
Scratching with All Your Fingers: Exploring

Multi-Touch Programming in Scratch

by

Christopher Marten-Ellis Graves

S.B., Massachusetts Institute of Technology (2013)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

Massachusetts Institute of Technology 2014. All rights reserved.

Author ..... Signature ...............
Department of Electrical Engineering and Computer Science

May 28, 2014

Signature redactedC ertified by ............ ......I-- - - -- - -- - - -- - - -- - -

Prof. Mitchel Resnick
LEGO Papert Professor of Learning Research, MIT Media Lab

Thesis Supervisor

Signature redacted
A ccepted by ..... .........................

Prof. Albert R. Meyer
Chairman, Masters of Engineering Thesis Committee

MA GSSGHUSETTS INTMJTE
OF TECH*4OLOGY

JUL 15 2014

L BRARIES

I



2



Scratching with All Your Fingers: Exploring Multi-Touch

Programming in Scratch

by

Christopher Marten-Ellis Graves

Submitted to the Department of Electrical Engineering and Computer Science
on May 28, 2014, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Since the introduction of the iPhone in 2007, many millions of people have used a
multi-touch interface; but, due to the inaccessibility of most tablet software devel-
opment kits, very few of these people have ever developed their own multi-touch
interactions. This thesis discusses the challenges in developing a toolkit that allows
novices to easily make simple touch-interactive projects, while simultaneously em-
powering experienced users to create complex, personalized multi-touch interactions.
Three potential toolkit designs are presented and evaluated using the principle of
"low floors, wide walls, and high ceilings." The toolkits presented have been devel-
oped within the context of an upcoming tablet version of Scratch, which aims to allow
users of all ages and educational backgrounds (but school-aged children in particular)
to easily make and share their own stories, games, and animations on and for the
tablet.

Thesis Supervisor: Prof. Mitchel Resnick
Title: LEGO Papert Professor of Learning Research, MIT Media Lab

3



4



Acknowledgments

I would first like to thank my advisor, Mitchel Resnick, for giving me the wonderful

opportunity to be a part of the Lifelong Kindergarten Group. Thank you so much

for your guidance and support!

I would also like to thank the extended Lifelong Kindergarten Group community

for helping me throughout the year and for teaching me so much about so many things.

Everyone I have met and gotten to know has been so welcoming, encouraging, and

inspiring. Thank you all!

Special thanks to Champika Fernando for responding to my initial request to join

the group a year ago and for serving as an extra mentor to me since then. I really

appreciate all you have done for me. Thank you!

Next, I would like to thank Bob Irwin for reading through this entire thesis with

me and helping me organize my abstract ideas into carefully organized words. I have

learned a great deal through our meetings and I had fun, too. Thank you!

I would also like to give special thanks to my partner, Julianna, for putting up

with me for the past 31 years and for providing me with endless encouragement. I

love you!

Lastly, I would like to thank my family for providing me with perpetual support

since the day I was born: my father, Stephen, for encouraging my curiosity and

piquing my thirst for knowledge; my mother, Caroline, for inspiring me to never give

up on following my dreams and to always think for myself; my godmother, Delmy,

for showing me the values of working hard and being the best person I can be; and

my sister, Carmen, for serving as my role model and personal trailblazer. I love you

all very much!

5



6



Contents

1 Introduction

1.1 Introduction to Scratch . . . . . . . . . . . . . . . . . . . . .

1.1.1 Constructionist Learning and Scratch . . . . . . . . .

1.1.2 Introducing Tablet Scratch . . . . . . . . . . . . . . .

1.2 M otivation. . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.3 Thesis Overview. . . . . . . . . . . . . . . . . . . . . . . . .

2 Background

2.1 Multi-Touch Interfaces . . . . . . . . . . . . . . . . . . . . .

2.1.1 Floor Too High . . . . . . . . . . . . . . . . . . . . .

2.1.2 Ceiling Too Low . . . . . . . . . . . . . . . . . . . .

2.2 Scratch Programming Language . . . . . . . . . . . . . . . .

2.2.1 Block Syntax . . . . . . . . . . . . . . . . . . . . . .

2.2.2 Sprite Object Model . . . . . . . . . . . . . . . . . .

2.2.3 Multi-threading . . . . . . . . . . . . . . . . . . . . .

2.3 Goals for the Multi-Touch Interaction Set in Tablet Scratch

3 Case Projects

3.1 Low Floor Cases . . . . . . . .

3.1.1 Basic One-Player Pong

3.1.2 One-Finger Painting .

3.2 Middle Height Cases . . . . . .

3.2.1 Basic Two-Player Pong .

7

13

13

14

15

16

17

19

20

20

24

25

25

27

27

29

31

32

33

34

35

36

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .



3.2.2

3.3 High

3.3.1

Two-Finger Painting .

Ceiling Cases . . . . . . . . .

Advanced Two-Player Pong

3.3.2 Ten-Finger Painting

4 Closest Finger Design

4.1 Interaction Set Specification

4.1.1 Function Blocks . . .

4.1.2 Command Blocks . .

4.1.3 Trigger Block . . . .

4.2 Evaluation . . . . . . . . . .

4.2.1 Low Floor . . . . . .

4.2.2 Middle Height . . . .

4.2.3 High Ceiling . . . . .

4.3 Possible Extension.....

4.3.1 Specification . . . . .

4.3.2 Use Cases . . . . . .

4.3.3 Potential Issues . . .

5 Relative Indexing Design

5.1 Interaction Set Specification

5.2 Evaluation . . . . . . . . . .

5.2.1 Low Floor . . . . . .

5.2.2 Middle Height . . . .

5.2.3 High Ceiling . . . . .

6 Absolute Indexing Design

6.1 Interaction Set Specification

6.2 Evaluation . . . . . . . . . .

6.2.1 Low Floor . . . . . .

6.2.2 Middle Height . . . .

. . . . . . . . . . . . 37

. . . . . . . . . . . . 38

. . . . . . . . . . . . 39

40

41

. . . . . . . . . . . . . 4 1

. . . . . . . . . . . . . 4 2

. . . . . . . . . . . . . 43

. . . . . . . . . . . . . 44

. . . . . . . . . . . . . 4 5

. . . . . . . . . . . . . 45

. . . . . . . . . . . . . 4 7

. . . . . . . . . . . . . 48

. . . . . . . . . . . . . 50

. . . . . . . . . . . . . 50

. . . . . . . . . . . . . 5 1

. . . . . . . . . . . . . 52

55

56

58

58

59

62

65

66

68

69

70



6.2.3 High Ceiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Conclusion 75

7.1 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2 Future W ork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9



10



List of Figures

1-1 Screenshots from a Small Sampling of Scratch Projects . . . . . . . . 14

2-1 Android Event Handling Code Sample . . . . . . . . . . . . . . . . . 21

2-2 Samples of Scratch's Five Block Types . . . . . . . . . . . . . . . . . 25

3-1 One-Player Pong Screenshot . . . . . . . . . . . . . . . . . . . . . . . 33

3-2 One-Finger Painting Screenshot . . . . . . . . . . . . . . . . . . . . . 34

3-3 Two-Player Pong Screenshot . . . . . . . . . . . . . . . . . . . . . . . 36

3-4 Two-Finger Painting Screenshot . . . . . . . . . . . . . . . . . . . . . 38

3-5 Ten-Finger Painting Screenshot . . . . . . . . . . . . . . . . . . . . . 40

4-1 The Closest Finger Design Interaction Set . . . . . . . . . . . . . . . 42

4-2 The "when this sprite is tapped" Block Expanded . . . . . . . . . . . 45

4-3 Sample Closest Finger Design Scripts for Low Floor Case Projects . . 46

4-4 Sample Closest Finger Design Script for Basic Two-Player Pong . . . 47

4-5 Sample Bumper Detector and Script for Alternate Advanced Two-

Player Pong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4-6 Sample Script for Advanced Two-Player Pong Using the Closest Finger

Design Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4-7 Sample Script for Multi-Finger Painting Using the Closest Finger De-

sign Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5-1 The "number of fingers" Block . . . . . . . . . . . . . . . . . . . . . . 56

5-2 Remaining Eight Blocks in the Relative Indexing Design Interaction Set 57

5-3 Sample Relative Indexing Design Scripts for Low Floor Case Projects 59

11



5-4 Sample Relative Indexing Design Script for Basic Two-Player Pong . 60

5-5 Sample Naive Script for Two-Finger Painting Using the Relative In-

dexing D esign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5-6 Sample "Wary" Script for Two-Finger Painting Using the Relative In-

dexing D esign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5-7 Sample Relative Indexing Design Script for Advanced Two-Player Pong 63

6-1 The Absolute Indexing Design Interaction Set . . . . . . . . . . . . . 67

6-2 Sample Absolute Indexing Design Scripts for Low Floor Case Projects 69

6-3 Sample Absolute Indexing Design Script for Basic Two-Player Pong . 70

6-4 Sample Absolute Indexing Design Script for Two-Finger Painting . . 71

6-5 Sample Absolute Indexing Design Script for Advanced Two-Player Pong 72

6-6 Sample Absolute Indexing Design Script for Multi-Finger Painting . . 73

12



Chapter 1

Introduction

1.1 Introduction to Scratch

Designed and developed by the Lifelong Kindergarten Group at the MIT Media Lab,

Scratch is a graphical, drag-and-drop programming language and environment that

allows users of all ages and educational backgrounds (but school-aged children in

particular) to easily make and share their own stories, games, and animations [1, 2].

Scratch was first formally proposed in 2003 as a tool to help young children gain

technological fluency, allowing them to use code to express themselves and manifest

their imaginations [3]. Since being released to the public in 2007, over 3 million

registered users have collectively created and shared well over 5 million projects [4]

ranging from simple animated cards for Mother's Day to complex, interactive physical

simulations (see Figure 1-1 for a small sampling of projects). Activity in Scratch grew

dramatically in the year following the public release of Scratch 2.0 in May 2013, which

allowed Scratch users to develop their projects directly in the browser rather than

having to download a separate Scratch development application.

Scratch users, or Scratchers as they are called within the community, make their

programs by organizing and connecting various blocks, each representing a command,

a value, or a piece of logic. After making their projects, Scratchers can easily share

their creations on the Scratch website for other Scratchers to play with, comment on,

13



Figure 1-1: Here are screenshots from a small sampling of Scratch projects.

and remix. There are also forums where Scratchers can share ideas, help one other,

and even just hang out.

1.1.1 Constructionist Learning and Scratch

The design and motivation behind Scratch are deeply influenced by Seymour Pa-

pert's contributions to the theory of constructionist learning [5]. There are two main

ideas behind the theory of constructionist learning, or "constructionism," as it is

also known. The first idea is that it is best to think of learning as the process of

the learner constructing ideas for themselves rather than simply as the transfer of

knowledge from teacher to learner. The second idea is that learning is most effective

when it centers around activities where the learners are creating products that are

personally meaningful to them.

During the advent of personal computing, Papert saw the computer as a tool

that could be used to easily allow children to create, explore, and learn through

constructionism. In the late 1960's, Papert used the ideas of constructionism to

create the educational programming language Logo, which he intended as a virtual

Mathland in which children could concretely play with mathematical sentences and

see the results. One of the most important ideas introduced by Logo was the metaphor

of keeping low floors and high ceilings. Logo can be described as having a low floor

in the sense that is easy for new Logo users to step into it, start exploring, and

14



make simple projects. Similarly, Logo can be described as having a high ceiling

because more experienced users can continue to use Logo to make more complex and

sophisticated projects, that is to say "the sky is the limit."

Inspired by Logo, Scratch was also designed with the concept of keeping low

floors and high ceilings. But compared to Logo, Scratch puts less emphasis on high

ceilings in favor of placing higher priority on wide walls [6]. While Logo users were

almost entirely limited to making drawings and patterns, Scratchers can make all

kinds of projects ranging from games to physical simulations to interactive stories.

