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Abstract

Programing is a singular creative tool with the potential to support personal expression. Unfor-
tunately, many people who are new to programing view it as a highly specialized, difficult and
inaccessible skill that is only relevant for career paths in science, engineering, or business fields. De-
spite this perception, programing enables novel forms of creative expression and communication in
the medium of computation. Visual and physical art, craft, and design are interrelated domains that
offer exciting possibilities when extended by computation. By forging strong connections between
the skill of programming and the construction of personally relevant physical objects, it may be
possible to foster meaningful creative experiences in computation and making for non-professionals.
The combination of computational design, digital fabrication, and hand craft to create functional
artifacts offers an opportunity to make programing compelling for people with an interest in craft-
sensitive forms of making. I define the synthesis of these fields with the term algorithmic craft. This
thesis describes my work in developing a set of software tools that attempt to make the practice of
algorithmic craft accessible for novice programers. Through it, I describe the design of each tool
and discuss my experiences in engaging people in the creation of objects that are imagined by the
mind, designed with programming, formed by machines, and shaped by hand.
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Chapter 1

Introduction

"Some people write poetry in the language we speak. Perhaps better poetry will be

written in the language of digital computers of the future than has ever been written in

English." -J.C.R Licklider

Computation is a driving force in our world. The power and ubiquity of modern computer

systems have made the skill of computer programming relevant to a wide range of human studies and

disciplines. Commonly, programming is viewed as an essential component of science, engineering and

business. Despite this view, computation is also a powerful tool for creative disciplines. When applied

to the arts, programming offers different paradigms for creation and new methods of problem solving.

My personal interest in this respect lies in computational design: the use of programming to generate

visual form. Frequently used to create screen-based work, computational design is also applicable to

the design of physical objects. The advent of digital-fabrication technology allows for a transition

from digital forms produced by computation to physical artifacts that live in the world. The joint use

of computational design and digital fabrication is becoming an integral component of professional art

and design, both as a method of prototyping and as a means for producing finished work. Although

these technologies primarily serve professionals, the combination of computational design and digital

fabrication also provides the opportunity for amateur creative expression. The growing diversity in

programming environments, combined with the emergence of the personal fabrication movement

suggest new ways to support non-professionals in a combined practice of computation, design, and

construction. In addition, many forms of digital fabrication are compatible with traditional art

and craft techniques. The combination of computational design and digital fabrication provides

a way of making programming relevant to people with an interest in craft. The development of

accessible computational-design and digital-fabrication tools therefore presents new opportunities for

broadening participation in programming, expanding the ways in which people create, and changing

the role programming can play in people's lives.
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Hand and Body Engagement

Material OutputComputational Input

Figure 1-1: The intersecting domains of algorithmic craft.

In this thesis, I examine methods that facilitate participation in the intersection of computational

design, digital fabrication, and traditional arts and crafts for the production of functional and
decorative physical artifacts. I use the term algorithmic craft as a way of describing these collective
practices. My primary aim is to support people without formal education or experience in computer
science in the practice of algorithmic craft, although I also seek to develop methods that are accessible
to individuals without formal training in art and design. My goal is to work with people in ways that
emphasize pleasure, recreation, and non-professional utility in the service of personal expression.

My study of this space is motivated by the practical and theoretical questions that arise when

bridging the spaces between textual programming language, visual design, and machine and hand-

based physical construction. What are the important design principles to consider when creating

programming environments for physical design? How do we compellingly link textual code with

visual designs, and what are the appropriate intersection points between textual manipulation and
visual manipulation? What support is required to help people move back and forth from program-

ming to building real objects in a way that is comfortable, expressive, and pleasurable? How can we
remove the technical challenges involved in translating code into an object that can be successfully

18



Figure 1-2: Algorithmic craft practices, tools and artifacts.

fabricated, but still support a wide variety of design styles, aesthetics, and approaches? Finally,

how can we interlink the often disparate processes of physical prototyping with digital design and

programming in a way that creatively reinforces both physical and virtual modes of working?

In order to address these questions, I developed three different software tools to support prac-

titioners in this domain. Codeable Objects is a programming library that helps people design and

fabricate laser-cut lamps. Soft Objects is an extension of Codeable Objects that allows people to use

programming to create forms and patterns for fashion and garment design. DressCode is a combined

graphic-design and programming environment with a custom programming language, developed to

support open-ended computational design for digital fabrication. Each of these tools was evaluated

in workshops where people used them in combination with digital fabrication machines to produce

physical artifacts. Through the workshops, I examined several different approaches for introducing

novices to computational design. In addition, I evaluated how a variety of crafting techniques could

be combined with Computer-Aided Design (CAD). The lessons learned in developing and testing

Codeable Objects and Soft Objects were used to inform the development of DressCode. This thesis

presents the evolution of these three tools, and describes the rationale behind their design. I con-

clude with a set of recommendations for algorithmic crafting tools and practices, and a description

of future forms of research for this field.
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Chapter 2

Background and Motivation

"The mathematician's patterns, like the painter's or the poet's must be beautiful; the ideas like the

colours or the words, must fit together in a harmonious way. Beauty is the first test: there is no

permanent place in the world for ugly mathematics." G. H. Hardy [18]

In order to illustrate the creative potential of algorithmic craft, it is useful to examine its contents:

computational design, digital fabrication, and craft. Each has distinct strengths and limitations.

Through their convergence, new, compelling forms of creation become possible. In computational

design, the abstract qualities of computation provide a powerful way of thinking about design.

With appropriate programming, a computer can embody any conceivable process [27]. Similarly,

computational design can be applied to any design domain, be it physical, visual, sonic, or interactive.

Although individual applications of computational design often consider material properties that are

relevant to a specific domain, computational design does not possess an inherent connection to the

material world. Craft on the other hand is closely linked to materiality. Craftspeople work in close

contact with the physical world and craft artifacts and processes are directly informed by material

properties. Digital fabrication provides a connection between the abstraction of computational

design and the material domain of craft by converting digital concepts to physical forms. In the

following section I discuss the properties of computational design, digital fabrication, and craft in

greater detail and describe connection points between each discipline.

2.1 Computational Design

As previously mentioned, computational design can refer to a range of design practices that incor-

porate computational processes. Computational processes are explicit patterns of rules that can

manipulate data [2]. Computer programs are descriptions of computational processes in a format

that is readable by a computer. My focus in computational design is the process of using computa-

tional processes to create visual forms and patterns. Because computational design usually requires

21



Figure 2- 1: Wall drawings by Sol Lewitt. From left to right: Wall Drawing 19: A wall divided
vertically into six equal parts, with two of the four kinds of line directions superimposed in each
part (1969), Wall Drawing 38 (Detail): Tissue paper cut into 1.5-inch (4 cm) squares and inserted
into holes in the gray pegboard walls. All holes in the walls are filled randomly (1970).

the designer to write programs, it is possible to mistake the practice of computational design as

a technical skill rather than a way of thinking [35]. It is true that computational design requires

a degree of technical expertise; practitioners must be able to write and read code. Despite this

requirement, computational design is better represented as a way of applying procedural thinking to

a design task. Rather than producing specific design representations, the designer authors a set of

rules that define a system capable of producing many outcomes. Designs are presented in abstract

terms, resulting in the potential to create multiple variations that share a set of constraints. One

of the challenges of computational design is in authoring guidelines that effectively produce solu-

tions within the desired design space. Presented as an ordered set of instructions, these guidelines

constitute an algorithm. Arguably, it is possible to engage in computational design without using

a computer. The artist Sol Lewitt created a number of artworks consisting of a set of instructions

that dictated the constraints of an artwork.

WORK FROM INSTRUCTIONS (1971):

USING A BLACK, HARD CRAYON DRAW A TWENTY INCH SQUARE.

DIVIDE THIS SQUARE INTO ONE INCH SQUARES.

WITHIN EACH ONE INCH SQUARE, DRAW NOTHING, OR DRAW A DIAGONAL

STRAIGHT LINE FROM CORNER TO CORNER OR TWO CROSSING STRAIGHT

LINES DIAGONALLY FROM CORNER TO CORNER.
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The resulting piece would vary depending on how the instructions were interpreted by the people

executing them. Many of his other artworks contained the instructions for producing them in the

title of the piece (figure:2-1).

Figure 2-2: Works by Sep Kamvar, from the Boundaries exhibition, Skissernas Museum, Lund,
Sweden. From left to right: Crawl (2013) and Outside the Lines (2012), the creation process for

Outside the Lines.

More recently, Sep Kamvar exhibited a set of large drawings that were produced as a collaboration

between the artist and the public. Kamvar defined a set of rules which were then collectively executed

by people in the gallery (figure:2-2). When computers, rather than human beings are used to execute

computational design algorithms, procedures can be performed at greater speeds and with greater

precision and repeatability, although the algorithms generally must contain a low degree of ambiguity.

The specific affordances of computational design are as follows:

* Precision: Computation supports high levels of numerical precision with relatively little effort

on the part of the designer.

Figure 2-3: Dragonfly by EMERGENT/ Tom Wiscombe (2007). The installation was shaped by
parameters including gravity, specific support points and material properties. The data was run

through a feedback loop, producing a novel design that supported the performance criteria [13].
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* Visual Complexity: Computational design supports the creation and transformation of

complex patterns and structures through rapid automation and iteration which allows for the

combination and manipulation of large numbers of simple elements in a structured manner.

Figure 2-4: data.tron by Ryoji Ikeda (2008). Dynamic computer visual and sound installation. Each
pixel of the visual image is dynamically calculated as a visualization of data from hard drive errors
and software code [20].

e Generativity and Self-Similar Forms Computation allows for the programmer to create

algorithms, which when run, allow for the computer to autonomously produce unique and

often unexpected designs.

Figure 2-5: Abstract0l.js by Marius Watz (2010). Interactive. The piece is comprised of a Javascript
program that autonomously creates unique abstract compositions based on a set of visual guidelines
specified by the artist [45].
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* Parameterization: Computation allows users to specify a set of degrees of freedom and

constraints of a model and then adjust the values of the degrees of freedom while maintaining

the constraints of the original model.

Figure 2-6: ArachnEArmor / Corset by Neri Oxman (2012), Digital Materials Centre Pompidou,
Paris, France. The form of the web on the piece is determined by the anatomical location of a

person's rib cage [30].

* Documentation and remixing: Computationally generated designs are generated by a

program. This program can be modified by other designers, and can also serve as a form of

documentation of the design process.

Figure 2-7: Contra from Distellamap Series by Ben Fry (2005). Digital Print. The Distellamap series

translates the code from a number of Atari2600 video games into a series of visualizations. Assembly
code from each cartridge is shown in blue, with connection lines denoting "go to" statements. Data

are shown in orange [16].
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In combination with these affordances, however, computational design also contains a number of

unique challenges:

" Formalizing complex problems As design problems grow in complexity, formalizing the

problem in a manner that can be expressed programmatically becomes challenging. Writing

an algorithm to generate a single visual pattern is simple; however, writing a program to

incorporate that pattern into the design of a complex assembly is difficult.

" Creating singularities: A designer will often choose to deviate from a set pattern or structure

at specific points in order to create a special emphasis in the area of deviation. Because

computational design is governed by a systematized ruleset, the methods of breaking these

rules at arbitrary points are often unclear or tedious to implement.

* Selecting a final design: The systematic approach to computational design gives the de-

signer the ability to produce extremely large numbers of solutions to a single design problem.

While this is useful in situations where multiple solutions are required, when a single design

must be chosen, the process of deciding on a solution is often difficult and sometimes arbitrary,

especially if the decision is based on aesthetic criteria.

2.2 Digital Fabrication

Although computational design is performed on a computer, the artifacts generated by computa-

tional design are not restricted to the screen. Digital fabrication technology provides the opportunity

to translate digital files to physical form. Digital fabrication is supported through computer aided

design (CAD) technology. CAD involves the use of a software tool to design an object. Some form

of CAD file is generally required to control a computer numerical control (CNC) machine, enabling

digital fabrication [13]. Digital fabrication is the process of using computer-controlled machines to

fabricate objects specified by a digital tool path. Digital fabrication shares many of the affordances

of computational design. In particular, it allows for the creation of physical objects with a high

degree of complexity, without skill in craft or extensive manual labor. Digital fabrication also allows

for the rapid production of small volumes of similar or identical objects. Also, because the artifacts

produced through digital fabrication are derived from digital files, anyone with access to the file,

and a similar fabrication machine can potentially create a copy of the object, or remix that object

with others.

There are two primary forms of digital-fabrication manufacturing, additive and subtractive. Sub-

tractive processes machine a part by removing pieces from the original material and include tools

like laser cutters, CNC milling machines, and vinyl cutters. Additive processes create a part by

incrementally adding successive layers of material. 3D printers are most commonly associated with
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additive manufacturing, however, ink jet printers and CNC embroidery machines also fit this def-

inition. Although advances in additive technology are occurring at a rapid pace, at this point the

material options for 3D printing are limited. Most 3D printers can output objects in plastics, ce-

ramics, and metal composites [13]. Low-end 3D printers are more constrained, and can only print

in plastic. Additive manufacturing is extremely expensive and often constrained to small build

volumes.

Unlike most 3D printing technology, subtractive processes can work with a wide range of materials

[13]. Laser cutters work well with materials such as wood, leather, paper, and cloth (figure 2-8).

Vinyl cutters can also be used on cloth, paper, in addition to adhesive vinyl. Milling machines can

cut parts from plastic, foam, metal, and wood. In specialized cases these machines can also be

modified to function in an additive manner with custom attachments. An example is the adaptation

of a 3-Axis ShopBot to function as a threading device to facilitate part of the construction of a Silk

Pavilion, created by the Mediated Matter Group at the Massachusetts Institute of Technology [31].

Large-scale subtractive fabrication machines also make it possible to work at a larger scale than

additive processes [13].

Figure 2-8: Various materials on the laser cutter. (Clockwise from top-left: laser-cut wood veneer,

laser-cut fabric, loading fabric into the laser cutter directly from the bolt, laser-cut paper)

Widespread access to digital fabrication is growing. Digital fabrication machines are rapidly

decreasing in price and increasing in availability [17]. This trend has allowed an increasing number

of individuals and small groups to gain access to sophisticated manufacturing technologies, and

signaled the growth of personal fabrication [26]. Consumer 3D printers can now be purchased

at prices ranging from $1,000-$3,500 dollars. Small-scale laser cutters and milling machines are
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available at prices ranging from $3,000 to $5,000. In addition, other groups are producing open-

source versions of commercial fabrication equipment, like the MTM Snap CNC-milling machine, the

LaserSaur laser cutter, and the RepRap 3D printer. Though these devices require additional levels

of expertise to assemble, they point to exciting future developments in affordable and open forms

of digital fabrication. Machines like inkjet printers and craft CNC-vinyl cutters also function as

personal fabrication devices and are extremely accessible and affordable.

There also are options for individuals without direct ownership of a fabrication machine. Com-

munity hacker spaces like Artisans' Asylum in Cambridge Massachusetts, NYC resistor in New

York, and Noisebridge in San Francisco, and organizations like the FabLab network provide access

to shared digital fabrication facilities. Online services like Shapeways, Ponoko, and SpoonFlower of-

fer on-demand fabrication services to individual consumers for a variety of materials and machining

processes.

The rise of personal fabrication is often viewed as a component of the maker movement [6].

The maker subculture is a technology-literate community that is engaged in the production of

devices and artifacts in line with the do-it-yourself (DIY) philosophy. While maker culture has a

strong technological focus, it also encompasses hobbyist craft techniques and materials. MakerFaire,

one of the predominate maker culture events, showcases a range of DIY practice across science,

engineering, art, and craft [14]. Some of the primary tenents of the maker movement correspond to

values frequently expressed in craft.

2.3 Craft

The cultural connotations of craft have varied throughout history. Once the primary means of

producing functional objects, the role of craft changed following the industrial revolution. In the face

of mechanized production, hand skills became less central to production, and design, traditionally

unified with the role of the artisan emerged as a separate discipline [28]. Despite the emergence of

mass production, craft has endured, both as a recreational pursuit, and as set of valued artisanal

practices. My personal interest in craft focuses on three specific qualities: materiality, pleasure and

the unification of form and function.

e Materiality: One primary aspect of craft involves the manipulation of physical materials by

hand [37]. Shaping physical materials with one's hands is often an intuitive process. When

we craft, we experience the feel of the paint brush moving across the canvas, the carving knife

working through a piece of wood, a needle moving through cloth, or our fingertips pressing

into clay. The decisions we make in the craft process are altered by the feel of working with

the material.
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" Pleasure: One of the responses to industrialism was the Arts and Crafts movement, initiated

primarily by William Morris, and inspired by the writings of John Ruskin. The arts and

crafts movement sought to restore the aesthetics and practices of traditional craftsmanship, in

response to the negative aesthetic effects and working conditions of industrialism. Fundamental

to the arts and crafts movement was the notion that the act of creating beautiful artifacts with

one's hands was a pleasurable, essential human experience [28]. This emphasis on pleasure is

retained in conceptions of craft today.

" Unification of form and function: Although not all craft is functional, many forms of

traditional craft, including sewing, pottery, and carpentry can be applied the creation of useful

objects. In addition to this functionality, craft often emphasizes the importance of beauty in

the form and ornamentation of objects. Well crafted artifacts frequently demonstrate the

successful unification of aesthetics and utility.

2.4 Algorithmic Craft

Algorithmic craft is the combined use of computational design, digital fabrication, and hand craft.

The merging of the properties of craft with computational design and digital fabrication allows for

a creative practice that exhibits the variability and complexity of computation, the precision and

repeatability of fabrication and the material, functional and aesthetic concerns of craft. Algorithmic

crafting allows individuals to use programming and digital fabrication as a means of pleasurable and

useful creative expression. In addition, algorithmic craft encourages the incorporation of the values

of artisans and craftspeople in development of new methods of digital fabrication and computational-

design tools, paving the way for new forms of innovation in these fields. Below I describe several

examples of combined use of digital fabrication and craft, and computational design and craft,

respectively.

2.4.1 Digital Fabrication and Craft

Objects that emerge from a combined practice of digital fabrication and craft are often characterized

by their physical craftsmanship, technical mastery, and exceptional aesthetic. Practitioners in this

space blur the boundaries between engineer, designer, and artisan. One of the advantages of merging

craft and digital fabrication is that it ensures that machine-produced artifacts retain their personal

history. For his Hybrid Reassemblage pieces, Amit Zoran blended handcraft techniques like basket

weaving and slip casting with 3D-printed forms (figure: 2-9.) The process resulted in artifacts that

retained the evidence of hand production in conjunction with forms made possible through digital

fabrication [49].
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Figure 2-9: A selection of vases from the Hybrid Reassemblage series by Amit Zoran (2010). Glazed
ceramic, SLS nylon element, epoxy glue and black spray paint.

Another advantage of combining digital fabrication and craft is that it affords openness and
flexibility in the design of functional components. Peter Schmitt's plywood servo is a re-designed RC
servo in laser-cut plywood. Although the parts of the servo are digitally designed, after fabrication
the completed piece is constructed by hand. This process of hand construction gives the designer
greater control in the form-factor and aesthetic of the servo, while maintaining its functional qualities
[39]. As one sample application, the plywood servo was incorporated into a custom drawing machine
called the Audiograph, producing a surprising and novel object with no precedent. The objective
of the audio graph was to create a device with an appearance that was drastically different from
customary home electronics and to explore people's reaction to the device in a home setting (figure:
2-10)[40].

