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Abstract

Self-assembly is important in nanomedicine and increasingly plays a role in drug-
delivery or imaging applications in tumors. Predicting behavior and dynamics of
nanoparticle systems is very difficult, especially when assembling and disassembling
particles are involved. To address this challenge, the Bhatia lab has developed Nan-
oDoc (http: //nanodoc.org), an online game that allows users around the world to
design and simulate nanoparticle treatments. During this project, we were able to
implement mechanisms to effectively describe and simulate self-assembly in NanoDoc.
As a bench mark for our simulator, we show that we are able to reproduce labora-
tory experiments in the literature. The simulator was then made available to the
crowd and a challenge was proposed that requires users to perform self-assembly in
a scenario aimed at improving the accumulation of imaging agents in tumors.
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Chapter 1

Introduction

Increasingly sophisticated nanoparticles are being engineered to transport treatments

and imaging agents to tumors. These particles are able to passively accumulate in

tumor tissue through the enhanced permeability and retention effect. Their diffusion

and binding characteristics then allow them to distribute in the tumor tissue in a

controllable manner [6]. Recent work in nanomedicine further uses self-assembly to

dynamically change nanoparticle properties. Self-assembly of nanoparticles refers to

their ability to bind and interact with each other to form a supramolecular structure

exhibiting emergent properties not present in the original collection of nanoparticles.

Self-assembly has been studied in the past in robotics, chemistry, and nanomedicine

[23]. Treatments utilizing self-assembly have been shown to have superior sensitivity

for molecular targets [12], thus enhancing a treatment's role as a drug-delivery vehicle

or tumor imaging agent.

Designing nanoparticles is typically done empirically through trial and error over

the course of lengthy experiments. Recently, the Bhatia lab has been able to simulate

the transport of nanoparticles in tumor tissue. Using this simulator they have created

an online game called NanoDoc that outsources the exploratory phase of nanopar-

ticle design to the crowd. The project builds on previous success in crowdsourcing

scientific problems such as protein-folding [2]. We believe that the desire of the gen-

eral population to learn about nanomedicine and help in the fight against cancer will

encourage large-scale crowd participation [7].
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NanoDoc utilizes the stochastic simulation compiler (SSC) developed at MIT [11]

to simulate nanoparticle treatments. The system is able to simulate nanoparticles

that diffuse, bind to nanoparticles or cells in their environment, and release cargos.

The next step is to allow nanoparticles to self-assemble into functional structures.

Unfortunately, simulating self-assembly is not simple. Prior to this work, simulating

self-assembly in tumor enironments has been time-intensive, limited in abilities, and

overall impractical.

We analyze and breakdown simulation steps in SSC to better understand it. We

then introduce a novel method for simulating self-assembly. We use this efficient

method to implement self-assembly in NanoDoc both by implementing new simula-

tion methods in the backend and updating the user interface appropriately. Our new

system is able to recreate real laboratory experiments (namely, [18]). In addition, our

system can handle simulating treatments which include particles that self-assemble

into compounds with up to ~~ 18 nanoparticles in a reasonable amount of time (< 2

minutes). We complete the project by releasing a self-assembly-related challenge to

the crowd, and hope that it can lead to new and improved tumor treatment mecha-

nisms.
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Chapter 2

State of the Art

2.1 Self-Assembly

The ability for nanoparticles to self-assemble has shown promise for treatment and

imaging applications in cancer. A self-assembling collection of nanoparticles is a group

of nanoparticles whose individual properties and attributes cause them to bind to each

other. The binding of nanoparticles yields larger and more complex nanoparticles

which exhibit emergent properties which are not present in the original collection of

nanoparticles. This self-assembly can be a natural course of action or triggered (or

destabilized) by an outside factor such as heat, light, a magnetic field, or the presence

of some other particle. Recent work has shown how self-assembly can enable effective

and specific nanoparticle treatments [20].

In essence, a nanoparticle treatment is a drug delivery system which is able to

kill cancerous cells while minimizing harmful effects on healthy cells [20]. Examples

of self-assembly can be found in the literature. Micelles for example can effectively

encapsulate drugs for killing tumor cells as shown by R6sler et al. [20]. The effec-

tiveness of the treatment is dependent on releasing the drugs with great specificity

in the cancerous region. In this respect, the self-assembly properties of copolymers

can be utilized. R6sler et al. show that the time of release can be adjusted by small

modifications to the copolymer structure. Additionally, a change in surrounding tem-

perature can destabilize the structure and lead to a release of the drug. This way,

13



the self-assembling copolymers provide the ability to design effective treatments.

A similar method of drug delivery has been verified by [26]. This method uses

amphiphilic y-PGA, which again self-assemble to encapsulate antigenic proteins and

deliver them to antigen-presenting cells. This then elicits an immune response by

cytotoxic T lymphocytes, which kill the antigen-presenting cells. Experiments showed

that the nanoparticles were able to deliver the drug to antigen-presenting cells with

high efficiency, successfully inhibiting the growth of tumors in mice.

An application of self-assembly for cancer therapy, though not drug delivery-

related, is shown by Nam et al. [15]. They use "smart" gold nanoparticles that

are triggered by a pH change to self-assemble and form aggregate structures in tu-

mor tissue. These aggregate structures exhibit emergent light absorption properties.

Notably, the structures allow photothermal cancer therapy to be more selective and

efficient at killing tumor cells.

Self-assembling nanoparticles can also be valuable for their disassembling proper-

ties. Wong et al. [25] present a proof of concept multistage nanoparticle treatment: a

100nm nanoparticle leaks into tumor tissue via the enhanced permeation and reten-

tion effect. The nanoparticle is subsequently exposed to proteases that are expressed

in the tumor environment, causing the particle to disassemble into 10nm nanoparti-

cles. These smaller particles are better able to quickly diffuse deep into tumor tissue.

Another example of self-assembly (albeit not directly tumor-related) is the dis-

covery of magnetic nanoparticles that self-assemble in the presence of viral particles.

These nanoparticles self-assemble to create large structures with enhanced magnetic

properties in the presence of adenovirus-5 and herpes simplex virus-1 [17]. This

property is used in the detection of viral infection as well as imaging of the viral

distribution.

