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Decades ago, two nonoverlapping crypt stem cell populations were proposed: Leblond’s Crypt Base
Columnar (CBC) cell and Potten’s +4 cell. The identification of CBC markers including Lgr5 has confirmed
Leblond’s predictions that CBC cells are anatomically distinct, long-lived stem cells that permanently cycle.
While Potten originally described +4 cells as proliferative and unusually radiation-sensitive, recent efforts to
identify +4 stem cells have focused on the identification of cells that are quiescent and radiation-resistant.
Here, we describe commonalities and discrepancies between the individual studies and discuss challenges
of marker-based lineage tracing.
Introduction
The intestinal tract consists of two anatomically and functionally

distinct organs: the small intestine and the colon (Gregorieff and

Clevers, 2005). The architecture of the epithelium that lines the

lumen differs markedly between the two organs, reflecting their

distinct functions. The epithelium of the small intestine maxi-

mizes available absorptive surface area by the presence of

numerous finger-like protrusions that are called villi. Multiple

invaginations, the crypts of Lieberkühn, surround the base of

each villus. Colon epithelium lacks villi: from the flat surface

epithelium, crypts penetrate the underlying submucosa.

The various differentiated cell types of the intestinal epithelium

are well defined, both by morphology and in terms of marker

expression. Absorptive enterocytes (which also produce hydro-

lytic enzymes) are abundant throughout the small intestine. They

are columnar in shape, highly polarized, and carry an elaborate

apical brush border. Mucus-secreting Goblet cells occur mostly

in the distal small intestine (ileum) and the colon. Paneth cells,

which secrete antimicrobial products and provide stem cell

niche signals (Sato et al., 2011), are largely restricted to the

crypts of the small intestine. Deep crypt secretory cells (Rothen-

berg et al., 2012)may represent the colon counterparts of Paneth

cells. Other, more rare cell types can reside in crypts as well

as villi and include hormone-secreting enteroendocrine cells,

brush/tuft/caveolated cells, and cup cells. Finally, M cells reside

on lymphoid Peyer’s patches and transport antigens from the gut

lumen to the underlying lymphoid tissue (de Lau et al., 2012).

The epithelium of small intestine and colon displays a

remarkable self-renewal rate, likely necessitated by the constant

barrage from physical, chemical, and biological insult. Indeed,

the small intestinal epithelium of the mouse completely renews

every 3–5 days. The intense proliferation that fuels this self-

renewal process is confined to the crypts. Individual crypts

comprise around 250 cells and generate a similar number of

new cells each day. Resident stem cells have long been sus-

pected to be located close to the crypt base (reviewed in Barker

et al., 2010a). These stem cells produce vigorously proliferating
452 Cell Stem Cell 11, October 5, 2012 ª2012 Elsevier Inc.
progenitors called transit-amplifying (TA) cells, which move

upward as coherent columns toward the crypt/villus border

(Heath, 1996). During this upwardmigration, these TA cells begin

to differentiate, and subsequently exit the crypt onto the villus

2 days after being ‘‘born.’’ Their migration continues toward

the villus tip, where they die and are shed into the lumen. Up to

10 crypts supply new cells to a single villus. The crypt-resident

Paneth cells escape this upwardly mobile epithelial conveyer

belt. Instead, they migrate downward to occupy the crypt

base, where they live for 6–8 weeks. The combination of the

stereotypical architecture of the crypt-villus unit and this inten-

sive self-renewal process makes the intestinal tract an attractive

model for the study of adult stem cell biology.

Early Studies on Intestinal Stem Cells
A minimal definition of adult stem cells comprises just two char-

acteristics: longevity (stem cells persist for the lifetime of their

owner) and multipotency (stem cells can produce all cell types

of the tissue to which they belong). As argued elsewhere (Barker

et al., 2010a; Barker and Clevers, 2007), two general experi-

mental approaches can assess stemness at the level of a single

stem cell: genetic lineage tracing and transplantation. In the in-

testine, two models of intestinal stem cell identity have been

formulated: the stemcell zonemodel and the+4model (Figure 1).

The stem cell zonemodel derives from the discovery by Cheng

and Leblond that the crypt base is not exclusively populated by

postmitotic Paneth cells. Using electronmicroscopy (EM) almost

4 decades ago, they revealed the existence of slender cells,

wedged between the Paneth cells that divide once every day.

These cells were referred to as CBC cells (Cheng and Leblond,

1974) (Figure 2). Following 3H-Thymidine exposure, many CBC

cells died, which were subsequently phagocytosed by surviv-

ing CBC cells. The resulting radioactive phagosomes, initially

restricted to CBC cells, were subsequently observed within

more differentiated cells. This rudimentary lineage tracing result

was interpreted as evidence for stemness of the CBC cells.

