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We report a measurement of the cross section of single top-quark production in the t-channel using
1.04 fb−1 of pp collision data at

√
s = 7 TeV recorded with the ATLAS detector at the LHC. Selected

events feature one electron or muon, missing transverse momentum, and two or three jets, exactly one
of them identified as originating from a b quark. The cross section is measured by fitting the distribution
of a multivariate discriminant constructed with a neural network, yielding σt = 83±4 (stat.)+20

−19 (syst.) pb,
which is in good agreement with the prediction of the Standard Model. Using the ratio of the measured to
the theoretically predicted cross section and assuming that the top-quark-related CKM matrix elements
obey the relation |Vtb| � |Vts|, |Vtd|, the coupling strength at the W -t-b vertex is determined to be
|Vtb| = 1.13+0.14

−0.13. If it is assumed that |Vtb| � 1 a lower limit of |Vtb| > 0.75 is obtained at the 95%
confidence level.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

At hadron colliders top quarks are predominantly produced in
pairs (top–antitop) via the flavour-conserving strong interaction.
Alternative production modes proceed via the weak interaction in-
volving a W -t-b vertex, leading to a single top-quark intermediate
state. Three subprocesses contribute to single top-quark produc-
tion: the exchange of a virtual W boson in the t-channel, or in the
s-channel, and the associated production of a top quark and an on-
shell W boson. The process with the highest cross section at the
Tevatron and at the LHC is the t-channel mode q + b → q′ + t .

In 2009, single top-quark production was observed by the CDF
[1] and DØ [2] Collaborations based on analyses counting the t-
channel and s-channel processes as signal. The observation of the
t-channel production mode has also been recently reported by
DØ [3], while the CMS Collaboration has published evidence of this
process at the LHC [4].

The single top-quark final state provides a direct probe of
the W -t-b coupling and is sensitive to many models of new
physics [5]. The measurement of the production cross section con-
strains the absolute value of the quark-mixing matrix element Vtb
[6,7] without assumptions about the number of quark generations
(see Ref. [8] for a recent measurement from the DØ Collaboration).
Alternatively, it allows the b-quark parton distribution function
(PDF) to be measured.

At the LHC, colliding protons at
√

s = 7 TeV, the sum of t and
t̄ cross sections is predicted to be: σt = 64.6+2.7

−2.0 pb [9] for the

✩ © CERN for the benefit of the ATLAS Collaboration.
� E-mail address: atlas.publications@cern.ch.

leading t-channel process, σW t = 15.7 ± 1.1 pb [10] for W t associ-
ated production, and σs = 4.6 ± 0.2 pb [11] for the s-channel. The
analyses presented in this Letter consider only the t-channel pro-
cess as signal, while the other two single top-quark processes are
treated as backgrounds, assuming the Standard Model (SM) theo-
retical cross sections for these processes.

The W boson from the top-quark decay is reconstructed in its
leptonic decay modes eν , μν or τν , where the τ decays leptoni-
cally. Thus, selected events contain one charged lepton candidate,
e or μ; two or three hadronic high-pT jets; and missing transverse
momentum Emiss

T . Two jets are expected from the leading-order
(LO) process, while a third jet may arise from higher-order pro-
cesses. Exactly one of the jets is required to be identified as origi-
nating from a b-quark.

The measurement of σt is based on a fit to a multivariate
discriminant constructed with a neural network (NN) to separate
signal from background and the result is cross-checked using a cut-
based method, which additionally provides a breakdown for the t
and t̄ cross sections.

2. Data and simulated event samples

The analyses described in this Letter use proton–proton LHC
collision data at a centre-of-mass energy of 7 TeV collected with
the ATLAS detector [12] between March and June 2011. The se-
lected events were recorded based on single electron and muon
triggers. Stringent detector and data quality requirements are
applied, resulting in a data set corresponding to an integrated lu-
minosity of 1.04 ± 0.04 fb−1 [13,14].

Samples of simulated events for all three single top-quark pro-
cesses are produced with the AcerMC program (version 3.7) [15]

0370-2693/ © 2012 CERN. Published by Elsevier B.V. All rights reserved.
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using MRST 2007LO∗ parton distribution functions (PDFs) [16]. The
computation of the t-channel single top-quark process in AcerMC

incorporates the q + b → q′ + t and q + g → q′ + t + b̄ subpro-
cesses and features an automated procedure to remove the overlap
in phase space between them [17]. Samples of the top-quark pair
(tt̄) process are generated using MC@NLO (version 3.41) [18], with
the CTEQ6.6 set of PDFs [19]. The top-quark mass is assumed to
be 172.5 GeV. Generator default values of 0.999105 and 0.999152
are used for |Vtb| to produce the AcerMC and MC@NLO samples,
respectively. At higher orders in perturbation theory, interference
effects between the single-top W t channel and tt̄ processes oc-
cur, but are found to be small [20] and can therefore be safely
neglected. The ALPGEN leading-order generator (version 2.13) [21]
and the CTEQ6L1 set of PDFs [19] are used to generate W + jets,
W bb̄, W cc̄, W c and Z + jets events with up to five additional par-
tons. To remove overlaps between the n and n + 1 parton samples
the “MLM” matching scheme [21] is used. The double counting be-
tween the inclusive W +n parton samples and samples with asso-
ciated heavy-quark pair-production is removed utilising an overlap
removal based on a �R = √

