
Usability Improvements for the TaleBlazer Game

Editor

by

Cristina Lozano

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering sA* UET rE
OF TECHNOLOGY

at the
JUL 15 2014

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

41_,,_L1BRAR1ESJune 2014

@ Massachusetts Institute of Technology 2014. All rights reserved.

Signature redacted
A uthor

Department of Electrical Engi-neering and omp'uter Science
May 23, 2014

Signature redacted
C ertified by

Professor Eric Klopfer
Director, MIT Teacher Education Program

Thesis Supervisor

Signature redacted
A ccepted by

Professor Albert R. Meyer
Chairman, Masters of Engineering Thesis Committee

2

Usability Improvements for the TaleBlazer Game Editor

by

Cristina Lozano

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2014, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

TaleBlazer games utilize GPS technology available on most mobile devices and tablets
to create location-based augmented reality (AR) games. All TaleBlazer games are
created in a web based editor on the TaleBlazer website using a scripts-block pro-
gramming language. This this describes usability improvements to the TaleBlazer
editor that improve the learnability, efficiency, and error correction ability for the

game designer. These improvements consist of adding in an agent overview, a print-
able game summary, an error checker, and a redesign of the styling and layout of the
previously existing editor settings.

Thesis Supervisor: Professor Eric Klopfer
Title: Director, MIT Teacher Education Program

3

4

Acknowledgments

I'd like to thank Eric Kloper, Lisa Stump, and Judy Perry for welcoming me into the

TaleBlazer team and allowing me to work on this project with them for a year and a

half. It has been an extremely valuable experience for me and I'm glad to have been

a part of such a great project.

I'd like to thank Judy Perry for helping me structure and develop both my UAP

and MEng work with her exceedingly valuable project management skills. I would

also like to thank Lisa Stump for helping me in the ways of all things TaleBlazer code

related and for giving me great guidance throughout the development and implemen-

tation of my project.

I would like to thank the entire TaleBlazer Development team, past and present,

including my fellow MEngs Tanya Liu, Fidel Sosa, and Stephanie Chang as well as the

past MEng students Paul Medlock-Walton and Sarah Lehmann who were invaluable

in helping me get started with TaleBlazer. I've shared great times with all of the

members of the TaleBlazer team and I especially value their help and feedback from

the testing rounds of my project.

I'd also like to thank Jacqueline Hung, my replacement MEng student, for partic-

ipating in user tests with me and for ensuring that future work will continue on the

editor interface redesign.

I would like to thank Juan Rubio of Global Kids and all of his students for allowing

me to visit the Brooklyn Public Library and perform user observations and interviews.

I would similarly like to thank Susan Baron from the Missouri Botanical Gardens and

Cindy Spiva-Evans from the San Diego Zoo for their valuable feedback during user

testing.

I'd like to thank my academic supervisor, Eric Grimson whose help and guidance

helped me get to where I am today. Finally, I'd like to thank my family, whose moral

and financial support have helped me succeed in all of my endeavors at MIT.

5

6

Contents

1 Introduction 11

1.1 Motivations for Editor Improvements 11

1.2 Chapter Summary . 12

2 Background 13

2.0.1 Editor . 14

2.0.2 Server . 15

2.0.3 Mobile . 15

2.1 Previous W ork . 15

2.1.1 MITAR Games . 16

2.1.2 StarLogo . 16

2.1.3 Scratch. 17

3 TaleBlazer Editor Initial Design 19

3.1 Original Implementation . 19

3.2 User Research . 23

3.2.1 User Profiles . 23

3.2.2 Polling Users . 24

3.2.3 Global Kids Visit . 25

3.3 Agent Overview Initial Design . 26

3.4 Printable Game Summary . 29

3.5 Error Checker . 32

3.5.1 Errors . 33

7

3.5.2 Warnings . 35

3.5.3 Presentation of Errors . 38

3.6 Potential Flow and Interface Redesign 40

4 Testing 47

4.1 Agent Overview Testing . 48

4.2 Game Summary Testing . 49

4.3 Error Checker Testing . 49

4.4 User Interface Redesign Testing . 52

5 Final Implementation 55

5.1 Agent Overview Final Implementation 55

5.2 Game Summary Final Implementation 56

5.3 Error Checker Final Implementation 58

5.4 Interface Restyling Final Implementation 59

6 Future Work 61

6.1 Editor Flow Redesign . 61

6.2 Undo and Redo . 61

6.3 Inline Help . 62

6.4 Search and Replace . 62

6.5 W izards . 62

7 Conclusion 65

A Poll 67

8

List of Figures

2-1 Example of TaleBlazer Scripts-Blocks 14

3-1 The orginal design of the World tab for the TaleBlazer game editor.

The yellow pane (left) is the properties pane and the gray box (center)

and adjacent white box (right) is the script editor pane 20

3-2 The orginal design of the editor script panel with the options of blocks

of the left and the game designer's scripts on the right 22

3-3 The initial wireframe mockup for the agent overview 27

3-4 The second wireframe mockup for the agent overview with traits and

actions included . 28

3-5 The tiled wireframe mockup for the agent overview with traits and

actions included . 29

3-6 Example editor view for the Dead Man's Island agent with name and

description test on the left and scripts on the right. There are two say

scripts that are later represented in the game summary view 30

3-7 Example game summary view of the agents in the game. The output

for the Dead Man's Island agent shows all of the text from Figure 3-6 31

3-8 Example of a block with a reference to a deleted entity that is replaced

by '???' 34

3-9 View of the first iteration of the error checker. The error checker popup

appears across the bottom of the screen and the Error Check button

appears on the top left . 39

9

3-10 Possible wireframe mockup of the TaleBlazer agent editor page with

an embedded mobile emulator . 41

3-11 Initial wireframe mockup of the editor agent page redesign 43

3-12 Initial wireframe mockup of the editor map page redesign 44

3-13 Alternate wireframe mockup of the editor agent page redesign featuring

the new Map, World, Agents, Roles selection bar down the side and a

tabulated view of the Settings and the Scripts 45

4-1 View of the first iteration of the game summary 50

4-2 View of the second iteration of the game summary. All repetitive labels

have been removed in this revised iteration 51

4-3 The final view of the error checker after revisions from testing 53

5-1 An example of a script with say blocks nested inside of other blocks . 57

5-2 The view of the editor Map tab before this project's changes 60

5-3 The view of the editor Map tab after the final restyling changes . . . 60

10

Chapter 1

Introduction

The Scheller Teacher Education Program (STEP) lab has been working on many edu-

cation games for the purpose of educating children and young adults. The TaleBlazer

platform is one of the many research projects that have come out of the STEP lab to

take advantage of the burgeoning mobile technology field. TaleBlazer games utilize

GPS technology available on most mobile devices and tablets to create location-based

augmented reality (AR) games. AR games add digital extras to the world the user is

walking through as they reach certain geographic locations. The TaleBlazer platform

has an additional component, the web-based game editor, which allows users to create

their own augmented reality games with a blocks-based programming language.

1.1 Motivations for Editor Improvements

The TaleBlazer web editor has two target audiences: adult game creators at our

partner institutions and groups of middle school or high school aged students at after-

school programs or summer camps. Both groups tend to have limited experience with

programming and are often minimally familiar with the concept of augmented reality

games. We can assume that all of our Editor users are at an age where reading is not

a problem but we cannot assume that the user has any knowledge of programming.

The editor needs to have a very simple and intuitive interface to minimize the learning

curve associated with using TaleBlazer for these user groups. This is a difficult task

11

given the complex nature and customizability of TaleBlazer games. There is a wide

range of features that can be implemented with the editor, starting with the basics

of game play and ending with some that are very complicated and advanced. Some

aspects of these features are very error-prone due to their complex nature. TaleBlazer

also has its own vocabulary for many concepts that are unique to TaleBlazer's brand

of augmented reality games such as agent, region, player, role, and more that all have

their own meaning in the TaleBlazer game world. All of these aspects of the editor

make it difficult for a beginner user to quickly and confidently get started making a

game.

The original editor presented all of the options to the user without providing guid-

ance as to which features are most crucial and without providing any help dialogues.

The user interfaces were not always intuitive for a new user since they required a good

grasp on the internal workings of a TaleBlazer game in order to get started. Lastly,

they provided the user with a multitude of options without differentiating important,

basic features of the game from less important, advanced features.

