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Abstract

The first two chapters of this dissertation study financial asset markets which are not “fric-
_ tionless.” The first chapter focuses on the effects of transaction costs. The second chapter
focuses on the interaction between asymmetric information and strategic behavior. The third
chapter empirically assesses the informativeness of certain types of price indicators based on
technical analysis.

In Chapter 1 (co-authored with Andrew Lo and Jiang Wang) we propose a dynamic
equilibrium model of asset pricing and trading volume with heterogeneous investors facing
fixed transactions costs. We show that even small fixed costs can give rise to large “no-
trade” regions for each investor’s optimal trading policy and a significant illiquidity discount
in asset prices. We perform a calibration exercise to illustrate the empirical relevance of our
model for aggregate data. Our model also has implications for the dynamics of order flow,
bid/ask spreads, market depth, the allocation of trading costs between buyer and seller, and
other aspects of market microstructure, including a square-root power law between trading
volume and fixed costs which we confirm using historical US stock market data from 1993
to 1997. .

Chapter 2 develops an equilibrium model of a dynamic asymmetric information economy.
The model is solved under two circumstances: where the informed and uninformed sectors are
both competitive, and where the informed sector is competitive and the uninformed sector
consists of a single, strategic agent. The strategic uninformed agent, when facing the same
signals as the uninformed competitive sector, manages to extract different information about
the state of the economy. I find that expected returns, return variability, and unexpected
trading volume differ between the competitive and the strategic economies. Furthermore,
this difference depends on the degree of informational asymmetry between the two sectors.
In the strategic economy, less surplus is lost due to informational arbitrage by the informed
sector. Interestingly, the presence of asymmetric information allows even the competitive
uninformed agents to gain surplus from allocational trade. Finally, I examine the incentives
of agents to become better informed, and find that sometimes both competitive and strategic
agents are better off under worse information.

Technical analysis, also known as “charting,” has been a part of financial practice for
many decades, but this discipline has not received the same level of academic scrutiny and
acceptance as more traditional approaches such as fundamental analysis. One of the main
obstacles is the highly subjective nature of technical analysis—the presence of geometric



shapes in historical price charts is often in the eyes of the beholder. In Chapter 3 (co-authored
with Andrew Lo and Jiang Wang), we propose a systematic and automatic approach to
technical pattern recognition using nonparametric kernel regression, and apply this method
to a large number of U.S. stocks from 1962 to 1996 to evaluate the effectiveness of technical
analysis. By comparing the unconditional empirical distribution of daily stock returns to
the conditional distribution—conditioned on specific technical indicators such as head-and-
shoulders or double-bottoms—we find that over the 31-year sample period, several technical
indicators do provide incremental information and may have some practical value.

Thesis Supervisor: Andrew W. Lo
Title: Harris & Harris Group Professor

Thesis Supervisor: Jiang Wang
Title: Nanyang Technological University Professor of Finance
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Chapter 1

Asset Prices and Trading Volume
under Fixed Transaction Costs

1.1 Introduction

It is well known that transactions costs in asset markets are an important factor in determin-
ing investors’ trading behavior.! Consequently, transactions costs should also affect market
liquidity and asset prices in equilibrium.? However, the magnitude and direction of their
effects on asset prices, trading volume, and other aspects of market microstructure are still
subject to considerable controversy and disagreement.

The earlier studies of transactions costs in asset markets are based primarily on par-
tial equilibrium analysis. For example, by comparing exogenously specified returns of two
assets—one with transactions costs and another without—that yield the same utility, Con-
stantinides (1986) argues that proportional transactions costs can only have a small impact
on asset prices. However, using the present value of transactions costs under a set of can-
didate trading policies as a measure of the liquidity discount in asset prices, Amihud and
Mendelson (1986) conclude that the liquidity discount can be substantial despite relatively

small transactions costs.

1The literature on optimal trading strategies in the presence of transactions costs is vast. See, for example,
Atkinson and Wilmott (1995), Constantinides (1986), Davis and Norman (1990), Duffie and Sun (1990),
Dumas and Luciano (1991), Eastham and Hastings (1988), Fleming, Grossman, Vila, and Zariphopoulou
(1992), Harrison, Sellke, and Taylor (1983), Korn (1998), Morton and Pliska (1995), Schroeder (1998), Shreve
and Soner (1992), and Schroeder (1998).

2Gee, for example, Aiyagari and Gertler (1991), Allen and Gale (1994), Amihud and Mendelson (1986),
Bensaid et al. (1992), Constantinides (1986), Demsetz (1968), Dumas (1992), Easley and O'Hara (1987),
Epps (1976), Foster and Viswanathan (1990), Garman and Ohlson (1981), Grossman and Laroque (1990),
Heaton and Lucas (1996), Huang (1997), Jarrow (1992), Kyle (1985, 1989), Tinig (1972), Tuckman and Vila
(1992), Uppal (1993), Vayanos (1998), and Vayanos and Vila (1997). '
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More recently, several authors have developed equilibrium models to address this issue.
For example, Heaton and Lucas (1996) numerically solve a model in which agents trade to
share their labor income risk. Their analysis shows that symmetric transactions costs do not
affect asset prices significantly.? Vayanos (1998) develops a model in which agents trade to
smooth life-time consumption, and shows that the price impact of proportional transaction
costs is linear in the costs and for realistic magnitudes, their impact is small. Huang (1998)
considers investors that are exposed to surprise liquidity shocks and who are able to trade
in a liquid and an illiquid financial asset. He finds that for investors faced with borrowing
constraints, the stochastic nature of the liquidity shock induces a high liquidity premium.
However, for non-constrained investors or for investors who know when their liquidity shock

_will arrive, the liquidity premium is small.

A common feature of these equilibrium models is the infrequent trading needs that they
imply for investors, and calibrations of such models may understate the effect of transactions
costs on asset prices given the levels of trading that we observe empirically. After all,
it is the high-frequency trading needs that are affected most significantly by transactions
costs. Moreover, there is a substantial empirical literature that documents the importance
of trading frictions for asset prices and investment management.® This suggests the need
for a more plausible model of investors’ trading behavior to fully capture the economic
implications of transactions costs in financial markets.

In this paper, we hope to provide such a model by investigating the impact of a fixed
transactions cost on asset prices and trading behavior in a continuous-time general equilib-
rium model with heterogeneous investors. Investors are endowed with a risky non-tradeable

asset, e.g., labor income, and in a frictionless economy, they will wish to trade continuously

3In Heaton and Lucas (1996), agents trade two assets, a risky stock and a riskless bond. Transaction
costs on the stock alone only have negligible effect on asset prices; agents can use the bond to achieve most
of their risk-sharing needs. However, if transactions costs are also imposed on the bond, their effect on the
prices become important. In this paper, we assume that the bond market is frictionless.

4Tt may be possible to calibrate the model of Heaton and Lucas (1997) to allow for high-frequency trading
needs, and we hope to explore this possibility in a future study.

5See, for example, Arnott and Wagner (1990), Berkowitz, Logue, and Noser (1988), Birinyi (1995),
Bodurtha and Quinn (1990), Brennan and Copeland (1988), Brinson, Hood, and Beebower (1986), Brinson,
Singer, and Beebower (1991), Chan and Lakonishok (1993, 1995), Collins and Fabozzi (1991), Cuneo and
Wagner (1975), Demsetz (1968), Gammill and Pérold (1989), Hasbrouck and Schwartz (1988), Huang and
Stoll (1995), Keim and Madhavan (1995a-c), Kraus and Stoll (1972), Loeb (1983), Pérold (1988), Schwartz
and Whitcomb (1988), Sherrerd (1993), Stoll (1989, 1993), Tinig (1972), Treynor (1981), Turnbull and White
(1995), Wagner (1993), Wagner and Banks (1992), and Wagner and Edwards (1993).
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and will trade an unbounded quantity in the securities market to hedge their non-traded
risk exposure. But in the presence of a fixed transactions cost, they will seek to trade finite
amounts and will trade only infrequently. Indeed, we find that even small fixed costs can
give rise to large “no-trade” regions for each investor’s optimal trading policy, and the the
uncertainty regarding the optimality of the investors’ asset positions between trades reduces
their asset demand, which leads to a decrease in the equilibrium price. We show that this
price decrease—a discount due to illiquidity—satisfies a power law with respect to the fixed
cost, i.e., it is approximately proportional to the square root of the fixed cost, which implies
that small fixed costs can have a significant impact on asset prices. Moreover, the size of
illiquidity discount increases with the investors’ trading needs at high frequencies and is very
. gensitive to their risk aversion.

Our model allows us to examine how transactions costs can influence the level of trad-
ing volume, and may serve as a bridge between the market microstructure literature and
the broader equilibrium asset-pricing literature. In particular, despite the many market mi-
crostructure studies that relate trading behavior to market-making activities and the price-
discovery mechanism,® the seemingly high level of volume in financial markets have often
been considered puzzling from a rational asset-pricing perspective (see, for example, Ross,
1986). Some have even argued that additional trading frictions ought to be introduced in the
form of a transactions tax to discourage high-frequency trading.” Yet in absence of transac-
tions costs, most dynamic equilibrium models will show that it is quite rational and efficient
for trading volume to be infinite when the information flow to the market is continuous,
i.e., a diffusion. An equilibrium model with fixed transactions costs can reconcile these two
disparate views of trading volume. In particular, our analysis shows that while fixed costs
do imply less-than-continuous trading and finite trading volume, an increase in such coéts
has only a slight effect on volume at the margin.

Our model also has significant implications for the dynamics of order flow, the evolution of
bid/ask spreads and depths, and other aspects of the market’s microstructure. In particular,
we endogenize not only the price at which trades are consummated, but also the times at

which trades occur. The standard market-clearing condition—that investors trade a market-

6See, for example, Admati and Pfleiderer (1988) Bagehot (197 1), Easley and O’Hara (1987), Foster and
Viswanathan (1990), and Kyle (1985).
"See, for example, Stiglitz (1989), Summers and Summers (1990a,b), and Tobin (1984).
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clearing quantity in each transaction—is obviously inadequate in a dynamic context where
investors can choose when to transact. We extend the market-clearing condition as follows:
investors must wish to trade the same quantities with each other, and they must want to
do so at the same time. This feature distinguishes our model from other existing models
of trading behavior in the market microstructure literature, models in which order flow is
almost always specified exogenously, e.g., Glosten and Milgrom (1985) and Kyle (1985).
We find that the expected time between trades satisfies a power law with respect to the
fixed transactions cost—it is proportional to the fourth root of the fixed cost. This implies
a square-root power law between trading volume and inter-arrival times, an unexpectedly
sharp empirical implication that we investigate and confirm using transactions data.

We develop the basic structure of our model in Section 1.2. Section 1.3 discusses the
nature of market equilibrium in the presence of fixed transactions costs. We derive explicit
solutions for the equilibrium in Section 1.4, and analyze these solutions in Section 1.5.
Section 1.6 reports the results of a calibration exercise using empirically plausible values of
the parameters derived from the existing literature. Section 1.7 presents an empirical test of
‘some of the model’s implications using historical stock market data from 1993 to 1997, and

we conclude in Section 1.8.

1.2 The Model

1.2.1 Economy

We consider an economy defined on a continuous time-horizon [0, co). There is a single
commodity, which is also used as the numeraire. The economy is further defined as follows.
The underlying uncertainty of the economy is characterized by an n-dimensional standard
Brownian motion B = {B; : t > 0} defined on its filtered probability space (Q,F,F,P). The
filtration F = {F; : t > 0} represents the information revealed by B over time.
There are two traded securities: a risk-free bond and a risky stock. The bond pays a
positive, constant interest rate r. Each share of the stock pays a cumulative dividend D;

where

¢ .
Dt = aDt -+ / deBS - (—lDt -+ bDBt (1.1)
0
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G, is a positive constant, and b, is a (1xn) constant matrix. The securities are traded
competitively in a securities market. Let P = {P, : t > 0} denote the stock price process,
which is progressively measurable with respect to F.

Transactions in the bond market are costless, but transactions in the stock market are
costly. For each stock transaction, its two sides have to pay a total fixed cost of k, which is
exogenously specified and independent of the amount transacted. However, the allocation of
this fixed cost between buyer and seller, denoted by «* and x~, respectively, is determined

endogenously in equilibrium. More formally, the transactions cost for a trade ¢ is given by

k¥ ford >0
k() =1¢ 0 for 6 =0 (1.2)
K~ for 6 <0

where § is the signed volume (positive for purchases and negative for sales), kT is the cost
for purchases, k= is the cost for sales, and the sum kT +Kk™ =K.

