
Faster Streaming Algorithms for Low-Rank Matrix

Approximations
by

Timothy Matthew Galvin
S.B., Massachusetts Institute of Technology (2013)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

at the MASSAGAUsETiS W rmTrIf(
OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2014 JUL 15 2014

Timothy Matthew Galvin, MMXIV. All rights reserved. L
The author hereby grants to MIT and The Charles Stark Draper L BRARtES

Laboratory, Inc. permission to reproduce and to distribute publicly
paper and electronic copies of this thesis document in whole or in part

in any medium now known or hereafter created.

Signature redacted
A uthor-- ---

Department of Elect ric fEngineering and Computer Science
I May 23, 2014

Certified by

Division Leader,

iignature reaactea
Dr. Christopher Yu

Embedded Navigation and Sensor Systems, Draper
Laboratory

Signature redacted Thesis Supervisor

Certified by...............
Prof. Piotr Indyk

/1 J iiiProfessor, MIT
Signature redacted Thes sorThesis Supervisor

A ccepted by
Prof. Albert R. Meyer

Chairman, Master of Engineering Thesis Committee

Faster Streaming Algorithms for Low-Rank Matrix

Approximations

by

Timothy Matthew Galvin

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2014, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Low-rank matrix approximations are used in a significant number of applications. We
present new algorithms for generating such approximations in a streaming fashion that
expand upon recently discovered matrix sketching techniques. We test our approaches
on real and synthetic data to explore runtime and accuracy performance. We apply
our algorithms to the technique of Latent Semantic Indexing on a widely studied data
set. We find our algorithms provide strong empirical results.

Thesis Supervisor: Dr. Christopher Yu
Title: Division Leader, Embedded Navigation and Sensor Systems, Draper Labora-
tory

Thesis Supervisor: Prof. Piotr Indyk
Title: Professor, MIT

2

Acknowledgments

First and foremost, I would like to thank my advisors Dr. Christopher Yu and

Professor Piotr Indyk for their advice, guidance, and general mentorship throughout

my senior year and graduate year at MIT. Their flexibility and support was invaluable

during my studies.

I want to thank Draper Laboratory for generously funding my tuition and pro-

viding me a collaborative environment in which to work. I want to thank the MIT

VI-A program for connecting me with Draper and for the amazing opportunities that

came as a result.

Finally, I want to thank my parents and two brothers for providing me with endless

support and motivation.

3

Contents

1 Introduction

1.1 Motivation

1.2 Outline of the Thesis .

2 Previous Work

2.1 Singular Value Decomposition

2.2 Rank-k Singular Value Decomposition

2.3 SVD and Streaming Data

2.3.1 Folding-In

2.3.2 SVD-Update

2.4 Frequent Directions

2.5 Frequent Directions II

3 New Approximation Algorithms

3.1 Incremental Frequent Directions II

3.1.1 Complexity

3.2 Truncated Incremental Frequent Directions II

3.2.1 Complexity

3.3 Truncated Incremental Frequent Directions . .

3.3.1 Complexity

4 Algorithm Performance

4.1 Experimental Data

4

9

9

10

11

. 11

.. 12

. 14

. 14

. 15

. 17

. 19

21

. 21

. 22

. 23

. 25

. 25

. 26

27

28

4.1.1 Synthetic Data

4.1.2 Collected Data

4.2 Accuracy Measurements

4.3 Performance Analysis

4.3.1 Synthetic - Linear

4.3.2 Synthetic - Inverse

4.3.3 Synthetic - Exponential

4.3.4 Image Analysis

4.3.5 Information Retrieval

4.4 Additional Observations

5 Algorithm Application

5.1 Latent Semantic Indexing

5.2 Approximate Latent Semantic Indexing

5.3 NPL Data Set

5.4 Performance Analysis

5.5 Additional Observations

6 Conclusion

6.1 Future W ork .

A Implementations

5

. 28

. 29

. 29

. 30

. 31

. 33

. 33

. 36

. 38

. 41

42

. 42

. 43

. 44

. 44

. 47

48

49

50

List of Figures

2-1 A representation of the construction of a rank-k approximation of A,

A k, from [6].. .. .

2-2 A graphical representation of the folding-in process from [28].....

4-1 Natural log of Additive Error over values of f for a 2000 x 1000 matrix

with linearly decreasing singular values.

4-2 Natural log of Relative Error over values of f for a 2000 x 1000 matrix

with linearly decreasing singular values.

4-3 Natural log of runtime (in seconds) over values of f for a 2000 x 1000

matrix with linearly decreasing singular values.

4-4 Natural log of Additive Error over values of f for a 2000 x 1000 matrix

with inversely decreasing singular values.

4-5 Natural log of Relative Error over values of f for a 2000 x 1000 matrix

with inversely decreasing singular values.

4-6 Natural log of runtime (in seconds) over values of for a 2000 x 1000

matrix with inversely decreasing singular values.

4-7 Natural log of Additive Error over values of t for a 2000 x 1000 matrix

with exponentially decreasing singular values.

4-8 Natural log of Relative Error over values of f for a 2000 x 1000 matrix

with exponentially decreasing singular values.

4-9 Natural log of runtime (in seconds) over values of f for a 2000 x 1000

matrix with exponentially decreasing singular values.

4-10 100 largest singular values of the image analysis data set.

6

13

15

31

32

32

33

34

34

35

35

36

36

4-11 Natural log of Additive Error over values of f for a 980 x 962 image

analysis m atrix. 37

4-12 Natural log of Relative Error over values of f for a 980 x 962 image

analysis m atrix . 37

4-13 Natural log of runtime (in seconds) over values of f for a 980 x 962

image analysis matrix . 38

4-14 100 largest singular values of the information retrieval data set. . . . 39

4-15 Natural log of Additive Error over values of f for a 7491 x 11429 infor-

mation retrieval matrix. 39

4-16 Natural log of Relative Error over values of f for a 7491 x 11429 infor-

mation retrieval matrix . 40

4-17 Natural log of runtime (in seconds) over values of f for a 7491 x 11429

information retrieval matrix . 40

5-1 Natural Log of runtime (in seconds) of LSI techniques over values of k. 45

5-2 Average precision of information retrieval techniques over values of k. 45

5-3 Median precision of information retrieval techniques over values of k. 46

7

List of Tables

4.1 A list of algorithms and their respective asymptotic runtimes. 28

4.2 A list of algorithms and their respective asymptotic updates times. . 28

8

Chapter 1

Introduction

In this thesis we present new algorithms for creating low-rank approximations of

streaming large data matrices and empirically show their effectiveness on real-world

data sets. We present the previous work in the field and demonstrate how recent

approaches have led to the creation of our algorithms. Our techniques are compared

to state-of-the-art methods as well as a brute-force approach on synthetic and real-

world data sets.

1.1 Motivation

There are a variety of applications that utilize the collection and analysis of extremely

large data sets. Recommendation systems build matrices that contain each user's

preference for each item [28]. Image analysis techniques transform individual frames

into a vector representation and append the results to form a matrix capturing a

series of images [12]. Text documents are processed using a term-document matrix,

in which rows and columns represent terms and documents, respectively [6]. These

large data sets, which can easily contain billions of entries, are often processed for

model-fitting, clustering, noise reduction, etcetera [7]. Two issues that frequently

arise from these matrices and their analysis are the high storage requirements and

computation cost. Low-rank approximations mitigate these resource limitations at

the cost of precision. The design of approximation methods revolves around the

9

trade-offs that can be made between space, accuracy, and runtime [15]. In this thesis

we present matrix approximation algorithms that reduces the computation cost of

previous work that targeted space-optimality at the expense of runtime. We believe

our approach provides a more well-rounded implementation for data processing.