1.2 Chapter Summary

Chapter 2 will explain the background information about TaleBlazer, including pre-

vious work that put TaleBlazer where it is now. Chapter 3 will explain the details of

the origin of the new usability features as well as the design process for each feature.

Since the design of all of the features is an iterative process, chapter 3 outlines the

initial design for all of the selected new features. Chapter 4 will detail the testing

strategy for every feature and how the design was subsequently altered to respond to

user feedback. The final implementation of all of the features is briefly explained in

chapter 5. Finally, some possible future improvements to the editor are suggested in

chapter 6.

12

Chapter 2

Background

The TaleBlazer project is a game platform for making and playing location based,

educational games. These are called augmented reality (AR) games since they add

digital extras to the real world the game player is walking through. Each game is

associated with a geo-tagged map that has specific latitude and longitude markers.

Characters and objects appear on this map at a latitude and longitude point and

have descriptions and often actions associated with them. The player first downloads

and installs the TaleBlazer native mobile application and then downloads a TaleBlazer

game from the application. The player plays the game by walking around the physical

location the game map is representing. The user can interact with characters and

objects in the game by first going to their map location as seen by markers on the map

and then following dialogues that appear on the mobile device. The mobile device

uses GPS coordinates to track where the user is and to tell when they have entered

the radius of any marker on the map.

TaleBlazer is currently used by our partners at the Columbus Zoo and Aquarium,

Old Sturbridge Village, the San Diego Zoo, the Missouri Botanical Garden, Red Butte

Garden, and Drumlin Farm as well as in educational programs such as the Global

Kids after-school program based at various locations in New York City.

13

Figure 2-1: Example of TaleBlazer Scripts-Blocks

2.0.1 Editor

Each TaleBlazer game is built on TaleBlazer's web-based editor. Each user can see

all of their own games on the TaleBlazer website. With the TaleBlazer editor, the

user can create a set of regions, which have a map picture and geographic coordinates

and the user can place agents that they have created throughout these regions. The

user can also make agents, which are essentially any sort of game object with which

the player can interact. The game designer can also specify different player roles.

The agents and roles can have many traits, actions, and scripts associated with them.

The game designer uses a blocks-based programming language on the editor to make

scripts that code the game mechanics. This blocks-based language allows the user to

drag and drop logic blocks rather than coding in a traditional ASCII programming

language to specify the game dynamics. By connecting the blocks in various ways, the

game designer can control placement and inclusion of in-game objects and customize

the game player's interactions with those objects and locations.

For example, in Figure 2-1, when the 'Enter' action is pressed, if the compass agent

14

is in the player's inventory then a pop-up on the mobile screen will say 'Forrard! Off

we go ter the island!', the player will be moved to the Island region, the boat agent

will be removed, and the mobile screen will subsequently switch to the Map tab. If the

compass is not in the inventory, then the mobile screen will say 'Ye need a compass

ter set sail!', the compass agent will be included in the world and the mobile screen

will also subsequently switch to the Map tab.

2.0.2 Server

All of the TaleBlazer games are stored on a server that can communicate with mobile

devices loaded with the TaleBlazer mobile application. The server also stores all

of the assets for every game, such as images and videos. The TaleBlazer editor is

implemented in JavaScript on the frontend and has little interaction with the server.

2.0.3 Mobile

The TaleBlazer mobile application is built using Appcelerator's Titanium toolkit,

which uses JavaScript and compiles those scripts into native applications for both

Android and iOS. The user created game files with all of the compiled game scripts

are downloaded to the mobile application when the user downloads any TaleBlazer

game from a game code. The mobile application uses the phone's GPS to locate the

user on the game map and pings the Server for updated versions of the game.

2.1 Previous Work

The STEP lab and the Media Lab at MIT have worked on many different blocks-

based programming systems that have influenced the work on the TaleBlazer platform

(see Scratch, AppInventor and StarLogo as examples). There have also been prior

attempts to create augmented reality games in the STEP lab as well as the computer

science community as a whole.

15

2.1.1 MITAR Games

Prior to launching TaleBlazer, a previous version of the STEP lab's AR software

called MITAR was used. This project was a collaboration with the Education Ar-

cade. While the MITAR platform had similar educational goals through the use of

location-based games, MITAR games were less intricate than the current TaleBlazer

implementation (e.g., there was no scripting involved) and the games were created via

point-and-click filling in numerous forms and templates rather than a blocks-based

language. This system was much less usable by children and young adults due to

the overhead required to learn the intricacies of the software. A version of the edi-

tor called GameBuilder was created with a more limited scope in order to make the

process of creating games for learnable. GameBuilder did succeed in being easier for

beginners but is severely limited what the game creators could build in a game. [1]

2.1.2 StarLogo

StarLogo is an ongoing project from the STEP lab that also incorporates block based

programming into a system to create simulations for modeling decentralized systems.

The block based language from StarLogo was adapted to work with the TaleBlazer

system.

StarLogo and StarLogo TNG are both pieces of software that require installation,

unlike the TaleBlazer editor, which is web, based. StarLogo TNG like TaleBlazer also

has many blocks with platform specific terms that are not explained clearly directly

in the editor. StarLogo TNG has a similar organization structure for its blocks, but

it has even more types of blocks than the TaleBlazer editor, which causes it to be

even less learnable to a new user. One benefit of the blocks in StarLogo TNG is the

clicking sound that is produced when two blocks are snapped together. One common

problem in the TaleBlazer editor is that users often mistakenly think that blocks are

connected when in reality they are just placed very closely. The sound effect used in

StarLogo is one way to mitigate errors pertaining to block connectivity. [2]

The most recent incarnation of StarLogo is Starlogo Nova, which allows users to

16

create simulations and games in the web browser just as the TaleBlazer editor does.

This version of StarLogo is in an earlier stage of development than the TaleBlazer

editor. [3]

2.1.3 Scratch

Scratch is another block based programming language created by the Lifelong Kinder-

garten (LLK) group at the MIT Media Lab. This system is intended to help children

learn the basics of programming by creating simple animations and games using drag

and drop block programming. The Scratch game editor has a similar interface to

the TaleBlazer editor but it includes helpful inline tutorials clearly presented which

aid the usability of the application. The Scratch games have different blocks than

the TaleBlazer system since the games are not are not location-based. Finally, the

Scratch games do not need to account for mobile device settings since the games are

all run from the browser. Scratch is similar enough to TaleBlazer that users who

have had prior experience using Scratch oftentimes find it easier to get started using

TaleBlazer. [4]

17

18

Chapter 3

TaleBlazer Editor Initial Design

The TaleBlazer editor is a very powerful game design tool with many complex features.

While the feature set is highly developed and intricate, there was much room for

improvement for the interface with the user. By increasing the usability of the editor,

the strength and the multitude of options present in the editor become more apparent

to the average user. The guiding usability principles that all of these designs attempt

to improve are the learnability, the efficiency, as well as the ability to correct errors.

This section details the design for all of the new features added to the TaleBlazer

editor. All of these proposed improvements to the TaleBlazer editor were designed

using an iterative user-centered design and testing strategy as described in Chapter

4.

3.1 Original Implementation

The original editor has four tabbed panels that show all of the options for creating

a TaleBlazer game from start to finish. The four tabs are World, Map, Agents, and

Player in that order; each tab contains pertinent settings for editing that aspect of

the game. The World, Agents, and Player tabs are divided into a left panel that has

subpanels controlling different properties and a right panel that has the script editor

for the world or agent or player. (See Figure 3-1)

The first tab, the World tab , is where all of the settings for the game world

19

Figure 3-1: The orginal design of the World tab for the TaleBlazer game editor. The
yellow pane (left) is the properties pane and the gray box (center) and adjacent white
box (right) is the script editor pane

20

are specified. This includes settings for the mobile user interface, such as which tabs

show up on the mobile device, as well as which soft keyboards are presented for typing

codes and passwords. The World tab also includes scripts, actions, or traits that are

pertinent to the whole game world.

The second tab is the Map tab where all the regions are specified for the game.

Each region has a geographic location that can be specified in this tab by GPS

coordinates. Each region also has an image for the map and all of the agents in the

game show up in their assigned positions on this map image.