There are two agents in the economy, denoted by 7 =1, 2. Each agent is initially endowed
with zero amount in bonds and @ shares of the stock. In addition, agent i is endowed with

a stream of non-traded income with cumulative cash flow N}, where

t

Ni = / [(~1)X, + Y,/2] bydB, (1.32)
o
t

th/ (—astdS+bdes) (1.3b)
0
t

Y, = / (—ayY,ds + bydBy) (1.3¢)
[V .

ayx, Gy are positive constants, by, bx, by are (1xn) constant matrices. For future convenience,
we let X = (=1)'X;. Thus, by specifies the non-traded risk, Xi+Y,/2 gives agent s total
exposure to the non-traded risk. Since X!+ X} = 0V t, Y; defines the aggregate level of
non-traded risk and X! defines the idiosyncratic component of agent ¢’s non-traded risk.
Each agent chooses his consumption and trading policy to maximize the expected utility
over his life-time consumption. Let C denote the agents’ consumption space, which consists

of F-adapted consumption processes ¢ = {c; 1 ¢ > 0} satisfying certain technical conditions
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(see Huang and Pages, 1990). The agents’ stock trading policy space consists of only simple

policies defined as follows:

Definition 1 Let 8¢ be agent i’s stock holdings at time 1. A simple trading policy 1s given
by the processes (Isy Ly, Uy, ug), continuous and progressively measurable, with l; < uy, and

{L;,U;} € [lt, us), such that
(1) 6 € [l,ug] Yt >0,
(2) fort such that 6; € (l;,u) the agent does not trade,
(8) fort such that 6: = l;, the agent pﬁrchases 6; = Ly — l; shares,

(4) fort such that 6} = u,, the agent sells 6; = u, — Uy shares.

If we define 7} as the kth time that agent 7 chooses to trade, then 7 will be a stopping time

of F. Therefore, agent i’s stock holdings evolve according to

Gi=0-+ >, & (1.4)
{k:r,’;gt}

where 96_ is his initial endowment of stock shares, which is assumed to be 6.
Let M} denote agent i’s bond position at i (in value). M represents agent 4’s liquid

financial wealth. Then,

t t
Mi= / (rME - c,) ds + / (6:dD, +dN?) — (PT;;57;+F~2) (1.5)
0 0 .
{k:'rigt}

where ki = k(6%) and k(-) is given in (1.2). Equation (1.5) defines agent i’s budget con-
straint. Agent i’s consumption/trading policy (c, 6) is budget feasible if the associated M;
process satisfies (1.5). We denote the set of budget feasible policies by ®.8

8 We can also define his total financial wealth W/, including both his bond position and the market value
of his stock holdings: W} = M} + 6:P;. From (1.4) and (1.5), we have

t t
Wi = 05P + / (rWi+dNi-cs)ds + / §:(dDs+dPs~rPyds) — Y &
0 0 X
{k:ri<t}

which also defines agent i’s budget constraint.

18



Both agents are assumed to maximize expected utility of the form:
o0
u(c) =E {—/ e"’t’“"“dt} (1.6)
0

subject to the terminal wealth condition that lim;00 E [—e“’t‘”(Mti*"gP t)} = 0.° Here,
p and 7 (both positive) are the time-discount coefficient and the risk-aversion coefficient,

respectively.
1.2.2 Definition of Equilibrium
Definition 2 An equilibrium in the stock markei is defined by:
(a) a price process P = {P, : t > 0} progressively measurable with respect to F

(b) an allocation of the transaction cost (k*,k7), where kT is the cost for purchases and

x~ is the cost for sales as defined in (1.2)

(c) agents’ trading policies (I, Ly, Uy, wp), 1 = 1,2, given the price process and the allocation

of transaction cost
such that:

(i) each agent’s trading policy solves his optimization problem:

o0
JHME, 0p,-) = sup E[—/ e"’t""c‘dt} (1.7)
0

(c,6)e®

subject to the transversality condition that 1im;—co Eo[JH(M{,6:,-)] = 0, where - denotes

the relevant state variables'®

9The terminal wealth condition is imposed to prevent the agents from running a Ponzi scheme. This
specification of the objective function can be interpreted as the limit of the same utility function over a finite
horizon (0, T with a bequest function of the form B(Wrp,T) = —e=PT-"Wr ‘when T — 0.

10The transversality condition for the value function arises from the terminal wealth condition specified
earlier. See, for example, Merton (1990) for more discussion on this point.
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(i1) the stock market clears:
VkeN;: T} =7} (1.8a)

> s =0. (1.8b)

In the presence of transaction costs, the market-clearing condition consists of two parts:
agents’ desired trading times match, which is (1.8a), and their desired trade amount match,
which is (1.8b). Thus, “double coincidence of wants” must always be guaranteed in equilib-
rium, which is a very stringent condition.

It should be pointed out that by assuming a constant interest rate, we are not closing
the bond market. This assumption simplifies our analysis, but deserves clarlﬁcatlon Three
comments are in order. First, our focus is on how transactions costs affect the trading and
pricing of a security when agents want to trade it at high frequencies. Assuming constant
interest rate allows us to focus on the stock, which is costly to trade, and restrict to simple
risk-sharing motives of trading. Closing the bond market, however, would make the interest
rate stochastic and introduce additional trading motives (such as intertemporal hedging).
Such a complication is unnecessary for our purpose. Second, allowing the interest rate
to adjust endogenously in our model would not fundamentally change the high frequency
trading needs from simple risk-sharing motives. The bond is locally risk-free and is not
used as an instrument for risk sharing at high frequencies. (This is no longer the case at
Jower frequencies as shown in Heaton and Lucas (1995)). Third, we could avoid the issue
of bond market equilibrium by considering a finite horizon version of our model without
intermediate consumption. In this case, the bond becomes a numeraire and the only market
clearing condition is for the stock. The qualitative features of the model remain the same.
The inconvenience is the additional time dependence of the equilibrium. One can then
consider the limit when the horizon goes to inﬁnity‘. We choose the current setting to avoid

such a procedure.
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1.2.3 Simplifying Assumptions

For parsimony, we make several simplifying assumptions about the agents’ non-traded risks,
which is given in (1.3). First, we assume that there is no aggregate non-traded risk, which
requires that ¥; =0V ¢ > 0. In the current model, in absence of differences at the individual
level, non-traded risk at the aggregate level does not generate any trading needs. It is the
difference between agents in their non-traded income that generates trading. Since we are
mainly interested in the impact of transaction costs, it is natural to focus on the difference
in non-traded risk across agents. After all, transaction costs matter only when agents want
to transact.’ |

The difference in the agents’ non-traded risk is fully characterized by X;. We further
" assume that ay = 0. From (1.3), X; now follows a Brownian motion: X; = bxB;. Thus,
changes in the difference between the agents’ non-traded risk are persistent. In addition,
we assume that the risk in the non-traded income is instantaneously perfectly correlated
with risk in stock payoffs. In particular, we set by = —hbp, where h is a positive (scalar)
constant.’? This implies that the non-traded risk is actually marketed. (Despite this, we
continue to use the term non-traded risk throughout the paper to reflect the fact that it not
be marketed.) These two assumptions (ax =0 and by = —hby) can potentially increase the
agents’ needs to trade. However, we do not expect them to qualitatively affect our results.

They are made to simplify the model.

1.3 Characterization of Equilibrium

Our derivation of the equilibrium is as follows. We first conjecture a set of candidate stock
price processes and a set of candidate trading policies. We then solve for each agent’s
optimization problem within the conjectured policy set under each candidate price process.
This optimal policy is further verified to be the true optimal policy among all feasible policies.

Finally, we show that the stock market clears for a particular candidate price process.!®

11The coexistence of aggregate and idiosyncratic risks can lead to interesting interactions between the two
(see, for example, Caballero, 1991, 1997 and Caballero and Engle, 1993). We hope to analyze this interaction
in our setting in future research.

12This assumption can be partially relaxed by allowing an additional component of the non-traded income
that is independent from the risk of the stock.

13Needless to say, following this procedure we does not address the issue on the uniqueness of equilibrium,
which is left for future research.
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1.3.1 Candidate Price Processes and Trading Policies

In the absence of transaction costs, our model reduces to (a special version of) the model
considered by Huang and Wang (1997). Agents trade continuously in the stock market to
hedge their non-traded risk. Since their non-traded risks perfectly cancel with each other,
the agents can eliminate their non-traded risk through trading. Thus, the equilibrium price
remains constant over time, independent of the idiosyncratic non-traded risk as characterized
by X;. In particular, the equilibrium price has the following form:
Gp
~ where @, /7 gives the present value of expected future dividends, discounted at the risk-free

rate, and pp gives the discount in the stock price to adjust for risk. The agents’ optimal

stock holding is linear in his exposure to non-traded risk:
91; = 90 + hth (110)

where 6, is a constant. It is worth noting that here each agent’é stock holding is independent
of his wealth.'

In the presence of transaction costs, the agents only trade infrequently. However, when-
ever they trade, we expect them to reach optimal risk-sharing. This implies, as in the case
of no transactions costs, that the equilibrium price at all trades should be the same, inde-
pendent of the idiosyncratic non-traded risk X;. Thus, we consider the candidate stock price
processes of the form (1.9) even in the presence of transaction costs.!® The discount py now
reflects the price adjustment of the stock for both its risk and illiquidity.

The candidate trading policies are restricted to be affine functions of the non-traded risk

14The agents’ optimal trading policy and the equilibrium stock price under zero transaction costs are given
in Section 1.4.1 as a special case of the model.
15QGiven the perfect symmetry between the two agents, the economy is invariant under the following
transformation: X; — —X;. This implies that the price must be an even function of X;. A constant is the
simplest even function.
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X;, given by (I, ms, ut),'® where for agent i
lt=zl+th mtzzm-i—hXti utzzu—[—hX;" (1.11)

for some constants (2, zm, z,).7 The motivation for this choice of policy will be made clear
in the next section. Agent 7 is assumed to maintain his current stock position 6; between
a continuously changing lower bound of I; and a continuously changing upper bound of u;.
When the lower bound is hit, the agent purchases §;” = m; —I; shares of the stock. When the
upper bound is hit, he sells 6; = u; — m, shares. In both cases, his stock position becomes
m; after the trade. In particulér, we assume that 8- € (lo,uo), where 6y~ is the égent’s
~ initial stock position. There is no loss of generality by this latter assumption in the model
defined in Section 1.2.

We define the stopping time 74 to be the first time the stock position hit the boundary

(I, u;) given the agent’s stock position Oy (at Tx—1):
Tk = inf{t Z Tk—1 gk—-l ¢ (lt,ut)} Vik= 1,2, BN (112)

where 7o = 0. {7 : k € N, } then gives the sequence of trading times. The amount of
trading at 7% is given by 6,;*' = My, — lr, OF 6 = Up, — Mey, depending on whether [ or u is

hit.

1.3.2 Optimal Policy within the Candidate Set

Given the candidate stock price process and trading policies, we now examine an agent’s
optimization problem. We start by conjecturing that each agent’s value function is of the

form:

J(M, 8, X, t) = —e-et=r1(M+0ap/m=V (0.5 (1.13)

16Note that in the class of affine policies, it can be shown that (I, L, U, u) type policies collapse to (1,m,u)
type policies given our set-up.

17Cadenillas and Zapatero (1999,2000) study fixed cost control problems similar to our own and show
that, under some technical conditions, in the class of impulse control policies, the optimal policy is indeed
an affine simple one. See also Vial (1972) and Constantinides (1976).
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and V (8, X) is twice-differentiable. For simplicity in exposition, the index 7 is omitted here.
Since the agent only trades at discrete times {r : k € N4}, his stock position is constant

between trades. Thus, for ¢ € (Tg—1, T&), the Bellman equation takes the form:
= sup {——e""t““—!-D[J]} (1.14)
[

where D[] is the standard Ito operator.’® The optimal consumption is given by
1 _
c= —;[lnr—rfyM—'yﬁaD - V(4,X)]. (1.15)
The Bellman equation then yields the following PDE for V"
0=r(V=0) + 102 (VE=Vix) + sr%9%05 (6—hX) (1.16)

where & = (p— 7 +rlnr)/r, 03 = bpby!, 02 = bxby', and 0% = byby' = h%o2. A more
complete derivation is given in the Appendix.
Let 2 = 0; — hX; for i = 1,2 and V(X,8) = v(z) + 0. Then equation (1.16) reduces to a

second order non-linear ordinary differential equation (ODE):
02" = o2 + 2rv + (ry)’05 2 (1.17)
where o2 = h202. Furthermore, we can rewrite the value function as follows:
J(M, 8, X, t) = —e=rt=r1(M 3980 =), (1.18)

In general, each agent is concerned with two state variables (in addition to his bond posi-
tion M}), his exposure to non-traded risk X! and his current stock position g:. Under the
assumptions that the non-traded risk is permanent (ax = 0) and marketed (by = —hbp),
the dimensionality of the state space is reduced. In particular, agent 1 only needs to be

concerned with 2! as the state variable of interest, which characterizes his net risk exposure.

