimen needed to be

geometrically similar to existing naval panels. Frame spacing within a mid-sized combatant

is generally near 8 ft, with the panels being nearly square (or slightly rectangular). At

thicknesses of 1/2" to 3/8", a panel width-to-thickness ratio (w/t) of 200 can be reasonably

assumed. In order to maintain this ratio, three specimen thicknesses (.89mm, 1.14 mm, and

1.40 mm ) were selected from available mild steel stock.

The body of the fixture is machined from mild steel (45ksi Yield Strength). Member

thicknesses were selected to prevent yield during normal testing and to minimize weight.

Note that the fixture narrows to 6" at its base to transfer force directly to the load bearing

beam in the UTM. Thin lateral bracing panels were used to prevent fixture racking during

testing. The fixture mounts to the UTM through a series of threaded holes in its baseplate.

The upper and lower bolting rings are used to hold the specimen in place. These rings are

machined from A2 Air Hardened Steel (108 ksi Yield Strength). This grade of steel was

-selected to satisfy fixity requirements. Firm edge fixity is required in order to make

boundary condition assumptions. Past experiment have shown that simple bolting flanges

do not provide sufficient clamping restraint. Typically a drawbead can be used to overcome

this problem. When testing thick or high strength materials, however, it becomes difficult to

form the specimen around a drawbead. For this reason (and since the fixture is intended to

test a wide range of materials and thickness), a serrated mating surface was used to provide

fixity.

In order to ensure sufficient tooth hardness and clamping force, an estimate of material

strength was made using Slip Line Fracture Mechanics. The analysis showed that the mating

surfaces must have a yield strength at least 50% higher than that of the test specimen. The

estimates are summarized in Figures D2 and D3.
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Estimate of Frame Sizes and Stresses Induced During
Indentation Testing

Cross Beam Dimensions:

h = 25.4-mm b:= 50-mm L:= 30Gmm

Expected Load and Material Characteristics:

P:= 10500(N

Y:= 108000psi

P=2.36x 10 lbf

Y = 7.446x 108 Pa

Assuming a Rigid Test Specimen and a
Simply Supported Beam with a Concentated Central Load:

L P
M:= - . -

2 4

h
C:= -

2

13
I:= b.--

12

C
Gybeam= :M-

8
cybeam - 7.324x 10 Pa

Safety Factor:

Y
- = 1.017

Gbeam

... or distibuting load along ther beam, gives the same result for the maximum
developed stress:

P
w := -

4L

1 2
M := -- w-L

2

C
Gbeam :=M-

8
Gbeam = 7.324x 10 Pa

Safety Factor:

Y
1.017

%beam
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Using the exact solution for sinusoidally loaded, simply supported plate:

P
FD:= -

2

L
M := FD'

2

C

Gbeam := M

Safety Factor:

Y
= 2.509

beam

Compressive Load on Legs:

Yleg 45000 -psi

tieg 20-mm

P
"leg

9 A leg

Yleg_
= 11.654

G leg

wieg :=

'beam = 2.968 x 108 Pa

49.3 -mm A leg := 2-(2tleg *w eg)

Gleg = 2.662 x 107 Pa
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Appendix E: Uniaxial Testing

The mild steel plate material was tested Uni.-axially in tension according to ASTM

standards. The .035" and .045" were tested in 1999 in concert with a separate project. The

.055" thickness was tested specifically for this research. All specimens were tested in the X

and Y direction to verify that the material behaved isotropically.

-J
*0

-J

Load vs. Time for .035" X Sample 2

- 035X #2

800

700

600

500

400 ]
300,

200

100

125 175 225 275 325 375 4

Time (Sec)

Figure El: Representative Load vs. Time Curve

Load Change vs Time .035 X Sample 2

300 - - - - - - -

200

100

0 50 100 150

-100

-200

-300

-400 - - ---- - ---- -

- 035 X #2

200 250 300 350

Figure E2: Representative Load Change vs. Time Curve
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During the uni-axial testing, all of the thin strip specimens displayed stable fracture,

consequently the precise load at fracture was not readily apparent. By plotting the change in

load vs. time for each specimen, a "knuckle" in the load vs. Time plot was clearly identified,

which indicated the onset of fracture. Figures El and E2 illustrate this approach. Figures

E3 and E4, respectively, show a representative uni-axial specimen and a close-up view of the

fracture.

Figure E3: Final .035" Uni-axial Specimen

Figure E4: Final .035" Specimen Fracture Closeup
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The final dimensions of each specimen's cross section were measured in order to

determine the true stress and strain of the specimen at fracture. This data point was vital in

constructing the true stress-strain curve for the finite element simulation. Due to necking,

the specimen's highest true fracture stress and strain were achieved in the middle, where the

fracture initiated. Figure E5 shows the approximate final geometry for the necked

specimens.

TO Original Area

T Wf
3

Edge Area Middle Area Edge Area
2 2

T

e Wf fm W, W
3 3

Wo

Figure E5: Approximate Necked Specimen Geometry

Reduction in Squared Thickness (RST) and true fracture strain for the thin strips were

computed in accordance with McClintock and Zheng (1993),

RST =1 -(tf It0 )2  (E1)

f=- In(1 - RST) (E2)
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Figure E6: Representative True Stress vs. Strain Curve for Uniaxial Test

Some formulation was required to compute amiddle (Um

e = n - - Ce) d (E3)
de

Pacaure = Anan, + AeUe 
(E4)

Where substituting (E3) into (E4) yields,

Pf"ciure = Anan + Ae (an - ('6,n - Ee ) da (E 5)de-

and solving (E5) for Gm,

Pfrcure + Ae (e, - e) d-
( e de (E6)

'" Ai, + Ae
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Table El: Edge and Middle Thickness at Fracture for Uniaxial Tests

Measured Data

Sample W, (mm) T. (mm) Wf (mm)

.035 X #1 12.83 0.89 8.62

.035 X #2 12.83 0.89 8.70

.035 Y #1 12.78 0.89 8.40

.035 Y #2 12.78 0.89 8.21

.045 X #1 12.79 1.14 7.85

.045 X #2 12.83 1.14 8.03

.045 Y #1 12.80 1.14 7.24

.045 Y #2 12.81 1.14 7.46

.055 X #1 12.79 1.40 6.81

.055 X #2 12.83 1.40 6.90

.055 Y #1 12.80 1.40 6.88

.055 Y #2 12.81 1.40 6.87

Sample TLeft Edge (mM) T Middle (mm) TRight Edge

.035 X #1 0.36 0.30 0.40

.035 X #2 0.38 0-32 0.42

.035 Y #1 0.39 0.29 0.40

.035 Y #2 0.42 0.28 0.43

.045 X #1 0.56 0.47 0.56

.045 X #2 0.58 0.45 0.57

.045 Y #1 0.56 0.45 0.55

.045 Y #2 0.55 0.45 0.55

.055 X #1 0.65 0.57 0.62

.055 X #2 0.64 0.58 0.64

.055 Y #1 0.63 0.56 0.63

.055 Y #2 0.64 0.57 0.62
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Edge Fracture Strain for Uniaxial Tests

Right Edge
Sample RST Right Edge Fracture Strain Fracture Area (mm)

.035 X #1 0.8364 1.8102 1.0344

.035 X #2 0.8177 1.7021 1.1020

.035 Y #1 0.8080 1.6501 1.0920

.035 Y #2 0.7773 1.5019 1.1494

.045 X #1 0.7587 1.4217 1.4653

.045 X #2 0.7412 1.3515 1.5525

.045 Y #1 0.7587 1.4217 1.3515

.045 Y #2 0.7672 1.4577 1.3677

.055 X #1 0.7844 1.5345 1.4755

.055 X #2 0.7844 1.5345 1.4755

.055 Y #1 0.7975 1.5970 1.4448

.055 Y #2 0.7975 1.5970 1.4448

Left Edge
Sample RST Left Edge Fracture Strain Fracture Area (mm')

