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ABSTRACT 

Currently, there are a variety of clinical assessments and rating scales used in the research and 

treatment of Parkinson’s disease (PD). Despite the widespread use and reliance on these scales, 

they do not offer a uniform, objective measure. Many previous studies have indicated promising 

relationships between various biomarkers and Parkinsonian symptoms that could lead to 

objective measures by using statistical methods and providing p-values. However, we could not 

find any literature that uses machine learning or directly tests predictive value. The goal of this 

thesis was to determine whether or not cerebrospinal fluid (CSF) biomarker data could predict 

incidence of Parkinson’s with a high degree of accuracy and differentiate between patients with 

varying levels of severity. We used various supervised machine learning algorithms on the 

Parkinson’s Progression Markers Initiative (PPMI) baseline data set provided by the Michael J. 

Fox Foundation, and reported the percentage of patients correctly diagnosed by each algorithm 

on an isolated test data set. The best classifier averaged 69% accuracy in distinguishing human 

controls from PD patients. While this does indicate the presence of some predictive power, it is 

not clinically useful and we tentatively conclude a negative result. The data pertain to the CSF 

biomarkers available from PPMI at the end of October 2013.  
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1 INTRODUCTION 

 

Parkinson’s disease (PD) is a degenerative neurological disorder that affects seven to ten million 

people worldwide, most of them over the age of 60 ( Parkinson's Disease Foundation). The 

primary symptoms are manifested in the form of motor impairments while secondary non-motor 

symptoms such as dementia may also occur. Each patient experiences different combinations of 

symptoms at varying severity levels. Both the initial diagnosis and tracking of Parkinson’s 

depends on accurately evaluating the motor and non-motor manifestations in an objective 

manner. This allows researchers and clinicians to comparatively measure the effect of different 

therapies and guide treatment techniques.  Currently, the clinical assessments used are largely 

subjective in nature. While the assessment process and ratings are standardized, there is still 

room for variability based on which physician assesses which patient. In short, the challenge of 

defining measures with objective data is largely unsolved.  

 

Among the many clinical assessments that currently exist for evaluating symptoms and following 

patient progress, the most commonly used and widely accepted rating scale is the Unified 

Parkinson Disease Rating Scale (UPDRS). The UPDRS consists of four sections and seeks to 

quantify motor and non-motor manifestations of the disease. Part 3 quantifies motor 

manifestations and measures many different aspects of a patient’s movement including rigidity, 

tremor, posture, stability, and gait (Perimutter, 2009). Other commonly used metrics include the 

Hoehn and Yahr Scale and the Schwab and England ADL Scale. Note that these scales generally 

measure symptomatic severity, which can vary with medication, rather than the actual state of 

the disease. While it is important to discern the severity of the disease itself, being able to 

quantify symptoms is equally important in gauging the benefit of various therapies and tracking 

patient progress in the context of medication. We choose to focus on predicting symptomatic 

severity for the purposes of this study.  

 

Making use of the UPDRS and Hoehn and Yahr scales as the current assessment standard, we 

investigated the viability of using newly proposed quantitative measures for objective evaluation 

by using machine learning and biological data to predict the recorded assessment scores of the 

corresponding patient. The data were analysis values of various biomarkers present in patient 
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cerebrospinal fluid samples. All data, including clinical assessment results, were taken from the 

Parkinson’s Progression Markers Initiative (PPMI) database at http://ppmi-info.org provided by 

the Michael J. Fox Foundation. The initiative has enrolled almost seven hundred patients and 

plans to collect data over a period of several years. The data used in machine learning were a 

subset of the baseline data available at the end of October 2013. The values have since then been 

updated, and some of the initial baseline data may have been subject to assay batch variability 

(PPMI Steering Committee, 2014).  However, this is the same data set as the one used in a report 

indicating promising CSF biomarkers published in JAMA Neurology (Kang, et al., 2013). As the 

study grows, more complete results, including longitudinal data, are expected in the future. At 

this point, we are only able to present a cross-sectional, early evaluation. 