18Guppose that dz; = a;dt + b;dB, where i = 1,2,...,m, and f = f(z1,...,Tm) is twice differentiable.
Let fi = (8f)/(8zs), fij = (0%f)/(8z:dx;), and ()’ denotes the transpose. Then, D[f] = Yo, aifi +
1372y bi(bs)' fij- Note that in our case dz; = dt.
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We now examine the optimal trading policy within the given candidate set. From the
above discussion, agent 7’s trading poiicy reduces to the control of z!. From the previous
section, we see that solving for the optimal candidate policy (Is, m4, ug) in (1.11) is equivalent
to solving for the constants (z, zm, z.). This is to be understood as follows: when the state
variable z; hits the lower boundary z, the agent buys an amount of shares 61 = z,, — z;, and
when 2; hits the upper barrier, the agent sells an amount of shares 6~ = 2z, — z,,- In both
cases, the agent trades in order to bring his state variable z; to the value z, immediately
after the trade. The optimal trading times are given by 7 = inf {t>Te-1:2: ¢ (21,2)} The
agent’s control problem now reduces to finding the optimal (21, zm, 2,) given the transaction
costs kT, s~ (kT + £~ = k) and price coefficient po.

If the trading policy (21, 2m, z4) is optimal, at the trading boundaries (z; and z,) and with
the optimal trade amounts (6% and ¢7, respectively), the agent must be indifferent between

trading and not trading. This leads to the “value-matching” condition:

v(21) = v(zm) = 7Y [K+ - Po(zm“zz)] (1.19a)

v(zy) = v(2m) = TY [/-z_ + po(zu—zm)] . (1.19b)

In addition, the optimality of the trading boundaries requires the “smooth-pasting” condi-

tion:
v'(2) = V' (zm) = V' (24) = —TYPo- (1.20)

The value-matching condition (1.19) and the smooth-pasting condition (1.20) provide the
boundary conditions to solve for the value function and the optimal trading policy (within

the candidate set).

1.3.3 Equilibrium Price

An equilibrium price process is given by (1.9) with a particulaf choice of transaction costs,

kT and k= (k* +K~ = k), and price coefficients, po, such that the stock market clears. Given
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the agents’ trading policies, the market-clearing condition (1.8) becomes

5T =6 (1.21a)

2m = 0. (1.21b)

Equation (1.21a) implies zy, — Zm = 2m — 2. The symmetry between the two agents in their
exposure to non-traded risk gives 2t = 2Zm = —(22 — z). Thus, their optimal trading times
perfectly match when (1.21a) is satisfied. Furthermore, at the time of trade, the buyer wants
to buy exactly the amount which the seller wants to sell. This trade amount is 6 = 6t =6~.
Equation (1.21b) requires that both agents trade to the point where their total holdings of

“the stock equals the supply.

1.4 Solutions to Equilibrium

Solution to the equilibrium of the conjectured form consists of two steps. The first step is to
solve for each agent’s value function and optimal trading policy, given k™ and pg, which is
to solve (1.17) with boundary condition (1.19)-(1.20). This is a free-boundary problem of a
non-linear ODE. The second stép is to solve for x* and po that the market-clearing condition
(1.21) is satisfied. A general solution to the problem in closed form is not readily available.
We approach the problem in two ways. We first solve the special case when transaction costs
are small and approximate analytical results are obtained. We then solve the general case

numerically.

1.4.1 Zero Transactions Costs

Tt is useful to start with the case when the transactions costs are zero. When k = 0,

5+ = 6~ = 0 and the agents trade continuously.'® We have the following theorem:

Theorem 1.1 For k = 0, agent i’s optimal trading policy under a constant stock price

PtZaD/T"pO 8

0 = Zm + h X}

19We can think of continuous trading in this case as the limit of the progressively measurable simple
trading strategies given in Definition 1.
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where Z,, = po/(703), and his value function is

JOME X5 1) = —-p-rlMisaies x|t (—PeheR) 0 (199)

Moreover, in equilibrium, py = fo = y020 and zZp, = 6. Here v = (p—r+rlnr)/r.

Agent #’s stock holding has two components. The first component 2, which is constant,
gives his unconditional stock position. For P, = (ap/7) — po, the expected excess return on
one share of stock is 7py and the return variance is o%. Hence, rpo/ o2 gives the price of per
unit risk (of the stock). Moreover, agent i’s risk-aversion (toward uncertainty in his wealth) is
r+y. Thus, his unconditional stock position, Z, = (1/77)(rpo/03) = po/(v03), is proportional
" 1o his risk tolerance and the price of risk. The second component of agent ’s stock position is
proportional to X}, his exposure to the non-traded risk. This component reflects his hedging
position against ﬁon-traded risk and the proportionality coefficient, h = oy/0p, gives the
hedge ratio.

In equilibrium, market clearing requires that z, = . Thus, po = fo = y020. As
mentioned earlier, py gives the discount in the price of the stock for its risk and illiquidity.
In absence of transaction costs, the stock is liquid and po = Po. Thus, pp can be interpreted as
the risk discount of the stock. In the presence of transactions costs, we define the difference

between po and Po, denoted by m:
T = po — Po (1.23)

to be the illiquidity discount of the stock.

1.4.2 Infinite Transactions Costs

In order to develop an intuition about the illiquidity discount and to put a bound on its
magnitude, we now consider the case when the transaction costs are prohibitively high
except at t = 0. That is, k = K 140y where K — oo. Agents can trade at zero cost at t =0

but cannot trade after all afterwards.? We have the following result:

20This situation has been considered by Hong and Wang (2000) when they analyze the effect of market
closures on asset prices. Closures of the market is equivalent to imposing prohibitive transaction costs.
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Theorem 1.2 For k = R 150y where & = 0o and 49°0%0% < 1, agent i’s stock position is

6 and the equilibrium stock price at t = 0 is Py = @p/T — po where
4v%02 02

2
(1 +4/1— 472012\,03{)

Po=po |1+

and Py is given in Theorem 1.1.%

In this case, the stock becomes completely illiquid after the initial trade. An illiquidity

discount is required in its equilibrium price:

4y%0% 0%

5.
(1 +4/1- 472012\,0)%)

T

Do
For o2 small, we have T =~ 20202 po.
This extreme case illustrates three points. First, the agents’ inability to trade in the
future reduces their current demand of the stock. As a result, its price carries an additional
discount in equilibrium to compensate for the illiquidity (also see Hong and Wang, 2000).
Second, this illiquidity discount is proportional to agents’ high frequency trading needs,
which is characterized by the (instantaneous) volatility of their non-traded risk, o2. Third,
the liquidity discount also increases with the risk of the stock, which is measured by o2.
When the transaction costs are finite, agents can trade after the initial date (at a cost)
and the stock becomes more liquid. We expect the magnitude of the illiquidity discount
to be smaller than the extreme case above. However, the qualitative nature of the results

remains the same as we show later.

1.4.3 Small Transactions Costs: An Approximate Solution

We now turn to the case when the transaction costs are small. We seek the solution to each

agent’s value function, optimal trading policy, the equilibrium cost allocation and stock price

21When agents cannot trade (after the initial point), a parameter condition, 4v%0% 0% < 1,is required. This

condition limits an agent’s endowment risk. Unable to unload the risk to the market, the agent’s consumption
is forced absorb the risk of his endowment. Conditions of the above type is needed to guarantee that his
expected utility (over an infinite horizon) is well defined given his endowment. This condition is not needed
when agents can trade (even infrequently) to control the risk of his consumption.
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that can be approximated by powers of € = k* where a is a positive constant. In particular,

v takes the form v(z,¢) and x* takes the form:

(o)
KE =k (% £ k(")sn) : (1.24)
n=1
The following theorem summarizes our results on optimal trading policies:

Theorem 1.3 Let ¢ = ki. For (a) & small and k* in the form of (1.24), and (b) v(z,¢)

analytic for small z and €, an agent’s optimal trading policy is given by

6t = dri & £ (k(l) - %T'ypoqﬁ) oK? + O(K%) (1.25a)
D

where ¢ = (—6—”%>%.

TYohH

Here, 6% and 6~ are the same to the first order ofe = m%, but differ in higher orders of €.
The stock market equilibrium is obtained by choosing k* and po such that the market-

clearing condition (1.21) is satisfied. We have the following theorem:

Theorem 1.4 For (a) k small and x* in the form of (1.24), and (b) v(z,€) analytic for
small z and €, the equilibrium price and transaction cost allocation are given by
po = y020 (1 + %7")/20123452&%) + o(m%) (1.26a)
kT =k [% + %T”)’poth:% + o(n%)] (1.26b)

and the equilibrium trading policies are given by (1.25 ) with the equilibrium value of po and

KE.

1.4.4 General Transactions Costs: A Numerical Solution

In the general case when x can take arbitrary values, we have to solve both the optimal

trading policy and the equilibrium stock price numerically.

29



10| 10

J o1 02z 03 04 0§ o€ or os 08 t 03 04 os [ o7 () o8
x P

Figure 1.1: Trade amount § plotted against transaction cost x and xi. The circles represent the numerical
solution. The solid line plots the analytical approximation. The parameter values are r = 0.037, p = 0.07,
ox = 8.8362, op = 0.3311, 0y = 0.3311, 0py = —0pOn, ¥ = 0.5, § = 12.8225, @, = 0.05, and P; = 0.6486.

Given po and k%, we can solve (1.17) and (1.19-1.20) for each agent’s optimal trading
. policy. Figure 1.1 shows the numerical solution for the trade amount for various values of
transaction cost. The parameter values in the figures throughout the paper are obtained
from a calibration exercise, which is discussed in Section 1.6. Here, we have chosen k* such
that 6+ = 6~ = 6. Each circle represents the value of ¢ for a particular value of x. In the
left panel, § is plotted against the value of k. In the right panel, ¢ is plotted against the
value of ki. This transformation is suggested by the approximate solution when & is small.
For comparison, we have also plotted the analytical approximation obtained for small x as
the solid lines.

Given the solution to the agents’ optimal trading policies, we can further search for the
po and x* such that the market-clearing condition (1.21) is satisfied. Figure 1.2 plots the
numerical solution (circles) and the analytical approximation (solid line) for the illiquidity
discount 7r'(7rA = po — Po) in the stock price for various values of the transaction cost. In
the left panel, 7 is plotted against the value of . In the right panel, 7 is plotted against
the value of k2. It is interesting to note that the analytic approximation obtained for small

values of transaction costs still fits quite well for fairly large values of .

1.5 Analysis of Equilibrium

We now discuss in more detail the impact of transaction costs on agents’ trading policies,
the equilibrium stock price and trading volume. We focus on the case when « is small. For

convenienée, we only maintain the terms up to the lowest appropriate order of k in our
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Figure 1.2: Tlliquidity discount 7 plotted against x and k. The circles represent the numerical solution.
The solid line plots the analytical approximation. The parameter values are r = 0.037, p = 0.07, 0x = 8.8362,
op = 0.3311, oy = 0.3311, 6py = —0pON, ¥ = 0.5, § = 12.8225, ap = 0.05, and P, = 0.6486.

discussion.

1.5.1 Trading Policy

When the transaction costs are zero (x = 0), agent i trades continuously in the stock
in response to changes in his exposure to non-traded risk, which is characterized by X;
(i = 1,2). As stated in Theorem 1.1, the stock position is constantly adjusted such that
6 = po/(702) + hX} and 2 = Zm = po/(¥07).

When the transaction costs are positive, it becomes costly to maintain 2! = Z,, at all
times. In response, agent 1 adopts the following policy: He does not trade when z{ is within
a no-trade region, given by (z;,2,) = (2m — 6%, 2m +67). When 2t hits the boundary of
the no-trade region, agent ¢ trades the necessary amount (6% or 67) to bring z; back to the
optimal level z,. Two sets of parameters characterize the agent’s optimal trading policy:
the bandwidths of the no-trade region, * and 6=, and the base level he trades to, zm, when
he does trade. Note that z, is in general different from Z, the position he would trade to
in absence of transaction costs. We now discuss these two sets of parameters separately.

To the lowest order of k, 6T =6~ = qbn% as shown in Theorem 1.3. In other words, the
bandwidth of the no-trade region exhibits a quartic-root “law” for small transaction costs.
We argue that this quartic-root law arises from the boundary conditions, reflecting mainly
the nature of the transaction costs. In order to see this, let us consider the simple case when

po = 0 and k¥ = £~ = k/2. Then, 2z, = 0. We can re-express the boundary conditions in
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(1.19) and (1.20) as follows:

v(=67) = v(0) = —rys = v(6F) — v(0) (1.27a)

V'(=67) = (0) = (6%) =0. (1.27b)

The symmetry between the boundary conditions for the upper and lower no-trade band
implies that the band should be symmetric around zn to the lowest order of x. That is,
5+ ~ 6- = 6. Hence, to the zero-th order of &, v1(0) = 0 ~ v3(0), where v(0) denotes
the k-th derivative of v at 0, and furthermore, v2(0) & 0 by (1.27b). It follows that for
small z, v(2) &~ 4v4(0)z*. The value matching condition (1.27a) then implies that ¢ oc K1
(if v4(0) # 0).22 The above argument suggests that the quartic-root relation between § and
x for small  is determined by the boundary conditions, especially (1.27a), which in turn
reflects the form of the transaction cost. For this reason, the quartic-root relation between
the width of no-trade region and the fixed transaction cost seems to be a more general result
for optimal trading policies..