1.2 Outline of the Thesis

In Chapter 2 we present the previous work related to low-rank matrix approximations.

In Chapter 3 we present our streaming algorithms for deterministically generating low-

rank matrix approximations. In Chapter 4 we compare the computational efficiency

and approximation accuracy of the different algorithms. In Chapter 5 we apply our

algorithms to Latent Semantic Indexing and compare our approximation approach to

a best rank-k baseline. In Chapter 6 we conclude with a summary of findings and

areas of open future research.

10

Chapter 2

Previous Work

In this chapter, we summarize past research related to creating and maintaining low-

rank matrix approximations. In Section 2.1 we provide an overview of the Singular

Value Decomposition. In Section 2.2 we highlight the rank-k Singular Value De-

composition and summarize its benefits. In Section 2.3 we discuss the problem of

incorporating new data into previously calculated decompositions. In Section 2.4 and

Section 2.5 we cover previous work in generating low-rank matrix approximations.

2.1 Singular Value Decomposition

Given a matrix A E R"X"n with n > m, the singular value decomposition (SVD) of A

is:

A =UEVT - T (2.1)

where U and V are orthogonal matrices whose columns are the left and right singular

vectors of A, respectively, and E is a diagonal matrix containing the singular values

of A. The corresponding individual elements of those matrices, ui, 0-j, and vi, are the

singular triplets of A. The matrices U E R"'X"' and V E R"l" also specify the eigen-

vectors of ATA and AAT, respectively. E is structured as [diag(o-1, - - - , Om) 0]

where o-1 > ... > am 0 and o-,, ,m are the nonnegative square roots of the

eigenvalues of AT A and AAT [16].

11

Calculating the full singular value decomposition of a matrix A E Rnx is usually

computed using one of two methods. The first approach uses the QR decomposition,

in which Q is an orthogonal matrix and R is an upper triangular matrix:

A=QR=Q(UEVT) = (QU)EVT UEVT

The second method leverages the relationship between the singular vectors of A and

the eigenvectors of ATA and AAT:

AT A = V 2 VT A = (AVE- 1)V T UEVT (2.3)

AAT = UE 2 UT A UE(UT AE-')T =UEVT (2.4)

The singular value decomposition is frequently used in data analysis as it reveals

structural information about the matrix. It reorganizes the data into subspaces that

have the most variation, making it useful in applications such as image recognition,

information retrieval, and signal processing [29].

A major drawback of the SVD is its computation complexity. Given a matrix A E

Rn"r with n > m, calculating the SVD(A) takes O(nm 2) time. As the decomposition

scales cubically, it quickly becomes infeasible for large matrices.

2.2 Rank-k Singular Value Decomposition

The singular value decomposition provides another useful property due to the sub-

space reordering mentioned above. The best rank-k approximation to A is easily

obtained from the SVD of A. By throwing away the bottom n - k singular triplets,

we are left with a product that yields Ak as seen in Figure 2-1. More explicitly, Ak

is the product of the first k columns of U, the top k values of E, and the first k rows

of VT:
k

Ak = usurvT = Uk kV[(2.5)

Ak is the best approximation to A under both the Euclidean and Frobenius norm

12

k

k * k

Ak = U VT

k
nxm nxk kxk kxm

Figure 2-1: A representation of the construction of a rank-k approximation of A,
Ak, from [6].

[26]. Therefore, the following two equalities hold:

min IA - B||1 = IA - Ak|11 (2.6)
rank(B)=k

min IA - B11 2 = IA - AkI12 (2.7)
rank(B)=k

The rank-k approximation of A provides the following benefits over A:

" Storage. Storing A requires 0(nm) space while Ak can be maintained with

0 (k(n + m + 1)). This space difference is achieved by storing Uk, Ek, and Vk

instead of Ak. Provided that k < m, we see the rank-k SVD performing as a

lossy compression algorithm [9].

" Denoising. Removal of the smallest singular values and their corresponding

singular vectors often removes noise in the data. This built-in filtering has led

to Ak performing better in certain analyses than A itself [6].

There are two primary methods for calculating the rank-k SVD of A. As shown above,

we can perform a full decomposition and truncate the result. However, the complexity

of this approach is 0 (nm2) which still scales poorly. The other approach involves

13

using iterative solvers, such as orthogonal iteration and Lanczos iteration. These

algorithms also become inefficient for large inputs due to superlinear computation

time and diminishing convergence rate per singular triplet [2].

2.3 SVD and Streaming Data

The high complexity of the singular value decomposition coupled with applications

that involve streaming data, i.e., the matrix A is built incrementally, motivates meth-

ods to update a previous singular value decomposition. In a data streaming setting, a

new SVD would need to be computed as each new data point arrives. To circumvent

this costly calculation, researchers have developed methods with varying robustness

to update the U, E, and V matrices of a previous SVD instead of performing a new

decomposition from scratch [3, 4, 5, 8, 17, 24, 25, 12, 30, 25, 7]. Such algorithms

also remove the necessity of storing the matrix A. We will outline two such methods:

folding-in, a subspace projection method, and the Brand SVD-update, an example

from a class of low-rank update methods.

2.3.1 Folding-In

Folding-in is a simple procedure requiring only two matrix-vector products. To in-

corporate a new column of data d to an existing decomposition, A = UEVT, c must

be projected onto U and the result appended as a new row vector on V [6, 5, 28]:

d = dTUnk1 (2.8)

V = d (2.9)

The same approach but with swapped subspaces allows for a new row of data, f to

be folded-in.

f =f TVE -1 (2.10)

14

U = -U(2.11)

Folding-in can be performed in a block fashion with multiple rows or columns

being folded-in simultaneously as seen in Figure 2-2. It is also not limited to full

decompositions. Given a rank-k approximation of A, replacing U with Uk and V

with Vk in the above formulas would allow for folding-in new data into a low-rank

approximation.

The minimal calculations required to perform a folding-in significantly reduce the

computation load when compared to a full or partial SVD. However, folding-in does

not result in the same accuracy as a new SVD. Appending additional rows onto the

left and right singular vectors results in a loss of orthogonality and subsequently a

loss in quality. Furthermore, the new data does not affect the representation of the

original data in the updated decomposition. This shortcoming causes significant error

between the folding-in representation and a recomputed SVD when the new and old

data are not closely related as any component not inside the projected subspace is

lost [8].

SVD of the original matrix Prjtion of the new data

k{]kxk VkV
Original n x m Uk Uk
matrix

c x m new data c n kr x

Figure 2-2: A graphical representation of the folding-in process from [28].

2.3.2 SVD-Update

SVD updating techniques aim to not only incorporate new rows and columns but also

allow for downdates, edits, and shifts of the matrix while properly reflecting changes

in latent structure resulting from said modification of A. Initial work focused on

15

methods to update a full SVD, but high complexity issues led to a shift toward

updating a rank-k SVD [11, 10, 4].

While numerous single pass methods for SVD updating have been independently

developed, in this thesis we will specifically provide a summary of Brand's approach

for both a full and rank-k SVD update [7, 8, 9]. We recommend [4] for a more

complete overview of various incremental SVD methods.

Brand generalizes multiple modifications in the following form:

A+CDT = [U C] o]V D]T (2.12)
-0 I

The matrices [U C] and [V D] can be decomposed into the product of an or-

thonormal matrix and another matrix.

u C =]U P (2.13)
0 Rc

IVTD
V D] = V Q] 1 (2.14)

0 RD

P and Q are the components of C and D that are orthogonal to U and V, respectively.