However, since phagosome-labeled examples of the four cell
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Figure 1. The Stem Cells of the Small
Intestine: A Historical Perspective
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lineages were observed in separate crypts, formal demonstra-

tion of CBC cell multipotency could not be given.

Bjerknes and Cheng continued to champion the CBC cell as

the intestinal stem cell (Bjerknes and Cheng, 1999, 2002). While

observing random mutagenesis, they noted both long-lived and

short-lived clones of marked cells. Only the long-lived clones

comprising all four major cell lineages consistently included

a marked CBC cell. This was interpreted as further, yet still indi-

rect, evidence for CBC cells as the self-renewing, multipotent

stem cells. The stem cell zone model (Bjerknes and Cheng,

1981a, 1981b, 1999) states that the CBC stem cells reside in

a stem-cell-permissive environment. These cycling stem cells

regularly generate progeny, which subsequently exit the niche

and pass through the ‘‘common origin of differentiation’’ around

position +5, where they commit toward the various individual

lineages. Progenitors mature as they migrate upward onto the

villus. Maturing Paneth cell progenitors migrate downward,

with the oldest Paneth cells residing at the very base of the crypt.

The +4model was originally proposed when early cell tracking

experiments predicted a common cell origin at position 4–5,

directly above the differentiated Paneth cell compartment (Cair-

nie et al., 1965). Potten and colleagues then reported that radia-

tion-sensitive, label-retaining cells (LRCs) reside immediately

above the uppermost Paneth cell, at positions ranging from +2

to +7, but on average at +4 (Potten, 1977). The sensitivity to

radiation was proposed to be beneficial for stem cells, prevent-

ing the accumulation of deleterious genome changes. Retention

of DNA labels is widely considered as a reliable surrogate stem

cell trait, indicative of quiescence under physiological condi-

tions. Unknown to many in the field, however, Potten reported

that the label-retaining +4 cells were actively proliferating with

a cell cycle time of 24 hr (comparable to that of CBC cells). In Pot-

ten’s words, ‘‘In a mouse, it divides approximately once a day,
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probably under the influence of circadian

factors, and hence during the animal’s full

potential life span (e.g., in a laboratory)

may undergo a thousand cell divisions’’

(Marshman et al., 2002). The LRC pheno-

type was instead proposed to result from

asymmetric segregation of old (labeled)

and new (unlabelled) DNA strands into

stem cells and their daughters, respec-

tively (Potten et al., 2009). This ‘‘immortal

strand’’ phenomenon (Cairns, 1975)

would protect the stem cell genome

from accumulating mutations. No direct

evidence for stemness of the +4 cell was

put forward until 2008.

Acceleration in Intestinal Stem Cell
Discovery
Markers for CBC Cells

A multitude of markers for the putative

adult stem cell populations has been
proposed, but most are not supported by direct evidence for

stemness as assessed by transplantation or lineage tracing

(Table 1). Instead, many studies have relied on positional infor-

mation of marker expression alone, instigating some confusion

and controversy in the ISC field.

The first marker to be discussed here is Lgr5, a specific CBC

cell marker. The Lgr5 gene is controlled by Wnt signals (van de

Wetering et al., 2002; van der Flier et al., 2007) and itself encodes

a facultative component of the Wnt receptor complex (Carmon

et al., 2012; de Lau et al., 2011). Lgr5 is a 7TM protein, acting

as the receptor for a small family of Wnt pathway agonists called

R-spondins (Carmon et al., 2011; de Lau et al., 2011; Glinka

et al., 2011).

The generation of an Lgr5-EGFP-ires-CreERT2/Rosa26RlacZ

mouse model allowed visualization of live CBC cells, as well as

their in vivo lineage tracing (Barker et al., 2007). Lgr5+ cells are

highly uniform in morphology, invariably touch Paneth cells,

and uniformly divide each day. They do not retain DNA labels

(Escobar et al., 2011; Schepers et al., 2011). Each crypt harbors

around 15 of these cells, some 10%ofwhich occupy the +4 posi-

tion. One day after stochastic induction of Lgr5 locus-controlled

Cre activity by tamoxifen, lacZ was observed in isolated CBC

cells. At later time points, lacZ staining revealed clonal ribbons

extending from crypt base to villus tip. These ribbons persisted

throughout life and contained all cell lineages, demonstrating

longevity and multipotency of the Lgr5+ CBC cells. Lgr5+ cells

at the base of the colonic crypts were also identified as adult

stem cells (Barker et al., 2007, 2008b).