2.4.2 Computational Design and Craft

Similar to artifacts developed through digital fabrication and craft, the combination of computational
design and craft also offers the opportunity to produce pieces that are connected to a distinct space,
time and process, and that are shaped by material properties, while incorporating patterns and
forms made possible through computational processes. The Random Number Multiple series was a
project that produced screen prints from the work of computational designers and artists. Figure
2-11 shows a screen print translation of the computational artist Jer Thorpe's RGB-NYT word-
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Figure 2-10: Plywood Servo by Peter Schmitt (2011). (Clockwise from upper-left: 3D CAD model

of partially constructed servo, laser-cut plywood parts and electronic components, Audiograph,
completed servo.)

frequency piece. The original piece was a digital image, which was generated from data describing

the usage of the words "red", "green", and "blue" in the New York Times between 1981 and 2011.

In translating the digital piece to physical form, the result is a distinct physical object, transformed

by the material properties of screen printing. The artist describes the process on his website:

"This print turned out even better than I could have expected. The fine detail is

amazing, the colours are rich and vivid, and the half-toning on the individual bars creates

a jewel-like halo in the center that is fascinating to look at up close... This print was

made with a semi-reflective ink, so it has a unique shimmer to it when viewed in the

light."

The rich material qualities Thorpe describes would be difficult to achieve by relying solely on

a digital medium. In addition, Thorpe describes the pleasure he experienced in working with the

tactile process of screen printing and how the experience provided important creative feedback for

his computational work [42].

Combining computational design and craft also offers the opportunity to engage craftspeople in

the use of computational tools. The Processing Quilt (figure 2-12), was the result of a collaboration
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Figure 2-11: RGB NYT Word Frequency by Jer Thorpe (2011). Part of the Random Number
Multiples Series. Screen Print. (Counter-clockwise from upper-left: matching paint color to the
digital image, close-up of print, complete print.)

between Libs Elliott, a seamstress and quilt-maker, and Joshua Davis, a computational designer.
Elliott created the quilt using a Processing program created by Davis, which generated random
triangle compositions. Elliott selected one specific composition and manually translated it to a grid,
then cut out the necessary pieces, and crafted a completed quilt [25].

The resulting artifact is a synthesis between computational aesthetics of the triangle composition
and the texture created by the quilted pattern. The piece exhibits the skills and style of Elliott and
the computational expertise and aesthetic of Davis. The transition between computational forms
and craft processes can be a source of frustration however. On her website, Elliot remarked about
the contrast between working with a computational tool and producing something by hand:

"I'm not going to lie- quilting is a slow process and there's a certain level of frus-

tration I have when I'm doing it. It's difficult to take something that works so quickly,
like the Processing tool, to generate a hundred random compositions within an afternoon

then force yourself to pick one image and slow it all down to an entirely manual process

that takes days to produce [24].

Time is an important quality of crafting. Handcrafted artifacts often require a great deal of

time to complete and involve repetitive tasks. Although frustrating for some, often, the longer it
takes to create an object, the greater its value. Because the process of crafting is often pleasurable
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Figure 2-12: Processing Quilt by Libs Elliott and Joshua Davis (2013). (Counter-clockwise from

upper-left: auto-generated triangle compositions in Processing, hand-made quilt grid, finished quilt.)

and contemplative, many people look forward to spending time productively engaged with their

hands. In algorithmic craft, the role of digital fabrication is not to speed up craft, but to facilitate

the translation of computational forms to physical materials. These physical forms, in turn, can

be shaped through craft processes, and imbue computational designs with individuality, utility, and

temporality. Several forms of digital fabrication machines are capable of producing forms that are

suitable for both expert and novice levels of handcraft. Because subtractive fabrication technologies

work with materials like wood, paper, and fabric, they support the creation of objects that are

readily shaped by the human hand. Laser-cut parts can be sanded, polished, painted, sewn, or

folded after they emerge from the machine. Vinyl cutters also can be used on cloth and paper. They

also produce patterns in adhesive vinyl that can be applied to screens for for screen printing. Laser

cutters and vinyl cutters also fabricate at a faster rate than 3D printers or milling machines, and

permit a higher tolerance for error during the craft process because it is feasible to re-cut damaged

parts.

2.5 Challenges in Participation

Through its association with hobbyist culture, many people consider certain forms craft to be ac-

cessible, and open to amateurs. Conversely, the combined use of computational design and digital
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fabrication is largely limited to experts and professionals. There are many practical barriers to

novice participation in this domain. Most prominently, many of the programming languages used

for computational design are difficult for novices to learn. In addition, a complex and convoluted

process is required to translate a code-based design to a format that is compatible with fabrication

machines [17]. Furthermore, the engineering challenges involved in designing complex objects from

multiple digitally fabricated parts are extremely difficult to tackle for amateurs who are unfamiliar

with CAD software. Although novice-oriented CAD software exists, most of this software does not

support computational design. Similarly, most novice oriented programming environments cannot

produce designs that are suitable for fabrication on their own.

Significant perceptual barriers to participation also exist. Specifically, there persists among the

general public a limited perception of the applications of programming. Many people consider

programming to be irrelevant to their interests, and as a result, they lack motivation to pursue what

they perceive to be a highly specialized and difficult undertaking [36]. There also are perceptions

of digital fabrication which may hinder creative and open use of these tools. Personal-fabrication

technology is often portrayed as a precursor to the production of replicator-like technology with

the capacity to literally build anything, directly from atoms [17]. This view can act as a barrier to

widespread engagement with existing forms of digital fabrication by setting up unreal expectations

for this technology, or by portraying it as a variation on traditional forms of consumerism. The idea

of fabrication as a perfect replication system also eliminates the need or desire for human engagement

in the fabrication process, eliminating the entry points for craft. Daniella Rosner describes this view

in her research:

A central element of these and other visions of the future is that craft is done for us:

Kitchens tell us what and how to cook, eliminating the creativity and pleasure of cooking

from scratch with what's on hand; object printers create flawless prototypes, eliminating

messily glued-together chipboard and toothpicks. In this new world, craft becomes fetish-

the proudly displayed collection of vinyl records shelved alongside an iPod and digital files

[9].

Algorithmic fabrication is an exceptional form of creation. Through the unification of compu-

tational design, digital fabrication, and hand production, one can create functional, beautiful, and

unique objects. If we are to extend practice of algorithmic craft beyond people with formal training

in computer science and computer-aided design, however, it is necessary to create accessible and

open tools for programming and digital fabrication. These tools must be supported with practices

that foster an understanding of the principles of computation, craft, and digital fabrication and how

they can work together for personal creative pursuits.
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Chapter 3

Related Software Tools and

Research

Computational design and digital fabrication are supported through the use of a variety of forms of

software. There are six primary categories of existing software that are relevant to the study of the

convergence of these fields:

1. Programming tools for computational design

2. Professional CAD tools with computational-design functionality

3. Entry-level CAD tools

4. Entry-level programming environments

5. Novel fabrication tools

Whereas some tools fall into several of these categories, it is useful to highlight the general

functional distinctions and design strategies of each group of tools.

3.1 Programming Tools for Computational Design

Many of the examples of computational design referenced in section 2.1 were created through the

use of custom software tools written in a wide variety of programming languages, libraries, and

environments. Arguably, computational design can be performed with any programming language

that has the capability to output some form of graphic data. In order to facilitate the process, some

people have developed programming libraries and toolkits explicitly for computational design. Here

I list some of the most prominently used tools in this space and describe their relation to digital
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fabrication. OpenFrameworks is a popular open source C++ toolkit developed by Theo Watson

and Zach Lieberman that is designed to support a number of creative applications of programming.

The toolkit contains wrappers for a variety of commonly used C++ libraries, including OpenGL

and GLUT, allowing these libraries to be more easily combined into a single application, than would

be possible without the use of the toolkit. Although openFrameworks is frequently used to create

interactive screen-based projects, several extensions have been developed that allow for the import

and export of stereolithography (STL) model data, making it feasible to use the toolkit to design

for digital fabrication [29].

Figure 3-1: Clockwise from upper-left: Fabricate Yourself by Karl D.D. Willis, 3D printed puzzle
pieces featuring conference attendees (created with the openFrameworks toolkit, Kinect, and a 3D
printer), Cell Cycle Bracelet and Ring creation application by Nervous Systems (created with Cinder
toolkit), 3D-printed functional record by Amanda Ghassaei, (created using Processing.)

Cinder is another C++ toolkit for computational graphics creation. Cinder was developed by
the Barbarian Group, and requires greater programming expertise to use than openFrameworks [10].

Similar to OpenFrameworks, Cinder is frequently used to create interactive installations, but it has

been used for digital fabrication-oriented projects. Nervous Systems used Cinder to develop their

Cell Cycle iPad app, which creates cellular bracelets and rings for 3D printing [32].

Processing is a Java-based programming language and development environment created by

Casey Reas and Ben Fry. Processing is unique in that it is described as an entry level programming

environment but is also an extremely successful professional computational design tool. Processing
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contains several libraries that allow it to export to Portable Document Format (PDF) and Drawing

Exchange Format (DXF), which enable a translation to digital fabrication [34].

All of these examples use textual programming as the sole means of design. In addition, because

openFrameworks and Cinder exist as toolkits, they require the user to write programs in general-

purpose programming environments such as Visual Studio or Xcode. In the hands of experienced

programmers, these tools facilitate remarkable forms of creative expression through code. Because

of the difficulty of independently learning textual programming, it is uncommon for people with-

out prior programming experience to use them for computational design without a great deal of

instruction and support, let alone apply them to digital fabrication applications. Due to its unique

positioning, Processing can act as an exception, something I discuss in greater greater detail in the

section on entry level programming environments.

3.2 Professional CAD Tools with Computational-Design Func-

tionality

Some professional CAD applications include functionality that makes it possible to use the software

for computational design. Many popular graphic-user-interface (GUI) CAD applications include

a feature that allows the user to automate certain elements of the program through scripting or

programming. For example, in Adobe software like Photoshop and Illustrator, it is possible to write

Javascript-based programs to automate various application procedures. Similarly, 3D modeling tools

such as Maya and Blender feature the ability to script behaviors in languages that are syntactically

similar to Perl and Python, respectively. In all of these examples the programming interface is

omitted from the primary interfaces of the application and must be deliberately activated by the

user.

Some professional tools are more explicitly developed for computational design. One of the most

prominent examples is Grasshopper, a third-party add-on for the Rhinoceros 3D modeling software.

Grasshopper is a data-flow programming environment that lets users combine a variety of modules

and blocks to create and adjust 3D models in Rhino. A textual coding module also is available and

allows users to integrate C# scripts using the Rhino application programing interface (API) into

their program.

DesignScript, a more recent computational design tool, developed by Autodesk, is a domain-

specific text-based programming environment and language that contains methods to generate and

manipulate geometric models that are compatible with existing Autodesk applications. DesignScript

is an add-on to the Autodesk AutoCad software and cannot be run independently. DesignScript is

intended for use by experienced designers and 3D modelers who possess a range of programming

expertise. The language syntax is based on C#; however it features the ability to operate in both
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associative and imperative paradigms, in an effort to support a pedagogical transition between basic
and advanced levels of programming [5].
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Figure 3-2: Computational design in professional tools. Clockwise from upper-left: A Grashopper
program in Rhino, OpenSCAD, the Python scripting interface in Blender, DesignScript.

OpenSCAD is a script-based constructive solid-geometry modeling tool developed specifically
for CAD applications. OpenSCAD contains a custom programming language in which the user can
create descriptions of 3D models in a textual format and display them by compiling the script. This
scripting behavior provides the user with precise control over the modeling process and enables the
creation of designs that are defined by configurable parameters This control comes at the cost of
requiring the user to be familiar with textual programming and scripting. Unlike the prior tools
mentioned, OpenSCAD is both free and open source, and several variations and derivatives of it
exist [3].

One of the most important elements of these professional tools is their ability to import and
export a wide variety of file formats, thus facilitating the transitions between a digital design and
the required file type for a specific fabrication tool. Because of their complex feature set, these
professional tools are difficult to use without prior experience or extensive practice. With the
exception of OpenSCAD, another defining feature of these tools is that they are only available as
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plugins, or add-ons, or they are developed to supplement an existing graphical tool, not serve as the

primary method of design. This status of programming as a secondary form of interaction poses

a practical barrier to novice use of the computational functionality of these tools. Specifically, the

scripting tools in Illustrator and Photoshop are difficult to locate, Grasshopper must be custom

installed into Rhino along with several dependencies. Grasshopper also only functions on Windows

versions of Rhino. Design Script requires the prior purchase of AutoCAD to operate. While these

practical barriers can be overcome, their existence often prevents less-experienced users from gaining

access. More importantly, the positioning of computational functionality as secondary points to a

larger ideological classification of these forms of design as a specialized and exclusive rather than

serving as a primary method of design.

3.3 Entry-Level CAD Tools

A subset of CAD tools have been created that are designed to be more accessible to a wider range

of people than those previously described. These tools provide an option for individuals who lack

the experience and access to professional level tools, however, they also provide an opportunity for

recreational participation in CAD. SketchUp is a 3D-modeling tool developed by Google to enable

easy forms of 3D modeling. Although SketchUp was not explicitly created to allow people to design

for digital fabrication, several independently developed add-ons exist that allow users to export

designs to file formats that are compatible with a variety of fabrication machine [41]. TinkerCad

is another 3D-modeling tool designed for entry level users. As opposed to SketchUp, TinkerCad

is explicitly developed to assist in designing for 3D printers and has built in functionality to allow

users to export their designs to theSTL format [43]. AutoDesk has produced several entry level

3D-modeling applications as a part of their 123D series. Many of these applications are designed

to interface with digital fabrication, including 123D Make, which allows users to convert stock or

uploaded 3D models into a series of flat parts . These parts can then fabricated on 2-axis machines

like laser cutters. 123D Creature enables users to design a variety of creatures from a set of basic

parts and then order a 3D printed model of the finished creature [8]. AutoDesk Research developed

MeshMixer, an application for the intuitive merging and manipulating of high-resolution triangle

meshes. MeshMixer was released to the public and became a popular design tool for hobbyist users

of 3D printing.

All of the entry-level tools listed above vary in their specific approach to improving the accessi-

bility of CAD. In general they contain simplified tool sets and limited functionality in the effort to

create an easier learning curve. Despite their simplified features, it is possible to use these entry-level

tools to develop highly complex and sophisticated models. A more pressing limitation of these tools

is their ephemerality. Because entry level CAD tools are often free, and more frequently web based
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Figure 3-3: Entry-level CAD tools. Clockwise from upper-left: MeshMixer, 123D Make, TinkerCad.

applications, it is common for them to suddenly become unavailable or no longer supported by the

manufacturer. Tinkercad serves as a recent example of this, wherein the parent company decided to

transition professional CAD tools, and closed down the Tinkercad website, removing access to the

application. TinkerCad was recently acquired by AutoDesk and its website restored; however, its

future is uncertain.

Several of these entry-level tools also feature some form of scripting or programming function-

ality. A plugin for Sketchup allows users to automate certain actions by using the Ruby-based

SketchUp API. TinkerCad allows users to create Shape Scripts, which are parametric models de-

fined by Javascript code. MeshMixer has an C++ API which is not yet publicly available but is

provided to interested parties upon request. While these computational features suggest compelling

possibilities, similar to the professional level tools listed above, they are positioned as secondary

ways of interacting and are designed less deliberately than the primary features of the application.

3.4 Entry-Level Programming Environments

Similar to entry-level CAD tools, a number of wonderful applications have been created to introduce

new programmers to the realm of computer science. Logo, a computational drawing program, is the

seminal novice programming language founded on principles of constructionism and embodiment

[33]. Logo allows users to direct the movements of a virtual "turtle" with textual commands. The

turtle can leave a trace of where it has been with a PENDOWN command, enabling users to write

programs from an intrinsic perspective which produce geometric forms and patterns [1]. The Scratch

visual programming language is a notable successor to Logo, and allows users to create interactive
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projects by combining command blocks rather than writing textual code [46]. Although Scratch

is often used as a medium for interactive storytelling, it also contains blocks that enable pen-up

and pen-down functionality and can be used as a drawing tool similar to Logo. Turtle Art [7] and

DesignBlocks [12] are two visual programming languages inspired by Logo and Scratch that are

designed specifically for visual composition.
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Figure 3-4: Entry-level forms of computational design. Clockwise from upper-left: A Scratch pro-
gram using the pen tool, A design made in Logo by rotating a simple doodle, the Logo physical
drawing robot, a sample Turtle Art program.

Logo, Scratch, Turtle Art, and DesignBlocks all support forms of computational drawing and,

therefore, can be viewed as computational-design environments. There remains a gap, however,

between novice-oriented programming environments and the novice-oriented CAD tools. Although

learning-oriented programming tools can provide an excellent platform for generating digital compu-

tational design work, they often lack explicit features for generating and exporting designs that are

compatible with existing modes of digital fabrication. Processing serves as an exception because it

is easier to use than most text-based programing environments and can export vector files. Despite

these features, Processing is not explicitly designed for digital fabrication. In practice it is difficult
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for new programmers to use it to design objects compatible with digital fabrication machines. If we

wish to open this space for entry-level practitioners, it is essential to design tools with computational

design for fabrication as the primary function.

3.5 Novel Fabrication Tools

In addition to these tools, there are a number of research projects involving novel forms of fabrication

and software tools that demonstrate new approaches for computational design and digital fabrication.

Sketch It, Make It is a 2D CAD tool that allows users to constrain their designs through gestures

made using a digital drawing tablet [23]. Spatial Sketch is a tool that allows users to create abstract

3D sketches via their gestures, and then translates the sketches into a set of slices, which can

be fabricated and combined into a finished piece [48]. SketchChair allows users to design their

own chair by sketching with a computer stylus [38]. The resultant design can then be cut on a

CNC milling machine and assembled into a 3D object. SketchChair includes a simulation tool that

allows users to test the usability of their chairs before they cut them. FlatCAD seeks to connect

programming and digital fabrication, and allows users to build customized construction kits with

a laser cutter by programming in FlatLang, a novice-oriented programming language modeled on

Logo [22]. Spirogator is a Processing-based tool that allows users to digitally customize a set of

hypotrochoid geared-drawing tools and then view a simulation of those tools in action. The user

then has the option of either exporting the resulting design generated by the digital gears and

fabricating it directly, or exporting the file paths for the gears themselves, and then fabricating

them on a laser cutter, ultimately using the fabricated pieces as physical drawing tools [19].

Figure 3-5: Novel CAD tools: from left to right: Spirogator, SketchChair.

These examples share several important elements. They are restricted to a relatively narrow

domain but still support a wide range of design variations and personal expression. They contain

intuitive and familiar methods of interaction often in the form of drawing and moving sliders. They
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contain explicit features for making the process of digital fabrication easier for new practitioners,

and reduce the possibility of creating designs that will be infeasible to fabricate or are physically

unstable. Spirogator and Sketch Chair's simulation tools are particularly interesting in this regard

because they assist the user in predicting some of the behavior of the resultant physical artifact prior

to its fabrication. These qualities of domain-specificity, design flexibility, intuitive interaction and

practical support for fabrication are important properties for any novice-oriented design software.
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Chapter 4

Objectives and Evaluation Criteria

As indicated by the analysis of existing CAD and computational-design tools, many options exist to

support novice entry into computer science and new tools are emerging that provide different ways

of engaging in CAD and digital fabrication. At this point, few tools attempt to bridge accessible

programming and novel forms of digital fabrication in relevant and engaging contexts for amateur

programmers. Digital fabrication and computational design are two highly compatible domains

with great creative potential. When combined with the values, practices, and aesthetics of craft,

these shared practices offer new forms of expression and making. The objective of this thesis was

to foster engagement in algorithmic craft by researching the relationship between programming,

visual design, and physical construction. I conducted this research through the development of

software tools that emphasized computation by positioning programming as the primary method of

generating and manipulating designs. In doing so I attempted to retain a high degree of accessibility

and intelligibility for new programmers, and a smooth transition from code to fabrication. Within

this objective, I generated a set of evaluation criteria for prospective algorithmic crafting software.