Solving backwards yields Rc pT(I - UUT)C and RD T(I _ VVT)D. After

this orthogonalization, our intermediate result is the product of five matrices, two of

which are orthonormal.

A+CDT = LU P V Q T (2.15)
0 RC 0 I 0 RD

When the product of the middle three matrices is diagonalized using the SVD, an

updated SVD of A + CDT is achieved.

T T

I UTC E 0 I VTD E 0 UTC VTD U'E'V' (2.16)

0 RC 0 0 RD L0 0j Rc _ RDJ

16

A+ CDT = ([u P U')E'([v Q] V')T (2.17)

In [9] Brand notes multiple strategies for reduced computation:

1. When appending a single row or column onto A, the diagonalization step in

2.17 becomes the SVD of a broken arrowhead matrix. This broken arrowhead

matrix consists of all zeros except for on the diagonal and on either the last row

or last column. As shown in [17], the SVD of a broken arrowhead matrix can

be performed in O(m 2) time.

2. If the rank of the updated SVD is fixed, a rank-one update, rank(CD T) = 1,

can have reduced computational complexity by maintaining decompositions of

the left and right singular vectors.

A+CDT =UnxxkUkxkSkxkV'xkVXk(2.18)

The matrices U and V maintain the span of the left and right subspaces while

U and f can be updated to store the rotations U' and V' from 2.17 with less

computation.

2.4 Frequent Directions

In Sections 2.1 through 2.3, we reviewed the SVD, the rank-k SVD, and incremental

SVD techniques. In this section we introduce a different technique for producing

matrix approximations, matrix sketching. Rather than maintaining a decomposi-

tion, matrix sketching generates a significantly smaller matrix that approximates the

original. Due to the sketch's smaller size, it is inherently low-rank.

In [23] Liberty presents a novel method of performing streaming matrix sketching.

In a single pass of the data, this procedure sketches a matrix A E R"x" into a matrix

B E Rexm, f < n, which approximates A well.

Liberty's algorithm, Frequent Directions, builds upon the well-known approach

used to estimate item frequency within a stream called Frequent Items or the Misra-

17

Gries algorithm [13, 19, 27]. Frequent Items maintains the frequency of a stream

of n item appearances in a universe of m numbers in 0(t) space by subtracting

equally from each frequency count to always ensure there are fewer than e unique

item frequencies being stored. This open space always allow the storage of a new

item frequency not currently being tracked while limiting the difference between the

calculated and actual item frequency. Frequent Directions is a translation of Frequent

Items from single-dimension to multi-dimension data points. Just as Frequent Items

tracks individual item frequencies, Frequent Directions is tracking orthogonal vectors.

The subtracting process on the orthogonal vectors is done by shrinking the norms of

the rows of B [23]. This method can be seen in Algorithm 1.

Algorithm 1 Frequent Directions [23]

Input: t, A E Rnx7
1: B +- empty matrix E Rx'
2: for i E [n] do
3: Insert Ai into an empty row of B
4: if B has no empty rows then

5: [U, E, V] +-SVD (B)
6: 6 2

1/2

7: V- fmax(E2 - 1 j, 0)
8: B +-VT
9: end if

10: end for
Return: B

The full update time for Frequent Directions is O(nme), which is an amortized

o (me) per row. This running time results from the SVD of B that must be calculated

every t/2 rows that are processed. Liberty proves the following additive bounds for

Frequent Directions in [23]:

Vx, lxii = 1 0 < IiAxI 2 - iBxI 2 < 211A I/ (2.19)

BTB -< AT A and I|ATA - BT B|| 2||A|12/t (2.20)

In his experiments against other sketching algorithms, Frequent Directions is the

most accurate approach apart from a brute force approach using the SVD when

18

measured by IIATA - BTB1|. It also performs significantly more accurately than

its worse-case bound. However, the empirical running time results reflect the high

asymptotic running time and verify that the algorithm is linear in all three variables

f, n, and m.

2.5 Frequent Directions II

Ghashami and Phillips present modifications in [15] to improve the accuracy of the

Frequent Direction algorithm by Liberty and prove relative bounds for their imple-

mentation. Their altered algorithm which we have termed Frequent Directions II is

described in Algorithm 2. Instead of performing the shrinking step every f/2 rows

that results in half of the rows being emptied, Frequent Directions II zeros out a single

row after incorporating each new row. Frequent Directions II also returns Bk instead

of B, t = [k + k/el. Bk is the best rank-k approximation to B and can simply be

calculated by taking the top k rows of B.

Algorithm 2 Frequent Directions II [15]

Input: f, A E Rnxm

1: B <- empty matrix E Rexm
2: for i E [n] do
3: Set B+ +- B'- 1 with the last row replaced with Ai
4: [U, E, V] <- SVD(B+)
5: 0< 2

6: VF+- 8ma(E2 -I IJ, 0)
7: Bi' <-VT
8: end for

Return: Bk

Ghashami and Phillips also prove relative bounds on top of the bounds in [23] for

Frequent Directions II:

VX, lxii = 1 0 < i|AxIi 2 - |iBxiI 2 < IIA|i2/j (2.21)

1|A - Ak||1 < ||A||2 - ||BkI11 2 (1 + E)IA - Ak 11 (2.22)

19

A - rBk(A (1 +)IIA - AkI11 (2.23)

where 7rBk (A) is the projection of A onto the rowspace of Bk [15].

20

Chapter 3

New Approximation Algorithms

In this chapter, we present new algorithms for faster streaming low-rank matrix ap-

proximations.

3.1 Incremental Frequent Directions II

We first present a modified version of Frequent Directions II that utilizes an incre-

mental SVD update step. The inner loop of the Frequent Directions II, Algorithm 2,

can be rephrased as an rank-one SVD update with CT = [,0-... , 0,1] and DT = Ai

followed by a full-rank SVD downdate. Returning to 2.15, we begin with the SVD

update. A number of simplifications immediately arise in this specific case. First, a

lack of need of the left singular vectors in Frequent Directions II allows us to discard

the first two matrices that calculate the updated U.

A+CD T -+ 0 T V Q] (3.1)
0 I 0 RD

The resulting left matrix-matrix product can further be simplified to:

VD RD Q] (32)

21

Next we recognize that since V spans Rn that there will be no component of D

orthogonal to V and therefore RD T _ VVT)D = 0.

[] [I = [VD V Q] (3.3)
VT D RD VT D

The final step is to incorporate the subspace rotation from the diagonalization into

S]T[V Q . Note again that we drop U as the sketch we are producing is only con-

structed from the singular values and right singular vectors.

E V Q] T __ U V V Q] __ 2([V Q] V)T (3.4)
vTD

Superficially, it seems that our updated V matrix calculated by ([V Q] V)T grows

each iteration. However, since E has a zero-valued entry on its diagonal, the last row

of V is empty. Due to this structure, we can forgo appending Q onto V and drop the

last row off of Q, simplifying the update to VV.

2([V Q] g)T -+ 2(Vf/) T (3.5)

Lines 5-8 of Algorithm 3 capture the entire simplified rank-one SVD update from

Frequent Directions II.

It is trivial to see that the Misra-Gries [27] step on line 6 in Algorithm 2 would

not only be difficult to frame as a matrix downdate in terms of C and D but also

that it would not benefit from any special structures. It follows that introducing

an additional diagonalization step (SVD) would be more computationally expensive

than directly performing the simple arithmetic reduction of the singular values.

