
Automatic Protoboard Layout from Circuit
Schematics

by

Michael Mekonnen
B.S. EECS, Massachusetts Institute of Technology (2013)

B.S. Mathematics, Massachusetts Institute of Technology (2013)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2014

c© Massachusetts Institute of Technology 2014. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

December 13, 2013
Certified by. .

Dennis M. Freeman
Professor

Thesis Supervisor
Certified by. .

Adam J. Hartz
Lecturer

Thesis Supervisor

Accepted by .
Professor Albert R. Meyer

Chairman, Department Committee on Graduate Theses

2

Automatic Protoboard Layout from Circuit Schematics

by

Michael Mekonnen

Submitted to the Department of Electrical Engineering and Computer Science
on December 13, 2013, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Electrical Engineering and Computer Science

Abstract

As an important component of the Circuits module of the first Introduction to Elec-
trical Engineering and Computer Science course at MIT (6.01), students design and
build several circuits over the course of three weeks. When working on the more intri-
cate circuits, an unfortunately large proportion of students’ lab time is spent on laying
out the circuits on protoboards. This project introduces a new circuit schematic entry
tool for 6.01, capable of automatically generating protoboard layouts for circuits that
students may design in the course. The tool allows for students to build, analyze, and
save circuit schematics through a graphical user interface and automatically gener-
ates protoboard layouts that are almost always easy to build and debug. The layout
problem is solved by utilizing the A∗ search algorithm exactly as presented in 6.01.

Thesis Supervisor: Dennis M. Freeman
Title: Professor

Thesis Supervisor: Adam J. Hartz
Title: Lecturer

3

4

Acknowledgments

First and foremost, I would like to thank Professor Freeman and Mr. Hartz for their

nonstop support and encouragement from the very start of this project to its finish.

They were always happy to talk with me, listen to my ideas, and give me constructive

feedback whenever I asked for it. I am very happy to have worked with and developed

a lasting relationship with great mentors.

Next, I would be remiss not to express my gratitude to my always loving and

supportive family. I would not have been able to complete this project without the

constant encouragement from my parents and siblings.

Finally, I would like to thank the Fall, 2013 members of the 6.01 staff, including

Instructors, Teaching Assistants, and Lab Assistants, for testing the tool and kindly

giving me ideas on how to improve it.

5

6

Contents

1 Introduction 15

1.1 Problem Statement . 15

1.2 Outline . 16

2 Background 17

2.1 Technical Background . 17

2.1.1 Circuit Components . 17

2.1.2 Circuit Schematic . 18

2.1.3 Protoboard . 20

2.1.4 Protoboard Layout . 20

2.2 Previous Work . 22

2.2.1 CMax . 22

2.2.2 Current Work in Automatic Layout 25

3 Methods 27

3.1 GUI . 27

3.2 Solving the Layout Problem . 27

3.2.1 Part 1: Placement . 29

3.2.2 Part 2: Wiring . 34

3.2.3 Combining the Methods . 39

3.2.4 Evaluation . 42

4 Results 47

7

4.1 Random Layout . 51

4.2 Comparing Placement Methods . 52

4.3 Comparing Wiring Methods . 59

4.4 Comparing Search Methods . 68

4.5 Combined Algorithm . 74

5 Discussion 79

5.1 Search Space Size . 79

5.2 Justifying Placement Choices . 80

5.3 Explaining the Results . 81

5.3.1 Comparing Placement Methods 81

5.3.2 Comparing Wiring Methods 83

5.3.3 Comparing Search Methods 86

5.3.4 Combined Algorithm . 87

5.4 Further Work . 89

5.4.1 Treating Resistors as Wires 89

5.4.2 Building Layouts Similar to Previously Generated Layouts . . 90

5.4.3 Alternative Backups for Final Algorithm 90

5.5 Remarks . 91

A Schematic Entry GUI 93

A.1 Palette . 93

A.2 Board . 95

A.3 Analysis . 96

A.3.1 Simulation . 96

A.3.2 Layout . 96

A.4 Other Features . 98

A.5 Shortcuts . 98

8

List of Figures

2-1 6.01 robot . 18

2-2 Circuit pieces . 19

2-3 Sample circuit schematic . 20

2-4 Protoboard . 21

2-5 Sample protoboard layout . 21

2-6 CMax . 23

3-1 Schematic entry example . 28

3-2 Acceptable circuit piece placements 29

3-3 Placement examples . 31

3-4 Placement cost function examples . 34

3-5 Random schematic generation bases 43

3-6 Sample randomly generated schematic 44

4-1 Algorithm alternatives summary . 47

4-2 Schematic complexity histogram . 49

4-3 Exemplar schematic . 50

4-4 Random layout exemplar . 51

4-5 Blocking placement method exemplar 52

4-6 Distance placement method exemplar 52

4-7 Random placement method exemplar 53

4-8 Placement method success rate comparison 54

4-9 Placement method success rate trend comparison 55

4-10 Placement method wiring time trend comparison 56

9

4-11 Placement method layout quality trend comparison 57

4-12 Placement method layout badness trend comparison 58

4-13 All pairs method exemplar . 59

4-14 Per-node (increasing) method exemplar 59

4-15 Per-node (decreasing) method exemplar 60

4-16 Per-pair (increasing) method exemplar 60

4-17 Per-pair (decreasing) method exemplar 61

4-18 Straight wiring method exemplar . 61

4-19 Wiring method success rate comparison 62

4-20 Wiring method success rate trend comparison 63

4-21 Wiring method wiring time trend comparison 64

4-22 Wiring method layout quality trend comparison 65

4-23 Wiring method layout quality trend comparison (without straight wiring) 66

4-24 Wiring method layout badness trend comparison 67

4-25 A∗ Search exemplar . 68

4-26 Best First Search exemplar . 68

4-27 Search method success rate comparison 69

4-28 Search method success rate trend comparison 70

4-29 Search method wiring time trend comparison 71

4-30 Search method layout quality trend comparison 72

4-31 Search method layout badness trend comparison 73

4-32 Combined algorithm exemplar . 74

4-33 Combined algorithm success summary 75

4-34 Combined algorithm time trend . 76

4-35 Combined algorithm layout quality trend 77

4-36 Combined algorithm layout badness trend 78

5-1 Expanded vertices histograms . 84

A-1 Schematic entry GUI parts . 94

A-2 Grouped components . 94

10

A-3 GUI component highlighting example 97

A-4 GUI wire highlighting example . 97

11

12

List of Tables

4.1 Placement method success rate comparison 54

4.2 Wiring method success rate comparison 62

4.3 Search method success rate comparison 69

5.1 Op-amp packaging possibilities . 81

A.1 GUI shortcuts . 99

13

14

Chapter 1

Introduction

1.1 Problem Statement

In this paper, we discuss the problem of automatic protoboard layout generation.

Importantly, we are interested in automatically generating layouts that are easy to

build, easy to debug, and aesthetically pleasing. The tool this paper discusses is

geared towards circuits that students would build in the Introduction to Electrical

Engineering and Computer Science I[4] course at MIT (also known as 6.01).

We are motivated to solve the layout problem in order to let 6.01 students spend

more of their lab time thinking about how to design circuits and less time thinking

about how to lay them out on protoboards. In this project, we used the Python

programming language to develop a tool that lets students easily build and simulate

circuit schematics through graphical user interface (GUI). After building and testing

a circuit schematic with the tool, a student can proceed to building the circuit on a

physical protoboard based on the layout generated by the tool. Not only does the tool

generate a layout, but it also displays the relationships between the original schematic

drawn by the student and the generated layout. With this tool, a student’s lab time

will be spent mostly on designing, building, and testing circuits rather than on the

difficult, and arguably less instructive, task of layout.

15

1.2 Outline

Chapter 2 describes in detail the terminology used in this paper and explores the

current infrastructure available for 6.01 students as well as previous work done in

automatic layout1 generation. Chapter 3 discusses how we solved the automatic

layout problem, including various alternatives considered in each part of the solution,

and how we evaluated our solution. Chapter 4 presents data to compare the various

alternatives discussed in Chapter 3, and also evaluates the final algorithm on a large

test dataset. Finally, Chapter 5 presents arguments for the choices made in our

solution, and also elaborates upon the results presented in Chapter 4.

1 Throughout this paper, the term layout refers specifically to protoboard layout. In section 2.2.2,
we stretch this meaning to include layout on other kinds of circuit boards, such as Printed Circuit
Boards.

16

Chapter 2

Background

In this chapter we discuss essential background information to this project. First, we

discuss the specific terminology used in this paper. Next, we discuss previous work

relating to this project.

2.1 Technical Background

As this project introduces a new teaching tool for 6.01, let us first discuss the scope

of circuits in 6.01.

2.1.1 Circuit Components

The rudimentary circuit components used in 6.01 are resistors, potentiometers (pots),

and operational amplifiers (op-amps). In addition to these basic parts, students build

circuits to control LEGO motors or to control aspects of robots designed specifically

for 6.01. One of the 6.01 robots is depicted in Figure 2-1. The robots can be equipped

with heads that contain three parts held together by a shaft: a potentiometer, a LEGO

motor, and a circuit card containing two photosensors. The robot in Figure 2-1 has

a head attached. To connect a layout to a LEGO motor, a student would use a 6-pin

connector, and to connect a layout to a robot or a robot head, a student would use

17

Figure 2-1: One of the 6.01 robots, with a head attached.

an 8-pin connector. Figure 2-2 displays all of the pieces a 6.01 student may use to

build a circuit.

2.1.2 Circuit Schematic

Throughout this paper, the term circuit schematic refers to a drawing, or a sketch,

of a circuit containing its components and all of the interconnections between the

components drawn as wires. This is what one would sketch on a piece of paper in the

process of designing a circuit. Figure 2-3 presents an example of a circuit schematic.

18

(a) Resistors (b) Potentiometer

(c) Operational Amplifier

(d) 6-pin Motor Connector (e) 8-pin Robot/Head Connector

Figure 2-2: All circuit pieces used in 6.01 that may be inserted into a protoboard.

