
LINKED DATA PLATFORM FOR WEB APPLICATIONS

by

JOE PRESBREY

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

Copyright @ 2014 Joe Presbrey.

MASSACHUSETTS INST TrE
OF TECHNOLOGY

JUL 15 2014

LIBRARIES

The author hereby grants to M.I.T. permission to reproduce and distribute publicly
paper and electronic copies of this thesis and to grant others the right to do so.

Signature redacted
Author

Department of Ele trical E Tin4 and Computer Science
May 23, 2014

Signature redacted
C ertified b y ..

Tim Berners-Lee
Professor

Thesis Supervisor

Signature redacted
A ccepted by

Albert R. Meyer
Cl man, Masters of Engineering Thesis Committee

2

LINKED DATA PLATFORM FOR WEB APPLICATIONS

by

JOE PRESBREY

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2014, in partial fulfillment of the

requirements for the degree of
MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Abstract

Most of today's web applications are tightly coupled to proprietary server backends
that store and control all user data. This thesis presents Linked Data as a decen-
tralized web app platform, eliminating vendor lock-in, and separating user data from
web apps giving users control over their data and where it's stored, independent of
choice of application. Linked Data architecture replaces traditional app-data silos
with a universal integration platform using global identifiers, shared ontologies, and
a scalable, standardized data model. We provide 3 interoperable Linked Data server
implementations in PHP, Python, and Go, and evaluate their performance. Tra-
ditional filesystems and relational databases have been integrated, and several new
decentralized web apps have been developed for the platform. As of May 2014, world-
wide open source community members are using and contributing to these compatible
apps and servers, and the design continues to be refined and standardized at the W3C.

All code available at: https: //github. com/linkeddata

Thesis Supervisor: Tim Berners-Lee
Title: Professor

3

4

Acknowledgments

I thank Tim Berners-Lee for his designs for this project and invaluable advice. I also

thank Alexandre Bertails, Melvin Carvalho, Sandro Hawke, Anne Hunter, Lalana

Kagal, Eric Prud'hommeaux, and Andrei Sambra for their collaboration and sup-

port. Finally, I thank the MIT SIPB and CSAIL TIG for providing open, scalable

computing resources for our community.

5

6

Contents

1 Introduction 9

2 Background 13

2.1 WebDAV. 14

2.2 Linked Data 15

3 Design 17

3.1 Querying. 18

3.2 U pdates . 20

3.3 Security . 21

4 Implementation 23

4.1 ldphp . 25

4 .2 ld py . 25

4 .3 gold . 26

5 Performance 27

5.1 Methodology . 27

5.2 R esults . 28

6 Applications 35

6 .1 rdflib .js . 35

6.2 Tabulator . 36

6.3 C alendar . 37

7

6.4 Microblog 38

6.5 Spreadsheet . 38

6.6 V oting . 38

6.7 mod authn webid . 38

6.8 WebID.MIT.EDU .. 41

7 Related Work 43

7.1 API Management . 43

7.2 unhosted.org .. 44

8 Conclusions and Future Work 45

9 Appendix 51

8

Chapter 1

Introduction

Linked Data practices have already been widely successful in mass integration of

bulk datasets. Wikipedia can be mined with semantic queries across any number of

domains [3]. High volume commercial retailers embed metadata in product pages to

enrich consumers search and shopping experience [1]. Several prominent governments

are using Linked Data to improve the data integration workflows, by avoiding having

to deal with huge diversity of APIs [11]. This also increases the transparency of the

government and utility of the system.

In practice, its success is primarily related to the robustness principle [34]: be

flexible in what you accept, strict in what you produce. In the context of Linked

Data, the guidelines are simple enough to fit on a coffee mug (Figure 1-1). These

practices facilitate optimistic interoperability at web scale: just as most web pages

will render in any web browser, we want all data to be considered in any query. Web

App developers are typically lenient with user input, but strict in production and

expectation of their backend APIs and databases.

The directory of Web APIs maintained at ProgrammableWeb.com has grown lIx

from 2009 to 2013 (Figure 1-2). Though LODStats reports 61 billion triples across

928 Linked Data datasets [2], no one has been able to count the data contained across

the thousands of Web APIs. Integration of a single Web API into a Web App requires

significant programmer involvement. Without basic compatibility insofar as to even

count siloed data, its not likely that decisions based on a cohesive knowledge across so

9

Figure 1-1: Linked Data Best Practices

Growth In
APIs Since

Web
2005

Figure 1-2: Web API growth - programmableweb.com

10

many disparate, proprietary sources will ever be possible. Therefore, an opportunity

exists to improve this situation using a new architecture.

The inventor of the Web, Tim Berners-Lee (TimBL), has described the neccessary

design elements over decades of web architecture development [5]. We refer to the

composition of his designs as the Linked Data Platform (LDP). This architecture ends

proliferation of proprietary Web APIs, by separating applications from data across a

standardized HTTP API. Users of these applications wield more highly enriched and

interlinked databases than that of any Web API, while retaining control of their own

data, and freedom from vendor lock-in.

The contribution of this thesis is the creation and evaluation of three implemen-

tations of TimBL's designs. The rest of this paper is organized as follows: Chapter 2

presents technology and research background for Chapter 3, the design for the Linked

Data Platform. Chapter 4 describes implementation considerations. Chapter 5 doc-

uments our benchmarks and tests of the systems. Chapter 6 describes web apps

developed for the platform. Chapter 7 relates previous work, and Chapter 8 summa-

rizes our conclusions and future work.

11

12

Chapter 2

Background

MIT has supported my excitement about developing web apps and data services in

several ways over the past decade.

Shortly after I arrived at MIT as an undergraduate, I created sql. mit. edu, the

first and foremost campus-wide MySQL service, hosting web app databases for over

5000 courses, faculty, students, and other groups, with support and hardware gener-

ously provided by the MIT Student Information Processing Group. The MIT SIPB

SQL service primarily supports users of another service I co-created with MIT SIPB

member Jeff Arnold, scripts. mit. edu. This service is open and free to the entire

MIT community and is the leading web app hosting infrastructure on campus.

Next, MIT Information Services and Technology hired me to create a web-accessible

gateway to AFS, MIT's officially supported networked filesystem. They chose the

WebDAV protocol, described below in Section 2.1, the predominant protocol for re-

motely publishing and managing web documents at that time.

Finally, I met Professor Tim Berners-Lee (TimBL), inventor of the World Wide

Web. His ideas and designs for web architecture immeasurably expanded my un-

derstanding of the practice and potential of web standards, apps, databases, and

engineering. Section 2.2 below describes his foundations for the work of this thesis,

Linked Data.