(�η)2 + (�φ)2 matching.1 The dibo-
son processes W W , W Z and Z Z are generated using HERWIG
(version 6.5.20) [22]. For all single top-quark samples the hadro-
nisation is performed by PYTHIA (version 6.4.25) [23]; in all other
cases HERWIG in connection with the JIMMY [24] underlying event
model (version 4.31) is used. After the event generation, all sam-
ples are passed through the full simulation of the ATLAS detector
[25] based on GEANT4 [26] and are then reconstructed using the
same procedure as for collision data. The simulation includes the
effect of multiple pp collisions per bunch crossing and is weighted
to the same distribution as observed in the data with 5.6 interac-
tions per bunch crossing on average.

3. Object definition and event selection

Electron candidates are reconstructed offline using a cluster-
based algorithm and are required to have ET > 25 GeV and |ηcl| <
2.47, where ηcl denotes the pseudorapidity of the calorimeter clus-
ter. Clusters in the transition regions between the calorimeter bar-
rel and endcaps, corresponding to 1.37 < |ηcl| < 1.52, are ignored.
High-quality electron candidates are selected using a set of cuts
[27] which include stringent requirements on the matching be-
tween the track and the calorimeter cluster. Electrons must also
be isolated: the sum of the calorimeter transverse energy within
a cone of radius �R = 0.3 (excluding the cells associated with the
electron) must be less than 15% of the electron ET, and the pT of
all tracks within the same cone radius around the electron direc-
tion, again excluding the track associated to the electron, must be
less than 10% of the electron ET.

Muon candidates are reconstructed by combining track seg-
ments found in the inner detector and in the muon spectrometer.
We only consider muon candidates that have pT > 25 GeV and
|η| < 2.5. Selected muons must additionally satisfy a series of cuts
on the number of track hits present in the various tracking sub-
detectors [28]. Muon candidates are required to be isolated using
the equivalent criteria as applied to electron candidates.

Jets are reconstructed using the anti-kt algorithm [29] with a
radius parameter of 0.4, using clusters of adjacent calorimeter cells
[30] as inputs to the jet clustering. The response of the calorime-
ter is corrected by pT- and η-dependent factors [31], which are

1 ATLAS uses a right-handed coordinate system with its origin at the nominal in-
teraction point in the centre of the detector and the z-axis along the beam direction.
The x-axis points towards the centre of the LHC ring, the y-axis points upwards. The
pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2).

applied to each jet to provide an average energy scale correction.
Jets overlapping with selected electron candidates within �R < 0.2
are removed, as in these cases the jet and the electron are very
likely to correspond to the same physics object. Only jets having
pT > 25 GeV and |η| < 4.5 are considered. Jets originating from
bottom quarks are tagged in the region |η| < 2.5 by reconstruct-
ing secondary and tertiary vertices from the tracks associated with
each jet and combining lifetime-related information with an NN
[32]. A threshold is applied to the b-tagging algorithm output cor-
responding to a b-tagging efficiency of about 57% and a light-quark
jet rejection factor (the reciprocal of the efficiency to b-tag light
quarks) of about 520 for jets in tt̄ events. The Emiss

T is calculated
using clusters of adjacent calorimeter cells and corrected for the
presence of electrons, muons, and jets [33].

Events are selected if they contain at least one good primary
vertex candidate [34] with a minimum of five associated tracks
each with pT > 400 MeV. Events containing jets failing quality cri-
teria [35] are rejected.

The event selection requires exactly one charged lepton, e or
μ, exactly two or three jets, and Emiss

T > 25 GeV. A trigger match-
ing requirement is applied where the lepton must lie within �R <

0.15 of its trigger-level object. Since the multijet background is dif-
ficult to model precisely, its contribution is additionally reduced
through a requirement on the transverse mass of the lepton–Emiss

T
system2: mT(W ) > (60 GeV − Emiss

T ) [36].
The following samples are defined for this analysis: a “b-tagged

sample” with two jets or three jets, exactly one of which is b-
tagged, and a “pretag sample” with two or three jets, without
making any b-tagging requirement. We also use a sample con-
taining exactly one b-tagged jet to estimate the W + jets flavour
composition.