A successful tool should produce the following results:

" Allow users to successfully create physical artifacts: The artifacts themselves should

be durable and useful.

" Afford a wide degree of variation in design and expression: The personal aesthetic

preferences of the creator should be apparent in the resultant artifact.

" Enable people to understand the functionality and utility of the programs they

write: Individuals should emerge from the process with a general understanding of some of the

key components of computer programming, with an ability to articulate how these components

function in their design.

" Allow users to create objects and designs they would have difficulty generating
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with conventional techniques: The tool should support the affordances of computational

design, specifically precision, visual complexity, generativity, and stylistic abstraction, as well

as enabling people to take advantages of the properties of digital fabrication including manu-

facturing speed, precision, and physical complexity.

" Engender in users a positive, enjoyable experience: Use of the tool and subsequent

crafting activities should be pleasurable and intellectually engaging.

" Foster a sense of confidence: After working with the tool, people should have increased

confidence in their ability to successfully program, design, and use digital-fabrication tools.

4.1 Design Tools and Evaluation Methodology

Over the course of my thesis, I developed and tested three software tools to support algorithmic craft.

Codeable Objects is a domain-specific programming library for the design and production of lamps.

Soft Objects is an expanded version of Codeable Objects intended primarily for computational fash-

ion design. DressCode is a general-purpose integrated programming and visual design environment.

Each tool was evaluated during one or more workshops with designers, artists, programmers or young

students. I documented each workshop through pre and post surveys, interviews, and photographs

of student projects. The surveys were aimed at understanding participants' previous experience

in craft, programming and design, their interest in and attitudes toward craft, digital fabrication,

and computation (before and after the workshops), and their engagement in and enjoyment of the

workshops.

Surveys were administered at the start of the workshops and focused on participants previous

experience and attitudes. People were asked to describe their opinions about how programming and

craft could be combined, and how they felt programming could extend or limit creativity. Surveys

were administered again at the termination of the workshops and contained attitudinal questions

that were matched to the pre surveys. In addition, post surveys contained a range of written

questions asking the participants to describe their opinion of the success of their projects and their

experience using Codeable Objects, Soft Objects or DressCode respectively.

Individual interviews were conducted with the participants in the Soft Objects workshop, and the

DressCode workshop. These interviews lasted an average of 15-30 minutes and were audio recorded

and transcribed. During the interviews, the participants were asked to describe their experience in

the workshop and talk about the process of conceptualizing, designing, and producing their artifacts.

They were asked to describe what they enjoyed, what was difficult for them, and what they felt they

had learned through this process. Responses from the survey and verbal interview were then analyzed
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with project outcomes to determine if the essential qualities outlined in the evaluation criteria were

achieved. We also used this information to identify recurring and prominent themes in participants'

experiences. In the following three chapters, I detail the development, feature set, and evaluation of

each design tool.
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Chapter 5

Codeable Objects

Codeable Objects is computational design tool that allows people to design and export the

toolpaths for a laser-cut lamp. Lamps possess an established function but can vary immensely in

their form-factor. As a result, the domain of lamp design offers a wide set of design possibilities for a

concrete and useful end product. By introducing lamp design in the context of algorithmic craft, my
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goal was to allow people to construct unique lamps comprised of computationally generated forms

and patterns.

Figure 5-1: A selection of laser-cut lamps from Instructables

5.1 Motivation

There is a precedent for creating DIY lamps through digital fabrication. The Instructables commu-

nity tutorial website has an entire section devoted to DIY lamps and many examples of patterns

that use a laser cutter for fabrication. Many of these Instructables contain minimal design flexibility;

they provide instructions that allow people to reproduce a lamp in the tutorial, but do not describe

methods of deviating from the original design. The tutorials that do encourage design flexibility

often require the person creating the lamp to use professional CAD tools to create their own design.

In one popular laser-cut lamp Instructable, the author recommends using Solidworks to design the

form and Illustrator to create the pattern on the shade [21]. SolidWorks is more difficult to use

than Illustrator, but has the benefit of being parametric. Conversely, Illustrator contains support

generating aesthetic forms and patterns and is well suited to creating individual illustrations for
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laser cutting, but this program lacks the parametric functionality needed for the design of artifacts

with multiple parts. Both tools are extremely challenging for first-time users.

Figure 5-2: Instructables lamp tutorial with SolidWorks design process

The use of existing software tools for lamp design presents other challenges. One common way to

make laser-cut 3D forms is by assembling 2D press-fit pieces. I found that when creating 3D forms

that were curved, it was extremely challenging in 2D CAD software to correctly size and design parts

which would fit the faces of the lamp frame, creating the lamp shade. Although it is possible to create

lamps from bare laser-cut frames, the shades themselves provided an excellent space for incorporating

aesthetic illustrative elements. Without parametric functionality, however, it is difficult to modify the

aesthetics and form of the lamp in a back-and-forth manner. Computational design offers a solution

to many of these problems, while simultaneously providing a form of constructive engagement in

programming, fabrication, and craft.

5.2 Tool Description

The first version of Codeable Objects attempted to combine parametric manipulation, aesthetic

pattern generation, and the conversion of a 3D form to 2D parts into a single computational tool

for lamp design. The lamp itself was comprised of four basic parts: a wooden press fit frame, a set

of vellum pieces that fit over the frame to act as a shade, a set of cardstock pieces with a pattern

that fit over the shades, and a pre-made standard light fixture that fit into the frame (figure:5-3).

Codeable Objects was developed as a programming library for Processing and contained a set of

programming methods that allows the user to describe the lamp, and define the tool paths for all

three materials. In the first version of the library, all design took place via textual programming and

keyboard commands. There are four main functions in library that determine the height, top width,
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Figure 5-3: The individual parts of a lamp

middle width, and bottom width of the lamp. The library also provided access to an additional set of

methods that control the number of sides, the resolution of the curve, and the position of the internal

structural supports. To facilitate the construction process, notches are automatically generated in all

of the parts to allow the lamp to be press-fit together. The shades are also automatically generated

to fit the form specified by the user. The inclusion of this feature gives the user freedom to customize

the shape of the lamp without having to worry about the mechanics of construction.

Codeable Objects also includes a second set of programming methods that allows users to describe

the decorative components of the lamp by specifying coordinates in polar or cartesian space. When

compiled, the coordinates are used by the application to calculate a design using a Voronoi diagram1 ,

which is automatically clipped to the dimensions of the lamp shade. As the form of the lamp is

altered, the shades and patterns are adjusted to fit. Once the code is compiled, a graphic preview is

displayed. For the pilot version, users could use key-commands to toggle between a view of the form

of the 3D form of lamp, the Voronoi-diagram pattern, and a 2D preview of the press-fit parts (fig:5-

4). A final key-command allowed for the resultant design files to be exported as three separate PDFs

containing the paths for the press-fit frame, the shades, and the pattern files. The functionality of

'A Voronoi diagram is a geometric subdivision of space that generates quadrants based on a given point set
according to the equidistant boundaries between all the points.
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Figure 5-4: The first version of Codeable Objects, with only text-based interaction

Codeable Objects was designed to provide a platform that allowed for flexible computational design

and the creation of complex forms and patterns, while greatly simplifying the process of translating

the design to a suitable format for digital fabrication. The laser cutting-process produced parts that

expedited the construction process, but still required care and dedication in assembly. Combined,

these properties were designed to foster an experience that merged programming, digital fabrication,

and hand-craft, and which hopefully resulted in a useful finished artifact.

5.3 Workshops

The first trial of Codeable Objects was conducted during a six-hour workshop with a group of

nine graduate students ranging in age from 24-34. Five participants were women. According to

self-reported pre-survey data, all but one of the participants was an intermediate- to-experienced

programmer. Five of the nine had previous experience with Processing. The participants indicated

they had little or no prior experience in design. What experience they had was primarily gained in

high school art classes and college elective courses. During the workshop, each participant engaged

in the design and fabrication of a lamp. Participants received instruction in the use of Codeable

Objects and a basic explanation of the principles behind the geometry of the lamp. The pilot version

of Codeable Objects was packaged with a set of example programs that contained the basic code

for initializing the library and defining the parameters of the lamp, along with a variety of point
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generation methods. The examples included algorithms to generate spirals, circles, and grids in

points. Participants also were provided with access to construction materials, and received training

in the use of the laser cutter. They were given approximately four hours to design the structure and

ornamentation of a lamp, followed by two hours for fabrication and assembly.

Figure 5-5: Several of the finished lamps from the first workshop

5.4 Results

All but one of the participants in the lamp workshop successfully completed a lamp. The one excep-

tion was a user who wished to incorporate a specialized light fixture into her piece, but unfortunately,

she damaged her parts while waiting for the fixture to arrive. The participants with little or no prior

programming experience primarily relied upon tweaking or remixing the example programs to design

the form and pattern of their lamp. Those with more programming experience experimented with

the library to produce a wide range of forms and patterns. One participant wrote a program that

decomposed a black-and-white image into a point cloud and used that as the basis for her pattern.

Another participant wrote a program that used a Gaussian distribution of points to achieve the

gradual variation he desired in his final pattern.

The assembly of parts required additional time beyond the duration of the workshop for most

participants. This was partially the result of the bottleneck in using the laser cutter; one fabrication

machine split among many participants resulted in long wait times. The craft and construction

components of the project took longer than expected as well. All of the participants returned after

the workshop to complete their projects. Some participants chose to add additional steps to the

construction process, such as sanding their parts. The physical objects produced were both attractive

and functional, and participants displayed their lamps in their offices and homes after completion.
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One participant returned several days later to build a second lamp so that he had a matching set

for his bedside tables (figure:5-5).

5.5 Discussion

Because of their prior expertise, the experiences of the majority of the participants in the first study

are not indicative of the feasibility of Codeable Objects for novice programmers. Their experi-

ences instead stand in contrast to the experience of the novice coders in the successive workshops

and provide important information about the usability and workflow of the software. Some of the

experienced programmers provided immediate practical assistance by developing new example pro-

grams for Codeable Objects, including a popular program for the creation of cosine and sine wave

patterns. Because the library was open-source, participants were able to submit upgrades to the

interface design and functionality during the workshop itself, which later were incorporated into the

core version.

The experienced programmers in the lamp workshop exhibited limited knowledge of computa-

tional design prior to the start of the workshop. When asked in the pre-workshop surveys how

they thought programming, design, and craft could be combined, people were either uncertain, or

described the combination as method to create dynamic interactivity, rather than a tool for the

design of form and pattern:

"You can combine software and hardware and make craft more dynamic (e.g. sen-

sors)."

Lamp Participant 1

"[Programming] gives [you] the ability to make something dynamic."

Lamp Participant 3

Following the workshop, participants demonstrated an awareness of some of the specific affor-

dances of computational design and the benefits of combining computational design with digital

fabrication:

"I understand now how programming can be used for quick prototyping and mockups

that can be used to inform final design decisions. This is easy [and] helpful when using

physical materials where mistakes can be costly."

Lamp participant 2

"Using programming in the design process adds some exciting and unique capabilities

over traditional design and crafting, including mixing in different algorithm and ideas

from other existing software, and rapid prototyping of complex designs."

Lamp participant 6
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Participants were also pleased with the creative affordances of the tool and described how the

software enabled them to expand their programming abilities to the realm of art and craft with

greater success:

"I think programming makes designing more accessible because you don't have to be

able to draw or paint."

Lamp participant 4

"I love the idea of being able to combine my interest in programming for creative

expressions."

Lamp participant 6

One participant remarked that she had always believed that she was terrible at art and making

the lamp had altered that perception. Although the primary objective behind Codeable Objects was

to make a form of algorithmic craft that was accessible to non-programmers, in the first workshop, it

provided a pathway for programmers to apply their skills to design and craft. From these responses,

it is apparent that even among experienced programmers, algorithmic craft has the potential to

expand people's understanding of the applications of programming and motivate them to apply

computation to other forms of production and expression.

Several participants also put forth detailed critiques of the programming process, which brought

up other questions about the practice of computational design. One participant reacted against

defining the generative qualities of the Voronoi diagram patterns as a design method:

"Changing the parameters didn't always generate the pattern you have in mind. It

was more like generating a few semi-random patterns, and you choose one that looks

good. It is rather a trying-and-choosing rather than designing /making something you

planned to have. I think design" involves intention and planning. Programming, crafting,

and design should be combined in the way that entails prior planning and intentions as

opposed to cutting together the semi-random choices, which could be good but I wouldn't

call that design."

Lamp participant 6

As this quote indicates, the attributes of randomness and generativity do not automatically lead

to optimal or good design decisions. Some deciding factor has to play a role in the process, but

the criteria for this decision are often ambiguous. This criticism touches on a core debate about

the role of conscious design and the restriction of intuitive creativity in computational practices.

The emergence of comments like this are encouraging because they reflect the engagement of the

participants in a critical evaluation of the creative implications of this form of creation.
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5.5.1 Challenges

There were elements of the process that were problematic for the participants. It became clear

during the workshop that textual programming was not the best method to design the form of the

lamp. Many of the participants became frustrated about having to set the parameters and then wait

for the compilation process to complete before they could view the results. This issue was addressed

partly in subsequent versions of the tool by replacing the textual parameters with a set of sliders in

the compiled application, which would adjust the form in real time across each of the views (figure:

5-6).

Figure 5-6: Revised graphic view with sliders

The textual programming method was useful for creating pattern on the shades. The simple

method of specifying points in a programming context provided a space for creativity and resulted

in greater variation in the lamps. If the tool had relied on a more standard set of GUI components,

like sliders to control the point generation, it is doubtful that the same range could have been

achieved. On the other hand, it was clear that the less-experienced programmers had difficulty
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independently designing the patterns of their lamps, and relied primarily on adjusting and remixing

existing examples.

Another restriction of Codeable Objects was apparent in the design process. Although adjusting

the parameters and input values to a system can be considered a form of design, it only touches the

surface of the design opportunities made possible with algorithmic craft. With Codeable Objects,

people cannot modify the program to define the range of forms and patterns that are possible unless

they alter the source code of the library. This limitation prevented the evaluation of some of the

more interesting computational design processes such as allowing people to create personal stylistic

abstractions for patterns and forms by writing their own algorithms. The stylistic limitations of

Codeable Objects contributed to the high rate of success in project completion, and the general

attractiveness of the resulting projects, but they also constrained the design flexibility.

One other defining component of the Codeable Objects pilot workshop was the contrast between

the difficulties that arose through computational design and digital fabrication and the challenges in

crafting. The difficulties people experienced while designing and fabricating their projects were often

discrete; such as correcting for mathematical error in coordinate placement, or having the incorrect

setting on the laser cutter. More complex problems arose in these contexts as well, such as confusion

on the algorithms for placing points; however, they were often problems that could be addressed

through verbal instruction and explanation. The challenges encountered in the crafting session were

of a material or physical quality. People struggled with finding the best techniques for assembling

the parts and finishing individual pieces so that the product maintained an attractive appearance.

Most participants were surprised at the amount of time required to complete the physical assembly

and were sometimes frustrated when variations in the crafting process violated the precision and

perfection of the digital design and laser-cut parts.

Some of the frustrations in the physical construction process were addressed in subsequent work-

shops by creating a paper variation of the lamp that was faster and easier to assemble and required

no gluing (figure: 5-7). In addition, a feature was added to the software which reported the approx-

imate material size required for a design, so that users could ensure theirs would fit on the bed of

the laser cutter.

Figure 5-7: The revised paper lamps
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Frequently, a user's experience can be improved with changes in the interface and artifact design,

In thinking about how to approach improvements, it is useful to distinguish between frustrations that

are the result of a software interface and learning processes that are inherent in design and craft. In

both craft and computation, care and practice contribute to improved results. Furthermore in craft,

material variation and inconsistency can be difficult to manage, but these factors also can contribute

to the uniqueness and value of an object. The process of supporting people in algorithmic craft is

not just about building tools that make the programming process easier and the crafting component

less prone to risk. Instead, computational tools should be designed to remove technical barriers

in programming and fabrication so that people can address the more interesting (and often more

difficult) design challenges of envisioning and refining computational systems. Craft processes should

be feasible to achieve, but also recognize that part of the pleasure and accomplishment of crafting

comes from the risk and difficulty it entails.

5.6 Summary

Codeable Objects allowed people to produce useful and beautiful objects with personal value through

a relatively pleasurable experience in computational design, digital fabrication, and craft. It also

produced in experienced programmers a recognition of the aesthetic and design potential of com-

putation, and stimulated questions about the role of conscious choice in computational design. The

workshop demonstrated the importance of immediate visual feedback for informing design decisions,

and it indicated the importance of applying textual programming to formats that clearly demon-

strated its advantages. The workshop highlighted the utility of open-sourcing algorithmic crafting

tools. Making the source code of Codeable Objects available to the advanced programmers in the

workshop lead to immediate innovations in the functionality of the software. For subsequent tools,

my goal was to build on these success while attempting to diminish some of the design limitations of

Codeable Objects. I also began working with a representative group of young designers with limited

programming experience.
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Chapter 6

Soft Objects

After an evaluation of the successes and limitations of the Codeable Objects library, I made

an effort to modify the library in a way that would allow for a broader range of computational-

design approaches and end products. In particular, I was interested in exploring the domain of

algorithmically crafted garments and fashion accessories. Fashion is an exciting domain to connect

to computation because it appeals to groups of people who are often under-represented in computer

science, particularly females. Computational fashion design resonates well with algorithmic craft

because it offers the opportunity to apply digital fabrication to textiles and fabrics, and because it
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introduces sewing and pattern-making as components in the construction process. Because garments

and fashion accessories are created to be worn, computational fashion design requires the creator to

consider questions of comfort, sizing, and personal taste and style when writing code. To support

computational fashion design in the context of algorithm craft, I expanded Codeable Objects into

a general programming library entitled Soft Objects and evaluated it over a 10-day workshop with

young designers.

6.1 Motivation

With the growth in public awareness of digital fabrication, enthusiasm for fashion applications of

digital fabrication technology is profuse. Much of this excitement is directed towards 3D-printed

wearables and textiles. In July 2010, Iris Van Herpen released her Crystallization collection, which

featured her first computationally designed, 3D-printed piece, marking the first time a 3D-printed

garment had appeared on a fashion runway [44]. Van Herpen and many other fashion designers

continued using 3D printing as a medium for fashion. As a result, computationally designed, digitally

fabricated fashion is often associated with 3D printing. The 3D-printed garments and accessories

produced by professional designers like Van Herpen serve as inspiration for the future of digital

fabrication and demonstrate wearable forms that would be impossible to create through any other

means. For the average person, however, computationally designed and digitally fabricated garments

of this nature present considerable limitations. Given current technology, cost and material, the

majority of 3D-printed garments are impractical for every-day wear and require advanced fabrication

techniques that are unavailable to many non-professional designers. Garments like the N.12 bikini

designed by Continuum [15] are intended to be ready-to-wear, and available to consumers, but for the

time being they are limited in scale, and still are costly. The construction of 3D-printed garments of

this form appear to have little in common with existing methods of garment production, like sewing,

knitting and embroidery. Admittedly, garments of this nature are inspirational and groundbreaking,

yet individuals with sewing, knitting, weaving or others skills with textile manipulation may perceive

their interests to be incompatible such forms of computational design and digital fabrication.

Although perhaps less publicized than 3D-printed fashion, other designers are merging fashion

with computation and digital fabrication in a way that blends new technology with established

approaches. Diana Eng's Laser Lace tee collection contains laser-cut machine-washable t-shirts

with floral-inspired iconography. Further, her Fibonacci scarf is created through traditional knitting

techniques, meshed with a Fibonacci knit pattern. Eunsuk Hur's modular fashion pieces are inspired

by tessellations and fractal geometry. By creating garments through laser-cut interlocking pieces,
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Figure 6-1: 3D-printed fashion (from left to right: Crystallization 3D Top by Iris Van Herpen,

Drape Dress by Janne Kyttanen, N12 Bikini by Continuum Fashion, Strvct shoe by Continuum

Fashion

Hur's stated aim is to produce items that are robust and durable, and also provide an opportunity

for the user to engage in the creative process (figure:6-2).