 

We used both supervised and unsupervised machine learning methods in evaluating predictive 

power. Supervised learning was used to determine the data’s value in re-affirming the results 

seen in clinical assessments while unsupervised methods were used to determine whether the 

data exhibited patterns beyond those of the clinical assessments. 

 

The main contribution of this work for the Parkinson’s research community is to provide a foray 

into using machine learning to identify the practicality of potential objective measures. Works 

that have been published thus far (Shi, et al., 2011) (Tokuda, et al., 2006) (Gerlach, et al., 2012) 

have only reported relationships in the form of correlation coefficients or p-values representing 

the significance of the difference between biomarkers values of PD patients and control subjects. 

While this is a useful first step for flagging potential markers, it does not directly indicate how 

clinically valuable the biomarker may be when it comes to actual diagnosis or disease staging. 

We provide further evidence as to whether the correlations described in previous works can 

actually lead to a quantitative marker by reporting the machine learning results on the PPMI data 

set that was available to us at the end of October 2013. We also discuss the strengths and 

weaknesses of each algorithm used. This could aid future research that may seek to re-use similar 

methods in further analyses of the updated PPMI data. The negative results expose some limits 

of previously used analysis techniques in showing that statistical relationships are suggestive but 

not conclusive. However, as the PPMI study is still in early stages of data collection, we hold 

back on making lasting conclusions about the viability of CSF biomarker predictors. It is 
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possible that future data that has been adjusted for assay batch variability (PPMI Steering 

Committee, 2014) or longitudinal patient data may provide different results. 

  

The contents of this thesis are structured as follows. Chapter two presents background 

information. Chapter three presents related research and previous work in objective measures for 

PD. Section four describes the methods and algorithms used for investigation. Chapter five 

presents the results and of testing the machine learning models on a hold out set.  A deeper 

analysis of these results and the implications of our experiments are discussed in chapter six. 
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2 BACKGROUND 

 

2.1 Biomarkers 

A biomarker can be any objectively measurable characteristic of the patient associated with the 

incidence or progression of a disease. Optimally, a biomarker should be easily accessible, 

inexpensive, and validated. In this study, we choose to examine biomarkers that are found in 

Cerebrospinal Fluid (CSF). Since PD is a disease affecting the central nervous system, CSF 

markers, which surround the brain and spinal cord, have a higher relevance to the pathology of 

the disease than other bodily fluids. Unlike other static biomarkers such as DNA, CSF markers 

have the capacity to change with neurodegeneration, making it a sensible choice for tracking 

progression. Much of the longitudinal biomarker work thus far has been in brain imaging 

(McGhee, et al., 2013). CSF is collected through lumbar punctures, which while uncomfortable, 

are less costly than imaging techniques.   

 

2.2 Current Measures for Parkinson’s 

To investigate the use of certain biomarkers in diagnosing and tracking Parkinson’s disease, we 

wanted to show that these biomarkers can accurately reflect or predict the results of current best 

practices in these areas. In this study, we chose first to investigate whether the biomarkers could 

predict incidence of Parkinson’s disease by distinguishing between PD patients and control 

subjects. Further analysis involves using different progressive measures for validation such as 

the UPDRS and Hoehn and Yahr.  

 

Though the consistency of the UPDRS still depends on patient reporting and examiner skill, it 

has gained the most acceptance as a rating scale used in assessing Parkinson’s disease. The most 

current version is a revision called the MDS-UPDRS. It was released in 2007 in response to 

limitations of the original UPDRS reported by a Movement Disorder Society task force. The 

MDS-UPDRS is comprised of four subscales and includes a thorough evaluation of non-motor 

symptoms in Subscale 1. Subscale 2 includes questions pertaining to mobility in daily life. 

Subscale 3 is a monitored motor examination that is scored by a clinician, and Subscale 4 details 

motor complications. Ratings in all of these subscales range from 0 to 4, with 0 indicating a 

control subject and 4 indicating severe PD. These ratings do enforce rank order, but they are not 
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necessarily linear. For instance, a rating of 4 does not indicate twice the severity of a 2. In 

investigating cerebrospinal fluid biomarkers, we mainly looked for relationships between the 

bio-specimen analysis data and patient scores from Subscale 3. Values in subscale 3 range from 

0 to 108 points, and a healthy control subject typically scores less than 9 (Perimutter, 2009). 