Highlighting the potential for self-assembling nanoparticles to target tumors with

high specificity, an article by von Maltzahn et al. [12] exhibits a collection of nanopar-

ticles which mimick AND and OR boolean operations. The self-assembly of these

particles is directed via these operations, which are governed by enzymatic activity

associated with aspects of tumorigenesis. This gives added support to the idea of
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creating nanoparticle treatments which are increasingly tailored to a specific tumor

scenario. In a similar fashion, Gr6schel et al. [5] exhibit methods of specially de-

signing nanoparticles to yield specific large, spatial configurations, some of which can

reach sizes of several micrometers (on the order of a thousand times bigger than a

single component nanoparticle).

A paper that we will come back to several times is a paper of Perrault et al. which

designs a tumor imaging mechanism via in-vivo self-assembly [18]. Co-assembling

nanoparticles work together to yield a fast and efficient fluorescent tumor-imaging

mechanism. The key to their method is to inject a large diameter biotin-GNP (gold

nanoparticle coated with biotin) that accumulates in the tumor tissue over 24 hours.

Subsequently, small diameter fluorescent streptavidin are injected. These particles

distribute fast due to their small diameter. Biotin and streptavidin have a high

binding affinity, causing the fluorescent particles to stick to the biotin-GNP, yielding

high fluorescence in the tumor tissue. Thus, the large diameter biotin-GNP act as a

tumor-specific anchor to the small fluorescent particles. Perrault et al. analyze the

effects of this in-vivo method of fluorescence imaging versus a pre-assembled method

in which GNP-A750, a pre-assembled fluorescent particle, is injected. They find that

the method of in-vivo co-assembling particles yields rapid accumulation and more

effective tumor imaging.

There are many additional examples in the literature that show that self-assembly

can play a quintessential role in drug delivery via nanoparticle treatment. It is thus

imperative that self-assembly simulation mechanisms be devised to sufficiently model

this phenomenon, so that bioengineers are better able to predict the behavior of their

nanoparticle treatments.

2.2 Simulation

Computer simulations and mathematical models are useful in predicting the behavior

of nanoparticle treatments. Some of the most detailed simulations make calculations

and model interactions on individual atoms. While these simulations can be very
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accurate, they are infeasible for practical applications. Recent work has shown that

a few thousand processors can, in the span of a day, simulate systems containing 1

million particles (corresponding to 10 million atoms) for 100ns [101. This is impractical

for the needs of many bioengineers researching tumor environments, where simulations

must be able to predict behaviors of particles over 24 or 48 hours in a timely manner.

In order to allow for simulations to give feedback to bioengineers on their designs

in a timely and accurate manner, many molecule-to-molecule interactions (fluid dy-

namics, diffusion, cell binding and internalization, etc.) must be abstracted away

via mathematical relations. Much work has gone into creating mathematical mod-

els of tumor environments. For example, the kinetics of diffusion, tumor uptake,

and nanoparticle-receptor and tissue interactions have been studied and mechanisms

for stochastically simulating these devised [4, 3]. The ability for these models and

simulations to help bioengineers is shown in several examples in the literature.

Thurber et al. studied the distribution of antibodies in tumor environments [22].

They analyze the behavior of two types of antibodies and then compare the observed

behavior to that predicted by theoretical models. The theoretical models used proper-

ties of the antibodies such as diffusion coefficient, void fraction, and bivalent binding

to predict tumor distribution. They find the models to be validated by experimen-

tal results, and thus state that these models can help bioengineers optimize their

treatments.

Hauert et al. provide a notable example of using simulation and modelling to

guide nanoparticle design [6]. They work with both a deterministic and stochastic

computer model to determine strategies for increased tissue penetration and accumu-

lation of nanoparticles. The computer model is able to simulate nanoparticle potency,

diffusion, as well as binding and cell internalization kinetics. The models were able to

guide the bioengineers to a strategy of 'delayed binding' for nanoparticles that allows

for better tissue penetration and accumulation.

In a similar fashion, Wittrup et al. use mathematical models to optimize for

tumor uptake [24]. They take mathematical models for tumor uptake and tumor

clearance of nanoparticles, and analyze the relationships of these rates to particle

16



size. The optimum particle size for tumor uptake is found to be about the size of

Immunoglobulin G molecules.

Models and simulations can give bioengineers a better understanding of the ki-

netics of the biochemical system. Martinez-Veracoechea et al. show this benefit by

investigating observed 'super selectivity' of nanoparticles with multiple ligands bind-

ing to a surface with a certain concentration of receptors [13]. A model is constructed

which helps to show that the phenomenon is due to a nonlinear increase of ligand-

receptor binding arrangements. Moreover, methods for designing nanoparticles for

optimal binding are described. In addition to mathematical models, the group also

validates predictions with a stochastic simulation.

These examples show that simulation of diffusion, uptake, clearance, and cell

binding and internalization in tumor environments is well-studied in the literature.

However, simulation of self-assembling particles in tumor environments is not as de-

veloped. Examples in the literature of simulations of self-assembling particles often

simulate at the molecular stage and can do so for simulations of at most several

hundred nanoseconds [16, 8, 101. While these simulations are useful in providing

accurate representations of the atom-to-atom and molecule-to-molecule kinetics of

self-assembly of micelles, monolayers, diblock copolymers, and other structures, they

are impractical for bioengineers studying tumor environments, which require a time-

and space-scale several magnitutes larger.
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Chapter 3

Methods

3.1 Self-Assembly Simulation Requirements

We concretely define what capabilities any self-assembly simulation must have:

" Assembly: Particles or compounds A, B with matching receptors can bind to

form a new compound AB. This assembled compound can go on to bind with

other particles or compounds, as long as it has open and matching receptors.

" Disassembly: Conversely, an assembled compound AB can disassemble to

yield A and B.

* Emergence: An assembled compound may have different and emergent prop-

erties from any of its individual components. For example, a compound AB

will have a lower diffusion rate than either A or B, individually.

" Retainment: An assembled compound may retain some of the properties of

its individual components. For example, if A can individually bind to and

internalize in a cell, then so can compound AB.

19



3.2 SSC as a Simulation Tool

To simulate self-assembly we want to make as few assumptions as possible. For this

reason, stochastic simulations, which apply biochemical rules (like diffusion or bind-

ing) at probabilistically chosen time points that reflect the rule's specified propensity,

are best. The stochastic simulation compiler (SSC) is an open-source tool for creat-

ing exact stochastic simulations of biochemical reaction networks. It was created and

developed by Mieszko Lis with the Devadas lab [11]. We use SSC in our project as

the backbone to our self-assembly simulation mechanisms.