Gene expression and proteome profiling of FACS-sorted Lgr5-

EGFP cells has revealed an Lgr5 stem cell ‘‘signature’’ (Muñoz

et al., 2012; van der Flier et al., 2007). Follow-up research on

several of the signature genes has shown how these genes

contribute to stemness. Genetic ablation or overexpression of
, October 5, 2012 ª2012 Elsevier Inc. 453



Figure 2. A Closer Look at the Human CBC Stem Cells
CBC stem cells (black arrows) are readily identifiable as slender cells with large
basal nuclei and luminal microvilli. Note the intimate association with the
Paneth cells (red arrows), which supply many of the niche factors.
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Ascl2 expression in vivo results in rapid stem cell death, or in

dramatic expansion of the stem cell compartment, respectively,

identifying Ascl2 as a master regulator of the CBC stem cell (van

der Flier et al., 2009b). Another gene in this signature, Smoc2,

has been used to create a lineage tracing allele with equivalent

results (Muñoz et al., 2012). In addition, OlfM4 has emerged

as a robust marker of Lgr5+ cells (van der Flier et al., 2009a).

Rnf34 and Znrf3 are stem-cell-specific transmembrane E3

ligases that remove Frizzleds from the cell surface (Hao et al.,

2012; Koo et al., 2012). Their induced deletion results in ade-

nomas comprising rapidly expanding stem/Paneth compart-

ments, indicating that these proteins serve to restrict the stem

cell zone by decreasing Wnt signal strength.

Lgr5+ cells isolated from the small intestine, colon, or stomach

can form organoids in long-term culture (Barker et al., 2010b;

Sato et al., 2009). An essential component of these cultures is

R-spondin, which (as recently unveiled) is the ligand of Lgr5.

These epithelial organoids faithfully recapitulate many features

of normal gut epithelium, including crypts with resident Lgr5+

cells and Paneth cells, and villus domains with mature epithelial

cells of all lineages. Using these culture systems, it was demon-

strated that thePaneth cells provide EGF,Wnt, andNotch signals

to the stem cells and thus constitute an important part of the

stem cell niche, at least in vitro (Durand et al., 2012; Sato et al.,

2011). Clonal organoids, expanded from a single Lgr5+ cell

from an adult mouse colon, have been used for transplantation

into multiple recipient mice in which epithelial damage had

been induced by DSS treatment. Grafts were healthy and func-

tional for at least 6 months after transplantation (Yui et al., 2012).
454 Cell Stem Cell 11, October 5, 2012 ª2012 Elsevier Inc.
Musashi-1 (He et al., 2007) and Prominin1 (Zhu et al., 2009)

also mark CBC cells, but their expression may extend into the

lower TA compartment (Snippert et al., 2009). Van Oudenaarden

and colleagues recently developed multicolor-fluorescent in situ

hybridization for single mRNA molecules, which allows the

simultaneous, quantitative measurement of three mRNAs in

individual cells in histological sections. They applied this to

a series of CBC and +4 cell markers (Itzkovitz et al., 2012; Muñoz

et al., 2012). These studies confirm the CBC-specific expression

pattern of Lgr5 and Ascl2 (Mash2) and reveal a somewhat

broader expression for OlfM4 and Musashi-1.

The ability of the intestine to survive the acute loss of its active

stem cell pool may in fact relate to the general plasticity of the TA

progenitor compartment, with the earliest TA cell generations

harboring the capacity to fall back into the stem cell niche and

quickly assume stem cell functions as originally proposed both

by Leblond (Cheng and Leblond, 1974) and Potten (Potten,

1977) (Figure 3). Indeed, the Lgr5+ stem cell phenotype appears

to be by nomeans hard-wired. The stem cell zonemodel already

proposed that, during their upward migration, CBC stem cells

would only gradually lose their self-renewal capacity. In vitro,

Lgr5� crypt cells can be turned into organoid-forming Lgr5+

cells by a brief pulse of Wnt3A (Sato et al., 2011). In another

example of such plasticity, Dll1 was recently shown to mark an

early daughter of Lgr5+ stem cells residing around position +5,

corresponding to the ‘‘common origin of differentiation’’ of

Bjerknes and Cheng (van Es et al., 2012). Lineage tracing using

CreERT2 expressed from the Dll1 locus showed that these

Dll1+ cells represent short-lived progenitors that, under physio-

logical conditions, produce small, mixed clones of secretory

cells. However, when Lgr5+ cells are killed by radiation 1 day

after induction of Dll1 lineage tracing, these Dll1+ secretory

progenitors readily revert to Lgr5+ stem cells during the regener-

ation process.