13

2.1 WebDAV

The WebDA V protocol1 extends the HTTP protocol2 to provide methods for collabora-

tive content authoring among remote clients on the web. Many web content publishing

services allow WebDAV for various uses such as online storage and backup like Apple's

iDisk and collaborative calendaring like the CalDAV interface to Google Calendars.

Its also common for a webmaster to use WebDAV to upload files and publish modifi-

cations to their website. Client support for the protocol is built into widely-deployed

interfaces including Mac OS X Finder, Microsoft Web Folders, Adobe Dreamweaver,

and many others. An Apache module called mod_ dav implements server support

for the protocol and provides the WebDAV filesystem store used in this project. Ta-

ble 2.1 lists the methods handled by the module provided by the HTTP and WebDAV

specifications respectively.

Specification Methods
HTTP OPTIONS, GET, PUT, DELETE
WebDAV COPY, MOVE, MKCOL, LOCK, UNLOCK, PROPFIND, PROPPATCH

Table 2.1: HTTP Methods handled by mod_ dav

For example, the PUT method can be used to upload a file by sending:

PUT /uploads/newifile.txt HTTP/1.1

to a WebDAV-enabled HTTP server with the file contents in the HTTP request body.

Data payload format is not part of the WebDAV standard. Understanding original

document varieties, and formulating compatible patched documents, is burdensome

on the clients and users. Additionally, minor changes to a single document require

republishing the entire resource, and coarse-grained locking of the resource for con-

current updates.

1http: //www. ietf . org/rf c/rf c4918.txt
2 http: //www. ietf .org/rf c/rfc2616.txt

14

f

}

"@context": {
"name": "http://xmlns.com/foaf/0.1/name",
"homepage": f

"@id": "http://xmlns.com/foaf/0.1/homepage",
"etype": "@id"

}

"homepage": "http://presbrey.mit.edu/",
"name": "Joe Preabrey"

Figure 2-1: Example of JSON Linked Data (JSON-LD)

2.2 Linked Data

Linked Data is derived from the Semantic Web, an online graph of machine-readable

data published in a shared document format, eg. JSON3 (see Figure 2-1) or N34 .

Documents expressing data in any number of shared vocabularies are published at

universally resolvable, interlinked URIs producing Linked Data representing a shared,

structured graph of knowledge. Prefixes are used to abbreviate common URI paths

and can be dereferenced by substituting the associated URI. (Vocabularies used in

this project are shown in Table 2.2). A query language called SPARQL' is used to

query Linked Data across diverse sources and formats.

prefix URI
acl: http://www.w3.org/ns/auth/acl#
cert: http://www.w3.org/ns/auth/cert#
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3. org/2000/01/rdf-schema#
rsa: http://www.w3.org/ns/auth/rsa#
stat: http://www.w3.org/ns/posix/stat#

Table 2.2: Common Namespace Definitions

3http://json-ld.org/

4http://www.w3.org/DesignIssues/Notation3
5http://www.w3.org/TR/rdf-sparql-query/

15

16

Chapter 3

Design

This project's design is the result of decades of web architecture development by Tim

Berners-Lee, the inventor of the World Wide Web [5]:

AApp

rooosHTP + RDF. +BPAROL + WOWi + ACL Oif

d-ond /
read-we

~ Zr"
Figure 3-1: Linked Data Platform Design

The Linked Data Platform is a RESTful HTTP service like many other Web APIs

today. But instead of arbitrarily structured JSON [8], all data exchanged between

peers is modeled using W3C Linked Data standards as shown in Figure 3-1. RDF

resources (documents and graphs) accumulate triples like relational database tables

accumulate rows.

Most components are recommendations (or prospective) of W3C, or RFCs from

IETF, composed with general web and unix principles. Since much of this project

17

Pubk
APP

DOW
pubft MY

is now part of active consensus processes, specifics of the platform such as protocols

and formats may evolve after this thesis is published.

The platform is a client-server system, in which the servers are commodity HTTP

servers, but enhanced using the features described in the following three sections:

Querying, Updates, and Security. See also Tables 3.1, 3.2, and 3.3 for implementation

comparisons.

3.1 Querying

Content Negotiation

Linked Data resources on the web do not need filename extensions seen in

conventional filesystems. Clients tell the server how to respond with Linked

Data resources using the standard HTTP Accept header [6], eg.

GET /joe/profile HTTP/1.1

Accept: text/turtle

JSON, Turtle, and even XML are standard formats. The standard HTTP

Content-Type header confirms formats returned from servers to clients, and

allows clients to hint the format of submitted data. Consistent with the robust-

ness principle, our servers will also guess if the format looks like an understood

standard, eg. Turtle:

<joe#profile> foaf:name "Joe Presbrey".

Directory Listings

Web servers traditionally provide directory indexes for resources meant to be

browsed or discovered, but these vary by server. LDP implementations facilitate

discovery of resources by new integrators, and assist returning contributors by

using Linked Data to generate listings for any collection (directory) of resources

allowed for access by the agent. When backed by a posix-like filesystem, the

data contain stat metadata from the filesystem using an ontology I contributed:

http://www.w3.org/ns/posix/stat, eg.

18

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix stat: <http://www.w3.org/ns/posix/stat#>

@prefix ldp: <http://www.w3.org/ns/ldp#>

<> a ldp:BasicContainer, stat:Directory

ldp:contains <sunset.jpg>

<sunset . jpg>
a stat:File

stat:mtime "1398984524"
stat:size "523020".

Query String Filters

A developer often needs just one or a couple fields from a record. We make this

easy by allowing query parameters to filter triples returned from a resource. For

example,

GET //host/users/tim/profile?p=foaf :name,f oaf: img HTTP/1.1

will return only names and photos in Tim's profile.

Resource Globbing

The utility of globbing is often demonstrated in command-line development.

For example, a coarse search for images in group HTML profiles might look

like:

grep "<img" groups/*/index.html

A similar but more exact, semantic query over Linked Data:

GET //host/groups/*/profile?p=foaf:img HTTP/1.1

Following the parameters of the URI in the request above, the server first accu-

mulates graphs matching the URI globbing pattern, and then filters triples by

the predicate specified, foaf:img in this case, finally returning eg.

@prefix foaf: <http://xmlns.com/foaf/0.1/>

</groups/chess/profile> foaf:img <team.jpg>
</groups/crew/profile> f oaf: img <regatta2014.jpg>

This functionality has not yet been addressed in standardization work.