These examples demonstrate a use of computational fashion design that is compatible with

non-digital interests, and skill sets. Subtractive fabrication machines, like laser and vinyl cutters

are dominant in this type of work because they work with traditional materials and can produce

garments at lower costs and larger scales than 3D printers. Variation in materials also can translate

to a wide set of possibilities for hand crafting as well and different aesthetics and styles. It should

be noted that accessible forms of 3D printing can produce compelling wearable objects; however the

products produced are generally at the scale of jewelry and small accessories. Garments designed

and produced as a blend of digital fabrication and textile materials and construction processes

correspond well with the values and practices of algorithmic craft. The Soft Objects programming

library was designed to allow new programmers to design the forms and aesthetic components of

fashion accessories and garments through programming, followed by the physical construction of the

garments using subtractive forms of digital fabrication and sewing.

Figure 6-2: "Ready-to-wear" computational fashion (from left to right: Fibonacci Scarf by Diana

Eng, Biomimicry laser-cut bracelet by Stefanie Nieuwenhuyse, Laser Lace All-Over Tee by Diana

Eng, Interstice bracelet by Nervous Systems, Modular Fashion by Eunsuk Hur
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6.2 Tool Description

The Soft Objects library contains a set of methods that allows users to draw shapes and patterns

and then export those shapes and patterns in a vector format that is compatible with x-y axis

digital-fabrication machines. Similar to Codeable Objects, Soft Objects is used within the Process-

ing programming environment and contains a set of programming methods that enable the design

of visual forms and patterns. SoftObjects allows users to define and manipulate basic geomet-

ric primitives such as points, lines, curves, and polygons. These primitives can then be collected

within Pattern and Shape objects-structures designed to capture surface decoration and 2D struc-

ture, respectively-to form increasingly complex designs. Soft Objects is formulated on an Object

Oriented Programming (OOP) paradigm, which lets users create and manipulate collections of ge-

ometric primitives-Patterns and Shapes. This structure differs from Processing's drawing API,

which uses a functional programming approach. Users are presented with a 2D preview of their

designs when they compile their code. The structure of Soft Objects enables users to simultaneously

apply transformations to all of the elements in a collection that make up a complex pattern or shape.

The objective behind this structure is to open the design possibilities in a format that was suitable

for creating complex 2D designs and aesthetic patterns for clothing and accessories, while ensuring

that a user's designs would be compatible with subtractive fabrication. To simplify the process of

garment creation, Soft Objects included functionality to import existing cut patterns as scalar vector

graphics files (SVGs). This allows users to merge programmatically generated designs with patterns

for pre-sized shirts, dresses and pants.
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Figure 6-3: Soft Objects primitives.
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Soft Objects supports a variety of digital-fabrication machines by allowing users to save designs to

PDF files. Output from Soft Objects can be fabricated on essentially any x-y axis tool. 3D structures

can be created by assembling fabricated pieces. Figure 6-4 demonstrates the workflow from code to a

finished object. The Soft Objects library also contains a collection of pre-defined algorithmic patterns

that can be initialized, including Voronoi diagrams, Koch curves, and L-Systems. It also includes an

extensive set of example programs that users can modify and combine to produce individual results.

These examples and pre-defined algorithms are useful to expose new programmers to some of the

complexity and variability that is possible through computational design. They also demonstrate

the abstract qualities of computation, without immediately requiring people to learn substantial

amounts of programming structure and syntax.
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Figure 6-4: Soft Objects workflow.

6.3 Workshop

The evaluation of Soft Objects was conducted during a 10-day workshop with a representative group

of participants-eight young adults, ranging in age from 11 to 17 and composed of 75% male and 25%
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female. A significant majority (88%) stated in pre-surveys that they had little or no prior experience

in programming, and only one participant had prior experience in Processing. All of the participants

indicated some level of prior experience in art, design, or craft. Most attributed their design or craft

experience to art or drawing classes. The workshop was conducted at the Nuvu Magnet Innovation

Center for Young Minds. Participants were given 10 days to conceptualize and construct a garment

using a combination of computational design, digital fabrication, sewing and crafting. The workshop

was more open-ended than the Codeable Objects workshop because participants could produce any

type of garment they wished as long as components were computationally designed and digitally

fabricated. During the workshop, participants were introduced to Soft Objects and the concept

of computational fashion in a multi-step process that engaged participants in different levels of

programming through the construction of different garments and accessories. First, participants

were provided with a small set of example programs similar to the lamp workshop. This step

allowed them to manipulate a core set of parameters to generate the pattern and form of a scarf,
which they then cut on a laser cutter (figure: 6-5).

Figure 6-5: Bracelets and scarves from preliminary activities.

Second, participants were instructed in a number of primary programming concepts, including

iteration, function definition, and the use of variables and primitive data-types. During this in-

struction, participants were guided through the process of independently using Soft Objects and

generating their own programs from scratch. They used these programs to create a design for a

wooden bracelet (figure: 6-5), which was then laser cut and assembled. These initiation activities

demonstrated the stylistic affordances and design properties of computational design and digital

fabrication and providing participants with the practical foundation to begin conceiving of and ex-

ecuting their own ideas. During the remainder of the workshop, the participants were asked to

conceive of concepts and designs for their own garments. They were provided with the resources to

design, prototype, and craft finished artifacts.
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6.4 Results

Participants in the fashion workshop were successful in using programming and digital fabrication

to design and produce finished garments. During initiation activities, participants independently

wrote and compiled programs of and produced physical products based on the design generated

from their programs. With assistance the participants applied sophisticated programming methods

to produce a diverse set of final products (figure: 6-6). One pair of students developed an "armor

dress" by writing a program that geometrically described a single "scale" shape, imported a dress

pattern from Illustrator and filled it with rows of scales that corresponded with the dimensions of

the dress. Another pair created a geometrically inspired dress with octagons and squares of different

sizes that were laser cut from starched fabric. Another student created American-flag-inspired pants

using a program that generated random orderings of red and blue stripes on a white background.

One group that was less interested in the process of sewing clothing than other students created a

program that generated a recursive virus-like pattern. Then they used screen printing to reproduce

the pattern on pre-made sweatshirts and t-shirts.

Figure 6-6: Completed garments (from left to right: octagon dress, flag pants, samurai dress, viral

sweatshirt)

On the post survey, when asked if they "were able to complete a finished project to their sat-

isfaction," 100% of the participants responded in the affirmative. Their garments were attractive

and functional, indicated by the fact that participants from the fashion workshop kept and wore

their creations. Direct comparison of the pre-and post-workshop surveys also demonstrated that on

average participants interest in crafting increased as a result of the workshop, as did their enjoyment

of the design process. Eighty-eight% of the participants in the workshop indicated that they felt

more comfortable programming after the workshop than before.
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6.5 Discussion

The Soft Objects workshop occurred over a longer time period than the Codeable Objects workshop,

and explored a wide range of crafting and computational techniques. As a result, I had an oppor-

tunity to spend considerable amounts of time observing and talking with the participants. Because

the participants were novice programmers, their experiences better reflect the target demographic of

this research than in the Codeable Objects study. Through this workshop I confirmed that algorith-

mic craft activities can actively support the expression of personal identity among young designers.

The workshop activities fostered feelings of confidence in programming and supported aesthetic and

technological literacy. They also promoted a deep understanding of computation as evidenced by

critiques of the participants and demonstrated the importance of physical prototypes in the design

process. Finally, the workshop promoted a sustained engagement in programming.

6.5.1 Identification as a Programmer

Similar to the participants in the Codeable Objects workshop, the fashion participants began with

vague ideas about the applications of computation. When asked in the pre-workshop surveys how

they thought programming, art, and craft could be combined, participants responded in writing in

the following ways:

"To be honest, I am not too sure how it would all be combined because I don't know

much about programming."

Fashion Participant Y

"With programming, we can make programs do things for us."

Fashion Participant J

In addition, the participants had almost no prior knowledge of computational design. Those

participants who had some with prior programming experience associated it largely with interactivity

and actuation:

"I would love to combine things like T-shirts and speakers or other different types of

technologies."

Fashion Participant J

Following the completion of their final projects participants were much more descriptive about

the applications of programming:

"I think [programming and fashion] are really interesting but I never thought they

could ever be together in one concept, and it's awesome that I know that now- that you

can design aesthetically pleasing things from coding."

Fashion participant K
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"I've never thought of programming as physical; I thought it was only in computers.

But then when we made the scarves and stuff, I thought that was really fun."

Fashion participant M

Many people also expressed a growing confidence in their ability as programmers. During the

interviews, several separately stated that that while they did not feel completely comfortable pro-

gramming independently, the experience made programming feel significantly more accessible:

"For someone who never had any programming explained to them before, when you

look at [computational drawing examples] it feels really inaccessible, but now that I've

been taught a little bit of [programming], I can kind of crack at the walls a little bit and

understand how it works, and that makes it more accessible to me.

Fashion participant S

"Even though now I'm not really a Processing expert now, I've just experienced it and

it's not as scary to me, like the idea of coding, you just kind of have to learn some stuff

and practice it more, but I think I definitely understand the concept of it."

Fashion participant K

Finally, the programmers in the fashion workshop expressed feelings of pride and a sense of accom-

plishment in their new-found programming skills:

"I'm actually kind of proud. I know what's going on. It feels different... I just thought

[programming] was just about these huge programs that you have to piece together, and

that you have to be really, really smart to do it, but I can do it."

Fashion participant P

"I think it was really cool that we used [programming] for fashion, cause I think a lot

of people might think people who do fashion aren't really smart or something, and then

they think that people who design code are like brilliant coders and can do really awesome

stuff with it."

Fashion participant K

The confidence, sense of belonging, and personal agency demonstrated in these comments stand in

contrast to popular views of programming as specialized and inaccessible. These sentiments indicate

that introducing programming in the context of algorithmic crafting not only has the potential to

change people's understanding of the relevance and applications of computation, but also promote

a personal awareness of technological literacy and competence.

6.5.2 Application of Computational Affordances

Aside from a general understanding of the potential applications of computation, participants were

able to leverage the advantages of computational design in their final projects. For example, the
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octagon dress used parametric design principles, which was evident because participants were able

to change the size and orientation of the octagons in the dress by modifying several parameters at

the start of their program to affect the entire pattern, rather than rotating and adjusting each shape

independently. The samurai dress took advantage of the computational properties of precision and

automation. With help from an instructor, the creators programmatically generated an individual

vector file for each row of scales of the dress, expediting the production process (figure:6-7). The

samurai dress is particularly interesting because it shows a remarkable transition from the design

expressed in original concept art by the participant and the final garment, demonstrating adher-

ence to the person's creative vision through computation. Lastly, the viral shirt, demonstrated

an application of generativity. The aesthetic of the viral pattern was produced using a weighted

random-number generator to determine the number and length of the branches in each recursion of

the pattern. Although the implementation of the weighted number generator was facilitated with

help from the instructor, the participants came up with the idea of using it on their own.

Figure 6-7: Progression of samurai dress (from left to right: concept sketch, computationally gener-
ated pattern, laser-cut components of final garment)

Many of the participants demonstrated an understanding of the rationale behind the methods

they were using. One of the creators of the armor dress compared the process of programming the

design of the dress to that of manually drawing it:

"With drawing you can achieve everything programming can, but I would prefer to program it.

[programming] can be pretty convenient... the computer is helping me. Like if you want to make pizza,

the computer is like a pre-made crust."[Fashion participant E]

Participants also articulated an understanding of specific programming functionality. One par-

ticipant described the point at which she understood the application of parameterization:
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"One moment that stuck out was when you helped me make a code with original geometry that

could be changed so that when you changed one thing it changed everything and that was cool because

I felt like I actually made something that could be changed and then applied." [Fashion participant

K]

The ability to understand and describe how computation supports creative objectives is essential

in motivating an individual to spend time learning and implementing these methods. Once the

aesthetic possibilities of the recursive viral pattern were apparent to the designers, they became

engaged in understanding the underlying algorithm so that they could produce a pattern to their

exact specifications. Algorithmic craft can provide the motivation for participants to tackle complex

computational problems with sophisticated approaches when problems are clearly grounded within

the design objectives of the individual. A continual challenge in engaging new programmers in

algorithmic craft is selecting programming approaches that allow for compelling aesthetic and design

possibilities but remain approachable for first-time coders.

6.5.3 Aesthetics and Identity Expressed Through Code

The fashion workshop provided the opportunity for participants to use computational aesthetics

as a way to express their personal style. Fashion can serve as a means of self-expression and for

conveying one's identity. Discussions about fashion conducted at the start of the workshop indicated

that participants were aware of the connection between fashion and identity and were eager for

opportunities to create clothes that expressed their style. As a result, the majority of the garments

created in the workshop contained an expression of the fashion sense of the participants who created

them. For example, the participant who created the flag pants was very explicit that the pants have

some form of an American flag motif, but not resemble the traditional, and as he put it "tacky" flag

pants that he commonly saw. He wanted his flag pants to be "something that he would actually

want to wear." His programming choices were made in direct consideration of his desire to create a

pair of pants that he felt were fashionable.

When asked about the experience of making and designing his pants he said:

"[The workshop] definitely changed my impression of making clothes, I thought it was pretty quick

to make clothes, but it actually takes a long time, and it's also really fun. I love the fabric I made."

[Fashion participant M]

His enthusiasm also was evident in the fact that after the pants were complete, he tried them

on and wore them for the remainder of the workshop. This level of enthusiasm was common among

participants; they all proudly modeled their creations, and many of them wore them home. This

behavior suggests a relationship between the decisions made in a programming context and the

participant's desires to express their visual identity. The participants were selective in the code they

wrote to design their garments because they intended to wear the garments, and as a result, be
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represented by them. This powerful affective relationship between computation, design, and self-

expression provides a natural way to engage people in programming and design by supporting their

personal interests.

6.5.4 Physical and Digital Connections

One of the challenges of algorithmic craft, alluded to in the Codeable Objects discussion, is that

the practitioner must work between digital designs with physical materials and processes. Physical

prototypes often serve as a key point of transition between these spaces. In the fashion workshop,

prototyping played an important role, and demonstrated how computational tools can support and

sometimes hinder the prototyping process. The focus on fashion made it possible to supply the

participants with large amounts of inexpensive test fabric. The laser cutter could cut fabric much

more quickly than thick materials, which allowed participants to produce numerous prototypes of

their projects before creating a final piece. Most groups produced two or three prototypes, with

one participant creating six iterations of a single jacket. This rapid production process formed a

direct connection between discoveries made in the physical prototyping space and decisions in the

programming realm. In the case of the octagon dress (figure:6-6), the participants first cut test

rows of octagons to determine the appropriate scale, then adjusted their design by modifying their

program. Once they cut out a second more complete version of the dress, they rotated one of the

shoulder straps on the physical prototype and formed an idea for a one-sided shoulder strap. They

implemented this design change in the digital version of the dress by making additional changes

to the size and rotation of the shapes defined in the code. When asked about this process in the

interview one of the participants said:

"I think it was really fun that we got to do a prototype first because then if you don't like it, you

don't feel a lot of pressure because you can make it again really fast, and there's no stress because if

it doesn't turn out well, then it's not your final project. [Fashion Participant K]

The combination of programming, rapid fabrication, and physical construction allowed for a

design approach that transitioned from programming to fabrication to programming adjustments

based on the fabricated elements, and then back to fabrication. This iterative approach resulted in

a closely linked cycle of physical and digital engagement.

6.5.5 Enthusiasm in Crafting and Coding

One of the most encouraging aspects of following the fashion workshop, was the participants' enthu-

siasm and desire to continue making. Participants talked extensively about what they would like

to make in future with programming, stating that they would like to continue making clothing, or

other personal functional items like furniture and "things they could use around the house." The

experience of both sets of workshop participants also demonstrated the ability of these techniques
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to produce objects that were designed to complement personal items and living spaces. When asked

what she would like to make if she continued to program, one participant responded:

"Things like we're making now, things that you would want to keep or use, things that look nice

as opposed to like computer games, or 'input-output' devices. I think those are fun, but it's not as

cool as things that you can hold in your hand. I actually hung up the scarf I made in my room,

and now I can be like 'I made this on Processing' and people will be like 'what?' It's cool!" [Fashion

participant K]

This enthusiasm, combined with the high potential for individual expression and sense of ac-

complishment encouraged meto continue exploring fashion and garment production as topic space

for algorithmic craft. While the fashion workshop highlighted many positives in this sense, I also

encountered several areas for improvement.

6.6 Limitations

The most evident barriers in the Fashion workshop involved the syntactic challenges of programming.

Many participants expressed a frustration with the syntax in both surveys and in-person interviews.

Although the workshop participants were able to generate their own programs, they required more

assistance from an instructor to write some of the commands. In addition, a feeling of needing

to memorize programming syntax frequently translated to a sense of frustration. One participant

stated in an interview:

"I couldn't memorize things, so it also was frustrating for me to always have to get you to help

me write the code." [Fashion participant K]

Many people requested some form of written "cheat sheet" that listed the key methods and how

to use them. They also pointed out that they often had to write a lot of code (including import

commands as well as setup and draw functions), even for simple tasks. Writing code for the first

time is always challenging; however the high levels of frustration registered by the participants often

focused on aspects of programming that were extraneous to the design itself. Because I wrote Soft

Objects as a Processing library, it required that the syntax correspond to Java, a difficult language

for beginners. Java is a general application language and has many syntactic requirements that are

unnecessary for computational design applications. Based on this difficulty I concluded that future

algorithmic crafting tools should explore domain-specific languages that directly applied to design

and fabrication.

Along with difficulties with the programming syntax, participants struggled with some of the

post-processing techniques. In order to be suitable for digital fabrication, many of the participant's

computationally generated designs required some post processing in Illustrator. Usually this re-

quired using Illustrator's shape boolean functionality to merge shapes or expand outlines so that the
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vector paths would correspond to the desired cut pattern on the laser cutter (figure:??). Although

the methods to perform these operations were simple, they needed to be repeated every time the

design was modified programmatically. This was not only inefficient but sometimes prevented people

from determining if their designs were feasible for fabrication when they were in the programming

environment. This difficulty encouraged me to focus on ways of removing the need for Illustra-

tor from the process altogether so that all design modifications could be initialized and updated

programmatically.

Many participants also struggled with the concept of prototyping. These struggles were evident

in practical aspects, such as participants not saving their programs and digital design files (despite

repeated reminders from the instructors to do so). Participants also frequently spent too much time

on assembling their early prototypes, and were they frustrated when they realized they would have

to make design changes and repeat some of the manual labor. Although I took pains in the workshop

to introduce participants to the concept of prototyping, these instructions were not always absorbed.

This may present an opportunity for future algorithmic crafting tools to contain specific features

to encourage and support the physical prototyping process. One possibility is to include simulation

tools that preview the constraints and behaviors of physical materials. The value of working with

physical prototypes should also be supported, however, by features that allow designers to scale

their files and fabricate first in miniature, and by software that allows easy access and management

of multiple versions of a design throughout the design process.

Finally, as in the Codeable Objects workshop, participants were frustrated by the delay between

adjusting their code and seeing the results. Although not an absolute solution to the challenges in

learning programming syntax, a programming environment with quick feedback could assist with

the issue of syntactic challenges by providing novice users with improved ways to visualize the

effect their syntactic changes have on their design. The implementation of background compiling,

the process by which code is automatically compiled and executed as changes are made, has been

applied successfully in several tools for novice programmers, including Scratch and Alice [11], and

more recently with Khan Academy [4]. My reliance on the Processing for Soft Objects made the

incorporation of real-time compilation infeasible, however that change quickly became a goal for

future tools.