A recent study applied an elegant strategy to inducibly kill

Lgr5+ cells through transgenic expression of the receptor for

diphtheria toxin from the Lgr5 locus (Tian et al., 2011). Upon

injection of diphtheria toxin, the Lgr5+ cells die, yet remarkably,

the crypts remain intact for at least 1 week (after which the

animals succumb to liver-related pathology), implying that the

self-renewal process can be maintained in the absence of

Lgr5+ cells over this period. As soon as the toxin injections are

stopped, Lgr5+ cells reappear. Using lineage tracing from the

Bmi1 locus, it was shown that these new CBC cells derive

from Bmi1+ cells, suggestive of a stem cell hierarchy (Tian

et al., 2011). In a comment subsequently added to this study,

the authors report that they observe proliferation at the crypt

base in non-Lgr5+ cells 24 hr after toxin treatment. They hypoth-

esize that, ‘‘...the observed proliferation is due to the Transiently

Amplifying compartment collapsing to the bottom of the

crypts’’ (http://www.nature.com/nature/journal/v478/n7368/full/

nature10408.html).

To summarize, the CBC cell is long-lived and multipotent, as

demonstrated by lineage tracing, by culture, and by transplanta-

tion. It is readily identified by its unique morphology and loca-

tion (which includes the +4 position), and by the expression of

markers such as Lgr5, Ascl2, OlfM4, and Smoc2. It can be

cultured and transplanted at the clonal level. Importantly, the

Lgr5+ CBC phenotype appears not to be hard-wired, but is

http://www.nature.com/nature/journal/v478/n7368/full/nature10408.html
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Table 1. An Overview of the Strengths and Weaknesses of Current +4 Markers

Marker Reporter Gene Expression

Reported Population

Characteristics Supporting Evidence Conflicting Evidence

Bmi1 (Sangiorgi and

Capecchi, 2008; Yan

et al., 2012)

proximal SI; predominantly

at +4 position; minimal

overlap with Lgr5+ CBC cells

retain DNA labels as

consequence of relative

quiescence (<2%

proliferating); radiation

resistant; induced to

proliferate upon damage

(20-fold); Wnt-independent;

independent reserve stem

cells

Bmi1-CreER-driven in vivo

lineage tracing originates

exclusively at +4 position;

increased proliferation and

frequency of lineage tracing

following injury; Bmi1-driven

lineage tracing observed

following Lgr5+ stem cell

ablation; Bmi1+ve cells can

generate intestinal organoids

ex vivo

enriched in sorted Lgr5+

stem cells + TA progeny;

endogenous expression

throughout crypt (via FISH

and IHC); original lineage

tracing data

nonreproducible: Bmi1-

driven tracing events

originate at random

throughout the crypt

Hopx (Takeda

et al., 2011)

entire SI + colon;

predominantly around +4

position

retain DNA labels as

consequence of relative

quiescence; coexpress high

levels of other +4 genes,

including Bmi1 and mTERT;

interconversion observed

between Lgr5+ve CBC and

Hopx stem cells;

independent reserve stem

population?

Hopx-CreER-driven in vivo

lineage tracing originates

at +4 position; single

Hopx+ve cells typically

remain quiescent in ex vivo

culture; Hopx+ cells are

phenotypically distinct from

Lgr5+ stem cells; early

progeny express CBC stem

cell marker genes

(Lgr5 and OlfM4)

Hopx expression enriched in

sorted Lgr5+ stem cells + TA

progeny; endogenous

expression present

throughout CBC stem cell

zone and TA compartment

(via FISH and IHC)

mTERT (Montgomery

et al., 2011)

entire SI; predominantly

located at +4 position; no

expression detectable in

majority of crypts

typically quiescent (<6%

proliferating); radiation

resistant; phenotypically

distinct from both Lgr5+

stem cells and other

purported +4 stem cell

populations

mTERT-CreER-driven in vivo

lineage tracing originates

at +4 position; mTERT+

cells contribute to crypt

regeneration in vivo; do not

express Lgr5; do not

coexpress other +4 markers

(with exception of Bmi1,

which was found to be

expressed in both mTERT+

and mTERT� cells)

mTERT expression enriched

in sorted Lgr5+ stem cells;

also expressed in TA

progeny; endogenous

expression present

throughout CBC stem cell

zone and TA compartment

(via FISH)

Lrig1

(Powell et al., 2012)

entire SI and colon;

predominantly localized to

crypt base (+1 to +5;

excluding Paneth cells)

typically quiescent; radiation

resistant; stimulated to

proliferate following injury;

independent from Lgr5+

CBC cells; independent

from +4 populations?

