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Abstract

Despite the ubiquity of passively-collected sensor data (primarily attained via smart-
phones), there does not currently exist a comprehensive system for authorizing the
collection of such data, collecting, storing, analyzing, and visualizing it in a manner
that preserves the privacy of the user generating the data. This thesis shows the
design and implementation of such a system, named openPDS, from both the client
and server perspectives. Two server-side components are implemented: a centralized
registry server for authentication and authorization of all entities in the system, and a
distributed Personal Data Store that allows analysis to be run against the stored sen-
sor data and aggregated across multiple Personal Data Stores in a privacy-preserving
fashion. The client, implemented for the Android mobile phone operating system,
makes use of the Funf Open Sensing framework to collect data and adds the ability
for users to authenticate against the registry server, authorize third-party applica-
tions to analyze data once it reaches their Personal Data Store, and finally, visualize
the result of such analysis within a mobile phone or web browser. A number of ex-
ample quantified-self and social applications are built on top of this framework to
demonstrate feasibility of the system from both development and user perspectives.
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Chapter 1

Introduction

1.1 Motivation

With the advent of smartphones and the multitude of sensors they contain, humans

now have an unprecedented ability to observe our own behavior - be it places we

frequently visit, people we frequently contact, or even how physically active we are.

Computational social science, the study of such data to discern insights about social

behavior, has the potential to increase our own (or a third party's) knowledge of

individuals and communities, with an unprecedented breadth, depth, and scale [33].

Additionally, this data collection can (and should, for the purpose of observing behav-

ior) all be done without requiring any explicit interaction from the users generating

the data. Such passive data collection provides the basis for quantifying how we

go about our daily routines, and its collection is also ubiquitous - the vast major-

ity of applications running on mobile devices today have access to sensitive personal

data [47], users typically are unaware of the extent of the collection [42], and further-

more, the number of application whose livelihood (via ad-serving) depends on such

data collection is increasing [7].

Despite the ubiquitous collection of sensor data by a vast number of mobile appli-

cations running on literally billions of devices worldwide, users currently have little

to no insight into what data is actually being collected on them - the permissions

system for granting access to personal data on the current leading smartphone OS in
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terms of market share (Android), follows a "take it (everything) or leave it" model,

whereby users must grant an application all permissions it requests or opt out of using

the application entirely. This applies to all permissions an app requests, regardless of

if the permission is of crucial importance to the app's function, or if the service the

app provides contributes the user's data to aggregate computations. Figure 1-1 shows

the permissions screen for a popular Android game that requests access to sensitive

personal data, with no apparent use for it in the game itself.

App permissions
Fruit Ninja Free needs access to:

In-app purchases
Make purchases within the app

Storage
Modify or delete the contents of your USB storage

Your location
Approximate location (network-based), precise
location (GPS and network-based)

Phone calls
Read phone status and identity

Network communication
Full network access

Hide

Storage
Read the contents of your USB storage

Audio Settinnr

Figure 1-1: Android permissions screen - Users must opt-in to all permissions in order
to use an app, regardless of if the data is essential to the app's function

After granting this blanket access to their personal data, users have no insight into

how often an application is querying their data and storing it on third party machines
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outside of their control. Even in the presence of this information on data collection,

the user still would have little insight, aside from conjecture, on how their data is

being used. This status quo provides all value that can be gleaned from the data back

to the service the individuals used to generate the data. A more transparent means of

data collection; allowing individuals to collect data for themselves and participate in

group computation on an opt-in, privacy-preserving basis, provides ownership of the

data and any value it provides back to the individuals first. This would not inherently

preclude the individual from providing insights derived from the data (or the data

itself) to services or researchers, but puts the individual in control of their sensitive

personal data and identity.

1.2 Relevant Research

1.2.1 Living Labs and Personal Sensor Data

Gathering of information about a community of users in an attempt to learn about

them and humans in general, as well as attempting to improve the participants'

lives is not a new practice. In fact, a leading traditional dataset from one of the

most ubiquitous studies, in terms of duration and number of participants, is the

Framingham Heart Study, which ran for decades across thousands of participants

[13]. However, traditionally, data has been costly to collect in terms of time and

effort, so the throughput of data in such sets is typically low - on the order of single-

digit samples per user, per year. Due to the relatively small or low-resolution data

gathered from these traditional studies, the opportunity to test new interventions in

a controlled and timely manner was not possible.

Recent advances in technology have allowed the study of higher through-put

datasets - even in the absence of ubiquitous sensor-laden smartphones, mobile phone

record datasets donated by mobile carriers can provide data on millions of users with

a very high sampling rate. Though this data is typically not on an individual ba-

sis, and provides little to no additional contextual information about the users, they
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can nonetheless tell us interesting things about human behavior. For example, by

using carrier mobility traces to characterize human mobility, Gonzalez et al. showed

that humans follow simple, reproducible mobility patterns [27]. Call detail records

(CDR) can likewise be used to discern trends in communication patterns, such as

the work by Eagle et al., which combined these records with national census data to

find a strong correlation between diversity in individual relationships and economic

development [19]. Figure 1-2, compiled by Aharony et al. [1], shows an overview

of a number of social science datasets with respect to sample size, duration, and

data throughput. Within this figure, The Framingham Heart Study [13] occupies

the far-end of the horizontal axis (7), with thousands of participants over decades

of study, but low data throughput, while the Social fMRI dataset (aka "Friends and

Family") [1] occupies the upper-right of the graph (3), with a shorter duration and

fewer participants, but much higher data throughput.

I
3 9

e.. ... S...
bw U

67

1H ID iM IY SY SOY Duration
SampIle 10K
Size Q

1-10 5SO-2W
50K +

Figure 1-2: Social science dataset throughput - data collected in traditional studies

typically have low throughput, despite having potentially many participants and long

durations. Recent studies leveraging mobile sensor data have much higher through-

put, but have been limited in duration and number of participants. [1]

Since mobile carrier companies continuously generate user data as part of their

standard bookkeeping practices, there is the potential to move discoveries about the
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data from the traditional post-hoc domain into the realm of realtime analysis and

interventions. A Living Lab seeks to do just that - turning a community of individuals

opting into data collection, experiments, and research into a testbed for experiments

and interventions, with the ability to see resulting changes in data in realtime. There

are a number of impediments to opening this data entirely, and they include privacy

concerns, legal liability for use of the data, and the ability to re-identify users even

in sets of data that have been very carefully anonymized [33]. While concerns on the

part of corporations limit the data that they release, smartphone applications have

access to even higher-resolution sensor data and operate via an agreement between

the user running the application and the application provider themselves, removing

the requirement that data be gathered by a third party corporation, such as a mobile

operator.

There are a number of recent examples of successful living labs built on top of

sensor data collected directly from mobile phones. Aharony et al. collected high-

resolution sensor data for 150 individuals over the course of 15 months. Their results

agree with the aforementioned result by Eagle et al. in regards to a correlation be-

tween social diversity and economic development [1,19], in addition to finding a rela-

tionship between the number of apps individuals share and their face-to-face interac-

tion time, implying that app adoption may spread via such interactions. Furthermore,

the authors performed an intervention within the community of participants to in-

centivize physical activity and found that peer-reward social influences, which can be

measured via sensor data, are an effective means of influencing behavior change. The

dataset from this work has been opened as part of the Reality Commons project [39],

providing an avenue for post-hoc research to be done. Recently, this dataset was uti-

lized to find that social features measured via mobile phones can be better predictors

of spending behavior than personality traits in couples [45], and that similar mobile-

sensed features can reliably predict daily happiness for individuals when combined

with information about the weather and personality traits [6].

The Trentino Mobile Territorial Lab project is a living lab consisting of over 150

participants in Trento, Italy that is ongoing and being continuously studied [38].
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Participants in this living lab have opted in to passive data collection directly from

their mobile phones, as well as through their carrier's traditional data collection

practices. The project is of particular relevance due to how the users' personal data

is managed and the tools provided to each of the participants surrounding their

personal data and its use. As part of the living lab, users have access to a web

interface that allows them to view the personal data collected about them, as well

as opt-in to studies and research. Additionally, data in the study is stored in a user-

centric manner - data about an individual is stored alongside all other data about

that individual, regardless of the source. The ongoing nature and, as a consequence,

the growing corpus of personal data for study provides the opportunity to cut out the

typical months-long process of gathering participants and data about them for study.

1.2.2 Privacy-Preserving Data Handling

Higher resolution and higher throughput datasets naturally expose more information

about the underlying participants contributing to the datasets. Under the strictest

definition of privacy-preservation, access to a dataset should never enable an attacker

to learn more about a target than they could without access to the dataset [11].

While this criterion has been proven impossible [18], the trade-off between information

provided in a dataset and privacy afforded to the participants contributing to the

dataset has been well-studied.

There are 2 models for privacy-preserving data publishing: that of the untrusted

and the trusted data publisher [25]. In the untrusted case, the entity publishing the

data is assumed to have malicious intent and thus, privacy-preservation necessarily

relies on never exposing the data in an unencrypted fashion to even the data pub-

lisher(s). To this end, much of the work surrounding the untrusted case has been

on encryption solutions for data collection [51] resulting in homomorphic encryption

work [26] for mining the data, anonymous communications [9, 29], and statistical

methods for anonymized data collection [50] [23]. A typical issue with encryption

schemes is a loss of generality - solutions for mining data must be discovered on a

case-by-case basis for each algorithm and insight, while anonymous communications
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remove metadata that provides the receiver context needed to understand the in-

formation, and statistical methods attempt to reconstruct representative data from

the dataset based on perturbed samples, resulting in a loss of accuracy in the final

solution.

Given the low cost of collecting and publishing data today, self-publishing of

personal data is not only possible, but may be a better means of assuring data is

being handled in a manner the individual contributing the data is comfortable with.

Self-published data sets would naturally follow the trusted data publisher model and,

as they are the sole source of data for this thesis, the remainder of this review will

focus on the trusted model.