6.7 Summary

Participants in the Soft Objects workshop were able to create personal wearable items that were

beautiful, functional, and personally meaningful through computational design, digital fabrication

and craft. During the workshop, the participants learned new skills in programming and digital

fabrication, as well as techniques for pattern-making and sewing. The participants emerged with an
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awareness of the applications of computational design for digital fabrication, specific understanding

of some of the primary elements of programming, and a desire to continue using computation to build

their own objects. Although there are many areas for improvement in future tools, the Soft Object

workshop primarily demonstrated the importance of incorporating approaches that further reduce

the practical challenges of programming. Possible approaches include removing extraneous syntax,

reducing the number of programming methods, providing rapid and informative visual feedback, and

adding features that help users make their designs feasible for fabrication. The objective of these

features is not to trivialize the process of algorithmic craft, but to remove barriers to independent

and deliberate creation through computational design, and to ensure the successful translation of

digital designs to physical forms that are compatible with craft practices.
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Chapter 7

DressCode

77

_L -" j

play with the function calls below or write yor own. To see how the flower function works,
on thi hidden code tab abovel

it -flowenWMOT/2,HECHT/2,10,HEIGHT/2-S,20;1f2 - flow(MOTI/2+HEGHT-10,HOH4T/2.5.HEGHT/2-,30)
1 3 - flowertMOTh/2-HEICHT+10,OjCHT/2,SIHGHT/2-S.30).
14 - flowes(WMTH/2-HfIHT-45,HN C4T/2,1HEIOCHT/2-S.Sk

IS - flowei(*ATM/2+HOCT+45.HEJOT/210,HEOT/2-5,S).
16 - movcopyf2),IDTH/2+HECHT+100HEICHT/2);
f7 - move~opyff3)OTH/2-HOGHT-100.HECHT/2;
fl - fl+f2+f3+f4fS+fE+f7:
braceletOutline- braceletOutline~tl;

The preliminary work with Codeable Objects and Soft Objects clearly demonstrated that algo-

rithmic craft offers a compelling opportunity for personal, creative expression through programming.

My goal following the development and testing of was to address several of their primary limitations

in an effort to better engage novice programmers in the computational-design aspects of algorithmic

craft. DressCode is a stand-alone programming environment and design tool created to support

new programmers in open, independent algorithmic craft. To evaluate Dress Code, I conducted

two separate day-long workshops, one with experienced programmers and designers, and one for

young people who were new to programming. I also worked with FUSE, an-out-of-school STEAM

exploration program, to develop a set of online activities using DressCode. The results of that work
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are currently in the preliminary stages of evaluation.

7.1 Design Principles and Software Features

The focus on fashion in the Soft Objects workshop allowed young people to use computation to

create wearable artifacts of their own design. I felt this approach was a particularly compelling form

for engaging young people with computation, and I decided to continue work with this approach

with DressCode. Although the name of the tool reflects an emphasis on fashion, as an application

DressCode is general purpose, and can be applied to many forms of algorithmic craft. To preserve

the emphasis on fashion, the majority of the example projects and artifacts I have created with

DressCode, thus far, are fashion-oriented. The workshops I conducted, as well as the curriculum I

helped develop, also center on creating wearable artifacts.

With DressCode, I attempted to improve on Soft Objects in several ways. DressCode contains its

own programming language, including a simplified syntax and a limited set of textual programming

methods. Again this allows people with little or no prior programming experience to work with the

language quickly and effectively. The methods within the programming language are developed with

digital-fabrication applications in mind. They provide the user with the means to design freely, while

ensuring that the designs created will translate easily to 2-axis fabrication machines without the need

for additional design software. The DressCode interface is developed to equally prioritize textual

programming and visual design, and to provide constant visual feedback for programming decisions.

The environment has two-panels, one displays a graphic rendering of the user's current design; the

other displays their programming code. As a user makes changes to the code, the effects on the design

are rendered in the graphic panel. The objective in creating a specialized programming language and

immediate support for digital fabrication was to assist non-programmers in independently making

design decisions with programming. In short, I wanted to make it as easy as possible for people

to express their own desired style or aesthetic by writing their own code. The following section

describes the details of DressCode.

7.1.1 Interface Design

The interface of DressCode is divided into two sections: a design panel and a coding panel. The

coding panel contains a primary window for entering text, and an output console for print output

and error reporting. When the play button is pressed, the program in the code window is run

and the resulting design is displayed in the design panel. The DressCode programming language

is interpreted with semantic functionality that is simulated through a Java-based library (figure:

B-2). For most programs, the interpretation process is instantaneous; however, some programs with
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vekghtlcuroup,4), /liset, itrok.. vexgit t
pattern - group);
f/loop that will begin
at 1 and repeat up to and including the value of nun

repeat i-linun:
//create a copy of the original group of curves
cgew - copy(caroup);
theta - 360/num*il //calculate angle to rotate each curve gro

to

X - cos(theta)*radiu*+WIDTh/2; // calculate x and y coordinat
using cosine and sine

y - sin(theta)*radius+HEIG"T/2;

rotate(Wevw,theta+90);//rotate curve to value of theta
move(cNeVw,x,y);//nova curve group copy to x and y coordinates

expand(cNew);
add(pattern,cew);
and
move(pattern,40,100);
movelpattern,192.01382488479263,184.01382488479263),
move(pattern,37.013424884792

6 26
,119.01382481479263)

merge(pattern);
move(pattern.222.013824S34

7
9263,209.01382488479263);

hide(cGroup);

Figure 7-1: The DressCode interface.

complex operations require several seconds to be executed. Interpreting the DressCode language

enabled me to greatly reduce the amount of time to see changes in a design in comparison to

Processing. I hoped this would provide an incentive for people to experiment with their code, and

by doing so, allow them to improve their understanding of how to achieve their personal design

objectives.

The design panel approximates many of the features of a digital graphic design tool, with rulers,

a grid, and a drawing board. The drawing board defines a reference for the coordinate system

referenced by the drawing API with the upper left hand corner corresponding to (0,0) in cartesian

coordinates. Users can resize the drawing board and set the units to inches or millimeters at any

point during the design process. The print button opens a dialog that allows the user to export

their current design in a vector format. The design panel also features a set of buttons that allow

for graphic manipulation of a user's design. The target button for example, allows the user to

graphically select a set of coordinates and have them appear in the programming window as text.

The plus and minus magnifying glasses and the hand tool are used to pan and zoom in and out

of the screen. Lastly, the arrow tool allows for design elements to be graphically selected and

manipulated. After a design element is moved with the arrow tool, the corresponding code for the

move appears in the programming window. The graphic components of the the DressCode interface

were developed to enable the conceptual and practical execution of digital designs for fabrication by

specifying designs in real-world units. The graphic manipulation tools were designed to be intuitive,
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while simultaneously working in conjunction with the programming environment and thus, providing

users with another method to understand and alter their programs.

7.1.2 Programming Language

Many types of programming can be considered a form of craft. As a designer, I feel textual pro-

gramming is well suited to to design. I have come to particularly appreciate the nuance and artistry

of finely crafted textual programs. With DressCode, I was interested in investigating the ways I

could communicate the craft aspects of textual programming to people who had never programmed

before. With that in mind, I tried to reduce the challenges of first-time text programming as much

as possible, by augmenting DressCode with graphic interaction and feedback.

user's program

* - emeo0oo0,1,20o)
roftat*4*,4S

IdentifiUr, Assign,
ILpse, Oarea ,

Number(s), Cpsawe,
3Calon, tate,
Op"w, ladetig,
Come, Xtme,
Clra. 11001M...

output console

I.espIse r-0, graphic display
OW -

-a attelod. Java

unctoncop

Figure 7-2: Interpreter structure

DressCode supports number, string, boolean, and drawable data types. In the Soft Objects work-

shop, participants often became pre-occupied with memorizing data types, and they had difficulty

knowing which type to declare when creating a variable. To address this barrier in DressCode,

variables are dynamically typed and can be assigned to datatypes that differ from their original

assignment at any point. DressCode determines how to treat the data assigned to the variable based

on context.

si = "hello";

s2 = "world";

s3; //variable without initial assignment

s3 = s1+" "+s2;

println(s3); //prints hello world

ni = 2;

n2 = 2.5;

println(nl+n2*10); // returns 27.0
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The language also contains support for basic expressions, as well as conditionals, loops and

user-defined functions and other block statements. Loops are extremely useful for computational

design, especially when creating repeating patterns. For new programmers, however, loops are a

difficult concept, and loop syntax is often confusing. I attempted to clarify the loops of DressCode

by creating a default update condition and by designating the loops with keywords I thought would

more accurately reflect their function. I also added several loop expression methods that allow users

to create loop-based patterns with a single statement by specifying the number of repeats and the

resultant pattern of the loop (wave, arc, grid, spiral or ellipse).

//repeat statement

repeat i=0:10:

ellipse(0,i*10,10,10); //draws a vertical row of 10 ellipses

3 end

Custom functions can also be created by the user, along with any number of dynamically typed

arguments. User-defined functions are stored in memory and can be defined at any point in a user's

program and called prior to their definition.

//basic function defintion

def foo(a,b,c):

println(a+b+c);

end

//function call

foo(1,2,3); //prints 6

//function with return statement

def bar(a,b,c):

return(a*b*c);

end

result = bar(4,5,6));

println(result);//prints 120

Drawing API

The DressCode drawing API is organized around the creation and transformation of shape primitives

including points, lines, curves, polygons, ellipses, rectangles and imported SVG shapes.There is no

required "draw" method for DressCode. Instead all primitives are automatically drawn in the display

panel in the order of their initialization. This was designed to make it as easy as possible to have
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one's design appear on the screen. If a user does not want a primitive to appear on the screen, they

can hide it.

All primitives can be modified through a set of transformation methods that allow them to be

rotated, scaled and moved. Transformations on a primitive are performed by assigning an identi-

fier to the primitive, and then calling the transformation method with the identifier. By using the

transformation method to manipulate primitives in a structured manner, it is possible to generate

complex and interesting designs from simple forms. Through these methods, DressCode was in-

tended to support the affordances of computational design, specifically precision, visual complexity,

generativity and stylistic abstraction, in a way that was feasible for new practitioners.

//svg import
flower = import("flower.svg");

flower2 - copy(flower);
movey(flower2,200,150);

//scaling
scale(flower2,0.2S);

r - rect(582.6,120.4,100,200);

S//style transformations
weight(r,10);
stroke(r,BLUE);
noFill(r);

//rotation
rotate(r, 45);

. //mirroring

r2 - mirrorx(copy(r));

Figure 7-3: SVG import and sample of transformation methods

Although I started with a basic set of transformations, I gradually added in additional methods,

in response to user testing. This included a moveBy method, a polar move method, mirroring

functionality, a copy method, and an addition to the rotate method which allowed a shape to be

rotated around a point other than its origin. To encourage generatively, I added a random method.

The random method generates different numbers each time a program is run, which can be a useful

design feature, allowing for the generation of numerous patterns with random variations. Figure

B-8 demonstrates variations of an algorithm that produces randomly symmetrical stripe patterns.

It can also be potentially problematic, when the user wishes to keep the same randomly generated

number for each interpretation of their design.
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Figure 7-4: Stripe pattern variations using the DressCode random method

Polygon Booleans

Polygon boolean operations are techniques that allow shape primitives to be combined and sub-

tracted from one another in various ways. Polygon booleans are widely used in CAD applications

and are essential for many forms of digital fabrication because they allow for complex configurations

of shapes to be combined into effective toolpaths. Polygon Boolean operations are also important

from a design perspective, because they facilitate the creation of new forms, not possible through

other drawing techniques. Processing does not contain methods for polygon booleans. As a result,

in the Soft Objects workshop we had to rely on Adobe Illustrator to prepare designs for fabrication,

which was confusing, disruptive to the design process, and time consuming for the participants.

Therefore, it was important to me that DressCode contained native polygon boolean operations

which better supported digital fabrication, and were conducive to the design process. DressCode

contains methods for performing unions, intersections, differences and either-or intersections be-

tween any two or more shapes. These methods enable users to combine objects and create complex

polygons with multiple holes. They can also clip shapes within clipping masks based on the di-

mensions of the design they are creating. They can also expand strokes to filled polygon paths,

enabling the translation of line art to a form that will maintain its appearance when fabricated.

By positioning these operations as primary components of the DressCode, I attempted to create a
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programming language that produced forms that were applicable to fabrication as a direct result

of the design process, rather than requiring an extraneous post-processing step that could interfere

with the aesthetics of the piece. In this way, users could be in control of their design throughout the

entire process of programming, fabricating, and crafting.

14len am l

1~

//union example
ri - rect(70,40);
el - ellipse(110,40);
union(rl,el);

I/difference example
r2 - rect(70,100);
42 - ellipse(110,100);
diff(r2,e2);

/intersection example
r3 - rect(70,160);
e3 - ellipse(110,160);
Clip(r3,0);

//exclusive or example
r4 - rect(70,220);
M4 - ellipae(110,220);
xor(r4,e4);

/expand with union example
r4 = rect(70,220);
e4 - ellipse(110,220);
weight(r4,5);// set the weight to 5 to ensure viable thickness of the shape
weight(e4,5);
expand(r4);
expand(e4);
union(r4,e4);

I/merge with repeat
g group();
repeat i-0:5:
e - ellipse(i*20+70,280,20,SO);
rotate(e,i*15);
add(g,e);
end
merge(g);

Figure 7-5: Polygon boolean operations

Grouping

One major concern in computational design is how to effectively organize and collectively manipulate

complex designs with many individual elements. To address this, DressCode primitives can also be

programmatically grouped, allowing for transformations to simultaneously be applied to multiple

elements. Groups have their own origin, which is used as the reference point for all move, rotation

and scale methods applied to the group (figure: B-6). The groups in DressCode provide structural

mechanism that bridges computational data structures with organizational structures found in non-

computational graphics software. Groups are treated similarly to lists in that they can be populated

through a loop, and individual objects can be accessed and manipulated by via their index. Similar

to Adobe Illustrator and many 3D modeling programs, groups can also be moved with the graphic

manipulation tools, and have boolean operations performed on all of the members simultaneously.

This connection creates a more balanced treatment between properties of digital graphics software

and computational affordances, to better communicate the utility of lists in a design context. Groups
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also provide a practical advantage for digital fabrication, as they can be automatically merged upon

export, returning a single complete tool path that conducive to subtractive fabrication processes.

Figure 7-6: Grouping with transformation and repeat statements

Informational Methods

Computational designers do more than specify designs. They also must be able to access information

about components of their design, and make aesthetic or practical decisions based on that infor-

mation. DressCode features a set of methods that return information about shape primitives, such

as their location, origin point, width and height, as well as a method to determine the Euclidean

distance between two objects. I also added a set of methods that allow the conversion of pixel values

to inches, centimeters and millimeters, or in the current units of the drawing board. These methods

encourage designers to evaluate their designs on practical and aesthetic criteria, and allow them to

ensure their creations fit the correct parameters for physical construction.

7.2 Fabrication and Crafting Processes

Because DressCode is intended for algorithmic craft, it had to enable people to translate the designs

created in the software to functional physical artifacts. DressCode can export vector files that can

be used with any 2-axis fabrication machine. Depending on the materials and machines available,
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cGroup = groupo; //empty group

repeat i-0:10:
c - curve(0,0,50,-100,150,100,200,0);
moveBy(c,i*100,0);
add(cGroup,c);//add each curve to group
end

//modify group
norill(cGroup);
weight(cGroup,10);
rotate(cGroup,45);
move(cGroup,-40,60);

repeat i-0:20:
cG - copy(cGroup);//copy group
moveBy(cG,-20*i,20*i);
if i%2--0s
stroke(cG,PURPLE);
else:
stroke(cG,BLUE);
end
end



a wide variety of end products are possible. A large component of developing DressCode involved

experimenting with different fabrication machines, crafting techniques and end artifacts. I tested

the resultant pieces from these fabrication processes with different crafting techniques that ranged in

difficulty. Highly accessible techniques included making artifacts that required basic paper-folding

or iron on appliqus for clothing. More difficult techniques included sewing garments, screen printing

onto fabric, and jewelry making.

Because accessibility was a primary goal, it was important to ensure that DressCode could be

used with widely available forms of digital fabrication. I experimented with the laser cutter and CNC

milling machines with DressCode; however, I also developed a set of projects that were compatible

with the cameo craft vinyl cutters, and standard inkjet printers. These options lowered the cost

for participation in algorithmic craft for many individuals and groups. I also used DressCode in

conjunction with two on-demand online fabrication services, Shapeways and Spoonflower, to produce

3D-printed jewelry and larger inkjet printed garments.

The support of algorithmic craft depends on more than good software. It is also important to

convey information about material affordances for different forms of fabrication, instructions for

combining craft construction methods with fabricated pieces, and inspiration for possible projects

and end artifacts. The study of methods for documenting and communicating this information is

substantial, and could easily constitute its own thesis. For DressCode, I attempted to experiment

with fabrication techniques and projects that were interesting to me, and that I believed would be

accessible and compelling for young people. To provide support for independent users, my under-

graduate research assistants and I created a set of example templates in DressCode that are directed

towards specific end projects and fabrication machines (figure: 7-7). We also began documenting

some of the crafting techniques required to complete these projects online. I also worked with FUSE,

an interest-driven STEM exploration program in Chicago, to document DressCode. With FUSE,

I developed an online activity designed to help young people use DressCode to create vinyl cut

accessories'. Despite these initial explorations, there still remains significant research to conduct

in the process of documenting and conveying fabrication and craft knowledge in conjunction with

computational tools.

7.3 Tool Summary

The DressCode programming language, graphical interface, and documentation are designed to

work in combination to extend the creative opportunities of algorithmic craft while reducing the

technical difficulties of using programming to design for digital fabrication. The drawing methods are

1https://www.fusestudio.net/challenge/dresscode/shrink-it
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Figure 7-7: Several example artifacts created with DressCode Designs (clockwise from top left:

vinyl-cut screen-printed pillow, vinyl-cut tea light, ink-jet printed silk caftan, laser-cut iron-on t-

shirt, 3D-printed silver pendant)

created to be easy to use, but broad in their creative possibilities. The interface mixes programming

functionality with rapid visual feedback and graphic manipulation. The documentation provides

assistance in using digital fabrication machines and provide ideas for possible projects. They help

people translate their designs to functioning crafts. By allowing people to produce complex structures

from simple forms, and realize these forms in personal physical artifacts, my intention is to instill

confidence in people's ability to program, while generating excitement and enjoyment of the creative

opportunities inherent in algorithmic craft.

7.4 Workshops

I conducted several user studies and workshops to evaluate the success of DressCode in helping

people participate in algorithmic craft. I informally tested DressCode with members of the FUSE

development team, and with the staff at Dream Yard, an after-school STEM learning and making

program in the Bronx, New York. Following these tests and a period of additional development,

DressCode was evaluated during two separate day-long workshops at the MIT Media Lab. The

first workshop was conducted among experienced designers, artists, and programmers, who were

selected individually from MIT, Harvard, and the surrounding Cambridge community. The second

workshop was conducted with 10 young adults selected from youth organizations in Cambridge and

arts-and-craft workshop mailing-lists at MIT. Participants in both workshops used DressCode to

create laser-cut leather crafts. By testing DressCode with experts and young people, I hoped to

learn about its usability for the target demographic and gain insight about new functionality to

incorporate into the tool.
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7.4.1 Expert Workshop

The expert workshop was comprised of eight participants between the ages of 19 tand 33. Five

of the eight participants were female, and all had some prior experience in programming, though

several considered themselves novice level. 75% of the participants indicated a strong prior interest

in design, and 50% enjoyed crafting. All participants had formal college training in either art, design,

or computer science.

