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Abstract

In this thesis, we concern ourselves with the problem of reasoning over a set of objects

evolving over time that are coupled through interaction structures that are themselves

changing over time. We focus on inferring time-varying interaction structures among a

set of objects from sequences of noisy time series observations with the caveat that the

number of interaction structures is not known a priori. Furthermore, we aim to develop

an inference procedure that operates online, meaning that it is capable of incorporating

observations as they arrive.

We develop an online nonparametric inference algorithm called Online Nonpara-

metric Switching Temporal Interaction Model inference (ONSTIM). ONSTIM is an

extension of the work of Dzunic and Fisher [1], who employ a linear Gaussian model

with time-varying transition dynamics as the generative graphical model for observed

time series. Like Dzunic and Fisher, we employ sampling approaches to perform in-

ference. Instead of presupposing a fixed number of interaction structures, however, we

allow for proposal of new interaction structures sampled from a prior distribution as

new observations are incorporated into our inference.

We then demonstrate the viability of ONSTIM on synthetic and financial datasets.

Synthetic datasets are sampled from a generative model, and financial datasets are

constructed from the price data of various US stocks and ETFs.

Thesis Supervisor: John W. Fisher III

Title: Senior Research Scientist of Electrical Engineering and Computer Science
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Chapter 1

Introduction

In fields as diverse as particle physics, molecular biology, and finance, an important

problem is determining the relationships among the objects in a system from observa-

tions of their behavior. Whether the objects of consideration are subatomic particles in-

teracting via electromagnetic and nuclear forces, genes and proteins interacting through

regulatory networks, or financial instruments interacting through market forces, under-

standing the structure of the interactions among the objects can lend valuable insight

into the system as a whole.

Inferring interaction structures can be difficult since there is often no way to directly

observe the interactions themselves. Instead, we typically have observations of the

time-varying trajectories of each object through its state space, such as the position

of a particle, the expression level of a protein, or the price of a financial instrument.

Interaction structures must then be inferred from these individual trajectories. As a

further complication, object trajectory observations are typically noisy, requiring the

additional step of inferring the true trajectory from the noisy observations.

Moreover, the interaction structures among a set of objects are not necessarily static,

but can instead change over time. For example, suppose three children Alice, Bob, and

Charlie are playing tag in a schoolyard, and an observer is tracking their positions but

does not know who the chaser is. Suppose Alice is initially the chaser, so the interaction

structure is Alice following Bob and Charlie. At some point, Alice successfully tags Bob,

causing the interaction structure to switch to Bob following Alice and Charlie. As the

observer, inference of such time-varying interaction structures from potentially noisy

observations adds yet another layer of complexity to the problem we have described

thus far.

Siracusa and Fisher [8] modelled the time-varying interaction structures using graph-
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ical models, and then developed algorithms to perform inference on these models with

sampling techniques. Dzunic and Fisher [1] then extended the graphical models and

corresponding inference algorithms to account for noisy and potentially missing obser-

vations. An important question that arises when modeling time-varying interaction

structures is that of model complexity - how many different interaction structures are

sufficient to explain the patterns in the observed data? In both the original work of

Siracusa and Fisher and the subsequent work of Dzunic and Fisher, model complex-

ity is user-specified. That is, inference on the model requires prior specification of the

number of active interaction structures during the time in which observations are taken.

However, the number of different interaction structures is often unknown, and it is then

desirable to use inference algorithms that eliminate user-specified model complexity in

favor of learning it automatically from the observed data.

In this thesis, we consider the problem of inferring the structure of relationships

among a set of covarying time series from a sequence of noisy observations when the

number of interaction structures is not known a priori. We take inspiration from lit-

erature on Bayesian nonparametrics, a growing field of statistics aimed at increasing

flexibility of model parameter specification, which typically implements such flexibil-

ity by learning parameters from the data. Furthermore, our approach allows for the

incorporation of observations into the inference procedure as they arrive, instead of re-

quiring knowledge of all observations before performing any inference. Such approaches

are called online algorithms, and by using such an approach, we make a tradeoff between

the speed of inference and the accuracy of the results. We characterize the performance

of our approach on synthetic and real datasets, and we discuss its merits and drawbacks

for various applications.

* 1.1 Thesis Outline

We develop an online algorithm to perform inference over interaction structures that

decides model complexity nonparametrically. We call this algorithm the Online Non-

parametric Switching Temporal Interaction Model inference algorithm, which we ab-

breviate as ONSTIM. In Chapter 2, we discuss background material relevant to the

development of ONSTIM. In Chapter 3, we describe a generative model that proposes

a mechanism by which new interaction structures can arise, and then detail the devel-

16 CHAPTER 1. INTRODUCTION



Sec. 1.1. Thesis Outline

opment of ONSTIM in the context of this generative model. In Chapter 4, we discuss

the results of ONSTIM on synthetic datasets and on real financial datasets for a variety

of parameter settings. Finally, in Chapter 5, we examine the strengths and weaknesses

of ONSTIM, discuss avenues for further work, and provide concluding remarks.

Background

In Chapter 2, we discuss background material relevant to the problem of inferring inter-

action structures from noisy observations. We first define and discuss graphical models,

which are graphical representations of the conditional independence relationships be-

tween random variables in joint probability distributions. We then discuss algorithms

for inference, some of perform efficient inference by taking advantange of the afore-

mentioned conditional independence relationships. We examine sampling algorithms,

specifically Markov chain Monte Carlo (MCMC) algorithms, Metropolis-Hastings, and

Gibbs sampling in some detail.

The second half of the background section is devoted to a detailed description of the

work of Dzunic and Fisher [1], as their graphical model and inference algorithm form

the core of the algorithm developed in this thesis. We first describe the graphical model

used to represent the joint distribution of interest, and we then walk in substantial

detail through the corresponding inference algorithm.

ONSTIM

Chapter 3 contains the core of the work performed in this thesis. In this chapter, we

first describe a generative model that proposes a mechanism by which new interaction

structures can arise over some duration of time. We then detail the development of

ONSTIM, focussing specifically on the setup that allows for online inference and on the

initialization procedure during which new interaction structures are proposed.

Results

In Chapter 4, we describe experimental results of ONSTIM on synthetic and real

datasets. We describe the process by which synthetic datasets are generated, report

results of the performance of ONSTIM in various parameter settings, and attempt to

explain certain behaviors of ONSTIM from the results. We then apply ONSTIM to fi-

17



18 CHAPTER 1. INTRODUCTION

nancial datasets, consisting of one long term US equity dataset, one intraday US equity

dataset, and one long term US sector ETF dataset.

Conclusion

We conclude with a contextualization of the work performed in this thesis and a dis-

cussion of opportunities for improvement and augmentation of ONSTIM.



Chapter 2

Background

In this thesis, we are interested in the studying time-varying interaction structures

among sets of time-varying signals. An interaction structure is an encoding of the

of statistical dependence relationships among a set of signals. In order to introduce

machinery to assist with reasoning over unconditional and conditional dependence rela-

tionships, we begin this chapter with a discussion of graphical models. We then consider

various problems of inference that appear when studying graphical models and general

joint probability distributions. Next, we introduce and describe the SSIM, a particular

graphical model for describing time-varying interaction structures among a set of sig-

nals. Finally, we detail an algorithm for performing inference on the SSIM, which also

forms the core of the new inference algorithm that we will present in the next chapter.

* 2.1 Graphical Models

In the previous section, we discussed the importance of determining the structure of

statistical dependence relationships among a set of random variables. Graphical mod-

els are concise representations of a family of joint distributions over a set of random

variables that make evident the conditional dependence and independence relationships

among them. A graphical model utilizes a graph to encode the dependences present in

a set of random variables. Each node of the underlying graph represents a single ran-

dom variable and each edge loosely represents a dependence between a pair of random

variables. The exact interpretation of an edge in a graphical model, however, depends

on whether the underlying graph is a undirected or directed. Such graphical models are

referred to as undirected graphical models and directed graphical models respectively,

and we describe both classes below.

19



N 2.1.1 Undirected Graphical Models

First, we will discuss undirected graphical models, tools which provide a powerful model

of conditional independence among sets of random variables. Let us consider an undi-

rected graphical model with underlying graph gt = {V, E}, where V is the set of vertices

and E is the set of edges. Let A c V, and denote by PA the joint distribution among

the set of random variables represented by nodes in A. An undirected graphical model

on gt then describes the family of joint distributions that satisfy the following property:

PA and PB are conditionally independent given pc if and only if there exists

no path from any node in A to any node in Bt that does not include a node

in C.

While an undirected graphical model represents the conditional independence struc-

ture in a joint distribution, further parameterization of likelihoods and dependencies

is necessary to actually specify the full distribution. The famous Hammersley-Clifford

theorem establishes a link between the conditional independence property above and a

parameterization of the joint distribution. Specifically, it states that a distribution that

is positive everywhere satisfies the property above if and only if it can be written as

p(x) = 1 II Vc(xc), (2.1)
CEC

where C is the set of all cliques in gt, xc is the joint random variable on the nodes of C,
'ic is a positive function defined for all possibe values of xC, and Z is a normalization

constant defined such that E p(x) = 1 [4].

M 2.1.2 Directed Graphical Models

In this thesis, we will concern ourself primarily with directed graphical models, also

known as Bayesian networks. Directed graphical models have directed graphs as the

underlying structure, lending themselves better to an intuitive interpretation in terms

of causality than in terms of conditional independence. Given a joint distribution p(x),
if the underlying directed graphical model is acyclic, then it is possible to write p(x) as

the product of conditional distributions of each node given its parents. Specifically, we
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can express p(x) as follows:

N

p(x) = 17 P(XiI Xp(i)). (2.2)
i=1

This factorization lends itself to a very intuitive causality interpretation - xi is causally

affected by its parents.

Identifying conditional independence in directed graphical models is slightly more

complicated. Complete conditions for independence are given by the Bayes' Ball al-

gorithm, for whose details we refer the reader to [4]. A particular useful reults of the

Bayes' Ball algorithm is that a node is independent of all other nodes in the network

conditioned on its children, parents, and children's parents, a subset of nodes called the

original node's Markov blanket.

* 2.2 Inference

In this section, we discuss some important problems in the field of inference. First,

we discuss the belief propagation algorithm, an important algorithm for computing

marginal distributions from a graphical model representation of a joint distributions.

Next, we discuss the motivation behind obtaining samples from a joint distribution,

and also algorithms for doing so that take advantage of graphical model structure.

Finally, we will consider some families of conditional distributions that when coupled

with specific prior distributions, allow for easy analytical computation of the posterior

distribution.

N 2.2.1 Belief Propagation

Given a joint distribution, an important problem is the computation of marginal dis-

tributions of a subset of the variables. In general, computing the marginal distribu-

tion of a subset of variables is computationally expensive. For example, suppose we

have a joint distribution on N k-valued random variables and we wish to compute

the marginal distribution of M of them. Determining the marginal probability for

each of the km possible values of the subset of M variables requires summing over

all kN-M possible values the remainder of the variables can take on, yielding a total

cost of O(kM - kN-M) - O(kN). However, the conditional independence information

21Sec. 2.2. Inference



present in a graphical model representation can be exploited to yield faster algorithms

for marginalization.

Belief propagation is an algorithm for computing marginal distributions of specific

random variables given a graphical model with parameters specifying the joint distri-

bution. The core idea of marginalization with belief propagation is the notion that

conditional independence between sets of variables reduces the total number of sums

that must be computed for marginalization. A full implementation of belief propagation

on a discrete distribution is given below in Algorithm 1. The runtime of Algorithm 1

is linear in the number of random variables in the graphical model [4].

Data: gt,0,

Result: p(xi) V i E V

Dt = diameter(gt);

for (i, j) E E do

m9 _=1 ;/ Initia

end

for t = 1 : 2D do

for (i, j) E E do

m-j (X) = H ei(Xi)Vij(Xij) kEN(i)\j k-+i(Xi)
end

end

for i E V do

p(Xi) c O(Xi) HjEN(i) mj-i(Xi) ; // Compute

end

lize all messages to 1.

// Update messages.

marginal distribution.

Algorithm 1. Belief propagation algorithm for discrete variables. gt is the graph underlying the

graphical model, 4 is the set of node potentials, and 4b is the set of edge potentials.

Note that Algorithm 1 makes use of a summation to update messages. Often,

however, we are interested in continuous distributions as well. In this case, we integrate

over the support of xi instead of computing a summation. Unfortunately, analytical

computation of the integral

k7 
m ()N(i)\j
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Sec. 2.2. Inference

is rarely tractable. One notable exception is the case of Gaussian graphical models,

in which all node potentials, edge potentials, and therefore message take the form of

Gaussian distributions. While belief propagation can be performed for any graph, it is

only guaranteed to converge to the correct marginal distributions in the case of a graph

with no cycles, i.e. a forest.

* 2.2.2 Sampling

Often, we are interested in computing the expected value of some function ft of a random

variable X with joint distribution px that can take on values in X. This expression is

given by

EP ft (X)] = px (X) ft (X) (2.3)
xX

in the case of a discrete random variable, or

EP[ft(X)] = jPx(x)ft(x)dx (2.4)

in the case of a continuous random variable. Even marginalization technically falls into

this class of problem, as P(X1 = x 1 ) can be equivalently written as Ep[1X1 =- 1 ], where

X1 is one dimension of X. If X is discrete, brute force computation of Ep [ft (X)] requires

summing over a number of terms exponential in the dimension of X. In the continuous

case, this requires evaluating integrals that in general are not tractable. Since exact

evaluation of Ep[ft(X)] is often either computationally or analytically intractable, we

employ Monte Carlo methods to obtain an approximation.