3.1.1 Complexity

We have replaced the full SVD in Algorithm 2 with an SVD update. The SVD update

for each row processed consists of a matrix-vector multiplication in O(m 2) time, the

22

Algorithm 3 Incremental Frequent Directions II

Input: i, A E Rn
1: E <- empty matrix E Rt-l'
2: V +- Im

3: for i E [n] do
4: Set n <- AjV {Aj is the ith row of A}
5: Set the last row of E to n
6: [0 2, T] <- SVD(E)
7: V <-V
8: 6 +-o

9: E<- max($2 - IJ5, 0)
10: end for
Return: B = EVT

SVD of a highly structured f x m matrix in O(me 2) time, and a matrix-matrix

multiplication of two m x m matrices in O(m3) time. The resulting complexity of

Incremental Frequent Directions II is therefore 0 (nm3) compared to the 0 (nm 2) of

Frequent Directions II.

3.2 Truncated Incremental Frequent Directions II

The second algorithm we present, named Truncated Incremental Frequent Directions

II, is a form of Algorithm 3 built around taking advantage of specific matrix struc-

tures. This algorithm is designed to sacrifice precision to reduce the running time

complexity of the higher cost steps introduced in Incremental Frequent Directions II:

the SVD of the E matrix and the matrix-matrix multiplication of VV. We accom-

plish this my adapting a technique from Brand in [9]: we calculate and maintain a

rank-k decomposition of B and also keep the incremental SVD decomposed into three

matrices to defer the true subspace rotations.

We first perform a full SVD of A . This calculation is the same as that
0

performed during the e- 1th iteration of Incremental Frequent Directions II. However,

the algorithms diverge at line 3 in Algorithm 4 with the truncation of the first t

columns of V to create Vt. This creates a rank-k decomposition of interest composed

23

of a square matrix with diagonal entries o-1, - - - , a-1, 0 and Vt. The following loop

in line 4-10 in Algorithm 4 is similar to the loop in Algorithm 3 barring three subtle

differences.

1. Line 4 now involves the product of a vector and two matrices. This change is

due to the algorithm maintaining the decomposition of the right singular vectors

in Ve and V'.

2. The diagonalization in line 7 is now that of a broken arrowhead matrix of the

specific form:

0-1 0 0 ... 0

0 U2 0 ... 0

0 0 0-3 ... 0 (3.6)

ni n2 nl3 ... n

3. The subspace rotation in line 8 is matrix-matrix product between two f x i

matrices.

Algorithm 4 Truncated Incremental Frequent Directions II

Input: f, A E Rn

1: V' +- It

2: [U, E, V] +- SVD(Aw) {where Ae_1 is the first t - 1 rows of A}

00
3:Vt-V0

4: for i E ,n] do
5: Set n +- AiVtV'
6: Set the last row of E to n

7: [U, 2, fr] +- SVD (E)
8: V' <- V'Y

9: Z<dig(2 2 2 2 J -2 01 VeU2 Ue.. e-ie'9: E <- diag(1 - 2- , t--o ,. -_1 - -,)
10: end for
Return: B = E(VtV')T

24

3.2.1 Complexity

The three changes to the algorithm result in a better computational complexity than

both Frequent Directions II and Incremental Frequent Directions II. Grouping the

vector-matrix-matrix product in line 5 as two vector-matrix products reduces the

calculation to 0 (me) time. The SVD on line 7 can be naively calculated in 0(P)

time, however, using Gu and Eisenstat's method for calculating the SVD of a broken

arrowhead matrix can reduce it to 0(2) time. The subspace rotation on line 8 can be

performed in 0(03) time. The total time of the entire algorithm is therefore bounded

by 0(nt3).

3.3 Truncated Incremental Frequent Directions

The final algorithm we present applies the concepts from Truncated Incremental

Frequent Directions II to Frequent Directions. Instead of performing the truncated

SVD update for each row of A, it does a batch computation with t/2 rows each

iteration. It is worth noting that processing multiple rows at once destroys the broken

arrowhead structure of E from Truncated Incremental Frequent Directions.

Algorithm 5 Truncated Incremental Frequent Directions

Input: e, A E R"

1: V' +- it
2: [U, E, V] +- SVD(Ae) {where At is the first e rows of A}

3: Vt +- V

4: for every t/2 rows A1 / 2 E A {starting with the (f + 1)th row of A} do
5: Set n +- A1/ 2 VtV'
6: Set the last f/2 rows of E to N
7: [, ,] +- SVD(E)

8: V' +- V'V
9: 0,2

10: E +- max(22 - I6, 0)
11: end for

Return: B = E(VIV')T

25

3.3.1 Complexity

By incorporating t/2 rows into the SVD with each loop iteration, Truncated Incre-

mental Frequent Directions has a single-loop-iteration complexity of O(me2). This

iteration step occurs for every f/2 rows in A, resulting in an overall complexity of

O(nml). Truncated Incremental Frequent Directions therefore has the same com-

plexity as Frequent Directions.

26

Chapter 4

Algorithm Performance

In this chapter we compare the newly proposed algorithms to previous work on nu-

merous data sets under additive and relative error bounds. The algorithms being

compared are: a rank-e SVD approximation, Frequent Directions, Frequent Direc-

tions II, Truncated Incremental Frequent Directions, and Truncated Incremental Fre-

quent Directions II. The last two algorithms are the new methods developed in this

thesis. Due to performance constraints, Incremental Frequent Directions II was not

included in our experiments.

Table 4.1 and Table 4.2 review the computational complexity of the algorithms.

Truncated Incremental Frequent Directions II enjoys better asymptotic performance

than Frequent Directions II, both of which are bounded by the SVD calculated during

each loop iteration. While Truncated Incremental Frequent Directions II has the

same asymptotic runtime performance as Frequent Directions, the first is limited by

a matrix-matrix multiplication while the second is limited by the SVD. The difference

in bounding step of the algorithms, while not captured by order of growth, will be

evident in the empirical experiments. It is important to note that Table 4.2 reflects

the usage of a full SVD to calculate an updated rank-k decomposition. For a full

discussion of alternatives to this method, see [4].

27

Algorithm Asymptotic Running Time

Singular Value Decomposition 0 (nM2)
Frequent Directions 0 nme)

Frequent Directions II 0 (nme 2)
Truncated Incremental Frequent Directions 0 (nm)

Truncated Incremental Frequent Directions II 0 (n3)

Table 4.1: A list of algorithms and their respective asymptotic runtimes.

Algorithm Asymptotic Update Time
Singular Value Decomposition 0(nm 2)

Frequent Directions O(me)
Frequent Directions II 0 (mE2)

Truncated Incremental Frequent Directions o (m
Truncated Incremental Frequent Directions II 0 (f3

Table 4.2: A list of algorithms and their respective asymptotic updates times.

4.1 Experimental Data

We perform experiments on five different types of data. The first three are synthetic

and differ by diminishing rates of the signal singular values. The other two data sets

are real-world data sets.

4.1.1 Synthetic Data

Each synthetic data matrix A was generated using the procedure outlined by Liberty

in [23]:

A = SDU + N (4.1)

Matrix S contains the signal coefficients in Rnxd with Sjj ~ N(O, 1) independently

and identically distributed. Matrix D E Rdxd is a diagonal matrix containing the

non-increasing singular values of the signal d(i). Matrix U is a random d dimension

subspace in Rm . Matrix N, Nj, ~ N(O, 1) i.i.d., adds Gaussian noise to the signal

SDU and is scaled by , to ensure the signal is recoverable.