 

The Hoehn and Yahr Rating Scale is a much simpler measure of Parkinson’s patients ranging in 

value from 0 to 5. It is also scored by a clinician after patient examination. The rating is meant to 

incorporate both motor and daily impairments into a score that serves as a general reflection of 

disease progression. However, unlike UPDRS, it is not necessarily reflective of symptomatic 

severity meaning that the rating is uninfluenced by factors such as medication and how a patient 

is feeling on a certain day. Patients at the same stage on the Hoehn and Yahr scale could have 

very different symptoms at varying severity levels (Perimutter, 2009). While the extensive, 

detailed nature of UPDRS makes it best used for longitudinal tracking of a specific patient, 

Hoehn and Yahr is best used for a broad description of a patient group. The stages are: 

 

0 - Healthy, control subject 

1- Unilateral disease with minimal disability 

2- Bilateral or midline disease involvement without balance impairment 

3- Bilateral disease with mild to moderate disability and postural instability 

4- Severely disabling disease; can still walk or stand unassisted 

5- Confinement to bed or wheelchair unless assisted 

 

2.3 PPMI Dataset 

The Parkinson’s Progression Markers Initiative is a five year observational, clinical study funded 

by the Michael J. Fox Foundation for discovering new markers for measuring Parkinson’s 

disease severity and progression. Clinics in the United States, Western Europe, and Australia are 

helping to compile the largest collection of clinical, imaging, and bio-specimen data in the 

Parkinson’s community. The initiative consists of data from over 700 patients (216 Control, 453 

PD, and 84 SWEDD). SWEDD patients are those that have started experiencing some clinical 

symptoms of Parkinson’s but have not yet shown any loss of dopamine. Though there were over 

700 patients enrolled, biomarker data was only available for a small subset (114) of these 



 

 

14 
 

patients at the time of the study (Parkinson's Progression Markers Initiative, 2014). 

 

Of the patients enrolled in the PPMI study, the majority are still in the earlier stages of 

Parkinson’s due to the long-term longitudinal goals. The patient age range provides a larger 

spread from 30-89. However, previous studies indicate that time since disease onset is more 

relevant to disease severity than age itself (Kempster, O'Sullivan, Holton, Revesz, & Lees, 

2010).  

 

Figure 1. Distribution of Patients based on Disease Duration (Months) 

 

 

PPMI data is available to both industry and academic researchers. For this study, we used the 

Biospecimen Analysis Results, MDS UPDRS Part III, PD Features, and Patient Status data 

sheets last updated on October 14, 2013, for our analysis. The Hoehn and Yahr scores used were 

included in the MDS UPDRS results.  Only baseline patient data was readily available and used 

in learning and prediction.  
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3 RELATED WORK 

 

3.1 Biomarkers in PD Diagnosis and Progression  

There are several papers that have looked at the potential of using cerebrospinal fluid biomarkers 

in evaluating Parkinson’s disease. In a systematic review of biomarkers for Parkinson’s disease 

progression, (McGhee, et al., 2013) reported that 29 of the 183 articles they reviewed were 

studies examining CSF. All 29 of these studies were cross-sectional. The majority of biomarker 

studies conducted on longitudinal patient data thus far have been with brain imaging. PPMI 

seeks to change this by collecting longitudinal CSF data as well. Common markers from 

previous CSF studies include alpha-synuclein (a-syn), DJ-1, amyloid beta peptide 1-42 (ABeta-

42), and total tau (t-tau). Previous investigations looked to correlate these CSF markers with PD 

severity or progression, approximated by the UPDRS motor scores or other clinical assessments. 

Papers present a varying amount of detail when it comes to results. Most include p-values from 

significance testing. (Shi, et al., 2011) (Tokuda, et al., 2006). However, we were unable to find 

any studies that have gone further to investigate the predictive ability of CSF biomarkers in 

staging PD patients.    