A standard practice when publishing a dataset containing personal information

is to anonymize the dataset [10,12]. For this, it is not sufficient to simply remove

all explicitly identifying information from records within the dataset, as individuals

could potentially still be re-identified from quasi-identifier attributes within a record

- data that narrows down the likely owners for a particular record, potentially to a

single person within the dataset [49]. To this end, a prolific property for assessing

the privacy of a published dataset is k-anonymity, under which each person's data

within a published dataset cannot be distinguished from at least k-1 individuals also

in the dataset [41,49]. To achieve k-anonymity, publishers typically either performed

suppression - removing offending attributes from the table - and/or generalization -

sufficiently lowering the resolution of the attribute to the point that at least k records

alias to the same value for that attribute.

While k-anonymity is a necessary property for an anonymized dataset to have, it

is not necessarily sufficient for privacy preservation. For example, in the absence of

sufficient diversity amongst records within a dataset (the case of a very rare disease

in a medical records database), individuals could still be re-identified from the values

of these attributes. As such, Machanavajjhala et al. [35] identified 1-diversity, the

requirement that each set of quasi-identifier attributes must contain at least I distinct

values, as a means to further anonymize datasets. Likewise, -diversity is flawed in

the face of a skewness attack on the data, in which an attacker can narrow down the
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set of likely individuals with a given set of quasi-identifiers based on the distribution

of values for sensitive attributes within the subset. To combat this, Li et al. [34] pro-

posed t-closeness - the requirement that the distribution of all all sensitive attributes

within any subset of quasi-identified data must be close to the distribution for that

attribute in the entire dataset ("close" meaning within t, calculated via the Earth

Mover Distance).

A trend starts to appear in the work for anonymizing datasets. Namely, for

each property that must be met prior to publishing a dataset, a new type of attack

may be constructed to re-identify individuals within the dataset, or the data will

be degraded to the point that useful insights about the data cannot be discerned (a

common complaint with t-closeness [23]). These shortcomings are further exacerbated

when dealing with fine-grained, high-resolution sensor data, such as location. In fact,

de Montjoye et al. [14] showed that only 4 spatio-temporal points are necessary to

uniquely identify 95% of 1.5M people in a mobility database that exposed locations

at the cell-tower level (low accuracy). Furthermore, their study showed that lowering

either time or space resolution within the dataset had little effect on the number of

points needed to identify individuals. Traditional means of preventing location data

leakage, such as frequently changing pseudonyms [5] and cloaking [28] have likewise

proven to be inadequate [32,44].

When viewed under the lens of failed attempts at anonymizing datasets, one

may begin to consider alternative means of handling sensitive personal data. Self

ownership and publishing, along with tools to manage one's own privacy, appear to

be a necessary step towards providing awareness to users about the nature of what

their data says about them, allowing them to control its dissemination, and removing

liability from organizations that would be held accountable for sensitive data leaks

in the world of centralized personal data publishing. This thesis, and indeed the

openPDS framework that it implements [16], provides a further step: disallowing

the outright publishing of the raw sensor data, and instead providing compute space

within an individual's trusted personal data store for approved analysis to run.
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Chapter 2

Personal Data Stores

Personal data stores seek to solve multiple issues present in the current state of online

personal data. In this section, these issues are described, along with potential high-

level solutions.

2.1 Principles

2.1.1 Personal data ownership

An individual's personal data are currently spread across the multitude of services

that individual uses.Their social graph, calendar, and location history are typically

stored by, and under the control of, the service the individual used to generate the

data. For this reason, any entity seeking a more holistic view of an individual's online

life (as well as offline via sensor readings) must obtain authorization by the user to

access each service's data in its raw form, and perform analysis across the different

data in a separate location outside of the individual's control. This process can be

complicated; in the best case, each service has its own API, and the individual or

third-party must learn each of them before pulling the data together for analysis. In

the worst case, a service will not provide a publicly-accessible API, and the user must

resign to either not use that specific service's data, or resort to screen-scraping, which

is error-prone, and can even violate the terms of use for a given service. Additionally,
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for the case of a third-party aggregation service, the user must certify that the new

entity is trustworthy and will not share their data or use it for other nefarious purposes

once it has been provided. Figure 2-1 shows the current state of online personal data

collection and use.

Figure 2-1: Service-centric personal data storage - data from all users are stored by,
and under control of the services the individual used while generating the data

Personal Data Stores seek to solve the problem of providing personalized services

based on a complete view of the individual's data by providing an user-centric storage

model for such data as opposed to the service-centric storage model that is ubiquitous

today. In this manner, openPDS provides a unified location and interface for an

individual to store their personal data, and run analysis against it. Additionally, it

provides a framework for authorizing third parties to access their data. Figure 2-2

shows the state of personal data storage in the presence of ubiquitous personal data

stores.

In addition to physical storage of individuals' data, personal data services today

typically stipulate that the data remains under control of the company providing the

service, rather than the individual generating the data. In this manner, the company
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Figure 2-2: User-centric personal data storage - data from all services an individual
uses are stored by, and under control of, the user generating the data

has the right to retain data after a user has requested deletion, use the identified

data internally, and share the data in an anonymous aggregate (or even an identified

fashion, if the terms of use stipulate it), all without the user's express consent. Such

egregious stipulations exist in Terms of Service across the web today that an entire

movement and website thrives around the notion of providing a grade and simple,

human-readable evaluations of what a service's terms actually mean [40].

2.1.2 Informed consent based on purpose for data use

Informed consent is a cornerstone of ethical data collection in both clinical and re-

search settings [21]. In order to properly collect data on and about individuals, it is

a researcher's duty to:

1. Obtain voluntary agreement from participants for enrollment into services that

collect their data

2. Provide adequate information about the nature of the data collection and the

service that will be provided prior to seeking participants' agreement

The second of the two requirements above implies that there is a burden on the

part of the party wishing to use the data to adequately educate participants before
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opting them in to data collection. It is not enough to simply provide this information

to the participants - the service seeking to use the data must assure to the best of

their abilities that the user actually understands the terms of their agreement [46]. As

previously described, terms for such services are typically very lengthy and written

by legal entities with little to no regard for actual comprehension of the text. The

critical leap towards actual informed consent that these terms of service fall short

of is comprehension. Even if an explanation of all data being collected is provided,

users may not know the implications of allowing this data to be collected - they lack

(understandably so) comprehension of the purpose for which this data can and will

be used by the collecting party.

The vast majority of personal data services on the web use role and scope-based

authorization to provide a means for users to authorize third parties to use their data.

In typical authorization, individuals authorize roles (typically a third party app acting

on the user's behalf) to access specific scopes, which correspond to the source and

type of data, with little to no insight or control over how that raw data is used once

the service surrenders it. For example, Facebook, a popular personal data service,

provides scope-based authorization via OAuth that allows third-party applications to

access a user's personal data generated on the site. Controls are provided via scopes -

each corresponding to a different type of data from the user's Facebook profile. In the

Facebook case, a user's first and last name have their own scope, as well as the user's

birthday and hometown. Figure 2-3 provides an example of the user experience for

an application requesting access to a user's personal data.

In a typical scope-based authorization flow, the user authenticates against a ser-

vice's identity provider, and is presented a user interface the delineates all types of

data a given third party is requesting access to. However, besides describing the data

type and source they control, scopes are limited in their ability to control actual oper-

ations on the data - scopes can be generated corresponding to typical CRUD (create,

read, update, delete) operations, but little can be done to support more complex or

semantic purposes. In order for a user to fully understand the consent they are giving

to a third party when they agree to the terms of service, a user must have a concept
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Figure 2-3: Typical authorization flow - blanket access to specific types of data are
provided to third-parties

of the purpose for which the third party intends to use the data. Without a full

understanding of how the data can be used, the user cannot conceivably give their

informed consent for use of their data.

2.1.3 Privacy-preserving computation

Self-ownership of personal data, along with complete control over how it is used,

including fine-grained access control on the data type and purpose level, provides a

means for users to help manage their personal data privacy. However, these tools alone

do not provide any guarantee that code run against an individual's data adheres to the

stated purpose, or that their privacy is being preserved in an aggregate computation

across other users' data.

In a service-centric architecture, there are no technical guarantees that an indi-

vidual is unidentifiable in the dataset that each service exposes either internally to
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employees at the company providing the service, or externally to third parties that

interact with the service. This is due to a lack of control over the dataset(s) being ex-

posed. User-centric storage helps remedy that problem by providing a complete view

of the dataset being exposed. By adding a trusted compute space within an individ-

ual's personal data store, the individual or an outside party can effectively audit all

code being run against their data and determine if they are comfortable both with the

data that the computation requests in raw form, as well as the dimensionality-reduced

resulting dataset that the third party submitting the code is requesting access to.

2.2 Recent Work

User-centric personal data storage and management has a long history that starts in

1945 with Memex [8], which sought to manage personal data in a pre-digital world

via a mechanical framework. As this pre-dates massive aggregation, the focus was on

efficient means for capturing (via a head-mounted camera), storing, and retrieving

personal data, rather than managing the role of the individual in mass data aggre-

gation. Research began exploring collective intelligence based on individual personal

data in the 60's [20, 36], still well before the age of ubiquitous data collection, and

modern privacy research.

More recent work has focused on the personal data store as a means of maintaining

user privacy, ownership, and control over personal data, brought on by the modern

age of mass data collection, and the emergent service-centric storage for storing the

sensitive data. Allard et al. described a vision of decentralized personal data stores re-

siding on embedded devices physically owned by individuals, with supporting servers

for asynchronous communication, durability, and global processing [2]. An extension

of this work also proposes implementations of the embedded physical devices within

smartphones and set-top boxes [3]. A personal data store for an "Internet of Sub-

jects" was described in [30], and a small-scale test to determine willingness amongst

users to adopt the described PDS in a job-application scenario was explored in [31].

