
Fault Prophet: A Fault Injection Tool for Large

Scale Computer Systems ASeS
I OF TECHNOLOGY

b y
2 T ElTal Tchwella

USRARIES
Submitted to the Department of Electrical Engineering and Compute ~

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

June 2014

@ Massachusetts Institute of Technology 2014. All rights reserved.

Signature redacted
Author ..

Department of Electrical Engineering and Computer Science
May 23, 2014

Signature redacted
C ertified by ..

Prof. Martin C. Rinard

Signature redacted Thesis Supervisor

C ertified by -.. -..
Stelios Sidiroglou-Douskos, Research Scientist

Thesis Co-Supervisor

Signature redacted
A ccepted by

Prof. Albert R. Meyer
Chairman, Masters of Engineering Thesis Committee

Fault Prophet: A Fault Injection Tool for Large Scale

Computer Systems

by

Tal Tchwella

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2014, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, I designed and implemented a fault injection tool, to study the impact of
soft errors for large scale systems. Fault injection is used as a mechanism to simulate
soft errors, measure the output variability and provide analysis of the impact of soft
errors on the program. The underlying framework for the tool is based on LLFI,
a LLVM fault injection tool, which I modified to support an end-to-end scenario for
program testing purposes. The modifications and addition provide greater modularity
of the tool by abstracting the input and output of the different components of the tool,
support multiple fault scenarios and models, and supply an extensive visualizations
framework. I evaluated the effectiveness of the new tool based on a set of benchmark
programs as well as showcased the impact of soft errors on programs. The results
demonstrate that while the sensitivity of instructions is program dependent, certain
instruction opcodes are generally more sensitive than others, such as binary and
memory operations, however well placed protection mechanisms can decrease the
sensitivity of those instructions.

3

4

Acknowledgments

This work is dedicated to Oded 'Akram' Tchwella and Ida Tzouk.

First and foremost, I would like to thank my parents, Yaron and Michal, and my

sisters, Shir and Ophir, for their love, support and their presence in times of difficulty.

I would like to thank my grandparents for their love and appreciation throughout liy

life.

I would also like to thank my family abroad, the Aharoni family, the Youssefmir

and Youssefzadah families, and the Zinger family, as well as the people who provided

me with a home away from home, Joshua Blum, Orit Shamir, Itai Turbahn, Tom and

Anat Peleg, Naor Brown, Jason Black and Edan Krolewicz. I would like to seize the

opportunity to thank my friends in Israel for standing by me these past four years,

showing me what true friendship is all about.

It is with great pleasure that I acknowledge Professor Martin C. Rinard for in-

spiring and motivating me to do brilliant things. It is also with immense gratitude

that I acknowledge the support and help of Michael Carbin, Sasa Misailovic, and Dr.

Stelios Sidiroglou-Douskos throughout this process, for believing in me and providing

me with this opportunity to work with them.

In addition, a thank you to the Dependable Systems Lab in University of British

Columbia for allowing me to use LLFI as an underlying framework for my research.

A special thank you to Sara Achour of MIT and the Accelerator Architecture Lab,

Intel Labs for providing me with fault models used by Fault Prophet.

5

6

Contents

1 Introduction 15

1.1 Fault Prophet . 15

1.1.1 Fault Instrumentor . 15

1.1.2 Sensitivity Measurement Tool 16

1.1.3 Error Impact Visualizer . 16

1.2 U sage . 17

1.3 Contributions . 18

2 Related Work 19

3 Motivating Example 23

3.1 Motivations . 23

3.2 Example Program: Jacobi . 24

3.3 W alkthrough . 27

3.4 Analysis . 28

3.4.1 Output Abstraction . 28

3.4.2 Fault Classification . 29

3.4.3 Experimental Setup . 31

3.4.4 Experiments Automation . 31

3.5 R esults . 32

3.5.1 Sensitivity to Instruction Sets 32

4 Design 39

7

4.1 System Overview

4.2 Fault Selection Analysis

4.2.1 Static Analysis

4.2.2 Filters

4.3 Profiler

4.3.1 Dynamic Analysis .

4.3.2 Database

4.4 Fault Injector

4.4.1 Selecting Faults

4.4.2 Fault Scenarios

4.4.3 Fault Models . . .

4.5 Sensitivity Report Analysis

4.5.1 Output Abstraction

4.5.2 Summary

4.5.3 Vim Plugins

4.5.4 Visualizations . . .

and

5 Evaluation

5.1 Benchmark Programs

5.1.1 Jacobi

5.1.2 Ignition Cases

5.2 Performance

5.2.1 Processing Power

5.2.2 Storage

5.3 Fault Models

5.3.1 Output Abstraction and Fault

5.3.2 Fault Model Comparison . . .

5.4 Instruction Set Sensitivity

5.4.1 Binary

..

..

..

..

..

..

..

..

..

..

..

..

Fault Classification

..

..

..

Classification

5.4.2 Floating Point

8

39

39

40

41

43

44

44

46

46

47

49

51

51

52

53

54

57

57

57

57

58

58

58

59

59

59

60

60

62

5.4.3 M emory .

5 .4 .4 A ll .

6 Discussion

6.1 Suggested Preventive Actions .

6.1.1

6.1.2

6.2 Design

6.2.1

6.3 Future

6.3.1

6.3.2

6.3.3

6.3.4

6.3.5

Instructions Separation

Conditionals

Challenges

Scalability

W ork

Code Optinizations

Fault Model Factory for Function

Fault Injection into Operands . .

Profiling Options

Faulty Trace Analysis

Calls and Arrays

6.3.6 Extension of the Visualizations Framework

A Documentation

A.1 Fault Prophet .

A.1.1 Installation

A.1.2 Compilation Suggestions

A.1.3 Configuration

A.2 Vim Plugin .

A.2.1 Configuration File

A.2.2 Source Line Sensitivity

A.2.3 Fault Injection

B Figures

64

65

69

69

69

70

71

71

71

71

72

72

73

73

73

75

75

75

76

76

81

81

82

82

85

9

.

.

.

10

List of Figures

3-1 The source code of the Jacobi program in C.

3-2 Pie chart exam ple. .

3-3 Bar graph exam ple. .

3-4 Treemap example of showing function level overview.

4-1 System overview diagram. .

4-2 Code sample for an instruction counter of a function.

4-3 D atabase schem a. .

4-4 The function signature of a fault model function.

4-5 The fault factory function. .

4-6 FltMark vim plugin example. .

5-1 A sample of GasKinetics. cpp from the Cantera library, showing the

different fault outcomes, using the Bit Flip fault model on Binary in-

structions. .

5-2 A sample of GasKinetics. cpp from the Cantera library, showing the

different fault outcomes, using the Bit Flip fault model on Memory

instructions. .

A-1 Example of tagged lines in FltMark vim plugin.

B-1 Treemap example of showing source line breakdown.

B-2 A sample configuration file of Fault-Prophet for the Jacobi program. .

B-3 The output abstraction wrapper for the analysis of the Jacobi program.

11

27

28

29

30

40

42

45

50

50

54

63

66

83

85

89

92

B-4 The output abstraction algorithm used for the analysis of the Jacobi

program . 104

B-5 The experiments script used to run the tool for the evaluation of both

the tool and program s. 106

12

List of Tables

3.1 Experimental setup machine specifications. 31

3.2 Comparison of fault models for binary instruction set. 32

3.3 Statistical significant analysis for the fault models based on the binary

instruction set. 34

3.4 Comparison of fault models for floating-point instruction set. 35

3.5 Comparison of fault models for memory instruction set. 36

3.6 Comparison of fault models for all instructions. 37

5.1 Processor overhead costs. 58

5.2 Storage overhead costs. 59

5.3 Comparison of fault models based on the Hydrogen ignition case for

binary instructions. 60

5.4 Comparison of fault models based on the Methane ignition case for

binary instructions. 60

5.5 Comparison of fault models based on the Hydrogen ignition case for

floating point instructions. 62

5.6 Comparison of fault models based on the Hydrogen ignition case for

m em ory instructions. 64

5.7 Results for the Random Bit Flips fault model for memory instructions

in the Methane ignition case . 65

5.8 Comparison of fault models based on the Hydrogen ignition case for

all instructions. 67

13

14

Chapter 1

Introduction

Errors may affect the result that the program produces. In particular, soft errors are

a type of error caused by uncontrollable events: cosmic rays hitting memory cells,

voltage droops, missing deadlines, etc. [1], and as such they are hard to identify, they

occur non-deteriinistically, and may silently corrupt computation. Understanding

these types of errors is especially important for systems consisting of hundreds of

thousands or millions of processors [2, 21]. In this thesis I present Fault Prophet,

a system for measuring, analyzing, and visualizing the impact of soft errors on the

behavior and output of a program.

1.1 Fault Prophet

Fault Prophet enables developers to reason about the impact of soft errors on a

program using three components: a fault instrumentor, a sensitivity measurement

tool, and an error impact visualizer.

1.1.1 Fault Instrumentor

The Fault Instrumentor component enables Fault Prophet to intelligently select and

inject faults, controlled errors, to various execution points in a program. The compo-

nent profiles user defined instructions, which it then instruments in order to find the

15

potential execution points for fault injection. Based on the instrumentation output,

a histogram of the program is created to randomly select instructions that are on

the critical path of the program flow. Faults are then injected to those instructions,

and the output is saved to measure the sensitivity of those instructions to the faults.

Fault Prophet builds upon LLFI [24], LLVM [9] Fault Injection Tool, created by the

Dependable Systems Lab at University of British Columbia, as the underlying infras-

tructure, providing an improved fault selection mechanism, as well as several fault

scenarios and fault models empowering the developers to extensively test the fault

tolerance of a program.

1.1.2 Sensitivity Measurement Tool

The sensitivity measurement tool enables to measure the variation in output a fault

caused when compared to the baseline execution. The baseline execution is the control

group in the experiment, producing the standard output of the program based on the

normal flow of operation. The amount of variation in output as a result of the injected

fault is defined as sensitivity.

There are two main methods to measure the sensitivity of the computation a fault

induces:

* Compare the flow of the program (trace of instructions) to a baseline trace.

" Compare the output to a baseline output.

While using both methods will provide a comprehensive level of detail of the

effect of the fault, for this fault injection tool, the sensitivity is measured using the

output comparison method. The reason behind this choice, is that the analysis and

comparison of traces is resource intensive, both for processing and storage. However,

the tool does provide a way to output traces for later analysis if needed.

1.1.3 Error Impact Visualizer

Fault Prophet visualizes the impacts of the soft-errors simulations enabling the devel-

opers to quickly and easily deduce the critical sections in a program. Critical sections

16

are portions of the program that have an impact on the integrity and reliability of the

program, if modified would cause a deviation in the expected output. Fault Prophet

classifies a fault into one of the fault categories based on the sensitivity of the in-

struction the fault was injected to. The developers can classify the faults according

to their own output abstraction methodology. Fault Prophet aggregates the results

of the various injected faults for each source line, function, and the entire program,

which it then displays using different visualizations. Fault Prophet inaps the out-

comes of the fault injections to the source code, enabling the developer to view the

impacts in a popular source code editor, as well as inject faults directly from the

editor and view the results from there.

1.2 Usage

The idea of a fault injection tool is motivated by the concept that not all parts of

a program are created equal: some parts are more critical to a program's reliability

and correctness than others. Protecting these critical sections is essential, as marny

programs are resilient to errors: after experiencing soft errors they may continue,

executing and producing acceptable exact or approximate, results, often without any

guidance from the recovery mechanisms. The existing recovery mechanisms for soft

error: Checkpoint / Restart [3], Triple module redundancy [12, 14], and Instruction

level replication [7, 18, 16], are often not used, due to the large overhead to the energy,

the performance, and the cost of the systems they add [3].

Fault Prophet would enable a new class of recovery and protection mechanisms

which are selective in their nature to the critical section of the program, instead of

protecting the entire programn. The selective protection would reduce the overhead

costs associated with existing recovery imechanisins, thereby making it more feasible

to ensure a reliable and correct flow of the program.

17

1.3 Contributions

Fault Prophet has several contributions:

o Implemented a modular fault injection framework.

o Provided support for multiple fault scenarios.

o Created a visualizations framework supporting an interactive work environment

o Tested the framework on several benchmark programs.

The contributions extend the capabilities of existing fault injection tools, by help-

ing developers and testers alike, to identify critical sections under various circum-

stances in a program, via an interactive visualizations framework.

18

Chapter 2

Related Work

Multiple fault injection tools have been developed over the years, most with emphasis

on software faults, while others simulated hardware faults as well. The earlier fault

injection tools, such as FERRARI [8], a flexible software based fault and error in-

jection tool, were designed to emulate both transient errors and permanent faults in

software.

As system developers and researchers alike, recognized the potential fault injec-

tion tools has to validate the fault tolerance of a system, the features were enhanced

beyond the realm of fault tolerance to performance testing as well. FTAPE, Fault

Tolerance And Performance Evaluator, is a tool that compares the performance of

fault-tolerant systems under high stress conditions [25].

Recent developments in fault injection research enabled targeted software injec-

tion faults. New tools use static analysis alongside heuristics to identify locations in

code that are highly error prone [23]. Other tools, such as SymPLFIED, Symbolic

Program Level Fault Injection and Error Detection Framework [17], focused on un-

covering undetected errors via random fault injections by using symbolic execution.

BIFIT, Binary Instrumentation Fault Injection Tool [10], on the other hand enables

a user to evaluate how soft errors impact an application in specific execution points

and specific data structures. While BIFIT does provide an analysis on fault injection,

and is geared towards extreme scale systems, it focuses only on silent data corrup-

tion (SDC) outcomes of general soft errors via the injection single random bit flips

19

as faults. In that respect, BIFIT is limited to a specific set of fault scenarios, and

testing and analyzing those specific kinds of faults.

While hardware injection faults have been around for a while [4], simulation of

hardware faults has not advanced as much, until recently. Relyzer [5] was one of the

first tools in recent years to put an emphasis on hardware faults. Relyzer deviates

from the standard software fault detection tools, detection of software corruptions,

to the detection and monitoring of silent data corruption (SDC), enabling corruption

detecting at a lower level.

LLFI [24], LLVM Fault Injection tool, is a recent fault injection tool that is de-

veloped by the Dependable Systems Lab at University of British Columbia. LLFI is

used for high level fault injection, mainly to test SDCs for computation errors. LLFI

works in three steps:

1. Injects function calls to find potential fault injection candidates.

2. Instruments the application for execution points for fault injection.

3. Randomly selects an execution point, and injects a fault.

LLFI can inject faults into instruction buffers as well as and operands, while pick-

ing the fault injection method via a fault factory. However, LLFI does not provide a

choice of fault scenarios, and injects faults randomly. If LLFI did have that detailed

knowledge on the frequencies of instructions, it could intelligently inject faults to ran-

dom execution points of prioritized instructions. Moreover, LLFI does not provide

a visualizations framework to analyze the outcomes of the fault injection pass, but

instead compares the fault output to a baseline output, and as such, uses an internal

output analysis mechanism that might not be suitable for all applications.