Also, Scratchers can upload their own graphics and music to even further personalize

their projects. Children with a wide range of backgrounds and interests use Scratch

to work on projects that are aligned with their individual passions.

1.1.2 Introducing Tablet Scratch

Since 2010, there has been a massive proliferation of tablet computers. Tablets are

currently being used for purposes ranging from ordering sandwiches to guiding mu-

seum goers to everything in between. Recently there have been a number of large-scale

initiatives to use tablets for the purpose of educating children. While these initiatives

are admirable, for the most part they are centered on using tablets to provide students

with access to books, videos, and simple exercises. More simply put, these initiatives

generally focus on using these tablets for delivering information and entertainment,

rather than empowering children to create. This focus reflects the fact that most

people today mainly use tablets for consuming news, videos, and emails.

However, the makers of Scratch believe that children (and people in general) learn

most effectively through an iterative process of designing, creating, experimenting,

and exploring. As a result of this belief, in combination with these aforementioned

initiatives, the Scratch team decided to provide children with a tablet application

that they can use to create personalized stories, games, and animations directly on

the tablet. To do so, the Scratch team decided to create Tablet Scratch, a tablet-

specific version of Scratch to come out in late 2014. With Tablet Scratch, the Scratch

15



team hopes to bring the same experience of the desktop version of Scratch to the

tablet, preserving the low floors, wide walls, and high ceilings.

1.2 Motivation

One of the main complications of bringing the Desktop Scratch experience to the

tablet is that people do not interact with their tablets in the same way that they in-

teract with their desktop computers. The most salient difference in these interactions

is that people use a mouse and keyboard to manipulate desktop programs, while they

use touch controls to interact with tablet applications.

As a result of lacking a mouse and keyboard, Tablet Scratch users will use multi-

touch controls not only to create their projects, but as a main means of interaction

with their projects as well. However, while the current Desktop Scratch block library

has many blocks to help add mouse and keyboard interactivity, it lacks any blocks to

allow multi-touch. Consequently, a multi-touch interaction set must be designed for

Tablet Scratch in order to allow Tablet Scratchers to create multi-touch interactive

projects.

While it is tempting to think that the mouse blocks in Scratch can be directly

translated into multi-touch blocks in Tablet Scratch, there are two main differences

that make multi-touch interactions necessarily more complex than mouse inputs. The

first difference is that on desktop computers people interact with only one mouse,

while people with tablets often interact with multiple fingers. The second is that

the mouse cursor on a desktop is always present (meaning the mouse's state can be

persistently tracked), while touches are only present on a tablet when the fingers are

pressed down (meaning that individual touch states are ephemeral).

The currently standard systems of coding multi-touch interactivity are far too

unintuitive and complex for the purposes of Scratch. Although there have been several

attempts to simplify implementing multi-touch interactivity, none so far have been

successful in simultaneously keeping the floor low enough and ceiling high enough for

Scratch's standards. Therefore, it is necessary, and also the premise of this thesis, to

16



design and evaluate a variety of archetypal approaches to creating the multi-touch

interaction set for the forthcoming tablet version of Scratch.

1.3 Thesis Overview

In this thesis, I will describe several potential designs for Tablet Scratch's multi-touch

interaction set and analyze their respective merits and faults. In Chapter 2, I will

analyze previous work in the field of programming multi-touch interactions, provide

background on the Scratch programming language, and specify the goals for Tablet

Scratch's multi-touch interaction set. In Chapter 3, I will describe an assortment of

case projects with which I will evaluate the interaction set designs. Next, in Chapters

4, 5, and 6, I will describe three multi-touch interaction set designs and analyze them

based on Scratch's design principles. Finally, in Chapter 7, I will present conclusions

and outline future work possibilities.

17



18



Chapter 2

Background

The history of multi-touch tablets stretches back to the mid-1980's when the Input

Research Group at the University of Toronto began developing the first multi-touch

tablets [7, 8]. Since then, due in no small part to the popularity of iOS and Android

devices, multi-touch tablets have become ubiquitous in modern life and are being

used in all kinds of environments from grocery stores to classrooms.

Multi-touch tablets give users the ability to have as many pointers as they have

fingers, which in turn enables users to interact with applications using natural, in-

tuitive gestures. However, this ability adds a layer of complexity for multi-touch

interface developers who must develop applications that constantly process and in-

terpret simultaneous, asynchronous touch events. Due to the inherent intricacies

of developing multi-touch applications, there have been several attempts to provide

API's that make app development as easy as possible while still giving developers the

power to make whatever interactions they can imagine.

In this chapter I will first discuss and categorize related work in the field of multi-

touch interface development. Second, I will provide background on the Scratch pro-

gramming language. Finally, I will present the goals we have specifically for Tablet

Scratch's multi-touch interaction set.

19



2.1 Multi-Touch Interfaces

There are several tablet programming environments currently available that allow

developers to create projects with multi-touch interactivity. However, they all fall

into two general categories which directly conflict with our goals. The first category

consists of tablet programming environments which are not sufficiently accessible to

novices, i.e., have a floor that is too high. The second category consists of tablet

programming environments which do not provide enough functionality to allow expe-

rienced programmers to pursue more complicated ambitions, i.e., have a ceiling that

is too low.

2.1.1 Floor Too High

The vast majority of widely used multi-touch interfaces are developed in tablet pro-

gramming environments which allow for great functionality, but are insufficiently ac-

cessible to beginners for our purposes. These "professional" frameworks are the most

extreme examples of "high floor" tablet programming environments and include iOS

Developer Library [9], Android SDK [10], ActionScript 3.0 [11], and JavaScript/HTML5

[12]. Note that for all of these frameworks, developers are generally writing their code

on their desktop computers despite their interactions being designed for tablets.

All of these "professional" frameworks involve textual programming languages

(TPLs), as opposed to graphical programming languages (GPLs). Although TPLs

allow experienced programmers to efficiently create whatever they can imagine, TPLs

are generally unwelcoming to novices. Since developers must remember what tools

are available or look them up in large highly technical specification documents, TPLs

make it difficult for beginners to explore. Furthermore, TPLs force beginners to suffer

through waves of demoralizing, frustrating syntax errors before being able to develop

even the simplest of programs.

Thus, it may come as little surprise that these professional frameworks handle

multi-touch inputs in a manner that allows developers to create as complex user

interfaces as they can imagine, but can also be esoteric and difficult for novices.

20



get EventsView() setOnTouchListener (new OnTouchListener() {

@Override
public boolean onTouch(View v, MotionEvent event) {

getEventsView().onTouch(v, event);
get JumpButton () setEnabled (

getEventsView().getSelectedEvent() = null);
return true;

}

});

Figure 2-1: Here is an Android event handling code sample.

Professional frameworks all handle multi-touch inputs in a way that mirrors how

they handle mouse inputs, that is, using a programming approach known commonly

as the observer pattern [13]. In these frameworks, every discrete touch action triggers

an event. An event is a datatype that carries with it some information, generally

including an x-coordinate, a y-coordinate, a touch identification index, and an action

type, along with several more complicated attributes. The three most basic action

types are "touch down" (for when a finger first makes contact with the screen), "touch

move" (for each time a finger already touching the screen moves to a new discrete

location), and "touch up" (for when a finger ends contact with the screen).

As touch events are generated by user interactions, they are sent to developer-

defined event handlers to be processed. Developers define an event handler by pro-

viding a callback function which takes in a touch event as an argument and processes

it according to the information the events provide (see Figure 2-1). While these

frameworks provide developers with the ability to process touch inputs in any man-

ner that they want, they are not very accessible to novices, even ignoring the fact

that they are TPLs. To make use of the observer pattern, developers must first

understand the concept of parameters and functions, and then slog through the of-

tentimes dense framework-specific documentation to understand what information

touch events have, when events are triggered, and how events are triggered. To their

credit, most of these professional frameworks also have predefined event handlers for

common touch gestures, e.g., tap and swipe, for developers to use and customize,

making certain interactions easier to develop.

21



As a response to the complexity and inaccessibility of the professional frameworks,

several tablet programming environments have emerged which amiably attempt to

make application development more accessible for beginner programmers without

limiting what they can create as they gain expertise.

One of the most successful of these tablet programming environments is Codea

[14]. Codea uses an augmentation of the scripting language Lua, so it is still a TPL

and suffers from the same accessibility hindrances. Unlike professional frameworks,

Codea comes with a programming environment that allows developers to code di-

rectly on their tablets. Compared to the professional frameworks, Codea significantly

facilitates the process of developing multi-touch interactive applications. Although

Codea keeps a general observer pattern structure for handling touches, it is greatly

simplified. Touch events in Codea are relatively straightforward datatypes. Codea

predefines a touch event handler, so all the developer has to do is designate their

desired callback function as "touched" and it will automatically be called for every

touch event. Furthermore, Codea adds a global touch event named "CurrentTouch,"

that provides touch values for an arbitrarily defined primary touch. The values stored

in CurrentTouch can easily be accessed anywhere in the code, making it easy to ac-

cess needed values when necessary without having to deal with event handlers. While

Codea definitely makes it easier for developers to make multi-touch interactive appli-

cations, it still requires that they learn the Lua syntax and the general linear flow of

Codea applications.

Like the professional frameworks Codea tries to simplify, Codea unfortunately still

suffers from a computational flow that is neither explicit nor natural. The confusion

surrounding the observer pattern begins with the event handlers and the callbacks.

To a novice, it is not clear what calls the callback and exactly when the callback

is called. It's natural, but technically incorrect, to think that the callback is called

by the device immediately after the triggering event happens. Since no line in the

developer's written code calls the callback, it is also natural, but incorrect, to think

that the callback function runs as a separate entity from the rest of code, i.e., it

is non-blocking. Thus (to many novice developers' surprise), if one runs an infinite

22



loop in one of the callbacks, no other code in the applications will ever run after

that callback is triggered. The reason for this confusion is that callback functions

give the illusion of starting a new separate thread that can run simultaneously with

the rest of the code, while the truth is that these callbacks are blocking functions.

The problem with this illusion is not merely that it is an illusion, but that it leads

novices into constructing a mental model that conflicts directly with the reality of

the programming environment.

Another notable attempt to make tablet application development easier is MIT's

AppInventor [15], which allows developers to make interactive Android applications

using a simplified drag-and-drop, graphical programming language (GPL) rather than

the professional Java based Android SDK. By being a GPL, AppInventor spares users

many of the pains of TPLs, including preventing most syntax errors. However, the

friendly, welcoming appearance of this environment can give beginners a false sense of

security when implementing multi-touch interactivity. AppInventor still utilizes the

almost entirely single-threaded observer pattern, despite furthering the illusion that

callback functions are non-blocking, luring novices to fall into the same previously

mentioned pitfalls.

Observer pattern frameworks are inherently unintuitive and cause many headaches

even for professional software engineers, let alone novices. To quote an Adobe Soft-

ware Technology Lab presentation [16]:

* 1/3 of the code in Adobe's desktop applications is devoted to event handling

logic;

* 1/2 of the bugs reported during a product cycle exist in this code.

As a result, there is a small campaign among certain professional programmers

to try to move away from the observer pattern in favor of what is known as reac-

tive programming [17, 18]. One notable example of such a framework that handles

touch inputs is the relatively new textual, functional reactive programming language

Elm [19]. In Elm, mouse events and touch events are replaced by signals such as

"Mouse.position" and "Touch.touches," which always have a value which other parts

23



of the code can persistently depend on. In theory, functional programming languages

such as Elm are more intuitive due to their consistency and completeness. However,

in practice, many people (professional programmers included) find it extraordinarily

difficult to code without discrete states or mutable data.

2.1.2 Ceiling Too Low

At the other end of the spectrum are tablet programming environments that allow

even the most inexperienced programmers to add at least some multi-touch interac-

tivity to their projects. However, the utilities of these environments are so simplistic

and weak that they prevent experienced programmers from going beyond the most

basic of applications. Many of these programming environments are aimed towards

children younger than our targeted demographic and, as a result, try to simplify

application development as much as possible.