3.2.1 How SSC Works

The input to SSC is a high-level description of the reaction system. The reaction grid

is discretized into cubic subvolumes, regions. In the case of most of our simulations,

the reaction grid is a two-dimensional array of cells. This array of cells is discretized

into cubic regions, each holding one cell, which is either vessel, healthy tissue, or

cancerous tissue. SSC has the capacity to represent adjacent regions of the same type

as a single coalesced region.

Reactions and diffusion in SSC can be specifed as actions which alter compounds

of a region. These reactions and diffusions can be restricted to any subregion. In the

case of most of our simulations, nanoparticles are initially present only in vessels and

subsequently diffuse into tissue. Rules for diffusion into and through tissue are input

to SSC. Additionally, rules for binding to or internalizing in cells are implemented.

Each rule has an associated propensity. A propensity p associated with rule R means

that R is applied rougly once every 1/p seconds.

In order to create a simulator, SSC takes as input a rxn file which specifies the

regions, initial particles, and rule set. SSC first expands the set of present compounds

for each distinct region. It does so by applying the reaction rules to any possible

combination of substrates. This creates an expanded set of reachable compounds

and the reactions which yield these compounds. This expanded set is then used

to generate assembly code for a binary executable which simulates the biochemical

20



reaction system.

The generated binary can then take in a cf g file (a file including some simulation

parameters), simulate the system, and output the simulation to a separate file. The

binary simulates by summing all the propensities to yield P. At each step, an expo-

nential random variable r with mean 1/P is generated. The simulator moves forward

r seconds, picks a rule to apply at random (so that the probability of choosing rule

R is proportional to the propensity of R), and then applies that rule.

Appendix A includes an example rxn file and a corresponding example cf g file

for a simple 3 x 3 grid with two distinct particles that can bind to each other.

3.2.2 Performance of SSC

Before we devise effcient methods for simulating reaction networks, it is important to

better understand SSC and to single out specific simulation parameters that make SSC

performance faster or slower. Essentially, we must identify and isolate bottlenecks in

our methods of compiling and executing tumor scenarios.

To this end, we devised a basic simulation - a 10 x 10 grid of tumor cells (all

with receptor A) and one vessel cell located in the upper left corner of the grid. The

simulation injects 10,000 nanoparticles over 48 hours. The nanoparticles follow the

simple rules: binding to and internalizing in cells. Binding happens at propensity 1 x

10- and internalizing at propensity 1 x 10-. The nanoparticles diffuse at propensity

7.572 x 10-3.

With this basic simulation as a starting point, we varied the following parameters:

" Grid size.

" Number of nanoparticles.

* Number of reactions (x reactions means that instead of only A receptors, we

included A 1 ,... , Ax receptors on different cells).

" Diffusion rate.

21



For each variation of these parameters one at a time, we create two simulations -

one with coalescing (multiple neighboring and equivalent regions are merged into a

single region), and one without. The simulation length is set to 48 hours (172800

seconds). For each variation of the basic challenge, we compiled and executed the

binary 10 times, averaged the times, and analyzed the results. All time measurements

(throughout this project) were performed on the rous .mit . edu Linux cluster using

x86 architecture, 96 processing cores, and a 304GB RAM.

We find that compile time is mostly determined by the "complexity of the challenge

regions." Namely, the number of distinct regions (grid size) and the number of distinct

reactions determines compile time. Moreover, coalescing helps reduce the compile

time. This makes sense, because SSC compilation must expand the reaction rule set

for each defined region.

On the other hand, execute time is determined by the "number of things going

on." Specifically, the number of nanoparticles, the number of reactions, and diffusion

rate have a strong effect on execute time. Coalescing does not reduce execute time.

This makes sense, because these parameters contribute to the total propensity, and

the higher the total propensity, the more often the executable must stop to perform

a reaction.

Results of these experiments, including graphs of compile and execute times, are

shown in Appendix B.

Knowing the key parameters affecting performance helps us devise efficient meth-

ods for simulating challenges using self-assembly. Specifically, we come to realize that

performance of self-assembly using SSC is mostly a problem of compilation. That is,

the main issue of including self-assembly in simulations is that it drastically increases

the number of compounds SSC must expand during compilation. Reducing the num-

ber of compounds is a key step in gaining efficient methods for defining self-assembly.

22



3.3 Defining Self-Assembly

We devise two methods for defining self-assembly. They are best introduced in the

context of a scenario, so consider the following: A particle A can self-assemble with

itself linearly as well as with a particle B. The compounds formed in this scenario

are thus strings of A's with several B's attached, as shown in Figure 3-1.

Figure 3-1: Some of the possible compounds in our hypothetical scenario involving
particles A and B.

The first method for defining self-assembly in SSC is the natural method. It

follows the rule-based spirit of SSC to define self-assembly in the most natural way.

The scenario described would be thus defined by two rules:

A + A- A#A

A + B A#B.

This method is succinct and simple. Assembly and disassembly are easy to define us-

ing the # operator in SSC denoting binding. Emergence has to be defined specifically

for every compound, but retainment is given for free (SSC applies any rule for A to

any compound containing A). The downside of this method is that it can (and often)
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leads to exponentially many different compounds, each of which must be computed

by SSC. Specifically in our scenario, SSC will compute all E(2') possible strings of

A's and B's during compilation, where n is the limit on the length of the strings.

The second method for defining self-assembly in SSC is the precomputation method.

In this method, we treat a compound as a 'bag' of its components and their open

receptors, regardless of the specific structure. This method requires us to precompute

the possible compounds our scenario could yield and efficiently present them to SSC.

The scenario described would be defined by a number of rules of the form

COMP(A = a1 , B = b1) + COMP(A = a2 , B = b2 )

-+COMP(A = ai + a2 , B = b, + b 2 ). (3.1)

This method is unfortunately not as succinct and simple. Defining assembly and

disassembly requires precomputing all possible compounds. Emergent and retained

properties must also be defined for each precomputed compound. However, the ad-

vantage of this method is that it reduces the number of compounds that SSC needs

to consider. For example in our scenario, the number of distinct compounds is E(n2 ),

where n is the limit on the length of the string of particles.