The expert workshop was structured as an open-ended design activity. I began the workshop with

a 30-minute discussion about the connections between design, arts and crafts, and programming.

Following this discussion the, participants were given a 45-minute tutorial on the basics of the

DressCode, after which I gave participants access to reference materials for the drawing API in the

form of an online wiki 2, as well as a handout with quick references for some of the key methods.

I also provided participants with a DressCode template for a leather bracelet and several example

programs that generated different patterns for the template. Participants were given the option to

design within the template and were also free to create whatever they wanted. After participants

spent several hours designing, I demonstrated the fabrication process and provided several varieties

of leather. Participants then had 3-4 hours to finish the design of their piece. As they completed

their designs, they were taken in groups to the shop to fabricate their parts and then given access

to craft tools and a variety of fasteners to convert them into finished artifacts.

7.4.2 Youth Workshop

The youth workshop was conducted among 10 young adults, aged 15-17, 20% male and 80% female.

Five of the youth participants were participants in the Teach 2 Learn, Learn 2 Teach program in

Boston '. Of those surveyed, three participants had prior experience with Scratch, and two had

worked with the Arduino programming environment in a prior workshop at MIT. All participants

said they had some prior experience in art, design, or craft. Prior to the workshop, 60% of the

participants indicated that they did not feel comfortable programming on their own; however, the

majority indicated they were interested in learning more about the process.

The youth workshop was more structured than the expert workshop with the goal of helping

to familiarize participants with the possibilities and affordances of computational design and fab-

rication. During the workshop, I was assisted by two Media Lab students and an undergraduate

research assistant. We began by passing out three colors of paper labels, and assigned each color to

a category: green for design, yellow for arts and crafts, and pink for programming. We then held a

2 Wiki is located at http://jacobsj.scripts.mit.edu/dresscode/
3 http://learn2teach.pbworks.com
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Figure 7-8: The expert workshop

5-minute brainstorm where we asked each participant to write down their associations around peo-

ple, tools, ideas, and projects for each category on the respective colors of paper. We then collected

the labels and posted them on a board in related clusters. The class then held a 30 minute dis-

cussion on the contrasts and connections between programming, art and craft and design that were

demonstrated by the ideas they had expressed during the brainstorm. We ended the discussion by

talking about some of the possible craft applications of computational design and then I introduced

DressCode.

Figure 7-9: The youth brainstorm and discussion
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All of the design work in the youth workshop was structured around the concept of radial sym-

metry. Radial symmetry provides a good introduction to algorithmic craft because it is a relatively

easy pattern to express mathematically and serves as an excellent motivation for using a loop. Ra-

dial symmetric patterns are commonly found in nature, making it possible to use radial orderings

of shapes to generate designs that are biological in appearance. In addition, radially symmetric

forms are often aesthetically appealing to people. To introduce the youth to computational design,

I explained the concept of DressCode and then spent 20 minutes leading the group, step by step,

through the process of creating an algorithm that created a radially-symmetric form (figure: 7-10).

After every participant had created their version of the algorithm, I showed them how they could

use the same algorithm to create different designs by changing the number of iterations of the loop,

the type of shape drawn, and the width and height of the shape. Participants then had 15 minutes

to experiment with different parameters, and produce different designs, followed by a group session

showing their patterns and talking about the process of creating them (figure: 7-11).

Inum = 10;
center = ellipse(WIDTH/2,HEIGHT/2,5);

repeat i-0:num:
e - ellipse(WIDTH/2,HEIGHT/2,60,160);

weight(e,5);
e - expand(e);K r- 7 j~7 -!angle = 360/num*i;

rotate(e,angle,point(WIDTH/2,HEIGHT/2));
center = union(center,e);
end

Figure 7-10: The first algorithm learned by the youth participants

Figure 7-11: Some example variations on the first activity
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Next, the participants were provided with example programs that contained a bracelet tem-

plate. The example programs featured a pre-written function that duplicated the algorithm they

had written in the previous activity, with arguments corresponding to the same values they were

manipulating before. Participants were then given time to use the function to make multiple ele-

ments of the original radial pattern with different parameters. A second tab in the example program

revealed the code for the radial function, which participants could modify. The example template

was constrained so that the dimensions of the bracelet would automatically correspond to the size

of the drawing board. By measuring their wrist and resizing the drawing board, they could generate

a bracelet of the correct size, and maintain their original design (figure: 7-12).

i11i 1... 1n 1 h.!idden

/* add radial forms to the braceletOutline shape
- to create a bracelet of your own.

I. :.,. ,. ,,.. :> : i..:use the radial function do do iti
radiaslshape x~y,nuePetais,diam terpetalThickness)

-:-

- -d

Th: radial functiosn an par&"e ers:
shapeTypet string of the type of shape
i the x position of the radial design
ys the y position of the radial design

numShapes: the number of shapes in the loop
shape widths the width of each shape
for if polygon, the number of sides)
shape heights the height of each shape

for if polygon, the length of each side)

ri - radial"ellipse',WIDTH/2,KIGHT/
2

,10,30.50);

//add your radial designs to your bracelet
braceletOutline. braceletoutlino+rl;

Figure 7-12: The bracelet template with one instance of the radial function being called

Participants were given 2 hours to design. When they had settled on a final design, they first

printed a paper copy and tested the bracelet's fit. Then they selected their material and worked

in groups with the laser cutter. Afterwards, they were shown how to attach the fasteners to the

bracelet, and were provided with tools that allowed them to alter their piece by hand.

7.5 Results

The variation in structure of the workshops and the difference in the demographics of the participants

resulted in different products and experiences in the youth and expert workshops.

7.5.1 Expert Results

All but one participant in the expert workshop indicated that they were successful in completing a

finished product. The types of products included leather cuffs, finger puppets, earrings and a belt.

There was a high degree of variation in the algorithms used to create the finished products. Several
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participants relied exclusively on the radial symmetry algorithm, but others created patterns with

computationally ordered curves, rectangles and lines in different arrangements. The participant who

created the leather belt designed the pattern so that it demonstrated the evolution of the algorithm

that comprised it; as the individual patterns progress along the belt, they grow in complexity.

The expert workshop was difficult to facilitate because of the high degree in variation among

approaches and end products. Many of the participants began with design goals that were at odds

with the affordances of DressCode, such as creating representational characters in the case of the

finger puppet. In addition, several of the end projects required instructor intervention to ensure they

were suitable for fabrication, because of their complexity. Overall, the expert workshop produced a

promising set of physical artifacts and demonstrated the limitations and benefits of using DressCode

across a broad range of design approaches. The expert participants also provided feedback on specific

features to incorporate into future versions of the DressCode software. The random method and

unit-conversion methods were added directly following the workshop based on participant suggestion.

Figure 7-13: A sample of the completed projects from the expert workshop (clockwise from top left:
butterfly cuff, leather earrings, patent leather bracelet, algorithmic progression belt)

7.5.2 Youth Results

Because the youth workshop was more structured than the expert workshop, the participants in

it produced a more limited set of physical products. All participants in the youth workshop were
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successfully able to use DressCode to produce a unique leather cuff (figure: 7-14). Even though

every person made the same type of artifact, the patterns and approaches among the bracelets

were very different. Some bracelets were geometric, some were floral, and some of their styles were

difficult to link back to the original radial algorithm. Each participant was able to write their own

radial symmetry algorithm in the initial lesson and produce a variety of patterns with it. Many

participants chose to directly translate some of the designs they created during the initial activity to

their bracelet design. During the bracelet-design portion, several participants directly modified the

algorithm in the template to better fit their design goals, and even added code that went beyond the

bounds of the original program. Eight of the participants said they planned to wear the bracelets

they created, and two indicated that they planned to give them as gifts. A comparison of the

pre-and post-workshop surveys demonstrated increased comfort with programming as a result of

the activity. After the workshop, more participants indicated that they thought programming was

a good tool for personal expression and design. All participants stated that they believed they

could use programming to make things that were beautiful, whereas several had disagreed with this

statement before the workshop.

Figure 7-14: A sample of the completed leather cuffs from the youth workshop

7.6 Discussion

The DressCode workshops re-affirmed many of the benefits of algorithmic craft that were apparent

through Soft Objects and Codeable Objects. People were able to express their personal aesthetic
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preferences by working with computation, digital fabrication, and craft. Participants also demon-

strated new confidence and independence in programming and design, and a greater awareness of the

applications of computation. The experience was enjoyable and intellectually challenging, leading

to strong sense of accomplishment among participants.

The DressCode workshops also revealed new aspects of algorithmic craft, not apparent in earlier

studies. Young people revealed strong prior biases regarding the accessibility of programming and

craft. In addition, although computational aesthetics are often abstract, in the hands of young

designers, they can convey personal symbols, narratives, and signifiers of gender that are extremely

powerful when realized in a wearable artifact. Lastly, algorithmic craft artifacts are ascribed a

special value by young people that blends the affordances of craft and computation. The artifacts

are special because of the programming code that produces them, and their one-of-a-kind rarity as

an object.

7.6.1 Starting Notions of Craft and Computation

When developing a tool for combining craft and computation, it is important to understand people's

prior conceptions of craft and computation. In the case of the DressCode study, there was a strong

distinction between the views of the two groups of participants. During the expert discussion,

two separate forms of craft were discussed. People acknowledged that craft could be viewed as

a hobby and amateur practice; however, they also demonstrated an appreciation for craft as an

artisinal practice. In artisanal crafts, artifacts held higher value than mass produced ones because

of the time and expertise required for their production. In the youth discussion, the appreciation of

artisianal craft was completely absent. Instead the young participants considered all forms of craft

as accessible, recreational activities. This distinction was surprising. The perception of craft as open

and accessible has its benefits; however, many youth participants dismissed the difficulty of craft

in comparison to programming. One young woman articulated her view on the difference between

writing a program and throwing pottery, stating that she knew she could throw a pot but that she

would be unable to write a program, despite having no prior experience in either medium:

"It's just a whole new program, it's not something that I already know how to do. Arts

and crafts is like, anybody can do it, but here you need to follow what [the instructor]

says, you need to know what you're doing ... I think you just need to have more forehand

knowledge to know what to do."

Youth Participant S.M.

There was also a difference between the amount of variation in the crafting processes between the

two experts and young people. Several participants in the expert group experimented with layering

different materials for a different effect. One participant sewed a portion of her project rather than
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attach portions with snaps. Another used the snaps as an aesthetic component, by placing them

across the length of the piece and then snapping on different colored pieces of leather in different

patterns. There was limited variation in the approaches the youth practitioners took in the crafting

portion. Most stopped after they had attached snaps to their bracelets. The youth participants

consistently described the craft component as difficult and even stressful at times:

"Something that was difficult was hammering the snaps in straight enough for them

to function well."

Youth Participant F

"It was enjoyable being able to wear it and making sure that it would fit. It was a

little stressful figuring out how to put the clasp on."

Youth Participant K

"I think the actual physical copy [of my bracelet] is slightly less attractive than the

one I had on the computer."

Youth Participant C

"I hate being anxious because I don't know if it's going to come out right. I like the

designing on the computer, but once it comes out it looks like crap. So I'm really happy

that I came to this (workshop), this is the first one that came out."

Youth Participant ST

The frustrations experienced by youth participants in the craft stages of their projects correspond

to similar frustrations from participants in the Soft Objects and Codeable Objects workshops. The

discussions about conceptions of programming and craft at the start of the workshop now provide

more context for the cause of this frustration. It is likely that people become frustrated during

the hand construction components of not merely because craft is difficult but because they have

prior conceptions of craft as accessible, and expect to be successful on their first attempt. Because

participants in the workshops are often convinced of their inability to program, any degree of success

in programming represents a significant accomplishment. One of the challenges in engaging people in

computation is convincing them that programming is not as difficult as they think. When engaging

young people in craft, this challenge is reversed; people should be encouraged to consider craft as

a broad field with the potential for difficulty. Successfully aligning and hammering a rivet to a

leather bracelet should be considered as great an accomplishment as writing one's first algorithm.

Participation in algorithmic craft therefore requires an awareness of one's potential as a programmer

as well as acceptance of the risks inherent in craft.
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7.6.2 Enjoyment in Programming

One of the most important points of evaluation for DressCode was how the experience affected young

people's notion of programming and their understanding of the applications of computation. In the

Soft Objects workshop, participants were excited about the potential of programming but unanimous

in their frustration about using java programming syntax with the Soft Objects library. It is difficult

to evaluate the DressCode workshop parallel to Soft Objects because the DressCode workshop took

place over a shorter time period in the context of a more constrained activity. When evaluated as

an independent case of novice programming; however, the response in the DressCode workshop by

novice programmers was promising. The youth participants expressed a sense of enjoyment and low

levels of frustration with the coding portion. When asked how they felt about the programming,

participants responded in the following ways:

"It wasn't as hard as I thought"

Youth Participant 1271996 (survey)

"It was very straightforward to use and easy to understand."

Youth Participant 091897x (survey)

"I didn't have much experience with programming before the workshop so it was fun

to screw around and see if I could push the boundaries of what I could achieve by hand."

Youth Participant 091897x (survey)

"[The] computer programming was enjoyable for me because I had wanted to do it

before but never had the chance. So this workshop gave me exposure to something that I

wanted to do for a while and I totally loved it."

Youth Participant 092297m (survey)

"I liked [the language], it wasn't tough, it was very simple. That barrier was removed

for me so I could focus on the design."

Youth Participant ST

The last quote was from a participant who had prior coding experience. All of the other quotes

came from participants who were new to programming. Some of the participants did express dif-

ficulties in programming. These difficulties were often described in conjunction with enjoyment or

with the the recognition that through some effort, they could be overcome:

"The computer programming was enjoyable for me; however; it was a bit frustrating

and confusing at times."

Youth Participant 123097f (survey)

"It was fairly enjoyable, if arduous and frustrating. Once I figured out how to do it

it wasn't too hard."

Youth Participant 100397c (survey)
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"It was alright except a bit hard to learn but once you know it its pretty much simple

for the rest of the time."

Youth Participant 05231997 (survey)

These comments point to an important divergence between Soft Objects and DressCode. With

both tools, participants reflected on frustrations of learning programming. In the Soft Objects

workshop, participants talked about how they felt they could overcome these difficulties in the future.

With DressCode, participants talked about encountering and overcoming programming challenges

during the workshop itself. The recognition of personal ability to solve problems is essential for

future success in computational design. Participants in the DressCode workshop were able to apply

primary computational design affordances to their designs. During the interviews, they elaborated

on the ways in which they felt programming had been useful in the design process. For example,

one participant described the advantages of programming for creating precise design elements:

"Basically with programming, it like- say I wanted to draw it by hand with the mouse-

it would be a lot harder to make the image um , perfect's not the word.. everything was

scaled perfectly. Say you wanted certain shapes to be certain angles or certain sizes, if

you were to code it, you can get it at the right angle, where if you were to draw it by hand,

you wouldn't know what angle it is." Inteviewer: " So the precision?" Youth Participant

N: "Yes."

The recognition of the ability to create complex designs through repeated simple actions was

another common sentiment. Again from the interviews:

"[My design] feels complicated and simple to me at the same time- it may seem simple

to me because I know the rules behind it."

Youth Participant R.

Participants also discussed the parametric qualities of designing with code:

"[I liked] the programming part.. learning different strips of code and what they did,

and just changing the basic codes they gave us so basically it looks more unique"

Youth Participant N

'Something that was useful about using programming to design this bracelet was that

it was easy to change the sizes of the shapes very quickly."

Youth Participant 123097f(survey)

Responses like these suggest that DressCode was successful in helping participants take advantage

of computational design for personal expression, similar to the Soft Objects workshop. Participants

also expressed an appreciation of the power of computational design, indicated by their enthusiasm

following the activity:
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"Now I know that you can use computers and programming and stuff to design pretty

and physically appealing things, instead of just complex robots and stuff."

Youth Participant 092297m (survey)

"It was really fun and I gained a lot of knowledge from it- knowing how to program,

knowing different types of ways to manipulate shapes and radials."

Youth Participant S

"[The bracelet] is a physical manifestation of my success in coding, maths, and pro-

gramatic design, and that's what I see when I look at it. It is a little coding confidence

totem that can inspire me to continue developing my skills and passion in this area -

wow, I didn't realise I felt that strongly about it!"

Expert Participant 090585p (survey)

These positive reflections on the potential of programming, combined with the appreciation

of specific computational affordances in design and with feelings of accessibility and feasibility of

the programming process, point to the intellectual and creative potential of algorithmic craft. As

with Soft Objects and Codeable Objects, participants felt successful in their ability to learn and

apply computational design, and they had fun doing it. With DressCode, participants were able

to implement their designs in a more independent manner than with Soft Objects, and with more

stylistic freedom than with Codeable Objects. This freedom translated to a greater sense of personal

agency and accomplishment by the participants.

7.6.3 Design Processes

The Codeable Objects and Soft Objects workshops hinted at the potential for people to implement

sophisticated design strategies through algorithmic craft. With DressCode I focused on participants'

approaches to design, to better understand the ways in which people designed with code. The

interviews and post surveys indicated that participants in both the expert and youth workshop

engaged in a variety of design strategies in working with DressCode. Some relied on conscious and

extensive planning. When asked about her design, one young woman described it in the following

manner:

"Well I wanted this one (pointing to an element of her bracelet) the first one made

out of radial ellipses; I wanted it to look like a flower when they layer down, and the

second one is kind of like the same thing, but I wanted to have the pentagon or hexagon,

and the next one is the snowflake, and I wanted it to look like a snowflake because my

favorite season is winter, the next one the center looks like a different sort of snowflake

because all snow flakes are different, so I chose different shapes, and the last one is a
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rectangle-like a square in the middle and then it's like hexagons."

Youth Participant S

She also described the activity as requiring "creativity and thought and dedication". When asked

how she found programming useful in her design she said:

"You type it in and it brings it to life for you. You can do it on your own.... you don't

have to buy it. It's different than the casual way that somebody gets a bracelet."

Other participants also indicated that impromptu choices played a role in their final design, in

combination with pre-mediated decisions:

"A few days before the workshop, I was thinking about how I will not likely wear a

leather bracelet, but a belt I would definitely wear. I didn't really have an idea for what

kind of algorithmic design I wanted to make. During the discussion at the beginning of

the workshop, somebody used the word "evolution," and I started thinking about making

a design that repeats and gradually changes across the belt. I had a hard time coming up

with an interesting shape with an interesting transformation. I started with a blossom

of rectangles, and tried a bunch of variations. At some point somebody said it was like

an animation, which gave me some positive energy in thinking about the design (and

I thought I could be a human zoetrope, spinning in sync with a strobe). It started to

get more interesting when I added the masking effect. I eventually made the individual

pieces making up the ellipses instead of rectangles, which both made the thing softer, and

emphasized the transition as they collide with the mask, forming sharp corners."

Expert Participant 071279R (survey)

"I saw that the duplication of a large shape was kind of happening with a lot of people's

designs, so I decided to try and do something a little different. (shows a first design with

ellipses side by side on a line). That was the second phase of this, and then I just started

screwing with numbers to see what I could get and I came up with this. I didn't know if I

wanted the entire thing to be symmetrical or not, but then I thought that that was getting

too boring (the symmetry), so then I changed the number of shapes in the loop to an odd

number instead of an even one so that it would offset the design, and came up with this."

Youth Participant R

'I kind of like started off playing around with the main stuff and once I got that I

narrowed it down and tried to switch around different parts to see which parts worked

best."

Youth Participant C
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'I used an example I liked and decided to spend time doing an earring or single pendant

so I could focus on manipulating the example to see how the program worked. I also picked

something that repeated the same unit for simplicity and the time limit."

Expert Participant 081764

Youth and expert participants varied in the levels of intention in the design process. Because

of their professional experience and education, on average, the expert participants approached the

activity with a greater level of deliberation and were better able to articulate their design process.