The third tab is the Agent tab where the user can see all of their agents as well as

create new agents. The view for the Agent tab has a ribbon across the top, similar to

other editors such as Microsoft Word, with little tiles for each agent. One agent tile

from the ribbon can be selected and the main view shows the settings for the selected

agent such as the name, description, password, location, accessibility, and inventory

settings. The view also shows all the traits, actions, and scripts for the agent.

The final tab, the Player tab, specifies all the roles in the game. Similar to the

Agent tab, the Player tab has a ribbon with all of the roles with one role selected at

a time. The name, description, actions, traits, and scripts for the selected role are

displayed in the main panel.

Many of the subpanels for properties in the editor were originally laid out with an

attempt to follow "What you see is what you get" (WYSIWYG), meaning that the

form fields appear in a way similar to how their content would look on the mobile

phone. Unfortunately there are enough dissimilarities in appearance that make this

aid a little unclear to a novice user and there is no explicit statement of purpose

explaining this feature to the user. There are also many unfamiliar terms that are

important in the TaleBlazer world, such as agent, player, role, world, etc. that

are used heavily in the editor. While some of the more confusing settings have some

description of what they do, they are often defined heavily in terms of other TaleBlazer

keywords that might likewise be unfamiliar to a new user. There are no inline help

pop-ups or fields. On a separate part of the TaleBlazer website there are a series

of tutorials to get you started using TaleBlazer, but they are not readily available

21

Scripts for Pirates' Island [
Trash

ex c u d e m r e ' s a d f r o mn w o r ld
ndude S(prec-------- --------- in world

Make rwa out ewaters and be looldn for th' red Island now. It beca

a clde from world

1ndcd~e rr{ W1ke aa jIn world

Figure 3-2: The orginal design of the editor script panel with the options of blocks of
the left and the game designer's scripts on the right

directly from the editor.

The script editor present in the World, Agent, and Player tabs uses the Script-

Blocks library and has a panel of available blocks from which the game designer can

create their game. These blocks are organized into six categories: control, operators,

game, looks, movement, and traits. The user switches between categories by using a

dropdown at the top of the available blocks panel. (See Figure 3-2)

One drawback of this system is that games get complicated very quickly and this

editor does not have the classic features of a code editor, such as search and replace,

refactoring tools, automatic tab formatting, and other tools critical for readability and

organization of large sections of code. There also aren't any inline documentation

pop-ups or compile errors that editors like Eclipse would give you for a compiled

programming language like Java. There is a dearth of error checking and correction

tools that flag blocks that are accidentally disconnected or blocks that are unreachable

due to faulty logic blocks or script blocks with no script actions attached. Another

common problem is that users can delete objects and still have blocks in their scripts

that refer to these objects. Finally, there are many blocks that require user input

22

in text or block form but there on no validations to check if these fields are actually

populated. All of these common problems cause the games to have runtime errors

and leave the user frustrated with no course but to manually search through all of

their scripts to find breaking points.

As the games in the TaleBlazer start having more components such as roles and

agents and scenarios, the complexity of the games drastically increases. There aren't

any tools in the current Editor implementation to get a full overview or summary of

the game as a whole, which makes the "big picture" of a TaleBlazer game hard to see

amongst all of the details. Without a big picture overview of the components of their

game, it is hard for the user to see possible flaws in their design or logic or for them

to share their game easily with other users.

3.2 User Research

The TaleBlazer editor is a very powerful tool but there is room for improvement to

the functionality and usability. Experienced adult users of the editor filled out a poll

sharing feedback regarding possible deficits of the current software and suggestions for

new features and improvements. This gave us a sense of what additions or changes

would be most useful to that population. Usability concerns for new users were

ascertained by observing and then interviewing high school students using the software

during an afterschool program conducted byGlobal Kids in Brooklyn, NY.

3.2.1 User Profiles

The current users of TaleBlazer fall into two main categories: young adults learning to

create games in school or summer camp programs and adults who create games for our

partner organizations. The two target user audiences have very different needs. The

learnability aspect of usability is very important for the young adults and children

using the product. If the learnability of TaleBlazer increases, the teachers using

TaleBlazer will have a much easier time getting their students to pick up and engage

with the software. For the adult users who are already accustomed to TaleBlazer and

23

use it regularly to create and maintain games, the efficiency aspect of the usability

is key. Both types of users benefit from the system having better error checks and

generally being less error prone.

3.2.2 Polling Users

The poll to assess priorities for our experienced audience included options describing

improvements to asset management, additional sounds, error checking, content man-

agement, and in-editor help. The poll was administered to the principal game creators

at the Columbus Zoo and Aquarium, Drumlin Farm, and the Missouri Botanical Gar-

dens as well as the head of the Global Kids educational program. These game creators

are all non-technical staff at these institutions who create games for their institutions

on TaleBlazer and who teach the TaleBlazer software to camp and after school groups

of young adults. These users are all very familiar with the current TaleBlazer software

and represented the views of adult game creators, seeking improvements to the effi-

ciency and safety of the interface. The director of the Global Kids program, also had

concerns about the learnability of the software since his program shows the software

to many new students and after-school facilitators. (See Appendix A for poll)

After pooling the results, the most requested new features were:

1. The ability to generate a printable overview of the game content

2. The inclusion of an overview of the all of the agents in the game

3. An error checker

4. A spell checker

5. Customizable icons for action buttons

The first four of these requests show a desire to have ways to sort through all of the

information and content present in most developed TaleBlazer games, either to get a

broader view or to isolate any problems.

24

3.2.3 Global Kids Visit

In October of 2013, the students in a Global Kids afterschool program at the New

York Public Library in Brooklyn participated in a user study for the TaleBlazer edi-

tor software. The students were all high school age and had limited familiarity with

programming prior to starting the afterschool program. Five students sat for a indi-

vidual interview of about thirty minutes each where they discussed their background

in programming, what their experience using TaleBlazer had been like, and what they

felt they had learned from using TaleBlazer.

These student interviews offered insights into students' perspectives about the

learnability of the existing TaleBlazer editor. The students who had no prior expe-

rience with programming all thought that the software was pretty easy to learn, but

they also said they felt like the skills they were learning through TaleBlazer were not

applicable to "real" programming since it did not have the same syntactical structure

they had seen in examples of code. The two students who did have prior experience

with programming both said the software was pretty easy to learn but that they would

assume it would be hard to learn if you had no experience with programming logic

and structure. They felt TaleBlazer was a good introduction to the thought process

required for programming and that it made programming more accessible due to the

block language's ability to remove questions over syntax. Overall, these interviews

suggested that the students were gaining some exposure to basic programming skills

whether or not they were aware of it and that the basics of the TaleBlazer software

could be learned by young adults over the course of a couple of weeks.

After the interviews, the students worked on building a game they had been

designing over the course of several weeks with the guidance a staff member from

Global Kids. From observations of their work, it became clear that the students were

most confused and least efficient when they needed to flip through multiple panels of

content in search of a script or a setting they knew they needed to edit or fix. They

also spent more time than necessary trying to batch-edit agents by flipping between

agent tabs. For example, one student decided he wanted to change the naming scheme

25

for several agents and he had to flip click through multiple agent tabs changing the

name for each. This process is particularly slow since every time a new agent is

clicked on, all of the scripts for the agent need to be loaded, which can often be time

consuming in terms of loading time if the agent has many associated scripts. This

behavior could be helped by adding in the agent overview or game summary that was

requested by our partners in the poll.

3.3 Agent Overview Initial Design

The first new feature for the TaleBlazer editor was built in response to observing the

Global Kids students struggling with batch updating the TaleBlazer agents and in

response to the poll results. The overview is designed to help minimize the number

of steps the user has to take in order to change some of the most commonly up-

dated agent fields. A typical TaleBlazer games include a set of agents that appear

in locations around the map. Most TaleBlazer games have a large number of agents

often placed in multiple regions since an agent very broadly represents any object in

the game that isn't the game player. The new agent overview mode gives the game

designer a better sense of the agents and their relation to one another. This agent

overview is an alternate view to the original properties and scripts pane view with

the goal of increasing the efficiency of updating agents and creating new agents for

more advanced users. The overview has a tile for each agent that has inline editable

fields for the most important characteristics of the agents (e.g., name, description).

This new view allows the user to easily scroll vertically through all of the agents and

see approximately five or six agents at any given time on the screen (vs. one at a

time in the standard view). The agents are also sortable by region, by name, by icon

shape, by icon color, and by the custom ordering the user provides.