Monte Carlo methods approach the problem of computing the expectation of a func-

tions of a random variable by computing the function on samples taken from the joint

distribution and then averaging. The theoretical grounding for Monte Carlo methods

is based on the Strong Law of Large Numbers, which gives us

IN

N Z ft(sii) -+ Ep[ft(X)] as N -+ oc, with probability 1, (2.5)

where the Ji are independent samples taken from px. In order to employ this tech-

nique, we must be able to obtain a large number of independent samples from the joint

distribution.

23



Markov Chain Monte Carlo

Generating independent samples from a joint distribution in an efficient manner is not

easy, and significant research has been devoted to this problem. Since direct sampling

from px can be difficult hard, one approach is to use the px to construct a Markov

chain (from which samples can be taken) whose stationary distribution is the target

distribution from which we wish to obtain samples. After some initialization period,

referred to as "burn-in", samples taken from the Markov chain are close [in some sense]

to samples taken from the target distribution.

We can describe a Markov chain with its transition matrix P, where Pij is the

probability of transition from state i to state j. The distribution px is a stationary

distribution of P if

px(x) = px(x')P(xJx') V x G X. (2.6)
X/

In the continuous case, we replace the transition matrix with a transition kernel and

the sum above with an integral. A general Markov chain may have multiple stationary

distributions, which is an undesirable quality in an MCMC algorithm, as this would

provide no guarantee that samples were being taken from the correct stationary distri-

bution.

We are thus interested in the construction of Markov chains that are guaranteed

to have exactly one stationary distribution. This is property is satisfied by a class of

Markov chains called ergodic Markov chains, for whose precise definition we refer the

reader to [10]. We are thus interested in algorithms to construct ergodic Markov chains

with px as a stationary distribution.

Metropolis-Hastings

Metropolis-Hastings is an algorithm for constructing the Markov chain P with the

desired distribution px as its stationary distribution [5]. Since the target distribution

px is difficult to sample from, Metropolis-Hastings operates by sampling from another

conditional distribution, Q(--), called the proposal distribution, which is easy to sample

from but does not directly yield samples of the desired Markov chain P. The values of

px at the previous sample of the Markov chain P and at the sample from Q are then

used to determine whether to accept the new sample from Q.
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In order to determine exactly how to construct the desired Markov chain P from

the target distribution px and proposal distribution Q, we must introduce the concept

of detailed balance. A Markov chain P satisfies detailed balance with respect to a target

distribution px if

px(x)P(x'|x) = px(x')P(xIx' ), V x, x' E X. (2.7)

If P satisfies detailed balance with respect to px, then px is a stationary distribution

of P [cite source].

We can only obtain samples from Q while we desire samples from P, so we must

modify samples from Q in a fashion that yields samples from P. This can be accom-

plished by accepting the sample from Q with a certain probability, and rejecting it

otherwise. The probability of accepting the new sample x' from Q given the old sample

x is known as the acceptance ratio, which we denote by a(x -+ x'), and it is given by

a(x -* x') =p(x)Q(xlx') . (2.8)
p(x)Q(x'jx)

The full conditional distribution of P(x'x) is thus given by

min{Q(x'lx), Q(Xx')p(x) if X/ (2.9)
Q(xlx) if x' = x.

It is straightforward to show that the constructed P satisfies detailed balance with

respect to the target distribution px, and thus sampling from P asymptotically yields

samples from px.

Note that since values of px are only used in ratio form, Metropolis-Hastings allows

for sampling from px even if the distribution is only known up to a constant factor

in some unnormalized form Px. The steps of Metropolis-Hasting are detailed below in

Algorithm 2, assuming that the target distribution is provided in a general unnormalized

form Px (x).
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Data: Px,Q

Result: xi V i E {0, .. ,T}

Initialize sample chain to xo;

for t = 1 : T do
Propose x' by sampling from Q(x'lxt1i);

Compute acceptance ratio a(xt_1 -÷ X) min{1, };

X'/ w.p. a(Xt_1 - z')
Set Xt w a

xtl1 w.p. 1 - a(xti --+ x')

end

Algorithm 2. Metropolis-Hastings.

Gibbs Sampling

Although direct sampling from the full joint distribution of the vector valued random

variable X can be intractable, it can happen that sampling from a conditional distri-

bution of some subset of the dimensions given the remaining ones is possible. This is

especially likely if the joint distribution of X can be expressed with a sparse graph-

ical model containing many conditional independencies, as this allows for significant

simplification of the conditional distributions.

Gibbs sampling is a special case of Metropolis-Hastings that takes advantage of the

ease of sampling from conditional distributions to yield a very simple MCMC algorithm.

At each iteration, a dimension of X is chosen at random, and the proposal distribution

is taken to be the condition distribution of the chosen dimension given values of the

previous sample in the remaining dimensions. It can be shown that Gibbs sampling

always yields an acceptance ratio of 1, and since the resulting algorithm is guaranteed to

satisfy detailed balance, Gibbs sampling constructs a simple Markov chain that yields

samples from the target distribution.

As with all MCMC algorithms, Gibbs samplers require a burn-in period before

samples are sufficiently close to being taken from the target distribution. Note that

initialization of the Gibbs sampler, while unrelated to the eventual convergence of the

sampler, can affect the burn-in period and therefore total convergence time. Apart from

samples taken during the burn-in period, consecutive samples even from later on in the

chain are clearly correlated, so several samples are often discarded between two that
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are taken as true samples from the chain.

Result: xi V i E {o, ... ,T}

Dt = dimension(X);

Initialize sample chain to xo;

for t = 1 : T do
Sample i uniformly at random from {1, ... , Dt};

Sample xi ~ P(r' lx-)

Set x-i = X-i

end

Algorithm 3. Gibbs sampling algorithm. Here, we use the notation xi to refer to all dimensions of

x except for x2 .

* 2.2.3 Conjugate Priors

Recall from the previous subsection that Gibbs sampling generates samples from a

joint distribution by iteratively sampling from the posterior distribution of some subset

of the variables given the remaining ones. In general, computation of the posterior

distribution is not necessarily tractable, as it may require computing an intractable

integral. In certain cases, however, a mathematical relationship between a conditional

distribution and a special type of prior can yield a tractable closed form solution for

the posterior.

Suppose that a random variable X representing data has a distribution parameter-

ized by the random variable E, yielding a conditional distribution of P(XIO) which

we will sometimes refer to as the likelihood model. Suppose furthermore that a prior

distribution exists on E that has a deterministic hyperparameter -Y, which we write

as P(E; -y). We wish to compute the posterior distribution of E given X, perhaps to

generate a conditional distribution from which to generate samples in a step of a Gibbs

sampling procedure. We can approach the computation of this posterior using Bayes'
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Rule:

P(EjX) P(X y) (2.10)
P(X; -Y)
P(Xje)P(e; -Y)

fe P(X 1)Po (E; -y)d (

P(XIE)P(E;-y). (2.12)

For a general prior P(E; -y) and likelihood model P(XIE), we cannot say anything about

the form or parameterization of the posterior P(E)X;-y). However, certain classes of

likelihood models can be coupled with priors called conjugate priors such that the

posterior remains in the same family of distributions as the prior. We formalize this

notion in the definition below.

Definition 2.2.1. P(E; -y) is a conjugate prior to the likeilhood model P(X|E) if there

exists a hyperparameter value -y' such that:

P (E; -Y') = P (0 1X; - ) ac P(X I E) P(E; -Y). (2.13)

The existence of a conjugate prior for a likelihood model greatly simplified compu-

tation of the posterior. Instead of computing any complicated integral, the posterior

can be determined by simply evaluating the posterior hyperparameter -y', which can be

expressed as a function of the original hyperparameter -y and the data X. Below we

will detail certain pairs of likelihood model and conjugate prior distributions that are

important for inference procedures in this thesis.

Multinomial/Dirichlet

The multinomial distribution generalizes the binomial distribution to trials with more

than two outcomes and the categorial distribution to multiple trials. It is parameterized

by n, which is the number of trials, and by the vector of event probabilities {IrX}{= 1 ,

where each trial has K possible outcomes and E 7ri = 1. If Z - Mult(n, 7r), then the

pmf of Z is given by:

P(Z = z1, , zK17 ) nn 7 Z1 ZK

Zi .... 1 -7 1  (2.14)

The Dirichlet distribution is the conjugate prior for the multinomial distribution.

The Dirichlet distribution is parameterized with hyperparameter a = (ai,... , aK),
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which correspond to pseudocount values. Its support is the K-dimensional simplex,

consisting of the points (7i,. . . , 7rK) such that E 7ri = 1 and each 7ri E [0, 1]. Suppose 7r

is distributed according to a Dirichlet distribution with hyperparameter a. The density

function of 7r is then given by:

K

P(7r; a,..., aK) = B(a) 17 -1 (2.15)

where the normalization constant B(a) is given by:

B(a) = H=1F . (2.16)
F(Ei 1 ae)

We will now show conjugacy of the Dirichlet prior to the multinomial distribution.

Consider the posterior distribution P(7rIZ; a). We can write this as:

P(71 Z; a) oc P(Z 1r; n)P(7; a) (2.17)
K

Oc 7r1 . .. 7r1 H 7ri - (2.18)
i=1

K

= a+zi-1 (2.19)
i=1

oc Dir(7r; al + z1,... , aK + ZK) (2.20)

Dir(7r; a'), (2.21)

where a' (ai + z,..., aK + ZK)- Updating a Dirichlet prior given a multinomial

likelihood model is thus simply tantamount to increasing the counts of a by the number

of observations from each category.

Linear Gaussian/Matrix Normal-Inverse Wishart

The matrix normal distribution is a generalization of the multivariate normal to a

support over some space of matrices. We will describe this distribution in terms of

linear Gaussian model. Suppose that we wish to model the conditional distribution

P(ylx), where y E Rd and x E R'. We can model the relationship between x and y as

a linear Gaussian model, given by

y = Ax + c, (2.22)
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where A E RdX m, and c E Rd is drawn from a zero-mean multivariate normal distribu-

tion with covariance E. The conditional distribution of y given x can be parameterized

by a parameter e = (A, E), allowing us to write the conditional likelihood model as:

P(ylx, E) = P(ylx, A, E). (2.23)

We are interested in characterizing a prior on (A, E) that is conjugate to the likelihood

model above, a prior which is called the matrix-normal inverse Wishart distribution.

The matrix-normal inverse Wishart distribution is defined over A and E in a form

that factors into an inverse-Wishart distribution over E and a matrix-normal distribu-

tion on A that is parameterized by the E sampled from the inverse-Wishart distribution.

The distribution is given by:

MJVJ W(A, E; Q, ,, E, v) = MAF(A; Q, E, r,)IW(E; E, v), (2.24)

where the matrix-normal distribution on A, denoted by MA(A; Q, E, s), is given by:

MV(A; Q, E, r) = I2 /2 exp T[A - Q)T E-1(A - Q)i] , (2.25)

and the inverse-Wishart distribution on E, denoted by IW(E; E, v), is given by:

IW(E; E, v) = 2 -2 1  (2.26)
2T 7r 4 H_ _(v+2

with hyperparameters Q E Rdx,, K (E Rmxm, (E Rdxd, and v E R.

Suppose N observations of (x, y) pairs are taken from the linear Gaussian model

parameterized by A and E. Let Xn and yn denote the nth observation of x and y

respectively. The posterior update on the hyperparameters of the matrix is then given

by:

'= , + N, (2.27)

V =V + N, (2.28)

= EyXx x, (2.29)

E'=E+ EYIX, (2.30)

30 CHAPTER 2. BACKGROUND



where

EX,2 = XnX + I, (2.31)

EYx = EN 1ynX + QK, (2.32)

EN T~y + QKQT (2.33)

Zy ~ y:x ETy~ (2.34)

For more detail on the matrix-normal inverse-Wishart update, we refer the interested

reader to [7].

* 2.3 Switching State-Space Interaction Model: Graphical Model

In this section, we will describe the switching state-space temporal interaction model

(SSIM), graphical model developed by Dzunic and Fisher to model switching interaction

structures between time series with noisy observations (see Figure 2.2). To motivate

development of the model, recall the problem of learning the structure of a graphical

model from data sampled from the joint distribution. In the context of SSIM, such

structures are referred to as interaction structures, as they represent the interactions

among the variables of interest.

SSIM allows for the inference of interaction structures that vary over time. Fur-

thermore, the interaction structures are assumed to govern the behavior of unobserved

latent variables, which yield observations through an observation model. In order to

describe the evolution of interaction structures over time, we will first discuss dynamic

Bayesian networks, generalizations of graphical models that allow for variables in the

time domain. Next, we will detail linear Gaussian state space interaction models, which

represent the evolution of the latent variable sequence in SSIM and its relationship to

the observed data. Then, we will discuss certain conjugate priors, tools that are useful

for analytical Bayesian reasoning with continuous variables. We will then conclude the

section with a description of the SSIM graphical model.

* 2.3.1 Dynamic Bayesian Networks

Dynamic Bayesian networks (DBN) adopt the notion of static interaction structures to

models where the variables move through time. For each node in the graphical model

representing the static interaction structure, a DBN consists of a sequence of nodes,
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XO X X2 X 3  X4 XS

P X ---- X ---- x2 ---- x3  X4 ---- X--

DBN
P2 x - x--- x-- x x --- X-----+

P3  X0 X 1  X 2 - X3 --- 4 ...

P4  ---- X ---- x --- x ----- x-

0 1 2 3 4 5 time

P2  P1  P2

Ei E2

P4 P3 P4 P3

Figure 2.1. Dynamic Bayesian network (DBN) example. Figure obtained from [1] with permission of

authors.

one for each time point in the model. If node X is a parent of node Y in the static

interaction structure, then the DBN consists of an edge going from Xt to Yt+l for all

times t.