19

Motor

+10V +10V

+ −
Control Pot Motor Pot

+10V +10V

Figure 2-3: Sample schematic of a motor angular position controller circuit.

2.1.3 Protoboard

Protoboards are boards on which one can quickly build and test small circuits. They

present a 2-dimensional array of interconnected dots in which circuit pieces and wires

can be inserted. Figure 2-4 shows an empty protoboard. In the orientation depicted

in Figure 2-4, the first two rows and the last two rows of dots (each pair having one

row labeled with a + and the other row labeled with a −) are internally intercon-

nected horizontally. That is, for these four rows, any two dots in the same row are

connected internally. These rows are often referred to as the rails and are often used

for the power and ground nodes, the + rows being used for power, and the − rows for

ground. The group of rows labeled A through E in Figure 2-4 can be better thought

of as 63 columns of 5 dots. Each of these groups of 5 vertically aligned dots is con-

nected internally. The same property holds for the columns within rows F through J .

Henceforth, we will refer to an internally connected group of 5 dots on the protoboard

as a 5-column.

2.1.4 Protoboard Layout

A protoboard layout of a given schematic is an arrangement of circuit pieces and wires

on a protoboard that corresponds to the schematic. A protoboard layout is con-

structed by placing the appropriate pieces on the protoboard and then appropriately

interconnecting them with wires as prescribed by the schematic. As an example,

Figure 2-5 presents one possible protoboard layout of the schematic shown in Figure

2-3.

20

Figure 2-4: A protoboard. In the rail rows, rows labeled with + or −, the dots are
internally interconnected horizontally. In the middle two groups of 5-columns, the
dots are interconnected vertically.

Figure 2-5: One possible protoboard layout of the schematic shown in Figure 2-3.

21

There may be many different protoboard layouts of a given circuit schematic. It

is often easy to produce just a layout, but it is often difficult to produce a “good”

layout. There are no conclusive ways to tell whether a layout is good, but, keeping

in mind that we want layouts that are easy to build, easy to debug, and aesthetically

pleasing, we could come up with the following rules of thumb:

• The layout should not have any wires that cross circuit pieces.

• The layout should have no crossing wires, especially occlusions (i.e., crossing

wires with the same orientation).

• The layout should consist of only horizontal and vertical wires (i.e., no diagonal

wires).

• The layout should have as few wires as possible.

• The total length of wires in the layout should be as small as possible.

Given the background information discussed thus far, the goal of this project is

automatically generating a “good” protoboard layout from a circuit schematic.

2.2 Previous Work

Here we discuss previous work that has been done relating to this project. First,

as our project aims to augment the quality of 6.01, we look at the infrastructure

currently used in 6.01. Next, we look at what work has been done relating to layout

in general.

2.2.1 CMax

In a typical circuits lab in 6.01, students design their circuits by drawing schematics

of on paper. After iteratively improving their designs based on discussions with staff

members, they lay out their circuits on a simulation tool called Circuits Maximus

(CMax)[5]. Note, therefore, that students currently lay out their circuits themselves.

22

Figure 2-6: One possible CMax layout for the schematic shown in Figure 2-3.

With CMax, a student can lay out a circuit on a simulated protoboard, and test the

circuit to make sure that it behaves as desired. CMax provides a fast and safe way

of debugging circuit layouts, especially compared to debugging layouts on a physical

protoboard. Once the students are satisfied with their observations from CMax, they

build their circuits on physical protoboards and carry out the appropriate experi-

ments. Figure 2-6 presents one possible protoboard layout, as depicted in CMax, of

the schematic shown in Figure 2-3.

Using CMax has reduced circuit debugging time for 6.01 students. Its introduction

has made learning circuits easier for many students, especially those that have little

or no prior experience with circuits. In addition to making the lab exercises more

manageable, it provides students with a way to build, analyze, and experiment with

circuits at their own leisure outside of lab.

A potential weakness of circuits labs in 6.01 as they are currently given is that

student have to produce the protoboard layouts themselves. While generating proto-

board layouts of circuit schematics may have instructive substance, a student’s time

is better spent thinking about designing circuits in the first place. Currently, stu-

23

dents design circuits by drawing schematic diagrams on paper. Once they are happy

with their schematic diagrams, they proceed to laying out the corresponding circuits

with CMax. When the circuits get complicated and involve many pieces, translating

a schematic diagram into a protoboard layout becomes quite challenging and time-

consuming. In these situations, students often end up with convoluted layouts that

are difficult to debug if the circuit does not behave as expected. Not only are such

layouts difficult for the students to debug, but they are also often difficult for staff

members to understand. In the best case scenario, students should have to work out

the right schematic diagram for the circuit they are designing, but should not have

to produce a corresponding protoboard layout.

With the schematic entry tool this paper introduces, a typical 6.01 circuits lab

would proceed as follows. First, as before, students would draw schematic diagrams of

their circuits on paper. Once they have schematic drawings they are happy with, they

would recreate their schematic drawings on the schematic entry tool. In fact, students

may proceed directly to building the schematic drawings on the tool, bypassing the

experimentation on paper. Once they have a schematic drawn, they would analyze

it with the tool, discuss it with staff members, and improve it with the tool. Note

that the schematic entry tool would make it easier for staff members to understand

students’ circuits as parsing circuit schematics is much easier than parsing protoboard

layouts. When the students are satisfied with the behaviors of their schematic cir-

cuit, they would produce the corresponding protoboard layout automatically. The

automatic generation of protoboard layouts would be the most important advantage

of this tool. They would then build the layout on a physical protoboard and carry

out experiments with it.

Avoiding the tedium of protoboard layout generation is not the only advantage of

the schematic entry tool. With it, we can make circuit schematics the only mode of

communication between students and staff members. Outside of lab, we communicate

about circuits almost entirely by using circuit schematics. For instance, looking at the

lecture and course notes given in the Spring, 2011 version of 6.01[3], we observe that

almost all references to circuits are given with schematic drawings. This is because

24

schematic drawings of circuits are particularly easy to understand. The way 6.01

labs are currently given, communication about circuits is done by using both circuit

schematics (in the experimentation stages) and protoboard layouts (in the building

and testing stages). Using protoboard layouts as a way for students to describe

their circuits is suboptimal because layouts require much more time and attention

to understand than do schematics. The schematic entry tool has the advantage of

making circuits schematics the only mode of exchanging ideas about circuits in 6.01

labs. With the tool, there will be much less need for a student or staff member to try

to understand the details of a layout. The tool’s features that relate the schematic to

the generated layout make it easier to understand the details of the layout, if needed.

Additionally, students can keep a permanent copy of their schematics for future

reference. Students currently draw schematics on paper, and often lose track of

their drawing. Some students draw multiple schematics for a task, and forget which

schematic corresponds to the final version of their circuit. Others misplace their

schematic drawings. With the schematic entry tool, as long as students remember to

save their schematic drawings, they should always be able to refer back to them.

2.2.2 Current Work in Automatic Layout

In my explorations, I was not able to find any tools that automatically translate

circuit schematics into protoboard layouts. However, there do exists tools, such as

Cadence[1] and EAGLE[2], that perform partially- or fully-automatic Printed Circuit

Board layout. To my findings, the owners of these tools have not published their

algorithms. Hence, I was not able to build my work off of any existing products. In

a sense, this project aims to build something new.

25

26

Chapter 3

Methods

In this chapter, we discuss our solution to the problem stated in Chapter 1, as well

as various alternatives we considered along the way. First, we briefly introduce the

schematic entry GUI. Next, we discuss in detail how we solved the automatic proto-

board layout problem and how we evaluated our solution.

3.1 GUI

We designed the schematic entry GUI to have a rich set of features so as to make

drawing schematics an easy and intuitive task for students. Figure 3-1 gives a version

of the schematic shown in Figure 2-3 as drawn in the schematic entry tool. Appendix

A discusses the features and capabilities of the schematic entry GUI in further detail.

3.2 Solving the Layout Problem

In broad terms, we solved the layout problem by formulating it as a graph search

problem. Given a schematic of a circuit, we start from an empty protoboard, and

search through the space of all possible protoboard layouts to find a good protoboard

layout for the schematic at hand. Importantly, we utilize various simplifications and

heuristics to prune out many states in the search space.

We broke down the problem into two parts. The first task is finding a placement

27

Figure 3-1: Sample schematic drawn on the schematic entry tool. This schematic
describes the same circuit as the one described by the schematic shown in Figure 2-3.

28

Figure 3-2: Various acceptable ways of placing each of the circuit pieces on the
protoboard.

of all the circuit pieces on the protoboard. The second task is putting down wires to

appropriately connect the pieces.

3.2.1 Part 1: Placement

Let us first consider how to place a set of circuit pieces on the protoboard for a given

circuit schematic. Any given circuit may contain resistors, pots, op-amps, motors,

robot parts, or head connector connector parts. For each of these components, we

must put down a corresponding piece on the protoboard. As each piece may be

placed on the protoboard in one of many different ways, we first decided on a fixed

set of allowed placements for each of the pieces. Figure 3-2 presents these acceptable

placements. Resistors are placed in the middle strip of the protoboard. Pots have

two possible vertical positions as well as two possible orientations. The connector

pieces have two possible vertical positions each. Op-amp pieces are also placed in the

middle strip of the protoboard, but with two possible orientations. Op-amp pieces are

unique in that, as shown in Figure 2-2(c), each op-amp piece contains two op-amps

within it. Thus, we face the task of packaging the op-amps in the schematic in the

“best” possible way, i.e. so as to require as little work as possible when wiring the

pieces together.

29

There are many ways of choosing a placement for a set of circuit pieces. First, we

must choose from a possibly large number of ways to package together the op-amps.

Section 5.2 more precisely discusses the number of different ways of packaging op-

amps. For each possible packaging of the op-amps, we must consider various ways of

placing the pieces on the protoboard, even with the restrictions on the ways that the

pieces can be placed.