4. Background estimation

A large background to the single top-quark final state comes
from QCD-produced multijet events in which either one of the
jets is misidentified as an isolated lepton or a non-prompt lepton
(for example from a b-quark semileptonic decay) appears isolated.
Other significant backgrounds originate from W -boson production
in association with jets and tt̄ production. Smaller backgrounds
come from Z + jets, W t-channel and s-channel single top-quark
production, and diboson production. These smaller backgrounds
and the tt̄ background are normalised to their theoretical pre-
dictions. For the Z + jets background the inclusive cross section
is calculated to next-to-next-to-leading order (NNLO) with FEWZ
(version from March 15, 2009) [37]. The diboson cross sections
are normalised to next-to-leading order theoretical calculations
[38]. The tt̄ cross section is normalised to the approximate NNLO-
predicted value obtained using HATHOR (version 1.2) [39].

The multijet background normalisation is obtained using a
binned maximum-likelihood fit to the Emiss

T distribution in the
data, before the application of the Emiss

T cut, using a data-derived
template for the multijet background and templates from Monte
Carlo simulation for all other processes (top quark, W /Z + jets,
dibosons). The multijet template is created using collision events
that are triggered by a single low-pT jet. Several prescaled trig-
ger streams with different pT thresholds are used for that purpose.
In the offline selection of these events the electron requirement is
replaced by a jet requirement (jet-electron model). This jet must
have pT > 25 GeV, the same acceptance in |η| as the signal elec-

2 Defined as mT(W ) =
√

(pT(
) + Emiss
T )2 − (px(
) + Emiss

x )2 − (p y(
) + Emiss
y )2,

where 
 denotes the lepton.
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Table 1
Predicted and observed event yields, after selection, in the electron and muon 2-jet and 3-jet b-tagged samples. The multijet event yields are determined with a data-driven
technique. Contributions from W + jets events are normalised to observed data in control regions as used in the cut-based analysis. The uncertainties on the multijet and
the W + jets yields are also estimated from data (see Section 6). All other backgrounds and the t-channel signal expectation are normalised to theoretical cross sections.
Uncertainties on these predictions are only reflecting the uncertainties on the theoretical cross section prediction and do not include experimental uncertainties (such as the
jet energy scale uncertainty, etc.).

Electron Muon

2-jet 3-jet 2-jet 3-jet

Single-top t-channel 447 ± 11 297 ± 7 492 ± 12 323 ± 8

tt̄, other top 785 ± 52 1700 ± 120 801 ± 53 1740 ± 130
W + light jets 350 ± 100 128 ± 56 510 ± 150 209 ± 91
W + heavy flavour jets 2600 ± 740 1100 ± 400 3130 ± 880 1270 ± 480
Z + jets, diboson 158 ± 63 96 ± 44 166 ± 61 80 ± 31
Multijet 710 ± 350 580 ± 290 440 ± 220 270 ± 140

Total expected 5050 ± 830 3900 ± 520 5530 ± 930 3900 ± 520

Data 5021 3592 5592 3915
tron, and (80–95)% of the jet energy deposited in the electromag-
netic section of the calorimeter. The last requirement ensures the
orthogonality of the jet-electron data set to the sample of events
with electron candidates which feature an electromagnetic energy
fraction larger than 95%. The jet must also contain at least four
tracks, thus reducing the contribution from converted photons.
When selecting the jet-electron sample, events containing electron
or muon candidates in addition to the jet-electron are vetoed. The
same model is also used in the muon channel. A systematic uncer-
tainty of 50% on the multijet background rates was estimated by
studying the impact of pile-up events on the fit results and by per-
forming likelihood fits on the mT(W ) distribution. The jet-electron
model is also used to model the shape of kinematic distributions
of the multijet background.

The kinematic distributions of the W + jets background, which
comprises contributions from W + heavy flavour jets (W bb̄ + jets,
W cc̄ + jets and W c + jets) and W + light jets, are taken from sam-
ples of simulated events, while the normalisation of the flavour
composition is derived from data. The NN analysis simultaneously
determines the normalisation of the W + light jets and W + heavy
flavour processes when fitting the NN discriminant distribution to
measure the t-channel single top-quark rate. The cut-based anal-
ysis derives normalisation factors for the W + jets processes us-
ing the event yields in the 1-jet b-tagged, 2-jet pretag, and 2-jet
b-tagged sample, excluding events selected by the cuts defined
in Section 5.2. Since the 2-jet b-tagged sample includes some t-
channel signal events, despite requiring that the events fail the
selection of the cut-based analysis, an uncertainty of 100% on the
expected t-channel single top-quark rate is assumed in this nor-
malisation procedure. Both estimates of the W + jets backgrounds,
the one of the NN analysis and the one of the cut-based analysis,
are in very good agreement with each other.