In the above argument, the quartic-root relation between ¢ and « is closely related to the
fact that v(z) is quartic in z for small z. The economic intuition behind this property of the
value function is as follows. The optimality of the point z = 0 requires that v;(0) = 0. If the
agent was not allowed to trade, we would have v(z) 22 for z small. However, since the agent
always trades back to the optimal position when the trading boundaries are hit, the quadratic
term vanishes (to the zero-th order of k). The symmetry of the boundary conditions further
requires that the cubic term vanishes. Thus, v(2) is quartic in z. Intuitively, under fixed
transaction costs, the agent always trades back to the optimal stock position. Thus, he can

minimize his utility loss without trading too frequently.”®

22More precisely, (1.27b) leads to v2(0) + %v4(0)52 ~ 0, or v2(0) = —%‘U4(0)(52. From (1.27a), we have

-1—151)4(0)64 ~ 7K, or 6 o« ki if v4(0) # 0. In fact, (1.25) gives that v4(0) = 2(ry)2c? Jo?. See the appendix
for more details.

- 23The above result on optimal trading policies under fixed transaction costs are closely related to the
results of Morton and Pliska (1995) and Atkinson and Wilmott (1995) (see also Schroeder, 1997). Morton
and Pliska solve for the optimal trading policy when the agent maximizes his asymptotic growth rate of
wealth and pays a cost as a fixed fraction of his total wealth for each transaction. The optimization problem
reduces to a free-boundary ODE, which has a closed form solution up to a set of coefficients to be determined
by the boundary conditions. They numerically solve for these coefficients. Atkinson and Wilmott (1995),
using perturbation techniques, derive an analytic approximations for the solution to the Morton and Pliska
model when the transaction cost is small. Interestingly, they also find that the no-trade region is proportional
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Having established that the width of no-trade region should be proportional to the quartic
root of k (i.e., d = qﬁm%), we now examine the proportionality coefficient ¢. From Theorem
1.3, we have ¢ = (;%‘;—%) *. Note that ryo2 corresponds to the certainty equivalence of the
(per unit time) expected utility loss of bearing the risk of one stock share. It is then not
surprising that ¢ (and 6) is negatively related to ryo%. Moreover, o? gives the variability of
the agent’s non-traded risk. For larger o2, the agent’s hedging need is changing more quickly.
Given the cost of changing his hedging position, the agent is more cautious in trading on
immediate changes in his hedging need. Thus, ¢ (and 6) is positively related to o2,

Under the optimal trading policy, agents trade only infrequently. Define At = E [1541 — 7x)

to be the average time between two neighboring trades. It is easy to show that

[

Ar = 6%)ol =~ (¢%/02) K (1.28)
(see, e.g., Harrison, 1990). Not surprisingly, the average waiting time between trades is
inversely related to o, the volatility in the agent’s hedging need, and ryo?, the cost of
bearing the risk of one stock share. Moreover, it is proportional to the square root of the
transaction cost. Figure 1.3 plots the average trading interval At versus different values of

transaction cost x as well as the appropriate power law for small ’s.
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Figure 1.3: Trading Interval. The two panels show the expected inter-arrival times plotted against x and
its square root, respectively. The circles represent the numerical solution. The solid line plots the analytical
approximation. The parameter values are r = 0.037, p = 0.07, ox = 8.8362, 0, = 0.3311, oy = 0.3311,
Opn = —Op0On, v = 0.5, 8 = 12.8225, G, = 0.05, and P; = 0.6486.

When each agent chooses to trade, he trades to a base position zm. In absence of trans-

action costs, each agent trades to a position (Zn) that is most desirable given his current

in size to the fourth root of the transaction cost. (Note that in their model, the transaction cost is a fixed
fraction of the total wealth.)
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non-traded risk. As his non-traded risk changes, he maintains this desirable position by
constantly trading. In the presence of transaction costs, however, an agent only trades in-
frequently. A position desirable now becomes less desirable later. But he has to stay in
this position until the next trade when the gain from trading exceeds the transaction cost.
As a result, the agent chooses a position that takes into account the deterioration of its
desirability over time and the inability to revise it immediately.

From Theorems 1.3 and 1.4, the shift in the base position is given by Az, = zn —
Iy = ——%T’Ypo(UEAT). It is not surprising that Az, is proportional to the total volatility
of an agent’s non-traded risk over the no-trade period, which is o2Ar. Moreover, Azp,
is proportional to po, the risk discount on the stock. In order to further understand this
“result, let us consider the following heuristic argument. Suppose that the current level of
the agent’s non-traded asset is zero. The uncertainty in its level over the next no-trade
period, denoted by 2, gives rise to an additional uncertainty in his wealth: —Z(—po + J),
where d denotes the stock dividend over the period. (Here, we set h = 1 for simplicity.)
Although Z has a zero mean, its impact on the overall uncertainty in wealth is not zero.
Averaging over Z (assumed to be normally distributed with variance 0?), the agent’s utility
over his future wealth is proportional to E; [——e’r”’(g‘f)("’”‘b] o —e~ T 0+57 oot AT)(~po+d)
where E; denotes the average over 7, 8 is the agent’s stock position and AT is the length of
no-trade period. In other words, the uncertainty in z leads to an effective risk in the agent’s
wealth that is equivalent to a stock position of size %’I")/po(O'EAT). The size is proportional
to po because the uncertainty in wealth generated by uncertainty in Z is proportional to po.
Consequently, the agent reduces his base stock position by the same amount. This shift in

the agent’s base position reflects the decrease in his demand of the stock in response to its

illiquidity.
1.5.2 Stock Price and Illiquidity Discount

In equilibrium, the stock price has to adjust in response to the negative effect of illiquidity on
agents’ stock demand, giving rise to an illiquidity discount 7. For small transaction costs, the
illiquidity discount is proportional to the square root of k. Figure 1.2 further shows that this

square-root relation provides a reasonable approximation even for fairly large transaction
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costs. From Theorem 1.4, we have
= 1 _
TR Yo Az & %r’y3a4D¢29m = Ly (ryo}) po(a?AT). (1.29)

As we have shown, fluctuations in his non-traded risk and the cost of adjusting stock positions
to hedge this risk reduce an agent’s stock demand by Azp. Given the linear relation between
the agents’ stock demand and the stock price, the price has to decrease proportionally to
the decrease in demand to clear the market, which gives the illiquidity discount in the first
expression of (1.29). Moreover, the decrease in agents’ stock demand is proportional to the
total risk discount of the stock (poj and the volatility of their non-traded risk between trades
~ (02Ar7), which leads to the second expression.

We thus conclude that the illiquidity discount of the stock is proportional to the product
of the unit price of risk, total risk discount of the stock, the variability of agents’ desired
positions between trades. The proportionality constant is the risk-aversion coefficient .

We can also rewrite the illiquidity discount as follows: m = 1202 (ryo30) (02A7). Note
that the illiquidity discount is proportional to the cubic power of v. Comparing with the risk
discount which is proportional to vy, we infer that the illiquidity discount is highly sensitive
to the agents’ risk aversion.

Using a model similar to ours but with proportional transaction costs and deterministic
trading needs, Vayanos (1998) finds that the illiquidity discount on the stock is linear in
the transaction costs (when they are small). Our result shows that small fixed transaction
costs can give rise to a non-trivial illiquidity discount when agents have high frequency
trading needs. Given the difference in the nature of transaction costs between our model
and Vayanos’, our result is not directly comparable to his. But, our result does suggest
that the presence of high frequency trading needs is important in analyzing the effect of
transaction costs on asset prices.

In order to further confirm this, we consider a special variation of our model, in which
X, = Gyt. In this case, the agents’ non-traded risk evolves deterministically. This gives rise
to deterministic needs to trade among agents since they differ in their non-traded risk. We

have the following result:
Theorem 1.5 Let ¢ = k3. For (a) X, = axt (ax > 0), (b) * = K/2, and (c) v(z,¢€)
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analytic for small z and €, agents’ optimal trading policies are given by

5 = \ki +o(k3), 67 =0, &t=0, & =67 (1.30a)
z = :Y@E + %/\n% -3 (/\fyai)_l K3 +o(kt), 22 =0-(z}—0) (1.30b)
9p

1

where A = (My):g (ax)

YD

W

. The equilibrium stock price is given by po = Po + 0(k).

It is indeed the case that in absence of high frequency trading needs, the transactions cost

does not lead to significant liquidity discount on the stock. Also the power law for the

trade amount has now become %, rather than i This is a result of the fact that each agent
~has only 1 trade b'oundary (each agent either always sells or always buys), because of the

deterministic nature of the endowment process.

1.5.3 Tradihg Volume

It has long been recognized that continuous-time models have the drawback of implying
infinite trading volume in all assets (in the sense that agents’ portfolio holdings are of un-
bounded variation). It has also been long recognized that the introduction of either fixed
or proportional transaction costs serves to remedy this problem. In the case of only pro-
portional transaction costs, portfolio holdings become local time processes, and hence of
bounded variation. In the case of only a fixed cost, an agent trades only a finite number of
times in any finite time interval.

Intuitively, an increase in transaction costs must reduce the volume of trade. Our model
suggests a specific form for this relation. In particular, the equilibrium trade size is a
constant. From our solution to equilibrium, the volume of trade between time interval ¢ and

t+1 is given by:

vir= y_ |6 | (1.31)

{k: t<mg <t+1}

where 7 = 1 or 2. The average trading volume per unit of time is

Elv1] =E {Z 1{Tk€(t,t+1]}} d=wo
k
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where w is the frequency of trade (i.e., the number of trades per unit of time). For conve-
nience, we define another measure of a{/erage tradihg volume as the number of shares traded
per average trading time, or

— 0 — 42
v= =05 (1.32)

where At = E[re1 — 7] & 62/0? is the average time between trades.*® From (1.25), we

have
v = azaﬁ_ln'% [1 +0 (n%)] .

" (Clearly, as s goes to zero, trading volume goes to infinity. However, we also have

In other words, (for positive transaction costs) one percentage increase in the transaction
cost only decreases trading volume by a quarter of a percent. In this sense, within the range
of positive transaction costs, an increase in the cost only reduce the volume mildly at the

margin.
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Figure 1.4: Trading volume. The two panels show the volume measure v plotted against & (left) and k™%
(right). The circles represent the numerical solution. The solid line plots the analytical approximation. The
parameter values are r = 0.037, p = 0.07, ox = 8.8362, 0p = 0.3311, oy = 0.3311, opy = —0poN, 7 = 0.5,
= 12.8225, a, = 0.05, and P, = 0.6486.

Figure 1.4 plots the average volume measure v versus different values of transaction cost

« as well as the appropriate power laws. Clearly, as x approaches zero, volume diverges.

240f course, v is different from E[v;11] by Jensen’s inequality.
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1.5.4 Bid/Ask Prices and Depths

Even in the presence of a transaction cost, each agent is willing to transact at the right prices:
he becomes willing to buy at a low enough price, P?, and sell at a .high enough price, Py.
For prices in between these two extremes, the agent prefers not to transact. We define these
two critical prices as the agent’s bid and ask prices. As it turns out under fixed transaction
costs, an agent is willing to buy/sell a finite amount at his bid/ask prices. We define the
amount that an agent is willing to transact at his bid and ask prices as the depth of the bid
and ask, denoted by 62 and df, respectively. Clearly, an agent’s bid and ask prices and their
depth depend on his current stock position, the current state of his non-traded risk, as well
as on the transaction costs.

In Theorem 1.3, we have shown the explicit dependence of the agent’s control policy on
the stock prices and the allocation of transaction costs. In particular, we have expressed
his transaction boundaries (z and z,) as a function of his current risk state (z;) and the
stock price. For a particular allocation of transaction costs (k*,k7), an agent’s bid and ask
prices are those prices that put him right at the lower and upper transaction boundaries,

respectively. That is

2(PP) =2z (1.33a)

2y(Pf) = 2. | (1.33b)

At the bid price P?, the agent is willing to buy only 67 shares and at the ask price P;*, he is
willing to sell only &; shares. From Theorem 1.3, the depth of the bid and ask are given by

& = 2m(P7) — a(Py) (1.34a)

5 = 2y(PA) — zm(P). (1.34b)

The following theorem characterizes the bid and ask prices, as well as their depth:

Theorem 1.6 Let ¢ = k1. For (a) k small and k* has the form in (1.24), and (b) v(z,€)
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analytic for small z and €, each agent’s bid and ask prices are

PP =22 _ 402 [é+ i3 + (2—0) + (ZEW + Erypog) it + O(H%)} (1.35a)

ﬁlbl %‘b'

Pr =2 —v0? [0 ¢rt + (z—0) + (ZkD + Erypog) dKk7 + ok %)] (1.35b)

The corresponding depth 6% and 6* are given by

NI'-'

= i + 3 k(1)¢l’{,2 + 7‘7q52m (PP —ap/r) + o(x

)

= ¢ri + %k(l)d)m — =TYPo Pk + o(m) ' (1.36a)

6 = gt — TR Ogrt — &rygnd (PP —ap/r) +o(x?)