However, the responses from the youth participants demonstrate that they also felt they were able

to make conscious design decisions in a programming context. Deliberate design choices were also

made based on the materials available. Participants made decisions based on the material properties

of the leather as it folded or bent, and considered the fact they were planning wear the resulting

piece:

"The ellipse [in the design] was added once I understood that the teeth sticking inward

in the design (formed by the inverse of the ellipses sticking outward) would pop out from

the surface of the belt when it was curved around my waist- I saw this when we made a

paper prototype. The ellipse held the teeth in place."

Expert Participant 071279R (survey)

"I deliberately made it more delicate and feminine, because I'm putting it on black

leather, I just made it a lot prettier- with thinner lines- I have more thin than thick."

Youth Participant J

"Well, I printed out the different widths of the line because if you're going to wear it,

you want it to be durable. The thinness of it, I don't want it to be easily ripped, rather

than if I was like a thing to hang on a wall, I could just do anything I wanted, because

it's not like it's going to have to withstand any elements. And you want it to look nice

because I care about what I wear, cause what you wear, you're presenting an image of

yourself to people."

Youth Participant R

"Instead of doing something that I thought would look cool, I tried to think of some-

thing I would generally wear, I didn't pick bright pink, because I knew I would never wear

that."

Youth Participant K

A few expert and youth participants relied on an experimental design approaches, or came to

their final design through trial and error:
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"You just have to fool around with it until you like how it comes out."

Youth Participant G

Youth Participant S: 'I just typed it in and started messing around with this, and then

I gave it a go."

Interviewer: "How did you know you were done with it?"

Youth Participant S: " I ran out of ideas."

"[I decided on the design] mostly through trial and error, I found what was easy/reli-

able to do but looked interesting. I spent some time rounding out the form of the bracelet,

this was the most directed portion of the design process.

Expert Participant 081764

Experimentation through trial and error can be a useful tactic; however too much reliance on

this form of design can result in a diminished sense of accomplishment. One participant stated that

he enjoyed the design process at first, but for him:

"The more 'trial and error" kind of ruined it a little. The more anyone messes up

with anything it kind of takes away the fun from it of it. But then the end result made

up for it."

Youth Participant N

Control over the design plays a large part in the experience of the designer. Whether their choices

were made through forethought, or realized mid-process, that ability of participants to realize their

design objectives through programming had a positive outcome. The participants who articulated

intention in their design process emerged with a greater feeling of ownership of the finished artifact

and a more positive view of computational design than those who felt they relied on trial and error.

In the case of computational design with novice programmers, conscious design processes can be

difficult to achieve. The advantage of DressCode over Soft Objects and Codeable Objects was that

it enabled designers to make changes and quickly see the results of these choices in their design,

allowing for increased control. In the case of participants who felt they relied on trial and error,

future tools should endeavor not only to make computational design more accessible, but also to

assist in the communicating the history of a design to a designer. This may provide designers with

better sense of their design process, and give them a better foundation for future decisions.

7.6.4 Algorithmic Aesthetics

One challenging area of study in algorithmic craft is evaluating the aesthetic qualities of algorithmic

designs. What aesthetics are conducive to computational design? What styles are difficult to

101



achieve? How do these aesthetics resonate with young and expert designers? How well do these

aesthetics translate to physical (and wearable) artifacts? With the DressCode workshop, I sought to

evaluate participants' opinion about such aesthetics, and the motivation behind them. In interviews,

participants were asked to reflect on how the aesthetic was similar to or different to things they had

made or wore in the past. Participants were also asked to describe the visual components of their

designs. Frequently, participants described their designs as having floral, lace or snowflake-like

qualities:

"I have multiple designs that I'm just kind of playing around with. But I think I'm

going to do this one, and by this one I mean one variation of these (style), because the

only thing that changes is the width of the actual lines. So this kind of doily lace one, I

guess. Yeah, it reminds me of a lace doily or something, and this would kind of offset it

(referring to the leather)"

Youth Participant R

"A small flower of leather. One flower has lacy petals the other flower is more solid.

The flowers are going to be earrings."

Expert Participant 081764 (Survey)

"A flower and then in the middle I want to say it resembles a butterfly or something

with wings."

Youth Participant N

Participants also described the aesthetic of their design in terms of their mathematical aspects.

They discussed the geometric, linear and precise nature of their finished bracelets, as well attributing

a general mathematical quality to them:

"I tried to contrast ellipses shapes with the more geometric looking ones."

Youth Participant C

"Geometric? They were 'mathematically' very simple, mostly I relied on repetition

and rotational transformations to create designs out of ovals."

Expert Participant 102287 (Survey)

'I think it is beautiful. It's part mathematically beautiful."

Expert Participant 101593y (Survey)

"I think that my design is beautiful because it is linear and intricate but not too

intricate.... [It's] linear, strong, [and] geometric"

Youth Participant 091897x (Survey)
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Unexpectedly, aesthetic connotations converged in one participant's piece, and produced a per-

sonally relevant narrative:

"The rose right there, and then the scientific part of it, those two things I like- nature

and science, but sometimes nature conflicts with science. I want to do aerospace engi-

neering when I get to college, but aerospace engineering conflicts with the environment

in some ways, aerospace has to do with machines so that means a lot of gas is burning

stuff like that. "

Youth Participant S.M.

Participants also described a mix of complexity and simplicity in their pieces. Some described

their pieces as deliberately simple, whereas others attempted to contrast simple components against

complex ones, for a compositional effect.

"I think the middle part is probably the most striking and that ' why I put it in the

middle. It's a really intricate circle mandala thing and then just triangles"

Youth Participant C

"The [part] that sort of looks like a star, and is a little less intricate than the rest and

it sort of draws the eye more than the rest of them"

Youth Participant J

"I think it's simple. Instead of having a lot of different shapes, you can make out

this is one shape, this is one shape, and this is one shape, three different parts. And this

other thing is a bunch of shapes here, a bunch of shapes here and a bunch of shapes here

and just kind of looks odd. So yeah, it's simple"

Youth Participant N

"They are simple designs in the end, I like that the simple design modified from the

sample reflects my aesthetic,. My designs could have been a lot more intricate given the

sample."

Expert Participant 081764 (survey)

The patterns expressed in mathematics are often reflected in patterns encountered in the natural

world; therefore, it is not surprising that participants' associations ranged between natural terminol-

ogy (flowers, butterflies and snowflakes) to mathematical descriptors (geometric, ordered, repetitive,

linear). What is remarkable is the range of descriptions present both in the context of the visual

elements expressed in the designs and the composition of the entire piece. Although computational

design provides specific affordances and limitations that stem from the properties of computation,

it is important not to confuse these affordances as restrictions on the types of things it is possible
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to create. Similar to non-digital forms of creative media, computational design presents a broad

array of aesthetic possibilities for both novice and experienced programmers and designers. The

emergence of narrative qualities from one participants design is a particularly compelling example.

One other important element in the discussion of aesthetics is the social connotations of certain

forms and patterns. Because I emphasized designs with radial symmetry in the workshops, many of

the outcomes had a floral quality, although it was possible to create patterns without floral qualities

by using other forms of repetition, and relying on polygon primitives rather than elliptical forms.

Despite this flexibility, several of the male participants in the youth workshop remarked on the

feminine aesthetics of their finished pieces:

"I put it on my wrist and I was like wow that's feminine. That's very feminine."

Youth Participant G

"I think it is beautiful for females. Not me. Because, I don't go that way. Because

on a female's wrist it looks right not on mine."

Youth Participant G

Part of this feminine association may be related to the resulting artifact- in this case a wrist cuff or

bracelet. Both male and female participants already wore similar accessories prior to the workshop;

however, the gender association appeared to be the result of the patterns themselves. Although some

of the male participants talked about the feminine aesthetics of the objects in a joking manner, there

are serious implications behind the comments. When helping people to create artifacts that they will

personally wear, the social perceptions and possible stigmas of certain patterns and forms of those

artifacts should be considered. This is especially important when working with young people, whose

visual identity can be subject to criticism by their peers. Following the workshop, I worked with

several male colleagues to develop gender-neutral algorithms for the bracelet design (figure:7-15).

This is not to say that aesthetics appealing to one gender or another are to be avoided altogether

because in many cases these aesthetics are relevant and desirable. Instead, the cultural, gender and

social implications of abstract computational aesthetics should be carefully considered in relation

to the demographics of the user group. As indicated in the Soft Objects workshop, computational

design in the context of fashion offers an opportunity for the expression of one's visual identity.

Algorithmic craft can serve as a powerful medium of communication, even in the hands of first-time

programmers.

7.6.5 Emergence of Personal Value

The beauty of the artifacts created in the Codeable Objects, Soft Objects, and DressCode workshops

are important indicators of success, but algorithmic craft is also capable of producing artifacts that
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Figure 7-15: Alternative bracelet aesthetics through variation in morphological configuration

have value beyond physical beauty. When we asked participants to evaluate their designs, they

also talked about individuality, personal preferences, and their pride in being able to program.

Participants described the unique quality of their piece in the following ways:

"I think it's interesting. I'm assuming this design is unique to me unless someone else

goes and makes exactly the same thing, which I highly doubt because of all the random

calibration things that I ended up adding."

Youth Participant C

Youth Participant C: "You can't find it at American Eagle. I buy a lot of my bracelets

there, and you can't just go there and find this. I think it's cool if someone were to say

Oh where did you get that from, You can't find it. (Laughs)."

Interviewer: "You can say that you made it yourself, you love how it's unique?"

YouthParticipant C: "yeah"

Some of the participants also described how their personal preferences played a strong part in

the design of the piece.

"Usually when you make something you're making it like oh I hope society likes this

but this/making the bracelet] was about self satisfaction, so I don't have to take into

consideration someone else's opinion."

Youth Participant S
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Comments like these demonstrate awareness of the value in personal craft practices in contrast

to commercial forms of production. The youth participants entered the workshop with no awareness

of the artisanal craft, instead defining craft by its high level of accessibility. By the workshop's

completion, they recognized elements of craftsmanship in their own work such as uniqueness, exclu-

sivity, and personal relevancy. These qualities translated to the creator attaching additional value to

the artifact. In combination with the recognition of the craft-value of their pieces, participants also

valued the artifacts because they were created withprogramming. People responded in the following

ways when asked to describe their finished piece:

"I think [the programming] kind of reminded me of learning something difficult in like

math, because I don't really like math, but when I figure out something, then I start doing

it, and can do it and then I feel proud of myself"

Youth Participant C

Interviewer: "What stands out to you about your design?"

Youth Participant S.M.: "That I actually created it. I'm not really a programming person,

doing it and typing it out."

Youth Participant J: "It's on computers and I'm terrible at computers and for me to

actually get something like this is really big."

Interviewer: "How do you feel about that?"

Youth Participant J: "Really proud."

At the end of the workshop, participants talked explicitly about the value in being exposed to

programming in new ways, and their desire to continue working in computational design and digital

fabrication.

"I don't know if this is my preferred medium, but I definitely like it. Making other

accessories. If I spent more time playing around with it, I could definitely get something

good. I'm glad I did it, it's interesting, It's something that I don't have a lot of experience

in- just branching out."

Youth Participant R

"I thought it was a good experience, It was different and it sort of opens your mind

to thinking about what else you could do with programming, fashion and stuff like that."

Youth Participant J

"I would love to get into more computational design, I think it's really really cool,

because I'm an amateur graphic designer as well."

Youth Participant ST
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Participants not only valued the artifacts they created, but also benefited from the process of

producing them. The sense of pride and accomplishment in programming echoes the sentiments of

the novice programmers in the Soft Objects workshop. Algorithmic craft allows people to produce

unique objects that have personal and social significance beyond their appearance. Simultaneously,

it introduces people to a new context for computation and promotes a sense of personal technolog-

ical competence. The participants' desire to further engage in similar activities demonstrates the

potential for the approach of algorithmic craft to promote continued engagement in programming

as a creative practice.
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Chapter 8

Conclusions and Future Directions

I began this thesis with a creative interest in computational design, additional interest in digital

fabrication, and a personal history of making things by hand. My assumption was that a synthesis

of these practices might appeal to other people, especially those who were new to programming. As

I complete this thesis and related work, it is clear that algorithmic craft resonates with many people,

from young people, to experienced programmers, to artists and designers. Furthermore, algorithmic

craft promotes the values of personal relevance, craftsmanship, beauty, intellectual engagement, and

pleasure in making. I conclude this thesis with a set of guidelines for tools and practices for future

work involving algorithmic craft:

* Transparency

- Tools should support design techniques that demonstrate the benefits of com-

putational design. Tools for algorithmic crafting should effectively communicate the

affordances of computational design in ways that are accessible to new programmers. This

goal can be achieved by providing programming examples that suggest design approaches

or by creating built-in programming methods with compelling aesthetic potential. The

radial symmetry algorithms in the DressCode study provide one example. By relying on

radial symmetry as a design mechanism, participants were given a wide range of design

possibilities in a format that was relatively easy to understand. Algorithms that produce

spirals, waves, and basic fractals offer some possibilities for introducing new programmers

to computational design.

- The software interface should prioritize interaction through programming.

Programming should be the chief method of generating and manipulating designs, and

this focus should be reflected in the software interface. The visual design that is produced

by the program should be persistent in the software interface and be rapidly updated to

reflect changes in the user's code. Additional visual feedback through simulation of a
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finished artifact is also helpful as in the case of the 3D preview in Codeable Objects. It

should be noted that this form of simulation presents a significant technical challenge for

complex artifacts.

- Programming languages should have a design-oriented programming syntax,

developed with novice programmers in mind. Algorithmic crafting tools should

have a programming syntax and API that is designed to accommodate individuals with

no prior programming experience, rather than rely on a general-purpose programming

language. The API should be limited to methods and structures relevant to the task of

design. By providing users with a small set of useful programming methods that can be

used to generate complex forms and patterns, it becomes feasible for novices to engage

in intentional and independent computational design.

* Literacy

- Tools should reduce the technical challenges of digital fabrication. The soft-

ware should include programming and drawing methods that allow for the production of

designs that are suitable for digital fabrication and support for exporting to relevant file

formats. The transition from the design tool to the fabrication device should require as

few intermediary steps as possible. When possible, it is useful to incorporate methods

that give assurance that the design will fabricate as desired. This may include merging

all polygons of the same color into one complete path or automatically optimizing lines

to increase fabrication speed.

- Tools should be supported through fabrication and craft-specific documenta-

tion. In addition to the documentation of the application and programming language,

the fabrication and crafting techniques intended for use with the software should be well-

documented. This documentation should include an explanation of suitable materials,

advice on digital fabrication access, specifications on machine use and settings, and tuto-

rials describing craft components of example projects.

- Activities should encourage discussion and group critiques of work, and when

possible, use in-person facilitation and guidance. Algorithmic craft is a creative

practice, not a technical exercise, and as such, it benefits from discussion among peers,

critique, and reflection. With novice programmers, engagement in these reflective prac-

tices is best conducted in a group setting with some form of facilitation. Facilitators can

simultaneously provide assistance by addressing coding errors, answering syntax ques-

tions, and offering aesthetic design advice. Group algorithmic crafting activities can also

provide a casual social atmosphere that is conducive to hand-craft.
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e Flexibility

- Activities should blend domain specificity with creative openness. Algorithmic

craft tools should be able to support numerous creative applications which will encour-

age the creation of personally relevant, aesthetic outcomes. To encourage the creation

of personally relevant aesthetics algorithmic craft tools should be open enough to sup-

port numerous creative applications. Algorithmic craft tools should be introduced in a

way that provides users with a compelling motivation for their use. For first-time users,

algorithmic craft activities should be constrained to the design of a limited set of end

products, along with the potential for aesthetic variation. In more general design scenar-

ios, it may be useful to engage designers by asking them to create artifacts that express

a specific feeling or emotion, represent a character, or tell a story. Design briefs such as

these may further people's awareness of the diverse applications of computational design

and digital fabrication in the realm of self-expression.

- Software tools should be free and open-source. The software should be freely

available and built to function on multiple platforms with low requirements for computa-

tional processing power/ These conditions afford high levels of access to casual users. If

possible, the software should also be open source in order to encourage the proliferation

of additional novice-oriented tools that can be developed for the specific needs of distinct

user groups.

o Specificity

- Materials matter. The use of rich, interesting materials greatly enriches the experience

of algorithmic craft and contributes to the success of the finished artifacts. Raw ma-

terials like leather, wood, textiles, and art-quality paper complement the precision and

complexity of computational design and digital fabrication. Combined in the hands of

an engaged user, they can result in objects that are attractive and durable. Care should

also be taken to demonstrate construction techniques that will hold up over time.

- Consider the cultural implications of algorithmic craft experiences. Because

algorithmic craft can provide a form of self expression and communication, activities

should aim to be mindful of the gender, age, cultural background, and social norms for

participants. It is useful to engage with participants in a dialog about these topics and

how they could be further supported in future algorithmic crafting experiences.
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8.1 Future Directions

Many research topics remain to be addressed about algorithmic craft. The software tools that

support algorithmic craft provide continued opportunity for innovation. Improvements in the ways

a tool communicates the functionality of a program would improve the experience of the designer

and the range of accomplishments. Currently, I am adding a view for declarative design to the

DressCode interface that displays a listing of all of the components in the design (figure:8-1). The

view also shows relationships between groups of objects and their children. This feature enables a

person to manipulate the designs in an imperative form through the programming interface or by

directly altering the properties of individual primitives in the declarative view. The choice depends

on what is most appropriate for the design objective.
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Figure 8-1: DressCode with declarative view of a design

Another important area of future research is the interrelated considerations of maintaining design

histories and assisting in design selection. A common challenge of using DressCode is choosing a

single design for fabrication out of numerous possibilities. This issue is not unique to DressCode,

but an inherent consideration in computational design. Because algorithmic craft depends on the

creation of discrete physical artifacts, design selection in algorithmic craft is more urgent than in

screen-based forms of computational design. Future research could explore methods of evaluating

numerous designs and providing people with mechanisms for selection.
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Design history is related to design selection. Participants in all of the workshops often created

designs that were eventually lost as the participants' code evolved. Participants also often wished

to merge components of two separate designs or selectively undo some, but not all, of the changes

to a new design. These challenges suggest the need for some form of version control in the software.

Version control could not only give people better control of the history of their designs, but also

increase the ability to share work, and contribute to the work of others.

Finally, interesting research could be done involving topics of practices and values of craft.

Although craft was one of the founding components of this thesis, much of the development time

was focused on writing software and learning about the properties of digital fabrication. For future

research, I wish to seek the expertise of established craftspeople to improve my understanding of

craft practices and how they can be connected to computational design and digital fabrication.

One possibility would be to collaborate on the design of a sample tool for algorithmic craft tool

with experienced non-digital craftspeople. For example, professional creators of garments or jewelry

would be interesting collaborators. They would be knowledgeable in principles of design and product

outcomes for their particular fields of practice, but would be novice programmers. This research

would allow an analysis of how computational design could be used to augment professional crafting

practices. This knowledge could then be used to inform projects and craft strategies for novice

crafters.

8.2 Conclusion

As computers grow in sophistication, complexity, and ubiquity, it becomes possible to regard compu-

tation as a disembodied force, outside the reach of most individuals, and incompatible with familiar

forms of making. In my experience, the opposite is true. Computers offer potent forms of personal

expression by helping us to see the world in new ways. Computation does not invalidate other

forms of creation; it enhances them. Computational design, digital fabrication, and craft are all

special forms of creation. With its generative qualities, computational design can sometimes feel

like alchemy. Simple shapes are transmuted to elaborate compositions, almost like magic. Digital

fabrication is a way of translating magical computationally-generated forms to physical materials.