.035 X #1 0.7980 1.5995 1.1493

.035 X #2 0.7773 1.5019 1.2180

.035 Y #1 0.7980 1.5995 1.1200

.035 Y #2 0.7666 1.4549 1.1768

.045 X #1 0.7587 1.4217 1.4653

.045 X #2 0.7500 1.3863 1.5257

045 Y #1 0.7672 1.4577 1.3273
.045 Y #2 0.7672 1.4577 1.3677

.055 X #1 0.8039 1.6290 1.4074

.055 X #2 0.7910 1.5655 1.4720

.055 Y #1 0.7975 1.5970 1.4448

.055 Y #2 0.8039 1.6290 1.4198
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Table E3: Middle Fracture Strain for Uniaxial Tests
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Middle
Sample RST Fracture Strain Area Middle (Am) (mm )

.035 X #1 0.8864 2.1749 0.8620

.035 X #2 0.8707 2.0458 0.9280

.035 Y #1 0.8938 2.2427 0.8120

.035 Y #2 0.9010 2.3129 0.7663

.045 X #1 0.8300 1.7721 1.2298

.045 X #2 0.8442 1.8591 1.2045

045 Y #1 0.8442 1.8591 1.0860

045 Y #2 0.8442 1.8591 1.1190

.055 X #1 0.8342 1.7972 1.2939

.055 X #2 0.8284 1.7624 1.3340

.055 Y #1 0.8400 1.8326 1.2843

.055 Y #2 0.8342 1.7972 1.3053



Table E4: Estimation of Average Uniaxial Fracture Stress

Computed Values
Sample Edge Fracture Strain (EpsilonE) Total Edge Area (AE) dSigma/dEpsilon

.035 X #1 1.705 2.1837 300

035 X #2 1.602 2.3200 300

035Y#1 1.625 2.2120 300

035 Y #2 1.478 2.3262 300

045X#1 1.422 2.9307 300

045 X #2 1.369 3.0782 300

045 Y #1 1.440 2.6788 300

045 Y #2 1.458 2.7353 300

.055 X #1 1.582 2.8829 300

055 X #2 1.550 2.9475 300

.055 Y #1 1.597 2.8896 300

055 Y #2 1.613 2.8646 300

Sample Fracture Load (lb) Average Fracture stress (MPA) Fracture Stress Middle (MPA)

.035 X #1 697.78 1019.08 1120.18

.035 X #2 696.04 953.24 1048.34

.035 Y #1 674.84 992.66 1128.25

.035 Y #2 673.49 968.76 1157.07

.045 X #1 923.38 987.23 1061.28

.045 X #2 925.15 960.91 1066.60

.045 Y #1 924.08 1091.83 1181.34

.045 Y #2 921.48 1063.46 1148.91

.055 X #1 923.38 983.38 1027.98

.055 X #2 925.15 961.17 1005.04

.055 Y #1 924.08 984.82 1033.75

.055 Y #2 921.48 982.98 1020.94
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Table E5: .035" Uniaxial Sample Test Data

.035" Thickness X Direction

file name: c2x-1.dat
description: 0.035" sheet metal, "X" direction

test date: 11//1999
test mach.; Instron 1331

specimen #: C2X-1
area: 0.0176

thickness: 0.0350
width: 0.5035

Pretest notes
data acquisition = 300 msec, 22 bits
channel 1 = strain. 10%/v
channel 2 = load: 562 lbs/v
sampling rate = 0.5 sec
load rate = 0.2 in/min
first data point = zero load, second data point zero strain

C2X-1 test notes
yeild stress: 23,300

ult. stress: 46,294
break poiTc: inside gage arek

.035 Thickness
file name: c2y-1 dat

description: 0.035" sheet metal, "Y" direction
test date: 11/9/1999

test mach.; Instron 1331
specimen #: C2Y-1

area: 00176
thickness: 0.0350

width: 0.5040

pretest notes
data acquisition = 300 msec, 22 bits
channel 1 strain 10%/v
channel 2 = load: 562 lbs/v
sampling rate = 0.5 sec
load rate = 0.2 in/min
first data point = zero load, second data point zero strain

C2Y-1 test notes
yeild stress: 25100

ult. stress: 45,176
break point: inside gage area

file name: c2x-2 dat
description: 0 035" sheet metal, "X" direction

test date: 11/9/1999
test mach.; Instron 1331

specimen #: C2X-2
area: 0.0176

thickness: 0.0350
width: 0.5030

pretest notes
data acquisition = 300 msec, 22 bits
channel 1 = strain 10%/v
channel 2 = load 562 lbs/v
sampling rate = 0.5 sec
load rate = 0.2 in/min
first data point = zero load, second data point = zero strain

C2X-2 test notes
yeild stress: 23,300

ult. stress: 45,903
break point: inside gage area

Y Direction
file name: c2y-2. dat

description: 0.035" sheet metal. "Y" direction
test date: 11/9/1999

test mach.; Instron 1331
specimen #: C2Y-2

area: 0.0177
thickness: 0 0350

width: 0 5045

pretest notes
data acquisition = 300 msec. 22 bits
channel 1 = strain: 10%/v
channel 2 = load 562 lbs/v
sampling rate = 0.5 sec
load rate = 0 2 in/min
first data point = zero load, second data point = zero strain

C2Y-2 Ies notes
yeild stress: 25,100

ult. stress: 45,146
break point: inside gage area
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0.035" Sheet Metal, "X" Direction

- - - .035X#1 -. 035X #2

50,000

45,000

40,000

w 35,000
0.

w 30,000
40

O 25,000

20,000

15,000

10,000

5,000

0

Figure E7: Engineer

15 20 25

% Strain

ing Stress vs. Strain

30 35 40 45 50

Curve for .035" X Uniaxial Test

0.035" Sheet Metal, "Y" Direction

- - - .035 Y #1 - .035 Y #2

0 5 10 15 20 25

% Strain

30 35 40 45 50

Figure E8: Engineering Stress vs. Strain Curve for .035" Y Uniaxial Test
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Table E6: .045" Uniaxial Sample Test Data

.045" Thickness X Direction

file name: c3x-1 dat
description: 0 045" sheet metal, "X" direction

test date: 11/9/1999
test mach.; Instron 1331

specimen #: C3X-1
area: 0.0227

thickness: 0 0450
width: 0.5050

pretest notes
data acquisition = 300 msec, 22 bits
channel 1 = strain. 10%/v
channel 2 = load 562 lbs/v
sampling rate = 0.5 sec
load rate = 0 2 in/min
first data point = zero load, second data point zero strain

C3X-1 test notes
yeild stress: 2B,6W0

ult. stress: 47,776
break point inside gage area

.045" T

file name: c3y-1.dat
description: 0.045" sheet metal, "Y" direction

test date: 11/9/1999
test mach.; Instron 1331

specimen #: C3Y-1
area: 0.0226

thickness: 0.0450
width: 0.5030

pretest notes
data acquisition = 300 msec, 22 bits
channel 1 = strain 10%/v
channel 2 = load: 562 lbs/v
sampling rate = 0.5 sec
load rate = 0.2 in/min
first data point = zero load, second data point zero strain

C3Y-1 test notes
yeild stress: 30,000
u It. stress: 46,948
break point: inside gage area

file name: c3x-2.dat
description: 0.045" sheet metal, "X" direction

test date: 11/9/1999
test mach.; Instron 1.331

specimen #: C3X-2
area: 0,0227

thickness: 0.0450
width: 0 5050

pretest noten
data acquisition = 300 msec, 22 bits
channel 1 = strain: 10%/v
channel 2 = load 562 lbs/v
sampling rate = 0.5 sec
load rate = 0.2 in/min
first data point = zero load, second data point = zero strain

C3X-2 test notes
yeild stress: 28,600

ult. stress: A7,688
break point: inside gage area

hickness Y Direction

file name: c3y-2.dat
description: 0 145" sheet metal, "Y" direction

test date: 11/9/1999
test mach.; Instron 1331

specimen #: C3Y-2
area: 0.0226

thickness: 0.0450
width: 0.5030

pretest notes
data acquisition = 300 msec, 22 bits
channel 1 = strain 10%/v
channel 2 = load: 562 lbs/s
sampling rate =.