Before implementing anything in code, there were several iterations of wireframe

mockups that helped determine the final layout for the agent overview as it now exists.

The starting mockup design of this view has editable form fields for the most critical

properties of an agent, which were defined as their name, description, icon, region,

26

Agent Overview (2 Agents) SortTr [r.si [IO.I]

WORLD_ _ _ __ _o ' pii d eunpmu n l e Iii

AWH huded YE Paua"

A R.gl=n Ck Code

o I lw-ZZ I ..*

X-l co clc&a -J-VJa

Omanr=sn~ann Copydtht Mrr STEP Lab2Ol2-Z13

Figure 3-3: The initial wireframe mockup for the agent overview

location/clue code, and indication of whether the agent is initially included in the

game, and whether it is password protected. These fields are designed to be editable

rather than just viewable in order to aid in the goal of being able to efficiently update

multiple agents in a minimum number of step. (See Figure 3-3)

After the feedback from the TaleBlazer team, the overview design was changed to

also include some non-editable fields such as a list of traits and actions that can be

edited by pressing an edit link that redirects the user to the scripts pane and settings

editable view. The description was also moved to be below the agent image to follow

the WYSIWYG layout of the agent page on the mobile device. These changes can

be seen in the second round of mockups in Figures 3-4 and 3-5. In the last mockup

seen in Figure 3-5, the material was condensed so that at least two tiles could appear

in each row on the screen in an attempt to maximize the amount of information seen

without making the screen too crowded.

The design from Figure 3-5 is the design that was used for the first computer

27

Agent Overview (29 Agents) Sort fy I Region |-1

R0210: main (2Ags.fm

IA#.Pt I dmacrpMon
REGiIN 1

kff --ud I YES Passw--- C]

CmRegion Main Ej X 1 Y 2

WORLD Actlons Pick Up, Drop
TMIe Croeb, Wizard

jApud2 dmscdskn edit

Region Cks Cods I,,

Actions Pidc Up, Drop, Give
Traft NONE

Region: Crw(4 Aues)

Copyfght Mrr STEP Lob 2012-2013

Figure 3-4: The second wireframe mockup for the agent overview with traits and
actions included

28

Agent Overview (29 Agents) soft By [viai e] w E [II

M agion: Main CI Agw" Ihn

REGION IAZI" k" " Apui2 n o
iiay wicluded YE FiK71 kIcWukduid YES

WOLDn in oo Ragion Xin
UN. xs X Y Xi X x' Y LE__

Pasword 0j dPspt "i [1113 0
Actions Pk Up. Drop Acdions Pi*Up. Drop
TaNS cmem murd TraM Crealtve Wizard

Aast) I kon FEE Clvr.4 |an Fo I
aN*smy knc*Wed YES kM nnlny nckded YES n

10gi 0 man X Region [minZ|
XX |10|Y |13|X |10|Y |

dston Password 0 Password 0
Actions Pick Up. DrO Action. Pick Un. DMn

Copyright MIT STEP Lab 2012-2013

Figure 3-5: The tiled wireframe mockup for the agent overview with traits and actions
included

prototype of the agent overview. The revised editor now includes a version of the

agent overview that is derived from this basic design. The final implementation

differs slightly from the mockup in Figure 3-5 as a result of feedback from the testing

performed as described in section 4.1.

3.4 Printable Game Summary

Similar to the agent overview, the revised Editor includes a game summary to give

game designers a 'big picture' view of their game. This new game summary enables

the user to easily share and print a hard copy of their games. There are no images

included in the game summary in order to make the print view more succinct and

text focused since most of the users of TaleBlazer expressed the desire to have a

text proofreading tool rather than a more visual overview tool. Unlike the agent

overview, this game summary is not editable and as such is a read-only view. After

consideration of an editable overview, it was decided that having editable form fields

29

:Awvll Yau be hrAn u"nd at Dead Manes Islandl. Yoa u andr
a may bac now.

(Settings

Saipts for Dead M W. Island

Trash

from world $

01
and rod 2,0],in world

the We Mond. ft be

.......................
t. world

... in world

ou be = back to 41=!! Bay, That Is g =onms .

Figure 3-6: Example editor view for the Dead Man's Island agent with name and
description test on the left and scripts on the right. There are two say scripts that
are later represented in the game summary view

in this instance would likely confuse game authors, having lost all of the organization

that is provided by the tabbed structure of the current editor. Having one large

editable form for the game would be even more difficult to navigate than the current

structure. A read-only summary is space efficient, allowing the user to see more on

their screen at once and it is easily printable and sharable with others. The game

designer can easily use this overview to search through all the text in the game,

although they need to return to the tabbed interface to change the text. Having a

printable view makes proofreading of all text in the game simpler since all of the text

is located in one place rather than across multiple tabs, script blocks, and rich text

editor pop-ups as it was in the original editor.

The game summary includes details about the world, agents and roles. For every

entity in the game (the world, all of the agents, and all of the roles), there is listed

the name of the entity, the description, the names and content of all of the actions

associated with the entity, the names of all the traits for the entity, and the contents

of all the say blocks in the entity's scripts. You can see an example of how the

descriptions and scripts for the Dead Man's Island agent in Figure 3-6 is recorded

in the agents section of the game summary in Figure 3-7. The game summary aims

to be a useful overview of all of the text in the game allowing the game designer to

quickly see all of this text in one place to allow for a simple read over.

30

Agents

Pirates' Island
Description: Aaaarr! Which ship ye be choosin' t' get ye' close to th' treasure?

Say Scripts

" Say: Make yer way out to the waters and be lookin for th' red island now. It be called ShipWreck Bay.'Tis nay too far from here.

. Say: Arrm! Make yer way to the blue island. It be called Musket Hill. Cross the seas from here.

Shipwreck Bay
Description: Ye' be havin' arrived at ShipWreck Bay! Now which ship ye' choosin next? That treasure be a waitin.

Say Scripts

" Say: Make yer way to the blue island. It be across the seas from here.

" Say: Aaarr! Ye' chose the path to Dead Man's Island. You be a bit far away from the treasure but go find the orange island.

Dead Man's Island
Description: Aarr!! You be havin' arrived at Dead Man's Island. You must find a way back now.

Say Scripts

" Say: Cross the seas and find the blue island. It be called Musket Hill.

* Say: You be goin back to Shipwreck Bay. That is green on yer map.

Figure 3-7: Example game summary view of the agents in the game. The output for

the Dead Man's Island agent shows all of the text from Figure 3-6

31

3.5 Error Checker

To prevent users from having runtime errors as they play their games, modifications

to the editor were made to include basic error checking to alert game designers to

common mistakes. The types of common errors were generated by the TaleBlazer

team from personal experience creating games and from previous comments from

TaleBlazer users at our partner institutions. The user poll listed a couple of these

common errors and the users voted on which ones were most pressing for them. The

preliminary computer implementation of the error checker checks for the following

errors and warnings:

" Blocks referring to deleted entities

* Mobile settings set to numeric password keyboard for games that include agents

with non-numeric passwords

" Mobile settings set to numeric clue code keyboard for games that include agents

with non-numeric clue codes

" Orphaned clue codes

" Using the default clue code

" Duplicate clue codes

" Orphaned regions

" Orphaned agents

And the subsequent errors and warnings were added after a round of iterative testing

as described in Section 4.3:

" Missing arguments in a block

* Empty text actions

" Empty script and video actions

32

The user is notified if they have any of these errors anywhere in their game and

clicking on the error will bring users to the site of the error. The user is not prevented

from saving their game due to the presence of any of these errors. This allows users to

be aware of the problems they face with their game but still allows them to postpone

fixing their errors until future sessions or continue onwards conscious of the risks.

These error checks reflect some of the most common mistakes that absorb the

most of the user's time when debugging. All of these errors originally required the

user to look through all of their scripts for all of their agents, roles, and world, which

is both time consuming and frustrating to attempt. These simple checks speed up

the debugging process immensely and add to the efficiency of the game editor.

The error checker splits alerts indicating identified issues into 'warnings' and 'er-

rors'. This partitioning is done to inform the game designer about the severity of the

issue(s) with the game. Errors are defined as issues that will break the game when it

is played on the mobile device. Warnings are issues that are most likely mistakes but

won't necessarily break the mobile game during runtime. This segregation allows the

game designer to filter the issues presented.