Three different diminishing rates were used to construct the matrix D: linearly

28

decreasing, inversely decreasing, and exponentially decreasing. We choose to perform

tests on data with different singular value trends as the reduction in the Misra-Gries

[27] step is dependent on the relative magnitude of the singular values of a matrix.

Therefore, observing how the algorithms perform on these data sets better reveals

their overall behavior. The diagonal values of D are populated by the associated

equation:

D =, { d(i), if i < d. (4.2)
0, otherwise.

1 -(i -1)
linear : d(i) = d

d
1

inverse : d(i) = - (4.3)

1
exponential : d(i) = -

The variable d captures the signal dimension and ranges from m/50 to m/20 in our

experiments.

4.1.2 Collected Data

The two real data sets are from two common applications of low-rank matrix approxi-

mations: image analysis and information retrieval. We used a 980 x 962 data set from

[18] that was created by converting a series of captured images into a bag-of-words

representation. The second set was test collection of document abstracts acquired

from [1]. These abstracts were then represented by their word presence from a large

dictionary, resulting in a matrix with dimensions 7491 x 11429.

4.2 Accuracy Measurements

To compare the performance of the approximation algorithms, we use the error bounds

provided by Liberty in [23] and by Ghashami and Phillips in [15]. Liberty proves in

29

[23] that AT A ~ BT B:

BTB -< AT A and |AT A - BT B 5 2|1A||1/I (4.4)

Another interpretation is that A and B are close in any direction in R":

Vx, lxii= 1 0 IiAxi1 2 - IBxi1 2 < 211Ai12/ (4.5)

Ghasahmi and Phillips show relative error bounds in [15], which aligns with more

frequently used means of measuring the accuracy of matrix approximations:

||A - Ak112 < ||A||1 - |BIk 12 < (1 + E)IA - Ak||2 (4.6)

IA-l~(A)II12 < (1 + E)IIA - AkI112 (4.7)
||A - 7rB k0e

where 7rBk(A) is the projection of A onto the rowspace of Bk [15].

For the remainder of this thesis, we will refer to error measurement in Equation

4.4 as Additive Error and the measurement in Equation 4.6 as Relative Error.

4.3 Performance Analysis

We will now analyze the performance of each matrix approximation algorithm in

terms of runtime and accuracy under Additive Error and Relative Error on our five

sets of experimental data. For each test, we show log-lin plots of the natural log of

runtime, of Additive Error, and of Relative Error for each algorithm against multiple

values for t, the resulting sketch dimension. All tests were performed on a Windows

7 machine with 6GB of RAM using an Intel(R) Core(TM) i7-2630QM CPU @ 2.00

GHz.

We will mainly be comparing Frequent Directions to Truncated Incremental Fre-

quent Directions, and Frequent Directions II to Truncated Incremental Frequent Di-

rections II, while the rank-e SVD provides a solid baseline. Note that the rank-t SVD

method computes the full singular value decomposition of A and then truncates to

30

--- Ra.k-t SVD
- d ' FSaqwu t DDitk IU

7.5 - t k ..t q Dird. II

7-

6.5

5-

4.5-

41

Figure 4-1: Natural log of Additive Error over values of f for a 2000 x 1000 matrix
with linearly decreasing singular values.

the top f singular triplets for each value of f, so its runtime is independent of f. Also,

given that the rank-f SVD of A is the best rank-f approximation of A, the rank-f

SVD will always provide a lower bound for the other algorithms.

4.3.1 Synthetic - Linear

The first experiment is performed using a linearly decreasing singular values, n =

2000, m = 1000, and d = 20.

We notice that in Figure 4-1 both of the proposed algorithms, Truncated Incre-

mental Frequent Directions and Truncated Incremental Frequent Directions II, both

perform better than their original counterparts under Additive Error for values of

f < 50. However, their Additive Error only diminishes exponentially versus the faster

rate of Frequent Directions and Frequent Directions II. Both new methods maintain

lower Relative Error than their corresponding previous algorithms over the range of f

values in Figure 4-2. Figure 4-3 shows that the runtime difference between Frequent

Directions II and Truncated Incremental Frequent Directions II matches what we

expect from their asymptotic running times, but the that Truncated Incremental Fre-

quent Directions is faster than Frequent Directions for the range of f values despite

their equivalent asymptotic running time. This behavior can be explained by the

31

12.5 -

- t Fr equet DirectiDn. I
Frequet Dbrections-$-Truncated Incrmetal FR.qt Direction

11-

b 10.5-

10-

9.5-

0 100 200 300 400 500 600 700

Figure 4-2: Natural log of Relative Error over values of i for a 2000 x 1000 matrix
with linearly decreasing singular values.

9 - Ran-t S

---- tal Frequent Dbredis I
Fequent Directions

8 - Truncated a ta1 FRoquent Direcios

7-

6-

5---

4-

3-

2

0-

0 100 200 300 400 500 600 700

Figure 4-3: Natural log of runtime (in seconds) over values of e for a 2000 x 1000
matrix with linearly decreasing singular values.

32

14-
-+ .k-1 SVD

O-B FRqet Directions H1
Tructed Incrental Requet Directions Il

I Tuncted I tal Freqet Diretions
12-

~10

Z

4 -

0 100 20 30 40 50 60 700

Figure 4-4: Natural log of Additive Error over values of e for a 2000 x 1000 matrix
with inversely decreasing singular values.

worst-case update time for Frequent Directions and Truncated Incremental Frequent

Directions being bounded by the SVD and a matrix-matrix multiply, respectively.

While asymptotically equivalent, the SVD takes significantly more flops to compute.

4.3.2 Synthetic - Inverse

The second experiment is performed using a inversely decreasing singular values,

n = 2000, m = 1000, and d = 20. Figure 4-4 shows that neither algorithms proposed

in this thesis perform as well as the original algorithms under Additive Error, and

their error diminishes more slowly as with the previous data set. Again, Truncated

Incremental Frequent Directions and Truncated Incremental Frequent Directions II

are more accurate under Relative Error for the entire range of values as seen in

Figure 4-5. The runtime performances in Figure 4-6 nearly match those in Figure 4-3

as the structure of the data has little effect on the computation being performed.

4.3.3 Synthetic - Exponential

The third experiment is performed using a exponentially decreasing singular values,

n = 2000, m = 1000, d = 20, and x = 2. Figures 4-7, 4-8, 4-9 exhibit similar behav-

33

=U== FrqtDedos1

- D Fq M

-1-

-'

a0 100 200 300 400 500 600 700
1

Figure 4-5: Natural log of Relative Error over values of f for a 2000 x 1000 matrix
with inversely decreasing singular values.

-4- Rank-I SYD
-6 Frqm Dr.6kn nI

-, - cated Inaamntal Frwffit Dvi 0
Freuet Dhvdctms

a N ~fr.........-.
4--

0 100 200 300 400 500 600 700

5

4

0

Figure 4-6: Natural log of runtime (in seconds) over values of f for a 2000 x 1000
matrix with inversely decreasing singular values.

34

151

14

13

12

11

10

9

V
A

10-
i, Ftrn~tk- rt FSVtDDb~

8 Fqt Dretion
Truncated Incrernental Frequent Directions

6-

-0-

-

-I

_10 ,
0 100 200 300 400 500 600 700

Figure 4-7: Natural log of Additive Error over values of f for a 2000 x 1000 matrix
with exponentially decreasing singular values.