0 5 sec
load rate = 0.2 in/min
first data point = zero load, second data point = zero strain

C3Y-2 test notes
yelld stress: 30000

ult. stress: 46,999
break point inside gage area
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0.045" Sheet Metal, "X" Direction
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Figure E9: Engineering Stress vs. Strain Curve for .045" X Uniaxial Test
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Table E7: .055" Uniaxial Sample Test Data

.055" Thickness
file name: c4x-1 dat

description: 0 055" sheet metal, "X" direction
test date: 6/22/2002

test mach.; UTS
specimen #: C3X-1

area: 00278
thickness: 0 0550

width: 0 5050

pretest notes
data acquisition = 300 msec, 22 bits
channel 1 = strain 10%/v
channel 2 = load: 562 lbs/v
sampling rate = 0.5 sec
load rate = 0.2 in/min
first data point = zero load, second data point = zero strain

C3X-1 test notes

yeild stress: 28.800
ult. stress- 48,202

break point: inside gage area

file name: C4Y-1 dat
description: 0.055" sheet metal, "Y" direction

test date: 6/22/2002
test mach.; UTS

specimen #: C4Y-1
area: 0.0277

thickness: 0.0550
width: 0 5040

pretest notes
data acquisition = 300 msec, 22 bits
channel 1 = strain: 10%/v
channel 2 = load: 562 lbs/v
sampling rate = 0.5 sec
load rate = 0.2 in/min
first data point = zero load, second da

C4Y-1 test notes
yeild stress: 30,100
ult. stress: 47,129
break point: inside gage area

X Direction
file name: c4x-2 dat

description: 0 055" sheet metal, "X" direction
test date: 6/22/2002

test mach.; UTS
specimen #: C3X-2

area: 0.0278
thickness: 0 0550

width: 0 5050

pretest notes
data acquisition = 300 msec, 22 bits
channel 1 = strain: 10%/v
channel 2 = load: 562 lbs/v
sampling rate = 0.5 sec
load rate = 0.2 in/min
first data point = zero load, second data point zero strain

C3X-2 test notes
yeild stress 28,900

ult. stress: 48,321
break point: inside gage area_

.055" Thickness Y Direction

file name: C4Y-2 dat
description: 0 055" sheet metal, Y" direction

test date: 6/22/2002
test mach.; UTS

specimen #: C4Y-2
area: 0 0277

thickness: 0.0550
width: 0 5040

pretest notes
data acquisition = 300 rnsec, 22 bits
channel 1 = strain: 10%/v
channel 2 = load: 562 lbs/v
sampling rate = 0.5 sec
load rate = 0.2 in/min

ta point zero strain first data point = zero load, second data point zero strain

C4Y-2 test notes
yeild stress: 30,215

ult. stress: 47,111
break point: inside gage area
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0.055" Sheet Metal, "X" Direction
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Figure Eli: Engineering Stress vs. Strain Curve for .055" Uniaxial Test
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Figure E12: Engineering Stress vs. Strain Curve for .055" Uniaxial Test
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Appendix F: Analytic Solution Worksheet

.035" Thickness using 20 mm Radius Punch

Entering Arguments for Analytic Solution

Work Hardening Exponent and Coefficient:

n:=.22 C := 460106-Pa

Material Yield and Ultimate Strength

Plate Thickness

Plate Clamped Radius

Punch Radius

Sy := 23300psi YU := 46100psi

to .035in

R := 1 -mm

Rb 20-mm

Compute Failure Parameters

yc fail:= (.957+ .399-n)-rad

6 fail:= 1.41-n 33 R.48 b52

WVcefail = 1.045

6fail = 38.781mm

Compute Stresses

Flow Stress

Generalized Membrane Stress

(ay + CY U
go 2

No:= 2-a 0-- t o

o =2.392x 108 Pa

No =2.456x 105_
m

81



Plate Predictions at Failure

R:= 110

2-r- NO.Rb (sin(y c Pfail = 2 .3 08x 10 Nfaill2,

RC fail:= Rb-sin+(Vc_fail)
RC fail

Rcf :=

rf := Rcf.. R

[r{ I rf)2 - (sin(y c fal))]
Pfail'in

-IR + Ij(R)2 -( sin (yc_faill)

2--N 0

mm

Establish Load Range in 5000 N Increments, Up to the Predicted Failure Load:

Load: 0 P0 := 0-N
i =1.. 7 Pfail Pfi3

5-N P1 - P1 = 4.616x 10 N
5

2fa2l =fai. 3
4-N P2 : A P2 =5.771 x 10 N

P:=

Pfail

3. N

Pfail

2N

2-Pfail

3. N

Pfail

N

N

4

Pfail1
P3

3

Pfail
P4 :

2

2Pfail
P5 3

P3
7.694 x 103 N

4
P4 = 1.154x 10 N

4
P5 =1.539x 10 N

82

Pfail:=

wfailrf):=
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Vi := asin 27r-N
0 -

PO
y0:= asin

f2-n -NR-

2 := asin >2
F2-Tc-NO-R

P4
y4:= asin N1

f2-i- No-* b

Pfa i I
y6:= asin

2-7TNo-b

y asin 2 N
f2- c- N 0-R

P3
y3 := asin

2-7T.N-Rb)

P5
y5:= asin

2.7- NO-Rb

83

Wrapping Angle

0

22.753

25.62

29.954 deg

37.699

44.92

59.861,



Strain Components

Err: Cos w tt rr

0 0

0.081 -0.081

0.103 -0.103

Err 0.143 Ett -0.143

0.234 -0.234

0.345 -0.345

0.689) -0.689/

Deformed Plate Thickness t :=tO-cos(IV;)

True Material Stress:

0

2.646x 108

2.793x 108

Grr = 3 x 108 Pa

3.342x i08

8
3.64x 10

4.238x 108
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Strain Components

Ctt* :=-6T

Err

( 0

0.081

0.103

0.143

0.234

0.345

0.689)

E -

Deformed Plate Thickness

True Material Stress:

Crr =

t := t O-sC0. )

arr := Co-(-In(cos (V; I n

0

2.646x 108

2.793x I 8

3 x I 8

3.342x i08

3.64x 108

4.238x 108 J~

Pa
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0

-0.081

-0.103

-0.143

-0.234

-0.345

-0.689,



Solve for Shape of plate, valid for F < r < R

R:= 110

0 0 0

4.616 0.397 22.753

5.771 0.447 25.62

P 7.694 N.10 3 y 0.523 y 29.954 deg

11.541 0.658 37.699

15.388 0.784 44.92

23.082) 1.045) 59.861

Rc := Rb' sin(y0) RcO = 0
mm

Rcl := Rb sin(YI) Rcl = 7.735
mm

Rc2:= Rb- sin(y2) Rc2= 8.648
mm

Rc3:= Rb' sin(y3) Rc3 = 9.986
mm

Rc4:= Rb' sin(y4) Rc4 = 12.23
mm

Rc5:= Rb' sin(y5) Rc5 = 14.122
mm
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Computation of Plate Shape at Several Loads

PI = 4.616x 13 N (r) 2 
- s1

r:= Rcl.. 110 R + (R) 2 - (sin(J1

L ~ 2-i-N N0
Y :

mm

P2 = 5.771 x 103 N

r2:= Rc2.. 110

w2(r2) :=

P3 = 7.694x 103 N

r3:= Rc3.. 110

w3(r3) :=

P2-n [r2 + (r2)2- (sin(g2))]]

-R + [(R)2 
- (sin(2)]]

2-7- No

mm

3 [r3+[ (r3)2 -(sin(W3))]]

[R + [(R)2 
- (sin(y3)Y]]j

2-n-NO-
2*7-N

4
P4 = 1.154x 10 N

r4:= Rc4.. 1 10

w4(r4) :=

P5 = 1.539x 10 N

r5:= Rc5.. 110

w5(r5):=

r4 + [(r4)- (sin(W4

{ R + [(R) (sin(W4
2-r-NO

mm

4 1r5 + [(r5)2 - (sin(y5)]]
_R+ (R) 2 

- sn5

- + 2-mmN
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Plot of Analytic Solution for Plate Shape Up to Failure (Valid for r > @):

Displacement vs. Plate Radius
0

-10

wl(r) -20

w2(r2) -30

E w3(r3) -40

E w4(r4) -50

Sw5(r5) -.a ___60

wfail(rf) -70

-80

-90

-100
0 10 20 30 40 50 60 70 80 90 100 110

r, r2, r3, r4, r5, rf
Plate Radius (mm)