19

SPARQL Queries

For more complex queries, we implement W3C's standardized SQL-like query

interface for RDF: SPARQL [24]. Like all RDF on the server, SPARQL results

are available in JSON, CSV, and other standard formats. Instead of SQL fields

and values, SPARQL uses graph patterns to match RDF models. An example

SPARQL query request follows:

POST /users/tim/profile HTTP/1.1
Content-Type: application/sparql-query
Accept: application/sparql-results+j son
SELECT ?types { ?g rdf:type ?types }

3.2 Updates

LDP differs fundamentally from most existing HTTP based data services in that it

provides efficient update of RDF resource data in real-time. The following features

provide that functionality.

Entity Tags + If-Match

Originally designed for cache control [7], standard HTTP headers E-Tag, If -Match,

If -None-Match are used during updates for concurrency control. When writ-

ing iterative updates to a resource, the previous E-Tag provided by a server

is reissued with the client's next request to assure the resource has not had

intermediate, possibly conflicting changes by other clients.

PUT, POST

Clients use a PUT request to create or overwrite a resource with the data given

in the request body. The standard header If-None-Match: * is available

to prevent clobbering. POST instructs the server to always append the data

instead of create/overwrite.

PATCH

The HTTP PATCH [9] method partially updates a resource with new object

20

data for any subject+predicate triples mentioned in the request body. Existing

objects for unmentioned subject +predicates remain unchanged. For example,

the following request reflects a user updating their password:

PATCH /users/tim/profile HTTP/1.1
Content-Type: text/turtle
<#me> api:password "{shal}3da541559918a808c2402bba5012f6c60b27661c"

SPARQL Updates

When POST and PATCH are not enough, developers can use SPARQL Updates

for more complex update semantics [25]. Common SQL-like publishing verbs

include INSERT and DELETE. The following example demonstrates adding an

arc in my FOAF social graph from me to Tim:

INSERT {
<#me> foaf:knows <//www.w3.org/People/Berners-Lee/card#i>

}

Multiple queries may be joined in single request body (transaction) with the

semi-colon.

WebSockets

HTML5 WebSockets [28] are used to support publishing and subscription of

realtime graph updates, though experimental and nonstandard within the com-

munity. The update stream can be controlled by specifying a graph pattern at

subscription time. Currently updates are replicated in SPARQL Update format,

but an upcoming patch standardization is expected.

3.3 Security

Cross-Origin Resource Sharing

CORS is a critical feature for web app security [19]. The standard adds new

HTTP headers which allow servers to control which foreign domains may send

requests to local resources within a web browser. As part of the framework,

21

browsers send the Origin header to indicate the source domain of a web app

making an HTTP request, eg.

Origin: calendar.github.io

In my LDP implementations, this header is used in access control checks so users

can control which apps may access their data using their browser credentials.

Federated Login

Web App developers generally want to maximize their reachable audience. We

facilitate this by providing federated login capabilities from silo users, bridging

the existing world of URI-based identities onto the platform. This includes users

of Google Accounts, Yahoo, OpenID, and other URI-based identity schemes.

WebAccessControl

WAC is an ontology for controlling access to a given resource by a given agent

[29]. LDP implementations use a standard HTTP header to indicate a document

called an Access Control List (ACL) where rules should go for a given resource.

For example rules for a user's profile could be indicated by this header in an

HTTP response:

Link: <profile,acl>, rel=acl

This feature was developed by TimBL, James Hollenbach, and I, and published

during my time as an undergraduate researcher [12].

WebID Login

WebID is an evolving W3C standard providing universal, decentralized web ac-

counts backed by Linked Data [27]. The current implementation dereferences

the URI of the user's claimed ID and compares the key of a client's TLS cer-

tificate with the list of keys published in the user profile. If there is a match,

the user is successfully authenticated. The protocol is novel, however the user

experience when using and managing client SSL certificates in web browsers is

widely criticized.

22

Chapter 4

Implementation

All code is free and available on the web at: https: //github. com/linkeddata

I have developed several implementations of the Linked Data Platform. Its first

incarnation was the Data Wiki [14] powered by Algae [15], W3C's Perl Module. At

the time, read-only SPARQL was available on various servers at a single conventional

endpoint: //host/sparql. The project made two important contributions: multi-

plexing read-write SPARQL across the URI space, and using the request URI as the

base URI. But clients were generally written as curl command line scripts.

The following 3 server implementations included with this thesis extend this idea

adding support for decentralized web apps using the latest standards and recommen-

dations from W3C and RFCs from IETF as described in Chapter 2. The software

currently requires Redland RDF Libraries [4] and has been tested on Linux, OSX,

and Windows.

I started with a PHP implementation due to the wide predominance of the LAMP

web server stack (Linux-Apache-MySQL-Perl/ PHP /Python) 1. According to Netcraft

as of January 2013, PHP runs nearly 250M sites and on 2.1M of 4.3M web servers

[16]. So after a successful proof of concept in Perl, PHP was a natural target in

supporting a large number, almost majority of servers. The following sections further

describe ldphp and the evolution to the Python and Go implementations.

lhttp://en.wikipedia.org/wiki/LAMP_ (softwarebundle)

23

Table 4.1: Feature Comparison across implementations
ldh ldp gl

Content Negotiation [6] 0 0 9

Cross-Origin Resource Sharing [19] o
Entity Tags + If-Match [7] o 0
Federated Login: Google, OpenID, ...

JSON-LD [18] a 0 0
PATCH [9] a 0 0
Query String Filters 0 0
RDF Directory Listings 0 0 0
RDF Resources 0 0 0
Resource Globbing [32] o

SPARQL Queries [24] 0 0 0
SPARQL Updates [25] 0 a

SPARQL Update WebSockets a a

WebAccessControl [29] a 0 0
WebID Login [27] a 0 0

Table 4.2: Resource Type Comparison for Queries

{GET,HEAD} Accept: ldphp ldpy gold
application/ld+json [18] a 0 0
application/n-triples [20] 0 0 0
application/rdf+json [21] 0 0
application/rdf+xml [22] 0 0 0
application/sparql-results+j son [23] o . 0
text/turtle [26] 0 0 0
HTML, CSS, JS, images a 0 0
Other octet streams 0 a 0

Table 4.3: Resource Type Comparison for Updates

{PATCH,POST,PUT} Content-Type: ldphp ldpy gold
application/ld+json [18] a 0 0
application/n-triples [20] 0 0
application/rdf+json [21] 0
application/rdf+xml [22] 0 0
application/sparql-update [25] _ _ _

text/turtle [26] _ _ _

24

Functionality: Idphp ldpy gold

4.1 ldphp

ldphp runs using modphp embedded in Apache or using FastCGI mode of any

web server. I have personally hosted ldphp LDP sites on Apache2+mod fcgid

(scripts .mit . edu), lighttpd, and nginx web servers. Due to the wide availability

and longevity of PHP, this is oldest implementation, has received the most community

contributions, and has the most expansive featureset.

ldphp works well for basic requests, but has more overhead than gold for PUTs

and requests where more complex queries requiring concurrent network subrequests

and/or aggregation of member resources. Performance evaluation is described further

in Chapter 5.