For example, suppose that we have a interaction structure consisting of four signals,

Pi, P 2 , P3 , and P 4 , whose initial interaction structure El is shown in Figure 2.1. The

corresponding DBN is shown above the interaction structure from times 0 to 3. Note

that a DBN allows for a change in the static interaction structure over time, as shown

in Figure 2.1 between time points 3 and 4. For purposes of tractability, we assume that

each node has itself as a parent, an assumption that is typically reasonable in practice.

* 2.3.2 Linear Gaussian State Space Interaction Model

A general state space model represents a system in terms of a set of input variables, a

set of state variables that are not directly observable, and a set of observed variables

that are derived from the state variables in a possibly stochastic fashion. State space

models can represent systems that evolve in either continuous or discrete time, but in

this thesis we will restrict ourselves to consideration of discrete time systems. Let us
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represent the sets of input, state, and output variables as vectors which we name X,

u, and Y respectively. A general discrete-time state space model is determined by the

functions ft and gt, respectively called the transition and observation models, as shown

in the equations below:

Xt = ft(Xt-I,ut) (2.35)

Yt = gt(Xt,ut). (2.36)

An important subclass of discrete-time state space models are the linear discrete-

time state space models, in which ft and gt are both linear functions of their arguments.

This is equivalent to expressing ft and gt in terms of matrix operations on their argu-

ments, as shown below:

Xt = At X_ 1 + Btut (2.37)

Yt = CtXt + Dtut. (2.38)

We will now restrict the input vector ut to be only stochastic, i.e. zero-mean noise.

Furthermore, we will restrict the matrices Bt and Dt such that any row index that

corresponds to a nonzero row in Bt must correspond to a zero row in Dt, and any row

index that corresponds to a nonzero row in Dt must correspond to a zero row in Bt. By

doing so, we have effectively decoupled ut into two subvectors, one that only influences

the transition model, and one that only influences the observation model. Denote the

transition subvector by ut,1 and the observation subvector by ut,2, and define Et = Bt, 1

and ct,obs = Dtut,2. Our restricted linear state space model is now described by:

Xt = At Xt 1 + ct (2.39)

Yt = CtXt + Cobs,t. (2.40)

Suppose now that Et and cobs,t both have multivariate Gaussian distributions with

mean zero and covariance matrices Et and Eobs,t respectively. Since the family of

multivariate Gaussian distributions is closed under linear combinations, taking X0 to

be distributed according to a multivariate Gaussian as well yields multivariate Gaussian

distributed Xt and Y, for all t > 0. So far, we have described what is called a linear

Gaussian state space model.

Finally, we wish to impose the notion of interaction structure described above onto

the linear Gaussian state space model. Let the parent set of the ith entry of X (called
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Xi) under the interaction structure active at time t be denoted by p~a(i, t). In this thesis,

we will restrict the ith entry of Y, written as Y', to depend only on X' and observation

noise. Furthermore, we will restrict the number of possible observation models to 1,

thereby alilowing no time variation of the observation model. We can thus write our

final linear Gaussian state space interaction model as a collection of models for each

element of X, shown below for X':

A X_ ' +t , Ar [(O, E) (2.41)

Y| = C' Xt + o bs, Eobs -AP(O, Ebs) (2.42)

We will often write the joint parameters of the transition model as 6 (A', E') and

of the observation model as = (Ci, Eobs). Note that we can also interpret the above

equations as specifying the conditional distributions of Xt and Y as follows:

P(XIz it1' ,) = .f(Xt; AXit ) (2.43)

P(Y|t |Xt', ') = .A(Y|; CzXt, E'bs (2.44)

* 2.3.3 Graphical Model

We finally turn to describing the graphical model of SSIM, shown in Figure 2.2. Suppose

we wish to perform inference over the interaction structures among N objects as the

system evolves from time t = 0 to T. In general, each of the N objects can have any

subset of the N objects as a parent set. Since there exist 2 N possible parent sets for each

of the N objects, the total number of possible interaction structures over N components

is given by (2 N)N _ 2 N2 , which is superexponential in the number of objects. In order

to restrict ourselves to a tractable number of possible interaction structures to reason

over, we limit the maximum number of parents any node can have to M,
th

Let Xt denote the state of the i object at time t, let Et denote the interaction

structure active at time t, and let 9 t denote the parameters of the transition model

active at time t. Recall that an interaction structure in a dynamic Bayesian network

consists of a set of parents from the previous time point for each node. Given an

interaction structure and transition model parameters, we can write the distribution of

Xt as P(XtlXt(f' t), where pa(i, t) is the parent set of Xt given by Et, and where

O0 is the parameter of the transition model for object i. We assume independence

of transition models across all N objects, so we can write the full distribution of Xt
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conditioned on Xt_1, interaction structure, and parameters as:

N

P( I|Xt _1, Et, Ot) = P(Xt X|ia , ) ). (2.45)

Given the graphical model structure of SSIM, we can write the full distribution of X

as:

N

P(X Xt- 1, Et , Ot) = f p( Xti|Xpa(i,t)0i ( 2.46)
i=1

Next, suppose that the active interaction structure and transition model parameters

at any point in time comes from one of K available structure/parameter pairs. Let

Z E {G , ... , K} denote the index of the structure/parameter model at time t. When

indexed by the model number instead of the time, the interaction structure and model

parameters are written with a tilde. We can express this equivalence as Et = Ez, and

Ot = Ozt. Thus, we can rewrite the distribution of Xt as:

P( I|Xt -1, Et, Ot) = P(XtX Z , F 0) (2.47)

= P(XtXti 1, zt,0 zt) (2.48)

N

= lp (XtI |Xp-a(i, Zt), 6i. 2.9

We refer to Z as the switching sequence, and to the value of Zt as the switching state

at time t. We impose a first order Markov chain on the switching states, with initial

and transition probabilities given by the multinomial distributions of 7r, which we detail

below.

Finally, we assume a linear Gaussian state space model on the latent state trajectory

X and the observed sequence Y. The transitions of X according to the model has

already been described above. The observation model, parameterized by , describes

the dependence of Y on X. We assume that each entry i in Y, which we denote by

Y/, is depenedent only on Xt and the noise model for object i, which we denote by (.
Thus, we can write the distribution of Y/ as:

N

P (YtXt , =( P (Y|| IXti, (12.50)
i-1
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Zi Z2 Z3 - - -I-- Z.. Z.

X0 X I X2 X3 -.... X-I XT

Figure 2.2. State-space switching interaction model (SSIM). Figure obtained from [1] with permission

of authors.

The relationships between the variable sequences X, Y, and Z are governed by the

parameters E, 0, ir, and . These dependencies are depicted in the SSIM graphical

model (Figure 2.2). Next, we detail the parameter variables E, 0, 7r, and some more,

paying particular attention to their prior distributions.

Interaction Structures and Transition Model Parameters: E, 9

The variables {E, #}1:K are a set of K interaction structures and transition model

parameter sets, exactly one of which can be active at any time. Here, we will discuss

the distribution of a single pair of an interaction structure and its transition model

parameters, which we will denote here as F, 0, and which we will commonly refer to as

a structure-parameter pair. While k and 9 are written as separate random variables,

the two variables are intimately coupled, as the very support of 9 is dependent on the

value of F. Note that E and 9 are the interaction structures and transition model

parameters respectively from our discussion of linear Gaussian state space interaction

models.
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Recall that an interaction structure k is determined by a vector of a specific parent

set for each object in X. We adopt a prior on E, called the structural prior, that is

parameterized by the hyperparameter vector 3, which contains a scalar value for each

object-parent set pair. The prior probability for any structure assumes a modular prior

on structure, and is therefore proportional to the product of these scalar values for each

object-parent set pair in the structure, as shown here:

1 N N

P(E; 0) = Z( 11 ) '35a(i) , (2.51)
i=1 i=1

where Z(3) is a normalization constant chosen so that EL P(E; /3) = 1. Recall that

since the total number of permissible interaction structures is polynomial in N, evalu-

ation of the Z(13) is computationally tractable.

The parameter set 0 is a collection of N random variables, one for each object-

parent set pair present in the interaction structure k. We will now detail the prior on

the distribution of 0 given t and the hyperparameter -y. Like 3, y is a vector that

contains an entry for each possible object-parent set pair. Unlike 3 which contains a

scalar for each such pair, however, y contains a matrix-normal inverse-Wishart prior for

each object-parent set pair. First, we assume parameter independence across objects,

giving us the following decomposition of the full prior on 0:

N

P(0 1E; fl P(61 k;). (2.52)
i=1

Second, we assume that the prior probability on parameters for a given object i is a

function only of the entries of -y that correspond to the parent set of i in F. This

assumption, which we call parameter modularity, is given by:

P(0'1E; yi) = P(0i; y(,Ta ). (2.53)

Recall from our discussion of linear Gaussian state space interaction models that 0' is

simply a tuple of a transition matrix and noise covariance matrix, which we write as

-' = (A', E). We can now write the prior in matrix-normal inverse-Wishart form:

P(O ; 7iAi)=P(AE; ,() (2.54)

- MAIVW(Ai, E; M Qa(, fia(i), 4i-a(i) ,qifira(i)) (2.55)

= MN(A', i; qZ,5a(i), Ei)Iw (Ei. 1 iqa(i) , pi,15a(i)). (2.56)



Thus, the full prior on coupled interaction structure and parameter set E, 0 is given by:

P(5, 0; 0, -y) = P(5; #)P(015; -y) (2.57)
N

0C 0i,15-a M.4ArW(A', E:; Mi'"a(', fe A 'N. (2.58)
i=1

Discrete Markov Switching State Model: 7r

The discrete Markov switching state model 7r governs the transition dynamics of Z

in a fashion similar to how k and 9 govern the transition dynamics of X. 7r consists

of an initial multinomial distribution 7ro, and a collection of K transition multinomial

distributions {r, ... , 7rK }. The initial multinomial 7ro defines the distribution of Z,

given 7r, such that:

P(Zi = zi 17r) = 7ro,zi, (2.59)

where 7ro,21 denotes the z1 t entry of pio. Similarly, a transition multinomial 7ri defines

the conditional distribution of Zt given Zti1 and 7r such that:

P(Zt = ztIZt_1, 7r) = rz, _ 1,zt . (2.60)

Like t and 9, 7r also has a conjugate prior, which in the case of a multinomial

distribution is a Dirichlet distribution. Since 7r is not just a single multinomial distri-

bution but actually a collection of K + 1 multinomial distributions, the prior on 7r is a

collection of K + 1 Dirichlet distributions. The prior on 7ri is given by:

P(7ri; ai) = Dir(ri,, ... ri,K-1; i,1, , ai,K)- (2.61)

Observation Model: (

The observation model variable is similar in nature to the parameter set variable 0. (
consists of a collection of variables ' for each entry in the observation vector Y. We can

write ( as the tuple (C', Es'), where these variables determine the observation model

dynamics in the linear Gaussian state space interaction model, as shown in Equation

[]. In this thesis, we will typically fix C', to be a constant, most often 1, leaving us

= sbs. Thus, the prior of ' is given by an inverse-Wishart distribution with prior
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6f. Assuming independence of each entry of , we can write the full prior over i as:

N

P(( f) P( i; 6 )

N

=JIW( i; Kiobs, "bs)

(2.62)

(2.63)

* 2.4 Switching State-Space Temporal Interaction Model: Inference

Dzunic and Fisher performing inference on the switching state-space interation model

by obtaining samples from the joint distribution of (X, Z, {E, 0}, 7r, ) using a Gibbs

sampling approach. The high level Gibbs sampling algorithm is given below. Details of

each of the steps of the Gibbs sampler along with the initialization method are covered

in the subsection below.

Algorithm 4. SSIM Gibbs sampler.

* 2.4.1 Sample X ~ P(X I Z, Y, E,0 ,6 )

Samples of X are obtained jointly using a backwards message-passing and forwards

sampling algorithm. Note that we can factor the conditional distribution of X as:

T

P(X|IZ, Y,ZE, 0, P(X(,|IZ, Y, , H( P(Xt |Xo:tI, Z, Y,Zki )
t=1

T

=P(X|Z, Y, F, 0, H) P(XtIXt_1, Z, Y, , 6, ),
t=1

(2.64)

(2.65)

Data: YO:T

Result: Samplei V i E {,... , T}

Initialize sample chain;

for t = 1 : number of samples do

Sample X ~ P(XIZ, Y, k, O, );

Sample Z P(ZIX, 6, k, 7r);

Sample r~ P(7rIZ; a);

Sample F, ~ P(E, 61Z, X; /, y);

Sample ~ P(JX, Y; 6);
end
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where in the second equation, we made use of the Markov property of the SSIM directed

graphical model.

Although each factor in the expression above only expresses a dependency between

adjacent time points of X, each time point of X has a dependency on all of Y. In order

to incorporate this dependency, we employ a message-passing algorithm. The first phase

of the algorithm involves passing messages back from time T up to time 0, which provide

information from future observations to a node at time t. Afterwards, the messages,

observations, and previous values of X are used to sample X going forwards. The

algorithm for sampling X ~ P(XIZ, Y, E, 9, ) is given below, and the specialization

of message-passing and sampling for the case of a linear Gaussian state-space model is

detailed afterwards.