PUNCH SIZE: Rb = 20mm

Pfail= 2.308x IO4 N RC fail = 17.296mm

88

0

4.616

5.771

7.694

11.541

15.388

23.082J

N.103

0

7.735

8.648

9.986

12.23

14.122

17.296)

mm

I



Plot the Force vs. Displacement Relation:

Displacement at Point C:

j

(- cos(yi)
8plot mmp Tm

6 max:= trunc[Rb.- (I - Cos(W6))
mm

Total Punch Displacement:

6plot

0

9.499

11.477

14.635

20.605

26.311

37.637

- wfail(Rcf)]

Analytic Force vs. Displacement Curve

0 4 8 12 16 20 24

6 plot
Displacement (mm)

28 32 36 40

89

0

wl(Rcl)

w2(Rc2)

w3(Rc3)

w4(Rc4)

w5(Rc5)

wfail(Rcf)

25.39

22.85

20.31

17.77

0
0

C
U-

15.23
P

1000 12.7

10.16

7.62

5.08

2.54

0



Analytic Solution for P vs Displacement During Conical Punching Before Fracture

0 := 30-deg

Pcone (cone)

50

45

40

35

Pcone(6cone) 30
625

1-106
20

15

10

5

0

:= -- *cone-to- tan(0)
2 .n

0 5.5 11 16.5 22 27.5 33 38.5

8cone
Displacemnt (mm)

90

co)

44 49.5 55



.045" Thickness using 50 mm Radius Punch

Entering Arguments for Analytic Solution

Work Hardening Exponent and Coefficient:

n:=.22 Co:= 460 106 -Pa

Material Yield and Ultimate Strength

Plate Thickness

Plate Clamped Radius

Punch Radius

ay := 28600psi YU:= 47600psi

to := .045-in

R := 11Imm

Rb = 50-mm

Compute Failure Parameters

yc fail:= (.957+ .399n)-rad

6fail:= 1.41-n .33*R.48.52

Ycfail = 1.045

6 fail = 62.453mm

Compute Stresses

Flow Stress

Generalized Membrane Stress

(ay + a U)
CO 2

No:= 2-a -
So

ao = 2.627 x 10 Pa

No = 3.467x 105 _
m
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Plate Predictions at Failure

R:= 110

fail:= [2-7t- NORb (sin(V c fail ))2]

Rc fail:= Rb-sin(y c_fail )

Pfail= 8 .1 4 6x 10 N

Rc fail
Rcf :=

mm

rf := Rcf.. R

wfai rf) :=

r + (rf)2 - (sin(yc fail)) 1
_ 

[R + [J(R) 2 - (sin(Yc_fail)) 

mm

Establish Load Range in 5000 N Increments, Up to the Predicted Failure Load:

Load: 0 Po:=0*N

i:= .. 7 Pfail Pfail
5-N Pi = P1 =1.629x 10N

5
Pfail Pfail4
4N2 2 = 2.037 x 10 N

4
fail fail

P:= 3 N *N 3 P3 = 2.715 x 10 N
3

Pfail Pfail 4
2-N P4:= P 4 = 4.073 x 10 N

22*Pfail 2Pfail 
4

3- N P5: - 5=5.431x 10 N

Pfail

N /

92
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Ill: -

Wrapping Angle

93

W := asin~ 2-it- No.-

( 1

x asini
2 1tNoRb)

( P3
y : asin

F2-, n- N -R

y3 := asin P3

S2-T-No-

P5
y5:= asin

2-7-NO-Rb

0

22.753

25.62

29.954 deg

37.699

44.92

59.861)

y2:= asin PO
2-.- NO-Rb)

P2
y2:= asin

f2. :c- No -Rb

y4 := asin 4
f2-Tc-NO-Rb)

Pfail
y6:= asin

2--NO-Rb

I



Strain Components

In Cos()

0

0.081

0.103

0.143

0.234

0.345

0.689)

Deformed Plate Thickness

True Material Stress:

0

2.646x 108

2.793x 108

3 x 10 8

3.342x 108

3.64x 108

4.238x 1 o8

rr

rr

tt =- rr

- tt

0

-0.081

-0.103

-0.143

-0.234

-0.345

-0.689)

t := t -Cos 
;

Grr := CO -(-In(cosW ))n

arr Pa
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To Find the Maximum Punch Displacement:

R :=I 10-mm

Find the Amplitude:

+ 2 sin( Y
Rb Rb)

a:= - -
sin + cos (Y

Solve for Maximum Displacement using Geometric Relations

ma:= -Rb I- cos(y ) + a-(sin)(y;2

Find Radius of Contact Wrapping Point C:

Rc:= Rb-sin( I)

0
19.338

21.62

24.965

30.576

35.306

43.2411

mm
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Solve for Shape of plate, valid for R < r < R

R:= 110

P

0

16.292

20.365

27.154

40.731

54.308

81.462)

N-10 3
'hi

0'

0.397

0.447

0.523

0.658

0.784

1.045

V =

I, 0

22.753

25.62

29.954

37.699

44.92

59.8617

deg

RcO:= Rb' sin(yO)
mm

Rcl := Rb- sin(xvi)
mm

Rc2:= Rb' sin(y2)
mm

Rc3:= Rb- sin(y3)
mm

Rc4:= Rb. sin(y4)
mm

Rc5:= Rb. sin(y5)
mm

RcO = 0

Rd = 19.338

Rc2= 21.62

Rc3 = 24.965

Rc4 = 30.576

Rc5 = 35.306
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Computation of Plate Shape at Several Loads

P = 1.629x 104 N P-In r + [ (r)2 
-(sin(y))]]

r:= Rc1.. 110 [R + (R)- (sin(y ))

L ~2-Tc-NO
wV :

mm

P2 = 2.037x 104 N

r2:= Rc2.. 110

w2(r2) :

P3 = 2.715x 104 N

r3:= Rc3.. 110

w3(r3):=

2-nr2 + [(r2)2 (sin(y2)]

[R + [(R)2 - (sin(2
2-7r- N 

j
mm

r3 + [(r3)2- (sin(3

3 [R + L (R)2 - (sin(V3))]]

mm

P4 = 4.073x 104 N

r4:= Rc4.. 1 10

w4(r4):=

P5 = 5.431 x 10 N

r5:= Rc5.. 110

w5(r5) :=

r4 + [(r4)2 - (sin(W 4 ))]]

{ R + [(R)2 
- (sin(j4

2-7r- No
2*i*N

- I r5 +[ (r5) -- (sin(y5) ]

_[R + [ (R)2 - (sin(5)]]

2-7r-No
27MN
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Plot of Analytic Solution for Plate Shape Up to Failure (Valid for r > ):

0

-10

wl(r) -20

w2(r2) -30
E ----
E w3(r3) -40

E w4(r4) -50

w5(r5) -60

wfail(rf) -70

-80

-90

-100

Displacement vs. Plate Radius

0 10 20 30 40 50 60 70 80 90 100 110
r,r2,r3,r4,r5,rf

Plate Radius (mm)

PUNCH SIZE:

4
PfaiI= 8 . 4 6 x 10 N Rc fail = 4 3 .2 4 1mm

98

I,

Rb = 50mm

0

16.292

20.365

27.154

40.731

54.308

81.462)

N-d0

0

19.338

21.62

24.965

30.576

35.306

43.241)

mm

t



Plot the Force vs. Displacement Relation:

Total Punch Displacement:Displacement at Point C:

S- cos pi)
5plot := Rb- mm

mm
6 plot =

0

16.893

20.125

25.165

34.377

42.928

59.814

6max:= truncLRb - Cos(6))- wfail(Rcf)

Analytic Force vs. Displacement Curve

0 6.4 12.8 19.2 25.6 32 38.4 44.8 51.2 57.6 64

6 plot
Displacement (mm)

99

i :

/

K

0

wl(RcI)

w2(Rc2)

w3(Rc3)

w4(Rc4)

w5(Rc5)

wfail(Rcf) )

89.61

80.65

71.69

62.73

53.76
P

1000 44.8

35.84

U

0

0

26.88

17.92

8.96

0



Analytic Solution for P vs Displacement During Conical Punching Before Fracture

o := 30-deg

cone cone) cone o ()2-n

0 5.5 11 16.5 22 27.5 33 38.5 44 49.5

6cone
Displacemnt (mm)