The predicted and observed event yields, after the application
of the selections described in Section 3, are given in Table 1, sep-
arately for the electron and muon channels, in the 2-jet and 3-jet
b-tagged samples. For the purpose of this table and the histograms
of kinematic distributions the contributions of the tt̄ , W t and s-
channel processes have been grouped together into one category
called “tt̄ , other top”. In the subsequent analysis the electron and
muon channels are combined.

5. Signal and background discrimination

To separate t-channel single top-quark signal events from back-
ground several kinematic variables are combined into one discrim-
inant by employing an NN, that also exploits correlations between
the variables. The result of the NN analysis is corroborated by a

cut-based analysis that applies additional criteria to the basic se-
lection described in Section 3.

5.1. Neural network based discriminant

The NeuroBayes [40,41] tool (version 3.3) is used for prepro-
cessing the input variables and for the training of the NN. A large
number of input variables is studied, but only the highest-ranking
variables are chosen for the training of the NN. The ranking of vari-
ables is automatically determined as part of the preprocessing step
and is independent of the training procedure. The total correlation
κ total

t of a set of variables to the target function, that assumes the
value 1 for signal and 0 for background events, is computed as a
measure of the discrimination power of these variables. In an it-
erative procedure, the variables are sorted according to the loss in
κ total

t that is induced due to their removal from the set. Consider-
ing the number of simulated events used to determine the ranking,
one can compute the significance of the information loss caused
by the removal of a certain variable. For the training of the NN we
use only variables that contribute with more than 20 (10) stan-
dard deviations to κ total

t in the 2-jet (3-jet) data set. This choice is
a compromise between the achievable discrimination power, that
increases with the number of variables, and the practical aim of
keeping the number of variables at a manageable level.

As a result of this optimisation procedure 12 kinematic vari-
ables are identified that serve as inputs to the NN in the 2-jet
data set. The most discriminating variable is the invariant mass
of the b-tagged jet, the charged lepton, and the neutrino, m(
νb),
which is an estimator for the top-quark mass for signal events.
In this calculation the transverse momentum of the neutrino is
given by the x- and y-components of the Emiss

T vector, while the
unmeasured z-component of the neutrino momentum, pz(ν), is
inferred by imposing a W -boson mass constraint on the lepton–
neutrino system. Since the constraint leads to a quadratic equation
for pz(ν), a two-fold ambiguity arises. In the case of two real so-
lutions, the one with the smaller |pz| is chosen. If the solutions
are complex, those are avoided by a kinematic fit that rescales
the neutrino px and p y such that the imaginary radical vanishes,
but keeps the transverse components of the neutrino as close as
possible to the Emiss

T . The second and third most discriminating
variables are the absolute value of the pseudorapidity of the high-
est pT untagged jet |η( ju)| and the transverse energy of the un-
tagged jet ET( ju). Other variables used by the NN in the 2-jet
data set are: the absolute value of �η between the b-tagged jet
and the reconstructed W boson |�η(b, W )|; the absolute value
of �η between the b-tagged jet and the highest pT untagged
jet |�η(b, ju)|; the transverse momentum of the charged lepton
pT(
); the scalar sum of the transverse momenta of the lepton,
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Fig. 1. Discriminating variables in the b-tagged sample for 2-jet events and 3-jet events. Multijet event yields are determined with a data-driven technique. Contributions
from W + jets events are derived from simulation and normalised to data in control regions with the method employed in the cut-based analysis. All other backgrounds
and the t-channel signal expectation are normalised to theoretical cross sections. The last histogram bin includes overflows. The figures shown are for 2-jet or 3-jet events,
respectively: (a), (e) the invariant mass of the b-tagged jet, the charged lepton, and the neutrino; (b), (f) the scalar sum of the transverse momenta of the lepton, the jets,
and Emiss

T ; (c), (g) the absolute value of the pseudorapidity of the highest pT untagged jet. For 2-jet events figure (d) shows the absolute value of �η between the b-tagged
jet and the highest pT untagged jet; and for 3-jet events figure (h) displays the invariant mass of the three selected jets.
jets, and Emiss
T , HT(
, jets, Emiss

T ); mT(W ); the pseudorapidity of the
lepton η(
); the invariant mass of the b-tagged jet m(b); Emiss

T ;
and the invariant mass of the untagged jet and the b-tagged jet
m( jub).