Another recent tool is ASAC [20], Automatic Sensitivity Analysis for Approximate

Computing, which analyzes the fault tolerance of approximation based programs. Ap-

proximation based programs compute an approximation to a precise value when the

deviation from the precise value is not critical, thereby allowing the system to save

energy, by reducing the number of computations. The tool instruments these types of

programs to analyze which variables must produce exact calculations by employing a

20

technique using hyberbox, to test the range of allowable values a variable can store

after which they measure the deviation from the baseline output.

A similar tool to ASAC is iACT, Intel's Approximate Computing Toolkit [15],

which analyzes and studies the scope of approximations in applications. The tool uti-

lizes both LLVM [9] and Pin [11]; LLVM is used as a compiler to embed approximate

computing knobs as well as to provide a runtime framework for approximate mem-

oization, and Pin is used as a hardware simulator that handles the approximations.

Using LLVM and Pin, the tool tests the application level error tolerance, while pro-

viding knowledge about the native support hardware could provide for approximate

computations. While the focus of the tool is specifically for approximate computing,

some of the fault models written for the tool were found to be resourceful in the un-

derstanding the sensitivity of instructions to faults, and are used by Fault Prophet.

None of the tools above provide an extensive fault injection platform that supports

multiple fault scenarios, and provides an extensive analysis framework to provide a

better understanding of the impact faults have on the flow of programs. Therefore,

combining the benefits of existing fault injection tools would provide a comprehensive

fault injection tool, which at the same time would be designed for the next generation

of programs and systems.

21

22

Chapter 3

Motivating Example

Given that not all parts of a program are created equal, there is a need to identify

which parts of a program are more fault-tolerant than others by identifying the critical

parts in a program automatically. The motivating example for this tool is a freely

distributed program, the Jacobi program. Jacobi is an important computational

kernel used in various scientific computations. Fault Prophet will throughly test

Jacobi to ensure its reliability and correctness even in situations of faulty operations.

3.1 Motivations

To analyze the effectiveness of the tool, and to understand its impact, the tool was

evaluated based on several key questions:

o Can Fault Prophet identify the critical sections of a program? What is their

sensitivity to faults?

o What computation patterns are critical and what are approximate critical sec-

tions within a program? Across programs?

o How do different fault scenarios and models help identify the critical sections

of a program?

o What is the performance cost of running the tool'?

23

Those questions are motivated on the hypothesis that a program has critical sec-

tions that are exposed to Single Event Upsets (SEU), which can cause Silent Data

Corruptions (SDC). There are three main areas that were explored as a part of the

motivation to answer these questions: instruction set sensitivity to faults, fault model

analysis, and performance.

3.2 Example Program: Jacobi

The Jacobi method is an algorithm used to approximate a solution for a system of

linear equations, Ax = b, where x and b are vectors of length n, and a given n x n

matrix A, by iteratively solving X(k+1) = D-1(b - Rx(k)) until convergence, where

A = D + R holds for a diagonal matrix D.

The Jacobi program' is a freely distributed program, which solves a finite differ-

ence discretization of Helmholtz equation: f = 92,, + 02 - omu using Jacobi iterative

method.

The program has four functions excluding the main function: driver, initialize,

jacobi and error-check in addition to main function. The main function calls the

driver function to run the program. The driver function calls the initialize

function that allocates and initializes the two arrays used by the program to their

initial values: one for a values, and the other for the a values. The driver then

calls jacobi, shown in Figure 3-1, to solve the Helmholtz equation, after which it

calls the error-check function to measure the distortion of the computed value by

the program, to check for the absolute relative error. Since error-check is comparing

the values of the relative error, in our evaluation we assume that it is error free, to

ensure the computation is reliable, i.e. running on reliable hardware. We are trying

to evaluate the fault sensitivity of the other three functions.

1 void jacobi(void);

2

3 /* subroutine jacobi (n,m,dxdyalphaomegau,ftol,maxit)

'The program was originally written by Joseph Robicheaux, and later modified by Sanjiv Shah
in 1998 [19] until translated to its C version by Chunhua Liao in 2005.

24

4

5 * Subroutine HelmholtzJ

6 * Solves poisson equation on rectangular grid assuming

7 * (1) Uniform discretization in each direction, and

8 * (2) Dirichlect boundary conditions

9*

10 * Jacobi method is used in this routine

11 *

12 * Input : n,m Number of grid points in the X/Y directions

13 * dx,dy Grid spacing in the X/Y directions

14 * alpha Helmholtz eqn. coefficient

15 * omega Relaxation factor

16 * f(n,m) Right hand side function

17 * u(n,m) Dependent variable/Solution

18 * tol Tolerance for iterative solver

19 * maxit Maximum number of iterations

20 *

21 * Output u(n,m) - Solution

22 ***/

23

24 void jacobi()

25 {

26 double omega;

27 int i,j,k;

28 double errorresidaxayb;

29 // double errorlocal;

30

31 // float ta,tb,tc ,td,te ,tal ,ta2 ,tbl ,tb2 ,tcl ,tc2 ,tdl ,td2;

32 // float tel,te2;

33 // float second;

34

35 omega=relax;

36 /*

37 * Initialize coefficients */

25

ax = 1.0/(dx*dx); /* X-direction coef */

ay = 1.0/(dy*dy); /* Y-direction coef */

b = -2.0/(dx*dx)-2.0/(dy*dy) - alpha; /* Central coeff */

error = 10.0 * tol;

k = 1;

while ((k<=mits)&&(error>tol))

{

error = 0.0;

new solution into old */

paraLlel

{

#pragma omp for private (j,i)

for(i=0;i<n;i++)

for(j=0;j<m;j++)

uold [i I[j] = u[i] [j];

#pragma omp for private(resid,j,

for (i=1;i<(n-1);i++)

for (j=1;j<(m-1);j++)

{

resid = (ax*(uold[i-1]

+ ay*(uold[il [j-1]

+ b * uold[i][j] -

i) reduction(+:error) nowait

[j] + uold[i+i1 [j])

+ uold[il [j+11)

f[il[jl)/b;

u[i][j] = uold[i][j] - omega * resid;

error = error + resid*resid

}

}

/* omp end parallel */

/* Error check */

26

/* Copy

#pragma omp

65

66

67

68

69

70

71

72

73

k = k + 1;

if (k%500==O)

printf("FinisheduYditeration.\n",k);

error = sqrt(error)/(n*m);

80 }

81

/* End iteration loop */

82 printf ("Total NumberjofjIterations :%d\n" ,k);

83 printf("Residual:%E\n", error);

84

85 }

Figure 3-1: The source code of the Jacobi program in C.

3.3 Walkthrough

The tool was used on the Jacobi program to analyze the sensitivity to faults of

the program. The tool injected 100,000 faults of each fault model as described in

Section 4.4.3 to each of the binary, floating point and memory instruction sets. To

run the tool on the Jacobi program, the user must follow these steps:

1. Install the Fault-Prophet tool (See Section A.1.1).

2. Copy the contents of the fault-inject/scripts folder to the jacobi program folder.

3. Modify the settings file (settings.cfg) as outlined in Section A.1.3 to suit the

needs of the intended testing. A sample configuration for the jacobi program is

shown in Figure B-2.

4. Run the tool by typing 'python script.py settings.cfg' into the terminal.

4.1. The tool will filter all candidate instructions for fault injection.

4.2. The tool will instrument the program to provide dynamic analysis of the

program.

4.3. The tool will inject random faults according to histogram of the program

execution by line number, and instruction opcode.

27

74

75

76

77

78

79

4.4. The tool will analyze the results and will display them to the user.

The tool produces the outputs as described in Section 4.5, once it has finished running.

As shown in Figures 3-2, 3-3, 3-4, the tool aggregates all the fault data, and based

on the given output abstraction (see Section 4.5.1), gives a visual representation of

the critical sections the tool identified.

Acceptable

Critical

Figure 3-2: Pie chart example.

3.4 Analysis

3.4.1 Output Abstraction

An output abstraction is needed to be able to quantitatively compare the output of

faulty and normal computations. The output of the Jacobi program is the output

of the error function, which measures the deviation of the calculation of the solution

28

83380

75042

66704

58366

50028

41690

33352

25014

16676

8338

0 acobi.c error check acobI.C iiialize acobi.c jaco i-
402 735 72

4393 704071

Figure 3-3: Bar graph example.

from the exact solution. The output abstraction class illustrated in Figure B-3 was

used is by the tool to analyze the output of the Jacobi program. The class uses a

script, 'distortion.py' shown in Figure B-4 that calculates the distortion of the baseline

output from the fault injected output, assuming both outputs are numbers, producing

a range of statistics: minimum, mean, median, max, standard deviation, range, and

zero elements. The output abstraction class specifically uses the mean to analyze the

impact of the fault on the output of the program, given certain boundaries.

3.4.2 Fault Classification

The value of the mean the distortion algorithm outputs is between 0 and inf and as

such, the fault classifications were defined as the following, for a given output oi for

all i in the set of faults:

9 Acceptable : 0.0 < oi < 0.0

29

Figure 3-4: Treemap example of showing function level overview.

" Moderate : 0.0 < oi < 1.0

* Critical : 1.0 < oi < inf

'Acceptable' is defined to produce no change in the output of the program, and as

such as having a mean of 0.0. Faults are classified as 'Moderate' if they produced

a deviation in the output that is within t1 unit of the baseline, while faults are

'Critical' if the deviation is greater than 1 unit from the baseline output. There are

two edge cases to the fault output: segmentation faults, i.e. program crashes, and

time outs, i.e. the fault injected program lasted for longer than the alloted time that

cannot be analyzed by the output abstraction script. Both edge cases were treated

the same in this manner, and were given the default classification, which is 'Critical'.

In the results of the Jacobi program shown in Figures 3-2, 3-3, the green correlates

to 'Acceptable,' the yellow to 'Moderate,' and red to 'Critical'. Figure 3-4 shows the

30

aggregate fault classifications for a function, where the color of each rectangle varies

from green to red, correlating to the scale of 'Acceptable' to 'Critical' classification

of faults, based on a score calculation of the number of 'Acceptable', 'Moderate,' and

'Critical' faults the function has.

3.4.3 Experimental Setup

The experimental setup is a EC2 instance hosted on Amazon AWS service in region

US East (Virginia). The operating system installed on the virtual machine is Ubuntu

12.04 precise LTS_20120612, from Canonical Group Limited. The specification of the

machine is reported in Table 3.1.

Resource Allocation
Memory 3.75 GiB
CPU 2 EC2 Compute Units (1 virtual core with 2 EC2 Compute Units)

Storage 1 x 410 GB
Platform 64-bit
Network performance Moderate
API Name ml.medium
AMI ami-967edcff

Table 3.1: Experimental setup machine specifications.

3.4.4 Experiments Automation

To ensure that the experiments generated by the tool on the program are consistent

and reproducible, an experiments script was created. The experiments script runs

the tool with different parameters, pertaining to different settings such as profiled

instruction sets, fault models, quota and line coverage tests. Figure B-5 presents

the script that was used for this program and other benchmark program explored in

detail in Section 5.1.

31

3.5 Results

3.5.1 Sensitivity to Instruction Sets

The Figures 3-2, 3-3, 3-4 were only a part of results of the case study. The analysis of

the faults injected, based on the single fault scenario described in Section 4.4.2, to the

Jacobi program, demonstrated the fault outcomes were dependent on both the fault

model and the instruction set. Therefore, there is reason to believe that sections in the

program that contain specific types of instructions will be more critical than others.

While the error-check function had faults injected to it, those are not analyzed or

displayed as a part of the report, as it assumes that function runs on reliable hardware,

however, this results are available.

Binary Instructions

The binary instruction set encapsulates all instructions that deal with arithmetic

and logic operations. The results of 100,000 faults that were injected to the binary

instruction set are shown in Table 3.2. In the table, the columns correspond to the

names of the fault model described in Section 4.4.3, and thus each column contains

the number of faults classified as 'Acceptable,' 'Moderate,' or 'Critical' as explained

in Section 3.4.2.

Fault Type Random Bit Flips Sticking Bits XOR Bit Flip Byte Flip Buffer Flip
Acceptable 82,963 88,303 69, 798 67, 835 62. 564 18, 001
Moderate 8,476 5,418 11,171 17,320 18,634 31,071
Critical 8,564 6,282 19,034 14,848 18,805 50,931
Segmentation Faults 7,427 5,433 16,501 T 10,812 13,219 20,005
Time Outs 0 0 0 0 0 0

Table 3.2: Comparison of 100, 000 generated faults by fault model for the binary
instruction set of the Jacobi program.

The data in Table 3.2 shows that there is a lot of variation in the outcome of a

fault that is injected to the binary instruction set based on the chosen fault model.

The number of 'Moderate' and 'Critical' faults combined varies from 17% to 82%,

which is high when compared to the results of faults that were injected floating-point

32

operations and memory operations. This result can be attributed to the fact that

binary operations do most of the computations in a program, some of which could

be conditionals such as in loops, or pointer arithmetics calculations used to calculate

memory addresses. In addition, the bottom of Table 3.2 explores the reasons for the

'Critical' faults. As observed, a large portion of the 'Critical' faults were a result

of a segmentation fault, which could be the result of invalid calculations of memory

addresses.

Results Analysis Examining the distribution of the faults per source line, the

critical lines in the Jacobi program reside in the jacobi function, specifically the lines

pertaining the calculation of a value in the solution. For those lines, the 'Critical'

faults were more than 50% of the total faults injected into each line.

1 for (i=1;i<(n-1);i++)

2 for (j=1;j<(m-1);j++)

3 {

4 double ul = uold[i-11[j];

5 double u2 = uold[i+11[ji;

6 double u3 = uold[i] [j-11;

7 double u4 = uold[i][j+11;

8

The loaded values are then weighted, to create the new value in the solution for the

next iteration.

1 resid = (ax * (ul + u2) + ay*(u3 + u4)+ b * u5 - u6)/b;

2 u[i] [jI = uold[i] [jI - omega * resid;

3 error = error + resid*resid

If the calculation of which value to load from memory, i.e. array, to calculate the

solution, is faulty, then especially in an iterative method, this could be compounded

over the next iterations, skewing the calculation, or even more so, accessing a non-

existent memory location, causing a segnentation fault. Therefore, the calculations

in these lines must be safeguarded to ensure a less faulty outcome.