NI'—'

= qu - ——k(l ¢f§2 + = r7p0¢2/<c2 + o(k?) (1.36b)

where ¢ is given in Theorem 1.5.

The second step in (1.36a) follows from the observation that fluctuation in bid/ask prices
only have a higher order impact on their depth. Thus, to a “low order approximation” (i.e.,
to the order of n%), the depth of the bid and ask are constant, independent of the agent’s
risk state. This contrasts sharply with the behavior of bid/ask prices themselves, which
tend to vary linearly with the agent’s risk state z;. Moreover, with arbitrary allocation of
transaction cost between buy and sell (as characterized by k1)), the depth at the bid differs
from the depth at the ask.

Given the bid/ask prices of individual agents, we define the bid/ask prices of the market as
the best bid/ask prices currently available across all agents in the market. They are denoted
by PM® and P4, respectively. Thus, P#? = max[P}?, P?®] and P}*® = min[P}#, P?*].
For convenience, we define 7 = zi — f. Obviously, } = —z}. Let z = |z}| = |Z}|. Then,

max |2}, 22 = |2, and min [}, 72] = —|Z|. We have the following expression for the bid/ask
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prices of the market:

p¥® = 95 [9 + ¢kt + 5+ (ZED + Arypog) ¢kt + o(k %)] | (1.37a)
pMA = 97%1 — o2 [é — ¢t + 5+ (2ED + Erypeg) ot + o(k %)] (1.37b)

The depth of the market bid and ask prices can be determined from the depth of individual
bid/ask prices given in Theorem 1.6. As we mentioned earlier, to a low order approximation,
the depth of bid/ask prices are the same across agents. Consequently, the depth of the
market bid and ask prices are (approximately) constant, given by the second equation in

(1.36a).

1.5.5 Allocation of Transactions Costs

Given each agent’s bid/ask prices, we can now examine the trading process. In the presence
of transaction costs, agents do not trade most of the time because one agent’s bid price sits
below the other agent’s ask price. Trading occurs when two things happen at the same time:
the bid price of one agent coincides with the ask price of another agent, and at this price
the two agents want to buy/sell the same amount. In other words, trading occurs when the
market bid/ask spread shrinks to zero and the depth at the bid equals the depth at the ask.

The market bid and ask prices and their depth given above indicate that it can be
difficult to meet both of these conditions simultaneously for an arbitrary allocation of the
transaction cost (i.e., k). In particular, when 2, = PK1, PME = PM4 and the agents can
agree on a transaction price. However, they cannot agree on the amount to transact because
in general, 6% # 4. This situation should not be surprising. Under fixed transaction costs,
agents always transact a finite amount when they trade. In general, there is no reason to
expect any symmetry between the amount they choose to buy and the amount they choose
to sell when they decide to trade. This is different from the situation when they face zero
transaction costs, in which case only infinitesimal amount is transacted (hence, the symmetry
is guaranteed). The lack of symmetry between the depth at the bid and ask prices would
prevent the existence of an equilibrium.

In order to allow trading to occur eﬁectively, we need to choose a particular allocation

of the fixed cost such that the depth at the bid and ask prices always match when they two
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prices coincide. From the expressions for the bid/ask depth, this is achievable by setting
kD = Zrypos (to the order of K3). In this case, we have 6% = 6}/ = #ki. Trading occurs
whenever the market bid-ask spread shrinks to zero and the amount ¢ = dm% is transacted.
Thus, an equilibrium exists.

The discussion above can be illustrated by looking at agents’ bid/ask prices/depth graph-
ically. Figure 1.5 shows the bid and ask prices and their depth of both agents for various
values of zi = 8l — (oy/0p)X{, within the no-trade region. Since the agents’ endowment
of non-traded income is opposite to each other, the agents’ prices and demands are mirror

images of each other around the point z; = 0.

Figure 1.5: Agents’ bid-ask prices and depth. The x-axis represents the level of each agent’s state variable
Zi = 01 — (gy /op)X{ with X} = —X7. Each agent’s prices and demands are mirror images around the point
z! = 0. The dashed and solid lines represent the shadow prices and demands of agents’ 1 and 2, respectively.
The parameter values are r = 0.037, p = 0.07, 0x = 41.1808, o, = 0.3311, oy = 0.3311, opy = —0pO0n,
v =0.1, 8 =64.1127, ap = 0.05, P, = 0.6486, kg, = 0.5%, and &k = 0.00324. In (a), k = 0.05, x* = 1.1x7,
where kF is the equilibrium allocation for the buy side transaction cost. In (b), k* and k™ are assigned
their equilibrium values.

Figure 1.5(a) describes the case when x* = k= = k/2 = 0.025. The left panel plots
the bid/ask prices of the two agents and the right panel plots the depth of the bid and ask
prices, respectively. Notice that as deviations in the risk exposure, which has the opposite

sign for the two agents, approaches the boundary of no-trade region, the bid price of one
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agent approaches the ask price of the other agent. At the boundary, the two prices coincide
and the two agents would agree on the price to transact. However, their desirable trade
amount is different. As shown in the right panel of Figure 1.5(a), at the boundary of no-
trade region, the depth of the selling price is lower than the depth of the buying price. This
implies that trade would not occur, even though both agents can agree on a price.

The above situation can be avoided if we adjust the allocation of transaction cost. In
particular, if we choose k% and k™ such that the depth of bid and ask prices also coincide
at the boundary of no-trade region, trade would occur at the boundary because the agents
agree on both the price and the amount of the transaction. Figure 1.5(b) illustrates this

case. In this case, an equilibrium exists.
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Figure 1.6: Aggregate demand curves for different values of X;. Respectively, the panels correspond to
X, = 10,15,16.8955,24. The parameter values are r = 0.037, p = 0.07, ox = 41.1808, o, = 0.3311,
onx = 03311, opy = —0p0oN, ¥ = 0.1, f = 64.1127, @, = 0.05, P, = 0.6486, ky; = 0.5%, and « = 0.00324.
Here st = 1.1}, where k7 is the equilibrium allocation for the buy side transaction cost.

Another way to see that an equilibrium may not exist for arbitrary cost allocations is to
examine the corresponding aggregate demand curve. It can be seen from Figure 1.6 that the
aggregate demand curve exhibits a discontinuity through 0 for some values of X;. For small
values of X;, both agents have demands of 0 and the market could clear for a range of prices,
as can be seen in the first panel of Figure 1.6. For values of X; which bring both agents
outside of their optimal control region (zi, z,,) (if for example this was the initial endowment
in the economy), both agents would like to trade immediately to their optimal allocation,
and the trade amount would be 6 = |z; — z,,|. In this case it follows from (1.25) that the

market clearing price is

D

Do = Y02, [9— L (kW — Zbryo¢) ¢/~c%] + o(k2). (1.38)
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The last panel of Figure 1.6 illustrates this situation. Only for values of X; such that one
agent’s state variable is in the vicinity of z, the market does not clear for an arbitrary
transaction cost allocation (see the middle panel of Figure 1.6). But because X; evolves
continuously, an equilibrium in the economy does not exist almost surely.?’ |

For the equilibrium allocation of transaction costs, xF, the aggregate demand curve
remains discontinuous. However, it always passes through 0 for all values of X;. Figure 1.7

shows the aggregate demand for k™ = k] at various values of X;.
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Figure 1.7: Aggregate demand curves for different values of X;. Respectively, the panels correspond to
X; = 10,15,16.8955,24. The parameter values are r = 0.037, p = 0.07, 0x = 41.1808, o, = 0.3311,
on = 0.3311, opy = —0p0xN, v = 0.1, § = 64.1127, @, = 0.05, P, = 0.6486, sy, = 0.5%, and x = 0.00324.
Here 7 is the equilibrium allocation for the buy side transaction cost.

It is well known that the existence of an equilibrium in the presence of fixed transaction
costs is not automatic. In our case, a particular allocation of the cost between the two
trading parties is needed to reach an equilibrium. From a practical point of view, one may
ask if such an allocation can be implemented through an actual trading process. The answer
is affirmative. Let us imagine an electronic trading system through which agents can post
their limit orders. Whenever a transaction occurs, the buyer pays «* in addition to the
dollar amount of his purchase and the seller receives k™ less than the dollar amount of his
sale. The sum of the charges, k™ + k= = & is used to cover the total fixed cost. Such a

mechanism can then support the trading process as we discussed.

1.5.6 Trading Process

Let us now examine the actual trading process. As the risk exposure of each agent changes

over time, their bid/ask prices and the respective depth also change. A transaction occurs

25]f the state variable has a jump component this would not be the case: an equilibrium would exist with
positive probability.
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when the market’s bid and ask prices as well as their depth coincide. Figures 1.8 and 1.9

show the realization of a single realization of the economy.
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Figure 1‘8-: A single realization of the economy. In the top panel, the dashed line represents the market
bid price, and the solid line represents the market ask price. In the bottom panel, the dashed line represents
the depth at the market bid price, and the solid line represents the depth at the market ask price. The
parameter values are r = 0.037, p = 0.07, 0x = 41.1808, o, = 0.3311, oy = 0.3311, opy = —0poN, ¥ =0.1,
f = 64.1127, @, = 0.05, P, = 0.6486, ko, = 0.5%, and k = 0.00324, T = 1/2, N = 1000. Here T is the
number of years in the simulation and N is the number of points in the simulated Brownian motion.

Figure 1.8 shows the time evolution of the market bid/ask prices and of the number of
shares offered and sought at the ask and bid (their depth), respectively. Note that the depth
of the bid/ask prices is not constant over time, but its variation is much smaller than that
in the bid/ask prices. We observe that the bid-ask spread approaches zero as a trade occurs
and widens discretely right after the trade. This is intuitive because right after a trade, the
desire for another trade is minimized. We also observe that the difference in depth between
the bid and ask prices exhibits the same pattern, diminishing to zero as a trade occurs and
widening discretely after the trade.

Figure 1.9 plots each agent’s bid-ask spread and buy/sell amounts. Immediately after
a trade, all of these variables revert discontinuously back to their level when each agent’s
endowment z is equal to 6 (i.e. as it is immediately after a trade). Interestingly the ultimate

trade price is always the half-way point between the market bid and ask (the solid line in

the top panel of Figure 1.8 is the mean of the current bid-ask prices).
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Figure 1.9: A single realization of the economy. In the top panel, the dashed lines represents one agent’s
bid and ask prices, and the solid lines represent the other’s. In the bottom panel, the solid and dotted lines
represent one agent’s ask and bid amounts respectively. The dashed and dot-dashed lines represent the other
agent’s ask and bid amounts respectively. The parameter values are r = 0.037, p = 0.07, ox = 41.1808,
op = 0.3311, oy = 0.3311, ooy = —0p0N, v = 0.1, 8 = 64.1127, @, = 0.05, P, = 0.6486, kg, = 0.5%, and
k = 0.00324, T = 1/2, N = 1000. Here T is the number of years in the simulation and N 'is the number of
points in the simulated Brownian motion. ‘
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1.6 A Calibration Exercise

Our model shows that even small fixed transactions costs imply a significant reduction in
trading volume and an illiquidity discount in asset prices. To further examine the impact of
fixed costs in equilibrium, we calibrate our model using historical data and derive numerical
implications for the illiquidity discount, trading frequency, and trading volume. From (1.29),

for small fixed costs k we can re-express the illiquidity premium 7 as:

N~

3 1
Y2050 xPok? (1.39)

T o= T}'ET

Without loss of generality, we set oy = 1, hence the remaining parameters to be calibrated
. are: the interest rate 7, the risk discount pg, the volatility of the idiosyncratic non-traded
risk oy, the agents’ coefficient of absolute risk aversion 7, and the fixed transaction cost .
The starting point for our calibration exercise is a study by Campbell and Kyle (1993).

In particular, they propose and estimate a detrended stock-price process of the following

form:26

A
B=V-_--N (1.40)

where V; (the present value of future dividends discounted at the risk-free rate) is assumed to
follow a Gaussian process, Y; (fluctuations in stock demand) is assumed to follow an AR(1)
Gaussian process, 7 is the risk-free rate, and A/r is the risk discount. In the Appendix, we
show that in the absence of transactions costs, the general non-traded income process (1.3)
of our model yields the same price process as (1.40). Moreover, in our model A/ is denoted
by po and Y; is the aggregate exposure of non-traded risk, which generatés changes in stock
demand. Therefore, we can obtain values for 7, po, 7, and oy (the instantaneous volatility
of ¥;) from their parameter estimates.