Simplifications

We reduce the number of options by only allowing placements in which no two pieces

share a 5-column. This is not necessary in general, but the number of pieces in the

most complex 6.01 circuit is small enough that any 6.01 circuit could likely be realized

under this simplification. Next, we specify that there must be exactly two columns

on the protoboard separating adjacent pieces, unless the pieces are both resistors,

in which case there must be exactly one column separating them. These numbers

of columns were chosen to leave enough space for wiring. Given a set of pieces to

be placed on the protoboard, these simplifications reduce the problem of choosing

a placement for the pieces to finding an order of the pieces together with choosing

their respective vertical locations and orientations. Figure 3-3 shows two alternative

placements for the schematic shown in Figure 3-1 that both respect the conditions put

forth in the simplifications. We consider a few alternatives to automatically finding

placements respecting these conditions.

Random Placement

One simple placement strategy is to choose a placement randomly. That is, to choose

an op-amp packaging randomly; to choose an order of the pieces randomly; and to

choose the vertical locations and orientations of the pieces randomly as well. The

advantage of this approach is that it produces a placement very quickly without

requiring much computation. On the other hand, it may place two pieces that need

to be connected to each other very far apart, which could make the wiring task more

30

(a) Placement 1

(b) Placement 2

Figure 3-3: Two possible placements for the schematic shown in Figure 3-1.

31

difficult. We ought to consider alternatives that try to place the pieces so as to require

as little work as possible during the wiring step.

Small Heuristic Cost

The key idea is that if two pieces are meant to be connected together by wires, then

they should be placed close to each other on the protoboard. We can capture this

idea by assigning heuristic costs to the placements and choosing a placement that

has a small heuristic cost. To that end, there are two heuristic cost functions we

considered.

Distance Based Cost Given a circuit schematic and a corresponding placement

of the circuit pieces on the protoboard, every pair of components in the schematic

that is connected by wires indicates a corresponding pair of locations on the proto-

board that must be connected by wires. We can express this requirement a little

bit more concisely. We must consider all of the nodes in the circuit, and find the

circuit components in the schematic that are connected to the respective nodes. For

each node in the circuit, we get a set of locations on the protoboard that must be

interconnected by wires. The first step in devising the distance based cost function

is to have a way to estimate the cost of connecting two locations on the protoboard.

A simple cost function is the Manhattan distance between the two locations. Since

we want to produce layouts that only contain horizontal and vertical wires (i.e. no

diagonal wires), the Manhattan distance cost is appropriate. Given this heuristic cost

for connecting two locations with wires, we can define the cost for interconnecting the

locations associated with a particular node to be the weight of the minimum spanning

tree of the locations. We can now define the cost of a placement to be the sum over

all nodes in the circuit of the cost for interconnecting the locations for each node. We

demonstrate this cost function using the two placements shown in Figure 3-4. In the

Figure, each placement has two connections that must be made, the first indicated by

two locations outlined by circles, and the second indicated by two locations outlined

by rectangles. The distance based cost for Placement 1 is (3) + (2 + 3) = 8 while the

32

distance based cost for Placement 2 is (7) + (2 + 3) = 12. Hence, the cost function

indicates that Placement 1 is a better placement of the pieces.

Blocking Based Cost The most scarce resource on the protoboard are the rows.

For a given placement, we can attempt to quantify how heavily the rows will be used,

and this quantity can be used as a placement cost. Given a placement, we can find a

set of pairs of locations on the protoboard that need to be connected as we did above.

For each 5-column on the protoboard, we can count the number of rows taken up by

the piece that resides in that 5-column, if any, and the number of rows that may be

taken up in connecting the pairs of locations that must be connected. This produces

a cost for each 5-column that indicates how heavily the rows will be used in that

5-column. The final heuristic cost for the placement is computed as the sum of the

squares of the costs for each of the 63 × 2 = 126 5-columns on the protoboard. We

compute the sum of the squares to strongly penalize heavily blocked 5-columns. To

demonstrate this cost function, let us look at the two placements in Figure 3-4 once

again. Each of the 5-columns on both protoboards is labeled with its cost, computed

as described above. The cost for Placement 1 is the sum of the squares of the costs for

each 5-column, which evaluates to 65. The cost for Placement 2, computed similarly,

is 87. Once again, this cost function indicates that Placement 1 is a better placement

of the pieces.

Using one of the two cost functions discussed above, we can aim to find a placement

with the minimal cost. However, this involves trying all possible orderings of the

pieces with which we are working. For example, if we are trying to order 10 pieces,

we would need to look at 10! = 3, 628, 800 possible orderings. Note that this is in

addition to searching over all possible ways of packaging the op-amps together. It is

clear that the search for a minimal cost placement quickly gets out of hand. Rather

than looking for an optimal placement, we aim for a placement with small cost.

Algorithm 1 presents a polynomial-time procedure that orders a given list of pieces

in a way that results in a small cost. The algorithm places one of the pieces at a time,

starting from an empty placement. It employs two ideas. First, once a piece has been

33

(a) Placement 1 (b) Placement 2

Figure 3-4: In both placements, there are two pairs of locations that need to be
connected, denoted by either two circles or two rectangles. Using the distance based
cost function, Placement 1 has a cost of 8 and Placement 2 has a cost of 12. Using
the blocking based cost function, Placement 1 has a cost of 65 and Placement 2 has
a cost of 87. The labels on each of the 5-columns indicate the costs for the 5-columns
under the blocking cost model.

placed, all the pieces that are connected to it will be placed soon after so that it is

more likely that those pieces are placed close to it. Second, we place the pieces with

the most nodes first since those are the ones that most likely have connections with

many other pieces.

The implementation of Algorithm 1 we use for the tool may produce different

placements on multiple runs. This is a side effect of some of the data structures used

to store objects – Python sets and dictionaries. As a result, the layout algorithm may

generate different layouts for the same circuit on different runs.

3.2.2 Part 2: Wiring

Once the placement task is done, the next problem is wiring. We approach this

problem as a search problem and use the A∗ Search algorithm to solve it. In fact, the

wiring step uses an infrastructure for the A∗ Search algorithm exactly as presented in

6.01. Hence, students in the class may appreciate an application of something they

learned earlier in the course to produce a tool that they are using for something that

may seem completely unrelated and difficult.

34

Algorithm 1: Producing a circuit piece placement with small heuristic cost.
Data: A list P of circuit pieces.
Result: A list R of circuit pieces representing a placement.

Sort P in decreasing number of nodes on the respective pieces.
Q ← empty Queue.
R ← empty List.
while P is not empty do

Pop the first piece out of P and push it onto Q.
while Q is not empty do

p ← Q.pop().
Consider all vertical locations and orientations of p.
Insert p at an index in R that minimizes the cost of R.
foreach piece q in P connected to p do

Pop q out of P and push it onto Q.

Using A∗

The A∗ algorithm can be used to search for a path from some starting vertex1 in a

graph to some goal vertex2. The algorithm works by keeping track of an agenda of

vertices to consider in a priority queue, where the value associated with each vertex in

the priority queue is the sum of the cost to get from the start vertex to the vertex at

hand and the value of the heuristic computed at the vertex, which is an estimate of the

minimum cost to get from the vertex to a goal vertex. At each step, the algorithm

pops one vertex from the priority queue (the vertex with the minimum associated

value). If the vertex happens to satisfy the goal of the search, the algorithm returns

the state for that vertex as the answer to the search problem. Otherwise, it adds the

children vertices of that vertex to the priority queue and continues. When adding

children vertices, the algorithm takes care not to reconsider states that it has already

considered via a different path. We call the process of popping a vertex from the
1The preferred terminology is “a node in a graph” but here we will use the term “vertex” since

we already use “node” to refer to nodes in circuits.
2In fact, A∗ guarantees an optimal path, a path that has the minimum possible cost from the

starting vertex to a goal vertex, if we use a heuristic that is admissible. A heuristic is said to be
admissible if it does not overestimate the actual minimal cost to a goal vertex for any state. Here,
however, we will not worry about the admissibility of our heuristic as our main goal is pruning out
as many states as possible, while not necessarily finding the optimal solution.

35

priority queue and treating it as described expanding the vertex. In general, when

using the A∗ algorithm, we need to design four things:

1. The notion of a vertex in the search tree, the cost associated with a vertex, and

how we obtain the neighbors of a vertex,

2. The starting vertex,

3. How we identify whether a particular vertex in the search tree achieves the goal

of the search, and

4. A heuristic function that estimates the distance from a given vertex to a goal

vertex.

Vertices

Each graph vertex will represent a protoboard layout and a set of locations on the

protoboard that have yet to be connected by wires. The starting vertex will represent

a partial protoboard layout that has the circuit pieces (and possibly some wires), as

well as all the pairs of locations that must be connected by wires to complete the

layout.

We obtain the neighbors of a vertex by taking the current protoboard layout and

producing new ones in which we place exactly one new wire. We choose the starting

point of the wire to be any one of the free locations on the protoboard that is already

connected to one of the pieces, and we extend the wires in all possible vertical and

horizontal directions up to some fixed wire length. For a location on a rail row, we

only extend vertical wires that reach to either another rail row, or any location in

either of the 5-columns that are vertically aligned. For a location on a 5-column, we

extend horizontal wires that reach other 5-columns (in both directions), as well as

vertical wires that reach the rail rows or any location on the other 5-column that is

vertically aligned. Note that the process needs to take great care when placing new

wires in order not to short, or directly connect, two different nodes.

36

The way we define the cost of a vertex, i.e. the cost of getting from the starting

vertex to a vertex of interest, depends on our definition of a good protoboard layout.

In general, we want to penalize having long wires, many wires, or crossing wires. In

our implementation, while we have a large penalty for two crossing wires of opposite

orientations (i.e. vertical and horizontal), we do not allow occlusions as they are

particularly difficult to physically build and debug. In addition, we favor making

a desired interconnection between locations on the protoboard. That is, if placing

one wire results in a layout in which one of the pairs of locations that needs to be

connected becomes connected, then the cost of that child vertex should reflect that

fact. More precisely, in an attempt to connect locations loc1 and loc2, a wire placed

extending from loc′1 to locmid, where loc′1 is a location connected (internally or by

wires) to loc1 and locmid is a free location, the additional cost incurred by adding the

wire is computed as:

-100 × (loc1 and loc2 now connected) + (1)

1 × (d(loc′1, locmid) + d(locmid, loc2) - d(loc1, loc2)) + (2)

100 × (number of crossed wires) + (3)

10, (4)

where d(loci, locj) is the Manhattan distance on the protoboard from loci to locj.