33

In addition, the initialize function has multiple lines that have over 10% 'Critical'

faults, pertaining to the calculation of values that used later to calculate the solution

in each iteration. Again, the same reasoning applies as before that if there is a

deviation in the initialize values, it will be compounded with each iteration, causing

a skew in the end result.

1 xx =(int)(-1.0 + dx * (i-1));

2 yy = (int)(-1.0 + dy * (j-1))

3 ...

4 f[il[j] = -1.0*alpha *(1.0-xx*xx)*(1.0-yy*yy)\

5 - 2.0*(1.0-xx*xx)- 2 .0*(1.0-yy*yy);

Statistical Significance Table 3.3 presents the results of the T-test calculations

for the average error of each pair of fault models, based on the assumption that the

sample of fault injection outcomes is independent for each fault model. A 'False'

value in the table means that Pvalue > 0.05, while 'True' means that Pvalue < 0.05.

As observed from the table, the fault models have significantly different averages, as

represented by the 'True' value, except for the case of the Bit Flip model and the

Byte Flip model results. The test was conducted using test-ind function in the

stats package of scipy, an open-source python extension for mathematics, science,

and engineering.

Fault Model Random Bit Flips Sticking Bits XOR Bit Flip Byte Flip Buffer Flip
Random Bit Flips - True True True True True
Sticking Bits - True True True True
XOR - True True True
Bit Flip - False True
Byte Flip - True
Buffer Flip

Table 3.3: Statistical significant analysis of the fault models based on 100, 000 gen-
erated faults for the binary instruction set of the Jacobi program. True means the
standard significance level was lower than 0.05, and therefore there is a statistical
significance, where False means it was higher than 0.05.

34

Floating-Point Instructions

Floating-point operations are a subset of binary operations, pertaining only to floating

point arithmetic and logic operations. As such, it is reasonable to believe that faults

injected to those operations would cause deviation in output, but will not cause the

program to crash, as floating point operations do riot have control over the flow of

a program. This hypothesis was verified by the results shown in Table 3.4, as some

fault models caused no 'Critical' faults at all, and the deviation in the output was

only 'Moderate', ranging from 0% - 4.3% for those fault models. The fault models

that did cause 'Critical' faults, Bit Flip, Byte Flip and Buffer Flip, less 'Moderate'

and 'Critical' errors than in the binary instruction set. Moreover, none of the faults

that were classified as 'Critical' were the results of a segmentation faults, i.e. program

crashes, which aligns with the hypothesis.

Fault Type Random Bit Flips Sticking Bits XOR Bit Flip Byte Flip Buffer Flip

Acceptable 95, 734 99, 999 97, 277 85, 324 81, 087 22, 579
Moderate 4, 265 0 2, 722 11, 605 13, 427 35, 544

Critical 0 0 0 3,070 5,485 41,876

Table 3.4: Comparison of 100, 000 generated faults by fault model for the floating-

point instruction set of the Jacobi program.

Results Analysis Mapping the results of the faults to the source lines, there were

two main lines that are 'Moderate' and somewhat 'Critical' in the program across all

fault models. Those lines are a subset of the lines that were error prone in the binary

instruction set, which is an expected result, as floating point operations are a subset

of the binary instruction set. In the initialize function, initializing an array that

is later used by the solution proved to be error prone:

1 f[i][j] = -1.0*alpha *(1.0-xx*xx)*(1.0-yy*yy)\

2 - 2.0*(1.0-xx*xx) -2.0*(1.0-yy*yy);

In the j acobi function, the line that aggregates the results of the different coefficients

proved to be error prone:

1 resid = (ax * (ul + u2) + ay*(u3 + u4)+ b * u5 - u6)/b;

35

Memory Instructions

The memory instruction set used by the Jacobi program has only two instructions:

load and call. As such, it is expected to see variation in the output, by modifying the

load instruction, as well as segmentation faults to some extent if the call instruction is

modified to call an illegal address. Table 3.5 aggregates the results of 100, 000 faults

injected to memory operations in the Jacobi program, which show that all fault

models caused some variation in the output, unlike the floating point operations, in

which one fault model caused no change. Moreover, the fault models that caused no

'Critical' faults for the floating point operations, caused some 'Critical' faults, but the

faults caused less deviation than the benchmark output. Another important finding

is that out of all the faults classified as 'Critical', expect for at most one occurrence

per fault model, none of those faults were a result of a segmentation fault.

Fault Type Random Bit Flips Sticking Bits XOR Bit Flip Byte Flip Buffer Flip
Acceptable 97,480 99,901 99,587 87,249 81,626 25,479
Moderate 2, 498 77 392 12, 082 13, 990 39, 425
Critical 2 2 1 649 4, 364 35, 076

Table 3.5: Comparison of 100, 000 generated faults by fault model for the memory
instruction set of the Jacobi program.

Results Analysis Inspecting that lines that produced deviation from the expected

output, pertaining to faults that are classified as 'Moderate' or 'Critical', it becomes

clear those faults were injected into the lines that are on the critical path of calcu-

lating the solution. Those lines are mostly found in the jacobi function, which load

calculated values that are used in the next iterations of the function:

1 uold[i] [jI = u[i] [j]

2 ...

3 double ul uold[i-1][j];

4 double u2 = uold[i+1][j];

5 double u3 = uold[i] [j-11

6 double u4 = uold[i] [j+1];

7 double u5 = uold[i][j];

36

8 double u6 = f[i][j];

9 ...

10 error = sqrt(error)/(n*m);

Since these values are used for the different iterations, their impact will be coin-

pounded, and therefore will produce a much larger deviation than the expected out-

put, than a variable that is used only a handful of times in the program.

All Instructions

The instructions that run in the Jacobi program and were profiled include: bitcast,

load, sub, sitofp, fdiv, icmp, fmul, fsub, fptosi, sext, getelementptr, mul, fadd, add,

call, alloca, femp, srei. Of these instructions, getelementptr, the instruction that ex-

plicitly provides address computations but does not access memory, and sext, the sign

extension instruction, together account for about 50% of all instruction executions.

The next instruction is load, which accounts for roughly 14% of instruction execu-

tions. This distribution helps to explain the results shown in Table 3.6, in which more

than 50% of faults, on average, were classified as 'Moderate' or 'Critical', as address

calculations and sign extension instructions were the most prominent instructions.

This is also clear from the bottom of Table 3.6, which shows that most 'Critical'

faults were a result of a segmentation fault, supporting the fact it is due to injection

of critical instructions and operations.

Fault Type Random Bit Flips Sticking Bits XOR Bit Flip Byte Flip Buffer Flip
Acceptable 52, 552 65,894 35,915 45,410 36,350 9,589
Moderate 6, 922 9,424 6,195 14,364 14, 717 17, 891
Critical 40, 567 24, 723 57, 931 40, 267 48. 974 72, 561

Segmentation Faults 38, 796 18,611 56,914 38,149 45,009 58, 027
Time Outs 0 0 0 0 0 _

Table 3.6: Comparison of 100, 000 generated faults by fault model for the all instruc-
tions of the Jacobi program.

37

38

Chapter 4

Design

4.1 System Overview

To make Fault Prophet applicable to a variety of scenarios, and to different program

architectures, Fault Prophet was to designed as a modular fault injection tool. Such

a tool can accept input from a variety of sources, as long as they adhere to the same

input and output format. The four main modules Fault Prophet is comprised of are:

Fault Selection Analysis, Profiler, Fault Injector, and Sensitivity Report Analysis, as

shown in Figure 4-1. Each module depends on the previous module's output, as it

uses it for input.

There were two assumptions that were made when designing the fault injection tool.

The first assumption is that the program is deterministic, and has a definite termi-

nation point. The second assumption is that the program is compiled with debug

information, to extract relevant information about each instruction, such as source

file and line number.

4.2 Fault Selection Analysis

Fault Prophet allows a user to analyze the impact soft-errors have on specific in-

structions within a program. For example, a user might want to examine the impact

of soft-errors on floating point operations, while another user might want to under-

39

Original

Program

Compile with LLVM gcc binaries

Program in

bitcode

daat.

Fault Selection m roerains. T suport Se nscit tI Fty
Analys Report Analymtu

-irVisuazat Fions

Arrow indicates directionality of
data2

Figure 4-1: Te system overview diagram, showing the dependences of each the
component.

stand the impact on memory operations. To support this functionality, the Fault

Selection Analysis module performs a static analysis of the program, to capture the

instructions the user is interested in. After aggregating all the instructions, the Fault

Selection Analysis module filters out unwanted opcodes from an instruction set, as

well as unwanted source lines from specific source files.

4.2.1 Static Analysis

The static analysis performed by the Fault Selection Analysis is done using LLVM

passes on a program. An LLVM pass allows to programmatically go through every

instruction in LLVM bit code (middle layer between source code and machine code),

and analyze it as needed. The pass that was written for the tool profiles instructions if

they belong to a specific instruction set: floating point operations, binary operations

(including floating point), memory operations, use-define chains, function calls, arrays

and all instructions, saving the output of each instruction set that the user selected

40

to be instrumented to a separate file. At least one instruction set has to be selected

for the tool to work, which will be defined as the white-listed instruction set(s); faults

will be injected only to the white-listed instruction sets. The output of the static

analysis is of the following format:

<function name>,<instruction count within the function>,<is function call>,<is

an array>, <opcode>,<line number>,<file name>

The function name, opcode, line number and file name are data points about the

instruction that are provided either from the instruction itself, or the debug infor-

mation of the instruction. The rest of the data points are a bit more complicated to

gather. Since the LLVM bit code does not change unless the original source code is

modified and compiled again, the count of every instruction traversed in a function

is unique. As such, the instruction count within a function is a way to uniquely

identify an instruction in the LLVM bit code across the other modules of the tool.

Because the instructions are traversed in a deterministic order set forth by the com-

piler implementation, this algorithm might be dropped in future iterations of the tool

given the identifiers of the instructions will be cached during compilation. Figure 4-2

presents ail example of code that provides the instruction count of an instruction in a

function. The is-function-call paraneter is set to 1 if the instruction calls a function

and 0 otherwise. Likewise, the is-an-array parameter is set to 1 if the instruction has

an array as parameter and 0 otherwise. While checking whether is a function call is

trivial - simply checking the instruction signature, to check whether an instruction

has an array in its operands the meta-data of the instruction must be traversed com-

pletely, to find a specific tag LLVM generates that is associated with arrays. Those

two parameters allow much greater control over the the fault injection capabilities to

these type of instructions as mentioned in Section 4.4.2.

4.2.2 Filters

Once the instructions of interest have been selected, filters can provide a finer gran-

ularity to select the instructions of choice. There are three filtering options that are

41

1 unsigned int getProfileInstr(Instruction *I) {
2

3 Function* F = I->getParentO->getParentO;
4 string funcname = F->getNameStro;
5

6 unsigned int funccounter = 0;
7

8 for (institerator In = instbegin(F), E = inst-end(F); In

E; ++In) {
9 Instruction *Instr = dyncast<Instruction>(&*In);

10 funccounter ++;
11

12 if (I == Instr)

13 break;
14 }
15 return funccounter;
16 }

Figure 4-2: Sample code of an instruction counter in a function. The input is an
instruction and the output is the count of that instruction in the function.

employed by the tool: blacklisting, opcode filter, and source line filter. The instruc-

tions that remain after running the filters are the only the instructions that will be

potential candidates for fault injection by the tool.

Whitelisting & Blacklisting Instruction Sets

A user can choose whether they would like to blacklist an instruction set or white-list

it, in the same manner that is described in Section 4.2.1. The difference between

blacklisting and white-listing is that by blacklisting an instruction set, the instruc-

tions that fall into that instruction set will be excluded from the fault injection pro-

cess, while white-listing an instruction set, will include those instructions in the fault

injection process. Whenever there is a conflict, the blacklisting has priority. The

blacklisting feature can come in handy whenever specific instructions overlap in at

least two instruction sets.

Example 1 A user wants to include only binary operations for integers and not

floats. In such a case, binary operations will be white-listed, while floating point

operations will be blacklisted.

42

Example 2 A user wants to include binary operations, such as add but leave out

any instructions that involve use-define chains, such as getelementptr or sext, which

include operations to calculate pointer addresses. In such a case, binary operations

would be white-listed, while use-define chains will be blacklisted.

Granularity of Program Object Selection

The user has the option to filter specific opcodes and source lines from specific source

files.

Opcode Filter The user has the option to exclude specific opcodes on top of the

instruction sets that are white-listed. This filter might come handy if the user wants

to inject faults to an instruction set but leave out specific opcodes. For example, a

user might want to profile binary operations but leave out specific binary operations

such as srem or xor instructions, which calculate the remainder of integer division

and performs an xor two operands, respectively.

Source Line Filter The user might want to inject faults only to specific lines of

code, by either including specific lines and excluding everything else, or excluding

specific lines and including everything else. While only one line filter is needed - to

either include or exclude lines, as one is a negation of the other, in some scenarios it

will be easier to use one or the other, and therefore both options are provided.

4.3 Profiler

The Profiler module has two responsibilities: providing a baseline output to be used

for comparison analysis, and profiling the program to understand the instructions

frequencies and flow of the program. The Profiler depends on the output of the Fault

Selection Analysis module, to decide which instructions to instrument, and saves the

profiling data only for those instructions.

43

4.3.1 Dynamic Analysis

The Profiler augments the original program in order to trace the execution of the

program, and to keep a running count of the number of instructions that are executed.

The running count allows the program to map an execution of an instruction, an

execution point, to a unique number. The count helps determine how many times

each instruction has been executed, as the same instruction could be executed multiple

times, for example, if it is in an function or a loop. This data enables the Fault Injector

module to inject a fault to a specific execution point in the program.

The tool augments the program by adding a function call before each instruction.

If the instruction is an instruction of interest (as provided by the Fault Selection

Analysis module, the called function saves the instruction execution data to a log file,

which includes:

<op code>,<instruction execution count>,<line number>,<file name>,<function

name>

If the instruction is not an instruction of interest, then a function called only increases

the running count of instruction executions in the program.

4.3.2 Database

The tool uses a sqlite3 database to store all the dynamic analysis data, to deal with

programs that generate large amounts of data during the dynamic analysis process.

The tool chunks the data gathered into many log files, each containing 100, 000 profiled

instructions, keeping the log files small. The dynamic analysis and log file process

occur simultaneously, allows the tool to store the data in the database while the

program is instrumented, parallelizing the process. The tool employs the watchdog

module for python [13], to monitor the directory to which all the log files are saved,

and processes a file after all the instructions were written to it. After the log file

has been processed it is deleted to free up space. The database layout is shown in

Figure 4-3.