 

The first results from work done on the same PPMI baseline data set that was used in this study 

were published by in JAMA Neurology (Kang, et al., 2013). It presented significant lower levels 

of CSF biomarkers in subjects with PD compared with healthy controls. Specifically, PD patients 

were found to have lower concentrations of ABeta-42, T-tau, P-tau181, and A-Syn. While the 

correlation was statistically significant, there was still a marked overlap in the two groups. The 

paper concluded with a positive outlook on the prognostic and diagnostic potential of CSF 

biomarkers in early-stage PD but cited the need for further investigation to test the predictive 

performance of CSF biomarkers in PD progression. 

 

3.2 Machine Learning in Objective Measures 

Other initiatives by the Michael J. Fox Foundation to discover objective measures for 

Parkinson’s include a Data Challenge hosted on Kaggle, a machine learning competition 

platform. This challenge focused not on biomarkers but on passively collected movement data. 

The competition provided movement data collected from the smartphone of 16 subjects (8 
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control, 8 PD). 

 

Using the smartphone accelerometry data provided by the Michael J. Fox Foundation along with 

the phone’s compass and GPS information, the winning entry (Brunato, Battiti, Pruitt, & Sartori, 

2013) showed that Parkinson’s patients could be successfully identified from control subjects 

with 100 percent accuracy. Acceleration features were extracted by using the compass and GPS 

information to throw away noisy data. A Support Vector Machine was then used to do a binary 

classification between controls and PD patients with each patient represented as a data point 

“cloud.”  

 

Though the accuracy of diagnosis using this mobile data was perfect, there is a caveat in that the 

sample size was extremely small. Because of this, it is possible that the successful prediction is 

due more to the machine learning algorithm’s ability to identify one patient from another rather 

than a healthy patient from a sick one. However, these results do encourage further study in the 

area of using motion data gathered from commercial devices to predict and track Parkinson’s 

disease. 
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4 METHODS 

 

4.1 Data Features and Labels 

The CSF biomarkers provided in the PPMI data set were alpha-synuclein, amyloid beta-42, total 

tau, phosphorylated tau181, and hemoglobin. Before training, the biomarker values were 

normalized and centered based on the formula below to reduce potential bias from markers with 

intrinsically higher or lower levels in CSF.  

 

µ𝑥𝑖 = average value of feature Xi 

Xi = 
𝑋𝑖

||𝑋𝑖||
− µ𝑥𝑖 

 

One complete data point X is a vector of five elements, making X a point in five dimensional 

space: 

 

X = <x1, x2, x3, x4, x5> 

x1 = p-tau181 level 

x2 = abeta42 level 

x3 = a-syn level 

x4 = hemoglobin level 

x5 = t-tau level  

 

We chose to use all five of these features since they have all been previously found to be 

correlated with PD severity. In feature selection analysis, we also calculated correlation 

coefficients between all possible combinations of the normalized and mean-centered features and 

the target labels when using a linear estimator. We did this using the entire data set. Using all 

five features yielded the least residual training error of 0.4658 and the highest correlation 

coefficient of 0.732.  
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Figure 2. Correlation Coefficients for Combinations of CSF Features and UPDRS III 

Scores 

 

One Feature 

x1 x2 x3 x4 x5 

0.701 0.688 0.688 0.689 0.695 

 

Two Features 

x1, x2 x1, x3 x1, x4 x1, x5 x2, x3 

0.717 0.701 0.709 0.703 0.691 

 

x2, x4 x2, x5 x3, x4 x3, x5 x4, x5 

0.696 0.699 0.710 0.696 0.708 

 

Three Features 

x1, x2, x3 x1, x2, x4 x1, x2, x5 x1, x3, x4 x1, x3, x5 

0.718 0.729 0.717 0.717 0.703 

 

x1, x4, x5 x2, x3, x4 x2, x3, x5 x2, x4, x5 x3, x4, x5 

0.714 0.715 0.701 0.714 0.711 

 

Four Features 

x1, x2, x3, x4 x1, x2, x3, x5 x1, x2, x4, x5 x1, x3, x4, x5 x2, x3, x4, x5 

0.731 0.719 0.729 0.717 0.716 

 

Five Features 

x1, x2, x3, x4, x5 

0.732 
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In supervised machine learning, a label is the “correct” or desired output Y to be predicted from 

X. In this study, the label was either incidence of PD, the UPDRS score value or Hoehn and 

Yahr stage. 