Data: Z, Y, ,9,

Result: X

mT(XT) = 1;

// Computation of Backwards Messages

for t = T - 1 : 0 do

M, (Xt) = fX" P(Xt+i |zt, Ezt+1,, zt+1)P( t+1|lXt+1)mt* (Xt+1)dXt+1;

end

// Forward Sampling

Compute P(XoIZ, Y, E, 9, ) oc P(Xo)P(YoIXo, )m0 (Xo);

Sample X0 ~ P(XoIZ, Y,E,9, );
for t = 1 : T do

Compute P(XXo:tI, Z, Y, k, 6, ) (x P(XtlXti1, Ezt, Ee )P(YtlXt, )mt(Xt);

Sample Xt ~ P(XtIXo:t_1, Z, Y, k, 9, f);
end

Algorithm 5. Sampling of X ~ P(XIZ, Y, F, 6, ).

Computation of Gaussian Messages

Since we are operating in a linear Gaussian state space model, exact computation of the

integral detailed in the backwards message-passing step of Algorithm 5 is tractable. The

linear Gaussian model implies that all transition probabilities P(Xt I 1Xt-1, Ezt, ezt) and

all observation probabilities P(YtXt, ) take the form of Gaussian distributions. Since
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the message mT(xT) = 1 can be considered to be a Gaussian with infinite covariance,

computation of mT-l(XTi) requires integrating over the product of three Gaussian

factors, which yields a Gaussian distribution. Inductively, all messages passed back-

wards can be written as a Gaussian distribution parameterized by a mean vector and

covariance matrix.

Here, we detail the computation of the Gaussian messages, which we express in

a mean-covariance parameterization. Let mT(xT) = 1, which is equivalent to setting

Am = 0 and (ET) - l = 0. Let (Azt, Ez,) = Ez, denote the transition model and noise

covariance operational at time t, and let Eb8 = represent the observation model noise

covariance. Then, for t E {T - 1, ... , 0}, we recurisvely define the message mean p'"

and message covariance E" as shown below, in which we adapt notation from [1]:

Bt = E1 Azte (2.66)

E- Yt+1 + EM1 41 (2.67)

= - + E~1 (2.68)

EM T(EZ - *)Bt)-l (2.69)

mt(xt) = Af(xt; p"m, E"m). (2.70)

The process of forwards sampling requires sampling from a product of Gaussians,

which yields a Gaussian distribution. First, we detail the sampling of Xo, which involves

sampling from the product of two Gaussians:

E'f - - -1 + EM-1 (2.71)
0 -obs O(71

O= E'0(E-sYO + 0 POM") (2.72)

Xo ~ A(xt; p', E). (2.73)

Obtaining subsequent conditional samples of Xt requires sampling from the product of

three Gaussian factors. Here, we detail the recursive sampling of Xt given Xt- 1 , Zt, Yt,

and mt(xt):

E' = E-1 + E-1 + EM-1 (2.74)

't = (E'AztXt-1 + E- Yt + Em" " M) (2.75)

Xt ~ (Xt; , E'). (2.76)
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Altogether, these steps comprise a method for obtaining a joint sample of XO:T condi-

tional on Z, Y, E, and 0 in a linear Gaussian state space model.

N 2.4.2 Sample Z ~ P(ZIX, E, 0, ir)

Next, we are interested in sampling the discrete switching sequence Z given X, F, 0,
and 7r. The sampling procedure, which consists of a backwards message-passing step

followed by forwards sampling, is remarkably similar to the procedure for sampling

X ~ P(XIZ, Y, E, 0, ), due to the analogous state-space model structure. Here, we

will factor the conditional distribution of Z as:

T

P(ZIX, E, 6, 7r) P(Z IX, E, 6, 7r) fJ P(ZtZi:t_, X, F, 6, ) (2.77)
t=2
T

= P(Z|Y, F, 0, ir) 11 P(ZtZti_, X, E, 0, 7). (2.78)
t=2

Unlike in the case of sampling X, however, we deal entirely with discrete distribu-

tions and messages here, as Z is a discrete-valued random variable. The algorithm for

sampling Z is given below.

Data: X, t, E, 7r

Result: Z

mT (zT) = 1;

// Computation of Backwards Messages

for t =T - 1 : 1 do

Imt(zt) = Ezt+1 P(Zt+llzt,7)P(Xt+1|Xt.,Ezt+1,, OZte)mt+1 (Zti);

end

// Forward Sampling

Compute P(ZiIX, F, 6, 0r) c P(Zijir)P(XI1Xo, Ez1, Ez1)m 1(Z);
Sample Z1 ~ P(Z1 X, F, 0, 7r);

for t = 1 : T do

Compute P(ZtIZ:t_1, X, E, 6, 7r) c P(ZlZt_ 1 , ir)P(XtJXt_, Ezt, Oz)mt(Zt);
Sample Zt ~ P(Zt ZI:t_1, X, F, 0, ir);

end

Algorithm 6. Sampling Z ~ P(ZIX, E, 6,7r).
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* 2.4.3 Sample k, 9 P(E, 61Z, X; /3,7)

Sampling the structure/parameter models k, 9 is arguably the core step in the Gibbs

sampler for SSIM. Since each of the K models has an independent prior and separate

likelihood models, so we can decompose the posterior distribution of E, 0 as follows:

K

P(E, 61Z, X; /, 7) = f P(Ek, k I {Xt, Xt I}t:z,=k; 3, Y). (2.79)
k=1

Next we decompose the posterior distribution of a single structure/model based on the

parent sets in the interaction structure:

P( Ek, Ok|{ Xt, Xtl1}t:zt,=k; /,7) (2.80)
N

= P(15a(i, k), ' 1{Xt, Xt_1}t:z,=k; 13, y) (2.81)

N

= P(jia(i, k) {Xt, Xt- 1}t:zt=k; O)P(9kj5-a(i, k), {Xt, Xt-1}t:zt=k;7). (2.82)

We will now consider the computation of the posterior distribution of parameter sets.

Recall that a different parameter set exists for each object-parent set pair. Thus, we

can write:

P(OJp1a(i, k), {Xt, XtI1}t:zt=k; 7) - (P(i ' }It:zt=k;7), (2.83)

where this update can be performed analytically by updating the hyperparameter '7 due

to the conjugacy of the multivariate normal likelihood model of P(X lX 2ipalk), giJa(ik))
with the matrix-normal inverse-Wishart prior distribution of P(6 'P5a(ik); 7). Next, we

will consider the posterior distribution on parent sets. We apply algebraic manipulations

to obtain an expression for the posterior distribution of parent sets in terms of the prior:

P(pja(i, k) {Xt, Xt_1}t:zt=k; /) (2.84)

oc P(p1a(i, k), {Xt, Xt_1}t:zt=k; /) (2.85)

P(pja(i, k); /)P({Xt, Xt_1}t:Zt=k Ija(i, k); /) (2.86)

= P(15-a(i, k); ) _ P(X ;Xp~~,k)). (.7
t:Zt=k

Finally, we must compute Ht:Zt=k P(Xi Xpa(ik); 7), which is likelihood of XI with

parent set jia(i, k) at all times t indexed with model k, with all parameters marginalized



out. We can write this as:

H P(XX"a~i~k); 7y) (2.88)
t:Zt=k

ipik)p(6i,1ja(i~k);,,) F11P(XtiXtaik), i,15a(i,k;y d6, ' qik) (2.89)
k t:Zt=k

Computation of the above integral is analytically feasible, once more due to the conju-

gacy of the likelihood model of P(Xi Xtp2a(i,k), 6ia(i,k); Y) with the prior distribution of

p( 6 i,1Pa(ik); -y). After updating both 3 and -y, new structure/parameter models can be

sampled directly from the posterior.

* 2.4.4 Sample 7r ~ P(7r Z; a)

Sampling the discrete state transition model 7r given Z simply requires updating the

hyperparameter a due to conjugacy of the Dirichlet prior with a multinomial likelihood

model. Let Nij denote the number of times that Zt_1 = i and Zt = j, and let Noj

denote the number of times that Z1 = j. Then, for each multinomial iri, we update the

hyperparameter of the Dirichlet prior ai = (ai,1, . . . , ai.K) to

O's = (ai, + Ni, 1 , .. . , ai,K + Ni,K)- (2.90)

We can then sample 7r directly from P(7r; a').

* 2.4.5 Sample ~ P(QJX, Y; J)

The sampling ~ P( JX, Y; 6) is similar to sampling 6. We have independence of

observation models across entries of Y, so can write:

N

P(JX, Y; 6) = 17 P( Xi, Yi; & ). (2.91)

The computation of P( i Xi, Yi; 6i) is analytically tractable, due to the conjugacy of

the multivariate Gaussian likelihood model to the normal inverse-Wishart prior on .

We must simply update 6 and sample from from the posterior parameterized by 6'.

* 2.4.6 Initialization

In order to initialize the model, the transition model for every object at every time is set

to have the identity matrix as the transition matrix, and a covariance matrix drawn from
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a prior specified in the algorithm. Backwards message-passing and forwards sampling is

then performed on X to obtain an initial sample of X given the fixed transition models

and the observed sequence Y.

A discrete transition model 7r is then sampled from the prior parameterzied by

a. The switching sequence Z is then initialized according to the sampled 7r. Finally,

structures and parameters k and 0 are sampled from their posterior distribution given

X, Z.

* 2.5 Summary

In this chapter, we introduced and developed many concepts central to the problem of

studying time-varying interaction structures among a set of signals. First, the graph-

ical model representation of joint probability distributions was discussed, both in the

directed and undirected forms. Next, techniques for performing inference in graphi-

cal models and general joint probability distributions were discussed. Specifically, we

discussed belief propagation for the problem of marginalization, various MCMC meth-

ods for sampling, and conjugate priors as a means to analytically evaluate posterior

distributions.

The remainder of the chapter dealt with the switching state-space temporal interac-

tion model, or SSIM. First, we described the concepts of dynamics Bayesian networks

and linear Gaussian state space interaction models in order to motivate development

of the SSIM graphical model. Next, we described the SSIM graphical model, which

consists of a discrete switching sequence Z, a latent state sequence X, and an observed

data sequence Y, linked together by several model parameters. Finally, we detailed a

Gibbs sampling approach for obtaining samples from the SSIM joint distribution. In the

next chapter, we will extend SSIM to allow for online inference, without specification

of the number of transition models.
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Chapter 3

Online Nonparametric Switching

Temporal Interaction Model

In Chapter 2, we detailed the switching state-space temporal interaction model (SSIM)

of Dzunic and Fisher, which described the dynamics of a linear Gaussian graphical

model whose transition dynamics vary over time. Specifically, the model assumes an

observed data sequence Y, a latent data sequence X whose evolution is governed by

the transition dynamics, and a discrete sequence Z which indexes the transition model

operating at any time. To perform inference on this graphical model, Dzunic and Fisher

infer the latent sequence and switching states by use of a Gibbs sampler. We will refer

to their algorithm for inference on SSIM herein as A 1 .

In this chapter, we describe the development of an online nonparametric switching

temporal interaction model (ONSTIM) inference algorithm, i.e. one that is able to

incorporate observations as they arrive and that does not require specification of the

number of transition model states. First, we motivate in greater detail the develop-

ment of such an inference algorithm. Next, we describe the model that we assume for

the generation of state sequences with an arbitrary number of states. Then, we give a

high level overview of ONSTIM and provide justification for some of our design choices.

ONSTIM consists of several subcomponents, including a run of A 1 , one of two initial-

ization procedures, and a run of a Gibbs sampler similar to A 1 which we call A 2 . The

remainder of the chapter is devoted to describing in detail the initialization procedures

and A 2 -
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* 3.1 Motivation

Suppose we have taken observations of a time series Y from times t = 0 through t = T.

One can use the SSIM inference algorithm (see Algorithm 4) to obtain samples from the

joint distribution of all variables in the SSIM graphical model, namely X, Z, 7r, E, 6,

and , at all times from 0 through T. Suppose now that we obtain a new observation for

time T + 1 and we wish to incorporate this new information into our existing samples.

To do so involves, at the very least, obtaining samples at T + 1 of the latent data

sequence, XT+1, and of the switching state index sequence, ZT+1. Taken further, one

could attempt approaches that involve conditioning the structure and parameters on the

new data, resampling the discrete state transition model, resampling the noise model,

or conditioning samples of X and Z at older times on the new information.

If we are equipped only with the SSIM inference algorithm, however, the only option

we have to incorporate the obseravtion YT+1 into our inference procedure is to perform

full smoothing on all times from t = 0 through t = T + 1. In a variety of applications,

it is desirable to employ faster methods to perform inference incorporating the new

observation data without undertaking expensive computations over all of the previously

received data. Full incorporation of YT+1 into the previously computed values, i.e.

conditioning all previously taken samples of all variables on YT+1, would effectively

amount to full smoothing by running SSIM inference over all times. However, if we are

only interested in performing inference at time T + 1, we can employ a much quicker

filtering approach instead. If we wish to perform inference on time T + 1 and also on

times just before T + 1, we can perform fixed-lag smoothing, where the time horizon

of interest determines the size of the lag. In this chapter. we will construct an online

inference procedure that incorporates the new data YT+1 by sampling variables at time

T + 1 and possibly in the recent past conditioned on the new observation.

Additionally, SSIM inference requires a priori specfication of the number of differ-

ent transition models, {E, }1:K. The number of different structure/parameter states

present in an observed sequence is often unknown a priori, and specifying a number

too low can at the very least force different states to merge, while choosing a number

too high can cause splitting of a single state. It is thus also desirable to develop an

inference procedure which not only allows for online inference, but in which the number

of states K can also vary given the observed data. In the context of online inference,
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this takes the form of modeling the arrival of new structure/parameter states over time

with the arrival of new observations. To allow for this variation in model complexity,

we will employ a Bayesian nonparametric approach to modeling the arrival of the new

states, on which we provide some background information in the next section.