100

2
Q

0

cone one

1-10 6

80

72

64

56

48

40

32

24

16

8

0
55



.055" Thickness using 75 mm Radius Punch

Entering Arguments for Analytic Solution

Work Hardening Exponent and Coefficient:

n := .22 CO := 460 106 -Pa

Material Yield and Ultimate Strength

Plate Thickness

Plate Clamped Radius

Punch Radius

ay := 28600psi au := 47600psi

to := .055-in

R:= 110-mm

Rb = 75-mm

Compute Failure Parameters

' cfail:= (.957+ .399n)-rad

8fail:= 1.41.n.33 R.48 .52

Yc_fail = 1.045

6fail = 77.111mm

Compute Stresses

Flow Stress

Generalized Membrane Stress

:. y + a
2

to

CFO= 2.627x 108 Pa

No = 4.238x 105 _
m
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Plate Predictions at Failure

R:= 110

Pfail:= 2-n- NO-Rb (sin(y cfail ))2]

Rc fail:= Rb-sin(yc cfail)

PfailI 1.4 9 3x 105 N

Rc fail
RcfMI

rf:= Rcf.. R

wfail(rf) :

[[rf + (rf)2 - (sin(wy fajlY l 1
R + L (R) 2 - sin(y c a 4

_Snxifail))~]

MmT

Establish Load Range in 5000 N Increments, Up to the Predicted Failure Load:

P, = 2.987x 10 N

P2 = 3.734x 10 N

P3 = 4.978 x 10 N

4
P4 = 7.467x 10 N

4
P5 = 9.956 x 10 N

Load:

i:= 1.. 7

P

0

Pfail

5-N

Pfail

4 N

Pfail

3. N

PfaiI

2.N

2-Pfail

3-N

Pfail

N

N

P0 := 0- N

Pfail
P1 5

Pfail
P2 4

Pfail
P3 3

Pfail
P 4  

-
2

2Pfail
P5 - 3

I/
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Wrapping Angle

0

22.753

25.62

W; = 29.954 deg

37.699

44.92

59.861)

~0
9 := asin

2-T-No-Rb)

y2:= asin 2
f2-xa- No -Rb

P4
v4:= asin -f2- 71- No -Rb

Pfail
y6:= asin

2-T-.NO.Rb)

:= asin j 2 -t N O -Rb

y: asin 2N

P3
2- T.-N0 Rb)

y3 := asin P3F2- c- No -R

y5 :=asin P
2-- N Ib
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Strain Components

Err:= In Ett :-Err

0 0

0.081 -0.081

0.103 -0.103

Err = 0.143 Fta = -0.143

0.234 -0.234

0.345 -0.345

0.689) -0.689)

Deformed Plate Thickness t t0 -cos(y;)

True Material Stress: :n

0

2.646 x I 8

2.793 x 108

Srr= 3 x 108 Pa

3.342x 108

3.64x 108

4.238x 108
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To Find the Maximum Punch Displacement:

R:= I 1mm

Find the Amplitude:

+ 2  
- (sin (Y )) ]]

sin(y, - ] + cos()y

Solve for Maximum Displacement using Geometric Relations

6 max:= -Rb- I - cos(wy) + a-(sin(yj));2

Find Radius of Contact Wrapping Point C:

Rc:= Rb-sin)(y )

K
0

29.007

32.431

37.448

45.864

52.959

64.861

mm

105
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Solve for Shape of plate, valid for Pt < r < R

R:= 110

P

/
0

29.869

37.337

49.782

74.673

99.565

149.347)

N-03 x;

II 0

0.397

0.447

0.523

0.658

0.784

1.045)

W;=I

( 0

22.753

25.62

29.954

37.699

44.92

59.861

deg

RcO:= Rb'. sin(yO)
mm

Rcl := Rb- sin(yl)
mm

Rc2:= Rb- sin(V2)
mm

Rc3:= Rb sin(y3)
mm

Rc4:= Rb. sin(V4)
mm

Rc5:= Rb' sin(y5)
mm

RcO = 0

Rcl = 29.007

Rc2 = 32.431

Rc3 = 37.448

Rc4 = 45.864

Rc5 = 52.959

106
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Computation of Plate Shape at Several Loads

P = 2.987x 104 N Pf-n)2 - (sin(y))]]

r:= Rc1.. 110 R + [ {(R) - (sin(M 1))]]

= 2 .7 NO

mm

P 2 = 3734x 104 N

r2:= Rc2.. 1 10

w2(r2):=
mm

P3 = 4.978 x 104 N

r3:= Rc3.. 1 10

w3(r3):=

P4 = 7.467x 10 N

r4:= Rc4.. I 10

w4(r4) :=

3 r3 +1[ (r3)2 - (sin(xV3))]]

iR + [(R)2 (sin(j3)

-27 2--No

mm

- r4 + [(r4) - (sin(V4) ]P4.1{[:inN
_ R + m(Rm - (sin(V4)

2-c- NO

mm

P5 = 9.956x 10 N

r5:= Rc5.. 1 10

w5(r5) :=

r5 + [(r5)2 - (sin(y5)]]

[R + [(R)2 - (sin(y5))]]

2--NO

mm

107

P 2 + [2 + (r2)2 - (sin(V2))]]

2 R + ([ R ) (sin(2)
2-7t- No



Plot of Analytic Solution for Plate Shape Up to Failure (Valid for r > @):

Displacement vs. Plate Radius
0

-10

wl(r) -20

w2(r2) -30
E

w3(r3) -40

E w4(r4) -50

w5(r5) _60

wfail(rf) -70

-80

-90

-100
0 10 20 30 40 50 60 70 80 90 100 110

r, r2, r3, r4, r5, rf
Plate Radius (mm)

PUNCH SIZE:

Pfai = 1.493 x 105 N RC-fail = 6 4 .86 1mm

108

Rb = 75mm P

0

29.869

37.337

49.782

74.673

99.565

149.347)

N.103

0

29.007

32.431

37.448

45.864

52.959

64.861)

mm



Plot the Force vs. Displacement Relation:

Displacement at Point C:

0

wl(Rcl)

w2(Rc2)

w3(Rc3)

w4(Rc4)

w5(Rc5)

wfail(Rcf)

6max:= truncLRb

Total Punch Displacement:

S- cos~p) _

6 plot := Rb- mm - 6mm

(i - cos(p6)) - 1
-wfi(Rcf)f

mm ii~

Analytic Force vs. Displacement Curve

0 7.2 14.4 21.6 28.8 36 43.2 50.4 57.6 64.8 72

6plot
Displacement (mm)

109

6 plot

0

20.79

24.502

30.165

40.193

49.228

66.9741

164.28

147.85

131.43

115

0

0

98.57
P

1000 82.14

65.71

49.28

32.86

16.43

0



Analytic Solution for P vs Displacement During Conical Punching Before Fracture

0 := 30-deg

Pcone(kcone) := o 
-C -' one-to- tano ( 2

0 5.5 11 16.5 22 27.5 33
6 cone

Displacemnt (mm)

110

38.5 44 49.5 55

0

0

Pcone( cone)

1- 106

80

72

64

56

48

40

32

24

16

8

0



Appendix G: Petalling Work Approximations

Petalling Work Computation for .035" Sheet
with 9.5mm Starter Hole and Four 3-mm Precracks

Material Properties

(y = 23300 psi YU = 45900psi

Number of Petals

N := 4

(ay + aU)
0. 2

Crack Length

a0  0-mm

a, 10-mm

a 2  
2 0-mm

a3  30-mm

a4 40-mm

a5 50-mm

a6  60-mm

a7  65-mm

a8 70-mm

Moment Amplification Factor (Flat Plate)Petal Semi-Angle

360
0 := -deg

2N

Plate Thickness

t = .035in

fl _ I

Petal Root Length

bo:= a0-sin(o)

b, := a I -sin(0) b 5 := a 5-sin(o)

b2:= a2sin(0) b 6 := a6 .sin(o)

b3:= a3 -sin(0) b7 := a7 -sin(0)

b4:= a4 -sin(0) b8 := a8 -sin(0)