 

Before any machine learning, the patients were sorted based on their Hoehn and Yahr staging 

and one third of the data set was randomly chosen and removed from each group. We employed 

the Hoehn and Yahr staging to ensure that the ratio of subjects at varying severity levels in the 

precluded data were representative of the entire data set. The remaining two thirds of the data 

were used in training the machine learning algorithm and developing a model for the relationship 

between the CSF biomarkers and incidence of PD. The removed data was then used as the test 

data for validating efficacy of each derived machine learning model.  

 

 

4.2 Supervised Learning 

All supervised machine learning algorithms were applied and evaluated within the same testing 

framework described below. Because of the limited amount of data available, it was seen that the 

partition of the data set in training and cross validation greatly affected the accuracy of each 

model. Because of this, rather than using cross validation to derive one “best” model for each 

algorithm we partitioned the data into different training/validation instances for each trial and 

judged the accuracy of each algorithm as an average over the collective models produced from 

different partitions. 

 

Machine Learning Framework 

1. Randomly set aside one third of the data as test data based on Hoehn and Yahr staging 

2. Partition the rest of the data evenly into testing and validation.  

3. Train a model and tune its parameters with the validation set 

4. Use the model to predict outcome of test data 

5. Record predictive accuracy of model on test data 

6. Repeat 2-5 for 100 trials 

 

The following machine learning algorithms from the Python scikit-learn package (Scikit-learn, 
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2013) were used to train different models: 

 

4.2.1 K Nearest Neighbors (KNN) 

The principle behind K Nearest Neighbors is that data points are likely to be similar in class to 

those nearest in distance to it. Classification of new data points are then predicted using the 

majority class of the K closest neighboring points. This method does not attempt to construct an 

internal model, but simply needs to store instances of the training data. Here, closeness or 

distance between data points can be defined using several different metrics. We used the 

following three:  

 

Euclidean: √(x − y)2 

Manhattan: |x-y| 

Weighted: weights each neighboring point’s vote by the inverse of their distance (1/d) to the 

target point.   

 

4.2.2 Support Vector Machine (SVM) 

Support Vector Machines (SVM) classify data by representing data points in space and finding a 

separating hyperplane that results in the greatest gap between the classes. One of the greatest 

advantages of SVMs are their versatility. Kernel functions can map data into higher dimensions, 

allowing a hyperplane to separate data that wasn’t originally linearly separable. SVMs are also 

computationally and memory efficient as only a subset of the training points, known as support 

vectors, are needed in calculating the decision function. A disadvantage of SVMs are that they 

do not provide probability estimates. 

 

4.2.3 Linear Discriminant Analysis (LDA) 

Linear discriminant analysis tries to find a linear combination of features that separates two or 

more classes. Benefits of LDA are that it includes an easily calculated closed-form solution, has 

no parameters to tune, and it is inherently multiclass. The decision boundary is found by 

modeling each class as a Gaussian based on the conditional distribution of the training data and 

calculating their intersection.    
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4.2.4 Naïve Bayes (NB) 

Naive Bayes assumes features are independent and makes predictions based on an underlying 

probability model. It calculates prior probabilities from the training set and uses Bayes Theorem 

to output a prediction. Naïve Bayes is typically a very fast algorithm compared to other 

supervised methods. Decoupling of the features also means that the distribution of each feature 

can be estimated independently. However, this would not be a good method to use if it is 

suspected that features are correlated.  