Given the application in this thesis to financial datasets, the motivation behind the

development of an online inference scheme and a Bayesian nonparametric approach to

the number of states is particularly apparent. The arrival of a new structure/parameter

state could correspond to some sort of market regime shift in which dependencies among

a set of financial instruments are shuffled and/or altered. As a trader or investor, it

would be preferable to recognize this shift as soon as possible (ideally when the data

arrives), and to incorporate knowledge of the shift into any subsequent decision making.

In the next section, we will provide an overview of a generative model underlying the

inference procedure of ONSTIM.

* 3.2 State Sequence Generative Model

In Chapter 2, we described the graphical model and corresponding inference algorithm

for the switching state-space interaction model, or SSIM. Inference on SSIM is param-

eterized by K, the total number of switching states present in the model, and this

parameter must be assumed a priori. We provide an alternative parameterization of

the model that lends itself to more effective use by users that have a sense of the prior

on the arrival of new interactins structures and on the recurrence of the currently ac-

tive interaction structure. To this end, we will describe a generative model with a

parameter that characterizes the arrival of new states, and another that accounts for

the recurrency of existing states, which we call &new and aself respectively.

In this section, the discrete state transition model 7r for the state sequence is fixed

according to a set of user-chosen parameters instead of being sampled from a Dirichlet

prior with hyperparameter a. Note that this is approximately equivalent to placing

an extremely strong prior on the transition model by means of very high values for

entries of the Dirichlet hyperparameter a, causing the Dirichlet prior to concentrate

very strongly around its peak and effectively resemble a delta function around the 7r

of choice, as shown in Figure 3.1. Fixing the transition model 7r manually allows us to

directly study the effects of the choice of 7r on the results of inference.
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Figure 3.2. State diagram of the nested two-level Markov generative model, with each state indexed

as (Zt, Kt). The outer chain is depicted horizontally, corresponding to transitions between the number

of total states. The inner chain is depicted vertically, corresponding to transitions between states that

have been instantiated.

Markov Chain Model

One approach to visualize the generative model described above is to interpret it as a

nested two-level Markov chain, as shown in Figure 3.2. The outer chain is a transi-

tion model among Kt, the number of total instantiated states, while the inner chain,

represented by 7rK, is a transition model among the K instantiated states themselves.

Note that since a different 7rK holds for each value of K, it is useful to characterize the

entire distribution with parameters from which both the outer Markov chain and all

the inner transition models among the states can be computed. We achieve this by use

of the abovementioned parameters, aself and anew, which characterize the probability

of self-transition and new state instantiation respectively. The transition probabilities

from any state to any other existing state are chosen to be uniform, so as to simplify

the model for ease of reasoning over recurrence and new state arrival probabilities.

Let Zt denote the active model index at time t, and let Kt denote the total number

of states that have been instantiated up to time t. We can express the distribution of
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Zt+1 given Zt and Kt as:

a se1f + if t+1 _ t, Kt+1 = Kt,{ self +anew +Kt- IfZ 1 -ZK 1

P(Zt+1, Kt+i|Zt, Kt) + +K i1 f Zt+1 # Zt, Kt+1 = Kt, (3.1)

anewK if Zt+1 =Kt+1 = Kt + 1.

The conditional distribution described in Equation 3.1 offers three possibilities: the

system can either return to its original state, transition to a different existing state, or

instantiate a new state. The value of aself is typically chosen to be very high, implying

a very strong prior on recurrence to the current state. The value of anew, though

typically not nearly as high as aself, is still chosen to be significantly higher than 1.

Thus, for low Kt, specifically for Kt < anew the probability of instantiating a new state

is higher than the sum of the probabilities of transitioning to any existing state besides

the current state.

So far, we have described the full state transition process among joint states of

the form (Zt, Kt). Since we are interested in the distribution over the total number of

states at time t, we will consider the transitions over time between macrostates which

we define by the total number of instantiated states up to a given time, denoted by

Kt. Obtaining the transition distribution between the macrostates Kt is equivalent to

marginalizing out the state variable Zt. This gives us the conditional distribution:

aself+Kt- 1  if Kt = K
P(Kt+i1Kt) = asef+ane+Kt-1 , (3.2)

ane+ if Kt+1 = Kt + 1.
Oself +anew+Kt1:

The corresponding Markov chain diagram for this transition distribution is shown in

Figure 3.3. As more states are instantiated, the denominator for the probability of new

state instantiation increases while the numerator remains constant, implying a lower

rate of new state instantiation over time.

The generative model described above for the full random variable (Zt, Kt) has many

similarities to the sticky hierarchical Dirichlet process hidden Markov model (HDP-

HMM) of Fox et al., for whose details we refer the reader to [2]. Both models describe the

set of possible switching states and their transition kernel nonparametrically. However,

while state in the sticky HDP-HMM is indexed only by Zt, in our generative model,

state is indexed by the joint variable (Zt, KI), and transitions do not exist between all

possible pairs of (Zt, Kt).
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Figure 3.3. Markov chain macrostate diagram, with macrostates corresponding to total number of

instantiated states. Transitions between states are labelled with probabilities, as defined in Equation 3.2.

Distribution of Kt

A quantity of interest is the distribution over the number of instantiated states at time

t, namely Kt, as a function of t and the parameters aself and anew. Denote by PK the

probability of instantiating a new state if K states currently exist, which corresponds

to the second case in Equation 3.2. Although the generative model can instantiate an

arbitrary number of states, note that at time t, it is not possible for more than t states

to have been instantiated, i.e. Kt < t. Thus, for any finite t, we can reason over the

distribution of Kt in terms of the distribution of Kt_ 1 and PK_ 1 . Specifically, if we

view the distribution of Kt as a t-dimensional vector, where the kth entry represents

P(Kt = k), we can write the following recurrence:

(1 - pk)P(KtI = k) if k = 1,

P(Kt = k) = Pk-P(Kt-I k - 1) + (1 - Pk)P(Kt-1 = k) if 1 < k < t, (3.3)

lPk-1P(Kt_1 =k - 1) if k =t.

If we wish to compute the distribution of Kt for 1 < t < T, we must compute P(Kt = k)

for 1 < k < t, and we must do this for every t between 1 and T. Computing the

distribution of Kt is thus an O(T2 ) procedure.

While Kt is positive for all k < t, the vast majority of the possible values of Kt

occur with very low probability. Instead of attempting to visualize the full distribution,

we will instead display summary statistics, namely the expected value and mode, of the

distribution of Kt as a function of t for certain parameter values of anew and aself. In

Figure 3.4, we display the probability of new state instantiation and the distribution

of Kt for (anew, aself) (50, 5) and (5, 50), where we set the maximum time to be

T = 1000.
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Figure 3.5. Contour map of the average number of instantiated states across samples (K) in the

(Cnew, aself)-plane for T = 1000 time points. Data points were computed with 2,000 samples each per

(anew, aself ) pair.

Note that high values of aself encourage the process to remain in the current state,

thereby suppressing the instantiation of new states, while high values of a,,, directly

encourage instantiation of new states. It is thus of interest to study the interaction

between aself and cnew. Shown in Figure 3.5 are the average number of instantiated

states in simulations run with different values of aself and anew. The highest values of

k occur in the bottom right, where anew is high and aself low, while the lowest values

of k occur in the top left.

M 3.3 Overview of ONSTIM Inference

So far in this chapter, we have described the relevant generative model that underlies

our inference procedure. We now switch gears to describing the procedure of inference

itself. ONSTIM allows for an online approach to detecting interaction structures by

dividing the observed sequence into many batches, each of length B, and only perform-

ing inference on the most recent batch. We now detail the batch framework employed

in ONSTIM, and then describe how inference is performed using this framework. The

procedure is concisely documented in Algorithm 3.3, and a visualization of the batch
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framework is presented in Figure 3.3.

The batch framework for any experiment consists of the subdivision of all time

points in the observed sequence into possibly overlapping sets called batches. A batch

framework is parameterized by the batch length, which we denote here as B, and by

the batch offset. The batch offset is the distance in time from the last point of a certain

batch to the last time point of the subsequent batch. Since batch length and batch offset

are constant over the course of an experiment, the batch offset can also be interpreted

as the number of points in a given batch that are not members of the subsequent batch.

For instance, if batch 1 contains times t = 1 through 10 and the batch offset is set to

2, then batch 2 will contain time points t = 3 through 12. We will explore the effect of

the choice of the batch offset scheme on the inference results in Chapter 4.

Recall from Chapter 2 that averaging over many samples provides an unbiased

estimator of expected value that has much less variance than a single sample. Therefore,

in order to better model the full joint distribution over all variables of interest, instead

of sampling only one sequence of batches, we sample S parallel batch sequences, as

seen in Figure 3.3. Equipped with multiple samples, we can better characterize the

expected value of any function of the joint distribution that is of interest to us. For

example, if we are interested in the probability of some event A occuring, we can use

the approximation p(A) ~ i_1 1 A,i.

We now provide a brief high-level overview of ONSTIM. In each of the S parallel

batch sequences, inference on the first batch is performed by directly using the SSIM

inference algorithm. After a sufficient burn-in period, a single sample is taken from the

sample chain, which is then used to help initialize the next batch. Subsequent batches

are initialized partially with samples from previous batches, and partially with samples

obtained from initialization procedures described later in the chapter.

Suppose that all time points from t1 through t2 - 1 are shared between two consec-

utive batches. In the latter batch, those shared time points are directly initialized to

their sampled values from the previous batch. Time points that are new to the latter

batch are initialized using either Algorithm 8 or Algorithm 9. If a new interaction

structure and transition parameter model are sampled during this initialization, the

model is instantiated into the set of available transition models. Regardless of whether

a new model is instantiated, Gibbs sampling is then performed for a fixed number of

rounds using Algorithm 10, and the final sample is taken and stored.
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Figure 3.6. S samples are taken in parallel. Each sample is divided into batches of length B, which

move forwards by the batch offset. Gibbs sampling is performed on each batch. The times ti, t 2 , and

t3 correspond to their respective descriptions in Algorithm 3.3. ti is the first time point of the current

batch, shown as a solid block, t3 is the final time point of the current batch, and t2 is the first time

point to come directly after the last time point in the previous batch, which is shown as a dashed block.

Note that t2 was not in the previous batch. A magnified version of a batch from the final sample is

shown at the bottom of the figure, with the batch offset, regime for initialization, and regime for full

sampling all labelled.
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The batch framework allows for simple filtering and fixed-lag smoothing approaches

to online inference. Filtering, the process of performing inference with data only through

the present, can be accomplished at some time t by considering samples taken from the

batch which ends at time t. Fixed-lag smoothing, on the other hand, allows for the

utilization of some fixed horizon of data after the time point of interest to improve

inference results. Fixed-lag smoothing for some lag A can be similarly performed by

using samples taken from the batch ending at t + A, as this incorporates information

note from A time points into the future. Note that this implies that fixed-lag smoothing

cannot be achieved for A > B, as there exists no batch which contains samples from

times further apart than B - 1.

Apart from allowing for online inference, ONSTIM allows for nonparametric mod-

elling of the number of structure/parameter states as the inference procedure moves

through time. In each new batch, there is a positive probability of arrival of a new

structure/parameter state, which is sampled from the prior on structure and param-

eters. The probability of that the system enters a new state at any given time is

dependent both on the prior probability of the arrival of new states and also on the

likelihood that the system entered a new state given the observed data.
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Data: Y, S, K, B, offset

Result: X1:S,1:length(Y), Z1:S,1:length(Y), {E, f}1:S,1:Ks

n= 1 + length(Y)-B.
offset

for s = 1 : S do

Xs,O:B, Zs,1:B, {E, f}s,1:K = A, (YO:B, K);

Ks = K ;

for b = 2 : n do

t1 = (b - 1) - offset + 1;

t2 = B + (b - 2) - offset1; / time poin

t3 = B + b - offset ;

Xs t2:tq, Zs t2:tq = Initialize(t2, t3, Ys t2:tqI8 ,

// start of new batch

after end of previous batch

// end of new batch

if KS + 1 E Zs,t 2 :t3 then
Instantiate {E, 9 }s,K,+1 "' P({k, 6}1 IX,,t, Xs,tt1}t:zs,t=KS+1);

Ks = Ks + 1;
Xs,ti:t3 , ZS,ti:t3 , {E, }s,1:Ks = A2(Ys,ti:t 3 , Xs,ti:t3 , ZS,tl:t3 , {E , 6}s,1:K, );

end

end

Algorithm 7. High-level overview of ONSTIM, with A1 , A 2 , and Initialize called as subroutines.

A1 is the full Gibbs sampling procedure of Dzunic and Fisher [1], described in Chapter 2. A 2 is the

post-initialization Gibbs sampling procedure we employ, described in Section 3.7. Initialize is the

initialization routine we employ, which can either be Approach 1, described in Section 3.5, or Approach

2, described in Section 3.6. Instantiating a new state is performed in the same manner as in A 1 .

N 3.4 Complexity of Exact Inference

As described in Section 3.3, after initialization of X and Z variables in a new batch, we

immediately choose whether or not to instantiate a new structure/parameter state. If

we decide to instantiate a new state, a new structure/parameter state is sampled from

the posterior conditioned on the pairs of latent data sequence points (Xt, Xt_1) for times

t such that Zt = K + 1. Otherwise, no new state is instantiated. In either case, after

initialization, Gibbs sampling proceeds almost identically to Gibbs sampling in SSIM,

with either K or K + 1 transition models available. Note that this approach implies

that for a new state to be instantiated during sampling for a batch, the instantiation

must occur during initalization, with no opportunity for sampling a new state during
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the rounds of Gibbs sampling.