44

files opcodesd
fe idinstructions . p.. d....d

file-name instrid opcode

opcode id

linenumbers func names

In id .- In id func-id

line-number func-id func-name

Figure 4-3: The database schema used by the tool.

In addition, while the tool processes the log files, it saves a histogram of the instruction

frequencies by source file, line number and opcode. This data is later used to pick

the faults according to the instruction distribution presented by the histogram.

Debugging Information

If needed, the debugging information can be outputted during the Profiler stage. The

debugging information maps an instruction in LLVM bitcode to a source line number,

and source file. This data is later used by the Vim plugin, fitmark, in order to show

the number of instructions in each source line, and the type of instructions, making

it critical to output this data if the user wants to view the data in the plugin.

Dynamic Trace

The user can output the trace of the original program: saving the entire execution

path of the program. However, it is important to realize that the overhead is high,

as the number of executed instructions in the program are at least doubled and

each of those added instructions is an I/O operation used to record the data of each

instruction in the program, meaning the run-time of the program is about 100x-

1000x the regular run-time. The dynamic trace of the original program can later

be compared to traces of programs that had faults injected to them, in order to

understand how the fault modified the flow of the program.

45

4.4 Fault Injector

The Fault Injector module is the core of the tool, as it is the part that injects the

actual faults into the program. The module is responsible to select the instructions

that will have faults injected to them, given the dynamic analysis output of the

Profiler module, and to inject the faults to those instructions. There are several fault

models the user cam choose from, or they can write their own.

4.4.1 Selecting Faults

There are two ways faults are picked by the module: either by a fixed quota set by

the user, or a quota set by a line coverage percentage.

Fixed Quota

In the fixed quota model, the tool selects the number of faults based on the histogram

of the executed instruction in the program. The histogram provides the weight of each

source line in the overall flow of the program, Wsource line=, based on the number of

instruction executions mapped to that source line, i over the total number of profiled

instruction executions. The tool then calculates the weight of each opcode in a source

line, Ropcode=o, by dividing Wource line= by the number of executions of an opcode in

source line i. fopcode=o in source line=i = Wsource line x Ropcode=o is the fraction of the

overall faults that would be selected to an opcode in a given source line.

The tool samples Q x fopeode=o in source line=i, random execution points' that have the

opcode o and are in source line i.

Line Coverage

In the line coverage model, the user specifies the source line coverage percentage, p,

the percent of lines of code that must have a fault injected to them before halting.

The tool retrieves the total number of lines, coURtnumber of lines that have instructions

of interest, and calculates N = p x COUntnumber of lines the number of lines that must

1Q is the fixed quota of faults set by the user.

46

have faults injected to them. The tool randomly selects N source lines, and randomly

selects C, a configurable number of execution points for each of those source lines that

will have faults injected to them, for a total of C x N faults will be injected. The

default configurable number of faults, C, is 3.

4.4.2 Fault Scenarios

Errors are unexpected by nature, their frequencies, their consequences, and their ori-

gils. Errors can also occur in different locations, whether it is within the same buffer,

within consecutive instructions, all of which could be independent or correlated. To

support this myriad of fault scenario, the tool allows a user to use four different fault

injection scenarios: single faults, burst of faults, function call faults and array faults.

The tool allows the fault injected program to run for a specified amount of time,

which if exceeded the program is terminated, deeming that fault as one that caused

timeout.

Single Fault

Under the single fault scenario, the tool injects a single fault to a specific execution

of an instruction. Before the fault is injected, the tool will verify that the given

execution point matches the opcode, as depicted by the Profiler, and will inject a

fault only if that condition is true. The tool also allows the user to inject repeated

faults into the same execution point as many times as they specify.

With this fault scenario, the user can specify a fault model they would like to use to

inject a fault to the buffer of the chosen execution point, as described in Section 4.4.3.

Regardless of the fault model that is specified, the tool saves the fault information

for a later analysis if needed, including the original instruction buffer as well as the

new one, along with the execution point identifier of the injected fault.

47

Burst Mode

The bursts mode scenario, allows the injection of multiple faults at a time. It em-

ploys the same basis of the single fault model as described in Single Fault under

Section 4.4.2, injecting a fault at a specific execution of an instruction, after which it

continues to inject faults, at a specified interval of instruction until a quota of faults

have been injected. For example, the tool will inject a fault every 2 consecutive in-

structions for a total of 5 faults, after instruction Ih, where i is the initial execution

point that had a fault injected to it. Under these configuration, the tool will inject

faults to Ii+2, Ii+4, i+6, li+8, li+1o, regardless if they were profiled or not. If a fault

causes a segmentation fault, no further faults will be injected.

This fault model allows the simulation of a burst of soft-errors that might occur from

cosmic rays. Since the basis is the same as the single fault model, it uses the same

fault models as described in Section 4.4.3. However, unlike the single fault model,

the analysis of these faults performed by the Sensitivity Report Analysis module

described in Section 4.5, is not deterministic, as the affects on the output can arise

from any of the faults injected. As such, the analysis of this fault scenario requires

the comparison of the faulty trace to the baseline trace, which is not implemented

due to reasons mentioned in Section 1.1.2.

Function Call Faults

Under this scenario, which was inspired by Rely and Chisel, a function call instruction

is modified to call a new function. This new function, will replace the call instruction

buffer with a user defined probability,p, to a randomly generated value, and with

probability 1 - p, the original function will be called. To utilize this functionality, the

user must specify a certain flag in the tool configuration.

Array Faults

Much like the function call faults described in Function Call Faults under Sec-

tion 4.4.2, faults can be injected specifically into instruction that use arrays, by mod-

48

ifying the instruction that uses an array to a call instruction. The call instruction

calls a function that with a user defined probability, p, will replace the array pointer

of the original instruction with a new random value, and with probability 1 - p will

keep the original array pointer. Since pointers cannot be differentiated at run-time,

any pointer of an instruction that has been marked for fault injection, i.e., has an

array pointer, will be modified with probability p. If the user would like to inject

only a single fault, rather than inject faults with some probability, the user can use

the single fault scenario. To utilize this functionality, the array instruction set must

be profiled by the Fault Selection Analysis module along with the appropriate flag in

the configuration of the tool.

4.4.3 Fault Models

The tool supports a robust and dynamic configuration of fault models that can be

utilized across different fault scenarios. As such, fault models can be added, removed

and modified, and used quite easily. To achieve these characteristics, the tool uses

a function factory, which selects the user specified fault function. To add a new

fault model, the user needs to write a function that adheres to the function signature

shown in Figure 4-4. The function signature provides the user with the original buffer,

which they will need to modify, the size of the buffer, which is 4 or 8 if 32 bits or

64 bits respectively, and the opcode of the instruction. To add the fault function,

the user will need to add it to the factory, as shown in Figure 4-5. There are six

fault models by default: random bit flips, sticking random bits, XOR mantissa bits,

random bit flip, random byte flip, and a buffer flip. Random bit flips and XOR

mantissa bits were burrowed from Sara Achour, based on fault models created by

Accelerator Architecture Lab, Intel Labs. Sticking random bits fault model is Sara

Achour's own fault model. Random bit flip, byte flip and buffer flip are taken from

LLFI [24].

49

1 void fifunc(int size, char* buf, char* opcode);

Figure 4-4: The function signature of a fault model function. Size is the size of the
buffer, buf is the original buffer, which the function must modify, and opcode is the
instruction opcode.

1 #include "fifunc.c"

2

3 void initfactory() {
4

5 createfactory();

6 addfifunc(&fijfunc);

7 }

Figure 4-5: The factory function found in fi-factory.c. The file where the fault model
is located must be included in the file, and the function must be added to the factory.
Please make note of the location of the function in the factory, as it serves the the
fault model id number later used by the tool.

Random Bit Flips

The random bit flips fault model randomly flips bits in the buffer. The most number

of bits that can be flipped by this model is 8 regardless of the buffer size. However,

due to the nature the bits are chosen, the same bit could be flipped multiple times,

returning it to its original state.

Sticking Random Bits

The sticking random bits randomly generates a mask that is used to pick a value

from one of two buffers. The first buffer is the original instruction buffer, while the

second buffer is generated using the XOR fault model using the original instruction

buffer. The mask is set for each byte individually, for a total of 8 bit flips across all

the masks.

XOR Mantissa Bits

The XOR mantissa bits fault model flips the mantissa bits, which are the lower 7 bits

of a float (32 bits), and the lower 44 bits of a double (64 bits). If used for an integer

(32 bits) or a long (64 bits), the same bits will be flipped.

50

Random Bit Flip

The random bit flip fault model generates a random number that corresponds to a

byte within the given buffer, and a random number that corresponds to a bit within

the selected byte, and flips the value of that bit, by xoring the bit with 0A.

Random Byte Flip

The random byte flip fault model generates a random number that corresponds to a

byte within the given buffer, and sticks a byte sized random number in that position.

Buffer Flip

The buffer flip fault model generates a byte sized random number for each byte in

the original buffer.

4.5 Sensitivity Report Analysis

The Sensitivity Report Analysis module looks at the data produced by the Fault

Injector module, and analyzes it to determine the effect the fault(s) had on the pro-

gram. A fault can be classified into 3 categories: Acceptable, Moderate, and Critical.

The classification of each fault is later used to visually show the impact of the faults

by the vimi plugin or the other visualizations.

4.5.1 Output Abstraction and Fault Classification

The Sensitivity Report Analysis module determines the effect a fault had on a pro-

gram, by comparing the output of the fault injected program to that of the baseline

output of the program. The tool allows the user to write their own output abstraction,

by using a temiplate class, Output-Abs. The user has to write two functions:

* analyzeifault - The function classifies a fault based on comparing the baseline

output and the output of the injected prograni. The input to the function is

two file paths, one for each output file, and the expected output is the fault

classification: acceptable, moderate or critical.

51

* calculate-score - The function analyzes the aggregate score of a line in a source

file, given the number of acceptable, moderate, and critical faults that were

observed for that line, by the user's classification, and outputs the score and

classification of the source line based on the score.

Figure B-3 shows an example of an output abstraction class that is explained in

Section 3.4.1.

While there is no distinction between faults in the same fault class, i.e. two critical

faults are the same regardless of the variation they caused, the output that is saved

the summary described in Section 4.5.2, allows the user to see that information. This

is useful, if for example, the user wants to know how many faults were caused by

segmentation faults and / or timeouts.

Acceptable

The Acceptable category is used to classify faults that cause acceptable or preferably

no variation in the output of the fault injected program when compared to the original

output.

Moderate

The Moderate category is used to classify faults that cause a moderate variation in

output. An example of such a case would be a valid output that within multiple

standard deviations of the original output.

Critical

The Critical category pertains to any output that causes an extreme variation in

output, and thus it is recommended that segmentation faults will be considered a

part of this category, as well as timeouts.

4.5.2 Summary

The tool will record the output abstraction results into a summary file for each in-

jected fault, as well as the source file, line number, opcode and the execution point

52

identifier of the injected fault. This file is useful for a quick analysis of the output

abstraction script, over all the injected faults, as well as a future reference point.

4.5.3 Vim Plugins

There are two vim plugins: FltMark and InstShow that were written as a part of the

tool, to help visualize the data in a text editor, on top of the source code data.

FitMark

FltMark, as the name suggests, shows fault markers based on the classifications, for

lines of code that had faults injected to them. Since each line of code can have

multiple instructions, and multiple points of execution, the aggregated score for all

those data points is used to classify the line as explained in Section 4.5.1. Thus, this

vim plugin allows the developer to easily see the sensitivity of each source line to the

injected faults.

On top of the visual functionality, the plugin can run Fault Prophet from within vimim

itself. In order to run the tool, the user must tag lines, and only the tagged lines

will have faults injected them. Moreover, the user must generate a configuration file

that will be used by the plugin, from an existing configuration file, by running the

'config.py' script. While most settings will be used, some settings will be changed

automatically to suit the configuration to run the tool from within vim, such as the

quota. Please see Section A.2 for full documentation of the plugin.

InstShow

InstShow is a plugin for vim that shows the instructions that are encapsulated in each

source line from the LLVM Internal Representation, IR. The plugin itself is based on

PyFlakes [6] and requires vim that has been compiled with python. A part of the

Fault Prophet installation, such a vim is compiled and is installed on the machine as

vimnpy'.

53

Ai da* -: C 4 s2++ 4a ft GI % I@
for(i=9;i<n;i++)

for(j=o;j<m;j++)
uold[i][j] = u[i][j];

pragma omp for private(resid,j,i) reduction(+:error) nowait
for (i=l;i<(n-1);i++)

for (j=1;j<(m-1);j++)

{double
double u2 = uold[i-1][j];

dobeu2 = uold[i+l1[jJ;
double u3 = uold[i][j-1];
double u4 = uold[i][j+l];
double u5 = uold[i][j];
double u6 = f[i][j];

lesid = (ax * (ul + u2) + ay*(u3 + u4)+ b * u5 - u6)/b;
/*
resid = (ax*(uold[i-11[j] + uold[i+1][jI)\

+ ay*(uold[i][j-1] + uold[i][j+11)+ b * uold[i][j] -f[i][j)/b;

*/
u[i][j] = uold[i][j - omega * resid;
error = error + resid*residI

/* omp end parallel */

/* Error check */

k = k + 1;
if (k%508==) {

//printf("Finished %d iteration.\n",k);
288,11 82%

Figure 4-6: FitMark vim plugin example.

4.5.4 Visualizations

There are currently three supported visualizations: pie chart, bar graph and treemap

that visually show the categorization of faults in different ways.

Pie Chart

The pie chart visualizes the overall distribution of the different fault classifications as

described in Section 4.5.1 for the whole program. There are at most three parts of

the chart, green, yellow and red, which represent the fault classifications 'Acceptable',

'Moderate', and 'Critical', respectively, as shown in Figure 3-2-. The goal of the

visualization is to quickly understand how sensitive the program is, for the specific

54

fault scenario and fault model.

Bar Graph

The bar graph visualizes the distribution of the faults for each function in the source

file(s) of the program, as well as the categorization of the faults as described in

Section 4.5.1. The height of each bar represents the total number of faults injected

to each function, and the bar itself is divided into three parts, green, yellow and

red, which represent the fault classifications 'Acceptable', 'Moderate', and 'Critical',

respectively, as shown in Figure 3-3. The goal of the visualization is for the user to

understand how sensitive a function is, for the specific fault scenario and fault model.