 

4.2.5 Adaboost 

Adaboost is an ensemble learning method introduced by Freud and Schapire that combines a 

group of weaker classifiers into a stronger classifier (Freud & Schapire, 1997). Adaboost uses an 

iterative method that picks the best weak classifier for repeatedly reweighted versions of the 

training set on each round. The weights on the training data points are adjusted based on whether 

the classifier chosen in the previous round classifies that point correctly. Correctly classified 

training points are given reduced weight in future rounds while misclassified points are given a 

heavier weight. On the next round, the algorithm will prioritize the correct classification of 

points that are weighted more heavily. In the final classifier, each weak classifier gets a weighted 

“vote” for prediction. For this thesis, the weak classifiers used were the previously tested 

supervised methods described above. A weak classifier is defined as a classifier that performs 

only slightly better than random. Python code for our Adaboost adaption can be found in 

Appendix A. 

 

 

4.3 Unsupervised Learning 

Unsupervised learning was used to examine the potential of patterns in the data that weren’t 

exposed in existing clinical assessments. The following unsupervised learning algorithms from 

the Python scikit-learn package were used on the CSF biomarker data. In this case, all data 

including the test set were used in learning. We first attempted to model the group as two 

distributions to represent PD and control subjects. It was seen that leaving out the test set did not 

largely influence results. Both algorithms tested were inclined to cluster the majority of the data 

into one group while selecting an outlier for the remaining cluster.  
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4.3.1 Gaussian Mixture Models (GMM) 

GMMs group data points by modeling them as samples from one or more Gaussian distributions. 

GMMs can sometimes be difficult with smaller data sets as it provides limitations to calculating 

a covariance matrix.   

 

4.3.2 K-Means 

K-Means seeks to iteratively separate the data into K clusters (K must be specified). To begin, K 

centroids are initialized randomly and data points are grouped with the closest centroid. These 

sorted data points are then used to calculate a new centroid that better represents those points. 

This process continues iteratively until the centroids converge. Note that the results of K-Means 

are not necessarily deterministic due to the randomization at the beginning. However, with our 

data set, we ran the algorithm many times for K = 2 and achieved the same results each time.   
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5 RESULTS 

 

5.1 Supervised Learning 

Results are reported over 100 trials of model training on different partitions of the training data. 

Reported prediction accuracy indicates performance of the model on guessing the diagnosis of 

each patient in the isolated test data set. Note that most of the algorithms can do any better than 

randomly guessing whether each patient has Parkinson’s or not. Adaboost achieves a slightly 

better result by combining the strengths of the previous algorithms. 

 

5.1.1 K Nearest Neighbors  

(K value determined individually for each model through cross validation) 

Distance Metric Avg. Prediction Accuracy Standard Deviation 

Manhattan Distance 0.507 0.058 

Euclidean Distance 0.507 0.047 

Weighted Euclidean 0.505 0.053 

 

5.1.2 Support Vector Machine 

Kernel Avg. Prediction Accuracy Standard Deviation 

Linear 0.51 0.07 

Radial 0.51 0.07 

 

5.1.3 Linear Discriminant Analysis 

Avg. Prediction Accuracy: 0.510 

Standard Deviation: 0.080 

 

5.1.4 Naive Bayes 

Avg. Prediction Accuracy: 0.460 



 

 

24 
 

Standard Deviation: 0.141 

 

5.1.5 Adaboost 

Avg. Prediction Accuracy: 0.697 

Standard Deviation: 0.137 

 

 

5.2 Unsupervised Learning 

For better visualization of the unsupervised learning results, we first performed a Principal 

Component Analysis (PCA) Reduction of the data set into two dimensions. PCA is a process that 

aims to transform the axis of the data set to reduce dimensionality. It was also performed using 

tools in the Python scikit-learn package. From the figure below, it is already evident that there is 

no clear separation between the principal components. 

 

Figure 3. PCA Reduced CSF Biomarker Data Set 

 

 

 

5.2.1 Gaussian Mixture Models 

The results of modeling the data with Gaussian Mixtures showed the data belonging to one 

Gaussian regardless of the covariance matrix type. 
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Figure 4. Gaussian Mixtures Results on PCA Reduced Data 

 

5.2.2 K-Means 

The results of using the K-Means algorithm on the principle components of the data are shown 

below. Because of the inseparability of the data, all but one outlier are in the same cluster when 

we choose K = 2. 