We can analytically compute the number of distinct compounds in the general case

as well. Suppose we have a reaction with k distinct particles and we are interested in

how many compounds these particles can form with up to n particles. For the sake of

simplicity, assume that each particle can bind with each other particle and that there

is no limit on how many particles a single particle can bind. In addition, assume that

there exists at least one n-particle compound.

In the natural method, each compound essentially forms a graph structure, where

vertices represent particles and edges represent bindings between particles. A com-

pound corresponds to a specific graph with a specific vertex-particle configuration.

Thus, for each obtainable graph with 1 vertices, there are k' distinct compounds.

Therefore, if t(l) is the number of possible graphs that this particle set can yield on
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1 vertices (particles), the number of distinct compounds with up to n particles is

n

Nnat Zt(l)k > k".
l=1

In the precomputation method, a compound is simply represented by the number

of each particle component it has. Thus, the number of compounds with I particles

is (k-1k-1) < (1 + k)k-1. Therefore, the total number of distinct compounds with up

to n particles is

"lk- IN je ( k 1) (nk)k.

Now we have a lower bound on Nnat and an upper bound on Np,,e. We can treat

k as a constant, since applications of self-assembly in the literature rarely use more

than 5 - 6 distinct particles. Thus, we realize that Nnat is bounded below by an

exponential and Np,,e is bounded above by a polynomial in terms of the limit n. This

shows analytically that the number of compounds in the precomputation method is

polynomial, rather than the exponential number in the natural method.

600

500

400 ---

I-E
0 300 -+-Natural

-.-Precompu
E 200 -tation
0

100 - - - - -------- --

0
3 7 11 15 19 23

Limit

Figure 3-2: Self-assembly compile times using the natural method (blue diamonds)

and the precomputation method (red squares). The precomputation method is far

superior and can handle much higher expansion limits. Here, an expansion limit of

20 means that compilation resulted in compounds with up to 20 nanoparticles.
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Figure 3-2 shows the performance results of the natural and precomputation

methods on our example scenario. We see that the natural method becomes infeasible

to simulate beyond compounds of 7 particles while the precomputation method is able

to simulate compounds consisting of 20 or more particles in a reasonable amount of

time.

One might posit that while the precomputation method does exploit symmetry to

reduce the number of distinct compounds and results in a much smaller compilation

time, it may also lead to a new bottleneck: the precomputation step. While this

is a reasonable statement, it turns out to be false. Automatic precomputation can

be implemented efficiently using a series of 'combining' rounds in which each pair

of existing compounds is combined to form a new compound. Thus, in total, there

is only a polynomial number of pairs of compounds necessary to consider. Once we

implemented automatic precomputation (described in Section 3.5.2), we were able

to analyze the performance of precomputation and comfirmed that it is negligible

(< 0.01 seconds). Namely, Figure 4-2 exhibits this. Therefore, it is clear that the

precomputation method of expressing self-assembly is superior.

3.4 Recreating Laboratory Experiments

The precomputation method is able to fulfill our requirements for a self-assembly

simulation mechanism: assembly, disassembly, emergence, and retainment. Moreover,

we can reproduce laboratory experiments using this method. Specifically, we recreate

Perrault et al.'s experiments using in-vivo co-assembling particles to yield rapid and

efficient tumor imaging.

Recall that Perrault et al. initally inject large-diameter biotin-GNP and subse-

quently inject small-diameter fluorescent streptavidin. The streptavidin bind to the

biotin-GNP 'anchors,' thus localizing the fluorescent particles in the tumor tissue

[18]. This in-vivo assembly tumor-imaging method is compared against an injection

of pre-assembled fluorescent GNP-A750.

To recreate these experiments in our simulations, we model the tumor as a sphere
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with diameter 2 rtumor = 0.75cm, given by [18]. The volume of a mouse was estimated

as Vmouse = 20cm3 from a weight of 20g given in [14]. Cells are modeled as cubes

with side lengths s = 10pm. The volume of a cell is then Vcei = s'

Perrault et al. mention the injection amounts of biotin-GNP and GNP-A750 as

1 x 1012 particles, of which 0.72% accumulate in the tumor. To estimate the amount

of streptavidin reaching the tumor tissue, we calculated the total streptavidin injected

(2.5pM solution of 150pL) and multiplied this by the ratio Vumor/Vmouse, assuming

uniform distribution.

Simulating these experiments also requires knowing the binding rates. The biotin-

streptavidin dissociation rate is given by kd = 2.4 x 10-6s-1 [19]. The association rate

is then calculated as ka = - 1 where Kd= 4 x 10--4 M is the dissociationKd lO 3
.V.eIIA

constant [9] and A = 6.022 x 1023 is Avogadro's number. We are also given that

biotin-GNP can bind at most 500 streptavidin particles [18].

-Radii of particles are taken from [18]: rGNP = 37.5nm and rtrep = 3.5nm. The

compound formed by biotin-GNP bound to fluorescent streptavidin and the com-

pound GNP-A750 is calculated to have radius rGNP + 2 rstrep. The diffusion rates are

then calculated by the Stokes-Einstein equation [21].

The depletion rate of the small-diameter fluorescent streptavidin is calculated as

where d is the diffusion rate and L is the mean length of a discrete random walk in

a space of tumor volume Vumor and tumor surface area (envelope) Atumor. L - 4
Vtmpr

is given by Blanco et al. [1].

Therefore, our rule-set for the in-vivo assembly experiments is given by the ap-

propriate diffusion and depletion rules as well the assembly and disassembly' rules.

These rules are determined via the precomputation method as

GNP(strep = k) + strep at ka -+ GNP(strep = k + 1)

and

GNP(strep = k + 1) at (k + 1) - kd - GNP(strep = k) + strep,

where k ranges from 0 to 499. Note that for dissociation we multiply the base rate
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by k + 1. This is because there are k + 1 possible individual fluorescent strepta-

vidin complexes that can dissociate from the biotin-GNP. Each of these dissociates

at propensity kd and thus any one of them dissociates at propensity (k + 1) -kd.

The rule-set for the pre-assembled experiments is given simply by the diffusion of

GNP-A750.

The numerical simulation results and a comparison of these results with the results

of Perrault et al. is presented in Section 4.1.

3.5 Generalization

In order to make this efficient and realistic method of simulating self-assembly acces-

sible to bioengineers, we implemented it in NanoDoc. NanoDoc is a tool that provides

a nanoparticle treatment design interface for an SSC-based backend. NanoDoc pre-

viously was only able to simulate diffusion, cell-binding, and nanoparticle bind and

release. By implementing self-assembly capabilities, we hope that bioengineers and

the general public find it easier to develop promising tumor treatments.