Two current examples of such tablet programming environments include Hop-

scotch [20] and ScratchJr [21]. Both environments are drag-and-drop graphical pro-

gramming languages that are highly inspired by Scratch, with the latter being devel-

oped in part by some of the core creators of Scratch. Furthermore, both environments

allow users to develop directly on their tablets. For simplicity, multi-touch interactiv-

ity in these environments is limited to allowing objects to recognize when they or the

background are tapped and running developer-designated code as a response. In a

sense, multi-touch interactivity in these environments is implemented in a simplified

event listener/handler framework. However, these frameworks are distinguished from

the floor-too-high frameworks, because their callback functions are run as separate

threads, i.e., are non-blocking. Thus, callbacks with infinite loops are not a problem

and run simultaneously with the rest of the code.

While these environments make it extraordinarily easy for novices to develop sim-

ple touch interactions, such as buttons, they make it essentially impossible to do

anything that is much more complicated, like a touch-controlled Pong game or a

drawing application. In the interest of simplicity and accessibility, these environ-

ments deny developers direct access to the exact locations of touches and preclude

24



Figure 2-2: From left-to-right are samples of command, function, control structure,
trigger, and definition blocks.

developers from writing scripts that can discover when touches begin and end. These

limitations are fine for young children first exploring the world of digital creation,

but can be constraining for older, more experienced, and more ambitious developers.

Oversimplified frameworks constrain developers not only in terms of complexity (i.e.,

they lower the ceiling), but also in terms of project diversity (i.e., they narrow the

walls). If the only touch gesture that is recognized in the framework is a tap, then

all touch interactions are going to be taps.

2.2 Scratch Programming Language

In order to achieve low floors, wide walls, and high ceilings, the Scratch programming

language was carefully designed to minimize complexity while preserving versatility

and power. Three of the most important aspects of the Scratch programming lan-

guage's design are its minimalist block syntax, its simple sprite object model, and its

intuitive approach to multi-threading [22].

2.2.1 Block Syntax

Scratch's simplicity begins with its elegant minimalistic block syntax. All Scratch

scripts are created solely by connecting blocks like puzzle pieces. Each block belongs

to one of only five different block types (command, function, control structure, trigger,

and definition) and is appropriately shaped to suggest how it can be used (as can be

seen in Figure 2-2) [22].

To begin, command blocks can be thought of simply as action instructions that

can vary from "move (10) steps" to "set video transparency to (50)%." They generally

have a notch on top and a corresponding bump on the bottom so they can be stacked

25



on top of each other to form a set of instructions, appropriately called a stack. Once

a particular stack is initiated, the command blocks in the stack are actuated in order

from top to bottom (as users would naturally assume).

Meanwhile, we can think of function blocks as being values. These values can be

straightforward like "mouse down?" or more complex, like the the sum of two other

function blocks. Unlike other blocks, function blocks have no notches or bumps and

thus cannot be stacked on top of each other. Function blocks are either rounded or

hexagonal to signify their type. Rounded function blocks can be either strings or

numbers, depending on context, while hexagonal blocks are Booleans.

Many blocks, of all types, have customizable inputs or parameter slots. Parameter

slots come in different shapes specifying the types they accept. For example, rounded

parameter slots with white backgrounds can be filled in either by the user typing

in the values or by inserting a rounded function block. On the other hand, colored

hexagonal parameter slots can only take in hexagonal function blocks. Since many

function blocks can take in parameters that they themselves can fill, it is possible to

recursively nest them as many times as desired. These shape specifications make it

clear to the user how the blocks can be arranged and prevent users from connecting

blocks in a way that is meaningless.

Next, a control structure block can be thought of as a command block that takes

in stacks of other command blocks and executes them according to some logic. For ex-

ample, there are "if (boolean function block) then" command blocks that when called

only execute the nested command stack if the given (boolean function block) is true.

Control structure blocks are "C" and "E" shaped with appropriate notches and bumps

that make it clear how to nest stacks within them.

Trigger blocks can be thought of as links between events and the stacks of com-

mand blocks that are to be executed when the events happen. The shape of these

blocks can be described as block hats since they only have a bump on the bottom

and no notch on top. This shape lets users know that stacks can be connected under

the trigger blocks, and that the stacks will be executed once their connected trigger

block's associated event occurs.

26



Lastly, definition blocks can be thought of as a special kind of trigger block whose

triggering event is a user-defined command block. Since these user-defined command

blocks can have parameter slots, definition blocks come with input function blocks

which can only be used within the definition block's stack. These input function

blocks take whatever value was passed into the user-defined command block that

triggered the execution.

2.2.2 Sprite Object Model

In Scratch, each sprite maintains its own set of variables and its own set of scripts.

Although one sprite is able to access the variable values of another sprite, no sprite can

directly alter another sprite's variables. Similarly, although any sprite can broadcast

messages for other sprites to act upon, no sprite can directly execute another sprite's

scripts. This level of encapsulation makes any particular sprite's behavior significantly

easier to understand, since all of the necessary information is contained within its

scripts [221.

While the inability of sprites to "share code" with one another can lead to other-

wise unnecessary code copying, it does not preclude any functionality. As a result, the

sprite object model successfully lowers the floor without strictly lowering the ceiling

(even though it might make certain complex tasks a little more difficult).

2.2.3 Multi-threading

Multi-threading, i.e., concurrent command processing, is often a more natural way for

people to think about real-world behaviors than one at a time command processing.

For example, consider when someone wants to tell a person how to walk down the

street while chewing gum at the same time. Most people would first tell that person

how to walk and how to chew gum individually and then tell the person to do both

at the same time, which is to process two commands simultaneously. On the other

hand, if people could only process one command at a time, it would be necessary to

27



tell the person to merge the two activities together in a much more complicated way,

like "take right step, bite down, take left step, open mouth."

Despite all this, multi-threading in most programming languages is generally con-

sidered an advanced, perplexing feature, reserved for only the most experienced pro-

grammers. However, multi-threading is an essential aspect of Scratch and even the

newest of programmers quickly pick it up [22]. In Scratch, each executed stack in a

Scratch's scripts will automatically run concurrently. As a result, a Scratcher could

code the behavior in the previously mentioned example by creating two stacks, one

handling walking and another handling chewing gum and then have them both exe-

cute on the same event.

While race conditions have been the bane of many programmers who code multiple-

threaded applications, they are generally automatically avoided in Scratch. In Scratch,

thread switches only take place at wait commands and at the end of loops [22], rather

than between any two commands (as is the case for most other programming lan-

guages). As a result, all individual command stacks are executed in their entirety,

thus following most Scratchers' intuitions. Scratch is still prone to certain race con-

ditions, particularly as Scratchers make more and more complex projects where the

timing of code execution becomes crucial. Luckily, Scratch is set up in a way where

advanced Scratchers can easily create their own synchronization locks in order to gain

near-complete control of thread switching.

Scratch's handling of concurrency is truly emblematic of the low floors, high ceiling

philosophy. Scratchers who are new to programming generally do not know enough

to even worry about race conditions; hence Scratch's handling of concurrency au-

tomatically prevents race condition from troubling them in nearly all simple cases.

However, as novice Scratchers become more and more experienced and ambitious,

they are more likely to run into race conditions. Fortunately, by the time they run

into race conditions they will be experienced enough to figure out how to address

them.



2.3 Goals for the Multi-Touch Interaction Set in

Tablet Scratch

As the reader might imagine, our main goal for multi-touch interactivity is to simul-

taneously have as low floors, as wide walls, and as high ceilings as possible. Unfor-

tunately, low floors and high ceilings are often achieved at the expense of one other,

making it necessary to further specify priorities.

Following the values behind the design of the original Scratch, we are placing a

higher priority on having low floors than on having high ceilings. Any design that

does not allow beginners to painlessly create the simplest touch interactions will be

considered an abject failure, no matter how high the ceiling is. That being said,

any design will be considered undesirable if it simplifies multi-touch interactivity to

the point that many complex interactions are more than just difficult, but actually

impossible to implement. On a similar note, an important aspect of the Scratch

philosophy is not only to embrace the diversity of projects, but to actively encourage

it. Thus, the blocks we develop for multi-touch interaction must lend themselves to

being used in a wide variety of ways.

In addition to following the high-level ideals of Scratch, it is important that multi-

touch interactivity be designed with some, if not all, of the lower-level principles

as well. Perhaps the most important of these principles is that there are no error

messages. A Scratcher's code might not always run exactly the way they want it to,

but it will always run. Furthermore, the disparity between how the code runs and

the Scratcher's desired outcome helps teach the Scratcher what must be changed.

Hence, the multi-touch interaction set must be designed in a way that makes it

impossible to have a syntax error. Another key Scratch principle is to make the

interaction set as minimal as possible. In order to preserve explorability and limit

confusion amongst beginners, the multi-touch interaction set must be designed to

limit redundancy wherever possible. Finally, Scratch's design philosophy prioritizes

simplicity over 100% correctness. If an interaction set is simple and intuitive, but only

29



works in 95% of use cases, it is still preferable to an overly complicated interaction

set that works in all use cases.

As mentioned earlier, many of the principles that are being considered for the de-

sign of the multi-touch interaction set are directly at odds with one another, meaning

that even the best designs will exhibit certain trade-offs. Despite these necessary con-

cessions, there are multiple strong, potential designs for the multi-touch interaction

set, all highlighting different principles over others.

30



Chapter 3

Case Projects

It would be impossible to properly analyze the merits and faults of a variety of multi-

touch interaction set designs without first considering a few of the most typical,

potential use cases. In this chapter, I will present six project ideas that are repre-

sentative of the kinds of projects that Tablet Scratchers of varying experience levels

are likely to want to create. These six project ideas can be best thought of as three

iterations of two basic projects: a Pong-style project and a finger-painting project.

The three iterations are increasing in complexity and represent desirable projects for

Scratchers at three different experience levels. I categorize the three iterations as low

floor cases, middle height cases, and high ceiling cases. The low floor cases represent

simple, basic projects that even novice Scratchers should be able to intuitively cre-

ate with little or no prior experience. Meanwhile, the middle height cases represent

slightly more complicated additions that ought to be implementable by a Scratcher

with significant experience. Finally, the high ceiling cases represent augmentations

that an expert Scratcher might aspire to make. Together, these projects will serve as

benchmarks for which I evaluate the multi-touch interaction set designs that I will

present and analyze in the following three chapters.

Introduction to Pong

Designed by Allan Alcorn in 1972, Pong is widely considered to be the first cul-

turally significant video game. Although rather simple in its original incarnation,

31



many more complex variations have since been created. In fact, Pong-style games are

quite popular within the Desktop Scratch community, as evidenced by the thousands

of variants that Scratchers have created and shared. Pong is a particularly fitting

project to demonstrate the floors and ceilings of the multi-touch interaction set de-

signs, since Pong projects can begin with very simple touch interactions that later

become complex through the addition of more users and new actions.

Introduction to Finger Painting

Since the early 1900s, children all over the world have been expressing themselves

through the art of finger painting. For many, painting with one's fingers is a calming,

liberating experience. Due to their capacity for touch interactivity, tablet computers

naturally lend themselves to being a means for finger painting, albeit cleaner and

less textured. Like Pong, finger painting is another project that will help with pre-

senting the floors and ceilings of the multi-touch interaction set designs. Although

implementing painting for just one finger at a time is rather simple, the complexity

increases dramatically as support for more fingers is added.

3.1 Low Floor Cases

It is worth restating that it is of paramount importance that the multi-touch inter-

action set be designed with a low floor in mind. Novice Tablet Scratchers must be

able to easily figure out how to use the multi-touch interaction set to create simple

projects that are responsive to touch. If beginners are able to create simple touch

interactions without much difficulty, their early success will encourage them to aug-

ment their touch interactions and continue tinkering with their projects. Otherwise,

if the process of creating simple touch-interactive projects is painful, many beginners

will become frustrated and will forgo improving their projects. Here I specify two ex-

amples of basic projects that new Scratchers should be able to create without much

assistance or hardship.