Line (1) decreases the cost by 100 if a new connection is made. Line (2) penalizes

long wires, taking into account how much closer (or farther) the new wire gets us to

connecting locations loc1 and loc2. Line (3) adds a cost of 100 for each new pair of

crossing wires. Line (4) adds 10 to the total cost to penalize having too many wires.

We produced this cost metric experimentally by thoroughly testing various ideas on

a selected set of circuit schematics.

An important consideration we need to make is how to organize the search. Recall

that we have a set of nodes in the circuit of interest, and for each node we have a set

of locations that need to be interconnected. We considered the following six different

strategies to carry out the search:

37

1. All pairs: Collect all pairs of protoboard locations that need to be connected for

all nodes in the circuit, and have the starting vertex represent this set of pairs

of locations. In this strategy, we run exactly 1 search to solve the problem.

2. Per-node (increasing): Treat each node individually. That is, iteratively connect

the locations for each of the nodes until there are no more disconnected nodes

in the circuit. In this strategy, we run a number of searches equal to the number

of nodes in the circuit. Order the searches in increasing order of the number of

locations per node, breaking ties arbitrarily.

3. Per-node (decreasing): Similar to per-node (increasing), but order the searches

in decreasing order of the number of locations per node.

4. Per-pair (increasing): Treat each pair of locations that needs to be connected

individually. That is, iteratively connect pairs of locations that need to be

connected until there are no more disconnected pairs. In this strategy, we run

a number of searches equal to the number of pairs of locations that must be

connected. Order the searches in increasing order of the Manhattan distance

between the pairs of locations, breaking ties arbitrarily.

5. Per-pair (decreasing): Similar to per-pair (increasing), but order the searches

in decreasing order of Manhattan distance between the pairs of locations.

6. Straight: As a back-up alternative, we consider using one (possibly diagonal)

wire to connect each of the pairs of locations that must be connected. This

approach requires no search and does not take layout quality into consideration.

The strategy we choose among these six has a significant effect on the outcome of

the wiring step. We discuss the differences in detail in Chapter 4.

Goal test

We say that a given vertex is a goal vertex by verifying that its representation indicates

no further pairs of locations to connect.

38

Search heuristic

In A∗ search, choosing the right heuristic can often make the search much more

efficient. Given a vertex, we can estimate its distance from a goal as follows. For each

pair of locations (loc1, loc2) that needs to be connected, we could consider the pair’s

distance from a goal to be the smallest Manhattan distance between any location

connected to loc1 and any other location connected to loc2. To compute the heuristic

cost of a vertex, we simply sum this value over all pairs of locations that need to

be connected. In Chapter 4, we compare the performance of A∗ with this heuristic

versus carrying out Best First Search with this heuristic. In Best First Search, as

opposed to in A∗, vertices are considered in order of increasing heuristic value, without

consideration for the cost incurred on the path from the starting vertex.

Limiting the number of expanded vertices

In the implementation of A∗ discussed so far, the algorithm terminates if we either find

a solution, or we exhaust the search space without finding a solution. In our search

problem, the search space size is very big (Section 5.1 discusses the search space size

in more detail), so this implementation of A∗ may sometimes run out of memory

before returning an answer. To mitigate this problem, we introduce a limit to the

number of vertices the algorithm expands before giving up. That is, if the algorithm

expands a certain fixed number of vertices and still has not found an answer, it gives

up. We set this limit to 300 vertices. In Chapter 4 we provide data that motivates

this choice and describes the effect of this choice on each of the alternatives discussed

above.

3.2.3 Combining the Methods

With the methods discussed so far, we aimed to completely solve the layout problem

with one placement method and one wiring method. However, as we will soon see,

such an algorithm is bound to fail on some set of schematics. When we ultimately put

the final algorithm in front of students, we would like to avoid failure. The algorithm

39

should be able to generate a layout for any schematic. Generating a layout with a

few diagonal or crossing wires is better than silently failing and leaving the student

empty handed. Here, we discuss how we combine the methods described so far into

one layout algorithm. The motivation for this combination is discussed in Chapter 5,

based on the data we obtained for the alternatives described thus far. Algorithm 2

presents the combined algorithm.

Algorithm 2: Layout algorithm obtained by combining multiple alternatives.
Data: A circuit schematic C.
Result: A protoboard layout corresponding to C.

foreach Placement cost metric M in (DISTANCE, BLOCKING) do
P ← Placement for C by using cost metric M .
Connect the top and bottom rails on P .
foreach Order O in (INCREASING, DECREASING) do

pairs ← Pairs of location on P to connect given schematic C and
connection order O.
foreach (loc1, loc2) in pairs do

Attempt to connect loc1 and loc2 on P .
If successful, update P accordingly and then post-process P .
If not, record that the pair (loc1, loc2) was not successfully
connected.

If all pairs are successfully connected, return P .

Pick unfinished layout with fewest and most compact disconnected pairs.
Connect remaining pairs with shortest possible wires (possibly diagonal).
Post-process and return resulting layout.

Algorithm 2 uses the per-pair wiring scheme discussed above, and works by at-

tempting to solve the problem in four different ways: two different ways of doing

placement together with two different orders of wiring pairs. If any one of the four

trials succeeds, the algorithm immediately returns the corresponding layout. If all

four trials fail, on the other hand, the algorithm picks one of the four unfinished lay-

outs that has the fewest disconnected pairs of locations (breaking ties by considering

wire lengths and wire-piece crossings) and completes the solution by connecting the

disconnected pairs using one wire per pair chosen to maximize goodness among all

equivalent pairs of locations. This last step makes it highly unlikely that the algo-

rithm will ever fail; the only way for the algorithm to fail is for there to be two nodes

40

on the protoboard that need to be connected where all of the protoboard locations

for at least one of the nodes are occupied, which is highly unlikely. This high success

rate comes at the cost of placing wires that may significantly reduce the goodness of

the layout.

The algorithm starts out by connecting the top and bottom rail rows of the pro-

toboard so that all rail rows are used to connect to power and ground, and no other

nodes. This is a restriction that makes it easier to debug and amend the resulting

layout. Without this restriction, some rail rows might be used for nodes that are

neither power nor ground, and this may confuse some students.

The algorithm also has a post-processing step that attempts to to improve the

layout. The post-processing step makes three types of simple changes to the layout:

• We throw away any superfluous wires that do not serve to connect two parts of

the circuit. Superfluous wires may be added to the layout in the search done

by the wiring step, though very rarely.

• We truncate long vertical wires into an equivalent set of smaller wires. For

example, a wire going from one of the top rails to one of the bottom rails can

be replaced by three smaller wires making the same connection. This change

frees up rows for subsequent connections.

• If shifting a horizontal wire up or down results in a layout with fewer crossing

wires, we make that change.

The last important aspect of this final algorithm not explicitly stated in Algorithm

2 is that the algorithm that will be put in front of students will only be allowed to

use wires of a select few lengths. The kits that students work with do not come with

wires of all lengths, so we force the wiring step to use wires of only those allowed

lengths. We also avoid using length-1 wires because they are difficult to insert and

remove from physical protoboards and are also difficult to see.

41

3.2.4 Evaluation

Here we present how we evaluated our solution to the automatic layout problem

to test how well it would serve students in 6.01. We ran the layout algorithm on

numerous schematics and analyzed its performance on generating layouts from those

schematics. As manually generating numerous test schematics is tedious and time-

consuming, we devised a method to randomly generate thousands of test schematics.

As the tool targets 6.01 labs, we tried to design the randomly generated schematics

so that the range of complexity of these schematics mimics the range of complexity

of circuits that students may build in 6.01.

The random schematic generation goes as follows. We created 6 basic parts of

schematics. These 6 bases are:

• Three resistors arranged in a T-shaped configuration.

• Two resistors in series connected to a follower op-amp configuration.

• A pot connected to a follower op-amp configuration.

• A motor.

• A robot head.

• A robot.

These bases are depicted in Figure 3-5. They cover all of the components that may

be necessary in a 6.01 circuit. Each base offers at least 3 points of connection with

other bases. The random generation algorithm takes all possible combinations of up

to 6 bases, allowing for repetition of bases with some restrictions. The robot head

and robot bases can appear at most once as there is no need for more than one of

each of these in 6.01 labs. The pot and follower op-amp base can appear at most

twice as we never need more than two pots in 6.01 circuits. The motor base can also

appear at most twice as we never need more than two motors per circuit in 6.01 labs.

The other two bases, T-resistor configuration and two resistors in series together with

a follower op-amp, can be repeated up to 6 times. For a given combination of bases,

42

Figure 3-5: Bases for the random schematic generation scheme: (a) three resistors
arranged in a T-shaped configuration; (b) two resistors in series connected to a fol-
lower op-amp configuration; (c) pot connected to a follower op-amp configuration;
(d) motor; (e) robot head; and (f) robot.

we generate a set of schematics in which we randomly make connections between the

bases. Figure 3-6 presents a sample randomly generated schematic.

Our scheme produces a total of 4425 test schematics. When testing a particular

algorithm on these test schematics, we run the algorithm on each test schematic 10

times. Chapter 4 presents the data collected in this manner and compares the various

alternatives discussed in this chapter.

An important question we must answer is how we quantify the goodness (or bad-

ness) of a particular layout. Our approach takes a weighted sum of a particular set

of features of a given layout. We define the badness of a layout to be:

43

Figure 3-6: Sample randomly generated schematic.

44

1 × (number of wires) +

2 × (total wire length) +

10 × (number of wire crosses) +

10 × (number of diagonal wires) +

50 × (number of wire-piece crossings) +

500 × (number of wire occlusions).