8-
-R-quest DirDitoeco H

- - Tronted D t.l Frequent Directions

o- 0

-2

-

-4-

0 0

0 100 200 300 400 500 600 700

Figure 4-8: Natural log of Relative Error over values of f for a 2000 x 1000 matrix

with exponentially decreasing singular values.

35

9- -- ok-I SVD
-6--Fqumt Directions 11

- - Truneted Ienam tal Fraqumet Dieoiom U
4 requent Dhiei

8 Truncted Inrmtal Frequent Direction

7-

6-

0

1
0 100 200 300 400 500 600 700

Figure 4-9: Natural log of runtime (in seconds) over values of e for a 2000 x 1000
matrix with exponentially decreasing singular values.

14C

120

100

60

40

20

0 20 40 60 00 100

Component Number

Figure 4-10: 100 largest singular values of the image analysis data set.

iors to the results in Figures 4-4, 4-5, 4-6 suggesting an increased rate of exponential

fall-off in the singular values of the data will not change the relative performance of

the algorithms.

4.3.4 Image Analysis

The fourth experiment is performed using our image analysis data set from [18] with

n = 980 and m = 962. For comparison, we provide a plot of the 100 largest singular

values of the image analysis data set in 4-10.

In Figure 4-11 we see the now familiar trend between the truncated and non-

36

8-
D ionks n

- - r t i m equent Directions H
Frvquent Directio6- Truncated Incremntal Frequent Directions

4-

2--

o 0-

-6

-8
0 100 200 300 400 500 600 700 800 900

Figure 4-11: Natural log of Additive Error over values of f for a 980 x 962 image
analysis matrix.

8-
- - ...t.d hnrm.et.1 Frequent Dhretion. 0

=tFrequent Directio

6-

2-

0-

-2-

-4
0 100 200 300 400 500 600 700 800 900

Figure 4-12: Natural log of Relative Error over values of f for a 980 x 962 image
analysis matrix

37

8 -- uk-1 SVD

-d t F edt iireti
7- Tr ated I r a F et Directio x t M

7rnae nrmna FrqetDretsI might always. erfor btte ude

5-

o 3

2- /

0-

0 100 20 300 400 500 600 700
t

Figure 4-13: Natural log of runtime (in seconds) over values of e for a 980 x 962
image analysis matrix

truncated algorithms. A new feature exhibited is that when Frequent Directions

and Truncated Incremental Frequent Directions only execute their Misra-Gries [27]

shrinkage step once (s 700), they achieve nearly identical results as seen in both

Figure 4-11 and Figure 4-12. This behavior causes a significant drop in the Additive

Error of Truncated Incremental Frequent Directions for se> 700. Frequent Directions

II also performs better than Truncated Incremental Frequent Directions -under

Relative Error for f < 150 in Figure 4-5, which dashes any empirical notion that

TrIuncated Incremental Frequent Directions II might always perform better under

Relative Error. Once again, we see similar relative runtime performance in Figure

4-13 as in previous experiments due to similar dimensions.

4.3.5 Information Retrieval

The fifth experiment is performed using the information retrieval data set obtained

from [1] with n = 7945 and m = 11725. For comparison, we provide a plot of the 100

largest singular values of the information retrieval data set in Figure 4-14. Due to the

size of the matrix in this experiment leading to runtime limitations, Frequent Direc-

tions II and Truncated Incremental Frequent Directions II were excluded. Similar

to the image analysis data set, this data set exhibits new relative behavior under

38

100

90

80

70

60

50

40

30

0 20 40 60
Component Number

80 100

Figure 4-14: 100 largest singular values of the information retrieval data set.

8.5

7.5

7-

5.5 -

5-

4.5-

4-

3.47
100 20 30 0 50 0 700 800 900 1000O

Figure 4-15: Natural log of Additive Error over values of f for a 7491 x 11429
information retrieval matrix.

39

11in

12.5[

12

r1 11.5

11

10.5

10'
100 200 300 400 500 600 700 800 900 1000

I

Figure 4-16: Natural

9

8

7

4

log of Relative Error over values of f for a 7491 x 11429
information retrieval matrix

500 600 700 800 900 1000
I

Figure 4-17: Natural log of runtime (in seconds) over values
information retrieval matrix

of f for a 7491 x 11429

40

100 200 300 400

-~kt V

-rqm kdm

-~ae nrm tlFeutDrd~

1 P k-f SVD
1'1- DimdimsTruncated Lumumtal Frequent Dh ti

the approximation algorithms. Truncated Frequent Directions II is more accurate

than Frequent Directions II under both Additive Error and Relative Error as seen in

Figures 4-15 and 4-16 while executing in less time for the range of f.

4.4 Additional Observations

Across the experiments there are upward kinks in the error plots for Frequent Direc-

tions and Truncated Incremental Frequent Directions. This behavior is a result of the

batch processing in both algorithms. As they eliminate and incorporate f/2 rows in a

single iteration, there are times in which the sketch matrices, B, have (f/2) +1 empty

rows while in the previous step there were no empty rows. Some values of f may

result in less accurate sketches than other values in the immediate vicinity, though

the long-term trend of improved accuracy persists. In a non-online setting, one can

minimize empty rows in B by choosing a value for f such that n = f + x((f/2) + 1)

for any integer x.

An anomaly in Figure 4-11 reveals an interesting relationship between Frequent

Directions and Truncated Incremental Frequent Directions. When n ; 3>/2, the

Misra-Gries shrinkage step only occurs once. This behavior results in a large drop

in Additive Error for Truncated Incremental Frequent Directions and near identical

approximation error under both error measurements.

The runtime plots for Frequent Directions and Truncated Incremental Frequent

Directions do not maintain a consistent upward or downward trend as f increases

across all of the data sets. This deviation is due to the trade-off between more

expensive but infrequent calculations when f is larger versus less computationally

intensive per instance, but more frequent calculations when f is smaller.

41

Chapter 5

Algorithm Application

In this chapter we apply our proposed approximation algorithms to the application

of Latent Semantic Indexing.

5.1 Latent Semantic Indexing

Latent Semantic Indexing (LSI) is a modified approach to standard vector-space

information retrieval. In both approaches, a set of m documents is represented by m

n x 1 vectors in A E RnXm, the term-document matrix. The elements of each vector

represent the frequency of a specific word in that document, so Aj is the frequency

of word i in document j. The frequencies in matrix A are often weighted locally,

within a document, and/or globally, across all documents to alter the importance of

terms within or across documents [6, 5, 14]. Using vector-space retrieval, a query

is represented in the same fashion as a document, as a weighted n x 1 vector. The

execution of the look-up of a query q is performed by mapping the query onto the

row-space of A.

w = q A (5.1)

The vector result w contains the relevancy scores between the query and each docu-

ment. The index of the highest score in w is the index of the document in A that most

closely matches the query, and a full index-tracking sort of w returns the documents

42

in order of relevance to the query as determined by directly matching terms of the

query and the documents [22].

Vector-space retrieval has numerous drawbacks. It can often return inaccurate

results due to synonymy and polysemy [30]. Synonymy is the issue of concepts being

described in different terms, resulting in queries not matching appropriate documents

discussing the same concepts due to word choice. Polysemy is the problem of single

words having multiple meanings. Such words can lead to documents being returned

with high relevancy scores when in fact they share little to no conceptual content

with the query [29]. Vector-space retrieval also requires the persistent storage of the

matrix A as seen in Equation 5.1. As information retrieval is often performed on

extremely large data sets, storing A is often undesirable [31].