32



r.1 One-Player Pong

,, S y chrismegraves (unshared)

x: 240 y: 1ff

Figure 3-1: Here is a screenshot from a one-player Pong game.

3.1.1 Basic One-Player Pong

The simplest form of Pong consists of a single paddle and a ball, which moves around

the stage (i.e., the background of a Scratch project) at a constant speed, rebounding

whenever it hits either the paddle or a wall (Figure 3-1). The paddle has a fixed

y-coordinate (and thus cannot be moved up or down), but can be moved left and

right. To begin any Pong project, one must first implement this basic functionality.

This single-player form of Pong has for a long time been one of the example starter

projects in Desktop Scratch. In the starter project, the x-coordinate of the paddle

is simply mapped to that of the mouse cursor. Therefore, users control the paddle

by moving the mouse left and right. Note that in this case, the mouse controls the

movement of the paddle regardless of whether or not the mouse cursor is hovering over

the paddle. Unfortunately, we cannot use this control scheme for a Tablet Scratch

project, since tablets do not have mice.

For this case project, I will specify an analogous touch control scheme for tablets.

In the Tablet Scratch equivalent of this starter project, the paddle's x-coordinate will

begin at an arbitrary default state. When a user touches the project, the paddle's

x-coordinate will follow the x-coordinate of the user's touch. After the touch is lifted,

33



r One-Finger Painting
v by chrismegraves (unshared)

X: 240 Y: -1,50

Figure 3-2: Here is a sample painting made using a one-finger painting project.

the paddle's x-coordinate can either remain where it is or return to the arbitrary

default state.

The purpose of this case project is to test how easily novice Scratchers can create

a single-finger touch interaction that relies on extracting coordinate information from

a touch (in this case the x-coordinate) using the various multi-touch interaction sets.

As a result, it will be assumed for this project that the user never presses two or

more fingers on the tablet at the same time and I will leave it unspecified how the

implementations of this project should handle such simultaneous touches.

3.1.2 One-Finger Painting

In the same way that one-player Pong is the simplest form of interactive Pong, a

one-finger painting project is the most basic form of a finger-painting application. At

its simplest, a one-finger painting application starts with a blank stage and paints an

arbitrary color wherever the user touches the screen with one finger at a time (Figure

3-2). Again, it will be assumed for this project that the user will not touch the screen

with more than one finger at a time, so I will leave it unspecified how implementations

should handle cases when the assumption is broken.

34



In Desktop Scratch, an analogue of this project can be created easily by using

a pen. As an homage to its predecessor, Logo, each sprite in Scratch carries a pen,

which, when placed down, traces the movement of the sprite onto the stage. Con-

sequently, a Scratcher would begin a "mouse painting" project in Desktop Scratch

by first creating a paintbrush sprite that follows the mouse cursor wherever it goes.

Next, the Scratcher would program the paintbrush sprite's pen to start in the up

position, but go down only when the mouse clicks down (meaning the pen only traces

the movement of the mouse when the mouse is clicked down).

For the Tablet Scratch version of the project, the Scratcher would want the paint-

brush sprite to initially have its pen up. Whenever a finger is pressed down, the sprite

must be programmed to first move to the touch location, then put its pen down, and

finally follow the touch until it is lifted. At the moment the touch is lifted, the sprite

must be programmed to lift up its pen. Accordingly, the purpose of this case project

is to demonstrate how easily a novice Scratcher can code a sprite to follow a touch

and react to when the touch begins and ends.

At its core, this project is a simple exercise of recognizing and handling when a

single finger is pressed down, when it moves, and when it is lifted. This capability

is the building block to coding virtually all single-finger touch interactions. Thus,

an interaction set that allows novice Tablet Scratchers to easily figure out how to

implement this case project would be quite powerful.

3.2 Middle Height Cases

As Tablet Scratchers gain experience, they will naturally want to augment their sim-

pler projects to develop progressively more complex ones. In addition to being intrin-

sically rewarding, the process of building upon earlier projects is a fundamental part

of constructionist learning. Therefore, the ideal multi-touch interaction set must be

designed so that as Tablet Scratchers master the basics of simple touch interactions,

they can continue playing and figure out how to make more complex ones. If, on the

other hand, the multi-touch interaction set is designed such that touch interactions

35



r=1 |Two-Player Pong
L by chrismegraves (unshared)

x: 240 y: 1ei

Figure 3-3: Here is a screenshot from a two-player Pong game.

more complex than the low floor cases are terribly difficult to achieve, then Tablet

Scratchers would be stuck developing simple touch interactions and thus robbed of

a learning opportunity. Here I present two natural augmentations an experienced

Tablet Scratcher might want (and should be able) to add to the two previously de-

scribed low floor cases.

3.2.1 Basic Two-Player Pong

After a Tablet Scratcher successfully creates a simple one-player Pong project, the

logical next step is to add a second player. For this case project, we again have a ball

which moves around the stage with a constant speed, rebounding when it either hits

a wall or a paddle. However, instead of one paddle with a fixed y-coordinate that

moves only left and right, there are now, on either side of the stage, two paddles with

fixed x-coordinates that move only up and down (Figure 3-3). Note that unlike in

the one-player Pong project, this interaction cannot be developed in Desktop Scratch

due to being limited to a single mouse.

Clearly the controls from the one-player Pong project will not work in this case,

because there could only be one touch at a time and that touch would control both

36



paddles. For this case, I will assume that the paddles only follow the y-coordinate of

a touch if the location of the touch is within a defined control range of the paddle

and that the control range is small enough that no touch can simultaneously control

both paddles. To make things simpler, it will be assumed that there are never more

than two simultaneous touches and there is at most one touch at a time within either

paddle's control range.

The purpose of this case project is to compare the relative ease of using the

various multi-touch interaction set designs to develop projects that require multiple

sprites to respond to the touches that are closest to them. Without this functionality,

many (even simple) multi-finger interactions will be impossible to develop. Although

the capability for sprites to respond to all touches on the screen is obviously more

powerful, an extensive range of the most common multi-touch interactions can be

developed when the sprites' ability to respond to touches is limited to the ones that

are closest to them.

3.2.2 Two-Finger Painting

Similar to how two-player Pong is the natural next step after one-player Pong, two-

finger painting is the natural next step after one-finger painting. In two-finger paint-

ing, the user is able to draw on the stage with two fingers simultaneously instead of

being limited to just one finger at a time (Figure 3-4). Again for simplicity, it will

be assumed that the user never has more than two fingers simultaneously pressed on

the tablet. Also note that, again, this kind of interaction cannot be developed for a

single mouse in Desktop Scratch.

This appended functionality adds a significant amount of complexity to the project.

Now instead of having just one paintbrush sprite, there necessarily must be two paint-

brush sprites to follow the up to two fingers pressed on the tablet. Moreover, when

two fingers are being pressed at the same time, these two paintbrush sprites must be

able to distribute themselves amongst the fingers, so that both fingers have a following

paintbrush sprite.

37



Two-Finger Painting
by chrismegraves (unshared)

x: -2 y: -180

Figure 3-4: Here is a sample painting made using a two-finger painting project.

In contrast to the two-player Pong game, it is not enough in this project for

the paintbrush sprites to simply follow the closest touch. If the paintbrush sprites

were to do so, they would be prone to end up following the same finger, leaving the

other finger without a paintbrush. There are many potential projects where it is

necessary for sprites to distribute themselves among touches. Programming sprites

to always follow separate fingers is a challenge, so the purpose of this project is to

help distinguish which of the multi-touch interaction set designs make it easier.

3.3 High Ceiling Cases

While Scratch's mission prioritizes having a low floor and wide walls, its high ceiling

has been a major factor in its success. There are certain complex tasks, such as creat-

ing 3D graphics and online multiplayer capabilities, that are particularly difficult to

develop in Scratch, but are possible to implement. Every day a few expert Scratchers

implement and share projects that continue to push the bounds of what is possible to

create in Scratch. Not only do the expert Scratchers gain a valuable learning experi-

ence by coding these challenging projects, but by sharing them with the community

38



they inspire and educate Scratch beginners. By playing with the high ceiling projects

and looking at how they were executed, less experienced Scratchers are motivated to

continue challenging themselves and exploring what is possible. Thus, while complex

multi-touch interactions might not necessarily be easy to program in Tablet Scratch,

they should at least be possible to develop. Here I present two projects which feature

advanced augmentations to the middle height case projects.

3.3.1 Advanced Two-Player Pong

While a basic two-player Pong game can be fun to play for a while, it is quite simple

and eventually gets boring. The ball moves at a constant speed and players are

limited to just moving their paddle up and down. In an attempt to make the game

more interesting, an expert Scratcher might try adding a bump action. A bump

action causes the paddle to jut forward towards the opponent for a half-second before

returning to its previously fixed x-coordinate. If the paddle hits the ball when it is

in the process of a bump, the ball's speed increases by a constant factor. The bump

action adds a little more skill and excitement to the basic two-player Pong project,

but the question that remains is how will users instigate a bump action.

For this case project, a player will bump their paddle each time a second touch

is pressed within a paddle's control range while there is already a touch there. More

simply put, albeit slightly less rigorously, a bump happens whenever a user already

using one finger to move the paddle presses their second finger close to the paddle.

At the core of this interaction is the capacity for sprites to recognize and handle

not only the touch closest to them, but also all subsequent nearby touches. Although

this interaction feels natural for this particular project case, it is very specific and

unconventional. The ability to design and implement complex, multi-touch gestures

adds a powerful means of personalizing Tablet Scratch projects. Hence, the ideal

multi-touch interaction set design will make it possible to develop complex multi-

touch controls like the one exhibited in this project.

39



L|. Ten-Finger Painting
v4 by chrismegraves (unshared)

X: -213 V: 180

Figure 3-5: Here is a sample painting made using a ten-finger painting project.

3.3.2 Ten-Finger Painting

The next step for the finger-painting project after adding support for a second finger,

is to add support for even more fingers. Since many Android devices can recognize up

to ten simultaneous touches (not to mention that only a few people have more than

ten fingers), this case project will be a finger painting application that supports up

to ten simultaneous finger touches (Figure 3-5). Many expert Tablet Scratchers will

naturally try to make projects that allow users to deploy as many fingers as possible.

Thus, the purpose of this case project is to test how well the multi-touch interaction

sets make it possible to handle a large number of simultaneous touches.

Notice that the problems for this project are essentially the same as those regarding

the two-finger painting project, but scaled by a factor of five. While the similarities

might make this case project appear redundant, certain multi-touch interaction set

designs make it easy to handle one or two fingers but terribly difficult to handle even

a few more fingers. Meanwhile, other multi-touch interaction set designs make it a

little challenging to handle one or two fingers, but not any more challenging to handle

ten. I will discuss these trade-offs in the following three chapter as I introduce and

analyze a selection of multi-touch interaction set designs.

40



Chapter 4

Closest Finger Design

As mentioned previously, one reason why programming multi-touch interactions can

be so difficult is that there can be up to ten simultaneous touches on the tablet at any

given moment. Since one touch is a more manageable input than ten, multi-touch

input handling in Tablet Scratch can be greatly simplified by restricting each sprite

to only being able to listen to the touch closest to itself. This particular restriction is

the main premise behind the Closest Finger Design, the first of the three multi-touch

interaction set designs that I will be presenting.

In this chapter (as will be the pattern for the two subsequent chapters), I will

first specify the interaction set. Then, I will evaluate the design on the three iter-

ations of case projects that I described in the previous chapter. However, at the

end of this chapter, I will also present a possible extension that provides additional

functionality to the interaction set design, but at the cost of reducing simplicity and

understandability.