Measured radius of Curvature

p := 15-mm
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Bending Moment

2
2a. t2b0

4

2
2ao-t -bi

Mol 4

2
2cy .t *b2

4

2
2c 0 -t 2b 3

Mo3 4

2
2a -t 2b4

Mo4: 
4

2
2cy -t -b

Mo5:- 
4

2
2(o-t -b6

Mo6 4

2
2cy -t b7

Mo7:- 
4

2
24yot b8

Mo8- 4

Starter Hole Radius

ro:= 4.75-mm

Punch Vertical Speed
mm

V :=10-
P min

Petal Perpendicular Length

10:= a0-cos(0)

I,:= a-cos(O)

12:= a2 -cos(0)

13:= a 3 -cos(0)

14:= a 4 -cos(o)

15 := a5 -cos (0)

16:= a6 -cos(0)

17:= a7cos (0)

18:= a8 -cos(0)

Rate of Petal Length change

Idot := tan(W)-V
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Cone Punch Horizontal Angle

:= 30- deg



Crack Tip Opening Distance (CTOD)

CTOA

CTOA = 10- deg

c0:= 2.(a0-sin(CTOA))
6c1 := 2-(a 1 -sin(CTOA)) 6c5 := 2-(a5 -sin(CTOA))
6c2:= 2-(a 2 -sin(CTOA)) 8c6:= 2-(a6 -sin(CTOA))
6c3:= 2.(a]-sin(CTOA)) 6c7:= 2.(a8 .sin(CTOA))
6c4:= 2-(a4 -sin(CTOA)) 6c8:= 2.(a 8-sin(CTOA))

Punch Travel

6 punchO := tan(O).(I0 + r A

6punchl :=[tan(O).(Il + r )

6punch2 :tan(0)-(1 2 + r ]

6punch3 :tan(O).(1 3 + r )

6 punch4 :tan(O)-(1 4 + r A

6punch5 :tan(O)-(1 5 + r )

8punch6 :tan(O)-(1 6 + r A

6 punch7 :tan(o)-(17 + r4]

6 punch8 :tan(O)-(1 8 + r A
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Rate of Work Done at Specified Increment 

[ 

1 2 1 - - -4 

MoO lootan(e) <\0 3 P 3 0 -3- _ 1 
W ratcO := -;;;-0 'dot" 4011'( P ) + 3084(-t ) -( ~ )(510(8 ))(cos(e)) 

[ 

~ 2 1 - -4 
Mol lrtan(e) bel 3 p 3 0 -3- _ 1 

Wratel:=-;;;-o'dot" 4011'( P ) + 3084(-t ) -( ~ ) (sm(O)) (c05(8)) 

[ 

1 2 1 - - -4 

Mo3 ITtan(e) be3 3 p 3 0 -3- -J 

Wrate3:= -;;;-oldot O 4011'( p ) + 3084(-t ) -( ~ )(510(8)) (C05(0)) 

[ 

~ 2 1 - -4 
o Mo5 15otan(e) be5 3 p 3 0 -3- _ 1 

W rateS 0= -;;;-oldot" 4011'( P ) + 3084(-t ) -( ~ )(510(0 ))(C05(0)) 

[ 

~ 2 1 - -4 
o Mo6 160 tan (e ) be7 3 p 3. -3- _ 1 

W rate6 0= -;;;-o'dot" 4011 '( P ) + 3084(-t ) -( ~ )(510(0 ))(C05(0)) 
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Total Membrane Work 

[ [ 
1 2 II - - -4 

() 
3 3 -

10 - ro beO P 3 - 1 
W mO:~ MoO· m . 3.84(-\ ) -( ~ ) (5in(e )) ·(C05(0)) 

[ [ 
1 2 II - - -4 

() 
3 3 -

I} - ro bel p 3 - 1 Wml:~ Mor m . 3.84(-\ ) -( ~ ) (5in(0)) .(C05(0)) 

[ [ 
1 2 II - - -4 

() 
3 3 -

12 - ro be2 p 3 - 1 Wm2:~ Mol" m . 3.84(-\ ) -( ~) .(5in(0)) (C05(0)) 

[ [ 
1 2 II - - -4 

() 
3 3 -

13 - ro be3 p 3 - 1 Wm3:~ M03· m . 3.84(-\ ) -( ~) ·(5in(e)) .(C05(0)) 

[ [ 
~ 2 II - -4 

() 
3 3 -

14 - fO be4 p 3 - 1 Wm4:~ M04· m . 3.84(-t ) -( ~) ·(5in(0)) .(C05(0)) 

[ [ 
1 2 II - - -4 

() 
3 3 -

IS - ro beS p . 3 - 1 WmS:~ MoS· m . 3.84(-t ) -( ~ )(510(0)) (C05(0)) 

[ [ 
~ 2 II - -4 

() 
3 3 -

16 - ro be6 p . 3 - 1 Wm6:~ M06· m . 3.84(-\ ) -( ~) ·(510(0)) .(C05(0)) 

[ [ 
1 2 II - - -4 

() 
3 3 -

17 - ro be7 p . 3 - 1 Wm7:~ MoT m . 3.84(-t ) -( ~) .(5,"(0)) ·(C05(0)) 

[ [ 
1 2 II - - -4 

() 
3 3 -

IS - ro beS p . 3 - 1 
W m8:~ M08· m . 3.84(-\ ) -( ~ )(510(0)) .(C05(0)) 
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Total Bending Work

Wbo:= NP-Moo,(0 - r 2 _ tan(O)
2-p -m

ro)2 tan(O)

Wb3:= N -MoA.3 - r )
2tan(O)

2-p -m

2tan(O)

Wb4:= NP-Mo4-04 - r) 2
2-p -m

2tan(O)Wb5:= N,-MoA5 (15 - 2 p m
2-p -m

207 tan(O)
Wb6:= NP-M 06 '(1 6 - r 2p

2-p -m

Wb7:= N -Mo7-07 - r tan(O)
2-p -m

Wb8:= NP-MA*(1 - rV. tan(O)
2-p-m

Membrane and Bending Work Totals

WMO 0 N-m

Wmi 0.641N-m

Wm2 6.54N-m

Wim3 13.648N-m

W m4 =41.295N-m

Wm5 = 72.311N-m

W m6= 113.514N-m

Wm7 = 141.606N-m

Wm8= 165.581N-m

WbO 0 N-m

WbI 4.788x 10- 5 N-m

Wb2 1.568x 10- 3 N-m

Wb3 7.227x 10 3 N-m

Wb4 0.02N-m

Wb5 = 0.042N-m

Wb6 = 0.076N-m

Wb7 = 0.098N-m

Wb8 = 0.125N-m
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Total Work

Wti:=

Wt] :=

Wt2:=

Wt3 :=

Wt4:=

Wt5:=

Wt6:=

Wt7 :=

W t8:=

wto = 0J

Wtl = 2.566J

Wt2 = 26.167J

WO3 = 54.622J

WO4 = 165.257J

WO5 = 289.409J

Wt6 = 454.36J

Wt7 = 566.816J

Wt8 = 662.824J
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Np-(WbO +

Np-(Wbl +

N. (Wb2 +

Np (Wb3 +

N. (Wb4 +

Np (wb5 +

N- (wb6 +

Np (wb7 +

Np- (wb8 +

W MO)

Wml)

Wm2)

Wm3)

Wm4)

Wm5)

Wm6)

Wm7)

Wm8)



Estimation of Forces

wto
F0 :=2

Spunch0

W t] WO5
F1 :=2- 6 punchl 

punch5

wt 2  Wt6
F2 :2- 6punch2 

punch6

Wt3  wt7
F punch3 F7  2punch7

WO4 Wc8

F:=2 punch4 F:=2 punch8

Force and Displacemnt Arrays

P:=

F0

Fl

F
2

F
3

F
4

F
5

F
6

F
7

F 8 ,

6:=

0

6 punchl

5punch2

6 punch3

6punch4

6 punch5

6punch6

6punch7

6punch8

(

0

434.109

32.77x 103

4.208x 10

41.001 x 10 4

1.443x 104

4
1.926x 10

2.235x 104

2.444x 104

N

0
11.821

18.892

25.963

33.034

40.105

47.176

50.712

54.247)

mm
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.003- F~ I PetL.ling Force DispalcementCurve

60

40
1000

o)