Direct pre-cursors to the work presented in this thesis were discussed in [16].
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In particular, the authors introduce the openPDS architecture and the concept of

a question answering framework running within a user's personal data store. The

architecture and its implications for privacy, as well as use cases for developers and

end-users are further described in [15]. The work contained in this thesis represents

a direct extension to this work in terms of scalability, performance, and experience

for both end-users and developers.
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Chapter 3

Implementing a Personal Data

Ecosystem

This section covers the core openPDS architecture, beginning with definition of terms,

and proceeding to a description of the functional components necessary to build

a cohesive personal data store solution. The functional components are organized

into distinct sections: authentication service and Registry, individual decentralized

Personal Data Stores, and REST service interfaces for both.

3.1 Nomenclature

Authorization Server A server issuing OAuth 2.0 access tokens to the Client after

successfully authenticating the user and obtaining authorization.

Client In the OAuth context, an application or system making protected requests

on behalf of the ser and with his or her authorization.

OAuth 2.0 An open protocol to allow secure API authorization in a simple and

standard method from desktop and web applications. It enables users to grant

third-party access to their web Resources without sharing their passwords.

Personal Data Store A protected resource owned and controlled by an individual

to hold their personal data. The user controls access to use, modification,

31



copying, derivative works, and redaction or deletion of the data they enter into

the Personal Data Store, including data collected from their smartphone via

either passive sensor collection or surveys.

Registry Account management and database of registered users. This server stores

only data that is necessary to authenticate a user (email and password hash)

and locate their PDS, and has an internal as well as an external identifier for

each user. The Registry authenticates login requests, as part of the OAuth

authorization flow.

REST Service A type of web service that is stateless, cacheable, and provides a

uniform interface to resources. Such services use URLs to uniquely identify

resources and standard HTTP methods of GET, POST, PUT, and DELETE

to specify the operation to perform on a resource.

Scope When an individual authorizes access to data on their personal data store,

the access token also includes one or multiple named Scopes, each designating

a type of data access that has been authorized.

Symbolic User ID Indirect reference to a registered users OAuth and Registry

identifier key. Also referred to as a participants UUID.

User ID A participants OAuth and Registry identifier key. It is accessed only in-

ternally by openPDS and the Registry server. When Entities other than the

Participant or System Entity need to reference it, they are given a Symbolic

User ID.

3.2 High-Level System Diagram

Figure 3-1 provides a high-level overview of all stakeholders in a general personal

data ecosystem. This includes third parties providing data and services, users in the

ecosystem (shown as participants), and applications acting on behalf of users and

services.
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Figure 3-1: High-Level personal data ecosystem - a set of decentralized personal
data stores constitute a trust framework with a centralized registry of users and
authorization service.

Subsequent sections explain each of the blocks called out in figure 3-1, including

Registry and authorization, personal data stores and their associated question and

answer system, as well as clients and data providers built on top of the ecosystem.

APIs are described to facilitate communication between physical servers in a personal

data ecosystem, as well as how data is organized in personal data stores, and the

means by which one may define new applications or data connectors to run on personal

data stores.

3.3 Registry and Authorization

An authorization server, supporting the OAuth 2.0 protocol, provides secure user

authentication and authorization of access to personal data stores. The OAuth com-

ponent is tightly coupled with a registry providing account management services.

As part of these account management services, the registry includes a database of

registered users, holding login credentials for authentication, and profile data.
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Account management services include profile edits, password changes, and re-

covery procedures for forgotten passwords. Administrators have full access to these

services, while other participants may have access only a restricted subset.

At the point of user registration, the registry creates a profile for the user, and

a personal data store is lazily initialized for them. The user profile contains the

following information:

Username used to login to the registry server and personal data ecosystem. Must

be unique.

Email used for account verification purposes. Must be unique.

Password hash

First name

Last name

UUID anonymous symbolic identifier used to address this user across the personal

data ecosystem. Is unique by definition.

PDS Location URL identifying where the user's distributed personal data store

resides

Additionally, to facilitate authorization, the registry server also holds information

about the groups a user belongs to, as well as the roles the user can take on within

the system. After registration, authorization for collecting and utilizing data by an

app on the user's behalf follows the flow described in figure 3-2. The registry server

also holds all information pertaining to the flow described therein - including all

access tokens and authorization codes for all users in the ecosystem. These users can

revoke authorization tokens and, in turn, revoke the access they had provided to their

personal data. Each request against any server in the personal data ecosystem must

provide an Authorization header of the form: Authorization: Bearer <token>,

where <token> is a placeholder for a valid authorization token.
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2) User Login and Consent

4) Exchange code for Token

5) Access Token + Refresh Token.

Loop 6) Call API with Access Token

7) Protected Resource Respons

8) Call API with Expired Token

9) Invalid Token Error

1)Refresh Token

11) Access Token + Refresh ke urnp back to step 6)

Figure 3-2: General Authorization Flow - a registered user authorizes an application
to act on their behalf. The application then presents an authorization token, which
can be refreshed as needed, when accessing the user's data.

In addition to the traditional scopes associated with authorization tokens, the

registry server stores an additional parameter for each authorization token: purpose.

From the registry, this is a unique human-readable string that identifies logic run

within users' personal data stores. This logic is further described in the question and

answer framework section.

For accessing data, the system supports scopes at both the resource and key level.

For resource types (such as Funf or Facebook data), a scope named funf _write

may denote access to write funf data to a user's personal data store. Additionally,

to control access to the results of analysis on the raw data within a personal data

store, the PDS supports scopes at the key level as well. In this manner, a one-

to-one correspondence exists between answers to questions on the PDS and scopes

for accessing those questions (a "socialhealth" answer would have a corresponding

"socialhealth" scope).
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3.4 Distributed Data Stores

After a user authorizes a third party to store or access their personal data, all subse-

quent communication is done directly with that user's personal data store using the

granted authorization token, as shown in figure 3-2. Storage for personal data within

this location is done in a user-centric manner; while a single openPDS server sup-

ports storage and analysis on multiple user's data, each user has a separate backend

database, and separate, user-specified encryption keys for all personal data residing

in the store, regardless of the data source. In this manner, personal data stores

can either have a one-to-one correspondence between physical hosting machines and

users, or an arbitrary number of physical machines may provide a logical one-to-one

correspondence by sharing physical resources between users. Data from a given user

hosted on the same physical machine as other user's may be accessed with a combi-

nation of the user's UUID and a valid OAuth token. Figure 3-3 provides an overview

for reference by the subsequent design and implementation sections.

3.4.1 Storage

In order to support data with an arbitrary schema, MongoDB is the primary backend

storage technology. MongoDB is a non-relational ("No-SQL") data store consisting of

JSON-formatted documents identified with a unique ID, provided by the MongoDB

server running within the PDS. In order to support queries against this data based

on time and type of data, each piece of raw data stored in this system has a key

denoting the type of data, and a timestamp denoting when the particular sample of

data was taken. Given these constraints, relational backends with fixed schemas can

also be supported.

To this effect, a SQLInternalDataStore base class has been implemented with

corresponding PostgresInternalDataStore and SQLiteInternalDataStore subclasses.

Schemas for relational backends are specified in a backend-agnostic manner in or-

der to support the multitude of different SQL dialects, or other query languages, such

as SPARQL. A backend-agnostic schema for a table is represented as a Python dictio-
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Figure 3-3: Detailed PDS architecture - Connectors handle data input from external
sources, Answers handle output of processed data, Questions handle populating these
answers, each step checks for authorization and records an entry in an audit log.

nary with a name, a list of column tuples containing the name and data type for the

column, as well as an optional mapping list for retrieving data from a field that does

not match the name provided for the column. An example backend-agnostic schema

definition for the CallLogProbe table is provided below:

Listing 3.1: Example backend-agnostic schema definition.

CALL.LOGTABLE = {

"name": "CallLogProbe",

"columns": [

("-id", "INTEGER"),

("name", "TEXT"),

("number", "TEXT"),

("number-type", "TEXT"),

("date", "BIGINT"),
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("type", "INTEGER"),

("duration", "INTEGER")

"mapping": {

"funf": {

"number-type": lambda d: d["numbertype"]

}

}

}

3.4.2 Connecting a Data Source

The personal data store currently supports storing data obtained from the Funf frame-

work running on Android phones via a connector. In order to extend the system to

support a new type, a connector for that data source must be written, and a user

must authorize the new application to access their PDS. These steps are described

below.

Authorization to write to the PDS

As all requests to the PDS must contain a bearer token and the UUID of the data

store owner as query string parameters (bearer-token and datastoreowner__uuid,

respectively). The endpoint written for the new connector must check for the pres-

ence of these querystring parameters and verify them against the registry server that

provided them. The endpoint must specify an OAuth scope corresponding to the type

of data it is collecting (Funf uses funf _write, for example), and the token provided

must have access to that scope. Scopes can be created by signed-in users on the

registry server at /admin/oauth2app/accessrange/.

Extending InternalDataStore

To handle a new data source, the internal API for storing and retrieving data, In-

ternalDataStore, must be updated to handle the new type of data. In most cases,
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this entails specifying either a new collection in Mongo to hold the data or, for re-

lational backend support, a new SQL table. For relational backends, the schema for

the new data type must be provided as described in section 3.4.1. Authorization

against the created scope, connections to the database, and queries against the new

collection or table are then provided automatically by the parent InternalDataStore

implementation.

Exposing an endpoint for the new connector

After getting authorization to access a PDS, a means of transferring data to it must

be provided. This is typically done by exposing a REST endpoint on the PDS for the

data source device to POST to. The endpoint will typically accept a POST request of

raw data, along with PDS credentials (datastore owner__uuid and bearer-token),

authenticate the request using the PDSAuthorization and PDSAuthentication mod-

ules, and write the data if the request is valid. For the case of encrypted files, this

will also involve a decryption step that can either be done synchronously while the

PDS processes the request, or queued up for asynchronous decryption by a separate

process.