Using this visualization, the user can quickly understand which functions must be

explored in depth, using the treemap visualization.

Treemap

The treemnap graph is used to show two things: the weight each entity, whether

function or source line, has in terms of instruction executions, and the aggregated

sensitivity of that entity. To exhibit those two qualities, the size of each rectangle in

the graph symbolizes the weight of each entity in relation to other entities, by using

the number of instructions executions that are mapped to that entity; the color of the

rectangle is the average score of a function based on the source lines in that function,

on a scale from 0 to 1, where 0 is not sensitive at all, and 1 is the most sensitive, as

shown in Figures 3-4, B-1. The tiling algorithm, which is used to determine the size of

each rectangle in the visualization, was taken from an existing Treemiap library [22].

The treemap is the only interactive graph from the current visualizations. The initial

view shows the sensitivity of functions by source code file. Upon clicking on a rectangle

in the view, a new view will appear, showing the sensitivity of lines in that function.

Clicking on a rectangle in this view, will open gvim, a graphical vim interface, to the

source line in the source code file, the user clicked on. Using this view, the user can

quickly drill down, from a function, to a source line, to instructions, using the vim

plugins described in Section 4.5.3.

55

56

Chapter 5

Evaluation

As mentioned in Chapter 3, the motivation for the experiments was to evaluate the

tool in three different areas: instruction set sensitivity to faults, fault model analysis,

and performance. This Chapter completes the evaluation of the tool.

5.1 Benchmark Programs

We used several programs to test the effectiveness of the tool, all of which were

provided by the Department of Aeronautics & Astronautics at MIT.

5.1.1 Jacobi

Please see the description of the Jacobi program in Section 3.2.

5.1.2 Ignition Cases

There are three programs reporting the observations made when simulating the igni-

tion times of three chemical compounds: hydrogen, ic8 and methane, in tubes, under

different temperature conditions. Each program uses the Cantera, a suite of object-

oriented software tools for problems involving chemical kinetics, thermodynamics,

and transport processes. Both the inputs and the output of the programs has been

modified to run for shorter intervals, still employing the same functionality, and to

57

produce a single number that sums up all the observations made by the program on

the data, respectively.

5.2 Performance

There are overheads costs to augmenting the program, in order to either profile the

program as described in Section 4.3 or to inject faults to it as described in Section 4.4.

This overhead cost has several factors, including processing time, as well storage

needed to run the tool on programs.

5.2.1 Processing Power

Table 5.1 compares the runtime of a program without Fault Prophet, to the time it

takes Fault Prophet reach the point of first fault injection to the program for binary

operations, in seconds.

Program Runtime without FP Runtime with FP until 1 " Injection
Jacobi 2.9 60 <
Ignition Case: Hydrogen 8 1, 380
Ignition Case: ic8 13 7, 080
Ignition Case: Methane 29 24, 780

Table 5.1: The processing overhead comparison of Fault-Prophet on different pro-
grams in seconds for a binary instruction set.

5.2.2 Storage

Table 5.2 shows the number of profiled instructions for binary operations by Fault

Prophet, and the amount of storage it required on the machine. The data that is

stored for all those profiled instructions, includes the execution id, as well as function

name, source file name, line number and opcode. In addition visualization data

will get aggregated for each source file name, and line number in different tables in

the database. However, since this data pertains only for instruction that had faults

injected to them it is insignificant compared to the rest of the data stored.

58

Program Number of Instructions Profiled Sqlite3 Database Size

Jacobi 557,375 11

Ignition Case: Hydrogen 13, 996, 793 253

Ignition Case: ic8 155, 294, 211 2, 944

Ignition Case: Methane 193, 650, 619 3, 701

Table 5.2: The storage overhead comparison of Fault-Prophet on different programs,
in Megabytes.

5.3 Fault Models

5.3.1 Output Abstraction and Fault Classification

The output of the benchmark programs was modified in order to produce a single

number as an output, which is the aggregation of the results from observed simnula-

tions. Therefore, the same output abstraction class and fault classification techniques

that were used by the Jacobi program described in Sections 3.4.1, 3.4.2, were used to

analyze the rest of the benchmark programs.

5.3.2 Fault Model Comparison

Based on the results of the different fault models of the case-study outlined in Sec-

tion 3.5.1 as well as additional results of the ignition cases, shown in the tables in this

Chapter, including but not limited to Tables 5.3, 5.4, 5.5, the 'Buffer Flip' fault model

is the one that causes the most disruption in the output of the program, averaging

at 50% of the time that the output has varied. However, the likelihood that a whole

buffer will be flipped as a result of a SEU, is rather low, making the fault model

an unlikely candidate to understand the behavior of the program. The fault model

that causes the least amount of disruption in the output when a fault is injected is

'Sticking Bits' that on average causes variation in 1% of outputs, with the exception

of the data displayed in Table 3.2.

59

Fault Type Random Bit Flips Sticking Bits XOR Bit Flip Byte Flip Buffer Flip
Acceptable 851 886 755 768 777 649
Moderate 50 27 105 74 63 66
Critical 38 26 79 97 99 224

Table 5.3: Comparison of generated fault types by fault model, based on the Hydrogen
ignition case, with profiling binary operations, and 1, 000 fault quota.

Fault Type Random Bit Flips Sticking Bits XOR Bit Flip Byte Flip Buffer Flip
Acceptable 841 895 789 789 799 685
Moderate 74 28 109 99 76 83
Critical 32 14 49 59 72 179
Segmentation Faults 16 9 128 52 60 1 156
Timeouts 12 1 4 1181 7 6 1 1

Table 5.4: Comparison of generated fault types by fault model, based on the Methane
ignition case, with profiling binary operations, and 1, 000 fault quota.

5.4 Instruction Set Sensitivity

This section analyzes the sensitivity of the different instruction sets based on the

results of the case study outlined in Section 3.5.1, as well as of the ignition cases.

5.4.1 Binary

Tables 5.3, 5.4 provide additional insight to the fault outcomes that occur as a result

of injecting faults in the binary instruction set. As observed for the hydrogen and

methane ignition cases, faults injected to the binary instruction set produced similar

outcomes based on the number of fault classifications for each fault model. The

'Moderate' and 'Critical' faults which combined make up 9% - 30% of the faults,

are less than the 17% - 82% that was observed in the Jacobi program as shown

in Table 3.2. The reason for this could be attributed to the fact that the ignition

cases perform many calculations that are not on the critical path of the program,

pertaining to calculations of species in the reaction. This strengthens the hypothesis

that the sensitivity of an instruction set depends on the program itself, rather than

the instruction set.

60

Results Analysis of Ignition Cases

The results of the hydrogen, ic8 arid methane are not only similar in terms of dis-

playing close numbers of fault classifications, but also in the outcomes of the fault

themselves when mapped back to source lines. As the three programs use the same

libraries, and most of the instruction executions happen in those libraries, there is a

commonality in the faulty lines. A deeper inspection of the 'Moderate' arid 'Critical'

faults shows that there is a greater likely for those faults to occur in the processes

that compute the reactions defined by the input parameters. An example would be in

the GasKinetics module which provides a module for a reaction mechanism, in which

all the reaction update functions in the module provides are fault prone.

1 void GasKinetics::_update-ratesT() {

2 ...

3 if (fabs(T - mkdata->m-temp) > 0.0) {

4

5 mrates.update(T, logT, &mkdata->m-rfn[01);

6

7 }

8 ...

9 }

10 ...

11 void GasKinetics::updateKc() {

12 ...

13 doublereal rrt = 1.0/(GasConstant * thermo().temperature

();)

14 for (i = 0; i < mnrev; i++) {

15 ...

16 m-rkc[irxnl = exp(m-rkc[irxnl*rrt -

17 m-dn[irxn]*logStandConc);

18 }

19 }

20 ...

21 void GasKinetics::updateROP() {

22 . ..

61

23 for (int j = 0; j = mii; ++j) {

24 ropnet[j] = ropf[j] - roprEji;

25 }

26 . . .

27 }

The lines shown were classified had more than 50% of the faults classified as 'Mod-

erate' or 'Critical' across the different fault modules and programs, based on the

aggregate faults that were injected in those lines, advising that the reaction update

process, wherever it is taking place, is a sensitive one. In addition, Figure 5-1 shows

the lines in another function function, which is used to update the reactants of a

reaction with the data, dealing with the actual update process are sensitive to faults.

The update proceeses had the same outcomes in other modules of the libraries such

as IdealGasPhase, in which the update thermodynamic properties function is also

prone to 'Moderate' and 'Critical' faults. Therefore, the update functions in general,

and the lines pertaining to the actual updating, can cause faulty outcomes, as they

deal directly with the output data.

5.4.2 Floating Point

As hypothesized in Section 3.5.1, fault that are injected into floating point operations

causes variations in the output, however, those variations will not cause a segmen-

tation fault, as those operations are not on the critical path of the program control.

A fault injected to floating point operations results in 3% - 13% 'Moderate' faults,

and 0% - 5% 'Critical' faults as observed from Tables 3.4, 5.5, with the exception of

Buffer Flip that caused higher variations in output.

Fault Type Random Bit Flips Sticking Bits XOR Bit Flip Byte Flip Buffer Flip
Acceptable 908 931 832 854 857 709
Moderate 57 31 126 91 81 101
Critical 2 0 9 22 29 157

Table 5.5: Comparison of generated fault types by fault model, based on the Hydrogen
ignition case, with profiling floating point operations, and 1, 000 fault quota.

62

Figure 5-1: A sample of GasKinetics .cpp from the Cantera library, showing the
different fault outcomes, using the Bit Flip fault model on Binary instructions.

Results Analysis of Ignition Cases

As the floating point operations are a subset of the binary instructions, much like the

Jacobi program, the same source lines that were classified as 'Moderate' or 'Critical'

in binary instruction set, were classified the same way in the floating point operations

instruction set. For example, in GasKinetics module the lines that update the

species in updateKc function, which directly influence the output, were found to be

'Moderate' and 'Critical' amongst the different fault models.

1 doublereal rrt = 1.0/(GasConstant * thermo(.temperature();

2 . . .

3 m-rkc[irxn] = exp(m-rkc[irxn]*rrt -

4 m-dn[irxn]*logStandConc);

63

Moreover, much like the hypothesis made in the Jacobi study case, faults injected

solely to fault point operations in the hydrogen ignition case caused almost no seg-

mentation faults and / or timeouts, due to the calculations they execute, which are

by large not on the critical path of the program flow.

5.4.3 Memory

Table 5.6 shows the results of injecting at most 1, 000 faults into the memory instruc-

tion set of the hydrogen ignition case. In addition Table 5.7 presents the results for

the Random Bit Flips fault model for the methane ignition case, injecting 2 faults

to each profiled source line to achieve 100% line coverage. As shown in both tables,

the Random Bit Flips model generates roughly 66% 'Acceptable' faults, with the rest

33% faults as 'Moderate' or 'Critical'. In both experiments there were only three in-

structions that were profiled: call, invoke and load. Comparing the combined results

results to the results from Table 3.5, which shows the analysis of the Jacobi program,

there are huge differences. First, there are many more 'Critical' faults in the hydro-

gen ignition case, while the 'Moderate' faults stay around the same range of around

1% - 10%. Moreover, in the hydrogen ignition case, almost all of the 'Critical' faults

were a result of a segmentation fault, again, unlike the Jacobi program as analyzed

in Section 3.5.1. Last but not least, every fault model, except for the XOR model,

caused between 1 - 2 timeouts in the hydrogen ignition case. These strike differences

between the two programs, makes the injection of faults into memory operations pro-

gram dependent, and apparent that memory operations are critical for the ignition

cases.

Fault Type Random Bit Flips Sticking Bits XOR Bit Flip Byte Flip Buffer Flip
Acceptable 636 753 529 562 549 425
Moderate 41 23 73 48 50 40
Critical 183 84 258 250 281 395

Table 5.6: Comparison of generated fault types by fault model, based on the Hydrogen
ignition case, with profiling memory operations, and 1, 000 fault quota.

64

Fault Type Random Bit Flips
Acceptable 1645
Moderate 74

Critical 822

Segiientatiou Faults 816
Timeouts 3

Table 5.7: Results for the Random Bit Flips fault model when profiling memory
instructions based for the Methane ignition case and 100% line coverage.

Results Analysis of Ignition Cases

The results of the memory instructions across the ignition cases were consistent

as many faults that were injected into memory operations, caused many 'Critical'

faults, while almost no 'Moderate' faults. Figure 5-2 shows an example of how the

_update-ratesC function in the GasKinetics module, which is mainly composed

of memory instructions, caused all 'Critical' faults. A possible explanation to this

would be that multiple memory instructions are encapsulated within each line, and a

deviation in each one, could potentially cause a fault. For example, the line

1 m_3bconcm.update(m-conc, ctot, &mkdata->concm_3bvalues [01);

accesses an array location in the function call itself, which could cause ail error if the

array output is invalid. The reason for the parity with the Jacobi program could be

that there are many more memory accesses, and therefore more potential deviation

in the memory calculation due to the larger memory size allocated to the ignition

cases. However, it remains that memory instructions cause little to no timeouts, as

suggested in Section 3.5.1.

5.4.4 All

Tables 3.6,5.8 present the results of injecting faults into all instructions. As observed,

without differentiation of the instruction sets faults are injected to, the program are

error prone, causing on average 50% 'Moderate' and 'Critical' faults. The ignition

cases have many more instructions that are profiled and have faults injected to them:

call, invoke, getelementptr, bitcast, icmnp, load, sext, add, zext, shl, ptrtoint, sub,

65

Figure 5-2: A sample of GasKinetics. cpp from the Cantera library, showing the
different fault outcomes, using the Bit Flip fault model on Memory instructions.

ashr, extractvalue, and, trunc, ret, inttoptr, insertvalue, fcmp, sitofp, fmul, fadd,

fsub, fptosi, sdiv, mul, fdiv, store, xor, or, br, select, lshr. The additional opcodes

such as ptrtoint, extractvalue, inttoptr, insertvalue, amongst the many different ones,

are critical to the proper flow of the program and the output, as they convert a point

to an integer, extract a value from an array or a struct, covert an integer to a pointer,

or insert a value to an array or a struct, respectively. The two major opcodes that are

utilized in the ignition cases are getelementptr and load, which pertain to memory

operations, collectively making up 66% of executed opcodes. As observed from the

analysis of the memory operations, those are error prone, with causing roughly 33%

'Critical' faults on average. The third most executed opcode is icmp is a logical

comparison opcode, which makes up about 12% of total executions. As the icmp

pertains to the logical operations, such as conditionals, it is very likely that faults

injected to those operations would produce a deviation in the output.The other 25%

of the executions are distributed amongst the other 31 opcodes listed above, with the

majority (over 50%) of them belonging to binary instruction set, which are known

to be fault prone, possibly explaining the makeup of the rest of the 'Moderate' and

'Critical' faults.