It may seem preferable to instead perform the sampling of X and Z in the Gibbs

sampling rounds taking the K + 1 st state to represent the prior distribution over struc-

ture and parameters instead of any specific structure/parameter pair, thereby delaying

specializing the new state to a particular transition model until desirable. Unfortu-

nately, due to issues of computational tractability, running such a sampling procedure

is not possible. Although it is possible to sample Z while accounting for the K + 1 st

state as the prior distribution, it is difficult to sample X similarly. In this section, we

will show why this is the case, and we will discuss approximate solutions that attempt

to tackle this issue.

N 3.4.1 Intractable Message Passing for X

In SSIM inference, recall that one of the sampling steps of the Gibbs sampler is that

of sampling the latent data sequence X ~ P(X Z, Y, E, 0). This is accomplished by

a backwards message passing step, followed by a round of forwards sampling. The

backwards messages are given by

m, (Xt) = J+ P(Xt+1|jXt, Zt+1)P(Yt+l IXt+1)mnt+ 1(Xt+ 1) dXt+ 1. (3.4)mt(Xt+)

Samples of Xt conditioned on Xo:t_1, Z, Y, E, and 6 are then obtained by sampling

Xt ~ P(X XoX:t-1, Z, Y, k, 6) oc P( Xt|Xt-1 , Zt )P(Yt|Xt)Tn ( Xt ). (3.5 )

In SSIM inference, Zt takes on values in {1,.. , K}, where each possible value indexes

a linear Gaussian transition model.

If Zt = K + 1, then we have

mt(x) = P(Xt+1 jx; 3, -y)P(Yt+1 Xt+1)mt (Xt+i)dXt+1. (3.6)
Xt+1

Let us focus on the term P(Xt+1|Xt;/, y). Note first of all that we can decompose

this probability into a product across the entries of the vector Xt+1, since we assume

independence across the probability distributions of each element of the vector. Thus,

N

P(Xt+I Xt; 0, -) = P(Xti+1 Xt; , -Y). (3.7)
i=1
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Next, note that P(X +i Xt;/, ) is a probability taken over the prior over structures

and parameters by marginalizing out all parent sets and parameters. We can write out

the marginalization of parent sets explicitly as

N N

JP(X iXt;3,'m) 171 S P(X+iXra(i) ; )P(5a(i); 0). (3.8)
i=1 P= (Xi 1X; rlE (Xt+ IX

The term P(X+1 | Xt a('); -/) is distributed according to a Student's t-distribution while

P(pa(i); /) is a constant determined by the prior on structure. Thus, the weighted

sum ~) P(X+15Xf4(i); -y)P(pa(i); /) takes the form of a mixture of t-distributions,

analogous to a Gaussian mixture model. P(Xt+l Xt; 0, 7) is then distributed according

to a product of t-mixture models.

Consider the case of t = T - 1, in which mt+l(Xt+i) =mT(XT) = 1 V XT. The

observation model characterized by the term P(YTIXT) is multivariate Gaussian, so if

ZT = K + 1, computing the message

mT-l(XT_1) = P(XTIXT-1; /3, -)P(YTIXT)dXT (3.9)

requires integrating over the product of a Gaussian and a product of t-mixture models,

which has no closed form analytical solution.

* 3.4.2 Alternative Approaches

Since computation of the message described in the above equation is intractable, it

is natural to attempt to approximate the integral with something that is analytically

tractable. In this section, we discuss potential approaches for approximating the com-

putation of the message with techniques based on Gaussian distributions. Although we

do not implement any of these approximations in this thesis, they are potential avenues

for further exploration.

First, we propose a naive approach, namely that of approximating P(Xt+1 Xt; /, Y)

with a Gaussian distribution. There are several different ways to perform this ap-

proximation. A simple solution is to replace the distribution P(Xt+1 Xt; /, -Y) with a

Gaussian possessing the same mean and covariance. This method has the advantage of

being very easy to compute and implement, since it fits directly into the Gaussian mes-

sage passing framework. However, it may be a gross oversimplification of the original

distribution.
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Recall that P(Xt+I Xt; , y) is a product of t-mixture models. We will attempt to

qualitatively characterize this distribution and compare it to a Gaussian approxima-

tion. If X is a N-dimensional vector, our constraints allow each node in X to have

up to M parents, and each node is required to have itself as a parent, then each node

can have EM17 (N 1) possible parent sets. Thus, each t-mixture model corresponding

to EZa P(Xi) +Xtga(; 7)P(a(i); /) for some node i has up to ZMl (N-1) modes.

Since each t-mixture model is one of N factors of the overall distribution, the distribu-

tion of P(Xt+l IXt; 3, -y) has up to (EM- 1 (N-1))N modes, significantly more than the

unimodal Gaussian distribution. Constructing a Gaussian distribution with the same

and mean and covariance as P(Xt+1 I Xt; #, y) could yield significant density in regions

of the support where the original distribution has little density and vice versa. If the

modes corresponding to different parent set choices happen to be very close to each

other, then the unimodal Gaussian approximation may be a reasonable technique.

Another Gaussian-based approach is to replace the target distribution P(Xt+1 XIt; /, -y)

with a Gaussian mixture model instead of just a single Gaussian. This could be achieved

by replacing each individual t-distribution with a Gaussian distribution of equal mean

and covariance. Then, Gaussian mixture models could be constructed analogously to

the t-mixture models, and the approximating distribution could be written as the prod-

uct of Gaussian mixture models. While this approximation is much more faithful to the

original distribution, performing message passing with with Gaussian mixture models

is extremely computationally expensive, but not technically analytically intractable.

Since the product of Gaussiam mixture model with a components and a Gaussiam mix-

ture model with b components yields a Gaussian mixture model with ab components,

running message passing with Gaussian mixture model messages leads to a exponential

blowup in the size of the parameterization of the mixture model. While this directly

leads to computational intractability of the approach, further heuristic techniques such

as merging or truncating the lowest weight components have been employed in the past

[9].

* 3.5 Batch Initialization of X and Z: Approach 1

The first step in the inference procedure for a given batch of data is initialization of

the discrete states, the Z variables, and the latent data sequence, the X variables.
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Dzunic et al. also perform an initialization of the Gibbs sampler before proceeding to

actual sampling, but our first approach to batch initialization is significantly different

from theirs. First of all, we can take advantage of samples of X and Z taken from

the previous batch. Second, we wish to propose the possibility of the arrival of a new

structure and parameter state drawn from the prior over interaction structures and

parameters.

Let us define t1 , t2 , and t3 as in Algorithm 3.3. Suppose the batch that we wish to

initialize runs from time t1 through t6. Given our allocation of time points to batches,

this implies that state and sequence values at times ti through t2 were sampled already

in the previous batch. We will initialize Xi and Zi to their respective values from the

previous batch for i c [ti, t2 - 11.

Next, we must develop a method to initialize Xi and Zi for i E [t2 , t 3]. We will

employ a greedy initialization approach, in which observations for times greater than i

are ignored in the initialization of Xi and Zi. The initialization procedure iterates over

the times in the outer loop, and between sampling Zi and Xi in the inner loop.

Data: t2 , t 3 , Y, Xt2 -i, Zt2 -1, {, 611:K

Result: Xt2 :tl, Zt2 :t3

7 for i = t2 : t3 do
Sample Z, ~ P(Zj = zIZi_,Yi, Xii_), z E {1, ... , K + 1}

Sample Xi P(XiIXi_1, Yi, Ez,, Ez.; , y)

end

Algorithm 8. High-level batch initialization of X and Z: Approach 1. We use the t 2, t3 notation for

the sake of consistency with Algorithm 3.3. Details of the sampling steps are provided below.

* 3.5.1 Initialization of Zi ~ P(Z IZj_ 1, Yi, Xi_)

The actual process of sampling from the conditional distributions of Zi and Xi listed

above is complicated by modeling the arrival of a new state that is sampled from the

prior over structures and parameters. Conceptually, if a transition from time i to i + 1

is better modelled by the prior across all structures and parameters than by any of the

existing K structure and parameter states, we wish to allow a proposal of a new state

sampled from the prior conditional on such transitions. Unfortunately, while computing

the conditional probability distribution of a transition P(Xi IXi_; --, -y) is analytically
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tractable, the resulting distribution is a matrix-T distribution instead of a multivariate

Gaussian distribution. Consequently, no further useful analytical operations, such as

multiplication by multivariate Gaussian valued random variables, necessary for any

message passing algorithm, can be performed on the resulting distribution.

However, computing P(XjXj_1 ; 3, y) is necessary for sampling both Zi and Xi.

Instead of

P(ZiIZi_1, Y, Xi_1) (3.10)

= P(Zi, XiIZi-1, Y, Xi_1)dXi (3.11)
JXi

= P(XjjZj, Zi_1, Y, Xj_1)P(ZjjZj_1, Y, Xjj)dXj (3.12)
SXi

= P(Xj|Z Y, X _1)P(Zj|Z _1jdXj (3.13)
JXi

0C P(Zi|Zi_1 ) Ji P(Xi YI|Zi, Xi _1) dXj (3.14)

= P( Zi|Zi_1) Ji P (Xi|IZi, Xi_-1) P(Y I|X) jdX . (3.15)

For Zi E {1, ... , K}, the expression P(Xi|Zi, Xi_ 1) is a multivariate Gaussian, and

therefore Xi can be integrated out analytically quite simply. If Zi = K + 1, however,

we are computing the conditional probability of Xi given Xj_1 under the prior over

structures and parameters, such that P(XjjZj = K + 1, Xi 1) = P(XjjXj_1 ;0,'y).

Since this is not a multivariate Gaussian distribution, we must adopt a non-analytical

approach to allow us to integrate over Xj. We will proceed by sampling N instantiations

of structures and parameters from the prior over structures and parameters. Note that

P(XijXj_1; 13, -y) = Y eEP (Xi IXi_1 , E, E)) P(E, 0; 3, -y)dA) (3.16)
E E

= EE,E) [P(Xi jXj_1, E, E))] (3.17)
N

= lim P(XiIXiI, E, 6j) (3.18)
N-*oo

j=1

N

~ Y P (Xi IXi_-1, ki, 6j). (3.19)
j=1
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Thus, for Z, = K + 1, we have

P( Zi|Zii' Yi, Xi-1) = P Z|Z-1 ) J P( Xi|IZi, Xi _1)P(YiXijd Xi (3.20)

N

~P( Zi|IZi_1 ) P (X |X- _1, tj, O) )P (YI|X j) d Xj (3.21)

P(Z|Z 1 .N
Z j=1

= N NJ X 1, 6)P(YI|X dXj. (3.22)

Thus, given Y, Zi_ 1 , and Xi_ 1 , we have constructed up to a normalization factor

the complete probability distrbution of Zi, for values that corresponding to existing

structure and parameter states, and also for the possibility of the arrival of a new

state sampled from the prior over structuresr and parameters. We then normalize the

distribution to sum to 1 and sample Zi, whose value we store.

In conclusion, to initialize Zi, we sample Zi - P(ZiIZi_ 1 , Y, Xi_ 1 ), where

P(Zi IZi_1, Yi, Xi_1)

C P(ZitZi_1) fx2 P(Xi|Xi_, Ez, Ez,)P(Y|Xi)dXi if Zi E 1 ... , K} (3.23)

Z Zfi P(Xi|Xi 1 , Z, j)P(Yi|Xi)dXi if Zi= K + 1.

* 3.5.2 Initialization of Xi ~ P(Xi Xi_ 1, Zi, Y)

The procedure for sampling Xi given Xi_ 1 , Zi, and Y, is embedded into the procedure

for sampling Zi described above, but with Xi marginalized out. We have

P(XiIXi_ 1 , Y, Zi) (c P(Xi, YIXi_ 1, Zi) (3.24)

= P(Yi Xi, Xi_1, Zi)P(Xi Xi_1, Zi) (3.25)

= P(Y|X i)P(Xi|X1i_ 1, Zi). (3.26)

For Zi E {1, ... , K}, this reduces to P(YilXi)P(XilXi_ 1 , Ez , Oz). For Z, = K + 1,

we must resort to a sampling approach reflecting the approach taken to compute the

conditional probability of Zi = K + 1 in the previous subsection.

We have shown already that

N

P(Xi IXi_1; , ) P (Xi IXi_-1, _k, $.j). (3.27)
j=1
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Thus, for Z. = K + 1,

P(Xi|Xi 1,Yi, Zi) ac N P(Xi|Xi _1 , E , Qj)P(YXi). (3.28)

In conclusion, to initialize Xi, we sample Xi - P(XiIXi- 1 , Zi, Y), where

P( Xi|Xi _1, Zi, Yi )

0CP(Xjjlj-_1, Ezi, 19z,)P(YjXj) if Zj E {li,...,IK} 3.9

1V j= X _ , P I|X,) if Zi = K + 1.

U 3.6 Batch Initialization of X and Z: Approach 2

In the previous section, we described an approach to initializing the values of X and

Z at new time points in a batch in which Xt and Zt are alternately sampled as t is

incremented from the first new time point in the batch to the last new point in the

batch. However, that initialization method has two significant shortcomings. First of

all, a sample of Zt or Xt only incorporates observed sequence data up through t, omitting

new data provided to the batch at times after t, thereby eschewing a potentially useful

source of information. Second, computing the probability P(Zt = K + 1) required

marginalizing over Xt by taking some number of samples of structure and parameter

states from the prior. Significant variance is introduced into the sampling procedure

unless a large number of samples from the prior is taken, which requires significant

time. It was mentioned in Section 3.4 that while performing message passing for X is

intractable if the K + 1st state represents the prior over all structures and parameters,

performing message passing for Z is tractable. Since performing full message passing

for Z requires an existing sample of X, the second approach will obtain a sample of X

first and then sample Z conditioned on X.