4.1 Interaction Set Specification

The Closest Finger Design can best be thought of as a direct analogue to the Desktop

Scratch mouse interaction set. In this design, sprites can only listen to one touch at

a time, namely the closest touch at the moment of evaluation. As a result of this

41



toocing ous - --------- tuching finger ?

I stMce Wo MGUSe-pointer Ldistance to finger

mom
point towards mouse-pointer point towards fogqer

go to mouse-pointer

Figure 4-1: Desktop Scratch's mouse interaction set with analogous Closest Finger
Design blocks.

one-touch restriction, the set of touch blocks in the Closest Finger Design closely

resemble the set of mouse blocks that appear in Desktop Scratch.

In fact, the Closest Finger Design has a corresponding touch block for every mouse-

related block in Desktop Scratch (Figure 4-1). While the mouse blocks in a Desktop

Scratch script are influenced by the status of the lone mouse, the Closest Finger

Design blocks in a sprite's scripts are, in general, similarly influenced by the status

of the single touch that is currently closest to that particular sprite.

There are (as of now) eight blocks in Desktop Scratch that are related to mouse

inputs: five function blocks, two command blocks, and a single trigger block. I will

present all of these blocks while also introducing and specifying their Closest Finger

Design block counterparts.

4.1.1 Function Blocks

The five mouse-related function blocks in Desktop Scratch are labeled "touching

mouse-pointer?", "mouse down?", "distance to mouse-pointer," "mouse x," and "mouse

y." Following their namesakes, the "touching mouse-pointer?" and "mouse down?"

blocks both produce Boolean values (e.g., true or false) corresponding to the current

42



answer to their respective questions, while the "distance to mouse-pointer," "mouse

x," and "mouse y" blocks produce integer values (e.g., 10, -33, 147, etc.) that simi-

larly reflect their respective values.

The first two equivalent Closest Finger Design function blocks, which I have la-

beled "touching finger?" and "finger pressed?", are relatively straightforward.1 As

the name suggests, the "touching finger?" block takes on a value of true when a fin-

ger pressed on the tablet is touching the sprite using the block and a value of false

otherwise. Similarly, the "finger pressed?" block takes on a value of true when at

least one finger is pressed on the stage and a value of false when there are no touches.

The remaining three function blocks, labeled "distance to finger," "finger x," and

"finger y," are a little more difficult to articulate. In general, the "distance to finger"

block evaluates the distance from the sprite to the touch that is currently closest

to the sprite (i.e., the touch that has the shortest two-dimensional distance to the

center of the sprite), while the "finger x" and "finger y" blocks represent the values

of the latest x and y coordinates of that touch. When no fingers are currently being

pressed on the tablet, "finger x" and "finger y" will take the values corresponding to

the location of the last touch to have been made during the execution of the project.

If the project just recently began and touches have yet to be made, "finger x" and

"finger y" must take on an arbitrary value. Since there is no "null value" in Scratch

and error messages are generally avoided, I have chosen for both "finger x" and "finger

y" to evaluate to 0 when there are no prior touches. The "distance to finger" block

will always take the value of the distance between the current location of the sprite

and the location with the coordinate values of "finger x" and "finger y."

4.1.2 Command Blocks

The two mouse-related command blocks in Desktop Scratch are the "point towards

mouse-pointer" and "go to mouse-pointer" blocks; both of these, when executed,

'Note that these blocks reference "fingers," but, in reality, most tablets cannot actually tell
the difference between a touch coming from a finger or a touch coming from any other body part.
However, for the sake of concreteness (and to avoid the potential confusion of a "touch down" block),
I have decided for blocks in the Closest Finger Design to refer to "fingers" instead of "touches."

43



cause sprites to act as their names imply. Their equivalent Closest Finger Design

blocks are similarly named "point towards finger" and "go to finger." Both of these

blocks behave in a similar manner to their mouse counterparts, but focus on the

location of the closest touch as opposed to that of the mouse.

When there is at least one touch on the tablet, the location of interest for the

blocks becomes that of the closest touch. Meanwhile, when no touches are currently

present, the location of interest becomes the last location of the last touch. Finally,

when no touches have been made during the execution of the project, the location of

interest becomes the arbitrarily chosen coordinates of {0, 01.

To put it simply, executing the "point towards finger" block causes the sprite to

point towards the location at the present coordinate values of "finger x" and "finger

y." Similarly, executing the "go to finger" block causes the sprite to go to that same

location.

4.1.3 Trigger Block

Finally, the sole trigger block in Desktop Scratch's mouse interaction set is the "when

this sprite is clicked" block. When triggered, this block initiates the execution of its

connected stack each time the sprite is clicked by the mouse. Here, a click is defined

as pressing down on the mouse left button and quickly releasing it. If the sprite

is clicked a second time before the connected stack has finished its first execution,

Scratch restarts the execution of the stack. Note that because of Scratch's thread-

switching behavior, this can only happen when the stack contains loops or long "wait

blocks."

The equivalent trigger block for the Closest Finger Design is the "when this sprite

is tapped" block, which is triggered whenever a sprite is tapped. A sprite is said to

be "tapped" whenever a finger is pressed down on the sprite and quickly lifted. The

"when this sprite is tapped" block handles repeat triggerings in the same way as its

mouse counterpart, i.e., by restarting the execution of the connected stack. Note that

this trigger block can be triggered by any touch, not just the closest touch, although

in practice the triggering touch will almost always be the closest touch.

44



Figure 4-2: The "when this sprite is tapped" block expanded to demonstrate some of
the simple gestures that could easily be supported.

Since a variety of single-touch gestures, including swiping, long taps, and double

taps, are commonplace in tablet applications, it may be beneficial to augment the

"when this sprite is tapped" block to support other common gestures (Figure 4-2).

Additional support for common single-touch gestures lowers the floors to implement-

ing those interactions, thus allowing beginning Scratchers to easily create a wide range

of interactive projects. Nevertheless, the interaction set is not fundamentally changed

by adding support for other common single-touch gestures, so I will not be discussing

at length which specific gestures are best to include.

4.2 Evaluation

The simplicity of the Closest Finger Design makes the simple low floor case projects

easy to implement, but makes some of the harder case projects literally impossible to

implement. While it is obvious that the Closest Finger Design simplifies the handling

of single-touch inputs, it is surprising that a few common multi-touch interactions are

also easy to implement using the design.

4.2.1 Low Floor

Due in part to the assumption of the existence of at most one touch on the tablet at

a time, the Closest Finger Design excels with the low floor case projects.

For example, the controls of the one-player Pong game can easily be implemented

by constantly updating the x-coordinate of the paddle to the value of "finger x" (left

45



Figure 4-3: On the left is a sample of how the controls for one-player Pong could be
implemented using the Closest Finger Design. On the right is a sample script using
the Closest Finger Design to program the paintbrush sprite in one-finger painting.

side of Figure 4-3). At the beginning of each game, the paddle's x-coordinate will

first be mapped to 0 (the arbitrary default value of "finger x" before any touches

have been made). After the first touch has been made, the paddle will follow the

x-coordinate of the touching finger and will remain at its last location whenever the

finger is lifted.

Implementing the controls for the one-finger painting project is a little more com-

plicated, but is still straightforward and definitely within the capabilities of a novice

Scratcher (right side of Figure 4-3). Essentially, all the Scratcher must do is program

the paint-brush to first wait for a touch to be made, then go to the touch's location

and, with its pen down, continue following the touch until the finger is lifted. The

Closest Finger Design, along with the additional framework blocks, makes program-

ming this script almost as easy as just listing the instructions in plain English (or any

other of the sixty-six languages Scratch supports).

Recall that both of the low floor case projects were notable because they were the

only two presented that could be implemented in Desktop Scratch using mouse con-

trols. As a result of the design's direct mapping with the Desktop Scratch mouse inter-

action set, many mouse-controlled Desktop Scratch projects can be directly translated

into equivalent touch-controlled Tablet Scratch projects. This feature is of particular

46



Figure 4-4: Here is a sample script for controlling the paddle in a basic two-player
Pong game using the Closest Finger Design.

interest, because it may later become desirable for projects to be transferable between

the desktop and tablet versions of Scratch.

4.2.2 Middle Height

Although both middle height case projects feature two sprites being controlled with

up to two simultaneous touches, one of the two projects demonstrates the Closest

Finger Design's greatest strength, while the other highlights its worst flaw. The two-

player Pong game is well suited for this design, because the two paddles must each

be programmed to follow the touch that is within their respective control ranges. On

the other hand, the two paintbrush sprites in the two-finger painting project must be

programmed to distribute themselves among up to two touches, a task that is all but

impossible to program using the Closest Finger Design.

The controls for the basic two-player Pong game are extremely similar to that

of the one-player Pong game when using the Closest Finger Design. In order to

implement the interaction, each paddle can easily be programmed to constantly check

to see if the value of "distance to touch" is within the control range and, if that is

the case, move the paddle vertically to the coordinate value "finger y" (Figure 4-4).

Even though each sprite can only listen to the touch nearest to itself, many multi-

touch interactions are still possible to implement. For example, it would also be simple

to implement a multi-touch keyboard that allows multi-note chords to be played, just

by programming each key to play its note when touched. The important factor

47



in these implementable multi-touch interactions is that each sprite is only concerned

with its closest touch, which makes the design's touch restriction advantageous rather

than detrimental.

Despite the ease of implementing the basic two-player Pong game, it is pro-

hibitively difficult to code the two-finger painting project using the Closest Finger

Design. The main obstacle for this implementation is that each paintbrush sprite can

only see the touch closest to itself, even though one of the paintbrush sprites might

need to follow the touch furthest from itself.

One might think first to try to program the paintbrush to follow its closest touch

only if the other paintbrush is not following it, but there are two significant problems

with this approach. First, touches in the Closest Finger Design have no labels, so the

only way to see if two sprites are listening to the same touch would be to compare their

respective "finger x" and "finger y" values, which is an inelegant solution. Secondly,

and more importantly, each paintbrush can only see the touch nearest to itself, so

even if one paintbrush sprite realizes that its closest touch is already being followed,

it would not know where to go to find the other touch (if it even exists) and would

thus have to travel around the stage looking for an "unfollowed" touch. While there

may in principle be an implementation of the two-finger painting project using the

Closest Finger Design, that implementation would have to be so nonintuitive that it

would not be worth considering for the purposes of this evaluation.

4.2.3 High Ceiling

Unfortunately, the simplicity of the Closest Finger Design makes the high ceiling

projects essentially impossible to implement. Many complex multi-touch gestures

simply cannot be implemented practically when each sprite can only listen to one

touch. However, it is worth restating that many of the most popular tablet applica-

tions do not involve complex multi-touch gestures, and those that do can often be

redesigned to be functional with simpler controls.

Since the advanced two-player Pong game requires that each paddle simultane-

ously follow one touch while listening for subsequent touches that might initiate bump,

48



Figure 4-5: On the left is a sample bump detector, colored yellow instead of trans-
parent for visibility. On the right is the bumper detector script which programs the
sprite to always follow the left paddle and to initiate a bump when tapped.

it is strictly impossible to implement it exactly as specified using the Closest Finger

Design. That being said, it would not be too difficult to make a functionally similar

game with slightly more restricted controls using this interaction set.

The implementation becomes significantly easier if the controls of the advanced

two-player Pong game are changed so that each paddle is moved by dragging and

bumps are initiated by taps that are close to, but not directly on the paddle (Figure

4-5). If this were the case, the paddle would simply be programmed to follow the

closest touch only if the touch is within the bounds of the sprite (which can be checked

using the "touching finger?" block). To listen for bump-initiating taps, a transparent

crescent-shaped bump detector sprite would then be created for each paddle. Both

bump detectors would be programmed to follow their corresponding paddle. When a

bump detector gets tapped, it would simply tell its corresponding paddle to initiate

a bump.

Unfortunately, the ten-finger painting project does not have a functionally equiv-

alent alternative that is implementable with the Closest Finger Design. Since each

paintbrush sprite can only see one touch and they have no practical way to distinguish

which touches are not being followed, there does not exist a reasonable implementa-

tion for this project.