4.2 ldpy

ldpy is a Linked Data Platform implementation for Python, another popular script-

ing language. Thanks to Python and Flask's modular superiority over PHP, this

implementation is easy to compose with other platforms, despite the limited feature-

set. For example, it was used in the MIT CSAIL Big Data project to open a public

MIT Warehouse dataset 2. This implementation is backed by a commercial Oracle

database yet still provides data interoperability within our platform.

This implementation leverages the Flask microframework to provide RESTful re-

quest dispatching for our platform. It leverages WSGI (Web Server Gateway Inter-

face) with 100% compliance, a standard interface between web servers and Python

that promotes web application portability across web servers [17]. The emergence of

multicore computing has ultimately led us away from Python due to its limitations

in high concurrency environments. As a result, ldpy is a minimal implementation of

our platform in only 244 lines - see Table 4.1 for a feature comparison.

2http ://bigdata. scripts .mit . edu/warehouse/

25

4.3 gold

gold is a Linked Data Platform implementation for Google's recently open-sourced

language Go, a concurrent, garbage-collected language with fast compilation. By its

design, Go proposes an approach for the construction of system software on multicore

machines [10]. It provides a simple API to C libraries (librdf) and a native TLS web

server, among other strong core libraries, and compiles into a single distributable

binary, easy to install on Linux, OSX, Windows, x86, x86-64, and ARM, among

others. The project currently includes 70 unit tests with nearly 500 assertions covering

about 90% of the codebase.

26

Chapter 5

Performance

This chapter evaluates the implementations described in Chapter 4 side-by-side on

a Linux server running Fedora 20, kernel 3.14.4-200.fc2O.x86_64. The host has 8

cores of Intel(R) Xeon(R) CPU E5-2690 v2 A 3.00GHz and 16GB of RAM. We

run 8 processes of each implementation to ensure saturation, with 10 trials of 100,000

requests (samples) each requiring several hours to complete in total. All configuration

needed to reproduce these results is included in the Appendix.

5.1 Methodology

We seek benchmarks for Queries and Updates to supplement independent results given

for the Security components [121. Since low concurrency, bulk Linked Data solutions

have already been proven, we measure transaction rate for small workloads with high

concurrency using boomi, a HTTP(S) load generator (ApacheBench replacement)

written in Go.

The GET benchmark in Figure 5-1 repeatedly requests Turtle for the resource

The server has no index.html so it creates a listing for the root directory on the fly in

Linked Data. In this case, the directory contains three resources, each described by:

type, ctime, mtime, and size. The PUT benchmark in Figure 5-2 repeatedly submits

a single triple (<a> <c>.) to resource /abc.

lhttps://github.com/rakyll/boom

27

Table 5.1: Benchmark Harness Comparison

direct HTTP _ _

direct TLS _

FastCGI via nginx *
uwsgi via nginx 0

Benchmark Harness

golang 1.2.2
gunicorn 18.0
nginx 1.6.0
openssl 1.0.le
php 5.5.12
python 2.7.5

raptor 2.0.9
redland 1.0.16
uwsgi 1.9.19

Table 5.2: Versions

We are interested in how many requests in a given interval can be completed

successfully. Success means that the method had the desired result and the server

kept functioning without any observed problems while also handling requests from a

number of other concurrent clients.

We compare our implementations using common, modern web server harnesses.

PHP is served using FastCGI via nginx, with Zend OPcache which provides faster

execution through opcode caching and optimization. Two Python harnesses provide

HTTP: gunicorn serving natively, and uwsgi via nginx. Three Golang harnesses are

compared: built-in HTTP, TLS, and FastCGI servers.

5.2 Results

For all concurrency levels, gold server (Go) produces leading measurements for both

tests, shown in Figures 5-1 and 5-2. Measuring against a NOOP server suggests

only 3..4x overhead for a Linked Data Platform GET vs. a request doing absolutely

28

Idphp Idpy gold

nothing, shown in Figure 5-3. PUT overhead is slightly higher.

Distributed Computing literature benchmarks frequently measure hash table per-

formance using a workload of: 90% reads, 9% adds, 1% deletes. If we align reads

with GET, and adds with PUT, our measurements of PUTs at 25..30% slower than

GETs are superior in the expected workload.

Though the leading Go implementation is already highly performance, we further

consider potential optimizations using the Go CPU Profiling tool, pprof, in Figure

5-4. Nearly 67% of CPU time is spend in our C RDF library, redland, 8% is spent in

the CGo bridge, and 11% are spent in OS syscalls. This leaves only 14% remaining

CPU time to consider in future optimizations to our Go code.

29

I-
5000 t1-

"mgold IMTP

NOW oId IMTPS

ogId/feg

M Wundphpft

indpy/gunnicom

Mdpy/uws

M*2 Nw4

wuouwrucy (0 of dimnt)

Figure 5-1: GET Benchmark Results

"a

7000

j4000

3000

2000

0
NaI

30

'gold HTTP

d HTTPS

gold/fcgi

wdphpftct

ldpy/gunkorn

fdpy/uwsgf

Nm2 N*4

wcIDurreny (of dilents)

Figure 5-2: PUT Benchmark Results

31

4500 I

4000

3500 t

I

I
I

2M I

Soo t

a
NmI NaB

n.%3ET

MNPUT

V

NM2 N*4

ncuweny (M of dmautI

Figure 5-3: Overhead of gold LDP vs. NOOP

32

0.35

0.3

9 0.2

0.150.1

0
N"l N4

server
Total samples: 378
Focusing on: 378
Dropped nodes with <= 1 abs(samples)
Dropped edges with <=0 samples

a i s

40~AI~L 42 1r2#3

..me.seeExternalCode
4010>% 253 (66.9%Ww)

2 -

3 5 2 9

41

17 ~~2 4 21

14

/2

3 22

of 30 (7.9%) -

3

syscall.Syscall
40 (10.6%)

Figure 5-4: pprof CPU Profile: gold
33

34

Chapter 6

Applications

Linked Data Web Apps are generally implemented exclusively in client-side JavaScript.