Latent Semantic Indexing uses a rank-k approximation of A to try to overcome the

issues of synonymy, polysemy, and storage. The concept behind LSI is that the matrix

Ak will reveal some latent semantic structure that more accurately matches queries

to documents based on shared concepts rather than words [14]. The query matching

process in LSI is nearly identically to vector-space retrieval with the replacement of

the term-document matrix [6]:

i> = q T A (5.2)

Ak = UknkVT' (5.3)

5.2 Approximate Latent Semantic Indexing

To test our algorithms performance in LSI, we leverage the work of Zhang and Zhu

in [32]. When A is large, computing Ak directly using the SVD can be prohibitively

expensive. However, Ak can be also computed by projecting A onto the space spanned

by its top singular vectors:

Ak = UkUT A (5.4)

Ak = AVVkT (5.5)

43

In [32] Zhang and Zhu present an algorithm that uses a column-subset matrix sketch-

ing technique to approximate Vk and then applies it to the relationship in Equation

5.5 to approximate Ak. We present their approach in Algorithm 6 which we have

generalized for any sketching technique.

Algorithm 6 Approximate Algorithm for LSI

Input: f, k, A E Rn
1: B +- sketch(A) where B E R"xm

2: S +BBT
3: [U, E, V] = SVD(S)
4: for i = 1, ... ,k do
5: &t - va

6: f~t = But/&t
7: end for

8: Uk = AVAkt' {M+ is the pseudoinverse of M}

Return: Ukk i, and Vk

5.3 NPL Data Set

We perform our LSI experiments on the Vaswani and Cameron (NPL) test collection

obtained from [1]. There are m = 11429 documents represented by n = 7491 terms

in this set, resulting in a term-document matrix A E Rnxm. The data set comes with

93 queries and their corresponding truth relevance assessments [21].

5.4 Performance Analysis

We compare four approaches for information retrieval on the NPL data set: vector-

space retrieval, rank-k LSI, approximate rank-k LSI using Frequent Directions, and

approximate rank-k LSI using Truncated Incremental Frequent Directions. The latter

two are performed using Algorithm 6 and using the corresponding sketching method

in line 1. For a given value of k, we set f = L5k/4]. We do not test Frequent Directions

II or Truncated Incremental Frequent Directions II due to runtime limitations.

44

9.
9 - -er Rank-k SVD
8 - - -Truncated lntal Frequent Direcionw

7-

S6-

1a 20 40 60 80 100 120

Figure 5-1: Natural Log of runtime (in seconds) of LSI techniques over values of k.

0.16

0.14

0.12

0.18

0

<0.06-

0.02

0 20 40 60 800 10 120

k

Figure 5-2: Average precision of information retrieval techniques over values of k.

We measure retrieval quality for a single query through precision and recall.

precision correct documents returnedl 56

precsio =
(5.6)p

documents returned I

- correct documents returnedl

correct documents

To summarize performance across the entire range of queries, we calculate the average

precision of all the queries. Precision for a specific query is measured once a threshold

percentage of correct documents has been retrieved [20]. In our analysis, we set this

threshold to 60%.

Figure 5-1 resembles Figure 4-17 as the runtime-intensive portion of approximate

rank-k LSI using matrix sketching is calculating the sketch. The results of the av-

45

0.1

0.08

0* 0.06

0.04

0.02

0 500 1000 1500
k

Figure 5-3: Median precision of information retrieval techniques over values of k.

erage precision calculation in Figure 5-2 reveal that Truncated Incremental Frequent

Directions is generally more precise than Frequent Directions when used for approxi-

mate rank-k LSI. Both sketching methods perform worse under average precision than

rank-k LSI and full vector-space retrieval for nearly the entire range of k values. The

median precision plot in Figure 5-3 shows that using Truncated Incremental Frequent

Directions requires a larger value for k to achieve the same precision as the rank-k

approximation around the ideal value of k for this data set, k = 500 [20]. The compar-

ative average and median precision between rank-k LSI and Truncated Incremental

Frequent Directions LSI seems to indicate that the latter performs poorly for some

subset of queries. Through analysis of the individual 93 queries, the offending subset

was determined to be those queries with smaller norm values (fewer words). This

result is most likely explained by shorter queries containing less conceptual material

which makes them more susceptible to error caused by approximating Ak.

Based on these results, Truncated Incremental Frequent Directions seems very

promising in LSI. It outperforms its counterpart, Frequent Directions, and is compet-

itive with rank-k LSI for most values of k while enjoying better runtime performance.

Each LSI approach performs worse than vector-space retrieval, but this behavior is

a known characteristic of the extremely sparse NPL dataset [20]. It is expected that

testing with denser data sets will show better LSI average and median precision com-

pared to vector-space retrieval for all three algorithms [20]. Denser term-document

matrices will also widen the runtime gap between rank-k LSI and the two matrix

46

sketching approaches as the iterative rank-k SVD will take more flops to compute

each singular triplet.

5.5 Additional Observations

Information retrieval collections in the real-world are often dynamic [30]. New doc-

uments are added in an streaming fashion. In the case of LSI being used to reduce

storage requirements to 0 (k(n + m + 1)), incorporating new data involves updating

Ak or Ak. As shown in Chapter 2, rank-k SVD updating techniques are non-trivially

expensive. However, when using approximate rank-k LSI, additional 0(em) space

can be used to store the sketch B. This additional constant space allows for the

efficient update of B and the calculation of new Uk, Ek, and Vk using lines 2 through

8 of Algorithm 6.

47

Chapter 6

Conclusion

In this thesis we sought to create new algorithms for generating fast low-rank matrix

approximations. Current approximations techniques are extremely important as they

are used in a wide-range of applications such as principle component analysis, model

simplification, k-means clustering, information retrieval, image recognition, and sig-

nal processing [6, 4, 23]. When designing our implementations, we consider three

measures of performance: accuracy, running time, and space requirements. We com-

bine aspects of multiple current approaches to present new faster algorithms with

limited accuracy degradation.

We empirically test our algorithms on multiple synthetic and real data sets. Along

with analyzing runtime performance, we measure the accuracy of our algorithms by

using error calculations for Additive Error and Relative Error from previous work

[23, 15]. Our experiments show that our new algorithms perform well under the

Relative Error measurement but not normally under Additive Error. We apply our

algorithms to Latent Semantic Indexing to see how they perform in an application

setting. On the NPL data set, we achieve promising results for average and median

precision across a set of 93 queries.

48

6.1 Future Work

While this thesis performed empirical analysis of the algorithms presented, a natural

extension is to provide theoretical bounds for Truncated Incremental Frequent Di-

rections and Truncated Incremental Frequent Directions II. Proper upper bounds for

the error of both algorithms would allow for them to be confidently deployed into

application settings.

Another avenue of future work is analyzing how these new algorithms perform in

conjunction with others in specific applications. This approach follows from the work

in [20, 14] that demonstrates that a weighted combination of low-rank approximations

tend to achieve the best accuracy.