49



4.3 Possible Extension

Many of the limitations of the Closest Finger Design are the direct result of sprites

only being able to listen to one touch at a time. However, it is this restriction that

makes simple single-touch interactions easy to program. Hence, the challenge in

extending the Closest Finger Design to allow sprites to listen to multiple fingers lies

in preserving the ease of programming simple touch controls.

4.3.1 Specification

The possible extension I will present is to add to the Closest Finger Design a new

special trigger block named "when finger pressed." Note that the trigger for this block

is different from that of the "when this sprite is tapped" block. First, the "when finger

pressed" block is triggered by all touches, even ones whose locations are not on the

sprite. Also, the "when finger pressed" block is triggered whenever a finger first makes

contact with the tablet, as opposed to only being triggered by a quick tap (defined

as a quick touch and release). Furthermore, the "when finger pressed" block has two

special properties which differentiate it from all other trigger blocks.

The first special property is that the touch of interest in the execution of a stack

of blocks under a "when finger pressed" block becomes the touch that triggered the

execution of that trigger block, instead of just the closest touch. Before the addition

of this extension, all of the five function blocks and two command blocks in the Closest

Finger Design have always been solely focused on the sprite's presently closest touch,

i.e., the touch of interest was always the current closest touch. In nearly all cases

with the extension, this is still holds true. However, when these blocks are in a

stack under a "when finger pressed" block, they correspond to the triggering touch as

opposed to always corresponding to just the closest touch. Furthermore, throughout

the execution of the connected stack, the Closest Finger Design blocks will always

refer to the triggering touch. If the triggering touch ends (i.e., is lifted) before the

execution of the stack ends, the location of interest for all of the location-related

Closest Finger Design blocks becomes the last location of the triggering touch.

50



This property allows sprites to listen to all touches as they are made, but only

within the stack of blocks under a "when finger pressed" block. Furthermore, the

sprite loses access to the touch that triggered the "when finger pressed" block as soon

as the connected stack has finished being executed (that is, unless the touch is or

becomes the sprite's closest touch). Thus, for some interactions, it will be beneficial to

assemble the stack to continue running until the touch is lifted. However, this kind of

script raises the question: what happens when a second touch is made while the stack

under the "when finger pressed" block is still executing from the first triggering? The

answer to this question is the "when finger pressed" block's second special property.

Instead of ignoring the second trigger or restarting the execution of its stack (as the

other trigger blocks do), the "when finger pressed" trigger block essentially "clones"

its stack and executes it in another thread. In each of these identical threads the

touch of interest becomes the touch that triggered the making of the thread. Thus,

when three simultaneous touches are made, the stack connected to the "when finger

pressed" block will execute three threads in parallel, each listening to a separate

touch.

4.3.2 Use Cases

When augmented with the "when finger pressed" block, the Closest Finger Design

becomes powerful enough to implement the advanced two-player Pong game relatively

easily. The paddles can use the "when finger pressed" block to first find a touch to

follow and then, when following the touch, listen for a bump-initiating touch. The

basic idea of such a script is presented in Figure 4-6.

The addition of the "when finger pressed" block still does not make it possible to

implement the multi-finger painting projects elegantly, but it does make it technically

possible and significantly more practical to implement. Although all of the paintbrush

sprites can listen to all of the touches with this augmentation, there still is no way

to see which touches are already being followed, other than the rudimentary method

of checking if any of the paintbrush sprites are already at the location of the touch

in question. Thus, the multi-finger painting projects can be implemented by having

51



Figure 4-6: Sample paddle script for advanced two-player Pong using the "when finger
pressed" trigger block.

each paintbrush use the "when finger pressed" block to listen to all of the touches

being made. If the paintbrush is not already following a touch, the paintbrush will

follow the first incoming touch it encounters to the completion of the touch if the

touch is not already being followed. In Figure 4-7, I present the basic idea of this

script.

4.3.3 Potential Issues

Although it is a cause for concern that the "when finger pressed" block's special

influence on the touch blocks within its stack can be confusing to novice Scratchers,

the main issues with the extension are a result of the block's thread-splitting feature.

One of Scratch's main design philosophies maintains that the execution of code

should be visible. Since Scratch blocks are highlighted as they are executed, Scratchers

can generally see in real time how their scripts are being executed. However, with

the thread splitting, it is not clear how best to exhibit its execution when it is split

into multiple threads. One idea would be to actually make copies of the stack as

52



Figure 4-7: Sample paintbrush script for three-finger painting using the "when finger
pressed" trigger block. Note that more fingers can be supported by adding -more
paintbrush sprites and additional "if checks."

the threads are being created, but the tablet screen is so small that it could quickly

become unwieldy when handling multiple simultaneous touches.

More important, however, is the problem caused when a novice Scratcher inno-

cently puts an infinite loop in the stack under a "when finger pressed" block. In this

case, a new, never-ending thread would be created at the initiation of every single

touch. Since there is no bound on the total number of touches that can be made

throughout the execution of a project, the number of threads that could be created

is limitless. This potential for rapid thread propagation makes the project vulnerable

to crashing from running out of computer resources without any indication to the

novice Scratcher as to what is the cause. One possible solution would be to limit the

number of threads to ten (since there can only be at most ten simultaneous touches),

but the limit would be difficult to express visually and might restrict intentional use

of the thread-splitting feature.

53



54



Chapter 5

Relative Indexing Design

While the Closest Finger Design does greatly simplify the task of handling up to

ten simultaneous touches, it does so by avoidance. By restricting each sprite to only

being able to listen to one touch at a time, the Closest Finger Design eludes having to

handle ten touches within the same script. Even though this approach is reasonable,

there are other potential strategies for simplification without such a restriction.

For example, one natural way to think about handling the up to ten simultaneous

touches is to think of them as ten persistent touch-objects, among which all touch

inputs are distributed. Since there can be at most ten simultaneous touch inputs, ten

touch-objects are enough to handle all touch inputs made throughout the execution

of any project. Each of these touch objects will be used to store the input values of

the touch it is currently associated with, i.e., the x and y coordinates of the touch

and whether the touch is being pressed on the tablet. The big question with such

a design becomes: What is the best way to distribute the touch inputs amongst the

ten touch-objects?

In this second multi-touch interaction set design, which I have named the Relative

Indexing Design, the persistent touch-objects are indexed 1 through 10 and represent

the status of the touch inputs with matching indices. The touch inputs are indexed

relative to the other concurrent touches in order of initiation from 1 to the number of

current touches. Since touches are (as the design's name implies) indexed relatively, a

touch's associated index (and, thus, associated persistent touch-object) can be subject

55



Figure 5-1: The "number of fingers" block.

to change. For example, a touch that was the third-oldest current touch (meaning

it has an associated index of 3) can become the oldest current touch (meaning an

associated index of 1) if the two older current touches are lifted. While this manner

of indexing is intuitive, it has a few quirks that can lead to many unforeseen bugs in

the development of seemingly simple projects.

In this chapter, I will first specify the Relative Indexing Design and then follow

up by evaluating the design on the three iterations of case projects that I described

in Chapter 3.

5.1 Interaction Set Specification

The Relative Indexing Design consists of nine touch blocks, only one of which is

wholly original to this thesis: the "number of fingers" block (Figure 5-1). As the

name implies, the "number of fingers" block produces a value ranging from 0 to 10,

representing the number of fingers on the tablet at the time of evaluation. Since most

tablets can only recognize up to ten simultaneous touches, the "number of fingers"

block will return the value of 10 whenever there are 10 or more touches.

The remaining eight touch blocks in the Relative Indexing Design are similar in

appearance to the extended Closest Finger Design interaction set minus the "when

this sprite is tapped" block. The only difference is that each of the Relative Indexing

Design blocks has an added numerical parameter (see left side of Figure 5-2). This

parameter is used to select the index (ranging from 1 to 10) of the desired touch of

interest.1 The parameter is a drop-down menu with values ranging from 1 to 10, but

it is also a slot that can be filled with a function block (see right side of Figure 5-2).

1Note that in these blocks I again use the term "finger" instead of touch. Although this termi-
nology could lead some novices into thinking that the touch indices correspond to particular fingers
(e.g., finger 5 always refers to the user's left thumb), I believe it is still beneficial to use the concrete
term "finger," rather than the abstract term "touch."

56



Figure 5-2: On the left are the remaining eight blocks in the Relative Indexing Design
interaction set. On the right there are two examples of the "finger (index) x" block:
one with an inserted function block and the other with its drop-down menu opened.

If the inserted function block returns a value other than an integer between 1 and 10,

the value gets defaulted to 1, so as to avoid throwing errors.

Of these eight remaining touch blocks, only two, the "finger (index) down?" and

"when finger (index) pressed" blocks, are not affected by the location of the touch

inputs, so I will quickly explain them first. The "finger (index) down?" block is

a simple Boolean function block that returns a value of true if the touch with the

index of (index) is currently down and a value of false otherwise. By the nature

of relative indexing, this is the equivalent of determining whether there are at least

(index) touches currently pressed on the tablet. As a result, the "finger (index)

down?" block is redundant, since this value can be determined using the "number

of fingers" block along with some logic blocks. Even so, the "finger (index) down?"

block is a worthwhile shortcut, because it can become tedious to determine the value

repeatedly.

The "when finger (index) pressed" block is a simple trigger block that is closely re-

lated to the "finger (index) down?" function block. The "when finger (index) pressed"

block is triggered at the moment the finger with the index of (index) is pressed. In

other words, the "when finger (index) pressed" block executes its connected stack at

57



the moment the number of touches on the tablet increases from (index-1) to (index).

Unlike its extended Closest Finger Design counterpart, which creates new threads for

every triggering, the "when finger (index) pressed" block restarts the execution of

its connected stack when it is triggered for a second time before finishing the first

execution.

The final six blocks, "touching finger (index)?", "distance to finger (index),"

"point towards finger (index)," "go to finger (index)," "finger (index) x," and "fin-

ger (index) y," behave the same as their Closest Finger Design counterparts except

that their location of interest is the current location of the touch with the index

of (index) instead of the sprite's closest touch. When (index) is less than or equal

to the current number of touches (i.e., the "finger (index) down?" block evaluates

to true), the location touch with the index of (index) is simply the location of the

(index)th-longest-lasting touch currently on the tablet. Otherwise, when (index) is

greater than the current number of touches (i.e., the "finger (index) down?" block

evaluates to false), the location of the touch with the index of (index) remains at its

last location. Again, prior to all touches, the fingers of all indices have the arbitrary,

default location of {O, 0}.

5.2 Evaluation

Due to the functionality of the Relative Indexing Design being fairly straightforward,

many of the simpler multi-touch interactions can be implemented intuitively. How-

ever, as projects get more complicated, the limitations of the Relative Indexing Design

become evident.

5.2.1 Low Floor

For projects that assume a maximum of one touch on the screen at a time, the

Relative Indexing Design has the capability to behave identically to the Closest Finger

Design. When there is only one touch on the screen, that touch is every sprite's closest

touch. Similarly, the relative index of the single touch will, by definition, always be

58



Figure 5-3: On the left is the Relative Indexing Design script for the one-player Pong
game paddle controls. On the right is the script for one-finger painting.

1. Thus, both the one-player Pong game and the one-finger painting project can be

implemented using the Relative Indexing Design in essentially the same way as they

were implemented in the Closest Finger Design in the previous chapter (Figure 5-3).

Although these low floor case projects can be implemented using the Relative

Indexing Design as easily as with the Closest Finger Design, the latter does a slightly

better job of lowering the floors. The parameter in the Relative Indexing Design

blocks does not provide any added functionality for single-touch projects, so it can

only contribute to potential confusion.