A key benefit is that anyone creative can make an app and sell it, as new apps can

create and control access to data resources in the existing storage cloud.

The sections below describe Linked Data Web Apps, libraries, and extensions

developed for the platform by Tim Berners-Lee (TimBL), our research group, others

in our community, and me.

6.1 rdflib.js

rdflib.js is an RDF-based library developed by TimBL, with major contributions from

his students in the MIT CSAIL Decentralized Information Group, implementing the

protocols, codecs, and tools necessary for providing Linked Data robustness in a web

browser or other JavaScript environment. I contributed several improvements in-

cluding: adding read-write support for LDP using WebDAV and SPARQL, adding

pubsub support using WebSockets, adding jQuery AJAX integration, and nodeunit

tests. The library is available at:

https://github.com/linkeddata/rdflib.js

35

Decentralized Information Group
Type 0 9Organizaton
Label DIG
Homepage 1* 9dig.csail.mit.edu/
Logo

Member P(Fuming
0 Ralph R. Swick
It

Figure 6-1: Tabulator: Linked Data Browser/Editor

6.2 Tabulator

Tabulator is a generic data browser, powered by rdflib.js, also created by TimBL and

the DIG group. Its primary outline view shown in Figure 6-1 provides tree-based

traversal over Linked Data graphs. Many rule-based views/tabs reconfigure automat-

ically when node data is dereferenced based on rdf:type and other node properties.

The project started as a Firefox Extension. I improved performance, integrated

new rdflib.js features, and ported it to the Chrome web browser. The source code is

available at:

https : //github. com/linkeddata/tabulator

36

today

Mon Tue
2

October 2013
Thu

3
Fri

4

t week day

Sat Sun
5 6

9

16

23 24

30

17 18

25

31

Figure 6-2: rww-apps.github.io/ld-cal

The browser extension is available at:

https://chrome.google.com/webstore/detail/tabulator/lcfhlnpimhljekhgdohcldfmehlkfo,

6.3 Calendar

Andrei Sambra developed a decentralized calendar web app for LDP shown in Figure

6-2. The app runs in a web browser from our shared community space on github,

while his users' data remains private on their personal LDP server. Andrei currently

runs ldphp, described in Section 4.1, on his personal LDP server, but his app is

compatible with any implementation. The data can also be viewed in Tabulator and

other blogging apps. The code for his web app is available at:

https : //github. com/rww- apps/ld- cal

37

7

14

21

28

15

22

29

12

19

26,

13'

20

27

10per Wkorld :orum 201 1

Wed

6.4 Microblog

Andrei Sambra also developed a blogging web app for LDP, shown in 6-3. Similar to

the calendar app, CIMBA runs in a web browser from our shared community space

on github, while each participant's data remains in control of their personal LDP

server. Andrei made contributions to ldphp and gold as part of this work.

6.5 Spreadsheet

I created LD spreadsheet, shown in Figure 6-4 running from github. Any LDP server

can be used to host the data. In developing the app, I contributed open/save dialog

box widgets compatible with other LDP web apps shown in Figure 6-5.

6.6 Voting

Melvin Carvalho developed a voting web app for LDP shown in Figure 6-6. He ran

several community votes including one inquiring whether Linked Data sites should

participate in the SOPA blackout. Melvin currently runs ldphp on his personal LDP

server.

6.7 modauthn_ webid

I developed this C module for the Apache2 web server to provide WebID authenti-

cation interoperability into the traditional Apache/.htaccess authentication pipeline.

The project has a measured overhead of only a couple milliseconds 1, and has received

contributions from Caltech. The code is available at:

https://github.com/linkeddata/mod-authn-webid

lhttp://dig.csail.mit.edu/2009/presbrey/UAP.pdf

38

0 MNBA Refresh Channels T international C Logout

What's new, Andrei Vlad Sambra?

pe your rmessage here

Working on an aggregation service for Linked Data. Hopefully we'll get rid of certificate selectio

n popups.

Google's done a nice job with HTML5 (chrome style) animations / UI Development in their web
designer product... http-//www.google.conVwebdesigner/

*

Figure 6-3: cimba.co

39

I

Spreadsheet I https://doc x

- C i Iinkeddata.github.io/spreadsheet/#/open/https://docs.data.fm/thesis/overhead

New pen.. Save As..

A B C D E
1 N=1 N=2 N=4 N=8

2 GET 0.219380697 0.238597076 0.280394476 0.297765768

3 PUT 0. 166318759 0.168695838 0.173743328 0.204459616

11]https.//docsdataffthsloeea

Figure 6-4: linkeddata.github.io/spreadsheet

Open a spreadsheet
Location: https:/jdocs.data.fm/taxes/ Open 1Cencei

0 2013 (Mon Jan 27 2014 00:25:00 GMT-0500 (EST))

Figure 6-5: Open/Save dialog

40

*SOPA Vote x

W vote.data.fm/index.html

Figure 6-6: vote.data.fm

6.8 WebID.MIT.EDU

I created the MIT WebID service shown in Figure 6-7 to help bootstrap a web of trust

using Linked Data profiles, that allocates identifers to MIT community members to

match their MIT Athena identities. Later I added support for Federated Login with

Google Accounts, though the web app is fundamentally compatible with any web

authentication scheme.

Its unique contribution is providing life-cycle management of multiple crypto keys

across multiple devices, and indirection to additional Linked Data profiles. The code

is available at:

https: //github. com/linkeddata/webid.mit .edu

41

Figure 6-7: WebID.MIT.EDU

42

Chapter 7

Related Work

There are two tracks of work related to Linked Data Platforms for Web Applica-

tions: commercial API Management products, and the unhosted.org community.

We describe our relationship to these in turn.

7.1 API Management

API management is used in the cloud to manage APIs that companies publish for

use by mobile and Web business-to-consumer or business-to-business projects, with

applications frequently developed by their business partners. For example, Appcel-

erator' describes itself as built to access heterogeneous data sources via a modern

cloud architecture. Listed benefits include: eliminating the complexity of managing

multiple APIs, lowering the cost of development and maintenance; and orchestra-

tion of data from heterogeneous sources, both public and enterprise, for richer, more

transformative app experiences.