Lrig1-CreER-driven in vivo

lineage tracing originates at

crypt base; increased

proliferation and frequency

of lineage tracing following

injury; limited physical

overlap with Lgr5-EGFP+

cells (yet demonstrate 3-fold

enrichment of Lgr5 by

microarray); no enrichment

of other +4 markers (using

mAb to isolate Lrig+ cells)

endogenous transcripts

detected throughout crypts

(via FISH); expression

enriched in Lgr5+ stem cells

and progeny via microarray;

contradictory observations

re. Lrig1+ IHC profile (due to

different mAbs employed?);

conflicting conclusions re.

proliferation status of Lrig1+

cells: methodology issues?

Lrig1

(Wong et al., 2012)

entire SI and colon;

expression gradient,

with highest levels in

Lgr5+ CBC compartment

typically proliferating;

overlaps with, but is not

restricted to the Lgr5+ stem

cell compartment

both microarray and IHC

analysis reveal expression

gradient, with highest levels

in Lgr5+ CBC compartment;

no label retention observed

in pulse-chase experiments

conflicting conclusions re.

proliferation status of Lrig1+

cells: methodology issues?
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readily inducible by Wnt signaling in vitro. In vivo, TA cells can

revert to Lgr5+ stem cells after damage, presumably by direct

contact with Paneth cells.

Markers of + 4 Cells

The original definition by Chris Potten of an LRC located primarily

(although not exclusively) at the +4 position has prompted the
quest for a ‘‘reserve’’ stem cell (Li and Clevers, 2010). Early

studies, discussed below, have focused on +4 position-specific

markers in conjunction with DNA-label retention.

Phospho-PTEN is reportedly enriched on LRCs located at

crypt position +4/+5 (He et al., 2004, 2007). An independent

study cast doubt on the validity of this putative +4 stem cell
Cell Stem Cell 11, October 5, 2012 ª2012 Elsevier Inc. 455



Figure 3. Crypt Regeneration following
Injury: Reserve Stem Cells versus Plasticity
CBC stem cells rapidly die following acute injury
such as irradiation. Crypt survival/regeneration
may result from either reactivation of a quiescent
Lgr5-ve (+4) stem cell population (upper panel)
or from dedifferentiation of non-stem cells to
generate new CBC stem cells (lower panel).
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marker by pointing out that the antibody crossreacts with rare

enteroendocrine cells in crypts (Bjerknes and Cheng, 2005).

The Wip1 phosphatase was proposed as another marker for

the +4 cell (Demidov et al., 2007). Although Wip1+ cells were

most commonly found at position +4, they also occurred within

the CBC compartment. Depletion by apoptosis of these Wip1+

cells was observed in Wip1 knockout mice, but this had no detri-

mental effect on epithelial homeostasis. Other +4 markers iden-

tified solely on the basis of location include Sox4 (van der Flier

et al., 2007), sFRP5 (Gregorieff et al., 2005), and DCAMKL-1

(Giannakis et al., 2006). The latter protein is a microtubule-asso-

ciated kinase that was originally identified in the developing

brain. Immunohistochemistry (IHC) revealed the presence of

rare, nonproliferating DCAMKL-1 cells around position +4. These

cells were negative for all known markers of differentiated cells,

prompting the authors to identify them as likely +4 stem cells.

Independent studies by May and colleagues confirmed the +4

localization, but also noted DCAMKL-1+ cells on villi (May

et al., 2008, 2009). Jay and colleagues subsequently provided

definitive evidence that DCAMKL1+ cells were not stem cells,

but postmitotic Tuft cells, equally distributed along the crypt-

villus axis (Gerbe et al., 2009); (Bezençon et al., 2008).

From these studies, it became evident that the quest for reli-

able markers for +4 stem cells should go beyond specific stain-

ing patterns, or DNA-label retention. The first +4 stem cell marker

investigated by lineage tracing was Bmi1 (Sangiorgi and Capec-

chi, 2008) (Figure 4). The Bmi1 gene encodes a component of a

Polycomb transcriptional repressor complex, proposed to regu-

late self-renewal of neural and hematopoietic progenitors. By

mRNA in situ hybridization, Bmi1 was found to mark rare cells

at the +4 cell position uniquely in the proximal small intestine.

In vivo lineage tracing using a Bmi1-ires-CreER/Rosa26RlacZ

mouse model yielded ribbons under noninjury conditions that

resembled those obtained in the Lgr5 model. Moreover, ablation

of the Bmi1-Cre+ population using targeted expression of dip-

theria toxin caused crypt death, consistent with loss of the

stem cell compartment. A follow-up study confirmed the notion
456 Cell Stem Cell 11, October 5, 2012 ª2012 Elsevier Inc.
that the Bmi1+ population is distinct

from the Lgr5+ population in being highly

radiation-resistant and quiescent, yet ac-

tivated upon damage (Yan et al., 2012).