 

Figure 5. K-Means Clustering Results on PCA Reduced Data 
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6 DISCUSSION 

 

It can be seen from the results that we found very little predictive value in the baseline CSF 

biomarker data. In supervised learning, most of the results hovered around 50% accuracy, giving 

us no more insight to PD than a random guess. Several of the algorithms would guess that all the 

test patients were of the same class. Going further to examine the ability to predict disease 

severity does not make sense if diagnosis cannot successfully be predicted. The best supervised 

learning results came from using the Adaboost ensemble learning method. Since Adaboost is a 

composition of the other weak classifiers, its success depends on how well the different weak 

classifiers can lean on the strengths of some and make up for the weaknesses of other. In our 

case, the ensemble of weak learners was composed of various supervised learning methods that 

have been proven to work well on different types of data in the past. Because of this, it may be 

that each weak learner classifies different subsets of the data successfully and the combination of 

classifiers does a significantly better job of classifying the test set than any one classifier alone. 

Unsupervised learning results also struggled with the overlap in classes, finding the best results 

to contain all data points in a single cluster or Gaussian distribution. Examining the distributions 

of PD patients versus control subjects based on some of the CSF biomarkers indicates that the 

two groups may not be separable. 

 

Figure 6. PD and Human Control Patient Distributions for CSF Features 
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While the results of this study are negative, both the research of objective measures and the 

PPMI database are in very early stages. There are several factors that may have contributed to 

the negative results and motivate further investigation when there is more data available. 

 

The biggest factor that may have affected the results is assay batch variability between 2011 and 

2013 in the research assays by the PPMI study centers. This was reported by PPMI in early May 

2014 (PPMI Steering Committee, 2014), and the data has since then been modified and updated 

to reflect this variability.  

  

Another big factor affecting results may have been inter-patient variability. It is possible that 

there is far more variability between the cross-sectional data of two patients due to individual 

differences rather than the stage of the disease. This would makes it implausible to find patterns 

for progression in the baseline biomarker data. At the time of the study, there was no longitudinal 

data available. However, the recent update includes 300 longitudinal measures that can be used 

in further analysis of the predictive ability of CSF biomarkers on a patient by patient level. It’s 

also possible that patient biomarker data will vary so much from patient to patient that a 

universal objective measure will be hard to achieve. Perhaps each patient will need to have their 

own calibrated scale based on their baseline measures. 

 

The sample size and spread of the patient data used in machine learning was also small. We saw 

that sample size having a large effect on the results as different partitions of the training and 

validation data yielded various results. There was only biomarker data for about 100 patients 

available. With a third set aside for testing, training was done on around 70 data points. Though 
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over 700 subjects had already been enrolled in the PPMI, only this small portion of the biological 

analysis data was available for use. There were another 300 or so samples that contained 

incomplete biomarker levels for only a subset of the five CSF features. The patient distribution 

was also skewed towards earlier disease stages. While this skewed patient distribution potentially 

provides a good way of testing extrapolative ability of a model to predict later stages, the small 

range provides limitations on the efficacy of certain machine learning models and presents 

challenges in assessing validity. Overtime, more data will become available as the PPMI 

database becomes more complete and future tests in learning and prediction may yield different 

results. 
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7 CONCLUSION 

 

This paper described the first exploration of using machine learning to evaluate the predictive 

ability of CSF biomarkers in staging PD. The biomarker data was obtained from the PPMI, a five 

year long longitudinal study. At the time of the research, only baseline biomarker data was 

available for a subset of the 700 patient study. Most of the PD patients were in an early stage of 

the disease. 

 

Previous studies have indicated the potential of using CSF biomarkers to predict incidence and 

severity of PD. These studies reported a statistically significant relationship between these 

markers and diagnosis of PD, indicating that further research could be done to evaluate whether 

or not they could be used to predict disease severity. Using the levels of CSF a-syn, abeta-42, t-

tau, p-tau181, and hemoglobin of 114 patients in the PPMI data set along with machine learning, 

we aimed to discover whether or not these biomarkers could lead to an objective measure.  