For events with three jets 18 variables are used, the most dis-
criminating ones being the invariant mass of the two leading jets,
m( j1 j2), m(
νb), and the absolute value of the difference in the
pseudorapidity of the leading and lowest pT jet, |�η( j1, j3)|. Fig. 1
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Fig. 2. Additional discriminating variables used in the NN analysis for 2-jet and 3-jet events. The rate of multijet events is normalised to the estimate obtained from the fit
to the Emiss

T distributions. All other component distributions are normalised to the result of the maximum-likelihood fit of the NN output. The last histogram bin includes
overflows. The figures shown are, for 2-jet events: (a) invariant mass of the highest pT untagged jet and the b-tagged jet; (b) transverse mass of the lepton-Emiss

T system;
and for 3-jet events: (c) invariant mass of the two leading jets; (d) absolute value of �η between the leading jet and the lowest pT jet.
shows distributions of some of the most discriminating variables in
the b-tagged 2-jet or 3-jet samples, used in both the NN analysis
and the cut-based analysis. The variable m( j1 j2 j3) denotes the in-
variant mass of all selected jets in the 3-jet data set. Distributions
of additional variables used only in the NN approach are shown in
Fig. 2.

The agreement between the background model and collision
data is tested in the large pretag sample for each input variable
used in the analysis, for various additional control variables, and
the NN output distributions, which are shown in Figs. 3(a) and
3(b). In this control sample, where the b-tagging algorithm has
not yet been applied, the b-tagged jet is substituted by the most
central jet, with the requirement that it is within |η| < 2.5. Good
agreement is found overall, except for the |η| distribution of the
jet with the highest |η| in the pretag data set for which an addi-
tional systematic modelling uncertainty is taken into account (see
Section 6).

The NeuroBayes tool combines a three-layer feed-forward NN
with a complex preprocessing of the input variables. By transform-
ing the variables in the preprocessing step the influence of outliers
is largely reduced and statistical fluctuations are damped. Neu-
roBayes applies Bayesian regularisation techniques for the training
process to damp statistical fluctuations in the training sample and
to avoid overtraining. A certain fraction of simulated events (20%)
is not included in the training sample and is used as an indepen-
dent test sample to check that there is no overtraining. The ratio
of signal to background events in the training is chosen to be 1:1,
while the different background processes are weighted according
to the number of expected events.

To extract the signal content of the selected sample a maxi-
mum-likelihood fit is performed to the complete NN output dis-

tributions in the 2-jet and 3-jet data sets (see Section 7). Fitting
all bins of the distribution has the advantage of making maximal
use of the signal events remaining after the event selection, and
also allows the background rates to be constrained by the data.
The sensitivity to the background rates is given by the background
dominated region close to zero. The observed NN output distribu-
tions scaled to the fit result are shown in Figs. 3(c) and 3(d) for
b-tagged events with two or three jets, respectively.

5.2. Cut-based selection

In the cut-based analysis additional selections are applied to
a subset of five variables used by the NN analysis: |η( ju)| > 2,
HT(
, jets, Emiss

T ) > 210 GeV, and 150 GeV < m(
νb) < 190 GeV.
The 2-jet selection requires |�η(b, ju)| > 1, while the 3-jet se-
lection requires that m( j1 j2 j3) is higher than 450 GeV, to further
reduce the large tt̄ contribution in this channel. The selection cuts
were chosen in order to increase the expected significance of the
t-channel single top-quark signal, taking into account systematic
uncertainties on the background estimate [42].

The positive and negative lepton-charge samples are considered
separately, as more single-top quark t-channel events are expected
in the e+/μ+ samples than in the e−/μ− samples due to the
dominance of valence u quarks in the proton over d quarks. The
2-jet and 3-jet data sets are also considered separately.

The signal and background event counts for the positive and
negative lepton-charge samples are given in Table 2. The observed
event yields are consistent with the SM expectation in each chan-
nel. Fig. 4(a) shows the distribution of the lepton charge for events
with two or three jets after the application of all cut-based se-
lections. Figs. 4(b) and 4(c) display the variable m(
νb) for 2-jet
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Fig. 3. (a) and (b) Neural network output distribution for the pretag sample, including the JES uncertainty on the prediction (hatched region). The multijet component is
normalised to the estimate obtained from the fit to the Emiss

T distributions. All other components are normalised such that the total number of expected events in the pretag
sample is equal to the observed number of events. The ratio between the data and the total predicted distributions is also shown. (c) and (d) NN output distribution for the
2-jet and 3-jet b-tagged samples, respectively. All component distributions are normalised to the result of the maximum-likelihood fit, except for the component of multijet
events that is normalised to the estimate obtained from the fit to the Emiss

T distributions.
and 3-jet events respectively after applying all selections except
for the cut on m(
νb). In these figures, the t-channel single top-
quark contribution is normalised to the observed cross section as
measured from the combination of all four channels.