Similarly, Intel acquired Mashery.com in May 2013 and advertises their integrated

offering as Composite API Management 2. Data Format mediation is provided, with

support for conversion of unstructured, semi-structured and structured XML data

into RESTful API responses.

lhttp://www.appcelerator.com/platform/apis/
2https: //cloudsecurity. intel. com/solution-briefs/composite-api.-management

43

Gartner provides further analysis 3 of API governance and management products.

Though these products may encourage local optimizations in API integration, no API

management or consolidation vendor has advertised products with as broad ambitions

as Semantic Web and Linked Data technologies.

7.2 unhosted.org

The community at unhosted.org shares many common ideals with Linked Data Plat-

form practitioners. Their first reaction to disparate Web API growth was to build

new web apps without any backends at all, also known as "serverless", "client-side",

or "static" web apps. Unhosted app publishers do not see any user data since data

does not go to servers. There are no servers - all storage is local, making running

the apps inexpensive, highly decentralized, and scalable. However, user data is not

interoperable between apps and across networks and organizations.

remoteStorage' is an addon for unhosted.org apps which provides decentralized

user storage for unhosted apps using a common API. Developers behind remoteStor-

age have published a standard for the protocol with the IETF '. The fundamentals

of their data protocol do not share the same standards underpinning Linked Data

Platforms such as using URIs as global identifiers. Data schemas are defined in each

application, possibly limiting interoperability between web apps. However, their de-

centralized, private storage work provides the same abstract benefits to users.

3http://www.gartner. com/technology/reprints .do?id=1-1IBXGIT&ct=130809&st=sb
4http://remotestorage .io/
5http://tools. ietf . org/html/draft-dejong-remotestorage-01

44

Chapter 8

Conclusions and Future Work

This thesis provides a solid base for future projects implementing collaborative author-

ing and publishing of Linked Data, with Web Access Control, for Web Applications.

It provides three implementations of RDF-based decentralized application platforms.

Query and update performance are comparable with traditional Web APIs. Users

and developers can quickly and easily integrate new data sources without having to

add new code to their applications. A user could, at the present time, use any im-

plementation provided to escape vendor lock-ins and data silos, which is a notable

advance over the recent progress of web centralization and monopoly.

The three server implementations demonstrate it is possible to streamline this

technology in any web server, provide custom yet interoperable endpoints integrated

with existing relational database technologies, and maximize concurrency and perfor-

mance in multicore environments. Wide adoption will make life easier for users while

maintaining a fully decentralized architecture in which identities, data storage, and

applications can all be independent and managed by different sites.

Several client web apps such as a Calendar, Microblog, and Spreadsheet have been

developed for the platform. By plugging services such as policy-aware query proces-

sors and data access logs into our system, one could create a complete policy-aware

system based in an entirely decentralized environment, realizing the full potential of

the Semantic Web. As of May 2014, groups at the W3C have adopted most compo-

nents of this work and continue developing, refining, and standardizing the platform.

45

46

Bibliography

[1] Ashraf, J., Cyganiak, R., O'Riain, S., & Hadzic, M. (2011, March). Open eBusi-

ness Ontology Usage: Investigating Community Implementation of GoodRela-

tions. In LDOW. URL: http://ceur-ws.org/Vol-813/ldow2Oll-paperl2.

pdf.

[2] AKSW. LODStats. May 2014. URL: http://stats.lod2.eu/.

[3] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. (2007).

Dbpedia: A nucleus for a web of open data. In The semantic web (pp. 722-

735). Springer Berlin Heidelberg. URL: http://w.websemanticsjournal.org/

index.php/ps/article/viewFile/164/162.

[4] D. Beckett. Redland RDF Libraries. March 2014. URL: http: //librdf . org/.

[5] T. Berners-Lee. Design Issues. May 2014. URL: http://www.w3.org/

DesignIssues/.

[6J T. Berners-Lee; R. Fielding; L. Masinter. Hypertext Transfer Protocol -

HTTP/1.1 (RFC 2616): Content Negotiation. June 1999. URL: http://www.

w3.org/Protocols/rfc2616/rfc2616-secl2.html.

[7] T. Berners-Lee; R. Fielding; L. Masinter. Hypertext Transfer Protocol -

HTTP/1.1 (RFC 2616): Entity Tags. June 1999. URL: http://www.w3.org/

Protocols/rfc2616/rfc2616-sec3.html#sec3.11.

[8] Crockford, Douglas. JavaScript Object Notation (JSON). 2006. URL: http: //

tools.ietf.org/html/rfc4627.

47

[9] L. Dusseault; J. Snell. PATCH Method for HTTP (RFC 5789). March 2010.

URL: http: //tools. ietf . org/html/rf c5789.

[101 The Go Authors. Frequently Asked Questions. April 2014. URL: http: //

golang.org/doc/faq.

[111 Hendler, James and Holm, Jeanne and Musialek, Chris and Thomas, George.

US government linked open data. IEEE Intelligent Systems. 2012. URL: http:

//ieeexplore.ieee.org/xpl/articleDetails. jsp?arnumber=6185527.

[12] J. Hollenbach, J. Presbrey, T. Berners-Lee. Using RDF Metadata To Enable

Access Control on the Social Semantic Web. ISWC 2009. URL: http://dig.

csail.mit .edu/2009/Papers/ISWC/rdf-access-control/paper.pdf.

[13] L. Lamport. Paxos Made Simple. 2001. URL: http://research.microsoft.

com/en-us/um/people/lamport/pubs/paxos-simple.pdf.

[14] J. Presbrey. Data Wiki. 2007. URL: http: //dig. csail. mit. edu/2007/wiki/.

[151 E. Prud'hommeaux. Algae2 Perl Module. 1999. URL: http://www.w3.org/

1999/02/26-modules/User/Algae-HOWTO.html.

[16 Netcraft. PHP just grows & grows. January 2013. URL: http: //news.

netcraft.com/archives/2013/01/31/php-just-grows-grows.html.

[17] P. Eby. PEP 333 - Python Web Server Gateway Interface. March 2011. URL:

http://legacy.python.org/dev/peps/pep-0333/.

[18] W3C. A JSON-based Serialization for Linked Data. January 2014. URL: http:

//www.w3.org/TR/json-ld/.

1191 W3C. Cross-Origin Resource Sharing. January 2014. URL: http: //www. w3. org/

TR/cors/.

[20] W3C. RDF 1.1 N-Triples. February 2014. URL: http: //http: //www. w3. org/

TR/n-triples/.

48

[21] W3C. RDF 1.1 JSON Alternate Serialization (RDF/JSON). November 2013.