In this section, we will describe a second approach for initialization of X and Z

which closely mirrors that employed in A 1 . X is sampled from Y using a simple Kalman

filter with the transition matrix A assumed to be equal to I and with the transition

covariance fixed to a constant input parameter E. Let us denote by t2 the time point

directly after the last point of the previous batch, which is the earliest point that we

must initialize. Instead of sampling Xt2 conditioned only on Y as in A 1, however, we

now sample Xt2 conditioned on Y and X2-1, as Xt2- 1 is available from the sample of
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the previous batch. The message passing and sampling equations for X are given in

Algorithm 9.

Next, we describe the approach to initializing Z given a sample of X. The message

passing and sampling procedures for Z are very similar to those in the initialization

procedure of SSIM inference. However, apart from the K sampled structure and pa-

rameter states, we must now also account for the possibility of the arrival of a new state

from the prior. Unlike in the first initialization approach, we have already sampled X,

allowing for exact message passing and sampling of Z for the remainder of the initializa-

tion. Computing the message entries for the first K states is identical to the analogous

message passing computation in SSIM inference. Computing the K + 1st message entry

requires computing P(Xi+1 Xj; /, -y) instead of P(Xj+1 JX2 , Ezi, Ez,). This expression

was expanded in Equations 3.7 and 3.8, and is restated here for readability:

N

P(Xt+|X;f,'y) =I >: P(Xi1Xfa(i); y)P(1 a(i); /3). (3.30)
= IPa(1)

This computation is also used in the forwards sampling procedure to compute the

probability that Zi takes on the value of K + 1 at time i. The full algorithm for

approach 2 to initialization is given below.
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Data: t2, t3 ,Y, Xt 2 -1, Zt 2 l-1, Ol:K, E, R,
Result: Xt 2 :t3 , Zt 2 :t 3

// Message passing and sampling X, assuming (Ai, E) = (I, E) V i.

mt3 (Xt3 ) = 1;
for i = t2: t3- 1 do

Im'(Xi) = fx+ Ar(Xzi; Xi, E)JV(Xi+1; Y+1, R)dXi+1;
end

for i = t2: t3 do

I Xi ~ P(Xi1Xt2 -1:i-1, Y) oc .A(Xi; Xj_1, E)A(Xj; Y, R)m(Xi);
end

// Message passing and sampling Z, allowing f or Z = K + 1.
mt3 (Z ) = 1;

for i = t2 : t3- 1 do

for Z, = 1: K do

mI (Zi) = Ez P(Zi+1|Zi, 7r)P(Xi+I Xi, Ez2 , Oz,)mi+l(Zi+1);
end

mz(K + 1) = E zoP(Zi+1 K + 1, 7r)P(Xi+l|Xi; 3, y)mi+1 (Zi+1);

end

for i = t2 : t3 do

Zi ~ P(ZiIZt2 - :i-.-I, X, t, , 7r) oc P(ZilZi_1, 7r)P(XilXi-1, Zi)m(Zi);
end

Algorithm 9. Batch initialization of X and Z: Approach 2. We use the t 2 , t 3 notation for the sake of
consistency with Algorithm 3.3.

U 3.7 Gibbs Sampler

After initialization, we must run rounds of Gibbs sampling to be able to take samples
from the true distribution. The sampling procedure of 7r, w, and {, O}1:K is identical
to that in SSIM. The sampling steps for X and Z are almost identical to those in SSIM,
except for the fact that every time point we wish to sample has a time point immediately
before it as well. This allows us to always sample from conditional distributions given
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previous values instead of from an initial distribution. Specifically, we now sample:

Xt, ~ P(Xt1 | Xtii, Ezt , Ozt, )P(Yt IXti)mT (Xt1) and (3.31)

Z, ~_ P(Zt1 jZt I, r)P(Xt1 IXt, _, Ezt, Oz, )mtl (Zt1 ) (3.32)

instead of

Xt, P(Xii)P(YJti l)mfl (Xti) and (3.33)

Zt, ~P(Ztl)P(Xtl lXtl1, EztlE O)l(Z4). (3.34)

A full characterization of the post-initialization Gibbs sampling procedure is given below

in Algorithm 10, which we refer to throughout this thesis as A 2 .

Data: t2 , t3 , Yt 2:tV, Xt2-1:t 3 , Zt2 -1:t 3 , {E, }1:K

Result: Xt2 :t3 , Zt 2 :t6, {E, 6}1:K

for i = 1: N do
Sample 7F ~ P(71Zti-1:t; a);

Sample {, 6}1:K P({, O}1:K 4ti:t6, Xti _i:t3 ; 0, -Y);

Sample w - P(W1Xti:t 3 , Yt:t3 ; 5);

Sample Xti:t3 ~ P(Xit:t3 -Xti 1, Z1:t6, Yt:t 3, {E, O}1:K);

Sample Zti:t3 ~ P(Zti:t3 Z-i1, Xti:t3, {E, }1:K, 7r);

end

Algorithm 10. A 2 : post-initialization Gibbs sampler.

M 3.8 Summary

In this chapter, we introduced and developed ONSTIM, a procedure for performing in-

ference in an online nonparametric switching temporal interaction model. We proposed

an online approach to inference that incorporates data incrementally and performs in-

ference only on the latest batch of time points. A nonparametric approach to selecting

the number of transition models was developed that operates by allowing the proposal

of new states during the initialization of the Gibbs samplers, and that instantiates a

new model if a new state is indeed proposed.

Drawbacks of both developments were also discussed. Subdivision of the time series

into batches prevents the use of information from time points that are further away
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than the specified batch length, introducing a new limitation compared to the original

algorithm of Dzunic and Fisher. Our approach to sampling new states relies heavily

on sampling instead of analytical approachces, thereby introducing significant variance,

and also can only operate during the initialization phase of the Gibbs samplers. An-

alytical approximation approaches and their drawbacks were also discussed, and they

were ultimately not implemented, though that remains a potential avenue for further

work.

Next, two different initialization approaches for the Gibbs samplers were described,

along with the relative merits and weaknesses of each one. We now point out that

for experimental purposes, we will exclusively use initialization approach 2. Finally,

we described a slightly modified version of the original Gibbs sampling procedure for

sampling in ONSTIM. Experimental results of ONSTIM on both synthetic and real

financial datasets will be reported in Chapter 4.
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Chapter 4

Results

In this chapter, we will provide experimental results from the application of ONSTIM

to synthetic and real datasets. First, we will empirically characterize the performance

of ONSTIM through its application to synthetic datasets with known true values for all

variables in the graphical model. Knowing the true values of variables in the synthetic

datasets provides us a ground truth against which to compare the results of ONSTIM,

thereby providing a metric for its performance. We will describe the process of gen-

erating these synthetic datasets, and then explore the behavior of ONSTIM on these

datasets as we vary procedural parameters, such as the batch offset and the values of

aseif and anew.

Then, we will apply ONSTIM to financial datasets, constructed from time series of

the prices of various United States stocks and other financial instruments. Specifically,

we will apply ONSTIM to both interday and intraday datasets.

N 4.1 Empirical Model Characterization

In this section, we present empirical results of ONSTIM on synthetic datasets with the

aim of characterizing the behavior of ONSTIM in a variety of parameter regimes. We

are interested in the performance of ONSTIM as we vary the batch offset, ane, and

aseif. We wish to characterize the performance of ONSTIM with respect to the param-

eters of the generative model described in the previous chapter instead of with respect

to any particular dataset that is an instantiation of the generative model. Thus, we

will effectively marginalize over the specific dataset instantiation by sampling several

realizations for each generative model parameter set, running ONSTIM on each real-

ization, and averaging results over each of the realizations to obtain an estimate of the
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distribution of the performance of ONSTIM for given parameter conditions.

We will first describe the methods by which the synthetic datsets were generated.

We will then display and provide exposition of summary statistics of the performance

of ONSTIM on the synthetic datasets. We are specifically interested in the ability of

ONSTIM to accurately detect the number of switching states in the generated datasets,

and in how this ability varies with the choice of parameters. Finally, we will discuss the

implications of the results and attempt to shed some light on the reasons that ONSTIM

behaves as it does.

* 4.1.1 Synthetic Dataset Generation

Synthetic datasets were generated by sampling a switching sequence from a transition

model specified by aseIf and e as described above. All switching sequences were ini-

tialized to K = 1, so there was no need for an initial distribution of Z. For each sampled

instance of Z, K interaction models and corresponding parameter sets were sampled

from the parent set prior on structures and the matrix-normal inverse-Wishart prior

on parameters. The value of the latent sequence X at time 0 was sampled uniformly

at random from the interval [0, .001], and subsequent samples were taken according to

the structure and parameter model indexed by the value of Z at that time. Finally, the

observation noise covariance parameter was sampled from inverse-Wishart prior. The

observation sequence Y was then sampled conditioned on the sampled values of X and

. The number of nodes in all datasets was set to 5, and the maxmium allowed parents

were 3.

Synthesized datasets were filtered to prevent occurrences of destabilizing exponen-

tial growth in the latent or observed sequences. This was achieved heuristically by

disallowing datasets in which the observed sequence took values at any time point with

absolute value greater than 100. A sample synthetic dataset generated is shown in

Figure 4.1.

* 4.1.2 Inferred Number of Switching States

An important metric of the performance of ONSTIM is the relationship between the

inferred number of states and the true number of states, whose values we know in

the case of synthetic datasets. We will refer to the empirical distribution of the total

number of states from the sampling procedure as AT, which is an estimator of the true
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Figure 4.1. Sample synthetic

sequences are shown.

dataset with ae, = 20, aself = 2500. Switching, latent, and observed

underlying value of K.

First, we computed empirical conditional distributions of k given K. These distri-

butions were computed for (ane, aself) = (5, 500), (10, 500), (20, 2500), and (40, 2500),

and for batch offset values of 2 and 10. For each transition model parameter, 20 datasets

of length T = 1000 were generated, and 25 samples were computed for each dataset,

i.e. S = 25. Within each batch sample, 9 samples were skipped to allow for burn-

in and the tenth sample was taken from the sample chain. To compute probabilities

conditional on the prior over structures and parameters, averaging was done over 40

structure/parameter models which were sampled from the prior on interaction struc-

tures and transition parameters. The transition model parameters in the inference

algorithm were chosen to match the parameters in the corresponding generative model.

The conditional distributions of k piven K for all eight parameter conditions are shown

below in Figures 4.2 and 4.3.

Next, we computed the conditional bias of the estimator K given that K takes on
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a fixed value k, which we can write as Biask(k):

Biask(k) = EkIk[k - k] = EkIk[k] - k (4.1)

= [kP(k = k|K = k)] - k. (4.2)

The conditional bias of k given K is a function of K. Next, we will use the conditional

bias to compute the global bias of the estimator K, also commonly just called the bias,

which marginalizes out the distribution of K.

BiasK (k) =EK[Biask(k)] (4.3)

=- P(K = k)[Z kP(k = kJK = k) - k]. (4.4)
k

Other possible characterizations of the accuracy of inferring the true number of states

could include looking at the average difference between the true value of K and the

median, mode, or other central tendency statistic of the distribution of K given K.

However, we will limit ourselves to considering bias for this purpose. Conditional and

global biases are shown in Figures 4.4 and 4.5, with global biases listed in the title of

the figures for the respective conditional bias.

M 4.1.3 Discussion

The choice of batch offset has a significant effect on the number of inferred states.

Specifically, experiments run with a batch offset of 2, the lower of the two values used

in experiments, display instantiation of significantly more states than those run with

a batch offset of 10. Furthermore, experiments run with a batch offset of 2 display a

positive conditional bias for every setting of the parameters anew and aself, and for

every true value of K. Not only is the conditional bias consistently positive for a batch

offset of 2, but Figures 4.2 and 4.3 suggest that in almost no samples is k less than or

equal to the true value of K. To summarize, experiments run with a batch offset of 2

consistently and significantly overestimate the number of states in the dataset.

A possible explanation for the much higher number of states instantiated in experi-

ments with batch offset 2 than in those with batch offset 10 may simply be the fact that

since approximately 5 times as many batches are sampled with offset 2 than with offset

10, ONSTIM has 5 times as many opportunities in which to propose new states. Note
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that in all experiments, anew was chosen to be greater than 1, implying that ONSTIM

is more likely to instantiate a new state to explain an incoming observation than to

reuse an existing interaction model that explains the observation as well as the base

measure does. If such situations occur frequently, running ONSTIM with a batch offset

of 2 does allow for significantly more opportunities for the instantiation of new states.

Another potential scenario that could help explain the higher number of states

instantiated by batch offset 2 than by batch offset 10, but not the consistently high

bias, is the possibility that two or more new interaction structures arrive in rapid

succession. In such a scenario, setting the batch offset to 10 would result in different

new states getting instantiated as the same new model, while keeping the batch offset

at a lower level like 2 would allow for greater granularity in detecting separate new

states and instantiating them individually.

Unrelated to differences in batch offset, the generally downwards slope in most of the

conditional bias figures (Figures 4.4 and 4.5) also prompts some interesting questions.

The higher the true number of states K, the less the bias of the estimator k tends to

be. While it is certainly evident from Figures 4.2 and 4.3 that higher values of K tend

to correspond to higher values of K, the negative slope of the bias implies a tendency

of k to move towards a central value determined by the parameters of the inference

algorithm. It would be interesting to try expressing the distribution of A in terms of

the true value of K for an instantiated dataset and in terms of the parameters anew

and aelf. However, exploring this phenomenon further would require obtaining many

more (K, k) data points.