3.5.1 Errors

Blocks Referring to Deleted Entities

Currently, some of the TaleBlazer blocks contain drop down menus where an agent or

role or other game entity can be selected. These blocks, such as the "Move <agent>

to <region>" block or the "Include <agent> in world" block must have an agent or

region selected in order to function. The common error with these blocks occurs when

the selected agent or region or role gets deleted and the block no longer has a valid

reference. When a block refers to a deleted entity, the name of the entity selected

is converted to '???' as seen in the "Include <agent> in world" block in Figure 3-8.

The error checker crawls through all of the scripts in the game and ensures that all

of the selected entities are still valid entities in the game.

33

exclude e(edMnsIfn) from world

include ? in world

Cross the seas and find the blue island. It be called Musket Hill.

map

Figure 3-8: Example of a block with a reference to a deleted entity that is replaced
by '???'

Mobile Settings Set to Numeric Password Keyboard with Non-Numeric

Passwords

TaleBlazer games have the ability to make agents that are password protected. On

the mobile game, a keyboard pops up when a password needs to be typed in. The

game has a mobile settings panel where the game designer can specify if this keyboard

should be numeric or alphabetic by default. Some mobile devices function such that a

numeric keyboard can never be switched back to an alphabetic keyboard. This error

on the mobile device will prevent the player from completing the game. In order

to prevent this occurrence, the error checker goes through all the passwords in the

game if the keyboard is set to numeric and ensures that there are no agents with

non-numeric passwords.

Mobile Settings Set to Numeric Clue Code Keyboard with Non-Numeric

Clue Codes

TaleBlazer games have the ability to make agents with clue codes for locations instead

of GPS locations. Similar to passwords, on the mobile game, a keyboard pops up when

a clue code needs to be typed in. Similar to the password, the mobile settings panel

has a setting for the default keyboard type for clue codes. When this setting is set to

numeric and there are non-numeric clue codes the mobile game breaks in the same

way it does for passwords as described above. The error checker also goes through all

of the agents to ensure that there are no agents with non-numeric clue codes if the

34

default keyboard is set to numeric.

Empty Script and Video Actions

When the game designer creates actions for an entity, they are allowed to choose

between having a script action, a text action, or a video action. When the designer

chooses to have a script action, they are prompted to choose a named script to

associate with the action from a dropdown. When the designer chooses a video

action, they are prompted to upload the video for the action. If either of these

actions don't have the required script or video selected, the game will have nothing

to play or execute when running on the mobile. The error checker provides an error

for any script or video action that does not have the correct associated content.

3.5.2 Warnings

Orphaned Clue Code

Every agent has a location, which is either a coordinate in a region or is a clue code.

The game player interacts with clue code agents by typing its code into the Clue

Code tab on the game. In order to be able to type in a code, the game designer

must include the Clue Code tab either in the mobile tabs settings for the world or

during the course of the game play by using the "Include clue code tab" block. The

error check ensures that the Clue Code tab gets included at some point in the game

if there are agents in the game with clue codes. The error checker puts out a warning

if there are agents with clue codes but the Clue Code tab never appears since this

means these agents will never be accessible in the game.

Default Clue Code

Every agent by default has a location on the top left corner of the default region.

When the game designer switches the location to use a clue code instead, the clue

code is automatically set to a default clue code. It is not likely that the game designer

would ever intend to have the clue code for an agent be the automatically generated

35

default code, so the error checker provides a warning for any agents that use the

default clue code.

Duplicate Clue Code

The game player interacts with clue code agents by entering its clue code into the

Clue Code tab of the TaleBlazer game. Entering this code should call up the agent

with that code currently included in the game. If there are two agents included with

the same code, it is not clear which agent will be 'bumped'. Any duplicate clue codes

are most likely a mistake that the game designer overlooked and the error checker

looks through all the agent's clue codes and gives a warning for any duplicates. This

is considered a warning since there are some instances where a game designer could

intentionally have two agents with the same code, for instance, in a game where only

one of the two agents is only ever included in the game at once and the game designer

wants the code to bump whichever of the two agents is included at the time.

Orphaned Regions

For every TaleBlazer game, the game designer is allowed to specify multiple regions

and place agents in any of these regions. One region is marked as the default region

and the game player always starts in this region. In order to go to another region,

the game designer must include a "move <player> to <region>" block. If there is a

region in a game that is not the default and there is no "move <player> to <region>"7

for that region then the region can never be accessed by the game player. This is

most likely not the intent of the game designer so the error checker ensures that there

is a "move <player> to <region>" block for every non-default region and prints a

warning if there is an unreachable "orphaned" region.

Orphaned Agents

All TaleBlazer agents have a property specifying whether they are to be included in

the game at the start of the game. All of the agents that are included at the start

of the game and are in non-orphaned regions are reachable by the game player at

36

some point in the game. If an agent is not accessible from the start, the only way

to interact with the agent is by including them somewhere during the game with a

"include <agent> in world" block.

If the agent is not included at the start and there is no "include <agent> in world"

block for it, then the agent will never be accessible during the game. This is most

likely not the intent of the game designer, so the error checker provides a warning for

every agent that is never included at some point during the game play.

Missing Arguments

Most of the blocks in TaleBlazer have arguments that need to be filled in. For example,

the "argi < arg2" block should have values filled in for argi and arg2 so that they

can be compared.

Currently, most of the blocks have default responses if there are missing arguments,

but this default is hard coded into the block evaluator at run-time and is not evident

to the user at design-time. Generally, if a block has a missing argument it is because

the game designer mistakenly left it blank. This is classified as a warning since having

missing arguments won't break the game, but it is most likely unintended by the game

designer and could have non-obvious outcomes. The error checker crawls through all

of the scripts in the game and ensures that each script has all of the arguments

expected from the definition of the block specified.

Empty Text Actions

When the game designer creates actions for an entity, they are allowed to choose

between having a script action, a text action, or a video action. When they choose a

text action, they are prompted to enter text that will appear when the action occurs.

The error checker prints a warning for any text action that is left blank (without

text) since that is most likely an oversight by the game designer, which results in an

empty string showing up on the screen during the game. This, unlike the script and

video actions, is considered a warning since it does not break the game, but is rather

something that was just not desirable in most circumstances.

37

3.5.3 Presentation of Errors

This error checker is intended to be an additional feature that the game designer

can take advantage of to debug their games, but does not force the designer to fix

all problems before saving the game. The user can run the error check by pressing

the Error Check button that appears in the top right of the editor. Pressing this

button opens up the error checker window with the listed errors and warnings. The

error checker is located in a place on the screen so that the user can see the list of

errors while still seeing most of the editor panels so that they can fix the presented

errors. To keep with external consistency for most error checkers and debuggers in

programming IDEs, the error check in TaleBlazer is located in a fixed position box

at the bottom of the screen. This is also consistent with the setup for the console

debugger and development tools that are present in most web browsers. The user

can close the error checker by pressing the 'X' in the top right corner. The first

implementation of the error checker can be seen in Figure 3-9.

The errors and warnings are split into two different tabs in the bottom panel in

order to provide a separation between these two types. The errors are presented on

alternating color lines and can be clicked on to direct the user to the correct location

to fix the error. Clicking on an error does not close the error-checking box so that the

user can still reference the error list as they are correcting the problems in the editor.

The other considered method for presenting errors was to have a popup presentation

of all of the errors. This method was rejected due to the problems with viewing both

the error and the editor at the same time. This also has the disadvantage of not being

consistent with other debuggers such as Eclipse. Since TaleBlazer is an introduction

for many young adults to software development, it is appropriate to present tools in

a manner consistent with professional development environments in order to train

them for any future work.

38

Figure 3-9: View of the first iteration of the error checker. The error checker popup
appears across the bottom of the screen and the Error Check button appears on the
top left

39

3.6 Potential Flow and Interface Redesign

The original editor interface optimizes for efficiency for the super user, but this inter-

face has the downside of appearing overly complicated to a new user. The usability of

the current feature set implemented in the editor could be improved to increase the

learnability of the system for new users while still maintaining the level of efficiency

or even improving the efficiency for the super user.

The new TaleBlazer interface could be designed in many ways, some more drastic

of a change than others. Many designs were proposed over the course of this update,

but most were not implemented due to lack of consensus amongst the TaleBlazer

team as to which changes would be too dramatic for the current users of TaleBlazer.