Campbell and Kyle based their estimates on annual time series of US real stock prices
and vdividends from 1871 to 1986. The real stock price of each yeaf is defined by the Standard
& Poors Composite Stock Price Index in January, normalized by the Producer Price Index

in the same month. The real dividend each year is taken to be the annual dividend per-
26See Campbell and Kyle (1993, equation (2.3), p. 3).
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share normalized by the Producer Price Index (over this sample period, the average annual
dividend growth rate is 0.013). The ‘price and dividend series are then detrended by an
exponential detrending factor exp(—0.013¢) and the detrended series are used to estimate
(1.40) via maximum likelihood estimation. In particular, they obtain the following estimates

for the risk-free rate:?’
r = 0.037 , A = 0.0210
Using these estimates, we are able to compute values for the following parameters:
a, = 0.050 , po = 0.5676 .

Our model also contains the parameter oy, the volatility of idiosyncratic non-traded risk.
Because it is the aggregate non-traded risk that affects prices, Campbell and Kyle (1993)
only provides an estimate for the volatility o, of aggregate non-traded risk as a function of
the coeficient of absolute risk aversion .28 Obtaining an estimate for the magnitude of o
requires data at a more disaggregated level, which has been performed by Heaton and Lucas
(1996) using PSID data. Their analysis shows that the residual variability in the growth rate
of individual income—the variability of the component that is uncorrelated with aggregate
income—is 8 to 13 times larger than the variability in the growth rate of aggregate income.
Based on ‘this result, we use values for o, that are 1, 4, 8, and 16 times the value of oy .

The two remaining parameters to be calibrated are the coefficient of absolute risk aversion
~ and the fixed cost k. Since there is little agreement as to what the natural choices are for
these two parameters, we calibrate our model for a range of values for both.

Tables 1.1-1.4 report the results of our calibrations. Each of the four tables corresponds
to a separate value for the variability ox of the idiosyncratic component of income: Table 1.1
sets ox = Oy, Table 1.2 sets ox = 4oy, Table 1.3 sets ox = 80y, and Table 1.4 sets ox = 160y.
Within each table, there are four sub-panels. The first sub-panel reports the share price F;

(in dollars) of the risky asset as a function of the absolute risk aversion coefficient v and the

27See Campbell and Kyle's (1993, p. 20) estimates for “Model B”.

28This was not an oversight on their part, but is merely due to the fact that the idiosyncratic component
does not affect prices, and was irrelevant for their purposes. The functional relation between oy and vy
implied by their estimates is given in the Appendix.
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standard deviation o, of annual income. The second sub-panel reports expected trade inter-
arrival times 7 (in years), the third sub-panel reports the illiquidity discount in the stock price
(as a percentage of the price P =a,/r — o in a frictionless economy), and the fourth sub-
panel reports the trade size § (in shares of the risky asset), all as functions of the transactions
cost k, which ranges from 1 basis point to 5 percent of P.?° and the absolute risk aversion
coefficient +, which ranges from 0.001 to 5.000. Our motivation for selecting the latter range
for v was derived from inspecting the relation between y and the certainty equivalent of two
specific gambles under constant-absolute-risk-aversion preferences, displayed in Figure 1.10.
For Gamble A, a 50/50 gamble to win either $1 or nothing, Figure 1.10 shows that risk
aversion parameters between 0.000 and 5.000 yield certainty equivalents between 50 and 15
~cents. However, for Gamble B, a 50/50 gamble to win either $1,000 or nothing, Figure 1.10
shows that relevant range for the risk aversion parameter lies somewhere between 0.000 and

0.010 since in this range, the certainty equivalents fall between $500 and $100.

2 a 4 s O 7 [ s 10 ® 0002 0004 0006 0008 0O1 0012 DO 0018 QO  0G2
1 1

Gamble A Gamble B

Figure 1.10: Certainty equivalents of two gambles for constant absolute risk aversion preferences, as a
function of the risk aversion parameter v. Gamble A: $0 with probability 0.5 and $1 with probability 0.5.
Gamble B: $0 with probability 0.5 and $1,000 with probability 0.5.

The entries in Tables 1.1-1.4 show that our model is capable of yielding empirically plau-
sible values for trading frequency, trading volume, and the illiquidity discount. In contrast
to much of the existing literature, e.g., Huang (1990), Schroeder (1998), Vayanos (1998), we
find that transactions costs can have very large impact on both the trading frequency as well
as the illiquidity discount in the stock price. For example, Schroeder (1998) finds that when
faced with a fixed transactions cost of 0.1%, individuals in his model will trade once every

10 years! In Table 1.1, we see that for a 0.1% fixed cost, individuals in our model will trade

29We display transactions costs as a percentage of P simply to provide a less scale-dependent measure of
their magnitudes. Since x is a fixed cost, its value is, by definition, scale-dependent and must therefore be
considered in the complete context of the calibration exercise.
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anywhere between once every 4.3 years and once every 0.003 years (or 333 times per year) as
the risk aversion parameter varies from 0.001 to 5.000, respectively. This striking difference
between our results and those of the existing literature stems from the fact that our agents
have a strong need to trade frequently. The high-frequency nature of their endowment level
implies that not trading can be very costly. Furthermore, not trading means that the risk
exposure from holding market-clearing levels of the stock is much greater. Other transactions
cost models fail to account for a high-frequency component in trading needs.*

To get a feel for the level of proportional costs implied by our choice of fixed transaction
cost, we report in the bottom panel of Tables 1.1-1.4 the cost as a percentage of the total
transaction amount (that is 100 x x/§P). The proportional cost depends on the choice
. of fixed cost and the risk-aversion parameter. From Table 1.1, for example, we see that
the proportional cost ranges from 0 to 2.6% of the total transaction amount, clearly an
empirically plausible range.

As the risk aversion parameter increases, and therefore the endowment volatility ox
decreases (recall that in the calibration yox is a constant), while holding « fixed, trading
becomes less frequent, the illiquidity discount increases, and the turnover also declines.?!
For example, a risk aversion parameter of 5.00 and a fixed cost of 1% of P implies that the
investor will trade approximately once every two years, with an annual turnover of 24.7%,
an illiquidity discount of 1.547% of P, and a proportional cost of 77 basis point. Of course,
Figure 1.10 shows that a risk aversion coefficient of 5.00 is quite extreme for large gambles,
hence this case is not particularly compelling from a practical point of view.

As the fixed cost increases while holding « fixed, the average inter-arrival time and the
trade size increase, while the turnover decreases. For risk aversion parameters less than
0.500, the illiquidity discount is never greater than 1.088% over the entire range of fixed
costs, but the trading frequency and turnover are considerably more sensitive. For example,
for a risk aversion parameter of 0.010, the trading profile varies from 1/.008 = 125.0 trades

per year with an annual turnover of 370%, to 1/0.187 = 5.3 trades per year with an annual

30While some partial equilibrium models, such as Constantinides (1986) and Amihud and Mendelson
(1986), do contain a high-frequency component in the uncertainty faced by their investors they still miss
these effects because they do not take into account the unwillingness of investors to hold large amounts of
the risky asset in the presence of transactions costs.

81Tyrnover is defined in our case as the trade amount per average unit time (in years) expressed as a
percentage of the total supply of shares of the risky asset.
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turnover of 78%, as the fixed costs vary from 1 basis point to 5 percent of P, despite the
fact that the illiquidity discount increases by only to 14.5 basis points over this range.

As the volatility o, of the idiosyncratic component of income increases, Tables 1.2-
1.4 show that for each risk-aversion-parameter/fixed-cost combination, trading frequency
increases, the turnover increases, and the illiquidity discount increases. For example, in Table
1.3 where oy is set at 80y (which is in the range that Heaton and Lucas (1996) estimate
using PSID data), a risk aversion parameter of 0.50 and a fixed cost of 5.0% of P imply a
trading frequency of 1/0.166 ~ 6 trades per year, an annual turnover of 664%, an illiquidity
discount of 9.7 percent, and a proportional cost of 16 basis points. These results suggest
that transaction costs may, in fact, have substantial effects on asset prices. Furthermore,
_existing levels of trading frequency and volume in financial markets may not be as unusual
or as irrational as many have thought. Although static equilibrium asset-pricing models may
not be able to justify significant amounts of trading activity, the calibration results in Tables
1.1-1.4 show that our dynamic equilibrium model is clearly capable of generating empirically

plausible implications.

1.7 An Empirical Test

Fixed costs have a number of empirical implications for asset prices, trading volume, trading
frequency, trade size, and bid/ask spreads and depths, as Sections 1.4-1.6 demonstrate.
Perhaps the most direct implications are the power laws for trade sizes ¢ and inter-arrival

times A7 implied by Theorem 1.3:

[ 1 1o

1

§ =~ ¢kt , AT =~ (¢*/od)k (1.41)
A direct test of (1.41) can be readily performed by regressing log d and log A7, respectively,
on log x and testing the null hypotheses that the slope coefficients are 1 and 3, respectively.
However, & is generally not observable, hence the direct approach is difficult to implement.*

An indirect test of (1.41) can be performed by combining the two equations to yield the

32While certain components of fixed costs for stock trading are observable, e.g., ticket charges, there are
other unobservable components that may be considerably larger, such as the opportunity cost of the time
and effort spent on information acquisition and processing as well as the decision making and implementation
involved in the trading process. '
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rather unexpected relation:
1
§ = o, (AT)2 (1.42)

which can be tested by regressing the logarithm of trade size on the logarithm of inter-
1

arrival times and testing the null hypothesis that the slope coefficient is 5. This is a less-
than-satisfying test of the impact of fixed costs on § and A7 because x does not appear in
(1.42).

A more compelling test of our model of fixed costs can be developed by applying (1.41)
and (1.42) to theA case of stock splits. The typical motivation for stdck splits is a method
~ for enhancing liquidity in the face of indivisibilities associated with round-lot trading con-
ventions, high share prices, or exchange-mandated minimum price variation rules.?® For
example, if round lots are cheaper to trade than odd lots, then a 2:1 stock split will reduce
the cost of trading 50 pre-split shares. Such arguments for increased post-split liquidity are
based on a decrease in fixed costs.?* If we denote by x, and k, the fixed co4st of trading
before and after an s:1 split, respectively, and denote by &, and J, the optimal number of

shares traded before and after an s:1 split, respectively, then we have:

AR T
(o2
5]

Q|

5 ~ ¢k R (1.43)

where 4, is renormalized by the split factor s because the split should have no impact on the

optimal trade size (other than through its impact on k). This yields the relation

& = log (%—i—f) = 1 log (%‘:) : (1.44)

33Gee, for example, Angel (1997). Another motivation for stock splits is a signaling mechanism for revealing
private information to investors; see Brennan and Copeland (1988), McNichols and Dravid (1990), and Pilotte
and Manuel (1996). Muscarella and Vetsuypens (1996) attempt to differentiate between these two motives
empirically using ADR “solo splits” and conclude that the liquidity effect dominates.

34proportional costs are also affected by a split, but the evidence seems to suggest that these costs increase.
For example, Conroy, Harris, and Benet (1990) conclude that the percentage bid/ask spreads of NYSE-listed
companies typically increase after splits. Therefore, if liquidity enhancement is indeed and outcome of a
stock split, it must be accomplished through a reduction in fixed costs. An indirect indication that splits
reduce fixed costs is the fact that the number of shareholders tends to increase after a split, documented by
Barker (1956) and Lamoureux and Poon (1987).
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A similar relation for A7 follows from (1.41):

_ AT, o Kq
far = log(ATb) = £ log (E) (1.45)

and combining (1.44) with (1.45) yields

&s

CE fAT

(1.46)

N =

which is an empirically testable implication that has the advantage of involving a clear and
significant change in fixed costs (otherwise companies would not go to the expense of a split)
without the need to observe the magnitudes of those costs. Moreover, (1.44) and (1.45)
" provide two theoretically independent estimates of the change in fixed costs after a split. We

examine these implications in Sections 1.7.1-1.7.3.

1.7.1 The Data

To empirically test (1.46), we begin by identifying all stock splits that occurred during
the period from January 1, 1993 to December 31, 1997 using the Center for Research in
Security Prices (CRSP) event file. To ensure that our sample consists only of splits, we
select only those stocks whose “share factor” changes match their “price factor” changes,
and we eliminate all split events in which the split factor “facshr(i)” is not an integer when
multiplied by 1, 2, 3, 4, or 5. This yields 2,842 split events during the five-year period.