URL: http: //www.w3. org/TR/rdf -j son/.

[22] W3C. RDF 1.1 XML Syntax. February 2014. URL: http://http://www.w3.

org/TR/rdf-syntax-grammar/.

[23] W3C. Serializing SPARQL Query Results in JSON. June 2007. URL: http:

//http://www.w3.org/TR/rdf-sparql-json-res/.

[24] W3C. SPARQL Query Language for RDF. January 2008. URL: http: //www.

w3.org/TR/rdf-sparql-query/.

1.1 Update. March 2013. URL: http://www.w3.org/TR/

sparqll1-update/.

[261 W3C. RDF 1.1 Turtle. February 2014. URL: http://http://www.w3.org/TR/

turtle/.

[27] W3C. WebID 1.0. March 2014. URL: http://www.w3.org/2005/Incubator/

webid/spec/identity/.

[28] W3C. The WebSocket API. September 2012. URL: http://www.w3.org/TR/

websockets/.

[291 W3C Community Wiki. WebAccessControl. March 2014. URL: http: //www. w3.

org/wiki/WebAccessControl.

[30] What is Linked Data?. data.gov.uk. January 2014. URL: http: //data.gov.uk/

linked-data.

[31] Wikipedia. Andrew File System. May 2014. URL: http://en.wikipedia.org/

wiki/AndrewFileSystem.

[32] Wikipedia. glob (programming). May 2014. URL: http://en.wikipedia.org/

wiki/Glob_ (programming).

[33] Wikipedia. JSONP. May 2014. URL: http://en.wikipedia.org/wiki/JSONP.

49

[25] W3C. SPARQL

[34] Wikipedia. Robustness Principle. May 2014. URL: http: //en. wikipedia. org/

wiki/RobustnessPrinciple.

50

Chapter 9

Appendix

Benchmark Config: nginx.conf

daemon o f f ;
errorlog stderr;
pid /tmp/nginx. pid;
user nginx nginx;
worker _processes 2;

events {
multiaccept on;
use epoll;
worker _connections 4000;

}

http {
accesslog off;
client_body timeout 10;
index index.php index.html index.htm;
keepalive _ timeout 1;
sendfile on;
reset _ timedout _ connection on;
send timeout 2;
tcpnodelay on;
tcpnopush on;

proxy _http _ version 1.1;
proxy set _ header Connection
proxy set _header Host $host;

51

upstream gold {
server unix:/tmp/goldl
server unix:/tmp/gold2
server unix:/tmp/gold3
server unix:/tmp/gold4
server unix:/tmp/gold5
server unix:/tmp/gold6
server unix:/tmp/gold7
server unix:/tmp/gold8
keepalive 128;

}

upstream ldpy {
server unix:/tmp/
server unix:/tmp/
server unix:/tmp/
server unix:/tmp/
server unix:/tmp/
server unix:/tmp/
server unix:/tmp/
server unix:/tmp/
keepalive 16;

}

ldpyl
ldpy2
ldpy3
ldpy4
ldpy5
ldpy6
ldpy7
ldpy8

upstream php {
server unix:/tmp/phpl.
server unix:/tmp/php2.
server unix:/tmp/php3.
server unix:/tmp/php4.
server unix:/tmp/php5.
server unix:/tmp/php6.
server unix:/tmp/php7.
server unix:/tmp/php8.
keepalive 16;

}

sock
sock
sock
sock
sock
sock
sock
sock

sock
sock
sock
sock
sock
sock
sock
sock

sock
sock
sock
sock
sock
sock
sock
sock

server {
server _name goldfcgi
listen 8001 default ;
fastcgi _keep _conn on;
location / {

include /etc/nginx/fastcgiparams
fastegipass gold;

}

52

}

server {
servername ldpywsgi;
listen 8003 default ;
location / {

include /etc/nginx/uwsgiparams;
uwsgipass ldpy;

}

server {
server _ name
listen 8004

ldphp;
default

root /srv/ldphp/www/wildcard;

location / {
try - files $uri $uri/ /index.php?$args;

location ~ \.php$ {
fastcgi _split _path -info ^(.+\.php)(/.+)$;
include /etc /nginx/fastcgiparams;
fastcgiindex index.php;
fastcgiparam SCRIPTFILENAME $document _root$fastgiscriptr

fastcgipass php;

Benchmark Config: supervisord.conf

[program: nginx]
command=nginx -c

[program: goldI]

/srv/nginx.conf

command=/root /bin/ server -insecure :8011
direct ory=/srv /data

[program: gold2]
command=/root /bin/server -insecure=:8012
directory=/srv /data

[program: gold3]
command=/root /bin server -insecure=:8013

53

}

}

}
}

}

dir e c t or y=/sr v /data

[program: gold4]
command=/root /bin/server -insecure=:8014
direct ory=/srv /data

[program: gold5]
command=/root /bin/server -insecure=:8015
direct ory=/srv / data

[program: gold6
command=/root /bin/server -insecure=:8016
dir ec t or y=/srv /data

[program: gold7]
command=/root /bin/server -insecure=:8017
dir ect or y=/srv /data

[program: gold8]
command=/root /bin/server -insecure=:8018
directory=/srv /data

[fcgi -program: goldifcgi]
command=/root /bin/ server
socket=unix:///tmp/goldi sock
direct ory=/srv /data

[fcgi-program: gold2fcgi]
command=z/root /bin/ server
socket=unix:///tmp/gold2 sock
direct ory=/srv /data

[fcgi-program: gold3fcgi]
conimand=/root /bin/ server
socket=unix:///tmp/gold3 sock
direc t or y=/srv /data

[fcgi-program: gold4fcgi]
command=/root /bin/ server
socket=unix:///tmp/gold4. sock
direct ory=/srv /data

[fcgi -program: gold5fcgi]
command=/root /bin/ server
socket=unix:///tmp/gold5 . sock

54

directory=/srv /data

[fcgi -program: gold6fcgi]
command=/root /bin/server
socket=unix:///tmp/gold6 . sock
directory=/srv/data

[fcgi -program: gold7fcgi
command=/root /bin/ server
socket=unix: ///tmp/ gold7. sock
direct ory=/srv /data

[fcgi -program: gold8fcgi]
command=/root /bin/server
socket=unix:///tmp/gold8 . sock
directory=/srv /data