3.4.3 A Two-Level API for Accessing Personal Data

As figure 3-3 shows, accessing data within a personal data store follows a two-step

process.

Internal API

As a means of preserving the privacy of the owner, openPDS prohibits data from

leaving the store in its raw form. Instead, in order to enforce data use for a specific

purpose, the system provides a trusted compute space that a third party may submit

code and queries to as a means of computing answers to questions about the data.

This compute space is shown within figure 3-3 as the "Questions" block. Each time

raw data is accessed within this space, the data store checks with the registry server
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to assure the question is allowed access to the raw data it is requesting, and stores an

audit log of the request and the code's corresponding purpose. Access to raw data

within the trust compute space is provided via the InternalDataStore interface:

class InternalDataStore
Method Description
-- init_ (profile, token) Initializes an InternalDataStore for the user as-

sociated with profile, using authorization pro-
vided via token.

getAnswer(key) Retrieves a dictionary representing the answer
associated with the given answer key, if it exists,
or None if it doesn't.

getAnswerList(key) Retrieves a list representing the answer associ-
ated with the given answer key, if it exists, or
None if it doesn't.

saveAnswer(key, answer) Stores the given answer under the provided an-
swer key.

getData(key, start, end) Retrieves data of the type specified by key,
recorded between the start and end times.

saveData(data) Saves data to this InternalDataStore. Data
must specify a key and time in order to be ac-
cessed later via getData.

notify(title, content, uri) Sends a notification to all devices registered for
this user.

Table 3.1: InternalDataStore provides an interface for accessing raw data and answers
within the trusted compute space

External API

Upon accessing the raw data within the question-answering framework, third party

code has the ability to store the result of the computation as an answer. These an-

swers provide the second layer of data access on the PDS. While question answering

occurs privately within the data store's trusted compute space, answers to questions

populated within that space are available via the answer and answerlist REST APIs

on the data store. In order to gain access to the answers stored using an InternalData-

Store, a client must list that answer's key as a scope when requesting a bearer token

to access the user's PDS. This token, as with all requests against a user's PDS, is
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included on the request to the answer or answerlist endpoints, where the PDS checks

for the requisite scope and stores an audit log of the request prior to returning the

pre-computed data. Table 3.2 documents the full external REST APIs available to

clients via standard HTTP requests.

External PDS REST endpoints
Endpoint Methods Description

/api/personal data/answer GET Retrieves or stores the answer
POST for a given key as a JSON-
PUT formatted dictionary.
DELETE

/api/personal-data/answerlist GET Retrieves or stores the answer
POST for a given key as a JSON-
PUT formatted array.
DELETE

/api/personal data/funfconfig GET Retrieves or stores Funf config-
POST uration objects.
PUT
DELETE

/api/personaldata/device POST Registers the cloud-messaging
DELETE identifier (gcm-reg-id) for a

client device.
/api/personal data/notification GET Retrieves all outstanding noti-

DELETE fications from the PDS.

Table 3.2: The PDS provides a number
to interface with.

of external endpoints for client applications

Each REST endpoint in the external API takes datastoreowner__uuid and the

client's OAuth token as bearertoken as querystring parameters. For the case of

answer endpoints, the key for the desired answer must also be provided for GET

requests. For all endpoints, the authorization layer within the PDS assures that

the given bearer token has access to the necessary scopes to complete the request,

and an audit log is stored to keep track of the request and the data provided. For

the device endpoint, clients with the approved scope can register devices or delete

their registration, but cannot perform GET or PUT requests to retrieve or update

pre-existing devices. Likewise, the notification endpoint only provides support for

retrieving and deleting notifications; notifications may only be added via the internal
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API.

3.4.4 Writing Questions

Questions are structured as asynchronous tasks run on a pre-defined schedule within

the user's personal data store. The system makes use of Celery, an asynchronous job

queue and processing service running continuously within the personal data store's

trusted compute space. As such, a question within the personal data store is a Python

method that takes an InternalDataStore as parameters and has a ftask() attribute

attached to it. An example task for computing the number of probe entries for a

given user is provided below:

Listing 3.2: Example question for pre-computing an answer from a single user's data.

Ot ask ()

def recentProbeCounts(internalDataStore):

start = getStartTime(2, False) #Timestamp from 2 days ago

probes = [

"ActivityProbe",

"SimpleLocationProbe",

"CallLogProbe",

"SmsProbe",

"WifiProbe",

"BluetoothProbe "1

answer = {}

for probe in probes:

#Look up all data for the given probe (no end time)

data = internalDataStore.getData(probe, start, None)

answer[probe] = data.count()

internalDataStore . saveAnswer ("RecentProbeCounts", answer)

A file containing each such question is submitted to the personal data store, along

with a schedule corresponding to each task that specifies the frequency with which

it runs and updates the answer it populates. The personal data store then schedules

each task to run and allows each to only update answers with keys that the provided
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token has specified as scopes. For the case of a single personal data store hosting

a number of user's data, the data store iterates over all users hosted on the given

PDS install and runs each question installed for that user before moving on to the

next user. In this manner, the backend storage can take advantage of time locality

between references to similar data in order to maximize the amount of data present

in the backend storage's cache, if it exists.

3.4.5 Group Computation

Data and answers about that data, are often more useful when aggregated across

different users. However, the ability to perform such aggregation is notably absent

from the aforementioned question answering code. In order to perform an aggrega-

tion across different users' personal data stores, a second question answering format

is specified, along with a number of endpoints within the PDS to facilitate group

computation across a distributed set of machines.

3. Intermediate Result

PDS 1 1. Initial Result R DS 2 2. Intermediate Result PDS 3

4 FinalFResult

4. Final Result

Figure 3-4: Group computation flow: 1) Initiating PDS begins aggregate computation
2-3) PDSes contribute to intermediate results passed along the chain of contributers
4) The initiating PDS completes the computation and POSTs the result back to all
contributing data stores

As with the single-user case, questions that contribute to group answers are asyn-
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chronous celery tasks. However, instead of being run within the PDS continuously

on a set schedule, these tasks are invoked via a group contribution URL on the user's

PDS, located at /aggregate/contribute. Personal data stores POST to this end-

point in a ring fashion to build up a running total for the aggregate computation. This

endpoint takes the UUID of the user contributing to the computation as a querystring

parameter, and the body of the POST request contains both the current intermediate

result of the running computation as well as the remaining list of personal data stores

to visit in order to complete the computation. Each personal data store updates the

running total, taking into account data within that PDS, and then posts the updated

intermediate result to the next personal data store in the chain. Figure 3-4 describes

the flow of data amongst a small set of contributing personal data stores.

To take the running total into account when contributing to a group computation,

the format for such questions modifies the original question format to take the current

running total in addition to an InternalDataStore. Below is an example of such

a question contribution that leverages the probe counts answer calculated by the

previous example question:

Listing 3.3: Example question for contributing to an aggregate computation.

t ask ()

def contributeToAverageProbeCounts (ids, runningTotal):

myCounts = ids.getAnswer ("RecentProbeCounts")

count = runningTotal ["count"]

for probe in myCounts:

runningTotal[probe] = runningTotal[probe]*count

runningTotal[probe] += myCounts[probe]

runningTotal[probe] = runningTotal[probe]/(count+1)

runningTotal["count"] += 1

return runningTotal

After calling the method associated with a given aggregate question, the PDS

takes the return value and POSTs it, along with the list of remaining contributers

to the next PDS in the chain. When the running computation reaches the initiating

44



PDS, a separate completion method is called that pushes the final result out to each

contributing PDS, where a copy of the result is stored locally.

3.4.6 Aggregate Performance and Approximations

Aggregate computations incur a latency cost over traditional methods that would pull

raw data for all contributing parties to a centralized place and perform computation

therein. For a small sample population of hundreds of users, this latency can be

acceptable - the set of users a registry server returns for a given computation can be

ordered in a way that clusters personal data stores in similar geographic locations as a

best-effort means of minimizing latency of the total computation. Assuming average

latency between data stores can be kept below 500ms, every 100 separate data stores

will add at most 50 seconds of latency to the computation. This is deemed acceptable

for the typical group computation workload, where the value of the aggregate changes

smoothly and slowly over time and thus, computing the aggregate in an offline manner

and storing the result is acceptable with minimal loss of accuracy over time.

However, in the presence of even thousands of separate personal data stores, la-

tency can begin to affect the accuracy of the computation. Table 3.3 shows computa-

tion times and overhead for a typical group aggregate that computes the average and

standard deviation of a given answer as the number of personal data stores grows.

These numbers were taken from a simulated workload between 2 personal data stores

with identical system configurations (1.6 GHZ dual-core processor, 2GB RAM), and

40ms of network latency between them, as measured by ping.

For the purposes of analysis, a result that takes less than 5 seconds to compute will

be considered feasible for real-time computation at the time of the request, and any

result that takes less than 5 minutes to compute will be considered "real-time" if the

pre-computed result is stored in a manner that can be quickly retrieved. This method

of retrieving an up-to-date, but pre-computed result at the time of the request for

an answer is known as a "real-time batch", where the result is returned in real-time

(the time it takes to look up an answer in a PDS is less than 100ms), and the data

has been calculated based on the most up-to-date raw data available. As the number
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Data stores Computation Time (s) Overhead (s) Total Time (s)
1 0.011 0 0.011
2 0.022 0.27 0.292
5 0.05 1.43 1.48
10 0.16 2.66 2.82
100 1.64 28.4 30.2
1000 15.1 302.27 317.37
10000 156.2 3166.215 3316.415

Table 3.3: Aggregate performance and overhead - Overhead quickly overtakes com-
putation time when computing an aggregate.

of data stores contributing to a computation grows, time to complete one rotation

around all contributing data stores makes real-time results intractable for anything

more than 10 contributing data stores. Furthermore, when 1000 or more data stores

contribute to a result, even maintaining a real-time batch result becomes unfeasible.