For each of these split events, we use the New York Stock Exchange’s Trades and Quotes
(TAQ) database to obtain the trades and time stamps for these stocks over a 14-day win-
dowed centered symmetrically around the split date. Some of the stocks identified in the
CRSP database were not present in the TAQ database, hence we dropped the events of
such stocks from our sample. For the remaining events, we collect all trades from the TAQ
database for the 14-day window surrounding each event, dropping TAQ observations with
correction codes 7-12 (see the TAQ User’s Guide for more information), or observations
missing a time stamp, trade size, or price. This leaves a total of 2,169 split events and
6,495,403 trades. Table 2 summarizes the number of split events in our sample according to

split factor and year. Note that the more extreme split events, 2:1 and 3:2, dominate the
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sample in all years, accounting for at least 80% of all the split events in each year.

For each stock and each event, we eliminate the lowest and highest 5% of the trade sizes
and inter-arrival times during the 14-day window to reduce the impact of outliers, and use
the remaining trade sizes and inter-arrival times to perform our empirical analysis. If a stock
had no data for trade size or inter-arrival times either before or after the split, we eliminate
that event from our sample.

Table 3 reports means and standard deviations for trade size ¢ and inter-arrival times 7
over 1-day, 2-day, 3-day, and 7-day intervals before and after splits. For a 1-day window and
the entire sample of split events, the pre-split average trade size and inter-arrival time are
1139 shares and 728 seconds, respectively; the post-split average trade size and inter-arrival
. time are 740 shares and 503 seconds, respectively. Using a longer window yields similar
results as the rest of Table 3 shows—splits do enhance liquidity in the sense that average
trade sizes and inter-arrival times always decline after splits, i.e., more frequent trading of

smaller lots. Therefore, it is likely that fixed costs have declined after the split date.

1.7.2 The Empirical Results

To compute the ratio ¢ in (1.46), we first construct the quantities
log(3°/(s8")) and  log(AT"/(sAT))

for each split event using the pre- and post-split average trade sizes and inter-arrival times
for 1-day to 7-day windows. We eliminate the lowest and highest 5% of these log-ratios from
our sample to reduce the impact of outliers, and with the remaining sample we compute the
ratio ¢ for each event and summarize the sampling distributions of these ratios in Table 4.
The entries in the ‘1-Day’ sub-panel show that the average zeta using the entire sample
of split events is 0.482, which is remarkably consistent with the theoretical value of -;— given
in (1.46). Similar averages are obtained for 2:1 and 3:2 splits. However, 4:3 and 5:4 splits
yield an average ¢ of —0.583 and —0.150, respectively, for the 1-day window. The same
patterns emerge from 2-day and 3-day windows: the average ¢ is approximately % when the
entire sample of split events is used, but deviates significantly from % for 4:3 and 5:4 splits.

Not surprisingly, the 7-day window results are the farthest from (1.46)—over longer periods,
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factors other than fixed costs will influence trade size and inter-arrival times, adding noise
to the power laws on which (1.46) is based. But overall, the relation (1.46) seems to be well
supported by the majority of splits in our sample, especially those that involve more extreme
split factors, which are precisely the cases in which the reduction in fixed costs are expected

to be the greatest.

1.7.3 A Control

A natural control to our empirical analysis in Section 1.7.2 is to consider the implications of
(1.41) for non-split dates. In particular, let (,, A7) and (84, AT,) denote the optimal trade
size and inter-arrival time before and after an arbitrary non-split date, respectively. Then

- 8y =0,, ATy=AT,, and the split factor s=1, which implies
& = &ar = 0. (1.47)

Table 5 reports estimates of & and £, for the same data set used in Table 4, but where the
“hefore” and “after” windows are centered either before the split date or after the split date,
and where a 1-day window is used to compute average trade sizes and inter-arrival times.
For example, the first sub-panel labeled ‘Dates —5 and —4’ contains estimates for £ and
&ar where the “before” period is the fifth day before the split and the “after period is the
fourth day before the split. In contrast to the entries in Table 4, the estimates of { and {a;
are considerably smaller in magnitude and fluctuate around 0.000 without any discernible
pattern. These results, and those of Table 4, suggest that our model of fixed costs may be

a reasonable approximation for US equity markets.

1.8 Conclusions

We have developed a continuous-time equilibrium model of asset prices and trading volume
vﬁth heterogeneous investors and fixed transactions costs. With prices, trading volume, and
inter-arrival times determined endogenously, we show that even a small fixed cost of trading
can have a substantial impact on the frequency of trade. Investors follow an optimal policy
of not trading until their risk level reaches either a lower or upper boundary, at which point

they incur the fixed cost and trade back to an optimal level of risk exposure. As the investors’
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endowment uncertainty increases, their “no-trade” region increases as well, despite the fact
that the expected time between trades declines. Investors optimally balance their desire to
hedge their endowment risk exposure against the fixed cost of transacting.

We also show that small fixed costs can induce a relatively large premium in asset prices.
The magnitude of this illiquidity premium is more sensitive to the risk aversion of agents than
is the risk premium. Because investors must incur a transactions cost with every trade, they
do not rebalance very often. In between trades, they face some uncertainty as to the level
of their holdings of the risky asset. This increases the effective risk faced by the investor for
holding the risky asset, which reduces his demand for the risky asset at any given price, and
to clear the market, the equilibrium price must compensate investors for the illiquidity of the
_ shares that they hold. The price effect, then, relies heavily on the market-clearing motive,
hence partial equilibrium models are likely to underestimate the effect of transactions costs
on asset‘ returns because they ignore this mechanism.

Because our model is dynamic, the market-clearing condition we propose has an auxiliary
requirement: agents must want to trade at the same time. Imposing this double “double
coincidence of wants” endogenizes the market’s order flow, and inter-arrival times between
trades are determined in equilibrium as well as the quantities traded. Despite the fact
that every buyer must have a seller and vice versa, we allow the fixed cost to be divided
endogenously between the buyer and seller so that one agent can bear a larger share of the
cost to induce the other agent to trade earlier than he otherwise would. This division of
the fixed cost between buyer and seller is a means of representing the compensation for the
provision of “immediacy” that typically accrues to market makers, and provides a natural
bridge between the asset-pricing literature (in which risk sharing is the prime motive for
trading) and the market microstructure literature (in which the facilitation of trade through
market making activities is the main focus).

Although our model has many interesting theoretical and empirical implications, it is ad-
mittedly a rather simple parameterization of a considerably more complex set of phenomena.
In particular, our assumption of perfect correlation between the dividend and endowment
flows is likely to exaggerate the hedging motive in our economy. If a perfect hedging vehi-
cle were not available, then individuals would certainly trade less often. However, as the

amount of risk that cannot be shared increases at the economy-wide level, the equilibrium
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price-effect may actually increase because individuals must bear an ever increasing amount
of uncertainty at market-clearing levels of asset holdings. The persistence of the endowment
shocks in our economy does increase both the illiquidity discount and the desire to trade.
Moreover, we do not allow for an aggregate endowment component (indeed our aggregate
endowment is exactly zero), which certainly does exist in reality. All of these are interesting
and important extensions of our model.

Another set of questions has to do with the effects of investor and security heterogene-
ity. For example, Vayanos and Vila (1999) and Huang (1998) consider the implications of
transactions costs that are asymmetric across different securities. Also, fixed costs may differ
across individuals. Who, then, is the'marginal, or price-setting investor? It is unclear what
~ effect transactions costs may have in the presence of many small heterogeneous agents. It is
a fundamental question as to whether a CAPM-type result holds in the presence of multiple
securities and an entry fee (i.e. the fixed cost is only paid to enter the market, but then
agents may transact in any security). A more complete understanding of transactions costs

will involve a resolution of some of these outstanding issues.
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1.9 Appendix

A.1 Derivation of the Bellman Equation (1.16)

Civen the conjectured value function in (1.13) and the equations for X; and M, in (1.3b)
and (1.5), respectively, for ¢ € (7g, Tx41) (i-e., between trades) the Bellman equation (1.14)

leads to:

0= sup {—e 7+ J [—p—ry(rM+6a,—c) + %(r*y)%%(@—hX)z + %ai(Vf—Vxx)]} .

(A1)

. The first order condition with respect to ¢ is e Pt=7¢ = —rJ, which gives the optimal con-
sumption in (1.15) (the second order condition is always satisfied given the concavity of
the utility function). Substituting the optimal consumption back into (A.1), we obtain the
differential equation in (1.16). The boundary conditions needed for its solution are discussed
in the text.

At the optimum, the Bellman equation requires that D[J] = e7#77 = —rJ. It follows

that Eo[J (Mg, -, T)] — 0 as T gets large. Thus, the transversality condition (1.7) is satisfied.

A.2 Proof of Theorem 1.1

When k = 0, the conjectured price process is a constant. The agehts’ conjectured value
function has the form: J(W, X, t) = —e "W =vX)=% where © = (p —r +rlnr)/r. The
Bellman equation for each agent’s optimization problem has the same form as in (1.14),
except that the agent trades continuously to choose the optimal #. His budget constraint
can be expressed in terms of his wealth, given in Footnote 8 without the terms associated

with transactions costs. In particular, we have for ¢ > 0:

0 = sup {—e " +D[J]}
c, 0

= sup {—e "+ J[-p—ry(rW+0Orpo—c) + 1(r7)?0%(0—hX)? + 305 (v - v)]}-
c, 8
(A.2)
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The optimal policies are given by

1 Do
= —2{lnr —vrW — v(X g, = X,
c 7[ nr—yr v(X)] and 6 = + hX;

Substituting the optimal policies into (A.2), we find the solution for the value function:
v(X) = vo + rypohX, where vy = 3ry?022% (1 — y%0%0%) and Zn = po/(v03). The same
argument as in the x > 0 case shows that the transversality condition is satisfied.

Since for agents i = 1,2, X} = —X?2. Market clearing only requires that py = v80?% and

the equilibrium price is indeed constant.

Proof of Theorem 1.2

" When k = & 150y With K — oo, agents do not trade for t > 0. We conjecture that for ¢t > 0,
J(M,0,X,t) = —e~rt=(M=-0e0/n)=V(8.X)  The corresponding Bellman equation is identical
to (A.1). Again the optimal choice of c is given by (1.15). The Bellman equation has the
following solution: V (6, X) = vy — vo(8 — hX)?* where

rv2o?,

1+ +/1— 4720202

vozﬁ—l—i-r(l—- 1—47%,%0%) and vp =

Apparently, we must require that 4v%020% < 1.
At t = 0, agents are free to trade costlessly. They choose the optimal § to maximize their

expected utility:

9 = arg sup J(M—6P,0, X,0) = 7-__275_0 +hX.
2

where P = @,/r — po. Since for agents ¢ = 1,2 we have X/ = —X7, the market clearing

condition, 0; + 8 = @, requires that § = 2rypo/vs. Thus, the risk discount is

po="——=fo = |14+ — 1 0x
] 1+ /1 —4v2%0%02 1+ +/1—4v2%0%0%

where Fo = v028.

Proof of Theorem 1.3
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When the value function is analytic in the interval (2, z,), we can express it in the form of

a Taylor series:

Z%—,vkz zm . (A.3)

k=0
Substituting this into (1.17), we obtain
o (e o] n
o2 Z ;1Un+2(z Zm)" o) Z Z = _m),m,vn_m+1vm+1(z Zm)"

n=0 n=0 m=0

o0
+ 27"2 Lo, (2= 2m)" + (r7)?05 2" (A.4)

n=0

Since the expansion is around z,, we can write 2% as 22 = (z — zp)® + 22m(2 — 2m) + 22.
Matching powers on both sides of equation (A.4), we have the following conditions for the

coefficients in the Taylor series:

0= 02 (v2—vp) + 2rvg + (r7)%0525, (A.5a)

= 02 (2u1v2—v3) + 2701 + 2(ry)?05 Zm (A.5Db)
0= 02 (vi+vivs—5vs) + U2 + (ry)%0? (A.5¢)
0= 0'3 Z mlel)!-’le'Uk_Hl - k'vk+2 -+ %rvk Y k> 2. (ASd)

=0

It is obvious that the other coefficients in the Taylor series can be expressed as polynomials
of only two coefficients, v; and v,. Note that vy does not enter into any of the higher
order coefficients in (A.5d). Solving the value function (and the optimal trading policy) now

reduces to solving v; and v,. It is immediate that the smooth-pasting condition gives

vy = —TYPo- ’ (A.6)

The remaining conditions determine v, and the policy parameters, 2, zm, and z,, which

depend on k%, k7, po and the other parameters of the model.
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When x* and x~ are small, we consider the solution to v, 2, zm, and z, of the form:
) ) b my U

o0
vy = Z v{Mem (A.7a)
n=0
[o¢]
Zm—y =0T = z pmlgn (A.7b)
n=0
Zu—2Zm =0 = Z sMen (A.7c)
=0
1
where € = k4.
The two value-matching conditions are
1 -2 1 283 1 4 1 _5 _
5’025 + ‘6'?}35 + '2‘;1"045 + 1—2'6’115(5 +r=—TYK (A8a)
Lypst? — Lugd*® 4 L6t — Lovsd ™ 4+ = — st (A.8b)
One of the smooth pasting conditions is satisfied by v; = —rypo. We write the remaining
two as follows
-, 1, s=2 1, ¢3 1 _4
U0 + 5’2)35 + 6’045 + ﬁ’U5(5 +---=0 (A.9a)
a6t = Lug*? 4 1oy6*? — Lusst 4 =0 (A.9b)

We have four equations and four unknowns: Vg, Zm, 0,07 (the dependence on 2, enters
through vs by (A.5b)). Using the equations for the coeflicients given in (A.5), and the
expansions of vk, zm, 67,0 given in (A.7), we match powers of € in (A.9) and (A.8). That
is, for every n = {0,1,2,3,...}, we write the system of equations involving £". Each system

is linear in the i-th order coefficients. Proceeding in this way we obtain

vy = —2ry¢~%e? + o(e?) (A.10a)
vy = % (29D + ZBroypog) e + o(e?). (A.10b)

With more work, we can compute higher order approximations for all the coeflicients.
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Proof of Theorem 1.4

First we set 6T = 6~ in equation (1.25). This gives us the value of x* in equation (1.26a).