5.2.2 Middle Height

The middle height case projects are not particularly well suited for the Relative In-

dexing Design. To begin with, the Relative Indexing Design does not filter the touch

inputs for the closest touch (unlike the Closest Finger Design). As a result, imple-

menting the basic two-player Pong game is slightly more laborious, even though it is

still a relatively straightforward process (Figure 5-4). Since we have the assumption

that there will be at most two simultaneous touches, both paddles only have to listen

to the touches with indices 1 or 2. For each paddle, it does not matter whether a

touch was the first or the second touch made. Thus, the paddle's script must forever

59



Figure 5-4: Here is a sample script for controlling the paddle in a basic two-player
Pong game using the Relative Indexing Design.

repeat the process of checking both touches and follow the y-coordinate of the touch

that is within the paddle's control range (if there is such a touch).

This implementation is fairly easy to follow when presented, but has a few sub-

tleties that can be tricky for Scratchers to figure out. For example, if a Scratcher is

not careful, it is possible to fall victim to the bug of having the paddle stuck "fol-

lowing" an already lifted touch. While these bugs can be tricky for beginners, they

are relatively concrete as far as bugs go, so I am confident that Scratchers (especially

with the help of the supportive Scratch community) will be able to overcome them

and learn from them.

Similarly, implementing the two-finger painting project using the Relative Index-

ing Design also has a few subtle pitfalls. However, unlike the case for the basic

two-player Pong game, the bugs that arise when implementing the two-finger paint-

ing project are very difficult to overcome. Naive intuition would suggest that each

paintbrush sprite wait for and subsequently follow a different indexed touch. In other

words, one paint brush would follow the first touch when it occurs and the second

paint brush would follow the second touch when it occurs (left side of Figure 5-5).

This control scheme works for the most part, but there is a pernicious bug for which

there is no simple solution. The bug occurs when there are two touches simultaneously

60



r. ;Reltive Irdexing Twc-Finger Painting

Vshen ccked .4 1  ay rismegrawas unsrlarea;

Figure 5-5: On the left is a sample naive paintbrush script using the Relative Indexing
Design. On the right is the result of the bug caused by the touch index transferring.

on the tablet, and the touch with index 1 (i.e., the first touch) is lifted before the touch

with index 2 (i.e., the second touch). At this moment, the paintbrush following the

second touch stops following it, because "finger (2) down?" would evaluate to false.

Also, the paintbrush following the first touch, would then start to follow the second

touch, since the second touch's index changed from 2 to 1. This transfer is fine, but

the problem is that the paintbrush following the first touch does not know to lift up

its pen before starting to follow the second paintbrush, leading to an unintentional

line in the user's painting (e.g., right side of Figure 5-5).

There are reasonable solutions (e.g., left side of Figure 5-6) to the bug that pre-

vent the unintentional line from appearing, but they result in small gaps in the finger

painting lines (e.g., right side of Figure 5-6). Furthermore, even these imperfect solu-

tions pose a considerable challenge to experienced Scratchers. A "perfect," practical

implementation for multi-finger painting cannot be done using the Relative Indexing

Design, because some data will be lost when the touch index transfers occur. This

loss of data is due in part to the fact that there is no sure way to differentiate between

two similar but importantly distinct events: the event in which the first touch is lifted

before the second and the event in which the second touch is lifted before the first.

That being said, reasonable assumptions can be made by comparing touch locations,

as was the case for the Closest Finger Design.

61



r.1 [Relative Indexing Painting
by chsmegraves (unshared)

Figure 5-6: On the left is a sample "wary" script for the paintbrush using the Relative

Indexing Design. On the right is the result of the bug that still exists in the "wary"
script.

5.2.3 High Ceiling

Since the Relative Indexing Design makes it impossible to practically implement

a "perfect" two-finger painting project, the same holds for the ten-finger painting

project. Also, as the reader might imagine, the added logic needed to minimize (but

not eliminate) the bugs in the two-finger project becomes much more convoluted when

support for more fingers is added, because all touch index transfers must be accounted

for. That being said, the level of complexity for the needed, additional logic is in line

with the expected amount of difficulty for high ceiling projects. Although assembling

the blocks would be tedious, the logic behind handling the transfers follows a pattern

that can be repeated.

Similarly, the advanced two-player Pong game is quite difficult to implement using

the Relative Indexing Design, but it can be done, and the amount of work and ex-

pertise needed is appropriate for a high ceiling project. Unlike the ten-finger painting

project, however, the advanced two-player Pong game can be implemented exactly as

specified with the Relative Indexing Design. The script for the advanced two-player

Pong game paddle controls can be a little complicated (Figure 5-7), but the logic is

fairly straightforward.

62



I,

Figure 5-7: Here is a sample script for controlling the paddle in an advanced two-
player Pong game using the Relative Indexing Design.

The controls can be implemented using one "forever loop" to control the movement

and four "when finger (index) pressed" stacks to wait for bump-initiating taps. The

"forever loop" would first check if the paddle is currently following a finger. If the

paddle is not following a finger, its script will query the touches with indices 1 through

4 (since we are assuming no more than four simultaneous touches) and decide to follow

the first finger index it queries that is both down and within the paddle's control range.

After deciding to follow a finger index, the paddle will follow that finger index until

it is either lifted or moved out of range.

The four "when finger (index) pressed" blocks will watch the finger indices 1

through 4. Their connected stacks will check for three criteria and, if they are met,

will initiate a bump. The first criterion is that the paddle is currently following a

touch. The second is that the touch being followed is not the touch that triggered

the execution of the stack. Finally, the last criterion is that the touch that triggered

the stack is within the paddle's control range.

As evidenced by the high ceiling case projects, the Relative Indexing Design does

not make implementing complex projects particularly easy. However, the design does

make their implementations possible (or at least almost possible, as is the case for

the multi-finger painting projects). The intuitions for these implementations are

63



almost always straightforward, but the actual assembly of the implementations can

be tedious. Furthermore, there are subtle quirks with the Relative Indexing Design

that are the basis for some tricky (albeit oftentimes surmountable) bugs.

64



Chapter 6

Absolute Indexing Design

Without a doubt, the multi-finger painting case projects have proven to be the most

troublesome to implement using both of the two previously presented designs. It is

impossible to elegantly implement a multi-finger painting project using the Closest

Finger Design, because the design does not offer a method to differentiate between

individual touches other than through the comparison of touch locations. The Rela-

tive Indexing Design suffers from a similar inability. Although the Relative Indexing

Design makes it easy to distinguish all of the present touches (using their relative

indices), the design does not enable scripts to determine when touches switch indices.

As a result, it is difficult to program paintbrushes to follow specific touches, since the

touches' associated indices are subject to change. If every touch were given a unique

index that it kept from its creation to its end (i.e., an ID number), then it would not

be difficult to distribute touches amongst the paintbrush sprites so that every touch

is followed by exactly one paintbrush.

This concept, assigning each created touch a unique, permanent number, is the

main premise behind the Absolute Indexing Design, the third and final multi-interaction

set design. Touches in the Absolute Indexing Design are indexed in order of initiation

relative to all touches that have been made since the inception of the project. As a

result, a touch's associated index can never change in the Absolute Indexing Design,

because the nth touch pressed in the execution of a project will forever be the nth

touch pressed.

65



While the Absolute Indexing Design can facilitate the implementation of certain

complex multi-touch interactions, it can make implementing simpler single-touch in-

teractions more difficult. In this chapter, I will again first specify the design and

afterwards evaluate it using the three iterations of case projects described in Chapter

3.

6.1 Interaction Set Specification

The Absolute Indexing Design consists of nine blocks (Figure 6-1), only two of which

are wholly original. In contrast to the previous chapter, I will specify the familiar

blocks before presenting the newer ones.

The seven familiar blocks in the Absolute Indexing Design each have counterparts

in the Relative Indexing Design, but with two main differences. The first difference

between these blocks and their Relative Indexing Design counterparts is that their

parameters are text inputs rather than drop-down menus. Since the touch indices are

not bounded by 10 in the Absolute Indexing Design, a drop-down menu would not

make sense. Also, these parameters are best thought of as (ID)s instead of (index)es.

The second difference is that the term "finger" is replaced with "touch" in the block

labels. Although the use of the term "finger" was not perfectly suitable in the Relative

Indexing Design either, the term "finger" makes no sense at all when using absolute

indexing. For example, the term "finger (73)" implies that the user has at least 73

fingers, whereas "touch (73)" accurately implies the 73rd touch pressed on the tablet.

Thus, the seven familiar blocks are named: "touch (ID) down?", "touching touch

(ID)?", "distance to touch (ID)," "point towards touch (ID)," "go to touch (ID),"

"touch (ID) x," and "touch (ID) y." Functionally, these seven Absolute Indexing De-

sign blocks work in a manner similar to their Relative Indexing Design counterparts,

just with different touch indexing. For example, the "touch (ID) down?" block re-

ports the value of true if the (ID)th touch in the project's execution has been created

and is still touching the tablet and otherwise reports the value of false. Similarly, the

remaining six familiar blocks all correspond to the location of the (ID)th touch in the

66



touching touch

Ltouch 0down?

Figure 6-1: The seven familiar blocks in the Absolute Index Designs are on the left,
while the two new blocks are on the right.

project's execution. If the (ID)th touch has yet to be made, its location is considered

to be {0, 0}. Also, if the (ID)th touch has already been both made and lifted, its

location is considered to be its last touched location. If the inserted value of (ID) is

anything other than a positive integer, the location of interest is always defaulted to

{0,0}.

Now that the familiar blocks have been specified, I will introduce the two original

blocks. The first of the entirely new blocks is a function block, labeled "current touch

ID." Simply put, the "current touch ID" block reports the unique ID of the most

recently made touch. When touches have yet to be made, the "current touch ID"

block reports the value 0, since the first touch in the execution of a project has an ID

of 1. An important aspect of the behavior of the "current touch ID" is that it increases

by at most 1 per execution iteration of the Scratch programming environment. In

other words, if a loop in Scratch is constantly checking the value of the "current touch

ID" block at each iteration (without having inner loops or "wait" blocks), the value

will not jump from x to x+2 without being valued as x+1 first, even if two touches

are made simultaneously. Thus, it is possible to watch the "current touch ID" block

without having to worry about missing a touch.

The second new block is a trigger block labeled, "when touch created." In many

ways the "when touch created" block is analogous to the "when finger pressed" block

67



from the extended version of the Closest Finger Design and the "when finger (index)

pressed" block from the Relative Indexing Design. However, its behavior is unique

and important to the Absolute Indexing Design. Like the "when finger pressed"

block, the "when touch created" block is triggered by the initiation of every touch.

However, unlike the "when finger pressed" block, the "when touch created" block does

not create a new thread for every touch. Instead, the "when touch created" block

handles simultaneous triggerings in a way similar to the "current touch ID" block.

If, for example, two simultaneous touches are made, the "when touch created" block

would first execute its first stack as far as it can in one Scratch execution iteration

(stopping only at a "wait" block or the end of a loop), before restarting the stack

execution in the next Scratch execution iteration. Therefore, if the first block in a

"when touch created" block's connected stack contains a reference to the "current

touch ID" block, the "current touch ID" block would have the ID of the (arbitrarily

chosen) first touch during the first execution and the ID of the second touch during

the second execution.

Like many aspects of the Scratch programming language, the "current touch ID"

and "when touch created" blocks are designed specifically so that Scratchers who are

not concerned with concurrency bugs do not generally need to be concerned, and

Scratchers who are concerned can take necessary precautions to avoid them.

6.2 Evaluation

Although Absolute Indexing Design can be used to elegantly implement complex

multi-touch interactions, it can be difficult for beginners to understand. Indexing

touches by their order of creation relative to the entirety of the project is an abstract

concept that can be difficult for Scratchers to gain an intuition for. However, once such

an intuition is acquired, Scratchers can use the Absolute Indexing Design to efficiently

and naturally create as complex multi-touch interactions as they can imagine.