To circumvent this limitation, personal data stores have the ability to short-circuit

aggregate computation by returning an intermediate result to the data store that

initiated the computation, allowing it to push out the partial result of the computation

to contributing data stores prior to completing the computation. The number of data

stores to visit prior to storing an intermediate result is configurable on a per-question

basis. For the provided workload, a good time to store an intermediate result might

be after visiting 100 data stores. Visiting the contributing personal data stores in an

unbiased order allows the system to store the intermediate result of the 5-minute long

computation in 30 seconds with 10% confidence. For each 100 contributions after the

approximate result is computed, the resulting approximate answer is updated with an

additional 10% confidence, until the computation is complete and the result represents

the true value.

The ability to return approximate results means that each contribution to a run-

ning calculation must be representative of the final result - if the final result of an

aggregate computation depends on post-processing within the initiating data store,

prior to pushing to the contributing stores, this post-processing must apply to an

intermediate (approximate) result as well. To facilitate such post-processing, the

personal data store keeps track of the number of contributers along with the run-
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2a) Approximate Result

1)PDS 2) 2) PDS
PDS 1 2 N 1PDS NN+I

2b) Approximate Result, 4) Final result

Figure 3-5: Group approximation flow: 1-2) PDS's contribute to intermediate results
passed along the chain of contributers 2a) After N contributions have been made, an
approximate result is returned to the initiating PDS 2b) The initiating PDS pushes
this result to all contributors 2-3) Aggregation continues, returning approximate an-
swers ever N contributions, until 4) the final result is returned.

ning total passed between contributers. Under the approximate flow, contributers to

the example calculation would receive an intermediate result approximately every 30

seconds with increasing confidence until the 5 minute computation has completed.

3.4.7 Clustered Hosting

Using the group approximation framework, there is the potential to further enhance

performance by clustering a number of logical personal data stores within a single

physical machine, and contributing to group computations on all clustered data stores

at once. It is important to note that this is different than hosting all personal data

stores in an ecosystem in the same place - in an ecosystem of thousands or millions

of personal data stores, such an approach would provide a single point of attack and

furthermore, is prone to leaking everyone's data in the event of a security breach.

Rather, from the aggregate performance numbers above, a good initial guess at the

number of personal data stores to host within a single machine would be 100, resulting

in reasonable performance, and little to no increase in the likelihood of discerning

which machine to attack for a given user's data.
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For the case of a clustered personal data store that represents the data from a

number of different users, the personal data store framework can re-order the list of

contributers for a given aggregate computation to pull out all users that are hosted

within the given physical machine, and perform a portion of the aggregate compu-

tation entirely within the machine before passing the intermediate result along to

the next contributer. In this manner, figure 3-5 stands as an accurate representa-

tion of the flow, however the clouds of PDSes in the figure could represent either N

physically separate personal data stores, or N clustered personal data stores within

a single physical machine. Table 3.4 shows the results of the same computation as

table 3.3, with clusters consisting of 100 logical personal data stores. While overhead

is decreased by a factor of 100, computation sees a commensurate decrease, likely due

to better resource utilization within the cluster (code can stay in memory, personal

data can stay in cache).

Data stores Computation Time (s) Overhead (s) Total Time (s)
1 0.01 0 0.01
10 0.1 0 0.16
100 0.55 0 0.55
200 3.22 0.27 3.49
1000 4.17 2.66 6.83
10000 40.37 28.4 68.77

Table 3.4: Clustered aggregate performance - Overhead is reduced by a factor of N
for clusters of N personal data stores. Furthermore, computation time decreases as
cache and memory within a cluster is better utilized.

As aggregation within a clustered personal data store occurs without even inter-

mediate aggregate results leaving the store, clustered hosting also has the potential

to further preserve the privacy of individuals participating in group aggregate com-

putations; an individual's personal data store within a cluster becomes more resilient

to attacks from outside the cluster that would attempt to utilize the group compu-

tation framework to re-identify the individual based on their contributions to group

computations.
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3.5 Client Applications

To facilitate data collection and user interaction, a Java client library is implemented

on top of the Android platform. In addition to extending Funf data collection to in-

corporate access control and syncing both data and configuration with a personal data

store, classes are provided to interface directly with both the registry and distributed

data store components of the openPDS personal data ecosystem.

Applications must follow the authentication flow described in figure 3-2, which,

from the client library perspective, involves the use of two library classes: Reg-

istryClient and PersonalDataStore. These classes wrap corresponding interactions

with the Registry Server for authentication and authorization, and the Personal-

DataStore for retrieving data and visualizations. The RegistryClient and Personal-

DataStore interfaces are provided below in tables 3.5 and 3.6.

class RegistryClient
Method Arguments Description
RegistryClient String url Constructs a RegistryClient connecting to

String clientKey the given url for the given client credentials.
String clientSecret
String basicAuth

authorize String username Attempts to authorize the client associated
String password with this RegistryClient to access the given

user's account.
getUserInfo String token Attempts to retrieve information, including

PDS location and UUID for the user that
issued the provided token.

createProfile String email Registers a new user with the given creden-
String password tials on the Registry server.
String firstName
String lastName

Table 3.5: RegistryClient provides a
an Android client application.

means of interfacing with a Registry server from

A typical client application will first prompt the user to either register or login,

and will then retrieve authorization and a link to the user's personal data store. To

this end, the openPDS client library provides a number of convenience asynchronous

tasks: UserLoginTask, UserRegistrationTask, and UserInfoTask that wrap each
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class PersonalDataStore
Method Arguments Description
PersonalDataStore Context context Initializes a PersonalDataStore given

an Android Context with the requi-
site information (PDS location, user
UUID, bearer token).

getAnswer String key Retrieves a JSONObject for the an-
String password swer corresponding to the given key

from the PDS if it exists and the client
has access to it. Null otherwise.

getAnswerList String key Retrieves a JSONArray for the answer
String password corresponding to the given key from

the PDS if it exists and the client has
access to it. Null otherwise.

registerGCMDevice String regId Registers the current device with the
provided GCM registration ID on the
PDS.

getNotifications Retrieves all notifications on the PDS
buildAbsoluteUrl String relativeUrl Builds the absolute URL for the re-

source located at relativeUrl on this
PDS.

Table 3.6: PersonalDataStore provides a means of interfacing with a user's Personal
Data Store from an Android client application.

of the corresponding methods on RegistryClient, and update the application's Shared-

Preferences to store the necessary information used to construct a PersonalDataStore.

After the user has registered or logged in via the RegistryClient, and has autho-

rized the client application to access their personal data store, all subsequent com-

munication is done directly via PersonalDataStore objects (described in table 3.6). A

client application can request answers from the PersonalDataStore object and present

native user interface widgets, or request a fully-qualified URL from a PersonalData-

Store object and display a Webview containing the corresponding page on the user's

personal data store.

3.5.1 Configuring Data Collection

The openPDS client extends Funf data collection by providing an implementation

of the standard Funf Pipeline interface named OpenPDSPipeline. This is used in
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place of Funf's BasicPipeline in the configuration file for Funf and, as with standard

Funf configurations, the configuration is a JSON-formatted dictionary containing a

@type field for specifying the fully qualified pipeline class, followed by a dictionary for

declaring scheduled actions, and an array for declaring the data the pipeline instance

will collect. An example configuration file for configuring data collection from call

logs and location are provided below:

Listing 3.4: Example openPDS Funf pipeline definition.

{

"ftype": "edu. mit . media. openpds. client . funf . OpenPDSPipeline",

"schedules": {

"upload": {"strict": false, "interval": 900 }

},

"data": [

{

"Otype": "edu.mit.media.funf .probe.builtin.CallLogProbe",

"afterDate": 1365822705,

"@schedule": {"strict": false ,"interval": 3600 }

{

"Otype": "edu.mit.media.funf.probe.builtin.LocationProbe",

"maxWaitTime": 30, "goodEnoughAccuracy": 10,

"@schedule": {"strict": true,"interval": 900 }

}

]

}

This configuration is provided as metadata within the service tag for the FunfMan-

ager service in the application's AndroidManifest.xml file. Additionally, permissions

for each probe must be requested within this file as well, including fine and coarse

grain location for any location probe, the requisite admin permissions for wifi and

bluetooth scanning probes, and external storage and internet permissions for access-

ing the user's personal data store and writing data.
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3.5.2 Defining Client Data Use and Visualizations

The full definition for a client application built on top of the openPDS ecosystem

consists of three parts:

1. A client manifest file

2. A file containing all questions the app needs

3. A set of HTML visualization files

Each of the above requirements are combined into a zip archive to be installed on

a user's personal datas tore. This section describes how each of these are defined and

used by the openPDS client library and servers to create a cohesive client application.

Client Manifest

An client manifest file format is specified as a means of defining how a client applica-

tion may present answers to questions about data, as well as what data contributes

to a particular answer. Specifying a manifest for an app built on top of the open-

PDS ecosystem allows the client library to automatically generate user interfaces for

notifying and providing control to the user over how their data is collected at the

client level. The app manifest file is a JSON-formatted dictionary containing fields

for the app name, client credentials, visualizations, and any answers the app will

request access to, along with the data required to compute each answer. An example

is provided below:

Listing 3.5: Example client manifest definition.