3.5.1 NanoDoc

NanoDoc is the union of a user-friendly browser interface and a server with a database

and simulator. It aims to provide bioengineers with the capability to design tumor

scenarios, which they can then release to the crowd, so that ordinary users can de-

sign and simulate effective nanoparticle treatments. The website presents a series of

bioengineer-created challenges. A challenge is composed of a scenario, an arrange-

ment of cancerous and healthy cells in the tissue of a hypothetical patient, as well

as a mission and a fitness which define the objectives and measures of success (e.g.

killing all the tumor cells). The user must design a treatment, a specific assortment of

nanoparticles (agents) to be released into the patient's bloodstream, that adequately

fulfills the mission and fitness of the challenge.

Figure 3-3 is a simplified diagram of the whole system.
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Figure 3-3: The system design of the project. The user (bioengineer or player) only
sees the web-interface via their client's browser. The client communicates with the
NanoDoc database and the server which handles simulations using SSC.

Server-Side Components

NanoDoc's server acts to connect the user's browser to the database and SSC, the

simulator used for NanoDoc's user-defined treatments.

The web-interface relies on a centralized server to connect the user to the database.

The database stores information on the user, as well as the nanoparticles, treatments,

and challenges the user has already created. These data are sent to the browser to

be graphically represented.

The server is also the component which runs the simulations of treatments on

tumors. It does so by taking treatment and tumor scenario specifications from the

user's browser and then translating those into a format to be input to SSC. The input

to SSC is the collection of cancerous and healthy cells (specified by the challenge)

as well as the nanoparticles (specified by the treatment) and how they interact with

patient cells or each other via diffusion and binding. SSC returns the results of the

simulation, which are subsequently sent to the user's browser to be displayed graph-

ically. Figure 3-4 exhibits the steps the server takes to convert a user's treatment

data to an SSC simulation.
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Figure 3-4: The server takes in user data from clients, and uses it to write appropriate
rxn and cfg files which are then input to SSC.

User Experience

NanoDoc has an extensive user-interface built to educate and motivate the user to

build effective treatments. The most recent version of NanoDoc is currently available

at http: //nanodoc. org.

The web-interface initially introduces the user to the capabilities of the system

through a series of levels. Each level is composed of a challenge. The introductory

levels are designed to train the user on how to build effective treatments that respond

appropriately to a specific challenge. For example, the first levels show the user how

the size of a nanoparticle affects its rate of diffusion. Later levels show how the molec-

ular coat (sensor) surrounding a nanoparticle allows it to bind with different strengths

(affinities) to tumor cells. Subsequently, the concept of an effector, a molecule that

can be released by an agent upon specific triggering, is taught.

Once the user has passed these introductory levels, she will be able to tackle real-

life challenges designed by bioengineers. Bioengineers are designated special users

who may create a challenge which mimics a tumor scenario. Bioengineers can submit

their challenge to be released to the crowd.

Figure 3-5 shows a use-case diagram for the bioengineer. Note that a bioengineer

has all the capabilities of a normal user plus the ability to design and edit challenges.

The bioengineer may create a challenge, edit this challenge, and eventually submit

it to the crowd. Once it is submitted to the crowd, players will be able to create and

edit potential treatments for the challenge. A bioengineer designing a treatment may
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Figure 3-5: Use-case diagrams for bioengineers and players using the interface. Each
bubble shows a possible use of the interface.

simulate the treatment on the tumor challenge via applying the treatment. The orig-

inal bioengineer can track the crowd's progress on the challenge by looking through

the best treatments (pooled from the crowd). The bioengineer also has the ability to

send feedback to us, the developers.

Appendix C includes Figures C-1 to C-4 which are flow charts that exhibit the

intended work-flow.

3.5.2 Implementing Self-Assembly in Simulations

Figure 3-6 exhibits the steps we added to the server to convert a user's treatment data

to an SSC simulation. Note the addition of a coalescing stage, a precomputation stage,

and a traj parsing stage (simulating a coalesced scenario results in SSC outputting

a traj file with the simulation results).

The precompuation step is expanded further in Figure 3-7. The precomputation is

performed by repeatedly combining compounds to add to a working set of compounds.

The initial set of compounds is taken as the collection of agents in the treatment as

well as the cell receptors present in the scenario. A compound is represented as a
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Figure 3-6: The server takes in user data from clients, and uses it to write appropriate
rxn and cf g files which are then input to SSC.

list of components (agents, effectors, or cell receptors) and a list of open receptors

(unbound ligands). Note that there is no sense of structure in this representation.

Also, there are possibly many distinct formations of the same compound.

Agent data Challenge data Treatment data

For each pair of compounds Compounds

-- > Compound A

For each receptor
a on A, b on B

Compound B

New compound

If receptors a and b A +B

have matching codes

Figure 3-7: Precomputation of compounds.

In each combining round, every pair of compounds A, B is chosen. After checking

that A and B have not been combined already, we check if A and B have matching

open receptors (that is, A and B can bind to each other). For each receptor a on
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A matching a receptor b on B, we combine A and B via binding a ++ b to yield

compound C. If this compound is new, we add it to the working set. We also store

the reaction A + B ++ C.

We set the association propensity (A + B -* C) to

f(a, b) - (# of receptors of type a on A)(# of receptors of type b on B).

The function f(a, b) is based on the user-defined strengths of a and b. This accounts

for the fact that the binding of A and B via a and b can be made via any pair of a

on A and b on B.

We set the dissociation propensity (A + B <- C) to

g(a, b) - (# of ways C decomposes to A + B).

For example, if B is an agent X bound to 10 agents Y and A is a single agent Y,

then C is an agent X with 11 agents Y. The number of ways that C decomposes to

A + B is 11. The function g(a, b) is a function of the receptors a and b. In NanoDoc

this function is constant g(a, b) = 0.0001.1 This calculation accounts for the multiple

ways in which a compound can break down into its components.

The precomputation is completed when either no new compounds are formed in

the combining step or the total number of compounds exceeds a predefined limit.