Craft has a different form of value, a pride in the knowledge that a piece is rare and distinct, and

exists as a direct result of the hands that shaped it. By merging these three fields, Algorithmic craft

provides people with the opportunity to preserve computational ideas in a individual physical form.

As a way of making, algorithmic craft gives people the opportunity to experience the pleasure that

is possible when using programming, digital fabrication, and one's hands to build something entirely

new.

113



114



Appendix A

Interview Questions

Design Evaluation:

1. Can you describe your design to me? What words best capture what you created?

2. How did you decide on this design?

3. What stands out to you about this particular design? (What is the first thing that strikes you

or comes to mind when you look at it)

4. What types of crafts have you made in the past? (if nothing then dont ask 5)

5. How is this design similar to other things you have made in the past? How is it different?

6. Do you think your design is beautiful? Why or why not?

Programing as a Design Tool:

1. Was the programing enjoyable for you? Why or why not?

2. What was useful about using programing to design this bracelet?

3. What was difficult or confusing about using programing to design this bracelet?

4. Were there things you wished you could have done differently? If so, what?

Fabrication:

1. How did the fact that you were designing something you were going to wear affect your design

process?

2. What was your reaction when you saw your piece come out of the laser cutter?

3. What was enjoyable about putting the bracelet together after it was cut? What was difficult?
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4. Out of the entire process, programing, fabricating and finishing your piece, what did you like

the most? What did you like the least?

5. What are you going to do with the bracelet once youre done with it?

Future Motivation:

1. Would you want to use DressCode for other projects in the future? If so, what sorts of projects

would you want to use it for?

2. Would you want to use programing and computation for projects in the future? If so, what

sorts of projects would you want to use it for?

3. Would you want to work with a laser cutter again? If so, what sorts of projects would you

want to use it for?
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Appendix B

Full DressCode Language

Specifications

B.O.1 Interface Design

weihntcuroup,4 J; f/et stioe weight to b
pattern - groupl);
//loop that will begin
at 1 and repeat up to and including the value of num

repeat i-lInums
//create a copy of the original group of curves
cNew = copy(cGroup):
theta - 360/num*i; //calculate angle to rotate each curve gro

to

z - cos(theta)*radius+IDTH/2; // calculate x and y coordinat

using cosine and sine
y - sin(theta)*radius+HZIGRT/2;

rotate(cNew,theta+90);//rotate curve to value of theta
move(c~ew,x,y);//move curve group copy to x and y coordinates

expand(cmew);
add(pattern,cfew);
end
move(pattern,40,100);
move(pattern,192.01382488479263,184.01382488479263);
eove(pattern.37.0138248847

92 626
,119.01382488479263);

merge(pattern);
aove(pattern,222.01382488479263,209.01382488479263);
hide(cGroup);

Figure B-1: The DressCode interface
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The interface of DressCode is divided into two sections, a design panel and a coding panel. The

divider between the two panels can be resized as needed. The coding panel contains a primary

window for entering text, an output console for print output and error reporting and a row of

buttons on the top. When the play button is pressed, the program in the code window is run and

the resulting design is displayed in the design panel. The first version of DressCode ran the code

each time the enter key was pressed or a new statement was completed, however we received many

requests from our initial user tests for manual control of the run process. The stop button attempts

to terminate programs that are taking too long to run.The following three buttons allow for the

creation of new programs and the saving and opening of existing programs. The final button opens

a dialog that enables the user to select an Scalable Vector Graphics (SVG) file to import into their

script (the rationale for this is described in B.0.2 section below.)

The design panel is primarily composed of the drawing canvas. The drawing canvas has a set

of rulers and a grid, along with a black rectangle in the center which serves as the drawing board.

The drawing board defines a reference for the coordinate system of the canvas, with the upper left

hand corner corresponding to (0,0) in cartesian coordinates. Designs can be drawn on any part of

the canvas, including outside the drawing board, however the exported designs file-dimensions will

always correspond to the size of the drawing board. The right-most button in the design panel

allows for the specification of the units of the project, and the resizing of the drawing board. The

print button opens a dialog that allows the user to export their current design in a vector format. I

experimented with various vector file formats including DXF, SVG and PDF, however for the time

being, I settled on PDFs as they were compatible with the specific fabrication machines I intended

to use in my workshops.

The grid button allows the user to toggle between a grid in the units that correspond to the

current units of the project (either millimeters or inches), pixels, or no grid. The target button

allows the user to graphically select a set of coordinates and have them appear in the programming

window as text, and can be used like an eyedropper for pixel coordinates. The plus and minus

magnifying glasses and the hand tool are used to pan and zoom in and out of the screen. Lastly,

the arrow tool allows for design elements to be graphically selected and manipulated. After a design

element is moved with the arrow tool, with the corresponding code for the move appears in the

programing window.

B.O.2 Programing Language

The DressCode programing language is interpreted with semantic functionality that is simulated

through a Java-based library. We relied on the ANTLR framework to generate the necessary lexing

and parsing methods for the language, and developed the semantic functionality using java and the

java openGL (JOGL). When a program is run in DressCode, the raw script is first tokenized and then
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parsed to generate an abstract syntax tree (AST). During this phase, all user-generated function

definitions are stored in memory. If any parsing errors are encountered, they are output to the

console as "compiler errors". Assuming the parse is successful, DressCode then walks the resultant

AST and attempts to execute the semantic functionality of the program (figure:B-2.) After being

executed, the resultant design is rendered on the display panel. Any runtime errors are displayed in

the output console. For most programs, this process is instantaneous, however some programs with

complex operations require several seconds to be executed.

user's program

r*7-TjP: ;,0,100,200)1 1
identifier, Assign,
Ellipse, paren ,
Number(s), Olaren,
SColon, Roat,
Owen#a Idett~to

CI& r .....

output conso,.

parsing emors rnttmo errors

-+ graphic display
wlmW paAS T tj pser uta

Bilip.sNe.java
Rotatesode.java

4~pIxmm Ca

I mssgnmui

Figure B-2: Interpreter structure

The language is imperative in nature, with statements being executed in the order in which they

are read. The exception to this is user defined functions, which may be defined at any point in the

program, and called before they are defined. Each statement in DressCode must be terminated by a

semicolon. I spent some time experimenting with terminating statements with newlines, similar to

whitespace sensitive languages like Python, as I thought this might be more conducive to novice use.

Unfortunately, the implementation of selective whitespace recognition is a challenging task to define

in a grammar, so while we were able to develop a version of DressCode that recognized statements

terminated by a line break, it would have taken significant time to develop this functionality to a

level of robustness appropriate for user testing. For the short term, we have opted for a syntax

requiring semicolons, however we plan to continue to explore newline statement termination in the

future.

Language Structure

Here, I define some of the primary elements of the DressCode syntax and drawing API, and the

rationale for their structure. A more thorough language reference is available on the DressCode

wiki[47].
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DressCode supports number, string, boolean, and drawable datatypes (figure ??.) The first four

of these types are relatively standard in comparison to conventional programing languages. Numbers

include integers and floating point values. Strings include any sequence of characters enclosed in

double quotations. Booleans have two possible values: true, and false. Drawables are a special type,

discussed in detail in the API description below. DressCode also contains a list data structure,

which can store multiple kinds of datatypes.

myString = "hello"; //string

myNum = 10.4; //number

numbermyBool = true; //boolean

myList = [10,11,false,"world"]; //list with multiple data types

println(myList[3]); //prints world

Variable identifiers in DressCode must begin with a letter which followed by 0 or more letters

or digits. Variables can be initialized through assignment, or declared and assigned later in the

program. All assignment in DressCode is dynamically typed, and variables can be assigned to

datatypes that differ from their original assignment at any point.

si = "hello";

s2 = "world";

s3; //variable without initial assignment

s3 = sl+" "+s2;

println(s3); //prints hello world

ni = 2;

n2 = 2.5;

println(nl+n2*10); // returns 27.0

The language also contains support for basic expressions, as well as block statements, including

conditionals, loops and user-defined functions. For mathematical expressions, standard order of

operations is maintained, unless parentheses are introduced. All block statements are signified by

a keyword followed by a colon, and terminated with the end keyword which is not followed by a

semicolon.Conditionals are defined with the if keyword, and may an optional else clause and zero or

more else if clauses.

//if statement

if 5<10:

println("true"); //prints true

end
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//if statement with else if and else clause

i=10;

if i<10:

println("less than 10");

else if i==10:

println (" equals 10"); //prints equals 10

else:

println("greater than 10");

end

There are two possible loop statements: repeat statements and while statements. Repeat state-

ments begin with the repeat keyword and are followed by a the initialization: a variable identifier

with a numerical assignment, followed by a colon and the test, a number that determines the point

at which the repeat statement will terminate. By default, all repeat statements have an update

value of 1, however this can be modified by following the test value with "add" and a 3rd value

specifying the update condition. While loops are initialized with the while keyword and followed by

a test condition.

//repeat statement

repeat i=0:10:

ellipse (0,i*10,10,10) ; //draws a vertical row of 10 ellipses

end

//repeat with modified update condition

repeat i=0:10 add 2:

println(i); //will print 0,2,4,6,8

end

//while statement

c=0;

while c < WIDTH:

ellipse (c,10,20);

c = c+20;

end

//draws a row of ellipses that span the width of the canvas

Finally, custom functions are defined with the def keyword, followed by an identifier and a

set of parentheses containing 0 or more arguments separated by commas. The function block is

terminated with the end keyword like all other block statements. Just like general assignments,

functions arguments are dynamically typed. Functions, loops and conditionals all have their own

scope and will prioritize identifiers based on that, however if they cannot locate an identifier within

their own scope, they will look for it in the level above.
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Drawing API

The API is organized around the creation and transformation of 2D shape primitives. By duplicating

and manipulating these primitives in a structured manner, it is possible to generate complex and

interesting designs from simple forms. The API is composed of three primary main categories,

divided by functionality: shape primitives, shape transforms, shape booleans, math operations and

property access. A selection of the primary methods from each of these categories is detailed in

figure B-3.

Shape
Primitives

ellipse
rect

poly
line
curve
point
import

Shape
Transforms

move
rotate
hide
show
copy
group
scale
mirror

Shape
Booleans

union
diff
xor
clip
merge
expand

Shape
Properties

getX
getY
getOrigin
getWidth
getHeight
dist

Math

sin
cos
aTan
tan
random
round
map

Figure B-3: A selection of methods from the DressCode API
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//basic function defintion

def foo(a,b,c):

println(a+b+c);

end

//function call

foo(1,2,3); //prints 6

//function with return statement

def bar(a,b,c):

return(a*b*c);

end

result = bar(4,5,6));

println(result);//prints 120



Shape Primitives: DressCode shape primitives currently serve as the primary means of drawing

(figure: B-4.) The simplest primitive is a point, initialized two numerical parameters that denote the

x and y coordinates. All closed-shape primitive methods (ellipses, rectangles and polygons) require

an argument of either two x,y coordinates, or a point. This coordinate defines the origin of the

shape and determines where the shape will be drawn on the canvas. Ellipses and rectangles have

an additional two optional parameters which specify width and height. If only two arguments are

provided, the ellipse or rectangle will be drawn with a default width and height; if three arguments

are given, the width and height will be the same. Polygons also have two optional parameters

following the x and y origin coordinates, however they specify number of sides and length of each

side, rather than width and height. Lines can be initialized either as four numerical values, specifying

start and end x and y coordinates, two points, or as a vector, with a origin point, a magnitude, and a

heading in degrees. Curves are defined by a set of four points or eight coordinates, which determine

the start, first control point, second control point and end point of a 4-point bezier curve. One other

method of primitive generation was added in at the request of some of our early users: vector paths

stored in Scalable Vector Graphics (SVG) format can be imported and drawn in the DressCode

environment, and used in conjunction with primitive transformation and boolean methods.

-T //creates ellipse at coordinates (100,100)
.. .... //with a width of 100 and a height of 50

ellipse (100, 100, 100, 50);

//creates rectangle at coordinates (200,200)
//with a width of 100 and a height of 50

0 rect(200,200,100,SO);

- - "poly(100,300,6,50);
. //creates a six-sided regular polygon at coordinates (100,300)

//with a length of 50 for each side

. .........

0"

1_ -7 -~ :~
... .. . ..

line(200,50,400,4
00

);
//creates a line with a start point of (50,50)
//and an end point of (200,200)

curve(85, 20, 10, 10, 90, 90, 15, 80);
//creates a curve with a start point of (85,20)
//and an end point of (15,80)

Figure B-4: DressCode shape primitives with visible origins

Shape Transformations: There is no required "draw" method for DressCode, as there are in

many other graphics APIs, Instead all primitives are automatically drawn in the display panel in the

order of their initialization, once the program has been run. In Soft Objects and Codeable Objects,

when we required users to manually call draw method for any and all shapes in their program, they
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often forgot, and then had difficulty determining the reason why parts of their designs were not

visible.

Each shape primitive method returns an instance of the primitive it creates. A programmer can

either create shapes with no reference as in figure B-4, or they can assign them to an identifier at

initialization, allowing them to reference and modify the shape later in the program. The shape

transformation methods allow for a range of modifications to a shape, by passing a reference to the

primitive the first argument, followed by different parameters for the modification, depending on

the method (figure: B-5.) We began with a basic set of transformations, including move, rotate,

methods that allowed for the modification of the stroke weight and color of the shape, and a hide

method that prevented a primitive from being drawn. Based on our early user testing however, we

gradually added in additional methods, based on what people wanted to do with their designs. This

included a moveBy method, scale and mirroring functionality, a copy method, and an addition to

the rotate method which allowed a shape to be rotated around a point other than its origin.

//svg import
flower - import("flower.svg");

flower2 - copy(flower);
moveay(flower2,200,150);

//scaling
scale(flower2,0.25);

r = rect(582.6.120.4,100,200);

I/style transformations
weight(r,10);
stroke(rBLUE);
noFill(r);

//rotation
rotate(r,45);

//mirroring
r2 = mirrorX(copy(r));

Figure B-5: SVG import and sample of transformation methods

DressCode primitives can also be programmatically "grouped". Grouping provides an organiza-

tional structure for more complex configurations of primitives allows for the automatic transforma-

tions to multiple shapes. Groups have their own origin, which is used as the reference point for all

move, rotation and scale methods applied to the group (figure: B-6.) For example, a collection of
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ellipses that is grouped and then moved to the center of the canvas would move the origin of the

group to the center, and all the ellipses relative to the new origin. The origin of a group is automat-

ically calculated as the centroid of all of the objects in the group and updated each time a primitive

is added or removed. Groups are treated similarly to lists in that individual objects can be accessed

and manipulated by via their index. Originally, primitives within a group were transformed relative

to the origin of the group, however this caused confusion among many of our initial users. Each

individual primitive is now translated according to the coordinate system of the canvas, regardless

of whether it is in a group.

cGroup - groupo; //empty group

repeat i-0:10:
-c - curve(0,0,50,-100,150,100,200,0);
imovesy(c,i*100,0);

iadd(cGroup,c);//add each curve 
to group

end

i/modify group
noFill(cGroup);
weight(cGroup,10);
rotate(cGroup,45);
move(cGroup,-40,60);

repeat i-0:20:
cG - copy(cGroup);//copy group
moveBy(cG,-20*i,20*i);
if i%2--0:|
stroke(cG,PURPLE);
else:
stroke(cG,BLUE);
end
iend

Figure B-6: Grouping with transformation and repeat statements

Polygon Booleans: DressCode also features a subset of transformation methods for polygon

boolean operations (figure: B-7.) The union, difference, exclusive or and intersection methods ac-

cept two primitives as arguments and return the corresponding shape, or group of shapes, depending

on the operation. In addition, the merge method performs a union on all objects within a group

and returns a single primitive. The expand method converts an object's stroke to a filled polygon

with dimensions that match the weight of the stroke. The boolean methods were added for multiple

reasons. Polygon boolean operations play an important role in CAD design for fabrication, because

they allow for the creation of vector paths that appropriate for subtractive manufacturing processes.
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In particular, the merge method can function as a catch-all method for preparing designs for fab-

rication, and the expand method is useful for converting line drawings to paths that will retain

their appearance when cut. In prior workshops, we relied on illustrator to prepare file paths for

manufacturing, which was difficult, time-consuming and a hindrance to the computational design

process. By integrating boolean operations as a part of the programming language in DressCode, it

not only prevents users from having to rely on multiple software tools to design, but allows booleans

to be used in a computational context, facilitating the creation of a whole new range of forms with

simple primitives.

Both the syntax and functionality of the boolean operations have been modified significantly

since the first version of DressCode. In early versions, the majority of the booleans were expressed

through mathematical notation, rather than with built in functions (e.g. ellipsel + ellipse2 would

perform a union). After some of our early user testing however, we depreciated this syntax, because

many testers felt that mathematical notation was not intuitive beyond the union and difference

operations. In addition, the mathematical notation required that all booleans be set equal to an

identifier (e.g. ellipsel + ellipse2 = e3), in order to evaluate as a valid statement. The new method

syntax still returns a resulting boolean, but can also be called without a corresponding assignment

statement. Semantically, we originally had the boolean statements operate in a destructive manner

as is the case in many graphic drawing programs; union(ellipsel, ellipse2) would destroy the original

two ellipses and set the identifier ellipsel equal to the resulting boolean. This was confusing however,

because in a imperative program, the programmer could still reference the destroyed ellipse2. What

we opted for instead, was a non-destructive boolean method wherein union(ellipsel,ellipse2) would

return a third shape, which would automatically be drawn on the screen, and could be assigned to

an identifier as needed. The original ellipsel and ellipse2 would be hidden, but could both still be

referenced without conflict, and could be revealed again on the canvas with the showO method.

Additional Methods: Aside from methods for shape generation and transformation, DressCode

features a set of getter methods that return information about a shape primitive, including its lo-

cation, origin point, width and height, as well as a method to determine the Euclidean distance

between two objects. There are also a set of methods that enable more advanced mathematical

operations, including trigonometric functions, mapping, rounding and random number generation.

The random method posses an interesting questions for implantation, as it generates different num-

bers each time a a program is run. This can be a useful design feature, allowing for the generation of

numerous patterns with random variations. Figure B-8 demonstrates variations of an algorithm that

produces randomly symmetrical stripe patterns. It can also become problematic however, when the

user wishes to keep the same randomly generated number for each interpretation of their program.
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Figure B-7: Polygon boolean operations

Finally, we recently added a set of methods that allow the specification of numerical values in inches,

centimeters and millimeters, or in the current units of the drawing board. These methods are helpful

when sizing and transforming primitives to real world measurements rather than pixel values.

Constants: DressCode has a small set of constants to assist with design. WIDTH and HEIGHT

correspond to the width and height of the current drawing board. PI corresponds to the numerical

Pi value. Lastly, there are a set of color constants; RED, GREEN, BLUE, PURPLE, PINK, etc.,

that can be used to define the color of objects with fill and stroke methods. Custom colors can also

be specified with 0-255 RGB values.
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//union example
ri - rect(70,40);
el - ellipse(110,40);
union(rl,el);

//difference example
r2 - rect(70,100);
e2 - ellipse(110,100);
diff(r2,e2);

//intersection example
r3 - rect(70,160);
Ie3 - ellipse(110,160);
clip(r3,e3);

//exclusive or example
r4 - rect(70,220);
14 - ellipse(110,220);
xor(r4,e4);

//expand with union example
r4 - rect(70,220);
e4 - ellipse(110,220);
weight(r4,5);// set the weight to 5 to ensure viable thickness of the shape
weight(e4,5);
expand(r4);
expand(e4);
union(r4,e4);

//merge with repeat
g - group();
repeat i-0:5:
e - ellipse(i*20+70,280,20,50);
rotate(e,i*15);
add(g,e);
end
merge(g);

....~ ....

- D-
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Figure B-8: Stripe pattern variations using the DressCode random method
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