66

Fault Type Random Bit Flips Sticking Bits XOR Bit Flip Byte Flip Buffer Flip
Acceptable 559 822 401 485 450 309
Moderate 39 27 41 45 57 37
Critical 450 199 606 518 541 702

Segmentation Faults 420 157 564 486 509 656
Timeouts 20 40 38 27 28 38

Table 5.8: Comparison of generated fault types by fault model, based on the Hydrogen
ignition case, with profiling all instructions operations, and 1, 000 fault quota.

67

68

Chapter 6

Discussion

The Fault Prophet fault injection tool provides the ability to test the resilience of

programs to faults caused by SEU (Single Event Upsets), by identifying the critical

sections in the program, and visualizing the findings. The additional value on top of

existing fault injection tools: greater modularity by abstracting the input and output

of the different components of the tool, choice of fault scenarios, and a visualizations

framework supporting an interactive work environment.

6.1 Suggested Preventive Actions

Several commonalities were found amongst the results of the experiments, enabling

suggestions for fault preventive actions.

6.1.1 Instructions Separation

For code cleanliness and optimizations, multiple lines of code can be combined into

a single line. For example, when loading a value from an array, the index can be

calculated in the memory access code, as shown below from the Jacobi program.

1 double ul = uold[i-1] [jI;

While this is a typical line of code, combining the index calculation with the memory

access, separating the two can provide means to mitigate errors, as the index calcula-

69

tion can be verified for correctness before the memory access. While this creates an

overhead, it is only for memory index and address calculations that could salvage an

execution of a program.

6.1.2 Conditionals

As observed from the results analysis, timeouts do occur in program due to soft-

errors in binary instructions, usually due to a change in the execution flow extending

the execution time. Moreover, if variables are calculated in an iterative manner,

additional iterations can cause deviations in the output of the program, which are

more critical in loops, as such deviations are compounded. An example of such a case

is in the main function of the ignition cases, in which a loop checks for cantera errors

in the reaction. Additional iterations would change the calculated error deviation,

producing a different results.

1 while (errFlag)

2 f

3 /* Repeat to resolve errors.

4 ctrErr++;

5 tFPerturb = 1.0e-5 * ctrErr;

6 errFlag = chem.react(tFPerturb);

7 }

To mitigate the consequences of soft-errors on the execution flow and output, and

allow normal operation of the program, an additional conditional check in conditional

iterations, could serve as a fail-safe mechanism to stop extraneous iterations from

taking place. While this will cause additional overhead, it is only for conditionals,

and would protect critical calculations.

70

6.2 Design Challenges

6.2.1 Scalability

As the development of the tool progressed, larger programs were experiments with as

described in Section 5.1. Those larger programs exhibited a certain behavior that was

unnoticed beforehand - the size of the log outputted by the Profiler module, grew from

MBs to GBs. As a consequence, objects that were once held in memory, grew too big,

impeding the system, and at times causing errors in interpreter itself. To cope with

these problems, the tool uses sqlite3 to store the data, allowing the tool unlimited

space to hold objects needed. However, this comes at a cost to performance, as sqlite3,

and sql in general are not optimized to perform the queries the tool needs; moreover,

pulling data from a database is much slower than in-memory objects. Therefore, the

tool uses a hybrid approach, to store minimal data that is essential for most fault

selection calculations in-memory while keeping the log outputs in a database. This

hybrid approach is able to reduce the size of the log by normalizing the data by 75%

as well as select faults within a reasonable amount of time, ranging from seconds

to a few hours, depending on the program size. Additional optimizations could be

performed to reduce the time for fault selection even further.

6.3 Future Work

6.3.1 Code Optimizations

There are multiple code optimizations that could reduce the overall runtime of the

tool.

SQL queries

The transition to a Sqlite3 database to hold and retain the data of the profiled instruc-

tions, and the injected faults has a performance cost as mentioned in Section 6.2.1.

Proper, normalized and optimized database choice, structure and queries can reduce

71

the average runtime of the tool.

Redundant Fault Selection Analysis Runs

Under ideal settings, the Fault Selection Analysis module would have to run only once

per profile option, i.e. instruction set, and will save that data for future iterations

of the tool that use the same profiling option. While the current architecture of the

tool cannot support this feature, profiling a fairly sized program execution creates a

bearable overhead as discussed in Section 6.2.1.

6.3.2 Fault Model Factory for Function Calls and Arrays

The current architecture of the tool supports different fault models only for two fault

scenarios: single fault and burst mode (see Section 4.4.3. While the current fault

model for function calls and array faults is to replace the existing buffer, whether call

instruction of pointer, with a generated random value, as shown in the Section 5.3,

the fault model has a great impact on the outcomes. As such, providing support for

multiple fault models is essential to fully support the identification of critical section

via a myriad of fault scenarios.

6.3.3 Fault Injection into Operands

The tool was designed to inject faults into instruction buffer. However, there are

times in which there is a need to test the behavior of an instruction when an operand

changes. Therefore, there is a need to inject faults into a more granular object

than instructions. As demonstrated by the array fault scenario, which modifies only

pointers in an instruction, this is possible, and should be exploited whenever possible.

72

6.3.4 Profiling Options

Loops

Loops are a critical asset of any program, and there could be variations in the sen-

sitivity of the program in general, and of critical sections in particular, if a fault in

injected in a loop, depending on which iteration the fault is injected. A loops profiling

option would measure the number of times a loop runs, and will allow to inject faults

to the loop in the first and last iterations.

6.3.5 Faulty Trace Analysis

As mentioned in Section 1.1.2, to measure the sensitivity of a fault, the tool compares

the faulty output to the baseline output, since it is cheapest analysis in terms of

resources. However, comparing a faulty trace comparison to the baseline trace would

provide a more accurate analysis; this requires optimizations on the trace and the

storage mechanism of the traces, as they can take up a lot of space, as well as the

comparison if the traces are long.

6.3.6 Extension of the Visualizations Framework

A possible extension of the visualization framework, could offer comparison of the

fault models. Given faults were injected using multiple fault models, a visualization,

much like a heat map, based on the composite score on all fault models, could provide

a better visual identification and indication of the sensitivity of critical sections in

the program.

73

74

Appendix A

Documentation

This is the documentation of how to use the Fault Prophet Fault Injection Tool, and

the Vim plugins designed for it.

A.1 Fault Prophet

After the tool has been installed, the iain resource users will have to deal with is

the configuration file of the tool. The configuration file allows the user to setup all

the options pertaining to the progran they want to run their tool on. Once the

configuration file has been set, and the program compiled, all that is left to do is run

the tool by running:

python script.py <name of configuration file>

A.1.1 Installation

it is recommended to use Ubuntu 12.04.3 with the tool.

Preconfigred Virtual Machine

A virtual machine has been preconfigured with the tool that can be obtained by con-

tacting the Computer Architecture research group at CSAIL, Computer Science and

Artificial Intelligence Lab. The user niane of the miachine is 'neo' and the password

75

is '1234'. The tool itself can be found under the home folder in the fault-inject folder.

A.1.2 Compilation Suggestions

In order for the tool to provide the best possible data on the tested program, it is

suggested to compile the program with the '-00 -g' flags. The '-00' will not optimize

the program, allowing a mapping of instructions to source line with utmost accuracy.

The '-g' must be used in order to map each instruction to its source code file and

source line. This is especially necessary if the user would like to make use of the

visualization and vim plugins.

A.1.3 Configuration

There are seven sections in the settings file: general, scripts, filter, modes, profiler,

faultinjection and analysis. Each section has one or many options that can be set.

While not all options are mandatory, it is recommended the user will fill all the

options, in order to make sure the output is to their liking. Please see Figure B-2 for

an example of a configuration file. Settings marked with (*) the asterisk mark are

mandatory settings.

General section

This section includes three mandatory settings that must be set.

" Program Name * (string) : the name of the executable without the .be extension.
The tool expects the executable to reside in the same directory as the tool itself.

" Program Input * (string) : the path of the file that has the program inputs. If

no inputs are needed or required, a path to file must still be specified, and the
file must exist. In such a case, use the touch command.

" SO-Libs * (string) : the path to the Fault Prophet LLVM libraries. In

accordance with the installation script, those will exist in <specified home

path> /llvm/llvm-2.9/Relase+Asserts/lib

76

Scripts section

This section specifies the path of the scripts that the tool runs: the profiler, the fault

injection, fault injector module compilation, and fault analysis. Those settings should

not be modified unless there is a reason to do so.

* run-profiler * (string) profiler script path. The default value is

./run-profiler.sh'.

* run-inject * (string)

./run-inject.sh'.

fault injection script path. The default value is

* run-inject-conpile * (string) : fault injection compilation script path.

default value is './faultinject-conpile.pl'.

Filter section

This section pertains to the settings of the Fault Selection Analysis module.

* white-list-filters * (special format) : the instructions sets that will be profiled.

- Note: The tool allows a user to create a filtering tool themselves, and run

it through the tool. As such, the tool allows the user to specify a custom

filtering script using the following format:

[<filter script 1>,<filter option 1>];[<filter script 2>,<filter option 2>]

The tool includes a filter tool that can be used with the following param-

eters:

[./run-filters.sh,<profiling option>]

where the profiling option can be picked from the following:

* a : all instructions

* b : binary operations (include floating point operations)

* f: floating point operations

* c: function calls

* v : arrays

77

The

* m: memory operations

* u: use-define chains

* s all instructions except invoke and cast

" black-list-filters (special format) : the instructions sets that will be filtered out.

This option takes precedence over the white-list-filters options.

- Note: Like the white-list-filters, the black-list-filters can be created by the

user, and as such, the format for this setting is the same as for the white-

list-filters. Please see note in white-list-filters to understand the input

format.

* filter-instrs (comma separated strings) : comma separated list of opcodes that

will be filtered out, regardless of whether they are a part of the profiled instruc-

tion set(s).

" exclude-lines : Source lines from specific source files that will be filtered out, if

instructions on those lines are being profiled.

- Note: the tool allows a user to specify any source file name, and corre-

sponding line numbers. As such the format is:

[<source file name 1, including extension>,<starting line number

1>,<ending line numberl>];[<source file name 2, including

extension>,<starting line number2>,<ending line number2>]

The starting line number must be less than or equal to the ending line

number, for those lines to be included.

" include-lines (special format) : the opposite of exclude-lines. This settings

allows the user to specify the source lines from specific source files that will be

included in the profiling.

- Note: uses the same formatting as exclude-lines option. Please refer to the

note under that setting to obtain information about the input format for

this setting.

" is-skip * (boolean) : allows the user to specify whether lines will be excluded or

included, as only one option can be used.The default value is True, meaning to

use the exclude lines option, rather than include lines.

78

Modes Section

* run-native (boolean) : the mode in which the program needs to run, whether

native, i.e. the program will be compiled to an executable, or not, i.e. the

LLVM interpreter, Ili, will be used, as some program can run only in one mode

out of the two. The default value is False.

o run-time * (integer) : the alloted runtime in seconds. If the program exceeds

this time, it will be timed-out. The input time should be the original runtime,

i.e., the average amount of time it takes the program to run, as the tool accounts

for the overhead costs.

Profiler Section

This section pertains to the settings of the Profiler module.

" trace (boolean) : an option to dynamically trace instructions for each fault

injection. The default value is False.

- Note: The overhead costs might be expensive, if set to True.

" static-trace (boolean) : output a static trace of the program. The default value

is False.

- Note: This must be True in order to use the InstShow vim plugin described

in Section 4.5.3.

Fault-Injection Section

This section pertains to the settings of the Fault Injector module.

* quota * (integer) : number of faults to inject to the program.

* burst-mode (boolean) : use the burst of faults scenario.

False.

The default value is

* burst-repeat (integer) : if in burst mode, this option specifies the number of

instructions to pass before injecting a fault.

79

* burst-num-faults (integer) : if in burst mode, this option specifies the total

number of faults to inject.

" repeat-fault (integer) : specifies the number of faults to inject to the same buffer.

This does not count against the quota, meaning quota * repeat - fault faults

will be injected total. The default value is 1.

- Note: This option is useful if the fault model is based on random values,

allowing to exhaustively test the given buffer.

" test-line-coverage (boolean) : if True, given a percentage, the tool will stop

injecting faults into the program once the percentage of source lines have been

tested. The tool will inject two faults into each source line in each source file,

regardless of number of instructions it encapsulates or the number of instruction

executions it has, making the quota parameter extraneous in this case.

" line-coverage-percent (boolean in rage of 0-100) : the percentage of source lines

of those with profiled instructions to inject faults to.

" func-faults (boolean) : use of function call and arrays fault scenarios described

in Section 4.4.2.

- Note: If the intended use is for array faults, then must specify 'v' as a

profiled instruction set in the white-list-filter setting.

" func-fault-prob (float) : the probability a fault will be injected to a function

call if func-faults is True.

" arr-fault-prob (float) : the probability a fault will be injected to an instruction

that has an array if func-faults is True, and the instruction set for arrays is

profiled.

" fault-model * (integer) : the choice of fault model. The fault model is assigned

a number by the fault factory as described in Section 4.4.3.

- Note: Given the current fault factory settings, the fault models described

in Section 4.4.3 are mapped to the following numbers:

* 0: Flip Random Bits

* 1: Sticking Random Bits

* 2 : XOR Mantissa Bits

80

* 3 Flip a Random Bit

* 4 Flip a Random Byte

* 5 New Buffer

Analysis Section

" output-file * (string) : name of the file where to save the results of the output

abstraction script.

" output-abstraction * (string) : path to the output abstraction tool.

0 show-viz (boolean) : the option whether to display the visualizations.

default value is False.

A.2 Vim Plugin

The FltMark vim plugin allows the user to inject faults directly into the program

itself from vimi as described in Section 4.5.3. However, preliminary steps must take

place before this functionality can be used.

A.2.1 Configuration File

In order to utilize functionality of injecting faults directly from vim, the user must

first create a configuration file that is suitable for use by the plugin. The configuration

script lets the user generate a suitable configuration file, by copying the settings it

needs from an existing configuration file, by typing:

python config.py <path of existing configuration file>

into the terminal window. This command will generate a new file cfgCreator.py

that will be used by the vim plugin whenever fault are injected through vim. Some

settings are modified from the original settings, whatever they might be. The plugin

81

The

configuration file will profile all instruction sets, filter only the selected lines and

will inject 2 faults to instructions executed in each of those lines (see Section A.2.3).