 

Employing a variety of machine learning algorithms, it was seen that most of them could not 

correctly predict diagnosis with results significantly better than random. Adaboost performed the 

best at around 69% accuracy. While this is not clinically useful, it does suggest the presence of 

some information in CSF biomarkers that may be useful for future objective measures. 

Unsupervised attempts to classify the data also struggled to identify any patterns. These negative 

results could be a product of limitations from the data set or inter-patient variability. Generally, 

there are still several avenues to be explored in using CSF biomarkers for objectively measuring 

PD. Immediately available ones include the newly updated PPMI data sets. Even then, it can be 

seen that more than a statistically significant relationship between biomarkers and clinical 

assessments is needed. Further analyses of predictive ability, similar to those performed in this 

study, will be necessary in the search for objectives biomarkers for the clinical purposes of 

determining disease stage or monitoring progression.  
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Appendix A: Adaboost.py 
import numpy as np 
import math  
from scipy.stats import mode 
from itertools import combinations 
 
import machine_learning as ml 
import plotting as pt  
import lda 
import naive_bayes 
import svm 
import knn 
 
 
def computeAlpha(error): 
 return (0.5) * np.log2((1.0-error)/error)  
 
def getMisclassifiedSamples(model, targets, samples): 
 misclassified_ind = [] 
 for i,s in enumerate(samples): 
  if model.predict(s) != targets[i]: 
   misclassified_ind.append(i) 
 return misclassified_ind 
 
def predictEnsemble(ensemble, sample): 
 res = 0 
 for alpha,classifier in ensemble: 
  pred = alpha * classifier.predict(sample) 
  res += pred 
 if res > 0: 
  return 1 
 if res < 0: 
  return (-1) 
 
def createClassifiers(x,y): 
 classifiers = [] 
 knn_m = knn.trainClassification(x,y,17,'manhattan') 
 knn_e = knn.trainClassification(x,y,17,'euclidean') 
 l = lda.trainClassification(x,y) 
 svm_l = svm.trainClassification(x,y) 
 svm_r = svm.trainClassification(x,y,'rbf') 
 nb = naive_bayes.trainClassification(x,y) 
 
 classifiers.append(knn_m) 
 classifiers.append(knn_e) 
 classifiers.append(l) 
 classifiers.append(svm_l) 
 classifiers.append(svm_r) 
 classifiers.append(nb) 
 
 return classifiers 
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def runAdaBoost(rounds, X, Y): 
 
 num_val = 10 
 classes = 2 
  
 (trainX, trainY, validX, validY) = ml.getRandomSamples(X, Y, num_val) 
 weak_classifiers = createClassifiers(trainX, trainY) 
 
 weights = [1.0/len(trainX)] * len(trainX)  
  

final_classifier = [] 
 
 for i in range(rounds): 
   
  best_classifier = None 
  best_weighted_error = 1.0 
  best_errors = None 
 
  #--IDENTIFY BEST CLASSIFIER--# 
  for classifier in weak_classifiers: 
    
   errors = getMisclassifiedSamples(classifier, trainY, trainX) 
   total_error = 0 
 
   for wrong in errors: 
    total_error += weights[wrong] 
 
   if total_error < best_weighted_error: 
    best_weighted_error = total_error  
    best_classifier = classifier 
    best_errors = errors 
 
  #--CALCULATE ALPHA--# 
  if best_weighted_error != 0.0: 
   alpha = computeAlpha(best_weighted_error) 
   #print "ALPHA: ", alpha 
  
  #--REWEIGHT--# 
   for k,weight in enumerate(weights): 
    if k in best_errors: 
     new_weight = weight / (2 * best_weighted_error)  
    else: 
     new_weight = weight / (2 * (1-best_weighted_error))  
     
    weights[k] = new_weight 
 
   final_classifier.append((alpha, best_classifier))  
  else: 
   final_classifier = [(1,best_classifier)] 
   break 
 
 return final_classifier 

 