The latter study supports a model in

which Lgr5+ cells facilitate homeostatic

self-renewal, whereas Bmi1+ cells medi-

ate injury-induced regeneration (Yan

et al., 2012).

Thus, Bmi1-based lineage tracing

clearly yields ‘‘signature’’ stem cell trac-

ings, but how specific is Bmi1 expression

for rare cells located at the +4 position?
We have noted robust expression of Bmi1 mRNA in sorted

Lgr5+ stem cells (Muñoz et al., 2012; van der Flier et al.,

2009b), a finding independently confirmed by Breault and

colleagues (Montgomery et al., 2011) and Coffey and colleagues

(Powell et al., 2012). Using the single mRNA molecule FISH

approach, Bmi1 was found to be broadly expressed at roughly

equal levels by all proliferative crypt cells, including the Lgr5+

CBC cells (Itzkovitz et al., 2012) (Figure 4). Staining for Bmi1

protein, using a Bmi1 knockout as a control, confirmed this

broad expression pattern (Muñoz et al., 2012). Takeda et al.

(2011) in their study on Hopx presented similar results for Bmi1

protein expression. De Sauvage and colleagues have quantified

at which cell positions Bmi1 tracing initiates. In contrast to the

original report (Sangiorgi and Capecchi, 2008), these authors

found that tracing can initiate anywhere in the crypt, including

rather frequently in Lgr5+ cells (Tian et al., 2011). In a repeat of

the original Bmi1 tracing experiment (Sangiorgi and Capecchi,

2008), we have confirmed that Bmi1-CreER tracings can initiate

in Lgr5+ cells, but we additionally document that most tracing

events initiate in TA cells that are ‘‘washed out’’ within days of

tracing initiation (Muñoz et al., 2012). Collectively, these studies

would indicate that Bmi1 is not a specificmarker for a +4 cell, but

is broadly expressed in crypts. If true, Bmi1-based lineage

tracing therefore would not report unique characteristics of

a quiescent +4 cell. Rather, it reports a combination of behaviors

of Lgr5 stem cells, TA cells, and, potentially, a quiescent stem

cell type. As an additional complication, the Dll1+ secretory

progenitor cell that can revert to Lgr5+ stem cells upon damage

also expresses Bmi1 (van Es et al., 2012). Thus, the contribu-

tion of quiescent stem cells to the complex pattern of Bmi1-

controlled lineage tracing during homeostatic self-renewal (San-

giorgi and Capecchi, 2008) or upon damage (Yan et al., 2012)

would not be easily discernable.

High telomerase levels may be a general feature of adult stem

cells. Breault and colleagues reported rare cells (1 in about 150

crypts) expressing GFP from anmTert promoter-GFP transgene.

Seventeen percent of these Tert-GFP+ cells were LRCs (Breault



Figure 4. The +4 Stem Cells of the Small Intestine: A Current Perspective
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et al., 2008). A follow-up study showed that mTert expression

marks a radiation-resistant ISC population distinct from Lgr5+

cells (Montgomery et al., 2011). Using an mTert-CreER allele in

a lineage tracing experiment, the mTert+ cells were found to

generate all differentiated intestinal cell types as well as Lgr5+

stem cells. The quiescent mTert+ cells could be activated by

damage. Thus, the mTert transgene alleles mark a very rare,

quiescent, and radiation-resistant stem cell.

It is not intuitively clear why a quiescent cell, and not the

cycling crypt cells, would express mTert. We have observed

significant levels of active telomerase in all proliferative crypt

cells, with the highest activity in Lgr5+ cells (Schepers et al.,

2011). Similar results were obtained by single mRNA molecule

FISH (Itzkovitz et al., 2012). An explanation for this discrepancy

could be that the mTert transgenes fortuitously mark stem cells,

but do not report the much broader endogenous mTert expres-

sion pattern. Alternatively, the mTert-GFP+ cells may express

unusually high mTert levels. Such very rare cells (<1 per 150

crypts) could be missed in the FACS or FISH approach of the

latter studies.

Hopx

Epstein and colleagues propose Hopx, an atypical homeobox

protein, as a marker of +4 cells (Takeda et al., 2011). A Hopx

LacZ knockin allele is expressed along the entire intestinal tract

with strongest expression in the +4 position, and the majority of

these were LRCs. Upon lineage tracing using a novel Hopx

CreER allele, initiating events were preferentially seen around

the +4 position and resulted in long-lived signature stem cell

tracings. The study provided compelling evidence that Hopx+
cells can yield Lgr5+ cells and vice versa, leading to the notion

that the two populations represent slow-cycling and fast-cycling

stem cell populations that are interconnected. In contrast to this

study, our Lgr5 gene signature, confirmed by single RNA mole-

cule FISH analysis, implies that Hopx is expressed in a broad

gradient with highest Hopx levels occurring in Lgr5+ cells (Muñoz

et al., 2012). Of note, Coffey and colleagues also report high

Hopx expression levels in sorted Lgr5+ cells (Powell et al., 2012).