68



Figure 6-2: A sample Absolute Indexing Design script for the paddle controls in a
one-player Pong game is on the left. On the right is a sample paintbrush script for
one-finger painting.

6.2.1 Low Floor

By using the "current touch ID" block to get the ID of the latest touch, both of the

low floor case projects can be implemented in essentially the same way as was done

using the previous two designs (Figure 6-2). Since we are assuming there is at most

one touch on the screen at any time, the "current touch ID" will always refer to the

only touch on the tablet (if there is one).

Although these implementations look nearly as simple as those done with the

Closest Finger Design, it might not be obvious to novice Scratchers that they can get

access to the latest touch by inserting the "current touch ID" block into the other

touch blocks' (ID) parameters. Blocks like "touch (ID) x" by themselves are neither

tinkerable nor explorable, so it is difficult for Scratchers to learn how to use them

without outside instruction. Unless the given (ID) value happens to be an ID of

one of the current touches, many of the Absolute Indexing Design blocks will appear

unresponsive to touches.

One idea, to make the Absolute Indexing Design more explorable, would be for

the block palette to feature "touch (ID) x" and "touch (ID) y" blocks with the

"current touch ID" block already inserted in their (ID) parameter. While this would

69



Figure 6-3: Here is a sample script for controlling the paddle in a basic two-player
Pong game using the Absolute Indexing Design.

definitely increase the explorability of the blocks, it could cause some confusion,

because preassembled blocks have never before been featured in Scratch.

6.2.2 Middle Height

Once Scratchers get over the barrier of learning the intuition behind the absolute

indexing logic, they can, without too much difficulty, figure out how to implement

both of the middle height case projects.

To begin, the controls for the basic two-player Pong game can be implemented by

having both paddles constantly repeating a simple process (Figure 6-3). First, each

paddle's script can check to see if the touch with the "current touch ID" is within

their paddle's control range and store the ID in a variable if it is. Then, with the

stored touch ID, the script can set the paddle to follow the touch with the stored ID

until it is lifted.

Although this implementation of the basic two-player Pong game is complicated

by the necessary use of a variable, experienced Scratchers generally have a basic

understanding of how to use variables. As a result, barring the difficulty of under-

standing how the absolute indexing works, the complexity of this implementation is

appropriate for a middle height project.

70



Figure 6-4: Here is a sample script for controlling one of the paintbrushes in a two-
finger painting project using the Absolute Indexing Design.

Like the basic two-player Pong game, the two-finger painting project can also

be implemented using the Absolute Indexing Design by programming both of the

paintbrushes to forever repeat a simple process while keeping a variable in which

they store the ID of the touch they currently are following (Figure 6-4). To begin

each iteration of the repeated process, each paintbrush first checks to see if the touch

with the "current touch ID" is down and not being followed by the other paintbrush.

If both criteria are met, then the paintbrush sets its variable to the current touch ID

(thus claiming it) and follows the touch with its pen down until the touch is lifted.

Note that this implementation does rely on some of the specifics regarding Scratch's

thread-switching protocol. However, the naive assumption that there will not be any

race conditions in this case turns out to be true. As a result, this implementation is

not too complicated for a middle height project. It is particularly noteworthy that

two-finger painting can be implemented perfectly using the Absolute Indexing Design

with an implementation that is no more complex as the imperfect implementations

that could be created using the other two designs.

71



Figure 6-5: Here is a sample script for controlling the paddle in an advanced two-
player Pong game using the Absolute Indexing Design. The subroutine that is added
to the basic two-player Pong game is highlighted.

6.2.3 High Ceiling

When using the Absolute Indexing Design, the gap in complexity between the middle

height and high ceiling case projects disappears. Once Scratchers have gained an in-

tuition for how to use the Absolute Indexing Design to make multi-touch interactions

with moderate complexity (which, granted, can be an arduous task), it becomes a

natural and iterative process for them to discover how to make more complex ones.

For example, the progression from the basic two-player Pong game to the advanced

two-player Pong game is a particularly natural one when using the Absolute Indexing

Design. To add the new bump interaction, each paddle's script can be augmented

with an additional variable and a simple subroutine to be run when the paddle is

following a particular touch (Figure 6-5). The additional variable is used to store the

ID of the touch that triggered the last bump, so that the same touch cannot trigger

multiple bumps. Thus, the subroutine just checks on the current touch to see if it is

different from both the touch the paddle is following and the touch that triggered the

last bump. If both criteria are met, the subroutine makes a final check to see that

the current touch is within the paddle's control range and initiates a bump if that is

the case.

72



Figure 6-6: Here is a sample script for a paintbrush sprite in a four-finger painting

project using the Absolute Indexing Design, but without using clones. To add more
fingers, one need only add the additional paintbrush sprites and if statements.

Similarly, the implementation for two-finger painting using the Absolute Indexing

Design can easily be upgraded to ten-finger painting by simply adding more paint-

brush sprites and more checks in each of their scripts to make sure that no paintbrush

follows an already followed touch (Figure 6-6). While this is an extremely simple aug-

mentation, the script copying can become tedious.

Hence, an experienced Scratcher may be tempted to use Scratch's cloning feature

to make the implementation more elegant. Using the "when touch created" block,

a Scratcher can create a new paintbrush clone specifically to follow each new touch.

The paintbrush clone would then follow its assigned touch until the touch is lifted, at

which point the clone selflessly kills its own script to preserve computational resources.

While the implementation using cloning is more elegant and uses fewer blocks, both

implementations have the same functionality.

In comparison to the other two designs I have presented, the Absolute Indexing

Design has a steep learning curve. It is very unlikely that someone could quickly

figure out how the design's blocks work just by playing around with them. However,

as multi-touch interactions become more complex, it becomes easier to implement

them using the Absolute Indexing Design than with the other two designs.

73



74



Chapter 7

Conclusion

In this final chapter, I will begin by summarizing my analysis of the multi-touch

interaction set designs presented and conclude by making suggestions for how this

research may be furthered.

7.1 Closing Remarks

Even though each of the three multi-touch interaction set designs has its strengths,

none of them fully satisfies the goals for maintaining low floors, wide walls, and high

ceilings. While the minimalism of the Closest Finger Design makes developing sim-

ple touch-interactivity accessible to beginners, it also precludes more advanced users

from creating more complex interactions. In contrast, the Absolute Indexing Design

is challenging for beginners to understand but, once understood, can be used to cre-

ate limitlessly intricate multi-touch interactions. Meanwhile, the Relative Indexing

Design sits uncomfortably in the middle, by being somewhat difficult to understand

while still not being powerful enough to be used to implement even moderately com-

plex multi-touch interactions.

Although I have presented these three multi-touch interaction set designs in iso-

lation (in order to highlight their individual strengths and weaknesses), the best

multi-touch interaction set is, arguably, most likely a combination of either two or all

three of them. Ideally, Tablet Scratch's multi-touch interaction set will have the low

75



floors of the Closest Finger Design and the high ceilings of the Absolute Indexing De-

sign. However, it would be ill-advised to simply take the union of the two interaction

set designs due to the confusion the considerable overlap would cause.

One way to combine the Closest Finger and Absolute Indexing designs would be to

add both interaction sets to Tablet Scratch, but to feature them in separate locations.

For example, Tablet Scratch could be designed so that sprites can only use the Closest

Finger Design blocks and the stage can only use the Absolute Indexing Design blocks.

This compromise is satisfactory on several levels. First, the closest finger is often

not important for the stage in the same way that is for sprites. Furthermore, the

Scratchers who assemble scripts for the stage are generally experienced and desire

to make complex projects. Hence, only the Scratchers who need the more powerful

blocks would be exposed to them.

While this combination preserves the Closest Finger Design's low floors, it does

not quite preserve the Absolute Indexing Design's high ceilings. Since each sprite

in this scenario can only access its closest touch, other touch information must be

transferred from the stage to the sprite. Scratch does support such data transferring,

but in certain scenarios it can be very difficult to implement robustly.

7.2 Future Work

Since low floors are generally achieved at the cost of high ceilings (and vice versa), it

is unlikely that an indisputably ideal interaction set can ever be achieved. However,

through more iteration and testing, we can get closer to designing a multi-touch

interaction set that is perfect for the purposes of Tablet Scratch.

One important next step to reach this goal is to have the target audiences test

the various multi-touch interaction set designs and then to iterate based on their

experiences. Each potential interaction set design should be tested with Scratchers

of varying experience levels to ensure that the design meets computer scientist Alan

Kay's requirement that "simple things should be simple, complex things should be

possible."

76



Although this thesis has focused on creating a multi-touch interaction set specif-

ically within the context of Scratch, many of the ideas discussed are also applicable

to designing touch-input-handling toolkits in general. There is little doubt that the

toolkits used today in "professional frameworks" are less than ideal. Not only do

novice programmers have difficulty understanding how to use these toolkits, but even

expert software engineers are prone to making errors while using them to develop

multi-touch interactions. Despite the fact that virtually all commonly used multi-

touch interactions have been developed with these professional frameworks, I am

confident that it is possible to develop an equally functional multi-touch toolkit that

is both more accessible and less vulnerable to bugs.

77



78



Bibliography

[1] Mitchel Resnick, John Maloney, Andres Monroy-Hernindez, Natalie Rusk, Eve-
lyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver,
Brian Silverman, and Yasmin Kafai. Scratch: Programming for All. Commun.
ACM, 52(11):60-67, November 2009.

[2] Andres Monroy-Hernindez. ScratchR: Sharing User-generated Programmable
Media. In Proceedings of the 6th International Conference on Interaction Design
and Children, IDC '07, pages 167-168, New York, NY, USA, 2007. ACM.

[3] Mitchel Resnick, Yasmin Kafai, John Maloney, Natalie Rusk, Leo Burd,
and Brian Silverman. A Networked, Media-Rich Programming Environment
to Enhance Technological Fluency at After-School Centers in Economically-
Disadvantaged Communities. Technical report, 2003.

[4] Scratch Statistics. http://scratch.mit.edu/statistics/.

[5] S.A. Papert. Mindstorms: Children, Computers and Powerful Ideas. Basic
Books, 1993.

[6] Mitchel Resnick and Brian Silverman. Some Reflections on Designing Construc-
tion Kits for Kids. In Proceedings of the 2005 Conference on Interaction Design
and Children, IDC '05, pages 117-122, New York, NY, USA, 2005. ACM.

[7] SK Lee, William Buxton, and K. C. Smith. A Multi-touch Three Dimensional
Touch-sensitive Tablet. SIGCHI Bull., 16(4):21-25, April 1985.

[8] N. Mehta. A Flexible Machine Interface. Master's thesis, University of Toronto,
1982.

[9] Apple iOS Developer Library. https://developer.apple.com/library/ios/.

[10] Android SDK. https://developer.android.com/sdk/index.html?hl=sk.

[11] ActionScript 3.0. http://help.adobe.com/en-US/FlashPlatform/reference/actionscript/3/index.h

[12] JavaScript. http://www.w3.org/standards/webdesign/script.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

79



[14] Codea. http://twolivesleft.com/Codea/.

[15] David Wolber, Hal Abelson, Ellen Spertus, and Liz Looney. App Inventor for

Android: Create Your Own Android Apps. O'Reilly, 2011.

[16] S. Parent. A Possible Future of Software Development. Adobe Software Technol-

ogy Lab, 2006. http://stlab.adobe.com/wiki/images/0/Oc/Possible-future.pdf.

-[17] Ingo Maier and Martin Odersky. Deprecating the Observer Pattern with
Scala.React. Technical report, 2012.

[18] Atze van der Ploeg. Monadic Functional Reactive Programming. SIGPLAN

Not., 48(12):117-128, September 2013.

[19] Elm. http://elm-lang.org/.

[20] Hopscotch. https://www.gethopscotch.com/.

[21] ScratchJr. http://scratchjr.org/.

[22] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-

mond. The Scratch Programming Language and Environment. Trans. Comput.

Educ., 10(4):16:1-16:15, November 2010.

80