We use this metric to decide which of a given set of alternative layout generation

strategies tends to produce better layouts. The weights in the metric were chosen to

reflect how bad each of the features is relative to the others. This choice of weights,

therefore, reflects the following reasonable set of statements. Recall that our goal is

to produce layouts that are easy to build, easy to debug, and aesthetically pleasing.

• Having an additional wire is about as bad as increasing the total wire length

on the protoboard by 2.

• Having two wires that cross is about as bad as increasing the total wire length

on the protoboard by 5.

• A diagonal wire is about as bad as a pair of wires that cross.

• Having a wire that crosses a circuit piece is about as bad as having 10 pairs of

wires that cross.

• Having a wire occlusion is about as bad as having 10 wires that cross circuit

pieces.

Note well that the badness metric described here is different from the cost metric

used in the wiring search as described in Section 3.2.2. This badness metric is used

to evaluate layouts produced by the algorithm, which may use A∗ search in which

the costs of vertices are computed, not using this badness cost metric, but the cost

metric described in Section 3.2.2.

45

46

Chapter 4

Results

In Chapter 3, we discussed a general solution to the automatic protoboard layout

problem and various alternatives that can be used in implementing the solution.

Figure 4-1 summarizes the alternatives. In this chapter, we provide quantitative data

comparing the alternative strategies, and the data is discussed in Chapter 5.

Placement

Distance Blocking Random

Wiring

All pairs Per-node

Increasing Decreasing

Per-pair

Increasing Decreasing

Straight

Search

A∗ Best First

Figure 4-1: Summary of possible alternatives to the algorithm.

47

As comparing all 3 × 6 × 2 = 36 possible implementations of the algorithm is

tedious, we analyzed the three different means for alternatives (placement, wiring,

and search) separately. We carried out the following comparisons:

1. Placement: Blocking vs. Distance vs. Random. The wiring method was per-

pair (decreasing), and we used A∗ Search.

2. Wiring: All pairs vs. Per-node (increasing) vs. Per-node (decreasing) vs. Per-

pair (increasing) vs. Per-pair (decreasing) vs. Straight. The placement method

was blocking, and we used A∗ Search.

3. Search: A∗ vs. Best First. The placement method was blocking, and the wiring

method was per-pair (decreasing).

The data to compare the alternatives were gathered as described in Chapter 3. We

ran the algorithm on 4425 randomly generated schematics of varying complexities.

The algorithm was run 10 times on each schematic.

In comparing alternatives, we consider 3 questions:

1. Which alternative is successful most often?

2. Which alternative, when successful, takes the least amount of time?

3. Which alternative, when successful, produces the best layouts?

We are also interested in how each of these attributes (success rate, running time,

and layout quality) varies with circuit complexity. To quantify the complexity of a

circuit, we look at the number of pins in the circuit, where a pin is defined to be

a connection point on a circuit component that is connected by wires to another

connection point (on the same component or a different component). Figure 4-2

presents a histogram of the number of pins in the schematics that were used to do

all comparisons in this chapter, not including the data presented in Section 4.5, for

which we used a newly generated dataset of schematics to analyze the performance

of the combined algorithm. Note that there are fewer samples of schematics of the

48

0 5 10 15 20 25 30 35 40 45
Number of pins

0

500

1000

1500

2000

2500

C
o
u
n
t

Figure 4-2: Histogram of the complexities, in terms of numbers of pins, of the 4425
schematics used for evaluation.

49

Figure 4-3: Schematic used to generate the exemplar protoboard layouts.

lowest and highest circuit complexities. Hence, the statistics given for the extreme

complexities are less informative.

To compare success rates, we look at number of successes out of 10 runs on each

of the 4425 schematics. To compare running time, we look at CPU time spent on

the wiring step, as the placement step has much less variability. To compare the

goodness of layouts, we look at numbers of wires, total lengths of wires, numbers of

wire crosses, and our layout badness metric as functions of circuit complexity. Note

that in all figures that follow, error bars indicate 1.96 times the standard error. For

each comparison, we present exemplar layouts generated by the alternative methods

for the schematic shown in Figure 4-3.

50

4.1 Random Layout

Before embarking upon the comparisons, we give an exemplar of a protoboard layout

generated completely at random. Here, we choose an op-amp packaging randomly,

and we place each circuit piece randomly, only taking care not to place two pieces that

share a 5-column, and not obeying any other restrictions. This method of random

placement, is, therefore, different from the one described in Section 3.2.1. We then

use straight wiring. Figure 4-4 presents a layout generated for the schematic shown

in Figure 4-3. This completely random layout method is compared against the final

algorithm in Section 4.5.

Figure 4-4: Exemplar for the completely random method.

51

4.2 Comparing Placement Methods

Figure 4-5: Exemplar for the blocking placement method, using per-pair (decreasing)
wiring and A∗ Search.

Figure 4-6: Exemplar for the distance placement method, using per-pair (decreasing)
wiring and A∗ Search.

52

Figure 4-7: Exemplar for the random placement method, using per-pair (decreasing)
wiring and A∗ Search. As the random placement method performs too poorly to
generate layouts for complex circuits, this exemplar was generated for the schematic
shown in Figure 3-1. For comparison, another layout for the same schematic is given
in Figure 2-6.

53

0 2 4 6 8 10 12
Number of times succeeded out of 10

0

500

1000

1500

2000

2500

3000

3500
C
o
u
n
t

Blocking Distance Random

Figure 4-8: Placement method success rate comparison.

Number of times succeeded out of 10
0 1 2 3 4 5 6 7 8 9 10

Blocking 162 38 51 57 72 85 109 106 144 203 3398
0.04 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.05 0.77

Distance 258 55 54 50 52 77 86 97 93 130 3473
0.06 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.78

Random 893 512 387 364 292 259 247 277 311 321 562
0.20 0.12 0.09 0.08 0.07 0.06 0.06 0.06 0.07 0.07 0.13

Table 4.1: This is an alternative presentation of the data given in Figure 4-8. Each
cell in the table gives the count (and percentage out of the total 4425) of schematics
for which a particular method succeeded a given number times out of 10 runs.

54

0 5 10 15 20 25 30 35 40 45
Number of pins

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
e
ss
 r
a
te

Blocking Distance Random

Figure 4-9: Placement method success rate trend comparison.

55

0 5 10 15 20 25 30 35 40 45
Number of pins

0

10

20

30

40

50

60

70

W
ir
in

g
 t
im

e
 (
se

co
n
d
s)

Blocking Distance Random

Figure 4-10: Placement method wiring time trend comparison for successful runs.

56

0 5 10 15 20 25 30 35 40 45
0

10
20
30
40
50
60
70
80

W
ir
e
s

Blocking Distance Random

0 5 10 15 20 25 30 35 40 45
0
1
2
3
4
5
6

W
ir
e
 c
ro
ss
e
s

0 5 10 15 20 25 30 35 40 45
Number of pins

0
50

100
150
200
250
300
350

To
ta
l
w
ir
e
 l
e
n
g
th

Figure 4-11: Placement method layout quality trend comparison.

57

0 5 10 15 20 25 30 35 40 45
Number of pins

0

100

200

300

400

500

600

700

800

La
y
o
u
t
b
a
d
n
e
ss

Blocking Distance Random

Figure 4-12: Placement method layout badness trend comparison.

58

4.3 Comparing Wiring Methods

Figure 4-13: Exemplar for the all pairs wiring method, using blocking placement and
A∗ Search.

Figure 4-14: Exemplar for the per-node (increasing) wiring method, using blocking
placement and A∗ Search.

59

Figure 4-15: Exemplar for the per-node (decreasing) wiring method, using distance
placement and A∗ Search. We used distance placement instead of blocking placement
to generate this exemplar because the combination of blocking placement with this
wiring method consistently failed on the schematic shown in Figure 4-3.

Figure 4-16: Exemplar for the per-pair (increasing) wiring method, using blocking
placement and A∗ Search.

60

Figure 4-17: Exemplar for the per-pair (decreasing) wiring method, using blocking
placement and A∗ Search.

Figure 4-18: Exemplar for the straight wiring method, using blocking placement.

61

0 2 4 6 8 10 12
Number of times succeeded out of 10

0

500

1000

1500

2000

2500

3000

3500

4000

4500
C
o
u
n
t

All
Node I

Node D
Pair I

Pair D
Straight

Figure 4-19: Wiring method success rate comparison.

Number of times succeeded out of 10
0 1 2 3 4 5 6 7 8 9 10

All 458 114 111 112 127 145 177 139 172 227 2643
0.10 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.05 0.60

Node I 154 50 55 62 85 71 106 141 156 217 3328
0.03 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.04 0.05 0.75

Node D 195 50 58 66 104 83 125 176 162 268 3138
0.04 0.01 0.01 0.01 0.02 0.02 0.03 0.04 0.04 0.06 0.71

Pair I 177 40 59 54 91 92 100 118 132 212 3350
0.04 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.05 0.76

Pair D 162 38 51 57 72 85 109 106 144 203 3398
0.04 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.05 0.77

Straight 0 0 0 0 0 0 0 0 0 0 4425
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Table 4.2: Wiring method success rate comparison.

62

0 5 10 15 20 25 30 35 40 45
Number of pins

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
u
cc
e
ss
 r
a
te

All

(a) All pairs

0 5 10 15 20 25 30 35 40 45
Number of pins

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
u
cc
e
ss
 r
a
te

Node I Node D

(b) Per-node

0 5 10 15 20 25 30 35 40 45
Number of pins

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
u
cc
e
ss
 r
a
te

Pair I Pair D

(c) Per-pair

Figure 4-20: Wiring method success rate trend comparison.

63

0 5 10 15 20 25 30 35 40 45
Number of pins

0

20

40

60

80

100

120

W
ir
in

g
 t
im

e
 (
se

co
n
d
s)

All
Node I

Node D
Pair I

Pair D
Straight

Figure 4-21: Wiring method wiring time trend comparison for successful runs. Note
that the line for straight wiring is not visible because it is so close to 0 for all values
of circuit complexity.