As an example, consider a precomputation initialized with two particles X and

Y, each with two ligands that match (so X, Y self-assemble to form line-shaped com-

pounds of the form XkYkii). Then the initial set of compounds is Co = {X1 Yo, XoYi}.

in the first combining round, we find one reaction yielding a new compound:

X 1Yo + XoY1 ++ X1Yi.

The set of compounds becomes C, = {X 1 Yo, XoY1, XY} (note that the structurally-

'In a more accurate system, this dissociation propensity would rather be a function of an exper-
imentally established KD dissociation constant. However, in NanoDoc there is as of yet no way for
user-defined dissociation constants, and so this approximation was necessary [7].
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distinct compounds XY, YX are both equivalent to X1 Y1 ).

In the second combining round, we find three reactions yielding new compounds:

X1Yo + X1 y 1  X 2Y,

XoY1 + X1Y1 ++X1 Y 2,

and

X 1 Y1 +X 1 Y1 + X 2Y2 -

The set of compounds becomes C2 = {X1 Yo, XoY, X1Y, X2Y1 , X1 Y2 , X2Y2 }. These

rounds continue, and will be terminated when the set of compounds exceeds the

predefined limit.

Once the precomputation step is done, the server generates the rxn and cfg files.

Specifically, for each reaction stored from the precomputation step, we write the

corresponding assembly and disassembly reactions. Subsequently, we go through each

compound. For each compound A we check it for any retained properties (specifically,

internalization or bind and release) and write the appropriate reactions to file.

For each compound A we also need to compute its diffusion propensity. Knowing

the diffusion requires knowing the size or radius of the compound. Since we do

not have any structural information regarding the formation of the compound, we

estimate the radius assuming a spherical compound. Specifically, we compute the

volume of the compound by summing the volumes of its components and then solve

for the radius. Using this estimated radius, the diffusion propensity is calculated via

the Stokes-Einstein equation [21].

We also include in the new server options for particle depletion. This is meant to

simulate the fact that particles in the tumor tissue eventually diffuse out of the tumor

and are eliminated by the body. The rate of depletion of a particle was calculated as

T where d is the diffusion rate and L is the mean length of a discrete random walk

in a space of tumor volume V and tumor surface area (envelope) A. L = L is given

in [1].
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Note that our server has the capability to express assembly, disassembly, emergent

properties (diffusion), and retained properties (internalization, bind and release), as

desired.

3.5.3 Implementing Self-Assembly in the User Interface

NanoDoc's user interface was updated to allow players to define self-assembly in

their treatments. We updated the user controls to allow specifying a number of

binders on agents' sensors. Also, to help players better design treatments using

nanoparticle self-assembly we implemented an informational window which appears

when a player hovers over a sensor or effector. This informational window shows

information regarding the molecule's parameters as well as a list of other agents or

cell receptors for which the molecule has matching receptors. Figure 3-8 shows an

example of this informational window. We intend this to be a valuable feature for

players to efficiently design self-assembling nanoparticle treatments.

Nano

Sensor: C
Strength: 91

Number of binders: 2

Binds to
NanoA
Nano__B

0Effector
Cell *

Figure 3-8: The informational window visible to the player when hovering over an
agent's sensor. The window contains a list of molecules and cells to which the sensor
can bind.

NanoDoc players often use trial and error when designing their treatments. For

this reason, it is important that the graphical representation they see of their treat-

ment give useful feedback. Thus, we implemented a similar informational window for

when the player hovers over a cellular region in the simulation. The window lists and
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shows a graphical representation of the molecules and compounds external and inter-

nal to the cell. Graphical representations of compounds (multiple particles bound via

self-assembly) show their components (agents or molecules) as well as the number of

each component. Figure 3-9 shows an example of this informational window.

Figure 3-9: The informational window visible to the player when
a cellular region during simulation. The window contains a list
compounds internal and external to the cell.

hovering over an
of molecules and
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Chapter 4

Results

4.1 Recreating Laboratory Experiments

Perrault et al. describe a method for imaging tumors in mice via accumulation of

self-assembling fluorescent particles [18]. The key to their method is to inject a large

diameter biotin-GNP (gold nanoparticle coated with biotin), that accumulates in the

tumor tissue over 24 hours. Subsequently, small diameter fluorescent streptavidin

are injected. These particles distribute fast due to their small diameter. Biotin and

streptavidin have a high binding affinity, causing the fluorescent particles to stick to

the biotin-GNP, yielding high fluorescence in the tumor tissue. Perrault et al. analyze

the effects of this in-vivo method of fluorescence imaging versus a pre-assembled

method in which GNP-A750, a pre-assembled fluorescent particle, is injected.

We recreated these experiments using our devised precomputation method for

simulating self-assembly. Figure 4-1 shows the results of our simulations as well as

the results presented by Perrault et al.

Figures 4-lA and 4-1C are results taken from Perrault et al. [18]. Figure 4-1A

shows the net (tumor minus body) fluorescence over a 24 hour period. This 24 hour

period corresponds to the time after fluorescent streptavidin was injected in the in-

vivo experiment, or after GNP-A750 was injected in the pre-assembled experiment.

Perrault et al. note that while the two fluorescence signals reach a roughly equal level

after 24 hours, the in-vivo fluorescence signals are much quicker and more efficient at
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Figure 4-1: Results from Perrault's experiments are shown in A and C [18]. The anal-
ogous results from our NanoDoc simulations are shown in B and D. In all graphs, red
represents the in-vivo assembly experiments and yellow represents the pre-assembled
experiments.
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reaching this fluorescence level. After approximately 4 hours, the in-vivo experiment

reaches a fluorescence level that the pre-assembled experiment takes 24 hours to reach.

Figure 4-1B shows the corresponding results from our NanoDoc simulations. It

shows the number of fluorescent markers (bound to biotin-GNP or unbound and in

the extravascular tissue) over a 24 hour period. We note the similarities between

our simulation and Perrault's experiments: Namely, that both the in-vivo and the

pre-assembled experiments reach an equal level of fluorescence after 24 hours. The

pre-assembled fluorescence reaches this fluorescence in a linear fashion, as seen in

Perrault's results. The simulations of the in-vivo experiment however reach a spike in

fluorescence at 4 hours and subsequently decrease slightly, as also seen in Perrault's

results. We can attribute this decrease to depletion of small-diameter fluorescent

streptavidin from the tumor tissue.