N 4.2 Experiments with Financial Datasets

Financial datasets comprise a rich and complex field for experimentation with graphical

model inference procedues. Sets of financial instruments often have a wide variety of

conditional dependence relationships structures. In contrast to the synthetic datasets

whose experiments allowed for validation and testing of the performance ONSTIM,

financial datasets do not have a corresponding generative model from which we can know

the "true structure", at least not a model that is directly observable. Consequently,

it is difficult to directly evaluate the performance of ONSTIM on financial datasets,

although the predictive capabilities of the inference results of ONSTIM could serve as
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a proxy for result accuracy.

However, since ONSTIM employs a sampling approach, after performing inference

we are equipped with a characterization of the full joint distribution, which allows us

to ask a wide variety of interesting questions about the dataset, such as the probability

of the existence of an edge during a given time window, or the probability that the

switching states sequence took on the same value at two different times. This allows

us to shed light onto the interaction structures present in the datasets, and especially

lends us insight into the process of arrival of new states in the datasets of interest. For

example, we may be interested in knowing which financial instruments are the most

influential in a given period of time, or how likely it is that a new interaction structure

arose during that time. We will now address these and other questions for a interday

S&P100 dataset, a particular intraday S&P100 dataset, and an interday S&P500 sector

dataset.

For the sake of consistency, most parameters of ONSTIM were set to the same values

as in the synthetic dataset experiments. Because of increased dimensionality of the data

vectors, however, the number of maximum parents was reduced to 2 for all datasets.

Furthermore, all financial dataset experiments were conducted with a batch offset of

10, as this was shown in the synthetic experiments to yield less biased estimators of

state number in our parameter regimes of operation. All other parameters were kept

the same.

* 4.2.1 S&P100: 2007-2012

The S&P100 is a stock index consisting of the 100 largest publicly traded companies

in the United States. We have constructed two datasets with the stocks from the

S&P100. The first dataset, which we consider here, is a long-term interday dataset that

was constructed using the prices at the close of each trading day from September 4,

2007, to December 31, 2012. Since the S&P100 was rebalanced over our time window

of interest, we restrict ourselves to consideration of stocks that were members of the

S&P100 from September 4, 2007, through December 31, 2012, yielding a list of 90 stocks.

As is typical when working with financial datasets, instead of directly using prices to

track the movements of a stock, we use log returns of the prices as our observed time

series in this dataset and all subsequent ones.

Results from inference on this dataset exhibit significant new instantiation, as dis-

80 CHAPTER 4. RESULTS



Sec. 4.2. Experiments with Financial Datasets

played in Figure 4.6. Figure 4.8 displays the switching similarity matrices, which dis-

plays in entry (i, j) the probability taken across all samples that the interaction struc-

tures and parameters active at times i and j are the same, i.e. that Zi = Z,. Since

similar switching states may be indexed differently across different samples, we can

only reason about the equality of switching states that coexist within a single sample.

Figure 4.8 shows that the market was largely in the same state for the majority of the

duration of the experiment. However, for a significant chunk of time from the latter part

of 2008 through the beginning of 2009, the market appears to have been in a different

set of states that varied somewhat rapidly over this course of time. It is possible that

this deviation from the normal market state corresponds to impact felt in the equity

markets from the financial crisis of 2008. A second visible, albeit much smaller, devia-

tion occurs in several samples for all parameter values around t = 1000, corresponding

to the end of 2011 at the beginning of 2012. It is not obvious what market event, if

any, this transition corresponds to.

* 4.2.2 S&P100: Flash Crash

The second S&P100 dataset that we will look at is an intraday dataset from the day

of May 6, 2010, that was constructed with the last trade prices taken every minute.

May 6, 2010, was the day of the Flash Crash, during which the US stocks rapidly

dropped during the afternoon. The S&P500 lost 5% of its value in a few minutes, and

subsequently quickly recovered back to its original price [6]. The Flash Crash represents

a notable yet short-lived market phenomenon, and thus presents an interesting scenario

for ONSTIM.

Figure 4.9 shows the probability of new state arrivals. All samples in all parameter

settings sampled the Flash Crash as the arrival of a new state. Figures 4.11 and 4.12

show that the market was largely in a single state until the Flash Crash, at which

point the system appears to have rapidly transitioned between several different states,

none of which were the same as the original state. Towards the close of the day, the

observations suggest a return to a somewhat recurrent state, which most samples assign

to a different interaction model index than the original state at the beginning of the

day.

Figures 4.11 and 4.12 also demonstrate the ability of ONSTIM to perform both

filtering, corresponding to a batch lag of 0, and fixed-lag smoothing corresponding to
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positive batch lags. In the context of ONSTIM, filtering entails evaluating a quantity

of interest using the sample from the batch in which time t first appears as the sample

at time t. Fixed-lag smoothing with a batch lag of A refers to using the sample from

the A + 1 st batch in which t appears. In the case of the switching similarity matrices

displayed, however, there does not appear to be significant different between the results

from filtering and fixed-lag smoothing for lags of 1 and 2.

* 4.2.3 S&P Sector ETFs

Next, we will consider datasets constructed from S&P sector exchange traded funds

(ETFs). The S&P500 index, a superset of the S&P100, is the most common bench-
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mark index for the United States economy. It is broken down into 9 industry sectors:

materials, energy, financials, industrials, technology, consumer staples, utilities, health

care, and consumer discretionary. These sectors are referred to with the ticker symbols

XLB, XLE, XLF, XLI, XLK, XLP, XLU, XLV, and XLY respectively. The set of 9

sectors serves as a coarse representation of the dynamics of the S&P500, but provides

a much more tractable dataset on which to perform inference quickly. For the sake of

consistency, we ran ONSTIM on the sector datasets for the same times as the S&P100

datasets.

In Figure 4.13, no single day is indicated as having greater than 60% chance of

new state instantiation, in contrast to the corresponding Figure 4.6, which shows high

instantiation probabilities for the S&P100 interday dataset over the same time period.

However, Figure 4.15 tells a state transition story very similar to that of Figure 4.8, the

corresponding figure for the S&P100 interday dataset.

Due to the small number of observed variables in the sector ETF datasets, we can

display the posterior distribution over edges between the 9 ETFs, shown in Figure

4.16, and derive a meaningful interpretation from the result. The value of the matrix

at entry (i, j) is the probability taken across all samples and times that object i is a

parent of object j. Self edges are not displayed, as are fixed to occur by default in all

interaction structures. For parameter values of (anew, aself) = (5, 500) and (20, 2500),

which correspond to lower estimated values of K, the posterior probability is quite high

that XLE, the energy sector ETF, is a parent of XLF, the financial sector ETF. The

posterior probability of the existence of the edge XLE -÷ XLF is approximately 3% for

both of the mentioned parameter values, which is approximately double the probability

of an average edge and the highest of any as well.

For the parameter values of (Qnew, aself) (10, 500) and (40, 2500), however, the

relationship descried above between XLE and XLF does not hold. Instead, the prob-

abilities of edges are higher across the board. One explanation of the difference is the

fact that more states are instantiated for these parameter values. Consequently, the

number of data points assigned to each interaction structure and parameter model is

smaller, which makes it easier for ONSTIM to overcome the regularization induced by

the prior weighted against larger parent sets, due to the greater explanatory power of

larger parent sets tailored to a small set of data points.
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* 4.3 Summary

In this chapter, we have presented empirical results of the performance of ONSTIM

on both synthetic datasets and financial datasets. ONSTIM was demonstrably able to

recognize the arrival of new states both in synthetic datasets and real datasets, providing

validation of our original goal of developing an online inference algorithm capable of

learning model complexity from the data.

However, the performance of ONSTIM also displayed significant sensitivity to pa-

rameters such as the choice of anew, aseif, and batch offset. For most parameter settings,

ONSTIM displayed a tendency to be overly aggressive towards instantiating new states,

yielding estimators AT of K that typically had positive bias, and sometimes quite large

positive bias. This was especially true for the case of experiments run with a batch

offset of 2, in which bias was never negative or even zero, and in which global bias went

as high as 20 for certain parameter settings. The accumulation of an excessive number

of states is detrimental not only to accuracy of inference, but also to the efficiency of

inference. For each batch, the runtime of the Gibbs sampling is linear in the number of

states present, so the instantiation of small "junk" states can prove to be a signficant

hamper on the speed of inference.

ONSTIM yielded reasonably good results on financial datasets drawn from interday

US equity prices, intraday US equity prices, and interday US ETF prices. Since there

is typically no ground truth for interaction structure in financial markets, it is difficult

to objectively assess the performance of ONSTIM on these datases. However, ONSTIM

successfully recognized the Flash Crash of May 6, 2010, across a variety of parameter

settings with very high confidence. Further experimental work may include running

experiments that extend the order of the state space model to allow for modeling of

longer term dependencies between instrument prices.

94 CHAPTER 4. RESULTS



Chapter 5

Conclusion

We began this thesis with an introduction to the problem of inferring time-varying

interaction structures over a set of objects from noisy observations. We then posited

the problem of designing an algorithm capable of learning these interaction structures

nonparametrically, that is, without prior specification of the number of interaction

structures present in the observed dataset. We further specified that the algorithm

should be able to perform online inference, meaning that it should be able to learn

from observations as they arrive.

In this thesis, we successfully proposed an algorithm to accomplish that goal. Online

nonparametric switching temporal interaction model inference, or ONSTIM, proposes

new states by sampling state indices with a probability proportional to their likelihood

given the data and their prior probability given the previous state. If the sampled state

index corresponds to the prior over structures and parameters, a new interaction model

is instantiated. ONSTIM is capable of performing online inference by sampling state

indices from this distribution as a batch of observations arrives, and then immediately

instantiating a new state if necessary. By dynamically increasing the number of in-

teraction models available to describe new observations, ONSTIM learns interaction

structures nonparametrically.

We then tested ONSTIM empirically by running experiments on synthetic and finan-

cial datasets. Results from experiments on synthetic datasets were used to characterize

the behavior of ONSTIM in a variety of parameter regimes, as these experiments al-

lowed for comparison between the known true values of variables and the values that

were inferred from ONSTIM. Results from financial datasets suggested the ability of

ONSTIM to recognize new states.
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* 5.1 Drawbacks

Despite the success of ONSTIM at achieving our stated goal, there are several practical

drawbacks of ONSTIM that detract from its efficiency and accuracy. First of all, as

discussed in the previous chapter, ONSTIM exhibits undesirably strong sensitivity to

many of the procedural parameters, especially to the batch offset. Strong variability

with respect to a procedural parameter weakens the appeal of a nonparametric ap-

proach, as it effectively forces a user to optimize over another parameter instead of

the original one. Instead of truly learning model complexity, some of the variability in

the parameter that we wished to eliminate has just been shuffled around to other new

parameters. Significant additional work needs to be undertaken to both analytically

and empirically characterize the likelihood of new state instantiation as a function of

the batch offset. A deeper understanding of the chain of causality between the choice

of batch offset and new state instantiation is likely to be instrumental in modifying

ONSTIM to alleviate such sensitivity.

As we saw in Chapter 4, the majority of parameter settings lead ONSTIM to

instantiate too many switching states over the course of the inference procedure. Not

only does the bloating of the procedure reduce accuracy, but every additional state also

introduces a cost in terms of runtime. If the number of states instantiated is roughly

linear with time, then the ONSTIM inference procedure, which is directly linear in both

the number of time points and in the number of states at any time during the inference

procedure, effectively has quadratic time complexity in the number of time points, a

very undesirable feature.

N 5.2 Further Work

The first additional steps taken would be consideration of the two problems mentioned

above. Achieving a better understanding of the role of the batch offset in inference is

critical, as the ability of ONSTIM to incorporate observations incrementally is entirely

dependent on the batch framework.

A potential solution to the problem of too many available interaction models is to

propose deletion or merges of existing interaction models alongside the instantiation

of new ones. Such an approach is inspired by the split-merge Monte Carlo methods

described by Hughes et al. [3], in which they develop techniques for instantiating and

96 CHAPTER 5. CONCLUSION



Sec. 5.3. Concluding Remarks

merging modes in a manner so as to satisfy detailed balance.

Another area for further work is improvement of the generative process for synthetic

datasets. Recall from Chapter 4 that runaway exponential growth was a common occur-

rence in some synthetically generated datasets, which we then discarded and resampled.

Discarding samples on the basis of a specific criterion introduces bias, thereby reduc-

ing the accuracy of inference. Runaway exponential growth occurs when the transition

matrix of an interaction model has eigenvalues with norm greater than 1. Since the

matrix-normal prior places positive probability on all matrices, no choice of prior hy-

perparameters can prevent the sampling of such pathological transition matrices with

certainty. A possible work-around could be the development of a sampling technique

that restricts samples taken from the prior over structures and parameters to the set of

stable matrices without affecting the marginal distributions of any other variables.

* 5.3 Concluding Remarks

This thesis marks a step towards the integration of nonparametric approaches to model

order selection into the problem of graphical model structure learning, bringing together

two traditionally separate fields of inference. Despite the fact that our generative model

does not fit a standard Dirichlet process-based formulation, it represents what is funda-

mentally a very simple process. A stochastic process that typically recurs to its previous

state, sometimes revisits old states, and sometimes jumps to new states is a very com-

monplace notion that can model such diverse concepts as interaction structures and

consumer behavior.

In some senses, the generative model that we have described lies at the heart of

ONSTIM. If one focuses on the switching sequence alone, the interaction structures,

latent sequence, and observed sequence can be abstracted away as just one large like-

lihood function to determine the posterior distribution of the switching sequence. In

fact, this is exactly what the Gibbs sampler does when computing the posterior over the

switching sequence Z. With that, we leave it as an exercise to the reader to determine

what likelihood function to couple with the generative model next.
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