64

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

W
ir
e
s

All
Node I

Node D
Pair I

Pair D
Straight

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

W
ir
e
 c

ro
ss

e
s

0 5 10 15 20 25 30 35 40 45
Number of pins

0
50

100
150
200
250
300
350
400

To
ta

l
w

ir
e
 l
e
n
g
th

Figure 4-22: Wiring method layout quality trend comparison.

65

0 5 10 15 20 25 30 35 40 45
0

10
20
30
40
50
60

W
ir
e
s

All
Node I

Node D
Pair I

Pair D

0 5 10 15 20 25 30 35 40 45
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

W
ir
e
 c
ro
ss
e
s

0 5 10 15 20 25 30 35 40 45
Number of pins

0
20
40
60
80

100
120
140
160
180

To
ta
l
w
ir
e
 l
e
n
g
th

Figure 4-23: Wiring method layout quality trend comparison, not including the
straight wiring method.

66

0 5 10 15 20 25 30 35 40 45
Number of pins

0

500

1000

1500

2000

2500

La
y
o
u
t
b
a
d
n
e
ss

All
Node I

Node D
Pair I

Pair D
Straight

Figure 4-24: Wiring method layout badness trend comparison.

67

4.4 Comparing Search Methods

Figure 4-25: Exemplar for A∗ Search, using blocking placement and per-pair (de-
creasing) wiring.

Figure 4-26: Exemplar for Best First Search, using blocking placement and per-pair
(decreasing) wiring.

68

0 2 4 6 8 10 12
Number of times succeeded out of 10

0

500

1000

1500

2000

2500

3000

3500

4000
C
o
u
n
t

A* Best First

Figure 4-27: Search method success rate comparison.

Number of times succeeded out of 10
0 1 2 3 4 5 6 7 8 9 10

A∗ 162 38 51 57 72 85 109 106 144 203 3398
0.04 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.05 0.77

Best First 6 5 2 1 13 10 29 45 84 245 3985
0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.06 0.90

Table 4.3: Search method success rate comparison.

69

0 5 10 15 20 25 30 35 40 45
Number of pins

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

S
u
cc
e
ss
 r
a
te

A* Best First

Figure 4-28: Search method success rate trend comparison.

70

0 5 10 15 20 25 30 35 40 45
Number of pins

0

2

4

6

8

10

12

14

W
ir
in
g
 t
im

e
 (
se
co
n
d
s)

A* Best First

Figure 4-29: Search method wiring time trend comparison for successful runs.

71

0 5 10 15 20 25 30 35 40 45
0
10
20
30
40
50
60

W
ir
e
s

A* Best First

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

W
ir
e
 c
ro
ss
e
s

0 5 10 15 20 25 30 35 40 45
Number of pins

0

50

100

150

200

250

To
ta
l
w
ir
e
 l
e
n
g
th

Figure 4-30: Search method layout quality trend comparison.

72

0 5 10 15 20 25 30 35 40 45
Number of pins

0

100

200

300

400

500

600

700

La
y
o
u
t
b
a
d
n
e
ss

A* Best First

Figure 4-31: Search method layout badness trend comparison.

73

4.5 Combined Algorithm

Here we provide data for the combined algorithm presented in Section 3.2.3. To

generate this data, we used a different dataset of 4425 schematics. As desired, the

algorithm has a 100% success rate. Figure 4-33 gives a breakdown of how the algo-

rithm succeeded. The first four columns correspond to success from one of the four

combinations of placement and wiring methods. The last 5 columns correspond to

layouts in which none of the four combinations was successful on all pairs of loca-

tions and the algorithm had to connect a few pairs of locations by putting down a

straight wire bridging the locations. Figure 4-34 gives the average total time taken

by the algorithm as a function of circuit complexity. Finally, Figures 4-35 and 4-36

give statistics on the quality of the layouts produced by the combined algorithm as

a function of circuit complexity. Some of the plots in this section compare the final

algorithm to the completely random strategy presented in Section 4.1.

Figure 4-32: Combined algorithm exemplar. Notice that the top rail rows (the first
and second row) are forced to be used as power and ground nodes.

74

1
trail

2
trials

3
trials

4
trials

1
failed
pair

2
failed
pairs

3
failed
pairs

4
failed
pairs

5
failed
pairs

Number of trials

0

5000

10000

15000

20000

25000

30000

35000

40000

C
o
u
n
t

38836
87.8%

2461
5.6%

1904
4.3% 449

1.0%
423
1.0%

127
0.3%

34
0.1%

15
0.0%

1
0.0%

Figure 4-33: Combined algorithm success summary.

75

0 5 10 15 20 25 30 35 40 45
Number of pins

0

20

40

60

80

100

120

140

160

180

W
ir
in
g
 t
im

e
 (
se

co
n
d
s)

Random Layout Final Algorithm

Figure 4-34: Total CPU time trend comparison. Note that the line for Random
Layout is not visible because it is so close to 0 for all values of circuit complexity.

76

0 5 10 15 20 25 30 35 40 45
0

10
20
30
40
50
60

W
ir
e
s

Random Layout Final Algorithm

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

W
ir
e
 c
ro
ss

e
s

0 5 10 15 20 25 30 35 40 45
Number of pins

0
100
200
300
400
500
600
700
800

To
ta
l
w
ir
e
 l
e
n
g
th

Figure 4-35: Layout quality trend comparison. Note that the line for number of wire
crosses for the Final Algorithm is not visible because it is so much closer to 0 than
the number of wire crosses for Random Layout for all values of circuit complexity.

77

0 5 10 15 20 25 30 35 40 45
Number of pins

0

1000

2000

3000

4000

5000

La
y
o
u
t
b
a
d
n
e
ss

Random Layout Final Algorithm

Figure 4-36: Layout badness trend.

78

Chapter 5

Discussion

In this chapter we provide justifications for the choices made in solving the auto-

matic protoboard layout problem, as well as detailed analysis of the data presented

in Chapter 4.

5.1 Search Space Size

The proposed solution to this problem involves several simplifications and uses of

heuristics. This is a result of the fact that the search space we are working with is

very large. It is difficult to say exactly how large this search space is, but we can

get an idea of its size. Let us just consider the number of ways we can put down

wires on an empty protoboard (even in ways that may not make sense from a circuit

theoretic standpoint). Finding this number reduces to finding the number of ways

T (n) in which we can choose pairs out of n items. Equation 5.1 givens an expression

for T (n)1.

T (n) =

bn
2
c∑

k=0

n!

k!(n− 2k)!2k
(5.1)

In this problem, we have that n = 830, the number of available locations on an

empty protoboard. Evaluating T at n = 830 yields approximately 2.8 × 101043. The
1The sequence of numbers described by T (n) is sometimes referred to as the telephone numbers

or the involution numbers.

79

largeness of this number indicates that doing any sort of exhaustive search will be

hopeless.

5.2 Justifying Placement Choices

Resistors

For the sake of simplicity, and to significantly reduce the search space size, we place

resistors only in the middle strip of the protoboard, as shown in Figure 3-2. With

this restriction, there are 63 slots available on an empty protoboard for one resistor.

Without this restriction, there are a total of 763 slots available. The restriction is

good when we consider the reduction in the search space size. On the other hand,

this restriction is bad as it imposes a restriction on the size of the schematics (in

terms of the number of components) for which a layout can be generated using the

algorithm. Given that the number of resistors in a typical 6.01 circuit is very small,

this restriction proves to be very useful.

Op-amps

Op-amps are the trickiest components to handle because each op-amp package put on

the protoboard contains two op-amps within it. Equation 5.2 presents an expression

for the number of different ways to package together n op-amps. For example, if we

have 2 op-amps, we can either use one op-amp package for each, or put them both in

the same package, which we can do in one of two different ways. All together, there

are 3 different ways to package together 2 op-amps2. Table 5.1 gives the number of

different packagings possible for various n.

Number of ways to package n op-amps =
bn
2
c∑

k=0

n!

k!(n− 2k)!
(5.2)

2When using only one of the op-amps in an op-amp package, we assume that we use the one on
the left as drawn in Figure 2-2(c).

80

n Number of ways to package n op-amps
1 1
2 3
3 7
4 25
5 81
6 331
7 1303
8 5937
9 26785
10 133651

Table 5.1: Number of ways of packaging together n op-amps for various values of n.

Our placement approach explores all possible ways of packaging the op-amps. We

do this because the typical 6.01 circuit contains no more than 6 op-amps, and so we

are tasked with exploring at most 331 alternatives, which is not too computationally

intensive. On circuits with more than 6 op-amps, this approach quickly becomes

intractable, as the number of alternatives to consider would be far too large, and we

would have to consider different strategies.

5.3 Explaining the Results

Chapter 4 presented quantitative data to compare alternative strategies for solving

the automatic protoboard layout problem. Here, we analyze those data and give

reasonings for why we obtained those results.

5.3.1 Comparing Placement Methods

Success Rate

The blocking placement method (89.0% overall success rate across the 44250 runs) is

slightly more successful than the distance placement method (87.6% overall success

rate). While these alternative methods are not markedly different in terms of success

rate, we note that both methods are more successful than the random placement

81

alternative (43.5% overall success rate). As a function of circuit complexity, Figure 4-

9 suggests that the two alternatives have almost identical success rates. As we would

expect, success rate generally decreases for both of the placement methods as circuit

complexity increases. Once again, we observe that the distance and blocking based

placement methods are much more successful than the random placement method,

especially as circuit complexity increases. The rise in success rate for high circuit

complexity is a result of the fact that there are very few circuits of the highest

complexity, on which the algorithm happened to be consistently successful.

Wiring Time

We observe from Figure 4-10 that, once again, the two methods are very similar,

with random placement being markedly worse than both. We see that the distance

method generally results in a layout for which the wiring takes less time than does

the blocking method, but the difference between the two is almost negligible. As we

would expect, we see that as the complexity of the circuits increases, the amount

of time spent in the wiring step also increases. As circuit complexity increases, the

standard error of wiring time when using random placement also increases. This is a

result of the fact that random placement frequently fails on the most complex circuits,

and so the sample size we have for successful runs becomes very small for high circuit

complexity.