{

'name': 'App Name',

'credentials': {

'key': 'registered-client-key',

'secret': 'registered-client-secret',

'auth': 'BASIC auth.stringhere',

'scopes': [ 'funf-write', 'answerl', 'answer2', 'answer3']
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visualizations' [

{ 'title': 'Visualization 1 Title',

'answers': ['answerl'] },

{ 'title': 'Visualization 2 Title',

'answers': ['answer2', 'answerl']

answers':

{ 'key':

'data'

{ 'key':

'data'

{ 'key':

'data'

'key': 'visiKey',

'key': 'vis2Key',

}

'answerl',

: ['answer3', {'key':'WifiProbe','required': false]}},

'answer2',

: ['ActivityProbe', 'LocationProbe'] },

'answer3',

: ['SmsProbe','CallLogProbe','BluetoothProbe'] }

The client library constructs access control screens for each answer based on the

data it requires. For compound answers - those that rely on the result of another

answer - the client library traverses the resulting data dependency tree to map back

to the necessary probes required for computing the answer. Additionally, the client

library provides a suite of user interface elements for displaying server-generated visu-

alizations from the visualization keys provided in the client manifest. A well-defined

client manifest file, combined with the pipeline definition metadata, allows a devel-

oper building on top of the personal data ecosystem to quickly develop applications

with minimal client-side code, if they so choose, and have the client library automate

the process of authorization, access control, and UI generation for visualizations.

Questions File

Each client must define any new questions they would like to assure will be populated

on the user's personal data store. Individual questions are to be written as described

in section 3.4.4, and included in a single questions. py file. If the client application

requires questions from another application, the unique identifier for that question's
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key must be included in the client manifest file, but the definition of the question

need not be included in the questions file - the given client will simply have a hard

dependency on the related client being installed on the user's PDS.

Visualizations

As defined in the client manifest file, an openPDS client application can specify

a number of visualization keys to automatically generate visualizations that have

been approved and installed on a user's personal data store. These visualizations are

available on the personal data store at /visualization/key, and take bearertoken

and datastore_owner as querystring parameters.

As visualizations are generated on the user's personal data store, standard web

languages are used to write them - HTML, Javascript, and CSS. To facilitate writing

visualizations in web languages, the personal data store provides a set of Javascript

libraries for interfacing with the endpoints described in 3.4.3. These includes answer

and answerlist libraries, which provide Backbone.js collections and models for the

corresponding objects in the external PDS API. Developers then write corresponding

Backbone.js Views to pull in data from the provided collections and models and

present the user with a visualization layer. Standard supporting libraries, such as

jQuery and jQuery Mobile are provided by default on all visualization files, and

externally-hosted Javascript and CSS files may also be imported.

Visualizations are built on top of Django's template language for HTML and con-

sist of three template blocks a developer must fill in: title, scripts, and content.

The personal data store uses these three sections to fill in a complete HTML page for

the visualization. An example visualization file is provided below:

Listing 3.6: Example visualization file

{X block title %}

Recent Places

{X endblock }

{% block scripts }
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<s cr ipt src=" // openlayers. org /dev /OpenLayers . mobile . j s "></s cript >

<script src="{{ STATICURL }}js/answerList. js"></script>

<script src="{{ STATICURL }}js/answerListMap . js "></script>

<script>

$(function () {

window.answerListMap = new AnswerListMap("RecentPlaces","

answerListMapContainer");

$(window).bind("orientationchange resize pageshow",

answerListMap.updateSize);

$("#plus") .live('click' , answerListMap.zoomIn);

$("#minus") .live('click' , answerListMap.zoomOut);

</script>

{ endblock X}

{% block content }

<div id="answerListMapContainer">

</div>

<div id="footer" data-role="footer">

</div>

{ endblock %}

In the above example, HTML is used only for structure on the page. Resulting infor-

mation is filled in as a map using answerListMap. j s - a pre-defined View provided

on openPDS for displaying answers with latitude and longitude components on a

map. When the key for this visualization is included in a client manifest, the client

application will load a Webview with the corresponding fully-qualified URL to reach

this visualization in the app, allowing an authorized app to display the visualization

without supporting Java code.
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Chapter 4

Designing Privacy-Preserving Apps

A personal data ecosystem designed with privacy-preservation as a first-order concept

presents a number of unique challenges in app design. Namely, a number of traditional

algorithms and design patterns must be rethought to operate within the constraints

of user-centric personal data storage. This chapter details a number of example

applications that seek to provide useful services built on top of personal data in a

privacy-preserving manner using the techniques described in the previous chapter. In

each case data has been collected continuously and passively via mobile phones and

persisted to individuals' personal data stores.

4.1 Location-Based Apps

Social location based apps provide a useful service in allowing users to localize them-

selves with respect to their peers and the world around them. The raw location data

these apps take into account when providing their services has been shown to be

accurate in determining general activity patterns [37] and are also highly unique [14].

Due to the ability to re-identify location data with relative ease, various approaches

have been taken to preserve the privacy of location data. These approaches include:

quality degradation [17], false data injection [43], adding uncertainty [24], providing

frequently changing pseudonyms [5], and enforcing k-anonymity via cloaking [28].

However, these approaches have proven inadequate for preserving privacy of the
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individuals' location data [32], [44]. Researchers [44] suggest that cloaking cannot

preserve k-anonymity in a location dataset - if the k users were present in a small

region, intersections among the cloaked regions of nearby users could be used to

infer the locations of those users. Krumm [32] showed that, even in the presence

of frequently changing pseudonyms, subjects' home addresses could be accurately

determined and, using reverse geocoders, this approach allowed 13% of subjects to

be re-identified by name. In each case, the presence of a unified set of raw location

dataset for a multitude of users proves to be a liability in preserving the users' privacy.

4.1.1 Mining Frequently-Visited Locations

Using location data continuously collected every 15 minutes with a minimum accuracy

of 100 meters, a record of an individual's most visited locations across time can be

calculated. As this takes into account only a single individual's data, and provides

the resulting set of most-visited places only to approved applications on behalf of the

data owner, it is inherently privacy-preserving. Additionally, since this computation

takes into account no aggregate data from other users, it can be written without using

the personal data store's group computation framework.

Mining frequently visited locations can provide a semantic understanding of an in-

dividual's location data if further information about the individual's routine is taken

into account. For example, knowledge of the times of day when an individual works

would allow automatic tagging of the most frequent location during these hours as

work. Similar analysis can be performed for other locations: home is where individ-

uals most frequently sleep, the gym is where they are typically most active, etc. A

visualization of a "My Places" application, installed on a user's PDS is displayed in

figure 4-1.

Given a set of time ranges, a simple approach to finding frequented locations

would be to look up all location traces during that time and cluster them according

to their proximity to each other. For a set of time ranges that each represent the

same time of day across different calendar days, such a clustering approach would

provide the set of regions where the individual typically resides during that time of
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-On-

ir home work

Figure 4-1: Home / work visualization - Home and work locations are accurately
predicted with 2 days of location samples. A visualization is automatically generated
on the client.

day, regardless of the day. These time ranges could be hours of the day; the set of

times between 1pm and 2pm every day, for the last 2 weeks, or they could be a more

semantic concept; "business hours", for example. For finding the most-visited region

within a set of location points pulled from a given set of time ranges, a number of

approaches could be taken:

1. Naive clustering - take all location samples from all time ranges, find clusters

within them, choose the cluster with the most samples and compute its bound-

ing box. This provides the most accurate regions, however, it can be very slow.

2. Naive clustering with binning pre-process - Apply a binning pre-process to

location samples, collapsing multiple samples into single points with associ-

ated weights. Perform naive clustering and choose the cluster with the highest
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weighted sum. This provides lower-resolution versions of the naive approaches'

regions, and can trade accuracy for speed.

3. Multi-level clustering - apply naive clustering for each time range individually

to get candidate regions. Loop over these candidate regions, collapsing and

"voting" for those that overlap. Take the region with the most votes.

Of the above approaches, approach 1 provides the most accurate regions as it takes

all location samples into account while clustering. However, as hierarchical clustering

is very costly (O(n3 )) in computation time, finding the region can be prohibitively

expensive in terms of processing time. Approach 2 is an improvement as it still takes

all points into account while clustering and thus, essentially provides lower-resolution

versions of the regions from approach 1, but provides a means of trading accuracy

for speed. However, in the presence of very sparse location data, binning may not

prove effective in decreasing the number of points to cluster and, as such, there is no

guarantee that the process will run in a reasonable amount of time.

Approach 3 provides a low upper-bound on the time to perform the initial clus-

tering; rather than depending on the total number of samples from all time ranges,

it is dependent on the number of samples in an individual time range. For the case

of a single, very long time range, this is not ideal and performance regresses to that

of the naive approach. However, for the typical workload of discerning frequently

visited locations for specific times of the day it is well-suited and fast; by definition,

time ranges will always be less than 24 hours, and accuracy is gained by growing the

number of time ranges, rather than the length of individual ranges. This decrease

in runtime and increase in predictability of runtime for the algorithm comes at the

expense of the quality of the resulting bounding boxes - some regions that should

have been clustered according to standard hierarchical clustering may not count as

the same cluster simply because they don't overlap. This shortcoming is deemed

acceptable in this case - two regions that should have been clustered within 100m

but do not overlap are likely to be considered the same region by a user, so selection

between the two is arbitrary.
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An implementation of the multi-level approach using the PDS internal API is as

follows:

Listing 4.1: Multi-level location clustering algorithm

def findTopPlaces(ids, placeKey, timeRanges, numPlaces):

regions = []

for times in timeRanges:

samples = ids.getData("LocationProbe", times[0] , times[1])

# Use all locations with at least 100m accuracy

samples = [s for s in samples if s.accuracy < 100]

# Hierarchical clustering of samples within 100 meters

clusters = clusterFunfLocations(samples, 100)

if (len(clusters) > 0):

# Take locations from the biggest cluster

clusterLocations = max(clusters, key=lambda c:len(c))

regions.append(getBoundingBox(clusterLocations))

if len(regions) > 0:

overlaps = {

"region": ri,

"overlaps": [r2 for r2 in regions if bounds0verlap(ri, r2)]}

for ri in regions]

reduced = H

"region": reduce(lambda ri, r2: merge(rl,r2) , r["overlaps"],

r["region"]),

"votes": len(r["overlaps"])}

for r in overlaps]

reduced.sort(key = lambda r: -r ["votes "])

mostOverlap = reduced[:min(len(reduced),numPlaces)]

mostVoted = [r["region"] for r in mostOverlap]

if numPlaces == 1:

mostVoted = mostVoted[0]

answer = ids.getAnswerList ("RecentPlaces")

answer = answer ["value"] if answer is not None else []

answer = [datum for datum in answer if datum["key"] !=
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placeKey]

answer.append({ "key": placeKey, "bounds": mostVoted})

ids.saveAnswer("RecentPlaces", answer)