[program: gold1tls]
command=/root /bin/ server -bind=:8441
directory=/srv /data

[program: gold2tls]
command=/root /bin/ server -bind=:8442
directory=/srv /data

[program: gold3tls]
command=/r oot /bin/ server -bind=:8443
directory=/srv /data

[program: gold4tls]
command=/root /bin/ server -bind=:8444
directory=/srv /data

[program: gold5tls]
command=/root /bin/ server -bind=:8445
directory=/srv /data

[program: gold6tls]
command=/root /bin/ server -bind =:8446
directory=/srv /data

[program: gold7tls]
command=/root /bin/ server -bind=:8447
directory=/srv /data

55

[program: gold8tls]
command=/root /bin/ server
d ir e c to r y=/sr v / data

bind=:8448

[program: ldpy1]
command=gunicorn -umask 0000 -b
direct ory=/srv /data
environment-PYTHONPATH=/srv/ldpy

[program: ldpy2]
command=gunicorn -umask
directory

0.0.0.0:8021

0000 -b 0.0.0.0:8022

ld

Id
/srv/data

environment PYIHONPATH=/srv/ldpy

[program: ldpy3]
command=gunicorn -umask 0000 -b 0.0.0.0:8023
direct ory=/srv /data
environment-PYFHONPATH=/srv/ldpy

[program: ldpy4]
command=gunicorn -umask 0000 -b 0.0.0.0:8024
directory=/srv/data
environment PYTHONPATH=/srv/ldpy

[program: ldpy5]
command=gunicorn -umask
direct ory=/srv /data

0000 -b 0.0.0.0:8025

environment-PYFHONPATH=/srv/ldpy

[program: ldpy6]
command=gunicorn -umask 0000 -b
directory

0.0.0.0:8026
:/srV/data

environmentYTHONPATH=/srv/ldpy

[program: ldpy7]
command=gunicorn -umask 0000 -b
direct ory=/srv /data
environment-PYTHONPATH=/srv / ldpy

[program: ldpy8]
command=gunicorn -umask 0000 -b
directory :/srv/data

0.0.0.0:8027

0.0.0.0:8028

environment-PYTHONPATH=/srv / ldpy

[program: ldpyluwsgi]

56

Id

Id

Id

Id

Id

ld

command=/ srv /uwsgi -need-plugin
directory=/srv /data

[program: ldpy2uwsgi I
command=/srv/uwsgi -need-plugin
directory=/srv /data

[program: ldpy3uwsgi I
comniand=/srv/uwsgi -need-plugin
directory =/srv/data

/tmp/ldpyl.sock -- need-app -

python -s

python -s

/tmp/ldpy2.sock

/tmp/ldpy3. sock

-- need-app

-- need-app

[program: ldpy4uwsgi]
command=/ srv/uwsgi -need-plugin
directory :/srv/data

python -s /tmp/ldpy4. sock -- need-app -

[program: ldpy5uwsgi]
command=/srv/uwsgi -need-plugin

directory=/srv /data

[program: ldpy6uwsgiI
command=/ srv/uwsgi -need-plugin

python -s

python -s

/tmp/ldpy5.sock -- need-app

/tmp/ldpy6.sock -- need-app
directory :/srv/data

[program: ldpy7uwsgi]
comniand=/srv/uwsgi -need-plugin
directory=/srv /data

[program: ldpy8uwsgi
command=/ srv/uwsgi -need-plugin

python -s

python -s

/tmp/ldpy7. sock -- need-app

/tmp/ldpy8.sock -- need-app
directory :/srv/data

[fcgi -program: phpl]
command=php- c g i

socket=unix: ///tmp/phpl. sock

[f c gi -program : php2]
command=php- c g i
socket=unix:///tmp/php2.sock

[fcgi -program: php3]
command=php- c gi
socket=unix: ///tmp/php3. sock

[fcgi -program: php4]
command=php- c g i

57

python -s

socket=unix:///tmp/php4. sock

[fcgi -program: php5]
command=php- c g i
socket=unix :///tmp/php5

[fc g i -program: php6]
command=php- c g i
socket =unix :///tmp/php6

[fcgi -program: php7
command=php- c gi
socket=unix :///tmp/php7

sock

sock

sock

[fcgi -program: php8]
command=php- c g i
socket=unix:///tmp/php8. sock

Benchmark Config: /etc/sysconfig/ipvsadm

gold
-A -t
-a -t
-a -t
-a -t
-a -t
-a -t
-a -t
-a -t
-a -t

HTP
18.16.5.32:
18.16.5.32:
18.16.5.32:
18.16.5.32:
18.16.5.32:
18.16.5.32:
18.16.5.32:
18.16.5.32:
18.16.5.32:

ldpy-gunicorn
-A -t 18.16.5.32:
-a -t 18.16.5.32:
-a -t 18.16.5.32:
-a -t 18.16.5.32:
-a -t 18.16.5.32:
-a -t 18.16.5.32:
-a -t 18.16.5.32:
-a -t 18.16.5.32:
-a -t 18.16.5.32:

gold TLS
-A -t 18.16.5.32:
-a -t 18.16.5.32:

80
80
80
80
80
80
80
80
80

8020
8020
8020
8020
8020
8020
8020
8020
8020

8440
8440

-s
-r
-r
-r
-r
-r
-r
-r
-r

-s
-r
-r
-r
-r
-r
-r
-r
-r

-s
-r

ic
18.
18.
18.
18.
18.
18.
18.
18.

ic
18.
18.
18.
18.
18.
18.
18.
18.

lc
18.

6.5.3
6.5.3
6.5.3
6.5.3
6.5.3
6.5.3
6.5.3
6.5.3

16.
16.
16.
16.
16.
16.
16.
16.

2:8011
2:8012
2:8013
2:8014
2:8015
2:8016
2:8017
2:8018

5.32:8021
5 .32:8022
5 .32:8023
5.32:8024
5.32:8025
5.32:8026
5.32:8027
5.32:8028

16.5.32:8441

58

-a -t 18.16.5.32:8440 -r 18.16.5.32:8442
-a -t 18.16.5.32:8440 -r 18.16.5.32:8443
-a -t 18.16.5.32:8440 -r 18.16.5.32:8444
-a -t 18.16.5.32:8440 -r 18.16.5.32:8445
-a -t 18.16.5.32:8440 -r 18.16.5.32:8446
-a -t 18.16.5.32:8440 -r 18.16.5.32:8447
-a -t 18.16.5.32:8440 -r 18.16.5.32:8448

Benchmark NOOP Server in Go

package main

import (
"flag
"net/ http"

)

var
bind flag . String (" bind", "", "listening address")

)

func init () {
flag . Parse ()

}

func main() {
http. ListenAndServe (*bind , nil)

}

59