Layout Quality

Figure 4-11 presents graphs that compare numbers of wires, numbers of wire crosses,

and total wire lengths. Figure 4-12 shows the trend of layout badness computed using

our metric as a function of circuit complexity. We first observe that the numbers of

wires used by the blocking and distance based methods are almost identical. We see

that the blocking method consistently results in more wire crosses. When we consider

total wire length, the blocking method exceeds the distance method consistently, with

the difference getting higher as circuit complexity increases. This is expected because

the blocking method does not directly aim to put pieces that need to be connected

82

close together, whereas the distance method directly tries to minimize the total wire

length that may be needed. In terms of the layout badness metric, we observe once

again that the distance method is slightly better than the blocking method for almost

all circuit complexity values. Finally, we observe that the random placement method,

per our badness metric, produces much worse layouts than the other two methods

when it does succeed.

Conclusion

It is difficult to conclusively pick the best placement method from these results. What

we can determine is that the distance based method and the blocking based method

are both better than random placement.

5.3.2 Comparing Wiring Methods

Success Rate

Figures 4-19 and 4-20, and Table 4.2 show that the all pairs wiring method has a

smaller success rate than all of the other alternatives, especially as circuit complexity

increases. The reason why the all pairs method has a smaller success rate is in large

part due to the limit on expanded vertices in A∗. Figure 5-1 depicts histograms of the

maximum number of states expanded in a search for each of the 4425×10 = 44250 test

runs. In the case of all pairs wiring, the histogram is simply of the number of states

expanded in the search for each of the test runs. In the other methods, multiple

searches may be carried out per run, and we chose to look at the most expensive

search in our analysis to understand the worst-case performance of the alternative

methods. The figures depict that the limit on expanded vertices affects the all pairs

wiring method much more than it does the others. This result is expected because

the search task in all pairs wiring is more difficult than in the other alternatives.

Notice that as the search tasks get less difficult from all pairs to per-node to per-pair

wiring, the effect of the limit decreases. Hence, the other four alternatives have very

83

0 50 100 150 200 250 300 350
Number of expanded states per run

0

2000

4000

6000

8000

10000

12000

C
o
u
n
t

(a) All pairs

0 50 100 150 200 250 300 350
Maximum number of expanded states per run

0

2000

4000

6000

8000

10000

12000

14000

C
o
u
n
t

(b) Per node (increasing)

0 50 100 150 200 250 300 350
Maximum number of expanded states per run

0

2000

4000

6000

8000

10000

12000

C
o
u
n
t

(c) Per node (decreasing)

0 50 100 150 200 250 300 350
Maximum number of expanded states per run

0

5000

10000

15000

20000

25000

30000

35000

C
o
u
n
t

(d) Per pair (increasing)

0 50 100 150 200 250 300 350
Maximum number of expanded states per run

0

5000

10000

15000

20000

25000

C
o
u
n
t

(e) Per pair (decreasing)

Figure 5-1: Histograms of maximum number of vertices expanded in A∗ per test run.
In the case of all pairs wiring, this value is simply the number of vertices expanded
in the search.

84

comparable success rates. Finally, we note that straight wiring, as expected, has a

100% success rate.

Wiring Time

Figure 4-21 compares wiring time across the six methods. Once again, we observe

that the all pairs methods takes more time than the other methods. We also observe

from Figure 4-21 that the wiring times for the two per-node methods are comparable,

and that the wiring times for the two per-pair methods are also comparable, but that

the per-node wiring times are generally bigger than the per-pair wiring times. This

trend is also expected as the per-node methods attempt to connect multiple pairs of

locations at once, which generally requires searching through more alternatives than

connecting each of the pairs of locations individually. Finally, we note that straight

wiring, as expected, takes less time to complete than all of the other alternatives.

Layout Quality

Figures 4-22, 4-23, and 4-24 compare the quality of the layouts produced by the six

alternative wiring methods. First, we see that there is very little difference in terms

of number of wires used and the total wire length among the alternatives that utilize

search to accomplish the wiring. We note that straight wiring uses uses fewer wires

than all of the other alternatives as it uses exactly one wire per pair of locations.

However, the total wire length used by the straight wiring method is much greater

than that used by the others as the straight wiring method does not at all take layout

quality into consideration. There are noticeable differences in the number of wire

crosses. First, as expected, straight wiring produces many more wire crosses than

the other alternatives. Next, we see that the all pairs method generates layouts with

fewer wire crosses than the other methods. This is expected since the algorithm runs

one search to connect all pairs of locations. Conversely, the per-pair (decreasing) and

per-node (decreasing) methods result in the largest number of wire crosses. Note

that the per-node (decreasing) method produces more wire crosses on average than

the per-pair (increasing) method. We observe that the order in which we consider

85

the wiring tasks has an effect on how good the generated layouts will be. In essence,

connecting the harder pairs of locations first generally produces more wire crosses.

Finally, as expected, we observe that straight wiring produces comparatively poor

layouts per our layout badness metric.

Conclusion

While the all pairs method is the least successful method and generally takes the

longest among the six, it tends to produce the best layouts when it does succeed.

On the other hand, the alternatives that break the problem down into smaller pieces

succeed more often and finish more quickly, though they tend to produce worse re-

sults. Furthermore, the more finely we break down the problem, the faster the overall

algorithm runs. Lastly, ordering subproblems from hardest to easiest produces worse

results than the reverse order.

5.3.3 Comparing Search Methods

Success Rate

Figures 4-27 and 4-28 and Table 4.3 present data comparing the success rates of the

two search algorithms. We observe that Best First Search is more successful than A∗.

98% of the test circuits were solved at least 8 times out of 10 when we used Best First

Search, versus 85% when we used A∗. This result is not surprising because, when

using Best First Search, the algorithm looks for layouts that satisfy the connection

requirements, ignoring the badness of the layouts it considers, whereas A∗ searches

for an “optimal” layout. Hence, Best First Search is less susceptible to the restriction

on number of vertices to expand than is A∗.

Wiring Time

The fact that Best First Search settles for any layout that satisfies the connection

requirements suggests that it should finish more quickly in addition to being more

successful. Figure 4-29 supports this expectation.

86

Layout Quality

Figures 4-30 and 4-31 show that the layouts generated by the algorithm when using

Best First Search are worse than the layouts generated when using A∗. Most impor-

tantly, the number of wire crosses in the layouts produced by Best First Search are

markedly greater than the number of wire crosses in the layouts produced by A∗. We

also observe that the total wire length is greater when using Best First Search.

Conclusion

Our choice of a search algorithm forces us to consider a trade-off between speed,

success rate, and quality. Using Best First Search, most runs will be successful and

terminate quickly, but will produce very poor results. Using A∗, fewer runs will be

successful, and the successful runs will take longer to terminate, but the resulting

layouts will generally be better.

5.3.4 Combined Algorithm

In this section we discuss the structure of Algorithm 2, and we also discuss the data

we obtained for the combined algorithm. Recall that the combined algorithm makes

four attempts at generating a complete layout. The algorithm tries both placement

methods, using the distance method first and the blocking method second. It tries

the distance method first because the distance method tends to generate layouts with

fewer crossing wires and smaller total wire length. The algorithm uses per-pair wiring,

and consider both orders of doing the wiring, increasing order first and decreasing

order second. It uses per-pair wiring because per-pair wiring takes considerably less

time than both per-node and all pairs wiring, and neither of the other wiring methods

has a better success rate. The algorithm tries increasing order first because increasing

order tends to generate layouts with fewer crossing wires than the reverse order.

Let us now consider the data we obtained for the combined algorithm. Firstly,

we see that the combined algorithm had a 100% success rate, which is critical when

we consider the fact that students will be using a tool that almost never fails. This

87

success rate is a result of the last part of Algorithm 2 that uses single wires to

connect pairs of locations that need to be connected. Figure 4-33 shows that, on

the test dataset of 4425 schematics, with 10 runs carried out on each schematic, the

algorithm succeeded in generating layouts for 98.6% of the circuits without having to

put down forced wires (wires added at the last step of the algorithm to connect any

disconnected location pairs). The algorithm was required to put down more than 2

forced wires on only 0.1% of the circuits. From Figure 4-34, we see that as the circuit

gets more complex, the amount of time the algorithm takes sharply increases. This

is due to a more difficult placement task (which is most notable as the number of

op-amps increases) as well as a more difficult wiring task. Importantly, the maximum

point on the plot occurs at less than 180 seconds. This indicates that on the test

dataset, the algorithm took at most about 3 minutes to run. This is encouraging

from a practical standpoint because 3 minutes is not long for a student to have to

wait for a layout to be generated. Finally, Figures 4-35 and 4-36 present trends of

quality as a function of circuit complexity. It is clear that our algorithm produces

much better layouts than the random layout strategy presented in Section 4.1.

88

5.4 Further Work

5.4.1 Treating Resistors as Wires

Our current solution treats resistors as circuit components and so they are placed

before the wiring search is executed. However, resistors have the special property

among the components that they can be placed as if they were wires of a fixed set of

lengths. This suggests we can think of resistors as wires, and thus can handle them in

the wiring step of the algorithm instead of the placement step. As a result, the search

that we do in the wiring step would need to be more elaborate. Not only would we

need to keep track of pairs of locations on the protoboard that need to be connected,

but we would also need to know whether to put a resistor between the two locations.

In the latter case, we have the restriction that one of the wires we use to connect the

pair of locations needs to be of a length that can fit a resistor.

While this idea appears very promising, its implementation is not trivial. First,

if there is any node in the circuit that is only connected to resistors (and no other

circuit components), then that node will be unrepresented on the protoboard at the

end of the placement step. One possible solution to this problem is to reserve an

empty 5-column on the protoboard for the node between the resistors, which we can

then use in the wiring step. A better solution may be discovering the best places for

the node as we are placing down resistors in the wiring step, but this solution would

make the search we carry out more complicated. Second, we would need a new kind

of heuristic for the search that takes resistors into account. One possible solution is

to highly penalize an absent resistor when computing the heuristic. Even with an

amended heuristic, however, there are cases where the search may not find an answer

(for instance a pair of adjacent locations that must be connected by a resistor). The

backup plan at the end of Algorithm 2 would also need to be changed to take resistors

into account.