With the above clustering algorithm, a good guess as to where an individual lives

would select time ranges at night, when the user is likely to be at home and possibly

asleep. Likewise, assuming average working hours of 9am to 5pm, a reasonable esti-

mate of a user's work location could be computed by selecting time ranges between

10am and 4pm on weekdays to account for noise in the time the individual gets to

work. The following question, structured in accordance with the question-answering

specification in section 3.4.4, calls the above clustering method to provide one such

answer on a schedule that keeps it continually up-to-date on a user's personal data

store:

Listing 4.2: Question for finding an individual's work and home locations

Otask ()

def findRecentPlaces(internalDataStore):

now = time.time()

today = date.fromtimestamp(now)

#Look at the last 2 weeks

start = time.mktime((today - timedelta(days=14)).timetupleo)

#Find work location

nineToFives = [(n, n + 3600*8) for n in range(start + 3600*9,

now, 3600*24)]

findTopPlaces("work", nineToFives , 1)

#Find home location

midnightToSixes = [(m, m + 3600*6) for m in range(start, now,

3600* 24)]

findTopPlaces(internalDataStore , "home", midnightToSixes , 1)

An individual with the "My Places" app installed on their personal data store would

have the answer "RecentPlaces" populated as an answer on their personal data store's

external API, and a provided visualization with a key of "places" would be available

as well. The client library for an Android application would then be able to directly
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construct a user interface for an application to calculate and display work and home

addresses for a user without explicit user interaction, as displayed in figure 4-1.

4.1.2 ScheduleME: Automated Meeting Scheduling

Assuming even loose adherence to a routine, a reasonable guess as to where an indi-

vidual will be at any given time can be constructed by finding the place where the

individual most frequently resides at the given time. Given the aforementioned ques-

tion for discovering frequently visited regions, a set of time ranges can be constructed

for each hour of the day over the last N weeks or months in order to find where the

individual is likely to be for each hour of the day. Extending the "RecentPlaces"

answer to provide a location key for each hour of the day makes reasonable real-time

predictions about a user's whereabouts possible. This updated answer, providing

guesses about an individual's location at any time of the day, can be provided in a

group computation question to determine a reasonable time and place for a number

of individuals to meet without exposing the raw data for each participant to the

personal data stores engaging in the computation, or a centralized server [48].

(*) Interface level intera-
3__3_ctions, which will be need

to be tailored to the apps
specific requirements.

In! iator
Partici ant 1 2 7 Participant 2

7 A 6 t 7 (**) C+
ili"a, manpu-

lation of users'personal
data and exchange of
proccessed data computed

1
2
3
4
0

open PDS J~LJ) open PDS to preserve privacy.

(*). A Request is send from the Initiator. 5 (a-c)(**). The computations are run and the result is send
(**). The request is stored in the Initiator openPDS. between the initiator and participants'openPDS.
(*). The participants can accept or decline the request. 6(**). The initiator's openPDS send the resuls to
(**). The received request is stored in the participants participants' openPDS.
penPDS. 7(**). The openPDS(s) send initiator and participants

the result.

Figure 4-2: Modified group computation workflow with per-request approval [48]

In order to support aggregate computation for only users that have agreed to

meet with a given user, the group computation framework detailed in 3.4.5 must be
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modified as shown in figure 4-2 to request consent of the user prior to participating

in the group computation on a per-request basis.

O Request a Meetup 0

My Meetups

0. Filter Meetuips

Meeting about PST paper
From: user1 @mail.com
With: user2 (user2@mail.com); user3(user3@mail.com)
Day: Thursday 30th March;
Time: 16:00 pm
Location: 42.3612, -71.0893

I0
P

Delete

Meetup description:

Participant emails:

create request

The Initiator requests a meeting by simply
inserting participants emails addresses.
The system uses past information about partic
pants'locations to suggest a possible meet date,
time and place.

(a) Requesting for a meeting

The maps shows the location which is most
convenient for the group, either as a total or a
majority of the participants. In order to preserve
participants' privacy, the individual participants'
locations used to select the meeting place can
not be inferred. Participants' possible locations
for a meeting is selected randomly from within a
bounding box created by the 4/5 location places
captured (b1, b2) at the specific hour. Specific
past location information () is not used, a random
location (9) is selected within the limits of
a bounding box containing the actual past location.
This selected location is used in the computation
of the centroid ( ).

Initiator
(bi) Participants

(b2)

(b) Calculating the centroid

Figure 4-3: ScheduleME app: showing (a) the interface to request a meeting; (b) the
possible results of a group computation, explaining how the actual personal location
information is preserved and the computed answer is shared among users' PDS to
maintain participants' privacy. [48]

Figure 4-3 shows a visualization to create, manage, and opt-in to requested meet-

ings, as well as the process for automatic determination of a meeting time and loca-

tion. A guess at a good meeting location for a number of participants is obtained by

taking the centroid of their predicted locations for each hour of the day, then choosing
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the centroid (and corresponding time) that minimizes the total distance all partici-

pants must travel. The contribution step for each member of this group computation

consists of first selecting a point at random from the hourly predicted regions and

updating a running approximation of the centroid for all users at the given hour,

along with a running sum of the distance the participant must travel to reach each

of the current running centroids.

4.1.3 crowdSOS: Location-Based Crime Reporting

The crowdSOS Android application allows users to submit time and location-stamped

incident reports for notifying contacts and displaying aggregate incident reports on a

map. The application is built on top of Funf for passive data collection and openPDS

for storage of both passively collected user data and incidents, as well as to aggregate

incidents in a privacy-preserving manner. Each user within the crowdSOS app logs

Figure 4-4: crowdSOS crime reporting flow - users specify the type of incident, as well
as a description. The incident is stamped with the current time and an approximate
location, and a version with reduced spatio-temporal resolution is aggregated by users
within 1km of the crime.

into the registry and receives a hosted personal data store for submitting crime reports
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to. Upon witnessing a crime, the user reports the crime via the flow in figure 4-4. This

flow submits an incident entry to the user's personal data store, where it is stored

in its raw form, with identifying information and raw location data. The user's

personal data store then initiates a group computation as described in section 3.4.5

that provides a version of the incident with reduced spatio-temporal resolution and

identifying information removed as the intermediate result. This intermediate result

is thus POSTed in a chain to each personal data store returned by a query to the

registry server.

Listing 4.3: Group contribution for storing an incident if it is relevant.

Ot ask ()

def storeIncidentIfRelevant(ids, incident):

#Check for proximity to incident within the last day

now = time.time()

start = now - 24 * 3600

locations = ids.getData('LocationProbe", start, None)

nearby = ids . getAnswerList (" NearbyIncidents")

nearby = nearby if nearby is not None else []

for location in locations:

# Check if incident occurred within 1km of my recent locations

if distanceBetween(location, incident.location) < 1000:

nearby.append(incident)

ids.saveAnswer("NearbyIncidents", nearby)

return incident

return incident #Unchanged, just to pass it along the chain

As each personal data store participating in this group computation has no knowledge

of the origin for a given incident, the anonymity of the reporting party is preserved.

Likewise, since each participating personal data store cannot see the result of the

group contribution or the total list of nearby incidents for the others, privacy amongst

the receiving parties is also preserved. Each personal data store contains only the

corresponding list of incidents that are relevant for the given user and, as such, the

personal data store is also the only machine the client application must interface with
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in order to present the map or list of incidents for the given user.

4.2 Quantified "Stuff": Self, Places, Relationships

My Social Health
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Figure 4-5: Social Health Tracker provides a view of 3 metrics: activity, focus, and
social on a personal (pink) and average (blue) level. These metrics are calculated from
sensor dat, aggregated in a privacy-preserving fashion, and presented as a current
score as well as historical levels over time.

The Social Health Tracker application, shown in figure 4-5 is an application to

construct 3 metrics of an individual's "social health": activity, social, and focus.

Each of these metrics are computed based on input from a multitude of sensors that

the app is configured to collect:

activity Uses the ActivityProbe in Funf - this is a compound probe that aggregates

readings from the AccelerometerProbe for each second and classifies readings as
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having either no activity, low activity, or high activity. The app is configured

to sample this probe for 15 seconds every 2 minutes.

social Uses CallLogProbe, SmsProbe, and BluetoothProbe as a means of measuring

interactions via calls and text messages, as well as proximity to others via nearby

Bluetooth devices. Bluetooth probes are taken once every 5 minutes.

focus Uses ScreenProbe and WifiProbe as a means of measuring regularity in the

user's behavior. ScreenProbe records every screen on and off event on the phone,

while WifiProbe is run every 5 minutes and records every wifi access point seen

by the phone during a scan.

Both the US Center for Disease Control and Prevention and The American Heart

Association recommend 150 minutes of moderate to vigorous exercise per week as a

means of maintaining a healthy lifestyle [4, 22].This type of exercise includes brisk

walking, which can be modeled using accelerometer data from a mobile phone, if it

is carried on an individual for the majority of the day. Assuming 16 active hours

per day, 150 minutes accounts for 2.2% of the week. As such, an initial guess for an

activity score can be calculated by taking the percentage of ActivityProbe readings

that have either low or high activity levels and applying a CDF with a mean of 2.2%

and a standard deviation of 1% - an outlier in this case will be those individuals who

get either less than 2 minutes or more than 40 minutes of exercise per day, on average.