Moreover, the configuration will be modified to save no traces, static or dynamic, of

those fault injections to optimize the fault injection time.

A.2.2 Source Line Sensitivity

There are three commands to control whether to show the sensitivity of source lines in

a source file that is opened with vim, given that Fault Prophet was used beforehand.

FaultMarkersEnable

This command enables the sensitivity view in vim.

FaultMarkersDisable

This command disables the sensitivity view in vim.

FaultMarkersOnOff

This command enables or disables the sensitivity view in vim, depending on the

current view.

A.2.3 Fault Injection

There are two classes of commands that are supported by the plugin to inject faults:

TagLine(s) and InjectFault(s).

TagLine(s)

The TagLine command tags the current line the user is on for fault injection. There-

fore, the user can tag multiple lines and inject faults into all those lines at once. The

TagLines command allows the user to tag multiple lines at once. However, the user

must enter the command twice: once for the start line, and another for the end line.

The order of the start line and end line does not matter.

82

Ipr

for(i=G;i<n;i++)
for(j=G;j<m;j++)

uold[i][j] = u[i][j];

agma omp for private(resid,j,i) reduction(+:error) nowait
for (i=1;i<(n-1);i++)

for (j=1;j<(m-1);j++)
{
double ul = uold[i-l][jJ;
double u2 = uold[i+1][j];
double u3 = uold[i][j-1];
double u4 = uold[i][j+1];
double u5 = uold[i][j];
Mouble u6 = f[i][j];

resid = (ax * (ul + u2) + ay*(u3 + u4)+ b * u5 - u6)/b;
/*
resid = (ax*(uold[i-1][j] + uold[i+1][j])\

+ ay*(uold[i][j-1I + uold[i][j+1I)+ b * uold[i][j] - f[i][j])/b;
*/
u[i][j] = uold[i][j] - omega * resid;
error = error + resid*resid

/* omp end parallel */

/* Error check */

k = k + 1;
if (k%580==) {

//printf("Finished %d iteration.\n",k);
: TagLines

11

Figure A-1: Example of tagged lines in FltMark vim plugin.

InjectFault(s)

The InjectFaults command injects faults to tagged lines. If no lines are tagged, the

command will not run, and will alert the user lines need to be tagged first. The

InjectFault command on the other hand, injects faults to the current line the user

is on, regardless of any lines are tagged. The tagged lines will be removed once the

fault have been injected. In order to inject faults, the tool must reside in the same

directory as the source file, as well as the binary on which it will execute.

83

1%, 0 W

84

Appendix B

Figures

Figure B-1: Treemap example of showing source line breakdown.

85

1 [general]

2 # program name without .bc extension

3 program-name = jacobi

4

5 # must specify an input file and must exist

6 program-input = input.jacobi

7

8 # fault injection libs

9 so-libs = /home/neo/llvm/llvm-2.9/Release+Asserts/lib

10

11 [scripts]

12 run-profiler = ./run-profiler.sh

13 run-inject = ./run-inject.sh

14 run-inject-compile = ./faultinject-compile.pl

15

16 [filter]

17

18 # profiled instructions to include (white) exclude (black),

19 # include script and profile option

20 # separate scripts and options using

21 # example: [./runjfilters.sh,b];[./run-filters.sh,f]

22 # profile options:

23 # a - all insturctions

24 # b - binary operations (include float)

25 # f - float operations

26 # c - function calls

27 # v - arrays

28 # m - memory operations

29 # u - usedef chains

30 # s - backward slice = all except invoke and cast

31

32 white-list-filters = [./runfilters.sh,f]

33 black-list-filters =

34

35 # instructions to exclude from analysis and fault injection

36 filter-instrs = getelementptr,sext

86

37

38 # profiled lines to include or exclude

39 # include the source file name and starting and ending line

numbers,

40 # both inclusive the format is [src file name , start line, end

line]

41 # include additional files and line numbers by separating them

with ;

42 # must specify if excluding or including by setting skip to True

if

43 # skipping, else would include

44

45 exclude-lines = [jacobi.c,229,249] #errorcheck function

46 include-lines =

47 is-skip = True

48

49 [modes]

50 # Whether to run the program in native mode, i.e. create an

executable

51 run-native = True

52

53 # Runtime in secs

54 run-time = 5

55

56 [profiler]

57 # True to dynamically trace instructions for each fault injection

58 trace = False

59

60 # Static trace of program.

61 # This must be True in order to use the GUI component

62 static-trace = True

63

64 [faultinjection]

65 # number of faults to inject

66 quota = 1000

67

87

68 # True for burst mode , otherwise False

69 burst-mode = False

70

71 # number of instructions to jump before injecting a fault in

burst mode

72 burst-repeat = 2

73

74 # number of total faults to inject in fault mode

75 burst-num-faults = 5

76

77 # number of fault to inject in the same buffer

78 # (useful if flipping a random bit or byte)

79 repeat-fault = 1

80

81 # line coverage percentage

82 # if test-line-coverage is set to true, then won't reach quota,

83 # but will stop when reaching line coverage percentage

84 test-line-coverage = False

85 line-coverage-percent = 90

86

87 # fault injection noise

88 noise-max = 11000

89 noise-control = 0.002

90

91 # True if want to inject faults to function calls, false

otherwise

92 # if True, must specify "c", function calls to be profiled in

filter section

93 func-faults = False

94

95 # choose a fault model by specifying the number of fault model

96 # 0 - flip random bits

97 # 1 - xor random bits

98 # 2 - xor entire buffer

99 # 3 - flip a random bit in buffer

100 # 4 - flip a random byte in buffer

88

101 # 5 - flip the entire buffer with random bytes

102 # 6 - stick noise in the lower bits (mantissa when float)

103 # for 6, you can set the noise level under fault-injection noise

104

105 fault-model = 5

106

107 [analysis]

108 output-file = summary.txt

109 output-abstraction = distortion.py

110 mean-green-lower = 0.0

111 mean-green-upper = 0.0

112 mean-yellow-lower = 0.0

113 mean-yellow-upper = 1.0

114 mean-red-lower = 1.0

115 mean-red-upper = inf

116 mean-segfault = 10000000.0

117 mean-default = critical

118 show-viz = True

Figure B-2: A sample configuration file of Fault-Prophet for the Jacobi program.

89

import os.path

import subprocess

settings =

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

class OutputAbs:

def __init__(self):

pass

18 def calculatescore(self, greens, yellows, reds):

19 score = 1.0 * (yellows * 0.5 + reds) / (greens + yellows

+ reds)

20 classification = self.classify-fault(score)

21 return score, classification

22

23 def output-analysis(self, fault-output , fault-path,

baseline-path):

24 output = ""

25 mean_ = 0.0

26 if faultoutput ==

27 mean_ = settings["mean-segfault"1

28 output = "SegmentationuFault"

29 elif fault _ output == "TimeOut":

30 mean_ = settings["mean-segfault"]

31 output = "TimeuOut"

32 else :

33 proc = subprocess.Popen(['python', settings["output-

abstraction"],

90

{'mean-green-lower' : 0.0,

'mean-green-upper': 0.0,

'mean-yellow-lower' : 0.0,

'mean-yellow-upper' : 1.0,

'mean-red-lower' : 1.0,

'mean-red-upper' : float('inf'),

'mean-segfault' : -1,

'mean-default' : 'critical',

'output-abstraction': 'distortion.py'}

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

91

baselinepath, fault-pathl , stdout=subprocess.

PIPE)

output = proc.stdout.read()

_meanindx = output.find("Mean")

if _meanindx != -1:

_meanindx += 5

mean_ = output[_meanindx output.find("\r

_meanindx)]

mean_ = float(mean_)

output = output.strip() .replace("K", "").replace('

Li,")

return output, mean_

def classifyjfault(self, mean_):

classification = settings ["mean-default"]

if mean_ == settings["mean-segfault"]:

classification = "critical"

elif settings["mean-green-lower"] <= mean_

and mean_ <= settings["mean-green-upper"]:

classification = "acceptable"

elif settings["mean-yellow-lower"] < mean_

and mean_ <= settings ["mean-yellow-upper"]:

classification = "moderate"

elif settings["mean-red-lower"I < mean_

and mean_ <= settings["mean-red-upper"]:

classification = "critical"

return classification

def analyze-fault (self , baselinepath, fault-path):

if not os.path.exists(fault-path):

return

"\n"

n",

67 faultfile = open(fault-path)

68 fault-output = faultfile.read().strip()

69 faultjfile.close()

70

71 output, mean_ = self.output-analysis(fault-output,

fault-path, baseline-path)

72 classification = self.classify-fault(mean_)

73

74 return output, classification

Figure B-3: The output abstraction wrapper for the analysis of the Jacobi program.

92

1 #!/usr/bin/env python

2

3 import sys

4 import os

5 import re

6 import math

7 import numpy

8 from pprint import pprint

9 from optparse import OptionParser

10

11

12 STATS = {

13 "min" numpy.min

14 "max": numpy.max,

15 "mean": numpy.mean,

16 "median" numpy.median,

17 "stdev" numpy.std,

18 "range" lambda x numpy.max(x) - numpy.min(x),

19 "zeros": lambda x 100.0*len([z for z in x if z == 0])

/len(x)

20 }

21

22 STATSDESCRIPTION = [

23 ("min", "Minimum")

24 ("mean", "Mean"),

25 ("median", "Median"),

26 ("max", "Maximum"),

27 ("stdev", "StandardjDeviation"),

28 ("range", "Range"),

29 ("zeros", "Zerocelements")

30 1

31

32 ROUNDPLACES = 10

33

34 ## For aLL errors, the first argument is the reference vaLue, the

other is the comparison vaLue

93

35 ERRFUNCTION = {

36 "abserr" lambda x, y: math.fabs(x - y),

37 "absrelerr" lambda x, y: math.fabs(1-y/x) if

0 != round(x, ROUNDPLACES) else (le+308)

if 0 round(y, ROUNDPLACES) else 0.0,

38 "err" lambda x, y: x - y,

39 "relerr" lambda x, y: 1-y/x if 0 ! round(x,

ROUNDPLACES) else (ie+308) if 0 round(y

ROUNDPLACES) else 0.0,

40 }

41

42 ERRFUNCTIONDESCRIPTION = [

43 ("err", "Error"),

44 ("relerr", "RelativeuError"),

45 ("abserr", "AbsoluteuError"),

46 ("absrelerr", "AbsoluteuRelativeu

Error")

47 1

48

49 ERRFUNCTIONDEFAULT = "absrelerr"

50 #ERRFUNCTION DEFAULT = "relerr"

51

52 WORDDELIMITERS = "11t"

53 COMMENTDELIMITERS = "#="

54 DIGITPRECISION = 10

55

56 ##

57 ## Calculates the distortion. Measures the whole contents of

58 ## both files.

59 ##

60

61 def readLines(FileInput , comments):

62 ListOutput = []

63

64 lcomments = [re.compile(c) for c in comments]

65

94

66 for lineO in FileInput:

67 line = lineO.strip()

68 if len(line) == 0: continue

69

70 continueLoop=True

71 for lcomment in lcomments:

72 if re.match(lcomment, line):

73 continueLoop = False

74 break

75 if not continueLoop: continue

76

77 ListOutput.append(line)

78

79 return ListOutput

80

81

82 def convertLineToNumbers(strLine, delimiters):

83

84 r = re.compile('[Xs]' % delimiters)

85 return [float(s) for s in r.split(strLine) if len(s) > 0]

86

87

88 def convertToValues(ListStringInput , delimiters):

89 ListIntOutput = []

90 ListIntPerLineOutput = []

91

92 for pl in ListStringInput:

93 apl = convertLineToNumbers(pl, delimiters)

94 ListIntOutput.extend(apl)

95 ListIntPerLineOutput.append(len(apl))

96

97 return ListIntOutput , ListIntPerLineOutput

98

99 def isNan(x):

100 return type(x) is float and x != x

101

102

103 def calculateStats(ListDistortions , statsWhitelist = STATS.keys()

104 list = [d for d in ListDistortions if not isNan(d)]

105 stats = dict((n , f (list)) for n,f in STATS.items() if n

in statsWhitelist)

106 return stats

107

108

109 def readFromFile(inputFile, delimiters = WORDDELIMITERS,

comments = COMMENTDELIMITERS):

110 inputFile open(inputFile, 'r');

111

112 inputLines = readLines(inputFile, comments)

113 inputValues , inputValuesPerLine = convertToValues(inputLines,

delimiters)

114

115 return inputValues , inputValuesPerLine

116

117

118

119 def calculateDistortions(refValues , cmpValues , errFunction,

exitOnNaN = False):

120 distortions = []

121 for rv, cv in map(None, refValues, cmpValues):

122 rv, cv = float(rv), float(cv)

123 if (isNan(rv) or isNan(cv)):

124 if not (isNan(cv) and isNan(rv)):

125 if not exitOnNaN: print "[Warning]u",

126 print "Bothuvaluesumustubeunan'su(refj=u5.1Ofj,u

cmpu=u%5.10f)" % (rv, cv)

127 if exitOnNaN: exit(1)

128 dist = 0.0

129 dist = errFunction(rv, cv);

130 distortions.append(dist)

131 return distortions

96

132 ###

133

134

135

136 def printDistortions(distortions, elementsStart = 0,

elementsPerLine = [], digits = DIGITPRECISION , minimumPrint =

False)

137

138 format = "%%5.Xdf" % digits

139 if elementsPerLine and not minimumPrint:

140 start = 0

141 for linecnt in elementsPerLine:

142 print "X4d:aj/s" % (elementsStart + start, "u".join([

format % d for d in distortions[start start +

linecnt] 1))

143 start += linecnt

144 else:

145 print "u".join([str(d) for d in distortions])

146

147 def printSummary(summary, digits = DIGITPRECISION, minimumPrint

= False):

148

149 format = "%X5.%df" % digits

150 for statId, statName in STATSDESCRIPTION:

151 try:

152 s = summary[statId] ## throw if doesn't exist

153 if not minimumPrint: print "%s:u" % statName,

154 print format % s

155 except KeyError:

156 pass ## this is fine, do nothing

157

158

159

160

161 def constructOptions():

162 parser = OptionParser()

97

163

164 parser.add-option("-c", "--comments",

165 action="store", dest="comments",

166 default=COMMENTDELIMITERS,

167 help="Charactersuinjinputufilesuthatubegins

,comments")

168 parser.add-option("-d", "--delimiters",

169 action="store", dest="delimiters",

170 default=WORDDELIMITERS,

171 help="Delimitersuwithinulineu(defaultu<spc

>,u<tab>)")

172

173 # parser.add-option("-m", "--mode",

174 # action="store", dest="mode",

175 # default=MODEDEFAULT,

176 # help="Select mode of operation (one of Ys)

% ", ".join(MODES))

177

178 parser.add-option("-e", "--error",

179 action="store", dest="errorFunction",

180 default=ERRFUNCTIONDEFAULT,

181 help="Errorufunctionuforjindividualu

elements. (includingufollowing :js ;u

default: As)" %(",u".join(ERRFUNCTION.

keyso), ERRFUNCTIONDEFAULT))

182

183 parser.add-option("", "--spartan",

184 action="storetrue" dest="printSpartan",

185 default=False,

186 help="PrintuMinimumuAdditionalu Information"

)

187

188 parser.add-option("-p", "--precision",

189 action="store", type="int", dest="precision

190 default=DIGITPRECISION,

98

help="Numberuofusignificantudigitsuwhile,

print ingutheuoutput")

parser.add-option("-f", "--field",

action="store", type="string", dest="fields

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

parser.add-option(

byucommauoru

odd, even,

"1, "--cmp-multi",

action="storetrue", dest="cmpMultiple",

default=False,

help="Eachulineuinucomparisonufileu

correspondsutouaudifferenturesult")

parser.add-option("-i", "--individual",

action="storetrue", dest="printIndividual"

default =False

help="Printaindividualudistortions")

parser.add-option("-s", "--skip-summary",

action="storejfalse", dest="printSummary",

default =True ,

help="Printusummaryustatistics")

parser.add-option("-S", "--statistics",

action="store", dest="statistics",

default=",".join(STATS.keys()),

help="Summaryustatisticsucomponentu(

includingufollowing:us,uoru'all')u" % "

,u".join(STATS.keys())

return parser

99

default="all",

help="List jof uf ields jseparatedj

'all 'uforualljfields")

^ todo add pattern langauge for this, such as

or a sequence....