0
0

0 10 20 30 40 50 60

.0& 8.1000 54.247
Displacement (mm)
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Appendix H: LS-DYNA Input File

$ .055" plate with 75 mm radius sphere

*KEYWORD
*TITLE

Stamping
*PART

part
1 2 2

$ ---- ---- 1----+ ---- 2----+ ---- 3--+ - ----4---+ ------- 6 ---- +---- 7----- ----8
$ (2) CONTROL CARDS.
$ ---- ---- 1 ----- ----2----+--3 ---- + ------ + -- 5 ---- 6 -------7 ---- +----8
*define curve
$ icid (x-direction)

1
$ abscissa

0.0
100.0

ordinate
1000.0

1000.0
,control termination
$ ENDTIM ENDCYC DTMIN

i.e-1
ENDNEG ENDMAS

*control _timestep
$ DTINIT SCFT ISDO TSLIMT DTMS LCTM

.000 .900 0
*CONTROL SHELL
$ WRPANG ITRIST IRNXX ISTUPD THEORY B

20.000 2 -1 1 2 2 1
*CONTROLHOURGLASS
$ IHQ QH

1 .100
*CONTROL BULK VISCOSITY
$ Q2 Q1

1.500 .060
*CONTROL ENERGY
$ HGEN RWEN SLNTEN RYLEN

2 2 1 1
*CONTROL OUTPUT
$ NPOPT NEECHO NREFUP IACCOP OPIFS IP

0 0 0 0 .000 0 100
*DATABASEEXTENTBINARY

0 0 3 0 1 1 1 1
0 0 0 0 0 0

ERODE MS1ST

WC MITER

NINT IKEDIT

$-+ - )--+ -- 2--- - 3--- - O- -- A-- --F -- -R A - -- 8
$ (4) DATABASE CONTROL CARDS FOR ASCII FILE
$- -- --- -- ----- + ---- -4---+ ------+ - - -+ -7--+---- 8
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*DATABASERWFORC
1.e-4

*DATABASEGLSTAT

1.e-4
*DATABASEMATSUM

1.e-4
$ -----I----- ----2----+----3----+- ---- 4 -- + -- 5---- +----6---+ --- 7-+ ----- 8
$ (5) DATABASE CONTROL CARDS FOR BINARY FILE
$ -- + ----- 1---- -+---- 2----+---3-- -+--4---- +--5---- +----6 ---+ -- 7 -+ -- 8
*DATABASE BINARY D3PLOT
$ DT/CYCL LCDT NOBEAM

1.e-3

RIGIDSPHERE
$ ---- ----1----------+ -3--- -+----4 -- +----- + ----6--- -- 7-+-----8
*rigidwallgeometricsphere motion
$ NID/NSID

0
xt
0.

yt zt xh yh zh
100. 75.7 0. 100. 0.

$ radius
75.0

$ LCID OPT VX
1 0 0. 0.

fric
0.05

VY vz
-1.0

$ --- +---- 1----- 2----+-3O---- ---- 4----+---5- +----6---+--7- - -8
$ BOUNDARY CONDITION

*BOUNDARYSPCSET
$clamped
$ NID/NSID CID

1
DOFX

1 1 1
*BOUNDARYSPCSET

DOFY DOFZ
1 1 1

DOFRX DOFRY DOFRZ

$symy
$ NID/NSID

2
CID DOFX

1
DOFY DOFZ DOFRX DOFRY DOFRZ

1 1
,BOUNDARYSPCSET
$symx
$ NID/NSID

3
CID DOFX DOFY

1 1
*BOUNDARYSPCSET

DOFZ DOFRX DOFRY DOFRZ
1

$center
$ NID/NSID

4
CID DOFX DOFY DOFZ

1 1 1 1 1
DOFRX DOFRY DOFRZ

*MAT PIECEWISE LINEAR PLASTICITY
$ MID RO E PR SIGY ETAN EPPF TDEL

2 7.800E-09 210.E+03 0.33
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$ C P LCSS LCSR

$ EPS1 EPS2 EPS3
0 .02

$ ES1 ES2
.04 .06 .1

ES3 ES4
240 260 295

*SECTIONSHELL
$HMNAME PROPS
$ SID ELFORM

2 2 0.833
$ Ti T2 T3

1.397 1.397 1.397
$ ---- ----1 ---- +- ----2----+---

330

lSectShlll
SHRF

5
T4

EPS4 EPS5 EPS6 EPS7 EPS8
.5

ES5
695

.75 1
ES6 ES7 ES8

920 1160 2000

NIP PROPT QR/IRID ICOMP SETYP

NLOC
1.397

-3----- -------- -------- ----6 ----- ----7 ----- ----
GEOMETRY

*NODE
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Appendix I: Strain Field Worksheet

Strain Field Computation Worksheet
ROW 0

x11 1_pt00E 1.0

u22 _1_ptO
0

U 11 _2pt00 
0

(Y22pt00 1.0

u 2 2 2_pt00
0

8UI_pt00 :=:UI1_2_pt00 - UII-Ipt00

6111 _pt00

1j _pt00
x1 pt00

6_Su 2 l2 t0O0
12_t00 :2 

62p0

6U22_ptOO
E22_ptO 6y22jjt0O

+ f U22_pt00
6x1 I Ptoo)

Next Point

u1 1pt10 .8

U1_t1 -0

U22_ tl -0

-l pt 10

- 1 __ p t 10 = .
6 Y22pt10= .8

U22 2_pt10

6 pt 10

6x1 I Pt 10

&22_pt10:: u22_2_ptl0 - u221j_ptO

6U22 pt10
22pt10 

22 pt

t12 _ p t 00 -

2 5y22_pt 10y 6 xI -_pt 10
E22pt 10 = 0

E-: 2_pt10 = 0.125

123

622_pt00: U2 2 _2ptOO - U22_1_ptO0

E 1 IptOO 0

E22_pt00 0

E I 2ptOO 0

5U l _pt10 := U l l_2_ptI0 - u l l _1l_pt]O0



Epsilon11 Strain Field:

E E EptOO ' S _pt26 E'I _pt36 E1I pt46 E I1_pt56 611_pt66 EII1pt7

_pt5 E_pt5 _pt25 cI_pt35 E_pt45 ll_pt55 E 02 E0 02 0. 0 0_pt75

-1 pt04 .222 _pt]4 ' I _pt24 E 0 . _pt34 0. II44 E I _pt54 E 0 . pt64 11 _pt74

I1:= 11_pt03 .1 6_pt3 0._pt23 E4_pt33 16t43 '_pt53 8 473

E I _pt02 F-1 Ipt l2 E; I 7 Ep2 l- I _pt32 ': I _pt42 E I _pt52 E I I _pt62 E I I _pt72

E I pt01 I ;II_pt l I '; I1_pt2l 1 l _pt3l F- I _pt41l E _pt51 F- I I_pt61, E I I _pt7l

E pO ; t E E 1 _pt20 E-I1 _pt30 'I1 _pt40 E I1 _pt50 1 1_pt60 6 11 _pt70

0l 0.1 0.15 0 0 0.2 0.4 0.25

0.5 0.1 0.2 0.05 0.2 0.3 0.4 0.3

-0.222 0,111 0.2 0.1 0.2 0.4 0.4 0.5

E- 1 0.25 0.222 0.222 0.278 0.333 0.444 0.722 0.579

0 0.111 0.167 0.222 0.333 0.444 1.056 0.842

0 0.111 0.25 0.25 0.5 0.5 0.625 0.941

0 0.25 0.25 0.375 0.571 0.75 0.5 0.75)
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Epsilon22 Strain Field:

E22-ptO6 F 2 2 ptl6 E22_pt26 :22_pt36 E22_pt46 E22_pt56 E2 2 _pt6 6 c22pt76

E22_pt05 E 2 2 _pt1 5 E22_pt25 E22pt35 E22_pt45 S22_pt55 :22_pt65 E22_pt75

22_pt04 22_pt14 E22_pt24 C22_pt34 -22pt44 622_pt54 E22pt64 E22pt74

E22:= E22ptO3 S22pt13 22_pt23 E22_pt33 22pt43 E22pt53 E22pt63 E22pt73

E22ptO2 C22pt12 F22pt22 22_pt32 622pt42 622_pt52 622pt62 E22pt72

8 22pt01 22_pt11 22pt21 E22pt31 E22pt4 E22pt51 E22_pt61 E22_pt71

E22JtOO '22_pt10 22_pt20 S2 2 pt3O -22_pt4O 622pt50 E22_pt60 E22pt7O)