The design that was settled upon deviates very little from the original editor design

but does succeed in improving the main view. This design was chosen since it ad-

dresses the problem mentioned by users at Global Kids of having a busy layout and

non-modern feel that is incongruous with the other web applications users are now

accustomed to using. It also avoids confusing the set of current users who are ac-

customed to the current workflow of TaleBlazer but still helps new users feel a little

more comfortable with the application. The layout of the editor user interface was

rearranged and restyled to improve the simplicity. Originally the user was presented

with cluttered views and oftentimes distracting colors. The new streamlined appear-

ance of the interface additionally aids in comprehension of which features are most

important. This is done by reorganizing the arrangement of the property form fields

to emphasize the most important properties and by putting more advanced settings

in less prominent positions. There are many other changes that were discussed that

would potentially increase the usability of the editor, but after discussion with the

TaleBlazer team, the more radical changes to the interface were postponed in favor of

adding the new features described above. It was decided after careful consideration

that any major overhaul of the flow of the editor would need lots of time and careful

attention so as to not completely confuse our already large set of regular users and

should be saved for a future iteration of editor updates.

40

I I

Agents

Ae"t 3

zeII

V I

SA "IIn

- x

MWi
ma o

MahiI~

~Ofl ~'

Location

Cke Code iZJ?

z~I1Seri*s

1~ -

K>

& I

I Ccpyright MIT STEP Lab 2012-2013

Figure 3-10: Possible wireframe mockup of the TaleBlazer agent editor page with an
embedded mobile emulator

41

MP
WORMD

Ideally, in a future design, a new user would be able to play around with the differ-

ent controls in the editor to get a sense for what each one does, but in the TaleBlazer

editor there is a lack of direct feedback since most of the changes aren't obvious until

you run the compiled game on a mobile device. One could imagine TaleBlazer having

an emulator embedded in the editor in the future, as seen in Figure 3-10. In the

absence of a mobile game emulator for feedback, the interface of the editor needs to

have a very clear indication of what every control does to increase the learnability

of the system. This could be done in the future with inline help dialogues and an

attempt to use WYSIWYG layouts where possible, while still maintaining external

consistency with other standard editing software. To increase internal consistency,

the vocabulary being used in the editor should be kept to a small subset so that the

user isn't overwhelmed by multiple terms being used for similar concepts, such as map

vs. region or player vs. role. One possible design, as seen in Figures 3-11 and 3-12,

is to move the horizontally scrolling ribbon of agents and regions and roles to be a

vertically scrolling list on the left hand side of the screen. This would be externally

consistent with most lists of objects on other websites and would allow users to select

multiple entities at once in order to clone or delete groups of entities rather than using

the current method of pressing the delete or clone button that is present in each tile

for each entity in the ribbon. This would aid in the efficiency of deleting or cloning

multiple entities. This would also aid in the simplicity of the view by removing excess

buttons, which allows the user to focus on the more critical buttons in the view.

Another possible design is to divide the scripts pane and the settings pane into two

separate tabs, as seen in Figure 3-13. In the original editor the scripts pane is very

constricted width-wise since there are too many panels splitting up the width of the

screen. By creating a larger area for the scripts, the user will have a more complete

view of their scripts, which will hopefully allow them to have better organization and

comprehension of their game logic. Better organization of the scripts will hopefully

lead to fewer mistakes or oversights. It will also make the experience of editing and

creating a game more pleasant by mitigating the need for frequent horizontal and

vertical scrolling.

42

Agents
+AddAsant|

Agt 4

get

IMomewr I Scripts forAgenti

mapciL yer

Map Main

Map Icon Icon I
Locion

Clus cod&[~

r 1
copyright MIT STEP Lab 2D12-2013

Figure 3-11: Initial wireframe mockup of the editor agent page redesign

For this layout seen in Figure 3-13 with the separate tabs for settings and scripts,

the tab bar for switching between the Map, World, Agents, and Roles tabs is moved

down to the left side. This move is to help prevent the possible confusion of having

two layers of horizontally listed tabbed panels. This also means icons could be added

to the selection bar, which would be nice for younger children who are still accustomed

to using very image based websites that were designed to accommodate people with

limited reading skills. While it is assumed that everyone using TaleBlazer has a good

grasp of reading, it would still make the website more externally consistent with other

sites that are not making that assumption but are intended for children of the same

age.

43

Drag toS~c

D;9 [" 0 Debfat Region

Regionl1

ftglon 3 Ldhtude

ft911o.4 TOP

Lottngluddetee

dynamir map (requires data plan)

0 cutom map

SIndoor Region

SEnforce Boundaries

DolebLodkAgenris LodCkMap

copyrighl MrT STEP Lab 2D12-2013

Figure 3-12: Initial wireframe mockup of the editor map page redesign

44

I I

Agnta

I I ScrpWs for Agenti

zez
r ows"mI

NAP

WORLD

ROLE S

aSDv toSelect I

Agenit I

AgLt4

A**

Copyright MIT STEP Lab 2012-2013

Figure 3-13: Alternate wireframe mockup of the editor agent page redesign featuring
the new Map, World, Agents, Roles selection bar down the side and a tabulated view
of the Settings and the Scripts

45

46

Chapter 4

Testing

Iterative design is the current best-practice process for developing user interfaces. It's

a specialization of the spiral model for software engineering described by Boehm in

"A Spiral Model of Software Development and Enhancement" [5]. The spiral model as

applied to user interface design consists of cycling between design, implementation,

and evaluation but with low cost at the early stages of the cycle and with higher

fidelity and cost as the cycle spirals outwards. Since user interface design is focused

on creating the most usable interface possible, it requires feedback and evaluation

from the user to improve the system.

For all of the proposed improvements to the TaleBlazer editor there has been an

iterative user-centered design and testing strategy. The original proposal for the new

features came from the users of the system through watching students at the Global

Kids afterschool program and through the requested features poll. After this first

contact with the users, the original design for each selected new improvement was

plotted out with wireframes and a task analysis was created through discussions with

the TaleBlazer team leaders. The wireframes were then shown to other members of

the STEP lab to get more user feedback. After the low fidelity, low cost stage of

mocking up designs and proposing user interactions and supported features, there

was a round of basic implementation of the features. The basic implementation

resulted in a functional computer prototype that was then demoed and tested by the

members of the STEP lab, all of which are users with limited familiarity with the

47

TaleBlazer editor. After receiving feedback from these users, the basic implementation

was improved to fix any usability issues made apparent from preliminary testing. The

second round of computer implementation was then tested via WebEx with one of

TaleBlazer's regular users at the Missouri Botanical Garden.

All of the rounds of computer prototype user testing were formative evaluations

where the users were observed interacting with the interface and were requested to

think aloud. In each instance of testing, the users were told to try and check for and

correct errors in a sample game as well as asked to review their game summary and

sort and modify agents through the agent overview. After each round of testing, the

qualitative usability issues were recorded and fixed before the next round of testing

so as to get new feedback on ever iteration.

4.1 Agent Overview Testing

The preliminary design for the agent overview was created with multiple drawn mock-

ups of the view as seen in Figures 3-3, 3-4 and 3-5. The main concern for the view

was how many tiles should go across the screen and how much information should be

included. After the preliminary mockups, the TaleBlazer team leaders agreed that

having multiple agent tiles in each row would increase the number of entities on the

screen, which would help with the goal of seeing more at once as an overview but

without leaving it too cluttered. Additionally, it was decided that the traits and ac-

tions for an agent should be listed in the overview but should not be editable since the

editing structure for the actions and traits would overly complicate the view. Instead,

an edit button was added to the top corner of each tile, which brings the user back

to the full view for the selected agent so that they can edit whatever they need to

change there.

The second round of testing led to a change in the content provided on the agent

tile. Two of the testers agreed that a link to the bump settings popup for an agent

would be helpful since they oftentimes find themselves needing to update those set-

tings. Another user also mentioned that it might be nice to summarize the content of

48

the bump settings in the overview for each agent. For the next round, the agent tile

incorporated a bump settings button on the agent tile that opens a popup for viewing

and modifying the bump settings of the agent in question. One tester mentioned that

the agent name field was not long enough for some of their longer agent names, so

the styling of the agent tile was shifted slightly for the next implementation such that

the tile stayed the same width but the width of the agent name input increased. The

rest of the feedback was positive and many of the testers said that they could see

themselves using the feature and finding it very helpful.