217

218

219

220

221 def prepareData(args, options):

222

223 spartan = options.printSpartan

224

225 if len(args) 2:

226 print "Thereushouldubeuexactlyutwouarguments: a) <

ref erence src >uandu<comparison-src >"

227 exit(1)

228

229 if options.printSummary == False and options.printIndividual

== False:

230 print "ProgramumustuprintuatuleastuoneLofusummaryuoro

individualudistortionsu(checkuparametersu-suandu-i)"

231 exit (1)

232 if options.printSummary and len(options.statistics) == 0:

233 print "Whenuprintingusummaryuatuleastuoneustatisticumusta

beuchosenu (checkuparameter,-S)"

234 exit (1)

235

236

237 refInput = args[0]

238 cmpInput = args[1]

239

240 if options.statistics == "all": options.statistics = ",".join

(STATS. keys ()

241 if options.errorFunction == "all": options.errorFunction =

".join (ERRFUNCTION . keys ()

242

243 if not spartan:

244 #print "Reference Input: %s \nComparison Input: %s\n" % (
refInput, cmpInput)

245 #print "Options: "

246 #pprint(options.__dict__, indent=4)

247 #print "\n"

100

248 pass

249

250

251 refValues, elementsPerLine = readFromFile(refInput

delimiters = options.delimiters , comments= options.

comments)

252 cmpValues, _ = readFromFile(cmpInput , delimiters = options.

delimiters, comments= options.comments)

253

254 return refValues , cmpValues, elementsPerLine

255

256

257 def filterValues (refValues , cmpValues , options)

258

259 if options.fields != "all":

260 indices = [int(f) for f in options.fields.split(',

261 refValues = [refValues[ii for i in indices I

262 cmpValues = [cmpValues[i] for i in indices I

263

264 return refValues , cmpValues

265

266

267

268 def computeDistortion(refValues , cmpValues , options)

269

270 refValues, cmpValues = filterValues (refValues, cmpValues,

options)

271

272 if len(refValues) len(cmpValues):

273 print "NumberLof datajelementsumust matchu"

274 print "o Present lyrefA=du, cmpu=ud" (len(refValues

) , len(cmpValues))

275 exit(1)

276

277 try:

278 errorFunction = ERRFUNCTION[options.errorFunction]

101

279 except KeyError:

280 print "Errorufunctionu/suunknown!" % options.

errorFunction

281 exit(i)

282

283 distortions = calculateDistortions(refValues , cmpValues

errorFunction)

284 summary = calculateStats(distortions , statsWhitelist =

options .statistics .split(',

285 return distortions, summary

286

287 def presentResults(distortions, summary, options, elementsStart =

0, elementsPerLine = [1):

288

289 spartan = options.printSpartan

290

291 if options.printIndividual and distortions None:

292 S = "uPrintuIndividualuElementuDistortionsu"

293 1 = int(40 - len(s)/2)

294 if not spartan: print * 1 + s + * (1 + len(s) %

2)

295 printDistortions(distortions, elementsStart =

elementsStart, elementsPerLine = elementsPerLine,

digits = options.precision, minimumPrint = spartan)

296 if not spartan and not options.printSummary: print "="*80

297 if options.printSummary: print

298

299 if options.printSummary and summary != None:

300 s = "uPrintuDistortionuSummaryu"

301 1 = int(40 - len(s)/2)

302 #if not spartan: print "="*i + s + "="*(I+Ien(s)%2)

303 printSummary(summary, digits = options.precision,

minimumPrint = spartan)

304 #if not spartan: print "="*80

305

306 #if options.cmpMuLtiple: print

102

307

308 return 0

309

310

311 def main():

312 parser = construct0ptions()

313 (options, args) = parser.parse-args(args = sys.argv[1:])

314

315 refValues, cmpValues , elementsPerLine = prepareData(args,

options)

316

317 rl, cl = len(refValues), len(cmpValues)

318

319 if rl == 0:

320 print "Atjleast ooneuref erence ovaluejmust jexist"

321 exit(1)

322

323 if options.cmpMultiple:

324 if cl <= rl and cl % rl != 0:

325 print "Theunumberuof comparisonavaluesU(%d) shouldLjbe

a'mult iplicative uoftheAreferenceuvalues,(%d)"

(cl, rl)

326 exit(1)

327 else:

328 if cl != rl:

329 print "Theunumberuofacompari sonvalues,(%d),shouldjbe

uiequaluLtouLthe unumber Ljof uref erence avaluesu (%d) " %

cl, rl)

330 exit (1)

331

332 start = 0

333 totaldistortions = []

334 while start < cl:

335 distortion, summary = computeDistortion(refValues,

cmpValues[start : start + rl] , options)

336 totaldistortions.extend(distortion)

103

337 presentResults(distortion, None if options.cmpMultiple

else summary, options, elementsStart = start,

elementsPerLine = elementsPerLine)

338 start += rl

339

340 if options.cmpMultiple:

341 summary = calculateStats(totaldistortions , statsWhitelist

= options.statistics.split(','))

342 presentResults(None, summary, options)

343

344

345 if __name - == main_"

346 main()

Figure B-4: The output abstraction algorithm used for the analysis of the Jacobi
program.

104

1 #!/bin/bash

2

3 export PRGNAME="main.x"

4 export PRGINPUT="input.main.x"

5

6 export PRGQUOTA="1000"

7

8 export FILTERBLACKLIST=""

9 export FILTERINSTRS=""

10 export FILTEREXCLUDELINES=""

11 export FILTERINCLUDELINES=""

12 export FILTERISSKIP="True"

13

14 export PRGRUNNATIVE="False"

15 export PRGRUNTIME="20"

16

17 export FIREPEATFAULT="1"

18 export FIFUNCFAULTS="True"

19

20 export FILINECOVERAGE="True"

21 export FILINECOVERAGEFAULTS="2"

22 export FILINECOVERAGEPERCENT="100"

23

24 export FINOISEMAX="1000"

25 export FINOISECONTROL="0.123"

26

27 for option in 'b' 'f' 'm')a'

28 do

29 export OPTIONOUTPUTDIR="$PRGNAME-$option$(date +_%HMX

SXmdY)"

30 mkdir $OPTIONOUTPUTDIR

31

32 export FILTERWHITELIST=" [./runfilters .sh,$option]"

33 for i in $(seq 0 5)

34 do

35 export PRGFAULTMODEL=$i

105

36 export PRGSETTINGSPATH="settings-$PRGNAME$(

date +_HM_ Xmd/Y) .cfg"

37

38 python configCreator.py

39 python script.py $PRGSETTINGSPATH

40

41 export OUTPUTDIR="$PRGNAME-$PRGFAULTMODEL$(

date +_H/MXS_/mdY)"

42

43 mkdir $OUTPUTDIR

44

45 my $PRGNAME_output $OUTPUTDIR

46 my $PRGNAME_baseline $OUTPUTDIR

47 my faults $OUTPUTDIR

48 my analysis $OUTPUTDIR

49 my trace $OUTPUTDIR

50 my logs $OUTPUTDIR

51 my summary.txt $OUTPUTDIR

52 my $PRGSETTINGSPATH $OUTPUTDIR

53 my $PRGNAME.mem2reg.bc.analysis.log $OUTPUTDIR

54 my $PRGNAME.mem2reg.bc.log $OUTPUTDIR

55 my $PRGNAME.db $OUTPUTDIR

56 my fltmark* $OUTPUTDIR

57 tar -zcf "$OUTPUTDIR.tar.gz" $OUTPUTDIR

58 rm -rf $OUTPUTDIR

59 my "$OUTPUTDIR.tar.gz" $OPTION_ OUTPUT_ DIR

60 done

61 done

Figure B-5: The experiments script used to run the tool for the evaluation of both
the tool and programs.

106

Bibliography

[1] Robert Baumann. Soft errors in advanced computer systems. Design & Test of

Computers, IEEE, 22(3):258--266, 2005.

[2] Franck Cappello. Fault tolerance in petascale/exascale systems: Current knowl-
edge, challenges and research opportunities. International Journal of High Per-
formance Computing Applications, 23(3):212 -226, 2009.

[3] Franck Cappello, Al Geist, Bill Gropp, Laxmikant Kale, Bill Kramer, and Marc
Snir. Toward exascale resilience. International Journal of High Performance
Computing Applications, 23(4):374 388, 2009.

[4] Seungjae Han, Kang G Shin, and Harold A Rosenberg. Doctor: An integrated
software fault injection environment for distributed real-time systems. In Com-
puter Performance and Dependability Symposium, 1995. Proceedings., Interna-
tional, pages 204- 213. IEEE, 1995.

[5] Siva Kumar Sastry Hari, Sarita V Adve, Helia Naeimi, and Pradeep Ramachan-
dran. Relyzer: exploiting application-level fault equivalence to analyze applica-
tion resiliency to transient faults. In ACM SIGARCH Computer Architecture
News, volume 40, pages 123 134. ACM, 2012.

[6] Dafydd Harries. Pyflakes. https://launchpad.net/pyf lakes, July 2005. Ac-
cessed: 2013-12-25.

[7] John G. Holm and Prithviraj Banerjee. Low cost concurrent error detection in a
vliw architecture using replicated instructions. In Proceedings of the International
Conference on Parallel Processing, pages 192-195, 1992.

[8] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abraham. FERRARI:
a flexible software-based fault and error injection system. Computers, IEEE
Transactions on, 44(2):248-260, 1995.

[9] Chris Lattuer and Vikram Adve. Llvmn: A compilation framework for lifelong
program analysis & transformation. In Code Generation and Optimization, 2004.
CGO 2004. International SyrmposiuM on, pages 75--86. IEEE, 2004.

[10] Dong Li, Jeffrey S Vetter, and Weikuan Yu. Classifying soft error vulnerabilities

in extreme-scale scientific applications using a binary instrumentation tool. In

107

Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC '12, pages 57:1-57:11, Los Alamitos, CA,
USA, 2012. IEEE Computer Society Press, IEEE Computer Society Press.

[11] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. A CM Sigplan
Notices, 40(6):190-200, 2005.

[12] Robert E. Lyons and Wouter Vanderkulk. The use of triple-modular redundancy
to improve computer reliability. IBM Journal of Research and Development,
6(2):200-209, 1962.

[13] Yesudeep Mangalapilly. Watchdog. http: //pythonhosted. org//watchdog/,
October 2010. Accessed: 2014-04-30.

[14] Francis P. Mathur and Algirdas Avizienis. Reliability analysis and architecture of
a hybrid-redundant digital system: generalized triple modular redundancy with
self-repair. In Proceedings of the May 5-7, 1970, spring joint computer conference,
AFIPS '70 (Spring), pages 375-383, New York, NY, USA, 1970. ACM.

[15] Asit K Mishra, Rajkishore Barik, and Somnath Paul. iact: A software-hardware
framework for understanding the scope of approximate computing. 2014.

[16] Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. Error detection by
duplicated instructions in super-scalar processors. Reliability, IEEE Transactions
on, 51(1):63-75, 2002.

[17] Karthik Pattabiraman, Nithin Nakka, Zbigniew Kalbarczyk, and Ravishankar
Iyer. SymPLFIED: Symbolic program-level fault injection and error detection
framework. In Dependable Systems and Networks With FTCS and DCC, 2008.
DSN 2008. IEEE International Conference on, pages 472-481. IEEE, 2008.

[18] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, David I.
August, and Shubhendu S. Mukherjee. Software-controlled fault tolerance. A CM
Trans. Archit. Code Optim., 2(4):366-396, December 2005.

[19] Joseph Robicheaux. Jacobi.f. http://www.openmp.org/samples/jacobi.f,
1998. Accessed: 2014-04-23.

[20] Pooja Roy, Rajarshi Ray, Chundong Wang, and Weng-Fai Wong. Asac: Auto-
matic sensitivity analysis for approximate computing. 2014.

[21] Bianca Schroeder and Garth A Gibson. Understanding failures in petascale
computers. In Journal of Physics: Conference Series, volume 78, page 012022.
IOP Publishing, 2007.

[22] Laszlo Simon. Treemap. https: //launchpad.net/treemap, March 2010. Ac-
cessed: 2014-03-16.

108

[23] Anna Thomas and Karthik Pattabirainan. Error detector placement for soft
computation. In Dependable Systems and Networks (DSN), 2013 43rd Annual

IEEE/IFIP International Conference on, pages 1--12. IEEE, 2013.

[24] Anna Thomas and Karthik Pattabiranian. Llfi: An intermediate code level fault

injector for soft computing applications. ser. SELSE, 2013.

[25] Timothy K Tsai and Ravishankar K Iyer. FTAPE: A fault injection tool to
measure fault tolerance. In AIA A, Computing in Aerospace Conference, 10 th,
San Antonio, TX, pages 339-346, 1995.

109