89

5.4.2 Building Layouts Similar to Previously Generated Lay-

outs

One problem with the current tool is that a slight change in the circuit schematic may

result in a completely different layout. It is, therefore, very important that students

in 6.01 be confident that they designed the right circuit before taking the time to

build their circuit. This is where the simulation capabilities of the tool come in to

play. As an alternative solution to this problem, it may be useful to have the tool

remember the last placement it used and try to produce a new placement as similar

to the last one as possible.

5.4.3 Alternative Backups for Final Algorithm

The combined algorithm presented in Section 3.2.3 has a final step to connect any

disconnected nodes by using one additional wire per pair of locations that remains

to be connected. This is used as a backup for cases when A∗ search fails to make a

desired connection. We have seen that this back up plan works well in that the final

algorithm has a 100% success rate. However, this is not the only possible backup plan.

An alternative may be to return to the user the partially completed layout and also

indicate which nodes remain disconnected. The user may then attempt to complete

the layout, and may be successful in finding options that the A∗ search could not

find. Alternatively, when the algorithm is stuck on a particular pair of locations,

it may present the partial layout to the user, and ask the user to override some of

the decisions made by the algorithm while still preserving the connections, but in a

manner that might make subsequent steps of the wiring process easier. Both of these

alternatives would require feedback from the user, and are, therefore, a very different

style of backup from the one we implemented. Nonetheless, some users may want to

have at least some control over the layout process, so either of these alternatives may

be a desirable feature.

90

5.5 Remarks

This paper introduced a circuit schematic entry tool for 6.01 capable of automatically

generating protoboard layouts. The final algorithm presented in this paper is able

to generate layouts with a 100% success rate on our test dataset of 4425 circuit

schematics, and produces markedly better layouts than randomly generated ones

based on our metric of layout badness. The algorithm was able to generate the

layouts for each of the schematics in the test dataset in less than 3 minutes. These

results are encouraging as they suggest that the tool may be a good addition to 6.01,

as a complement to CMax. If, as we intended, the tool’s performance on the test

schematics is any indication of its performance on schematics that 6.01 students may

design, then the tool achieves the goal of avoiding the tedium of protoboard layout

in 6.01 labs. Additionally, the schematic entry tool, which is also capable of circuit

analysis at the same level as CMax, would make circuits schematics the main mode

of communication in 6.01 labs (instead of protoboard layouts).

91

92

Appendix A

Schematic Entry GUI

One of the aims of this project is making it easy for students to describe the circuit

they have in mind to a computer. To that end, it is important that the schematic

entry tool be intuitive and easy to use. In this section, we describe the capabilities and

features offered by the schematic entry GUI. Figure A-1 presents the GUI containing

a sample schematic. The figure depicts the four important sections of the GUI: the

palette, the board, the analysis section, and the cursor toggle section.

A.1 Palette

The palette (item 3 in Figure A-1) offers all of the circuit components that can be

included in a 6.01 circuit. Clicking a circuit component on the palette spawns a

new component of the same type on the board, right above the palette (the board is

described in detail in Section A.2). This component can then be used in the circuit

construction. The “Robot” and “Head” buttons on the palette spawn multiple parts

at once corresponding to the multiple parts contained within the robot and head

connectors, respectively. The robot connector is composed of connection points for

power and ground, four analog input ports, and one analog output port. The head

is composed of a motor, a motor pot, and two photosensors. Figure A-2 shows these

circuit components as they would appear in the editor.

93

Figure A-1: Parts of the schematic entry GUI. Part 1 is the board on which the user
constructs the schematic. Part 2 allows the user to toggle the cursor state. Part 3
is the palette from which the user can take circuit components. Part 4 presents the
simulation and layout buttons.

Figure A-2: The robot connector and head connector are spawned as grouped com-
ponents in the GUI.

94

A.2 Board

The board (item 1 in Figure A-1) is where the user can draw circuit schematics. The

user may move a component on the board by clicking the component and dragging

it to the desired place. When dragging, the GUI draws guide lines that extend to

the edges of the board to help the user place the component at the right place. The

user has the option to select and move multiple items at once. The user may delete

a component by clicking on it while pressing Ctrl. The user may rotate a component

by clicking on it while pressing Shift. An important aspect of circuit schematics is

interconnecting components with wires. Each circuit component in the GUI comes

with a few connection points. The user may draw a wire to connect components by

clicking on a connection point on a component and dragging. A wire may be drawn

to another connection point, or a wire already on the board (which snaps the new

wire onto the existing wire), or an empty location on the board (which creates a new

connection point). A wire may also be drawn starting from an existing wire, which

creates a new connection point on the existing wire. The GUI allows the user to drag

connection points. To achieve this, the GUI has two possible states for the cursor, the

drawing state and the dragging state (mainly referring to wires). Item 2 in Figure A-1

displays the panel that lets the user toggle between these two states. In the dragging

state, the user can drag connection points just like other circuit components. When

drawing wires, or dragging components, the GUI attempts to route the wires in a way

that is aesthetically pleasing. That is, the wires are routed so as to avoid crossing

wires and, more importantly, wires crossing components on the board. This routing

is not a trivial task. In fact, this problem is very similar to the layout problem that

this project aims to tackle. The solution to the wiring problem in the GUI also uses

search.

95

A.3 Analysis

The analysis section of the GUI (item 4 in Figure A-1) lets the user analyze the drawn

circuit schematic in two ways.

A.3.1 Simulation

The GUI lets the user simulate the circuit and test whether it behaves as expected.

The simulation infrastructure is ported from CMax, so circuits are simulated exactly

as they would be simulated by CMax. If there are probes in the circuit, the simulator

presents the voltage difference across the probes as an output. If there is a motor in

the circuit, the simulator presents the motor’s angle and motor’s rotational velocity

as functions of time. If there are any pots in the circuit, the user is expected to select

a simulation file for each pot describing how the pot is manipulated as a function of

time. Similarly, if the photosensors are a part of the circuit, the user is expected to

select a simulation file for each photosensor set describing the corresponding lamp’s

distance and angle from the head. These simulations help students (and staff) verify

that they have a correctly functioning circuit before building it.

A.3.2 Layout

The GUI also lets the user generate a layout for the circuit schematic, which is the

main object of this project. Very importantly, the GUI makes it easy to relate the

schematic with the layout. When the user hovers over a component in either window,

the GUI highlights the corresponding component in the other window. Similarly,

when the user hovers over a wire in one window, the GUI highlights all of the wires in

both windows that correspond to the same node. Figures A-3 and A-4 demonstrate

these features.

96

Figure A-3: Component highlighting example.

Figure A-4: Wire highlighting example.

97

A.4 Other Features

Here we discuss several features offered by the GUI that have not been discussed so

far:

1. The GUI allows the user to save schematics for later viewing or editing.

2. Protoboard layouts can also be saved as CMax files allowing for editing in CMax.

3. The schematic editing tool allows the user to undo and redo all actions.

4. The GUI has menu items that offer access to some of the features already dis-

cussed. Menu items are added when particular circuit components are selected.

For instance, selecting a pot component results in a new menu item that allows

the user to select a signal file for the pot. The same properties can also be

reached by right-clicking on the components.

5. The GUI changes the cursor appropriately to provide feedback. For instance,

the cursor becomes a pencil if the user can draw a wire starting at the cursor’s

current position. The cursor also changes to indicate when the user is about to

rotate or delete a component. If the tool is busy either running a simulation or

generating a layout, the cursor changes to a busy signal.

A.5 Shortcuts

Table A.1 presents the shortcuts available in the GUI.

98

Action Shortcut
Ctrl + n New file
Ctrl + o Open file
Ctrl + s Save file
Ctrl + q Quit
Ctrl + z Undo
Ctrl + y Redo
Ctrl + w Close simulation windows

g Generate layout
s Run simulation

Delete Delete selected item(s)
r Rotate selected item
d Toggle cursor state
← | h Move selected item(s) left
↓ | j Move selected item(s) down
↑ | k Move selected item(s) up
→ | l Move selected item(s) right

Table A.1: GUI shortcuts.

99

100

Bibliography

[1] Cadence. http://www.cadence.com.

[2] Eagle. http://www.cadsoftusa.com.

[3] Kaelbling, Leslie, Jacob White, Harold Abelson, Dennis Freeman, Tomás
Lozano-Pérez, and Isaac Chuang. 6.01SC Introduction to Electrical Engineering
and Computer Science I, Spring 2011. (MIT OpenCourseWare: Massachusetts
Institute of Technology), http://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-01sc-introduction-to-electrical-engineering-and-computer-
science-i-spring-2011 (Accessed 7 Dec, 2013). License: Creative Commons
BY-NC-SA.

[4] Introduction to EECS I. http://web.mit.edu/6.01.

[5] 6.01 Staff. CMax. http://web.mit.edu/6.01/www/cmax.

101

	Introduction
	Problem Statement
	Outline

	Background
	Technical Background
	Circuit Components
	Circuit Schematic
	Protoboard
	Protoboard Layout

	Previous Work
	CMax
	Current Work in Automatic Layout

	Methods
	GUI
	Solving the Layout Problem
	Part 1: Placement
	Part 2: Wiring
	Combining the Methods
	Evaluation

	Results
	Random Layout
	Comparing Placement Methods
	Comparing Wiring Methods
	Comparing Search Methods
	Combined Algorithm

	Discussion
	Search Space Size
	Justifying Placement Choices
	Explaining the Results
	Comparing Placement Methods
	Comparing Wiring Methods
	Comparing Search Methods
	Combined Algorithm

	Further Work
	Treating Resistors as Wires
	Building Layouts Similar to Previously Generated Layouts
	Alternative Backups for Final Algorithm

	Remarks

	Schematic Entry GUI
	Palette
	Board
	Analysis
	Simulation
	Layout

	Other Features
	Shortcuts