Then we set Zm = 0 in equation(1.25). This gives us pp in (1.26a).

The Numerical Solution

To solve the boundary value ODE problem, we use a first-order expansion finite difference
scheme set out in Press, et. al. (1992). The general idea is to convert our equation into a

set of two coupled first-order finite difference equations of the form

!

Yo = U

okt = %P+ 2rys + (ry)%02 2

where 15(-) = v(-) and the derivatives are understood to mean y'(z) = (y(z + A) — y(z))/A
for a grid spacing A. The system is then iterated using a ﬁrst—order Taylor approximation
until convergence. The free boundaries are found by using a numerical root finder in Matlab
to find values of (zj, zm, 2,,) such that the value matching and smooth pasting conditions are
satisfied.

We can solve for an equilibrium by finding values of (po, k™) such that the optimal policy
(21, 2m, 24 ) satisfies the market clearing conditions. However, this requires a nested iteration:
to solve for the equilibrium price and transactions cost allocation we need to solve the
free-boundary problem for each candidate (pp, k™). A faster approach is to find values of
(po, kT, 6) such that the solution to a free boundary problem with boundaries (8 — 4,8 + 4)
satisfies the optimality conditions for the policy (8 — 6,8,8 + §). This avoids the nested

iterations required by the first approach.

Proof of Theorem 1.5

Consider the case where the endowment level is deterministic X; = axt (Gx > 0) and
k*t = k/2. We conjecture that J(M,0,X,t) = —e rt=r(M-0ap/m=V(EX)  The Bellman

equation reduces to a differential equation for V:

0= 3(r7)%02(0 — hX)* +r(V - 7) — axVx (A.11)
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where ¥ = (p — 7 + rlnr)/r. This is essentially the same equation as (1.16) (with a similar
derivation), except that here ox = 0 and there is an additional term —axVy due to the
deterministic drift in X. Because the oy term drops out in this case, the differential equation
for V is linear. Letting z = § — hX and V (6, X) = v(z) + 7, we can reduce the PDE above

to the following first-order linear free boundary problem
0= 1(ry)’o0z + v+ axhv'. (A.12)

The boundary conditions are the same smooth-pasting and value matching conditions we
had befofe, with the exception that the optimal policy consisfs of only two points: for the
agent with endowment X, the optimal policy is (2, z,n) and for the agent with endowment
" —X,, the optimal policy if (2m, 2zu) ( zm in both policies is the same). The reason for this
type of policies is that the risk state z; for one agent only decreases between trades, and
for the other agent the risk state only increase. Thus for the agenﬁ with endowment X;,
z; can only decrease and when it deviates sufficiently from the optimal point 2., the agent
rebalances back to the optimal point.

The solution to (A.12) is given by
v(2) = v + 2012 + vp2? + Pe*
where 3 is determined using the boundary conditions, and the other constants are given by
v = —azyloL [T, v = %&x'yzaNaD, vy = —%rfyzcri, a=—rop/{Gx0y)-

For P, = a,/r — po and k¥ = k™ = k/2, the boundary conditions for the X; agent are

v(z1)

Via) = v(zm) = —r7p0

v(zm) — mv(K/2 — pod™)

i
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and the boundary conditions for the — X, agent are

v(zy) = v(zm) = rY(K/2+PpodT)

V(zw) = v'(zm) = —TP0-

Given the solution for v, the boundary conditions for the X; = @t agent are

—rypg = 2U9Zm + 2u; + fae® ™ (A.13a)
0 = —20,0 + Bae®™™ (e7*° — 1) (A.13b)
0 = v36% — (2Ug2m + TYP0)d + TYK/2 (A.13c)

where §+ = §. Note that for the —X, agent, if we replace Gy in (A.13) with —ax and
let 6~ = —6, then the algebraic form of the boundary conditions remains exactly the same.
Hence solving (A.13) for @ and for —ay gives us solutions for both agents’ control problems.
The unknown variables are (8, zm,d). We are unable to solve these non-linear algebraic

equations in closed form. We expand the unknowns as follows
x ) [o0] o]
Zm = Zzﬁf}e’, 0= Z 6V’ and B= Zﬁ(’)s’
1=0 =1 o i=0

where the appropriate power law is given by € = k3. Substituting the expansions into (A.13),
and collecting terms for successive powers of €, we are left with a series of linear equations
for the coefficients in the above expansions. Hence, we are able to solve for (8, zm, ) in the

approximate form.

Proof of Theorem 1.6

We first show how to compute the agent’s bid price and bid amount. The ask price and ask
dmount are handled in the analogous way. For an agent with risk level z;, we find a price
PP =a/r —pg, such that z; + 67 (P?) = zn(P?). Using the values of 6% and z,, in Theorem
1.3 and doing a little algebra, we can solve for P?, the agent’s bid price, and for 6¥(F?),

the agent’s bid amount.
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Calibration

Here, we establish the equivalence between the model estimated by Campbell and Kyle
(1993), with a price process given in (1.40), and our model in absence of transactions costs.
Our model without transactions costs is analyzed in detail in Huang and Wang (1997). Given
the dividend process (1.1), the agents’ non-traded income (1.3), and their preferences, we

have the following result:

Theorem 1.7 In the economy defined in Section 1.2 with k = 0, the equilibrium stock price

18

a
P, = —TE —po—vYs (A.14)

where po = 10 (02 + 2py0py + P202), Py = [P10on + (0py /02)(1/2 + ay + Ty0xy — u)] /(r+
u), and u = \/—1r?y202 + (r/2 + ay + TY0Ny)?.

(A.14) has exactly the same form as (1.40), with V; = @, /r and an additional scaling constant
py for Y;. In order to match with the correlation structure in Campbell and Kyle (1993), we
require oyy/(0n0y) = 0py/(0p0y) = py and opy = —0poy wWith oy = 1.

Let Q; = fot (dP, + dD; — r P,dt) denote the excess dollar return on one share of the stock
and M; = (r + ay)pyY:. Then we have

dQ: = (rpo + M) dt + bodB; (A.15a)

th = —aMMtdt -+ bMdBt (A15b)

where ay = ay, bo = b, — pyby and by = (r + ay)pyby. Equation (A.15) is identical
to the equations (3.3) and (3.4) in Campbell and Kyle (1993) (p. 10) to be estimated,
except that they use M, for the excess share return on the stock and N; for the varying
mean-return variable while we use Q; and M, respectively. Following our notation, we have

02 = by'bg = 0% + 2pyOpy + PE0L, 0% = bu'by = (7 + ay)’pio}, and 0f,, = bo'by =

(r + ay)?p2 (opy + pyol)?.
Campbell and Kyle gave the following estimates 0 = 0.3311, 0y, = 0.0173 and oqu/(0q0n) =

—0.5176. Together with their estimates for r = 0.0370, ap, = 0.050 (the unconditional mean
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of V; in equation (1.40)), A = 0.0210 = rpy and a, = 0.0890, we have o, = 0.2853,
py = —0.1194, and yo, = 1.347.
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Table 1.1: Calibration results using parameter estimates from Campbell and Kyle’s (1993) Model B, with
the ratio of idiosyncratic to aggregate volatility set to 1 (i.e. ox = 1 x gy). The first sub-panel reports
expected trade inter-arrival times A7 (in years), the second sub-panel reports the illiquidity discount in the
stock price (as a percentage of the price P = @,/r — o in the frictionless economy), the third sub-panel
reports the return premium (defined as ap/P — @p /P where P is the price under the transaction cost),
the fourth sub-panel reports the annual turnover in percent (100 x 3 g -), and the fifth sub-panel reports
the transaction cost as a percent of the transaction amount (100 x 5%). These quantities are reported as
functions of the transaction cost k, = x/P (in percentages), and the absolute risk aversion coefficient .
Given 7, a unique value of o2 is implied by Campbell and Kyle’s Model B, and po is determined from their
estimates of A and 7.

¥ 0.001 0.010 0.100 0.500 1.000 1.500 2.000 5.000
ox 1347.026  134.703  13.470 2.694 1.347 0.898 0.674 0.269
k/P (%) AT (Years)
0.010 0.003 0.008 0.026 0.059 0.084 0.103 0.118 0.187
0.050 0.006 0.019 0.059 0.132 0.187 0.229 0.265 0.419
0.100 0.008 0.026 0.084 0.187 0.265 0.325 0.375 0.593
0.300 0.015 0.046 0.145 0.325 0.459 0.563 0.650 1.029
0.500 0.019 0.059 0.187 0.419 0.593 0.727 0.840 1.331
1.000 0.026 0.084 0.265 0.593 0.840 1.029 1.190 1.886
5.000 0.059 0.187 0.593 1.331 1.886 2.314 2.676  4.257
k/P (%) Illiquidity Discount (% of P)
0.010 0.002 0.007 0.021 0.048 0.068 0.083 0.096 0.152
0.050 0.005 0.015 0.048 0.107 0.152 0.186 0.215 0.341
0.100 0.007 0.021 0.068 0.152 0.215 0.264 0.304 0.483
0.300 0.012 0.037 0.118 0.264 0.373 0.458 0.529 0.840
0.500 0.015 0.048 0.152 0.341 0.483 0.592 0.684 1.088
1.000 0.021 0.068 0.215 0.483 0.684 0.840 0.971 1.547
5.000 0.048 0.152 0.483 1.088 1.547 1.903 2.206 3.546
k/P (%) Return Premium (%)
0.010 0.000 0.000 0.001 0.003 0.004 0.005 0.006 0.010
0.050 0.000 0.001 0.003 0.007 0.010 0.012 0.014 0.022
0.100 0.000 0.001 0.004 0.010 0.014 0.017 0.019 0.031
0.300 0.001 0.002 0.008 0.017 0.024 0.029 0.034 0.054
0.500 0.001 0.003 0.010 0.022 0.031 0.038 0.044 0.070
1.000 0.001 0.004 0.014 0.031 0.044 0.054 0.063 0.100
5.000 0.003 0.010 0.031 0.070 0.100 0.124 0.144 0.235
&/P (%) Annual Turnover (%)
0.010 658.08 370.06 208.09 139.15 117.01 105.72 98.38 78.23
0.050 440.13 247.47 139.15 93.04 78.23 70.68 65.77 52.29
0.100 370.06 208.09 117.01 78.23 65.77 59.43 55.30 43.96
0.300 281.18 158.11 88.89 59.43 49.96 45.13 41.99 33.37
0.500 247.47 139.15 78.23 52.29 43.96 39.71 36.94 29.35
1.000 208.09 117.01 65.77 43.96 36.94 33.37 31.04 24.65
5.000 139.15 78.23 43.96 29.35 24.65 22.26 20.70 16.41
k/P (%) Cost as % of Transaction Amount
0.010 0.000 0.000 0.001 0.004 0.007 0.010 0.012 0.024
0.050 0.000 0.001 0.004 0.015 0.024 0.033 0.041 0.082
0.100 0.000 0.001 0.007 0.024 0.041 0.056 0.069 0.137
0.300 0.001 0.003 0.017 0.056 0.094 0.127 0.158 0.313
0.500 0.001 0.004 0.024 0.082 0.137 0.186 0.231  0.459
1.000 0.001 0.007 0.041 0.137 0.231 0.313 0.388 0.771
5.000 0.004 0.024 0.137 0.459 0.771 1.044 1.295 2.567
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Table 1.2: Calibration results using parameter estimates from Campbell and Kyle’s (1993) Model B, with
the ratio of idiosyncratic to aggregate volatility set to 4 (i.e. ox = 4 X 0y). The first sub-panel reports
expected trade inter-arrival times Ar (in years), the second sub-panel reports the illiquidity discount in the
stock price (as a percentage of the price P = @p/r — fo in the frictionless economy), the third sub-panel
reports the return premium (defined as @,/P — @p/P where P is the price under the transaction cost),
the fourth sub-panel reports the annual turnover in percent (100 x 2—3—1,), and the fifth sub-panel reports
the transaction cost as a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>