Figures 4-1C and 4-1D show the 'area under the curve' for Figures 4-1A and

4-1B, respectively. Perrault's results in Figure 4-1C shows a rough 2-3x difference

between the in-vivo and pre-assembled experiments. Our simulation's results in Fig-

ure 4-1D show a similar 2x difference. Therefore, our simulation of Perrault et al.'s

experiments yield results with similar characteristics.

We note that our simulations are much faster than experiments in the labora-

tory, while achieving similar characteristics. Laboratory experiments can take days

or weeks to complete, while these simulations took approximately 10 minutes to run.

Therefore, a bioengineer can quickly analyze the results of simulations of experiments,

before taking the time to perform the laboratory experiment. Of course, while sim-

ulation results will not always be accurate and should not be used as a definitive

experiment result, it is still possible to use simulations as a proof-of-concept or a

trial-and-error period before verifying results with laboratory experiments.

4.2 Performance Improvements

We analyzed the performance of our new server, first gauging it on simulations that

the original server could also handle, and then gauging it on simulations utilizing
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self-assembly.

4.2.1 Comparisons With Original Server

We compared the performance of the new NanoDoc server with the old version. We

devised two scenarios to measure performance. Scenario A is a 10 x 10 grid of cells

of three distinct receptor types. We simulated the injection of 30,000 cell-binding

nanoparticles over 48 hours on this scenario. Scenario B is a 10 x 10 grid of cells of

only one receptor type. We simulated the injection of 10,000 nanoparticles of type

X and 10,000 nanoparticles of type Y over 48 hours. Type X nanoparticles were

designed to bind to type Y nanoparticles, which then induced a release of an effector.

These scenarios were designed to encompass all the simulating capabilities of the old

server.

Figures 4-2 and 4-3 show the generation times and compilation times of the old

server and the new server on the two scenarios. Each simulation was run 10 times

on each server. The average of the generation and compilation times is shown in the

figures.

Generation time is the time it takes to generate the rxn and cf g files. In the new

server, this includes the precomputation step. Note that generation is very fast for

both servers (< 0.01 seconds), showing that precomputation is not a computation-

intensive step.

Compilation time measures the time SSC takes to compile the rxn file. The new

server performs better on both scenarios. We can attribute some of the speed-up in

Scenario B to precomputation, since it includes some particle-to-particle interaction.

However, Scenario A contains no particle-to-particle interaction, so most of its speed

up is most likely due to coalescing.

Rewriting several components of the server inevitably led to several changes to

reaction propensities (e.g. slightly different diffusion calculations and association

rates). For this reason, we do not include a comparison of execution times. However,

as we show in the subsequent section, execution times are usually not time-intensive

on the new server.
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Figure 4-2: Generation times (time to generation rxn and cf g files) for the old and
new servers. Each scenario on each server was generated 10 times. The average of

those times is shown in here. Both servers have comparable and very small (< 0.01
seconds) generation times.
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Figure 4-3: Compilation times (time for SSC to compile rxn file) for the old and new
servers. Each scenario on each server was compiled 10 times. The average of those
times is shown in here. The new server performs better in both scenarios.
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4.2.2 Simulations With Self-Assembly

We gauged the new server's capabilities to simulate self-assembling particles. We

tested simulations on a scenario of 10 x 10 cell grid. First, we tested simulations

of 2,000 line-assembling nanoparticles (two types of nanoparticles with matching re-

ceptors, each receptor has two ligands). Then we tested simulations of 2,000 mesh-

assembling nanoparticles (two types of nanoparticles with matching receptors, each

receptor has 5 ligands).

These simulations were run on the new server with various expansion limits. Each

simulation on each expansion limit was run 10 times and the resulting generation,

compilation, and execution times were averaged. The results of these tests are shown

in Figures 4-4 and 4-5. In both simulations generation time is negligible. This shows

that even when self-assembly is a large component of the simulation, precomputation

is not a time-intensive step. Also note that execution time is never a considerable

part of the overall time. It is usually only a fraction of compilation time.

Compilation time only becomes impractical for NanoDoc players once the expan-

sion limit exceeds 30. Thus, we can expect to simulate up to expansion limit 30,

which corresponds to lines with up to 18 nanoparticles in line-assembly and meshes

with up to 16 nanoparticles in mesh-assembly. Note that this means that our line-

assembling simulation has similar compilation times to those shown in 3-2, and thus

the implementation of precomputation in our server matches the performance we

expect.

4.3 Self-Assembly Crowd Challenges

To introduce NanoDoc's new self-assembly capabilities to players, we introduced a

challenge shown in Figure 4-6.

The challenge takes inspiration from the tumor imaging experiments of Perrault

et al. Players are presented with a 10 x 10 grid of cells with a single vessel in the upper

left corner. The cells are distinguished between tumor cells located near the vessel

and healthy tissue cells located far from the vessel. Unlike all previous challenges,

42



-Generation
-a-Compilation
- Execution

10 20 30 60

Limit

Figure 4-4: Generation (blue diamond), compilation (red square), and execution
(green triangle) times for line-assembling nanoparticles. Here, the expansion limit
refers to the total number of compounds produced. Thus an expansion limit of 30
corresponds to compounds with up to 18 nanoparticles in a line.
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Figure 4-5: Generation (blue diamond), compilation (red square), and execution
(green triangle) times for mesh-assembling nanoparticles. Here, the expansion limit
refers to the total number of compounds produced. Thus an expansion limit of 30
corresponds to compounds with up to 16 nanoparticles in a mesh.
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Figure 4-6: The results of a simulated treatment on the new challenge. The number
in the lower right corner shows the net accumulation.
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which require the player to kill as many tumor cells and save as many healthy cells

as possible, we instead tasked the player with achieving a high net accumulation of

particles in the tumor tissue. That is, we count the total number of particles in the

tumor tissue and subtract the total number of particles in the healthy tissue. This

net accumulation is shown in the lower right corner of the simulation. We maintain

a leaderboard of best accumulations on the website.
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Chapter 5

Discussion and Conclusion

Nanoparticle treatments are becoming increasingly common in drug-delivery or imag-

ing applications for tumors. Nanoparticles' ability to interact with their environment

via binding and diffusion as well as interact with each other via self-assembly is the

key to their effectiveness. However, predicting behavior and dynamics of nanoparticle

systems is difficult. For this reason, simulation mechanisms like NanoDoc, an online

game to crowdsource nanomedicine, have been created. For NanoDoc to be used

effectively, it is imperative that simulations be fast, comprehensive, and accurate.