Lrig1

Lrig1 is a transmembrane molecule that acts as a pan-ErbB

inhibitor. Two recent papers on Lrig1 report conflicting expres-

sion data (Powell et al., 2012; Wong et al., 2012). Coffey and

colleagues have generated an Lrig1-CreERT2 allele (Powell

et al., 2012). Lineage tracing initiated in the bottom one-third of

crypts along the entire length of the intestinal tract and yielded

signature stem cell ribbons by 7 days in small intestine and

colon. Lrig1+ cells are at least as frequent as Lgr5-GFP+ cells,

yet although these cells occupied the same positions (1–5) in

crypts, little if any overlap was seen between Lrig1 expression

and Lgr5-GFP in the colon. Around 20% of the Lrig1+ cells

were LRCs, whereas around 25% were KI67+. The authors

noted that a low percentage of crypts (8%) after long-term

tracing contained a single LacZ+ cell. These noncycling cells

became proliferative upon irradiation. Microarray profiling re-

vealed that sorted Lrig1+ as well as Lgr5+ cells from colon ex-

pressed the CBC marker Prominin/CD133 and the +4 markers

mTert and Bmi1. Another proposed marker for quiescent +4

cells, Hopx, was expressed at 2-fold higher levels in Lgr5+ cells

than in Lrig1+ cells. Lgr5+ cells showed an active cell cycle gene
Cell Stem Cell 11, October 5, 2012 ª2012 Elsevier Inc. 457
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signature, whereas the Lrig1+ population showed signs of being

‘‘in the process of downregulating the cell cycle.’’

While Lgr5 was 20-fold enriched in the Lgr5+ cells versus Lrig1

cells, Lrig1 was also 3-fold enriched in Lgr5+ versus Lrig1+ cells.

The latter observation appears paradoxical, but can be explained

by the notion that Lgr5+ cells are contained within the Lrig1+

population and represent the highest Lrig1 expressors within

this population. Indeed, Kim Jensen and coworkers report that

approximately one-third of all crypt cells express Lrig1with high-

est levels in the Lgr5+ stem cells (Wong et al., 2012). Our Lgr5

gene signature as well as the single mRNA molecule FISH have

confirmed that Lrig1 is expressed in a broad gradientwith highest

Lrig1 levels occurring in Lgr5+ cells (Muñoz et al., 2012).

To summarize, four markers are now available for the study of

the +4 cell (Figure 4). The original studies on these markers have

in common that the marked cells have features of quiescence/

LRCs and are preferentially located at Potten’s +4 position. An

important aspect in the definition of the+4markers has been their

shared propensity to identify cells that are distinct from the Lgr5+

CBC cells. Together, these observations have led to the percep-

tion of the +4 cell as a homogeneous stem cell class, identifiable

by label retention, location, and multiple molecular markers.

However, direct comparison of the description of +4 cells

between the original studies reveals three major differences

that have not been emphasized previously. (1) The recent

marker-supported studies on the +4 cell do not recognize that

in the original description of Potten, the +4 cell is extremely radi-

ation-sensitive and cycles every 24 hr. The Potten +4 cell

appears therefore to be of a separate class, not to be confused

with the more recent ‘‘marker-identified’’ +4 cells. (2) The fre-

quency of +4 cells as identified by the different markers is very

divergent. The Tert+ cell occurs in 1 in every 150 crypts (Mont-

gomery et al., 2011), while the Lrig1+ cell is more frequent than

the Lgr5+ CBC cell (of note, there are 15 CBC cells in each crypt)

(Powell et al., 2012), a difference of >2,250-fold. (3) Location

along the intestinal tract differs; Bmi1+ cells are confined to

the proximal small intestine (Sangiorgi and Capecchi, 2008),

while Lrig1+ cells are found along the entire length of the intes-

tine (Powell et al., 2012).

Full molecular signatures for each of the four +4 cell classes

could shed light on their relatedness and on their relation to

Lgr5+ CBC cells. So far, microarray expression profiling has

been performed for Lrig1+ cells in comparison to Lgr5+ cells (Po-

well et al., 2012). This study reveals that Hopx is significantly en-

riched in Lgr5+ cells relative to Lrig1+ cells, whereas Bmi1 and

Tert are expressed to somewhat higher levels in Lgr5+ cells

than in Lrig1+ cells. While this study emphasizes that the +4

markers appear not to define a single class of cells, it also under-

scores that all four +4 markers show very significant expression

in Lgr5+ cells.