6. Systematic uncertainties

Systematic uncertainties on the normalisation of the individual
backgrounds and on the signal acceptance affect the measured sin-
gle top-quark t-channel cross section. In the NN analysis the shape
of each individual prediction is also affected; both the rate and the
shape uncertainties are taken into account by generating correlated
pseudo-experiments. The impact of the systematic uncertainties on
the t-channel cross section measurement is estimated from these
pseudo-experiments. The uncertainties can be split into the follow-
ing categories:

6.1. Object modelling

Systematic uncertainties due to the residual differences be-
tween data and Monte Carlo simulation for the reconstruction and
energy calibration of jets, electrons and muons are propagated
in the analysis. The main source of object modelling uncertainty
comes from the jet energy scale (JES), including the modelling of
pile-up, as well as b-jet identification. Other components include

lepton energy scale and lepton and jet identification efficiencies.
The JES uncertainty has been evaluated using 2010 data [31]. Ad-
ditional contributions to this uncertainty due to the larger pile-up
effects in 2011 data are included and range from less than 1% to
5% as a function of jet pT and η. For b-quark jets a JES uncertainty
of 0.8% to 2.5%, depending on the jet pT, is added in quadrature to
the JES uncertainty. Scale factors, determined from collision data
[32], are applied to correct the b-tagging performance in simulated
events to match the data. Both b-jets and c-jets in simulation use
the same b-tagging scale factors with uncertainties that depend on
the pT and η of the jet. The uncertainties on the scale factors vary
from 10% to 15% for b-quark jets and from 20% to 30% for c-quark
jets. For light-quark jets the mis-tagging uncertainty ranges from
20% to 50% as a function of jet pT and η. Other minor uncertain-
ties are assigned to the reconstruction of Emiss

T and to account for
the impact of pile-up collisions on Emiss

T . Finally, a systematic un-
certainty was also assigned to account for temporary failures of
parts of the LAr calorimeter readout during part of the data-taking
period, which was not modelled in the MC samples.

6.2. Monte Carlo generators and PDFs

Systematic uncertainties arising from the modelling of the sin-
gle top-quark signal and the tt̄ background are taken into account.
The largest contributions come from the modelling of parton
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Table 2
Event yield for the 2-jet and 3-jet b-tagged positive and negative lepton-charge channels after the cut-based selection. The multijet and W + jets backgrounds are nor-
malised to observed data in control regions, all other samples are normalised to theory cross sections. Uncertainties shown include all sources of systematic errors, summed
quadratically and without taking into account possible anticorrelations between systematic sources and between processes.

Cut-based 2-jet Cut-based 3-jet

Lepton + Lepton − Lepton + Lepton −
Single-top t-channel 85 ± 29 39 ± 13 33.6 ± 7.0 14.6 ± 6.2

tt̄, other top 14.0 ± 6.4 12.8 ± 4.2 10.5 ± 4.2 10.7 ± 7.9
W + light jets 3.3 ± 1.9 2.0 ± 1.2 0.8 ± 1.3 0.3 ± 0.3
W + heavy flavour jets 39 ± 11 27.1 ± 7.5 8.7 ± 6.0 3.4 ± 3.1
Z + jets, diboson 1.1 ± 0.8 1.0 ± 0.8 0.3 ± 0.2 0.2 ± 0.3
Multijet 0.2 ± 0.2 0.3 ± 0.3 1.5 ± 1.1 3.1 ± 2.0

Total expected 143 ± 31 83 ± 16 56 ± 10 32 ± 11
S/B 1.5 0.9 1.6 1.0

Data 193 101 53 39

Fig. 4. (a) Distribution of the lepton charge after the full cut-based selection for 2-jet and 3-jet events. (b), (c) Invariant mass of the b-tagged jet, the charged lepton, and the
neutrino, m(
νb), for the b-tagged sample for 2-jet (b) and 3-jet (c) events after applying all cut-based selections except for the cut on m(
νb). In all three distributions the
t-channel single top-quark contribution is normalised to the observed cross section obtained with the cut-based analysis. The last histogram bin includes overflows.
showers and hadronisation, estimated by interchanging the mod-
elling between PYTHIA and HERWIG, and from the amount of
initial-state and final-state radiation (ISR/FSR), estimated using
dedicated AcerMC samples interfaced to PYTHIA where parameters
controlling the ISR/FSR emission are varied in a range3 consistent
with those used in the Perugia Hard/Soft tune variations [43]. The
uncertainty due to the choice of the single top-quark t-channel
signal generator is estimated from the difference between AcerMC

and MCFM predictions [44]. The modelling uncertainty for the tt̄
background is evaluated by comparing the generators MC@NLO
and POWHEG [45,46] (with HERWIG showering). For the W + jets
background a shape uncertainty is assigned based on the variation
of the choices of the matching scale and of the functional form
of the factorisation scale in ALPGEN. Systematic uncertainties re-
lated to the parton distribution functions are taken into account
for the signal and for all background processes which are mod-
elled by simulated events. In addition to the nominal PDF set the
alternative MSTW2008nlo68cl [47] and CTEQ6.6 PDF sets are in-
vestigated. Events are reweighted according to each of the PDF
uncertainty eigenvectors and the total uncertainty is evaluated fol-
lowing the procedure described in Ref. [36]. An additional uncer-
tainty is assigned for the mis-modelling of jets in the forward |η|
regions. A weight function is derived from the pretag sample by