4.2 Game Summary Testing

The first design for the game summary generated a PDF file of the summary when the

user clicked the game summary button. After the initial discussions of this method,

the game summary button was changed so that it now saves an html version of the

game summary. The user can now use the browser's search function on the summary

file and the browser's print function. This change was due to the fact that some

PDF viewers do not have a good capability for searching through text and one of the

primary tasks that needs to be completed with the game summary is searching for

the instance of an agent name or searching for any other specific game text.

During the second round of testing, one user expressed a desire to have less rep-

etition of the text in the labels. Based on this feedback, all self explanatory and

repetitive labels were removed in the next iteration. The first iteration can be seen

in Figure 4-1 and the revised second iteration summary can be seen in Figure 4-2.

4.3 Error Checker Testing

The preliminary design for the error checker was based off of the browser console web

development inspector and the Eclipse debugger. After the preliminary discussion,

one question was whether or not to split errors into errors and warnings or to have

just one tab. No consensus was reached in that discussion, so the two tab format of

49

World
Name: Adventure Land

Description: Welcome to animal adventure land! You'll meet all sorts of animals and
eat all sorts of snacks in this fun world.

Introduction:

Say Scripts

" Say: I just found a sandwich!

" Say: We're looking for all of our pets and food

Agents

Sandwich
Description: rm a yummy sandwich filled with turkey, ham, and cheese.

Text Actions

* Name: Eat

Text: None

Banana
Description: I'm a ripe yellow banana.

Clue Code: 123

Text Actions

* Name: Peel

Text: Yum, a banana

Figure 4-1: View of the first iteration of the game summary

50

World
Name: Adventure Land

Description: Welcome to animal adventure land! You'll meet all sorts of animals and
eat all sorts of snacks in this fun world.

Introduction:

Say Scripts

* I just found a sandwich!

* We're looking for all of our pets and food

Agents

Sandwich
Description: rm a yummy sandwich filled with turkey, ham, and cheese.

Text Actions

* Eat

Text: None

Banana
Description: I'm a ripe yellow banana.

Clue Code: 123

Text Actions

e Peel

Text: Yum, a banana

Figure 4-2: View of the second iteration of the game summary. All repetitive labels
have been removed in this revised iteration

51

errors and warnings was kept for the next iteration of testing.

In the first round of testing, the users found it unclear that the errors listed in

the checker were clickable. The shading on the selected tab for errors or warnings

was also unclear to some of the testers. One tester also suggested adding in a refresh

button and a "last updated" field on the error checker to let the user know that the

error checker does not dynamically update as you change the game in the editor. As

of the next iteration, the errors in the checker were styled with bold on the names

of the incorrect entities in question and a hover effect was added to the line. Both

of these styling changes helped the next round of users realize that the items in the

list were clickable. A small refresh icon was also added with a statement of the last

update time. The buttons for the selected tabs were changed to more standard button

shapes, which also helped testers in the next round better understand which tab they

were on. The final view after all of the testing iterations of the error checker can be

seen in Figure 4-3.

Finally, the users in the last test noted that it would be nice to have errors and

warnings for three additional categories. These two new warnings and one new error

were implemented for the next iteration:

" Warning for missing arguments in a block

" Warning for empty text actions

" Error for empty script and video actions

A detailed description of these errors can be found in Section 3.5

4.4 User Interface Redesign Testing

Over the course of discussions with the TaleBlazer team leads, multiple designs for the

user interface redesign were presented. These include the mockups shown in Figures 3-

11, 3-12, and 3-13 where the top tab bar has been moved to the side in many instances.

Most of the designs also feature rearrangements of the script panels and the entity

52

Figure 4-3: The final view of the error checker after revisions from testing

53

ribbons. There was no consensus amongst the testers about the large changes planned

for the large-scale redesign. The final improvements include a change in color palette,

font, spacing between elements, label names, and form element alignment. These

changes were decided upon due to a request from the users of having an application

that appeared more modern and had a cleaner appearance. All of the changes in

color were to minimize the number of accent colors and keep unimportant parts of

the editor in neutral tones while having important buttons and highlighted selections

in a contrasting accent pop color. This use of color directs the user's attention to

the regions that are most critical for use in the editor. The additional padding,

alignment, and spacing was added in response to the users feeling like there was too

much information being crowded into one space. The new alignment and spacing

provides each piece of the editor a little more separation from all of the other pieces,

which helps the user distinguish between sections and feel less overwhelmed by the

wealth of content being shown to them.

54

Chapter 5

Final Implementation

The TaleBlazer editor is composed of a server backend written in CakePHP and a

frontend using html, css, and JavaScript. The editor also makes use of the Google

Closure tool package and the JQuery library which both allow for a richer use of

Javasdcript. The TaleBlazer editor also uses scriptsBlocks, a JavaScript library de-

veloped at MIT that is used across multiple projects in the STEP lab to create the

TaleBlazer script editor. Most of the changes to the editor were written in html, css,

and JavaScript and have very little interaction with the backend.

The frontend for the editor is set up using a set of views and underlying models.

The editor also follows the observer pattern. There is a general event manager that has

functions for triggering an alert and for subscribing to get events about the changes

triggered from changes to the view, and subsequently, changes to the model. Every

time a field is changed in the view, an event is triggered and the manager sends out

an update to all the subscribers, which are generally the other views that use that

same data that has been changed. For example, when the user changes the name of

an agent, a rename event is sent out to every view that displays that agent name.

5.1 Agent Overview Final Implementation

The agent overview is a made up of two new views for the editor, one for the page of

agent tiles with the sorting and one for the agent tile object.

55

The agent overview main page consists of a set of agent tile objects and a dropdown

that allows the user to sort these tiles by name, date created, icon color, icon shape,

region, and their custom sort order. There is a function that reorders the agent tiles

in the view based on the selected sort order. The overview main page subscribes to

change listeners for the element of the agent being sorted upon so that the sort order

can be updated whenever that element of any agent gets changed. For example, if the

sort order is being determined by icon color, the overview listens for agent icon change

events and resorts the agents when it receives such an event. The agent overview main

page also subscribes to the add and delete events for agents so that it can create or

remove agent tiles for the new or deleted agent respectively.

The agent tile partial view is created for every agent model and the view contains

fields for all of the pertinent elements of the agent and described in the design section.

These include the name, description, image, traits, actions, location, password, and

whether or not the agent is included at the start of the game. Each of these fields

subscribe to rename and change events so that these fields are always consistent

with the full agent view that can be reached by clicking the edit button on the top

right corner of the agent tile. A change to any of these fields will also trigger the

rename or change event for the agent being modified so that the other views using

the information contained in that element get updated appropriately.

5.2 Game Summary Final Implementation

The game summary is a new view where most of the text content from the game is

displayed in a simple read-only format. The summary gathers all the entities in the

game, which consist of the world, all the agents, and all the roles. For every entity, the

summary displays the name, the description, the actions for the entity, the names of

the traits, and the content of any "say" or "say rich text" script blocks. Additionally,

for every agent it includes passwords or clue codes when applicable.

There is a function that crawls through all of an entity's scripts in order to find

any "say" blocks and grab their content. Each script block has a name in its definition

56

Figure 5-1: An example of a script with say blocks nested inside of other blocks

as well as a reference to any blocks it contains as well as the next attached block. The

function starts with the root script blocks for each agent and recursively searches for

say blocks by looking into any blocks contained within that block and then moves on

to the next connected block, similar to a depth first search.

For example, with the script in Figure 5-1, the function would start at the root,

the "when game starts block". This block is not a "say" block and does not contain

any blocks nested in it, so the crawler would proceed onto the next block. This next

block is a "say" block, so the text in this block would be pulled out and printed into

the game summary. The next block is an "if/then" block, which does have blocks

nested inside of it. The crawler would proceed to check inside the block in the "if'

statement and subsequently in the blocks in the "then" statement. It would find no

blocks of interest in the "if' statement and would move to the "include in world" block

in the "then" statement and then onwards to the "say rich text" block, whose contents

would be recorded in the game summary. At this point, the crawler would terminate

since there are no next blocks.

The resultant text from all of the game entities is dynamically compiled into an

57

HTML layout when the game summary button is pressed. Pressing the summary

button initiates a download of the HTML file, which can then be opened in the

browser.