Pitfalls
It is clear from the examples given above that the definitive iden-

tification of stem cells by unique markers is less straightforward

than it may appear. A number of considerations and pitfalls are

listed below.

The mere expression of a marker at a specific location is not

sufficient to establish a marker and a new stem cell type. The
458 Cell Stem Cell 11, October 5, 2012 ª2012 Elsevier Inc.
evidence should always involve lineage tracing, for which the

gut is ideally suited given its architecture.

DNA-label retention is not restricted to quiescent stem cells,

but is also a hallmark of postmitotic cells. Examples of the

latter are Paneth cells, enteroendocrine cells, and tuft

cells. Because tuft cells and enteroendocrine cells are rare

and do occur in crypts, they can easily be mistaken for LRC

stem cells.

Marker expression should be very carefully evaluated. Pitfalls

are myriad. The use of antibody staining on gut sections is

notorious for its propensity to yield false positive signals on

any of the (rare) secretory cell types in the gut. This problem

can be easily circumvented by showing images of the entire

crypt-villus axis and by showing multiple crypts in the same

image. A very good control for in situ hybridization or IHC is

the side-by-side analysis of WT and knockout tissue. Exam-

ples are available for Bmi1 (Muñoz et al., 2012) and Lrig1

(Wong et al., 2012).

Given that a series of markers have now been proposed,

this should facilitate the determination and comparison of

genome-wide expression signatures by microarray analyses

of purified marker+ populations. This has now been done

for Lgr5 and for Lrig1 (Muñoz et al., 2012; Powell et al.,

2012; Wong et al., 2012).

Multicolor single mRNA FISH appears to be an excellent

method for analyzing coexpression of candidate genes at

the single cell level, as is the single cell PCR-based approach

of Clarke (Guo et al., 2010; Itzkovitz et al., 2012).

In lineage tracing, it is of paramount importance to ensure that

the site of tracing initiation is very carefully mapped, as dis-

cussed above for CD133 (Zhu et al., 2009 versus Snippert

et al., 2009) and Bmi1 (Sangiorgi and Capecchi, 2008 versus

Muñoz et al., 2012; Tian et al., 2011).

We have realized that recombinant alleles or transgenes are

often mosaically expressed between groups of crypts, while

expression is most consistent in the proximal small intestine.

It appears that the Bmi1 alleles (Sangiorgi and Capecchi,

2008) are subject to this phenomenon, as may be the

mTert-CreER allele (Montgomery et al., 2011). Our original

Lgr5 allele is similarly silenced in the majority of distal small

intestinal and colon crypts. When sorting Lgr5-GFP� frac-

tions from these Lgr5-knockin mice, these fractions will

contain large numbers of genuine CBC cells in which the re-

combinant Lgr5 allele is silenced. We have circumvented this

in the past by sorting and comparing Lgr5-GFPhi stem cells

and Lgr5-GFPlo daughters. Our Lgr5-LacZ mice (Barker

et al., 2007) and the Lgr5 knockinmice generated by de Sauv-

age and colleagues (Tian et al., 2011) do not display this

problem.

Epilogue
While our view is undoubtedly biased toward Leblond’s CBC

cells, we feel that the verdict is still out as to the existence of

a reserve +4 cell (or of several classes of such cells). As dis-

cussed above, several independent studies report that the +4

markers are robustly expressed by Lgr5+ CBC stem cells. If

true, this complicates the interpretation of lineage tracing exper-

iments based on these markers, because such lineage tracing

can neither prove nor disprove definitively the existence of an



Cell Stem Cell

Perspective
Lgr5� +4 stem cell. In the absence of a unique +4 marker (or

combinations of markers), neither a head-to-head comparison

to the CBC cell nor definitive lineage tracing or transplantation

can be performed.

Multi-isotope imaging mass spectrometry (Steinhauser et al.,

2012) has been used very recently to search for label-retaining

cells in the small intestine. No long-term label-retaining cells

other than Paneth cells were found by this exquisitely sensitive

assay. Of course, if stem cells would be slowly cycling, rather

than be deeply quiescent, these would be missed by this

approach.

The definitive demonstration of a quiescent stem cell, distinct

from the CBC cell, may exploit strategies that lean on the elegant

H2B-GFP in vivo chromatin-label retention approach of Fuchs

and colleagues (Tumbar et al., 2004). Such a study was recently

conducted by Fodde and colleagues (Roth et al., 2012), who

characterize small intestinal LRCs persisting for up to 100 days.

These LRCs are postmitotic and are positive for Paneth cell

markers, yet can switch to a proliferative state upon tissue

injury. Possibly, the distinction between differentiated cells and

quiescent stem cells is less absolute than generally believed.
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