3 The default PYTHIA values of these parameters are: PARP(67) = 4.0 and
PARP(64) = 1.0 for ISR and PARP(72) = 0.192 GeV, PARJ(82) = 1.0 GeV for FSR. To
decrease (increase) ISR, the parameters PARP(67) and PARP(64) are set to 0.5 and 4.0
(6.0 and 0.25), respectively. To decrease (increase) FSR, the parameters PARP(72) and
PARJ(82) are set to 0.096 GeV and 2.0 GeV (0.384 GeV and 0.5 GeV), respectively.
Samples of simulated events are produced with six different sets of parameters
settings: ISR increased (decreased), FSR increased (decreased), and a simultaneous
increase (decrease) of ISR and FSR.

dividing the observed |η| distribution in data by the distribution
obtained from simulated events, for 2-jet and 3-jet events. The
event weights defined in this way are then applied to all simulated
samples in the b-tagged data set. The systematic uncertainty is de-
rived from the one-sided difference between the weighted and the
nominal samples. The impact of using simulation samples of lim-
ited size is also taken into account.

6.3. Theoretical cross section normalisation

The tt̄ , single-top quark W t- and s-channel backgrounds are
normalised to their theory predictions with theoretical uncertain-
ties of +7

−10%, 7% and 4%, respectively [48,10,11]. The uncertainty on
the diboson background is 5% [38].

6.4. Background normalisation to data

The multijet background estimate has an uncertainty of 50%.
The NN analysis places an uncertainty of 50% on the rate of events
with W + heavy flavour jets and 30% on the rate of W + light jets
events. These uncertainties are used as constraints on the predic-
tions when simultaneously determining the W + jets rates and the
signal cross section. The cut-based analysis does not apply a global
uncertainty on the W + heavy flavour and W + light flavour rates,
but considers separately the impact of the dominant sources of un-
certainty on the data-derived W + jets normalisation factors. This
treatment allows the correlation between each component of un-
certainty on the normalisation factors and the uncertainties on the
W + jets rates to be taken into account. The Z + jets background
normalisation has an uncertainty of 60%.
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Table 3
Breakdown of the contribution of each source of uncertainty to the total uncertainty
of the measured t-channel cross section in data for the NN analysis and the cut-
based analysis. Theoretical uncertainties are included in the “Other backgrounds”
uncertainty category.

Source �σobs/σobs [%]

NN Cut-based

Data statistics ±5 ±8

Object modelling
Jets ±6 +3/−4
b-tagging efficiency ±13 ±12
Mistagging rate ±1 ±1
Lepton ±2 ±4
Emiss

T , calorimeter readout ±2 ±2

Monte Carlo
PDF ±3 ±4
Generator ±4 ±7
Parton shower ±5 ±11
ISR/FSR ±14 +19/−18
Forward jet modelling +6/−4 +7/−5
MC statistics ±3 ±4

Background normalisation
Multijets ±4 ±2
Other backgrounds ±1 ±6

Luminosity ±4 ±4

Total systematic uncertainties +24/−23 +30/−27
Total uncertainty ±24 +31/−28

6.5. Luminosity

The uncertainty on the integrated luminosity is 3.7% [13,14].
Table 3 shows the contribution of each source of uncertainty

to the total uncertainty on the measured t-channel cross section
(�σobs/σobs) for the neural network analysis and for the cut-based
analysis.

7. Cross section measurements

Both the cut-based and neural network analyses employ a
maximum-likelihood fit method to measure the single top-quark
t-channel cross section. The general likelihood function is given by
the product of the Poisson likelihoods in the individual channels.
The background rates are constrained by Gaussian priors. We use
the following equations:

L
(
βs;βb

j

) =
M∏

k=1

e−μk · μnk
k

nk! ·
B∏

j=1

G
(
βb

j ;1,� j
)

with

μk = μs
k +

B∑
j=1

μb
jk, μs

k = βs · ν̃s · αs
k, and

μb
jk = βb

j · ν̃ j · α jk,

where M is the number of channels and B the number of back-
ground processes. The cut-based analysis uses M = 4 channels
separated by lepton charge and the number of jets, while in the
NN-based analysis M is equal to 28, namely the number of bins of
the NN discriminant in the 2-jet channel plus the number of bins
of the NN discriminant in the 3-jet channel. Here ν̃s and ν̃ j are,
respectively, the predicted number of signal events and the num-
ber of events of background j in the selected data set. The number
of observed (expected) events in channel k is denoted by nk (μk).
The expected number of events in channel k is μs

k for the sig-
nal and μb

jk for each background j. The fraction of events falling
in channel k is given by αs

k and α jk for signal and background

respectively. For the NN-based analysis the sets of αs
k and α jk con-

stitute the probability densities (shapes) of the NN discriminants.
The scale factors βs for signal and βb

j for the backgrounds are the
parameters of the likelihood function that are fitted to the data.
The Gaussian constraints on the background scale factors, � j , are
set to the theoretical cross section uncertainty for all background
processes that do not use data-based estimates (tt̄ , W t , s-channel
and diboson), while W + jets backgrounds are constrained within
their data-derived uncertainties. The multijet background is fixed
to the value estimated from data.