0.4 0.5 0.55 0.6 0.7 0.7 0.8 0.8

0 0.5 0.55 0.65 0.7 0.9 1 1

0.2 0.3 0.45 0.45 1.7 1 1 1.05

E22= 0.2 0.111 0.222 0.333 0.389 0.944 1 1

0 0 0.167 0.222 0.222 0.222 1.1 1.15

0 0 0 0 0.1 0.15 0.2 0.25

0 0 0 0 0 0.125 0.187 0.25)
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Epsilon Strain Field:

5 12pt06

12_pt05

612pt04

E12_pt03

612pt02

12_pt0 I

E12_pt00

EI 2pt16

E1 2pt1 5

E12pt 4

I1 2_pt 13

E 2_pt 12

12 tI1 I

E12_pt 10

0.2 0.3 0.35 0.3 0.35 0.45 0.6 0.525)

0.25 0.3 0.375 0.35 0.45 0.6 0.7

0.217

0.167

0.063

0.063

0.125

0.325

0.222

0.167

0.125

0.125

0.275

0.306

0.222

0.125

0.187

0.95

0.361

0.278

0.263

0.25

0.7

0.694

0.333

0.294

0.437

0.7

0.881

1.086

0.375

0.344

0.65

0.775

0.801

1.005

0.547

0.5

Rotating the strain field in order to align coordinate sysytem with crack:

E := E2 2 -cos(22-deg)
E22

cos (22- deg)
E j= .E I2-cos(22-deg)
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E12_pt26

F12_pt25

6 12_pt24

-12_pt23

E12_pt22

12pt2l

E12_pt20

E12_pt36

E12pt35

E12pt34

612pt33

5 12_pt32

612jt3l

F12pt30

12_pt46

612_pt45

612pt44

12_pt43

12_pt42

EI 2pt4

F12pt40

5 12_pt56

5 12pt55

12_pt54

I12_pt53

E12pt52

E12pt51

E12_pt50

612_pt66

12_pt65

I 2_pt64

5 12pt63

12pt62

I 2_pt6 1

I12_pt60

5 12pt76

12_pt75

F12_pt74

E12pt73

F-I2_pt72

12_pt71

12_pt70

I"

0.011

0.025

0

0

0



Final Crack-Oriented Strain Fields:

E, T

/

1'

K

0.371

0

0.185

0.185

0

0

0

0.431

0

0.216

0.216

0

0

0

I-

L

0.185

0.232

0.01

0.023

0

0

0

0.464

0.464

0.278

0.103

0

0

0

0.539

0.539

0.324

0.12

0

0

0

0.278

0.278

0.201

0.155

0.058

0.058

0.116

0.51

0.51

0.417

0.206

0.155

0

0

0.593

0.593

0.485

0.24

0.18

0

0

0.325

0.348

0.301

0.206

0.155

0.116

0.116

0.556

0.603

0.417

0.309

0.206

0

0

0.647

0.701

0.485

0.36

0.24

0

0

0.278

0.325

0.255

0.283

0.206

0.116

0.174

0.649

0.649

1.576

0.361

0.206

0.093

0

0.755

0.755

1.834

0.419

0.24

0.108

0

0.325

0.417

0.881

0.335

0.258

0.243

0.232

0.649

0.834

0.927

0.876

0.206

0.139

0.116

0.755

0.971

1.079

1.019

0.24

0.162

0.135

0.417

0.556

0.649

0.644

0.309

0.272

0.406

0.742

0.927

0.927

0.927

1.02

0.185

0.174

0.863

1.079

1.079

1.079

1.186

0.216

0.202

0.556

0.649

0.649

0.816

1.007

0.348

0.319
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0.742

0.927

0.974

0.927

1.066

0.232

0.232

0.863

1.079

1.132

1.079

1.24

0.27

0.27)

0.487

0.603

0.719

0.743

0.932

0.507

0.4641



[( 'll~') +!] [(~I~')+!] [('ll~)!] [( ~IJ£)!] [( 'll~') +!] [(~I~)!] [('ll~)!] [( ~Ifl') +!] 
z:2:2...,Pi1' :2 t:2:2J1l' :2 z:2:2fl' :2 t:2:2...r£' :2 z:2:2.,ft, :2 t:2:2~' :2 Z:2:2-Pf' , :2 t:2:2..,Ft7, :2 

[fll~')+I] N'll~') +~ [!( ~I~') +1] N'llJ£') +I] [!( ~I~') +1] N'll~')+I] [!(~I-P~')+~ [fllfl') +1] 
:2 z:2:2...,Pi1' :2 z:2:2J1l' :2 t:2:2fl' :2 z:2:2...r£' :2 t:2:2.,ft' :2 z:2:2~' :2 t:2:2-Pf" :2 z:2:Z..,Ft7' 

[( 'll~J) +!] [( ~I~J) +!] [( 'll~')+!] [( ~IJ£J) +!] [( 'll~J) +!] [( ~I~J 1 +!] [( 'll~J) +!] [( ~I fl')+ !] 
z:2:2...,Pi1' :2 t:2:2J1lJ :2 z:2:2flJ :2 t:2:2...r£J :2 z:2:2.,ftJ :2 t:2:2~J):2 z:2:2-Pf'J :2 t:2:2..,Ft7J :2 

[fll~}I] p( 'll~J) +I] [!( ~I~J )+1] [tllJ£J) +I] [!( ~I~J) +I] [tll~J) +1] [~( ~I~J) +1] N'llflJ )+~ 
:2 z:2:2...,Pi1' :2 z:2:2J1lJ :2 t:2:2JflJ :2 z:2:2JSJ :2 t:2:2.ftJ :2 z:2:2..,Pt'iJ :2 t:22-Pf'J :2 z:2:ZJf7J 

[('ll~}!] [(~I~}~] [('ll~}!] [( ~IJ£I) +~] [( '1l~1) +!] [(~I~}~] [('1l~1 )+!] [(~:~)+~] z:2:2...,Pi1... :2 t:2:2J1l'" :2 z:2:ZJfl'" :2 t:2:2...r£'" :2 z:2:2.ft... :2 t:22..,Pt'i... :2 z:2:2-Pf'''' :2 

[fll~}I] [tll~}I] [~( ~I~I ) +1] [!( '1lJ£}~ [~( ~I~I) +~ p( '1l~1) +1] [!( ~I~I) +~ N 'llJffl ) + ~ 
:2 z:2:2...,Pi1 ... :2 z:2:2J1l'" :2 t:2:2Jfl'" :2 z:22JS'" :2 t:2:2.ft ... :2 z:2:2..,Pt'i... :2 t:2:2Jf'''' :2 z:2:2Jf7'" 

~ [('1l~3) I] [(~1~3) +~] [('1l~3) +~] [(~1J6}!] [('ll~}~] [(~lP}!] [('ll?}~] r'~)+!] N 
z:2:2JlJ3 + 2' 00 t:2:2J1l3 :2 Z::2:2fl3 :2 t:2:2...r£3 :2 Z::2:2.,ft3:2 t:2:2..,Pt'i3 :2 Z::2:2-Pf'3:2 t:2:2...rf!3 :2 

UII:;~~1» :-

[fll~3 )+1] [tll~l )+1] [~( ~I~l) +1] [tllJ£l)+I] [tl~l)+I] N'll~l) +1] [!( ~I~l) +1] N 'llJffl) I] 
:2 z:2:2...,Pi13 :2 Z::2:2J1l3 :2 t:2:2JfB :2 z:2:2JS3 :2 t:2:2.,ft3 :2 z:2:2JtB :2 t:2:2J~3 2" z:2:2Jf73 + 

[O)+lJ [0)+ ~J [0) +lJ 

G(O) +lJ [~(O)+ 1J [~(O) +lJ 

[O)+lJ [0)+ ~J [0) +lJ [(0)+ ~J 

b(O) +lJ G(O)+ 1J b(O) +lJ G(O)+ 1J 