A social score can be calculated by taking the weighted sum of all social inter-

actions on the phone. This includes incoming and outgoing calls and texts, as well

as unique devices seen in a Bluetooth proximity scan, as a proxy for face-to-face in-

teraction. Summing the number of such social interactions and applying a similar

CDF can yield an individual's social score. Likewise, taking the average number of

screen-on events from a group of users, and applying a CDF to each individual user's

ScreenProbe data can then yield a portion of the score for the focus metric. This

portion of the focus score can be combined with a measure of regularity in the wifi

access points the individual's phone senses, which is calculated by taking the set of

access points sensed for each combination of hour of the day and day of the week over
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the past month and computing the Jaccard index of the resulting sets. The focus

score will thus take into account both long-term adherence to a routine, as well as

short-term attention.

Finally, the group aggregate for each score can be computed in a privacy-preserving

manner by having individual personal data stores engage in a group computation to

contribute their social health score results to the average. The high and low end of

the average scores are computed as +/- 1 standard deviation from the mean, and are

shown in figure 4-5 as the light blue band on the radial graph. The group contribution

question for this aggregate is as follows:

Listing 4.4: Group contribution to average social health scores.

t ask ()

def contributeToAverageScores(ids, runningAvg):

mine = ids.getAnswer("SocialHealth")

count = runningAvg["count"]

for metric in mine:

runningAvg[metric] = runningAvg[metric]*count

runningAvg[metric] += mine[metric]

runningAvg[metric] = runningAvg[metric]/(count+1)

runningAvg["count"] += 1

return runningAvg

After computing the average using the above group computation, the initiating data

store then runs the following aggregate to find the deviation. When this result is

obtained, the answer is pushed out to all contributing data stores and the group

high/low levels are stored.

Listing 4.5: Group contribution to social health score standard deviation.

Qtask ()

def contributeToStdDev(ids, running):

mine = ids.getAnswer("SocialHealth")

runningDev = running["dev"]

avg = running["average"]
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count = running ["count"]

for metric in mine:

runningDev[metric] = runningDev[metric]**2*count

runningDev[metric] += (mine[metric] - avg[metric])**2

runningDev[metric] = sqrt(runningDev[metric]/(count+1))

running["count"] += 1

running["dev"] = runningDev

return running

Quantifying one's own behavior is interesting in itself, but given the diversity of

data located within a personal data store, including data about who an individual

interacts with and where they spend their time, the opportunity to quantify more

than just individuals presents itself. With a rich enough history, one could quantify

relationships by observing the effect of interacting with someone on the rest of their

sensor data ("I tend to be more active when I talk to Bob a lot"). Likewise, enough

individuals contributing to an aggregate computation about a certain place or thing

can help quantify the place or thing, in addition to the individuals contributing to

the calculation ("Everyone seems to be more active when they talk to Bob a lot").

For example, a coffee shop might have a high incidence of visitors that like a certain

type of music, and a library on a college campus will likely be quantified as the most

focused, but least social and physically active building on campus.

4.3 Determining Uniqueness in Individuals' Data

"Unique in the Crowd" is an application intended to run as a coordinated demo

amongst a large group of participants in the same location (a conference, for instance).

The client is configured to passively collect wifi access point data every 5 minutes and

persist the raw data to personal data stores provisioned for users at the start of the

demo. As these data stores contain no data to begin with and recording begins at the

same time for a group of individuals in the same location, no individual's data can

uniquely identify them in the crowd of users running the application. The purpose of

the application is to notify each of the participants when their data uniquely identifies
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them.

Determining uniqueness in a set of individuals' data is a more complex group

computation than demonstrated thus far. In a standard aggregate computation, the

result of a computation is intended to be distributed to all participants, and the

initiating store plays the same role in the computation as the rest of the contributers.

For the case of determining uniqueness, some or all of an individual's data must be

compared to potentially everyone else's data as well. This requirement implies that

the data store initiating the group computation plays a different role than the other

contributors - they provide the seed data for one iteration of the computation.

Listing 4.6: Generating a "fingerprint" from wifi data.

ct ask ()

def generateWifiPrint (ids)

#Look at up to a week's worth of data

start = getStartTime(7)

now = getCurrentTime()

wifiPrint = []

for time in range (start , now, 3600)

wifi = ids.getData('WifiProbe", time , time+3600)

# Sort them by descending signal strength

wifi = sorted(wifi, key=lambda x: -x[""level"])

#Record the top 10

top = { "time ": time , "wifi": wifi [:5] }

wifiPrint.append(top)

ids.saveAnswer("WifiPrint", wifiPrint)

Each data store continually updates a private answer containing the top 10 (in terms

of signal strength) access points seen by the individual for each hour since the demo

began (listing 4.6). This generates a sort of "fingerprint" for each user that is not

unique at the start of the demo, and can be compared for uniqueness by the group

computation framework. An initiating data store provides this list, along with a

unique identifier, as the running result parameter of a group computation amongst

all data stores. These contributing data stores each compare the provided set of
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timestamped access points to their own set internally. If the sets are different, the

data is still unique. However, if the provided set is a subset of the contributor's set,

the result is marked as not unique. Listing 4.7 provides an implementation of this

group computation.

Listing 4.7: Group contribution to determine uniqueness.

@task ()

def contributeToUniqueness(ids, intermediate):

uuid = getStoredUUID()

if intermediate["uuid"] == uuid:

ids.saveAnswer("unique", intermediate ["unique"])

notifyComplet ion ()

else:

mine = ids.getAnswer("WifiPrint")

theirs = intermediate ["WifiPrint"]

#If their's is contained in mine, it's not unique

if len(theirs.intersection(mine)) == len(theirs):

intermediate ["unique"] = False

return intermediate

Despite the computation being complete at this point, a link to the initiating store

is intentionally not provided in order to reduce the risk of associating personal data

stores with individuals. Upon receiving the result, the initiating data store notifies

the registry server that their computation is complete, but does not reveal the result

of the computation. The registry server then picks another data store at random

from the set of remaining data stores to initiate the same group computation with

their own data as the seed. Randomly selecting the order of data stores to run

the uniqueness computation prevents a compromised contributing data store from

correlating a fingerprint with the data store that provided it.

The above described serial computation around the data stores is admittedly much

less efficient than a parallel approach, where each data store provides their fingerprint

to every other data store at the same time. In fact, the parallel approach is 0(1)

(with respect to the number of data stores) if all data stores perform the request at
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the same time, or O(n) if a more practical approach (in terms of system resources) is

taken whereby each data store performs the request one at a time. Compared to the

O(n2) complexity of the aforementioned algorithm, this result may seem attractive.

However, a compromised or malicious data store could potentially record the location

of a given request for comparison and correlate fingerprints received from the same

data store over time as a means of potentially re-identifying and linking a user to

the given data store. For this reason, the less-efficient implementation is considered

superior in cases where privacy is of utmost importance.
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Chapter 5

Conclusions and Future Work

The personal data ecosystem described in the previous chapters shows promise as a

means of giving control and ownership over personal data back to those who gener-

ated it. A move from the current world of service-centric storage and scope-based

authorization towards a user-centric storage paradigm with a more semantic, purpose-

based authorization model for data use represents a huge departure from the status

quo, but also one that puts the individual at the forefront of their online life. In

the presence of the ever-more ubiquitous sensor data collection prevalent in society,

this level of control will become more and more essential for assuring the safety of

sensitive data and the individuals it describes.

Research in the area of privacy-preserving data handling shows that such safety

is hard-fought, and absolutely essential. An over-arching trend in this field of study

leads to the inevitable conclusion that there may be no way to effectively "release"

a raw data set that provides meaningful information about the individuals contained

therein, without risking re-identification of the underlying individuals. As such, strong

ownership, security, and access control are necessary but insufficient criteria for a

framework that intends to support a large personal data ecosystem. In order to

protect against risks that individuals and even researchers may not currently be aware

of, a framework that truly hopes to protect the privacy of individuals' data within it

must control all computation against the data as well.

While such a framework incurs some overhead in terms of computation time and
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resource usage, especially during aggregate computation, this overhead can mitigated

in large part through approximate results and clustered hosting, to the point that a

world with ubiquitous user-centric personal data stores becomes feasible in the near-

term. Additionally, Moore's law is fighting squarely on the side of safer, albeit less

efficient means of aggregating data - with each generation, hardware becomes expo-

nentially faster and cheaper, allowing personal data ecosystems to "throw hardware

at it" when dealing with inefficiencies. Indeed, the distributed and parallel nature of

personal data stores allows arbitrary numbers of machines to engage in computation

that can effectively be made more efficient by simply adding more machines with

which to distribute the task.

Looking forward, openPDS and the resulting personal data ecosystem it powers

has absolutely necessary steps to take in terms of scalability, adoption, and ease of

development. To this end future work will seek to pick apart each component of

the framework in the interest of discerning bottlenecks to scalability. Preliminary

results from an outside corporation have identified the web framework of choice -

Django within Python - as one potential bottleneck for both the registry server and

data connectors on the personal data stores. An obvious next step is to provide an

alternate implementation in a more vetted web language, such as Java.

Adoption must be spurred from both the industry / developer perspective, as

well as the consumer perspective. To this end, making a turn-key personal data

ecosystem that is more attractive to a corporation that building a competitor in-house

will be a necessary step. This will involve improvements to the ease of deployment

for the system, as well as the ease of development on the system. To this end, a full

software development kit (SDK) should be developed that provides a means of writing

questions against test data sets deploying resulting question and visualization / client

bundles to a trusted "app store" for openPDS applications. Such a store would also

ease deployment and adoption of the applications built on top of the framework.

Perhaps most importantly, a next and ongoing step is advocacy and education.

Currently individuals are one of the biggest impediments improving the state of affairs

in personal data management; studies cited within these chapters show little attention
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being paid to the use of sensitive personal data. However, this is not the fault of the

individual - the onus must be on the party intending to use the data to properly inform

individuals about the use of their data. The fact that this step is often ignored, or not

given the proper thought and time it deserves is possibly the most important next

step for the future of personal data as a whole.
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