49

Appendix A

Implementations

i function [B] = Incremental-FrequentDirections (A,L)

[n,m] = size(A);

B = zeros(L,m);

B(1: L-1,: = A(1: L-1,:

[~ ,S,V] = svd(B);

S(L,:) = [];

for i=L:n

if i - n

break

end

N = A(i ,:)*V;

K= [S;N];

[~,S,Vk] = svd(K);

V = V * Vk;

S = diag(S);

S = diag((S(1:end-1).^2 - S(L)^2).^.5)

S = [S zeros (L-1,m-size (S,2))];

end

B = S*V';

50

10

11

12

13

14

15

16

17

18

19

20 B(L,:) = A(i,:)

21 (nd

i function [B] = TruncatedAncrementalFrequent-Directions (A,L)

2 [n,m] = size(A);

3 [~,S,V] = svd(A(1:L,:));

4 Vprime = eye(L);

5 S = diag(S);

6 S = (S(1:L/2-1).^2 - S(L/2)^2).^.5;

7 S(L/2:L) = 0;

8 S = [diag(S(1:L/2-1)) zeros (L/2-1,L/2+1)];

9 V = V(: ,1:L);

10 row-count = L;

11 zero-row-index = L/2;

12 while row-count + ceil (L/2) < n

13 N = A(1+row-count:1+row-count+(L-zero-row-index)

,:) * V * V-prime;

14 K = [S;N];

15 [~,S,D] = svd(K);

16 V-prime = V..prime * D;

17 S = diag(S);

18 S = (S(1:L/2-1).^2 - S(L/2)^2).^.5;

19 S(L/2:L) = 0;

20 S = [diag(S(1:L/2-1)) zeros (L/2-1,L/2+1)];

21 row-count = row-count + (L - zero-row-index + 1);

22 zero-row-index = L/2;

23 end

24 B = S*V-prime'*V';

25 if row-count < n

26 B(zero-rowindex: zero-row-index+n-row.count -1,:)

51

= A(row-count+1:n,:)

27 end (1

28 if size(B,1) < L

29 B(size (B,1)+1:L,:) = 0;

30 end

31 end

1 function [B] = TruncatedlIncrementalFrequent-Directions2 (A,

L)

2 [n,m] = size(A);

3 B = zeros(L,m);

4 V = eye(m,L);

5 V-prime = eye(L);

6 S = zeros(L);

7 for i=1:n

8 if i-n

9 break

10 end

11 N = A(i ,:) * V * V-prime;

12 K= [S;N];

13 [~,S,D] = svd(K);

14 Vprime = Vprime * D;

15 S = diag (S);

16 S = diag((S(1:end-1).^2 - S(L)^2) .^.5)

17 S = [S zeros(L-1,L-size (S,2))];

18 end

19 B = S(: ,1: L)*V-prime'*V';

20 B(L,:) = A(i,:);

21 end

52

Bibliography

[1] Glasgow Test Collections.

[2] Dimitris Achlioptas and F McSherry. Fast computation of low rank matrix ap-

proximations. Proceedings of the thirty-third annual ACM symposium on Theory

of computing, 2001.

[3] CG Baker. A block incremental algorithm for computing dominant singular
subspaces. Vasa, 2004.

[4] CG Baker, KA Gallivan, and P Van Dooren. Low-rank incremental methods for
computing dominant singular subspaces. Linear Algebra and its Applications,
436(8):2866-2888, 2012.

[5] MW Berry. Computational methods for intelligent information access. Super-
computing, 1995. Proceedings of the IEEE/ACM SC95 Conference, pages 1-38,
1995.

[6] MW Berry, ST Dumais, and GW O'Brien. Using linear algebra for intelligent
information retrieval. SIAM review, (December), 1995.

[7] Matthew Brand. Incremental singular value decomposition of uncertain data
with missing values. Computer VisionECCV 2002, 2002.

[8] Matthew Brand. Fast Online SVD Revisions for Lightweight Recommender Sys-
tems. SDM, 35(TR-2003-14):37-46, 2003.

[9] Matthew Brand. Fast low-rank modifications of the thin singular value decom-

position. Linear algebra and its applications, 415(1):20-30, May 2006.

[10] James R Bunch and Christopher P Nielsen. Updating the singular value decom-

position. Numerische Mathematik, 31(2):111-129, 1978.

[11] P Businger. Updating a singular value decomposition. BIT, 10(3):376-385,
September 1970.

[12] S. Chandrasekaran and B.S. Manjunath. An eigenspace update algorithm for
image analysis. Graphical Models and Image Processing, 59(5):321-332, 1997.

53

[13] Erik D Demaine, Alejandro L6pez-Ortiz, and J Ian Munro. Frequency estimation
of internet packet streams with limited space. In AlgorithmsESA 2002, pages
348-360. Springer, 2002.

[14] Andy Garron and April Kontostathis. Applying Latent Semantic Indexing on
the TREC 2010 Legal Dataset. TREC, 2010.

[15] Mina Ghashami and JM Phillips. Relative Errors for Deterministic Low-Rank
Matrix Approximations. arXiv preprint arXiv:1307.7454, 2013.

[16] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU
Press, 2012.

[17] Ming Gu and SC Eisenstat. A stable and fast algorithm for updating the singular
value decomposition. Yale University, New Haven, CT, 1994.

[18] L. Hamilton, P. Lommel, T. Galvin, J. Jacob, P. DeBitetto, and M. Mitchell.
Nav-by-Search: Exploiting Geo-referenced Image Databases for Absolute Posi-
tion Updates. Proceedings of the 26th International Technical Meeting of The
Satellite Division of the Institute of Navigation (ION GNSS+ 2013), pages 529-
536, 2013.

[19] Richard M Karp, Scott Shenker, and Christos H Papadimitriou. A simple algo-
rithm for finding frequent elements in streams and bags. ACM Transactions on
Database Systems (TODS), 28(1):51-55, 2003.

[20] April Kontostathis. Essential dimensions of latent semantic indexing (lsi). System
Sciences, 2007. HICSS 2007. 40th Annual Hawaii International Conference on,
2007.

[21] April Kontostathis and WM Pottenger. A framework for understanding Latent
Semantic Indexing (LSI) performance. Information Processing & Management,
19426(June 2004), 2006.

[22] Thomas K Landauer, Peter W Foltz, and Darrell Laham. An introduction to
latent semantic analysis. Discourse processes, 25(2-3):259-284, 1998.

[23] Edo Liberty. Simple and deterministic matrix sketching. In Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 581-588. ACM, 2013.

[24] X Ma, D. Schonfeld, and A. Khokhar. Dynamic updating and downdating ma-
trix SVD and tensor HOSVD for adaptive indexing and retrieval of motion tra-
jectories. Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE
International Conference on, pages 1129-1132, 2009.

[25] Peter Halla David Marshallb Ralph Martinb. On adding and subtracting
eigenspaces with EVD and SVD.

54

[26] Leon Mirsky. Symmetric gauge functions and unitarily invariant norms. The
Quarterly Journal of Mathematics, 11(1):50-59, 1960.

[27] Jayadev Misra and David Gries. Finding repeated elements. Science of computer
programming, 2(2):143-152, 1982.

[28] B Sarwar, George Karypis, Joseph Konstan, and John Riedl. Incremental sin-
gular value decomposition algorithms for highly scalable recommender systems.
Fifth International Conference on Computer and Information Science, 2002.

[29] Michael E Wall, Andreas Rechtsteiner, and Luis M Rocha. Singular value decom-
position and principal component analysis. A practical approach to microarray
data analysis, 91, 2003.

[30] Hongyuan Zha and HD Simon. On updating problems in latent semantic index-
ing. SIAM Journal on Scientific Computing, 21(2):782-791, 1999.

[31] Hongyuan Zha and Zhenyue Zhang. Matrices with low-rank-plus-shift structure:
Partial SVD and latent semantic indexing. SIAM Journal on Matrix Analysis
and Applications, 21(2):522-536, 2000.

[32] D Zhang and Z Zhu. A fast approximate algorithm for large-scale latent se-
mantic indexing. Digital Information Management, 2008. ICDIM 2008. Third
International Conference on, 1(2):626-631, 2008.

55