5.3 Error Checker Final Implementation

The main implementation of the error checker is a script crawler similar to the one

used for the finding the "say" blocks in the game summary. This crawl script function

also goes through all of the blocks in the game like a depth first search, but instead of

searching for just "say" and "say rich text" blocks, the crawler takes in as an argument

the function that specifies which error checks to execute for each block.

The error checker has functions to create links to the warnings and errors being

created. Each one of these links is added to the error checker view that appears at

the bottom of the editor. Each error is a link that on click changes the main editor

view to be the page where the error is located. For example, if there is an error in

the world settings, the error link will bring the user to the World tab and will scroll

to the place on the page where the error is located.

Currently, the check function taken in as an argument to the crawler function

looks for multiple blocks in order to find all of the errors and warnings specified in

the design. One block the error checker looks for is the "include clue code tab" block.

If this block isn't found anywhere in one of the scripts then a warning is produced.

The check function also looks for the "set player region" block in order to update a list

of all the regions that are visited throughout the game, which can then be compared

to the list of regions in the game. A warning will be created for any regions that are

not visited by the player at some point during the game. Similarly, the checker looks

for any "Include <agent> in world" blocks and adds the agent to a list of agents that

are made visible at some point in the game. If there are any initially hidden agents

that are never included then the error checker creates a warning. The check function

checks for missing arguments by looking for the dynamic arguments specified in the

block dictionary and making sure the selected dynamic argument still exists in the

58

game by cross checking the stored reference. Similarly, the checker uses the block

specification in the dictionary to make sure that the block has all the arguments filled

in. If any arguments are missing, the checker produces a warning link.

The error checker checks the actions of each entity in addition to its scripts. It

checks the actions by checking the type of action and making sure there is the proper

data provided for each action type. For example, if the action is a video action with

no uploaded video associated with it, then an error link is added the error panel.

5.4 Interface Restyling Final Implementation

Since the design for the interface was never fully settled on, the implementation of the

interface restyling was mainly done using some basic CSS styling changes. The colors

of the interface were modified to provide a more visually appealing experience that is

more consistent with modern web design practices. The field of the form and the text

was re-spaced in order to provide a more simple and easily read layout. Generally

the prior layout was very tightly packed and not well aligned, so these small usability

concerns were easily remedied with CSS. A before and after view of the interface

restyling of the map tab can be seen in Figures 5-2 and 5-3 respectively.

59

Figure 5-2: The view of the editor Map tab before this project's changes

Figure 5-3: The view of the editor Map tab after the final restyling changes

60

Chapter 6

Future Work

While the improvements to the editor have been significant, there is still more work

to be done to make the tool even more user friendly. Some of the following changes

would most likely make a marked improvement on the experience of a TaleBlazer

user.

6.1 Editor Flow Redesign

One important task left to complete is the redesign outlined in the mockups in Fig-

ures X and Y. These designs or any additional designs should be tested with the

user populations of TaleBlazer to conclude which, if any, of the changes increase the

usability. The changes in styling implemented in this project are a good step towards

increasing the workflow and simplicity of the TaleBlazer editor but there is still room

for future improvement.

6.2 Undo and Redo

One important aspect of usability is allowing users to make errors and not have it

irreparably damage the game. The TaleBlazer editor does not have the ability to

undo and redo actions made in the script panel, which is a recovery usability flaw

that should be remedied in the future. This undo feature would save a fixed number

61

of actions back and the redo would save a fixed number of actions forward if the user

has pressed undo. This would allow the user to delete large blocks of scripts and then

recover them shortly after if they realized they had deleted something by mistake.

6.3 Inline Help

The idea of having inline help fields in the TaleBlazer editor was considered originally

to be included in this iteration of the project, but priorities caused this feature to

be postponed. Ideally, there would be question marks next to TaleBlazer terms that

are non-standard so that the user could click on the question marks and see a small

pop-up explanation of the feature. This would aid in the learnability of the product.

While much of the same information is available in external tutorials, these inline

help buttons would help with ease of access to the information and efficiency.

6.4 Search and Replace

Currently the new game summary feature allows the game designer access to all of

the text in the game where they can subsequently use the browser's search function

to find instances of a word. Ideally, in the future, TaleBlazer will have its own search

and replace feature. This would make the editor more externally consistent with

other code editors and would greatly improve the efficiency of changing an agent or

role name in many locations across a game.

6.5 Wizards

Many times, a game designer is unclear about how to specify all of the settings when

creating an agent or role, so it would be helpful to have a guide for that process. A

possible improvement would be to add in "wizards" or guides that walk the designer

through the different processes, such as creating an agent or creating a world. These

wizards would aid in the learnability of the system if not the efficiency and would be

62

another form of inline tutorial for inexperienced users.

63

64

Chapter 7

Conclusion

Now, after the completion of this work, the TaleBlazer editor has a more usable

interface to improve upon the strength of this powerful game design tool. After

careful design, testing, and implementation, the new editor is ready to be used by

young adults learning TaleBlazer for the first time as well as seasoned users creating

and maintaining an already large pool of games.

The efficiency of the editor has been improved with the new agent overview page,

which allows the game designer to quickly modify all of their agents in one place

without switching tabs as well as get a better sense of the "big picture" view of their

game. The new game summary also gives the game designer a useful new tool for

revising text in their games as well as a way to print out and share a game overview

with others. The new error checker aids in the usability of the editor by making the

game designer less error prone and able to quickly fix the common errors seen in the

TaleBlazer editor. Finally, the restyling of the colors and alignment gives the editor

a more polished and clean appearance, which aids in the simplicity of the interface

and makes the editor appear like a modern, professional tool.

65

66

Appendix A

Poll

Poll to Assess Priorities for TaleBlazer Editor Improvements 2013-14

Here is a proposed list of changes we are contemplating for the upcoming year to

make the editor easier, more reliable, and more intuitive to use. Again, these are all

intended to help game designers have an easier time using TaleBlazer.

We need your help prioritizing this list so we can tackle the most desired features

first. **Please take a look at the list and let me know (by number) the top 5 items

you?d like tackled ASAP.

Enhanced Asset Management

1. Add royalty-free stock agent images

2. Allow users to tag/share agent images

3. Enable designers to specify Action Button images (to replace the gold star)

4. Enable designers to import/use custom map icons (not just shape/color)

Sound

5. Enable designer to include item selected from pre-set group of stock sound

effects (cash register "cha-ching", "boom", "wah-wah" you loose sound, etc.)

(a) E.g., When a player bumps a given icon, a specific sfx could trigger

6. Allow users to upload custom sound effects (e.g., a specific bird song)

67

7. Enable designer to include voice readings (e.g., to appear over text on screen)

8. Allow ambient sounds or music to play during game (*may not be technically

feasible)

Error Checking

9. Have ability to check for errors in the game, such as:

(a) Required but unpopulated fields

(b) Script action with no script

(c) Password block with no password set

(d) Duplicate clue codes

(e) Blocks that refer to objects that have been deleted

(f) Unattached blocks

(g) Checking for inaccessible agents

Content Management

10. Undo/redo actions

11. Find/Replace words, such as names, in the game

12. Spell check

13. See a game overview or summary report of all the data in a game (clue codes,

agents, password protected objects, etc.)

14. Enable game designer to print a hard copy of the game

15. Allow grouping or sorting agents

Help

16. Add inline help fields (hover over '?' to provide explanatory text to help clarify

terms, etc.)

68

17. Have "wizards" or guides that walk you through the different processes, such as

creating an agent or creating a world.

18. Provide designer with an overview of agents (indicating when they dis/appear

in the game, etc. without having to make them do a manual search)

69

70

Bibliography

[1] MIT Scheller Teacher Education Program. MITAR Games. http: //education.

mit . edu/proj ects/mit ar-games.

[2] MIT Scheller Teacher Education Program. Starlogo TNG. http: //education.

mit.edu/projects/starlogo-tng.

[3] MIT Scheller Teacher Education Program. Starlogo Nova. http: //education.

mit . edu/starlogo-nova.

[4] MIT Lifelong Kindergarten Group. Scratch. scratch.mit .edu.

[5] Boehm B, A Spiral Model of Software Development and Enhancement, ACM SIG-

SOFT Software Engineering Notes, ACM, 11(4):14-24, August 1986

71