Through this project, we significantly expanded NanoDoc's abilities to quickly and

accurately simulate self-assembly of nanoparticle treatments in tumor environments

using a precomputation method. This method precomputes possible compounds by

repeatedly combining nanoparticles with each other. We found that this method

resulted in much better performance, both analytically - the number of compounds

is reduced from an exponential number to a polynomial number - and empirically -

compilation times of example scenarios show corresponding improvements.

We then aimed to show that self-assembly simulated via precomputation can cap-

ture experimental results. To this end, we recreated laboratory experiments by Per-

rault et al. highlighting in-vivo assembly of nanoparticles for tumor imaging appli-

cations. The results of the simulations are similar to results of Perrault's laboratory

experiments, giving credibility to our simulation methods.

We implemented the precomputation method in NanoDoc's server so that Nan-
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oDoc is now able to simulate line-assembling and mesh-assembling particles with

compounds of up to 16 and 18 nanoparticles, respectively, in a practical amount of

time (less than 2 minutes to generate, compile, and execute each simulation). We

made corresponding updates to NanoDoc's user interface, including mechanisms for

defining multiple binding sites and visual representations of self-assembly. These up-

dates aim to help players design nanoparticles and to give them feedback on their

simulations. Then, to entice players to use self-assembly in their treatments we cre-

ated a challenge which encourages them to create self-assembling particles that can

efficiently accumulate in tumor tissue.

We hope that NanoDoc's new capabilities will act to empower bioengineers to

improve and more efficiently design nanoparticle treatments. In the future, we intend

to further expand NanoDoc's self-assembly simulating capabilities. For example, self-

assembling particles in NanoDoc only exhibit emergent properties of diffusion and

retained properties of cell-binding. There are many more possible properties to be

simulated (e.g. charge, light absorption) that can play a role. Additionally, triggers for

self-assembly should also be implemented in simulations (e.g. heat- or light-triggered

self-assembly). We also believe self-assembly simulations can be made faster. It may

be possible to pre-compile scenarios so that simulation time does not rely on compile

time.
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Appendix A

SSC Code Examples

1 region vessel_0_0 move 0 0 0 box width
2

3

4

5

6

7

8

9

region
region
region
region
region
region
region
region

cell_0_1
cell_0_2
cellO1-0
cell1_1
cell1_2
cell_2_0
cell2-1
cell2_2

move
move
move
move
move
move
move
move

0
0
1
1
1
2
2
2

0
0
0
0
0
0
0
0

box width
box width
box width
box width
box width
box width
box width
box width

1 height 1 depth 1
height 1 depth 1
height 1 depth 1
height 1 depth 1
height 1 depth 1
height 1 depth 1
height 1 depth 1
height 1 depth 1
height 1 depth 1

10 subvolume edge 1

new A at NumA in vesseL0_0
new B at NumB in vesseL0_0

diffusion A at DiffA
diffusion B at DiffB
diffusion A(ligand#1) B(ligand#1) at DiffAB

rxn x:A(ligand#) y:B(ligand#) at AtoBrate -> x.ligand # y.ligand

limit at 3
record all

Figure A-1: An example rxn file for SSC. The file defines a 3 x 3 grid of cells, with
vessel in the top left corner. Nanoparticles A and B are defined, which can react to
form compound AB.
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1 NumA = 1000
2 NumB = 1000
3

4 DiffA = 0.02
5 DiffB = 0.03
6 DiffAB = 0.04
7

8 AtoBrate = 0.1

Figure A-2: An example cfg file for SSC. The file provides parameter values for the
the variables introduced in the rxn file.
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Appendix B

SSC Performance Graphs

The following figures present the performance results of SSC on the basic simulation

described in Section 3.2.2. The figures correspond to performance measures averaged

over 10 simulations. Figures contain error bars measuring the standard deviation,

although often standard deviation is too small to be noticable.
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Figure B-1: Compile time of basic scenario against grid size. A 20
responds to a 20 x 20 grid. The relation between compile time and
is roughly quadratic (linear with the number of regions).

on the x-axis cor-
grid length/width

51



300

E
E

1

E
0

50

00

50

00

0

Number of Reactions

Figure B-2: Compile time of basic scenario against number of reactions (x reactions
means that instead of only A receptors, we included A 1, ... , A, receptors on different
cells, and allowed each nanoparticle to bind to any receptor). We see a roughly
exponential relationship. This is due to the fact that when a nanoparticle can bind to
x different receptors, SSC computes every possible binding of those receptors (each
receptor is either bound or unbound, so 2x distinct possibilities).
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Figure B-3: Execute time of basic scenario against number of particles. We see a
roughly linear relationship. This is expected since the more particles, the more rules
the simulator must apply during execution.
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Figure B-4: Execute time of basic scenario against diffusion rate. We see a roughly
linear relationship. This is expected, as the diffusion rate increases the total propen-
sity, and thus the number of rules the simulator must execute, in a linear fashion.
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Figure B-5: Execute time of basic scenario against number of reactions. We see a
roughly linear relationship. Again, as the number of reactions increases the total
propensity, and thus the number of rules the simulator must execute, in a linear
fashion. i
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Figure B-7: Compile time of basic scenario against number of reactions with coalesc-
ing and without. Coalescing gives a modest performance improvement.
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Appendix C

Flow Diagrams

Creating a new challenge

~Use existing
Genwric template challenge as

template

Specify name

dimensions Specify name desctiption, specify
FiueCo f atingdescription,

Figure C-1: The work-flow for creating a new challenge.
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Editting a challenge

Figure C-2: The work-flow for creating editing challenge.

Figure C-3: The work-flow for creating and editing a treatment. Note that the
individual nanoparticles are created and then added to a treatment, which is later
applied to the tumor challenge.

56

Edit calls Edit attrlb

Select miode Marnrnr e

Select a region Click on a
via drng SigecnSic o Ei

to SplY to letal In% lethal
region via out via pop-up

aingleclick editor

Creating and editting a treatment

Cret naN Crd now

W j 1nd~u& 
Inlude Edit code

Edit nams, action 1 ffc*r9ensor

sum

Delete Charge Change
go narmchallon dlimmolons

Treatment Simulation,

Ijeck tau

agenreatmnt

treeu t

Edit



Figure C-4: The work-flow for a bioengineer looking through the best treatments
produced by the crowd.
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