The systematic uncertainties on the cross section measurement
are determined using a frequentist method based on a large num-
ber of pseudo-experiments. For each pseudo-experiment the ex-
pectation values of the backgrounds ν̃ j and of the signal ν̃s as well
as the relative distribution of events across the channels (αs

k and
α jk) are varied including all sources of uncertainties described in
Section 6 and the t-channel cross section is measured with the
maximum-likelihood fit. The distribution of measured cross sec-
tions is an estimator of the probability density function of all pos-
sible outcomes of the measurement and it is used to estimate the
uncertainty on the actual measurement.

The NN-based analysis yields, from a simultaneous measure-
ment in the 2-jet and 3-jet channels, a cross section of

σt = 83 ± 4 (stat.)+20
−19 (syst.) pb = 83 ± 20 pb.

The significance of the observed signal corresponds to 7.2 standard
deviations (6.0 expected). This is computed using as a test statis-
tic the Q -value, which is defined as the ratio of the value of the
likelihood function maximised for the Standard Model signal cross
section to the value of the likelihood function maximised for zero
signal.

The cut-based analysis measures, by combining four different
channels (positive and negative lepton charge, with two and three
jets) a cross section of σt = 92+29

−26 pb, in good agreement with the
NN-based measurement. The separation of candidate events ac-
cording to the lepton charge allows individual measurements of
the top-quark and top-antiquark cross sections, yielding the re-
sults σ(t) = 59+18

−16 pb and σ(t̄) = 33+13
−12 pb, that can be compared

to the theoretically predicted cross sections of 41.9+1.8
−0.8 pb and

22.7+0.9
−1.0 pb, respectively [9].

To test the compatibility, the two measurements from the NN-
based and cut-based analyses are combined using the Best Linear
Unbiased Estimator (BLUE) method [49]. The correlation coefficient
of the two analyses is 75% and was determined with ensemble
tests including all systematic uncertainties. Based on the ensemble
tests the two results are found to be compatible within one stan-
dard deviation. However, the combined result and its uncertainty
for the observed cross section measurement does not significantly
differ from the result obtained with the NN analysis alone.

8. Vtb measurement

Single top-quark production in the t-channel proceeds via a W -
t-b vertex and the measured cross section is proportional to |Vtb|2,
where Vtb is the relevant CKM matrix element. In the Standard
Model |Vtb| is close to one, but new physics contributions could
alter its value significantly.

The |Vtb| measurement is independent of assumptions about
the number of quark generations or about the unitarity of the CKM
matrix. The only assumptions required are that |Vtb| � |Vtd|, |Vts|
and that the W -t-b interaction is an SM-like left-handed weak
coupling. Therefore, the tt̄ background rate is unaffected by a vari-
ation of |Vtb| since decays to a potential higher generation are
prohibited by kinematics. On the other hand, rates of single-top
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quark W t and s-channel backgrounds also scale with |Vtb|2, but
their contributions are small in the signal region that drives the
maximum-likelihood fit measurement. The resulting variation on
the total top-quark background yield is less than its systematic un-
certainty and thus considered negligible.

The value of |Vtb|2 is extracted by dividing the observed sin-
gle top-quark t-channel cross section, measured using the NN
method, by the SM expectation [9]. The experimental and theo-
retical uncertainties are added in quadrature. The result obtained
is |Vtb| = 1.13+0.14

−0.13 (exp.)± 0.02 (theo.) = 1.13+0.14
−0.13. Restricting the

range of |Vtb| to the interval [0,1], as required by the SM, a lower
limit on |Vtb| is extracted: |Vtb| > 0.75 at the 95% confidence level.

9. Conclusion

In summary, we present a measurement of the cross section of
single top-quark production in the t-channel with the ATLAS detec-
tor in pp collisions at

√
s = 7 TeV. The measurement is based on

a neural network discriminant separating signal events from back-
ground and yields a cross section of 83±20 pb. The corresponding
coupling at the W -t-b vertex is |Vtb| = 1.13+0.14

−0.13 and the 95% con-
fidence level lower limit on the CKM matrix element |Vtb| is 0.75.
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